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Abstract 
 

Various sources of error hinder the possibility of achieving tight accuracy requirements for 

high-value manufacturing processes. These are often classified as: pseudo-static geometric 

errors; non-rigid body errors; thermal errors; and dynamic errors. It is comparatively 

complicated to obtain an accurate error map for the thermal errors because they are 

influenced by various factors with different materials, time constants, asymmetric heating 

sources and machining process, environmental effects, etc. Their transient nature and 

complex interaction mean that they are relatively difficult to compensate using pre-

calibration methods. 

 

For error correction, the magnitude and sign of the error must first be measured or 

estimated. Pre-calibrated thermal compensation has been shown to be an effective means 

of improving accuracy. However, the time required to acquire the calibration data is 

prohibitive, reducing the uptake of this technology in industrial applications. Furthermore, 

changing conditions of the machine or factory environment are not adequately 

accommodated by pre-calibrated compensation, leading to degradation in performance. The 

supplementary use of on-machine probing, which is often installed for process control, can 

help to achieve better results. 

 

During the probing operation, the probe is carried by the machine tool axes. Therefore, the 

measurement data that it takes inevitably includes both the probing errors and those 

originating from the inaccuracies of a machine tool as well as any deviation in the part or 

artefact being measured. Each of these error sources must be understood and evaluated to 

be able to establish a measurement with a stated uncertainty. This is a vital preliminary 

step to ensure that the calibration parameters of the thermal model are not contaminated 

by other effects. 

 

This thesis investigates the various sources of measurement uncertainties for probing on a 

CNC machine tool and quantify their effects in the particular case where the on-machine 

probing is used to calibrate the thermal error model.  

 

Thermal errors constitute the largest uncertainty source for on-machine probing. The 

maximum observed thermal displacement error was approximately 220 µm for both X and 
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Z-axis heating test at 100 % speed. To reduce the influence of this uncertainty source, 

sensor data fusion model using artificial neural network and principal component analysis 

was developed.  The output of this model showed better than 90 % correlation to the 

measured thermal displacement. This data fusion model was developed for the temperature 

and FBG sensors.  

 

To facilitate the integration of the sensor and to ease the communication with machine tool 

controller, a modular machine tool structural monitoring system using LabVIEW 

environment was developed.  

 

Finally, to improve the performance of the data fusion model in order to reduce the thermal 

uncertainty, a novel photo-microsensor based sensing head for displacement measurement 

is presented and analysed in detail. This prototype sensor has measurement range of 20 µm 

and resolution of 21 nm. 
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Chapter 1 –Introduction 
 

Metrology is the science of measurement [1] and its corresponding accuracy, precision and 

uncertainty [2]. To measure is to ascertain a numerical value to quantity, magnitude or 

dimension in terms of physical unit. Measurements are usually performed for verification 

purpose. It enables us to know the accuracy of the measurement and to ensure common 

standards are used.  

 

1.1 Dimensional Metrology and quality control  

 

In the world of manufacturing, dimensional metrology is synonymous with dimensional 

measurement [3]. Metrology in manufacturing begins from the setting of tools; it continues 

through in-process measurement, product verification and through life monitoring [4].  

Dimensional metrology is a central part of any manufacturing system because it is essential 

for making parts correctly [5]. It means it can be guaranteed that the manufactured parts 

fit together and perform as they were intended to.  

 

One of the key processes in industrial quality control is a dimensional measurement of the 

manufactured parts and in most modern industries measurement process can cost up to  

10-15 % of the production cost [6]. Good measurements can however significantly increase 

the effectiveness and quality of the product.  

 

Dimensional quality control makes sure that the dimensional properties of the produced part 

comply with the assigned tolerances. Tolerances allow defining how much property can 

deviate from its nominal value. This is necessary, as it is impossible to manufacture a part 

with exact nominal specifications. The narrower the value of tolerance limits, the more 

expensive the manufactured part [7].  

 

The measurement instruments and knowledge of measuring uncertainties for product 

verification is an indispensable part of a quality management to guarantee that the products 

are within specified tolerances. If the product is not within tolerance, it requires either 

rework or is scraped. If the product is within tolerance but rejected by the customer due to 

non-compliance with their tolerance specifications, it results in an even greater economic 

loss. Hence, there is a clear relationship between economics and measurement errors.       
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1.2 Machine tools in manufacturing  

 

Manufacturing has evolved dramatically from the days of artisans producing quality 

products and skilled machine operator altering the cutting parameters based on his 

experience and as a direct response to the machine behaviour [8]. Production in high value 

manufacturing (HVM) is increasingly becoming reliant on computer numerically controlled 

(CNC) machine tools, due to the several advantages offered by them over manually 

operated machines. CNC machines provide an improvement in consistency, flexibility, 

productivity and quality with shorter and predictable time scales. They also reduce 

manufacturing costs by keeping the production of scrap and rework of out of tolerance 

components low. 

 

The primary goal of the CNC machines is to automate the process to achieve higher 

accuracy to meet the greater quality requirements. Machining accuracy, one of the key 

performance variables for manufacturing process, is chiefly governed by the relative 

position between cutting tool and ideal workpiece [9]. Workpiece accuracy can be defined as 

the degree to which the finished part conforms to dimensional and geometrical 

specifications [10]. 

 

1.2.1 Machine tool error sources  

 

Machining errors occur due to the mismatch between theoretical and actual machine tool 

trajectory, which is a result of the influence of various errors on the machine tool motion. 

Inaccuracies in the machine tool are caused by the rigid body geometric errors due to 

machine’s structural components, thermal errors due the thermal distortions, loading effect 

and errors due to other sources like cutting forces, servo errors, etc. [11, 12]. 

 

Rigid body geometric errors are normally caused by manufacturing imperfections, 

mechanical misalignments, static deflection of the structural elements, etc. Two main 

components of these errors are systematic and random errors.  They are further 

categorized into translational (linear positioning, horizontal and vertical straightness), 

angular (roll, pitch and yaw) and squareness errors. 3-axis machine normally has 21 

geometric error components [11]. 

 

Extensive research has been carried out on geometric error compensation methods as they 

make up one of the major source of inaccuracy in the machine tools [10, 13, 14].  
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Improvements in the volumetric accuracy of up to 97% were achieved for 3-axis machine 

tool in the research carried out by Longstaff et al [15]. 

 

Non-rigid errors are caused by the lack of rigidity in the structural components of the 

machine tool. They are also called “load induced” errors. Inertia, workpiece, machine tool 

and cutting tool mass, fixture stiffness and cutting loads, etc. are some of the common 

factors that give rise to these errors.  Effect of these errors are small when compared to 

uncompensated geometric errors but can become significant in the case of larger 

machines [10]. 

 

Thermal errors can contribute more than 50% of the total machine error [16-18] and are 

caused by the thermo-elastic deformation in the machine. Non-linear thermal expansion of 

the structural elements caused by the thermal gradient produces an intricate interaction 

between tool and workpiece [19]. 

 

Thermal errors are into the internal and external heat sources. Internal heat sources are 

often the major contributors, which are typically motors, belts drives, spindle bearings, gear 

boxes, hydraulic systems, etc. [20].  Typical examples of external heat sources include heat 

generated by the machining process, machine electric components, cabling and cabinets, 

other machines, workshop heating, etc., [21].  

 

Other sources of machine tool error include servo errors, fixture errors, tool wear, etc. 

These errors depending on the process are comparatively not as significant as geometric, 

non-rigid and thermal errors. They are mainly caused by the use of incorrect feed rates, 

improper setup procedures, workload and life of the machine tool. This type of errors can be 

restricted or prevented by careful selection of feed rates, using proper setup procedures and 

regular inspection of the tool [10]. 

 

1.2.2 Error mitigation 

 

There are stringent requirements on the dimensional accuracy to be achieved in precision 

machining applications. “How to improve the accuracy of the machine tool has become a hot 

issue for many scholars” [22]. Two basic approaches to improving the machine tool 

accuracy are error avoidance and error compensation [10]. 

 



4 

 

 

 

Error avoidance involves reduction or elimination of machine tool errors by careful design 

and manufacturing efforts. Whereas in error compensation, machine errors are mapped 

and then effects of these errors are compensated by electronic adjustment to the axis 

trajectory. 

 

It is more desirable to use error avoidance comprising the refinement of a machine tool or 

its environment to control the error sources. This is a generally accepted idea. However, in 

several cases this is not practically feasible, there are physical limitations of machine tool 

accuracy that cannot be overcome solely by production and design techniques and due to 

the additional cost involved in the refinement of the machine tool structure. This makes 

error compensation techniques more attractive than error avoidance [23]. 

 

To understand the possible causes and magnitudes of the machine tool errors, machine tool 

calibration is necessary. Periodic calibration can provide advanced warning signs of when 

machine tool is going to require attention for repair. Calibration helps to characterise the 

machine performance, gives raw data which can be used for error compensation and 

provides a means to identify accuracy problems [20]. Regular CNC machine tool calibration 

provides the information to maintain the asset within its tolerance, delivering higher 

throughput, allowing parts to be manufactured with higher accuracy and reducing the cost 

occurring from field services and production cycle interruptions for critical maintenance 

activities. 

 

Machine tool calibration using purpose-made equipment often requires high levels of skill, it 

can be resource intensive in addition to sometimes being time consuming, and cost involved 

in assigning resource as well as time can at times exceed the benefits gained by the 

reduced scrap and rework. There may be non- standard methods available for calibration 

but due to the lack of knowledge and insufficient expertise, companies may not be able to 

utilize them. Additional cost may incur in hiring the consultancy to provide the required 

solution [21]. 

 

In the case of pre-calibrated systems, the error is measured before the machining process 

and the data is utilised to compensate the tool path during subsequent operational cycles. 

This method is dictated by the assumption that both machining and measurement process 

are repeatable in nature [11]. Good machine tool design and build generally means that 

high quality machine tools will, have repeatable rigid body geometric errors, meaning that, 

error mapping is relatively easy to achieve. However, thermal errors are comparatively 
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complicated to accurately map, because they are dependent on various factors such as 

machining process, environmental effects, etc. Whereas for active error compensation, an 

on-line semi-closed loop system, the error is monitored during the actual process and the 

same is used for on-line error compensation. Thus, active error compensation is a 

potentially more desirable solution in an industrial application. The downside to such a 

strategy is the additional cost requirement and physical constraints that such a system 

would require [24]. 

 

An attractive solution is to fuse on-line measurement to supplement a pre-calibration 

schema. The offline measurement can reduce the number of online sensors required while 

the online system can supplement deficiencies due to time-variant factors.    

 

Thus, there is a need for an on-line measurement system for error monitoring so the 

machining process can be altered during the same operation. On-machine probing is a 

readily available technology that can help achieve this.  

               

1.3 On-machine probing 

 

Owing to the increasing popularity of CNC machine tools, it has become essential to further 

automate and accelerate the speed of the quality control of final machined parts in order to 

meet the industry demands forever-growing accuracy without adversely influencing 

production times. This was made possible using measuring devices mounted on the machine 

that can be automatically selected in place of the cutting tool. These “on-machine” probes 

can aid in setting the location of the un-machined workpiece and its direct measurement on 

machine tool itself. Additional equipment is also installed on some machines to establish the 

length and diameter of the cutting tool. Such a devices are known as on-machine tool 

setting probes. 

 

In conventional manufacturing processes, part inspection is carried out on standalone 

measurement systems such as coordinate measuring machines (CMM), which are normally 

located at a different location than machine tool in the separate quality control area, room 

or building. It is also known as “post-process measurement” or “out-of-cycle 

measurement” [25, 26]. Figure 1 illustrates the post processing measurement inspection 

technique.  
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Figure 1 Post-process measurement  
 

This increases the overall manufacturing cost and time to obtain the final product and can 

potentially create bottleneck phenomenon by product stagnation due the time lag between 

manufacturing and inspection process in case of the flexible manufacturing system.  A part 

that fails post process inspection by CMM results in rework or increases scrap cost. 

Additionally, it can be hard to transfer, fixture and measure the complex, large sized 

parts [26]. 

 

In “In-cycle measurement” also known as “on-machine measurement”, machining 

must be stopped while the measurement takes place during the process cycle. Figure 2 

shows the in-cycle measurement method. With this measurement method, the workpiece 

can be assessed between cuts or after completion, prior to removal from setup [24, 26, 27].  

 

 

Figure 2 In-cycle measurement   
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An on-machine probe is a relatively inexpensive and easy to use accessory that can be 

directly and automatically mounted on the spindle of CNC milling machine or in the lathe 

turret. Thus, this kind of arrangement provides functionality similar to a CMM 

measurement [28]. Figure 3 demonstrates the schematic of a probe mounted 3-axis CNC 

machine for on-machine measurement.  

 

 

 

Figure 3 Schematic of a probe mounted 3-axis CNC machine  
 

However compared to CMM, on-machine measurements (OMM) are exposed to a number of 

additional issues such as thermal dilatations, clamping forces, dirty environments, limited 

accuracy of production machines and higher trigging forces of machine tool probes [29]. 

Probe measurement results are also affected by environmental influences. The most 

important influences are deviations from the reference temperature of 20oC causing thermal 

expansion and shrinkage of the work-piece and the measuring system. Thermal gradients 

inside the work-piece and measuring system including probing create more trouble, because 

they lead to deformations like bending [30].  Factors that influence the measuring 
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performance are stylus length, direction and speed of approach, indexing angles, pre travel 

variations, etc. [31]. 

 

The main limiting factor in using the probe as a reliable, traceable part of the quality audit 

for a produced part is that the same axes that create the part also drive the measurement 

device. This means that some of the errors in machining will not be picked up by the 

measuring procedure; it is not an independent check [32]. Probes measure parts moving 

along the erroneous machine tool axes, thus on machine measurement data inevitably 

include the probing errors as well as errors originated from the inaccuracies of a machine 

tool [33]. These probing errors are required to be identified and eliminated from the 

measured data to obtain true machining error.  

 

ISO 230-10:2011 [34] provides a standard for determining the measuring performance of 

probing systems for machine tools. These methods are based on the measurement of 

different types of appropriate standard artefacts that include reference spheres, gauge rings 

and corners. This system allows checking the measurement performance of the entire 

system and thus does not permit isolating the probe errors from machine tool errors. Use of 

a master artefact is an indirect method for determining the accuracy of machine tool probe. 

They are used because of their simplicity but it requires the use of high precision machine 

tools [29], to gain any information regarding the accuracy of the probe itself. Most of the 

CNC machines used in industrial settings fail to satisfy this condition [35]. 

 

Indirect methods described were used for CMM probing with dedicated measurement setup, 

which is heavy and complex and thus unsuitable for shop floor usage. Testing of machine 

probe on the machine itself requires portable setup. This kind of setup eliminates time and 

trouble required to dismantle probe and its setup [35]. Nevertheless, probe calibrated in 

this manner does not provide enough information about the entire volume of the machine 

as it offers only localised effect. 

 

1.3.1 Probe types for on-machine measurement  

 

There are several types of probes available for various measurement tasks on the shop floor 

as well as in metrology environment. They can be primarily classified into two groups: 

contact probes and non-contact probes. Contact probes are also referred as tactile 

probes and since non-contact probes chiefly use optical techniques for point detection; they 



9 

 

 

 

are normally called as optical probes. Non-contact probe also uses inductive and capacitive 

systems for surface detection purpose [30].  

 

Non-contact probes do not require material contact with the surface being measured in 

order to function [11]. Hence, they are faster in operation compared to contact probes. 

Furthermore, they will not affect the surface being probed. Contact probes as the name 

suggest requires a material contact with the surface being measured in order to 

function [11]. They mostly have the advantage of being more accurate and reliable.  

 

The most widely used probe for on-machine measurement is a touch-trigger probe. When 

the probe approaches the surface of a workpiece, the probe tip touches the surface, causing 

deflection of the stylus. The probe sensor senses this deflection and that triggers the 

machine to read out the position of the machine tool axes. The position of the point on the 

surface can be determined by accounting for the diameter of the probing tip. Commercially 

available touch-trigger probes mostly use electrical switch (Kinematic resistive) or strain 

gauge mechanisms for sensing purpose. Figure 4 shows the schematic of both (a) switching 

and (b) strain gauge probe.  

 

The switching probe consists of a set of spheres and rods. The stylus is located such that 

all degrees of freedom are constrained by six points of contact between spheres and rods in 

a kinematic location. Figure 4 (a) illustrates the kinematic mechanism of the switching 

probe. In Figure 4, Fc is a contact force, Fs is a spring foce, L is the length of the stylus and 

R stands for the pivot distance. Spring holds the stylus carrier against the kinematic 

contacts. An electrical circuit is formed by six contacts and the electrical resistance is 

continuously monitored. When the stylus of the probe makes contacts with the 

measurement surface, the resulting force acts against the retaining spring and subsequently 

changing the position of the one or two pairs of the contacts, causing the change in 

electrical resistance of the circuit. This change in the resistance is sensed by the probe 

electronics. Due to this kinematic arrangement pre-travel variation is significant for 

switching probe [36]. 

 

In the case of strain gauge probe, three strain gauges are installed above the kinematic 

mechanism on a thin web of the probe structure so that they can sense the strain. The 

kinematic mechanism provides the mechanical repeatability to the stylus. Strain gauges are 

mounted in such a way that they can sense a triggering force in any direction when the 
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stylus makes contact with the surface. For thermal drift compensation of the three 

measuring gauges, the fourth strain gauge is used [36]. 

 

The strain gauges are very sensitive and can trigger at forces, which do not unseat the 

kinematics.  At these forces, the kinematic mechanism is effectively solid. 

A key advantage of strain-gauge sensing is the ability to combine the forces in each 

direction and trigger at a constant force, whichever direction the contact occurs.  This 

significantly reduces the pre-travel variation effects of the switching probes, as the trigger 

circuit does not constitute a kinematic structure [37]. 

 

                                                  

 

 

Figure 4 Schematic of a touch-trigger probes, a) switching probe b) strain gauge 

probe, adapted from [37]. 
 

As discussed earlier, touch trigger probes, switching (kinematic resistive) and strain gauge 

sensors, are commonly used sensors for on-machine measurement on CNC machine tools. 

The strain gauge sensors have better performance characteristics in terms of sub-micron 

repeatability, longer operational life with low and uniform pre-travel variation. Despite the 

above mentioned qualities, kinematic probes are the most popularly employed for CNC 

machine tool. This is due to their simple, cost-effective, very compact and rugged 

a. b. 
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construction. Hence, even though stain gauge sensor probe would offer lower measurement 

uncertainty, switching probe was selected in this study so that this research would be 

applicable to wider applications. Thus, by performing worst-case analysis we are ensuring 

that all the uncertainty contributors are identified and evaluated 

 

Proportional probes not only detects the deflection of the probe but also measures the 

amount of deflection proportional to a displacement of the stylus tip. These probes used in 

measuring mode are usually more accurate than touch-trigger probes. Probes used in 

scanning modes can be less accurate due to accelerations and stick-slip but are capable of 

measuring a large number of points in short time [38].  

 

The technology in the field of on-machine probing is evolving continuously. Some of the 

noticeable new technologies are on-machine temperature probe [39], integrated blower jets 

for cleaning a measuring point and collision protection for touch probe’s housing [40]. 

However, a detailed discussion of these technologies is beyond the scope of this document.  

 

1.4 Uncertainty of measurements 

 

When a measurement of any kind is performed, there is an uncertainty that measured value 

will never be an exact representation of the true value. In a measurement process, there 

are variety of factors that influence the measurement result and the related uncertainty.  

Measurement uncertainty is a parameter associated with the measurement result that 

characterises the dispersion of the values that could reasonably be attributed to the 

measurand [41]. 

 

In the manufacturing sector, uncertainties are evaluated to determine if the required 

tolerances are met or not. Component specifications are often defined in upper and lower 

tolerance limits. Conformance or non-conformance is very straightforward in the simple 

case of when measurement uncertainties are not considered. When the measurements lie 

within the tolerance limits, there is a conformance and when they lie outside the defined 

limits, there is a non-conformance.  

 

Nonetheless, the uncertainty of measurement needs to be taken into consideration in a 

practical scenario. This results in a zone of uncertainty instead of the sharp boundary 

between conformance and non-conformance. This concept is demonstrated in Figure 5. The 

conformance zone is illustrated by green region and non-conformance zone is shown by 
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orange area. The remainder is a zone of uncertainty [42]. The case of false acceptance and 

false rejection can be envisaged from Figure 5. If the measurement value is in tolerance but 

uncertainty of measurement can make it out-of-tolerance, resulting in a case of false 

rejection. Conversely, false acceptance situation can arise if measurement result is 

out-of-tolerance but the uncertainty of measurement brings it in tolerance. Therefore, 

measurement values that fall within conformance zone, with given confidence level, are 

certain to be in a tolerance zone.  

 

The dispersion of this uncertainty zone is dependent on the magnitude of the measurement 

uncertainty. As a result, it is not possible to accept the component without specification of 

measurement uncertainty. The increase in uncertainty zone results in a reduction of 

conformance zone. High value and high quality manufacturing industries have tight 

tolerances. Reducing the measurement uncertainty will help in reduction of false rejection 

and scrap work. Therefore, it is necessary to evaluate the measurement uncertainty when 

using the probing system for on-machine measurement.  

 

 

 

Figure 5 Role of measurement uncertainty in component conformance or 

non-conformance 

 

The uncertainty evaluation of the on-machine probing system is a complex task due the 

intricate interaction of the many uncertainty contributors mentioned in section 1.3. They 
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can be roughly classified into the hardware, probing system, environment and workpiece 

factors. These contributors of uncertainty are discussed in detail in chapter 2.  

 

The measurement uncertainty is normally determined by “Guide to the expression of 

uncertainty in measurement”, known as ISO-GUM [43]. A popular alternative to 

conventional GUM for uncertainty determination is a computer simulation. GUM 

supplement 1 describes the propagation of probability distribution through a mathematical 

model of measurement as a basic for determining measurement uncertainty and its 

implementation using a Monte Carlo Method (MCM) [44].   

 

1.5 Motivation 

 

Since, the probing operation measures a workpiece/part along the erroneous machine tool 

axes, the measured data it takes inevitably include the errors originated from the structural 

and operational characteristics of a touch probe including errors inherited from a machine 

tool. In addition, thermal and mechanical properties of a part being measured influence the 

measurement uncertainty. Environmental factors also play a key role during on-machine 

measurement.  

 

Thus, it is necessary to investigate the various sources of uncertainties of measurement 

when using on-machine probing for machine tool thermal error model calibration. 

 

Motivation for this work is a low cost solution for displacement measurement, to be fused 

with temperature data to reduce uncertainty of on-machine probing. 

 

1.6 Scope 

 

1. In this research work, on-machine probe means switching touch trigger probe. Other 

types of probes have not been investigated in this project unless specifically 

mentioned. 

 

2. For the purpose of modelling of an uncertainty of measurement using MCM, only 

those contributors of OMP uncertainty are considered which affect the thermal error 

model.    

 



14 

 

 

 

1.7 Aim and Objectives  

 

1.7.1 Aims 

 

The aims of this research work are: 

 

1. To investigate and evaluate the uncertainties of on-machine probing for machine tool 

thermal error model calibration. 

 

2. To reduce the uncertainty using sensor data fusion. 

 

3. To develop a novel displacement measurement sensor.  

 

1.7.2 Objectives 

 

To meet the aims of this research, following specific objectives have been considered: 

 

1. Identify the sources of uncertainty for on-machine probing and for traditional 

methods of calibrating machine tool thermal error models.  

 

2. Develop, execute and evaluate a test regime to examine the effect of uncertainty 

sources for on-machine probing. 

 

3. Design and develop a novel displacement measurement sensor. 

 

4. Design and implement software capable of data acquisition and sensor fusion, and 

integrate a novel displacement sensor.  

 

5. Investigate the use of sensor data fusion techniques to improve the uncertainty of 

measurement due to the thermal errors when probing. 
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Chapter 2- Review of previous research 
 

In order to evaluate measurement uncertainty due to on-machine probing (OMP), it is 

necessary to identify and quantify all the uncertainty contributors. Due to the complex 

nature of the interaction between various contributors, it is difficult to make a strict 

classification.  

 

In terms of hardware requirement, by merely replacing cutting tool to measuring probe it is 

possible to perform part/artefact inspection on the machine tool itself. Albeit machine tools 

are designed to operate in a harsh environments and CMMs are typically housed in a 

controlled conditions, it is possible to argue that during the measurement cycle when 

cutting operation is not taking place, machine tool will experience similar sources of error as 

CMM; differing in magnitude and dynamics of those errors [45]. 

 

Various authors have made attempt to classify the sources of uncertainty in CMM 

measurement. Wilhem et al [46], organised the sources of uncertainty into five groups: 

hardware, workpiece, sampling strategy, algorithms and extrinsic factors. Weckenmann and 

Knauer [47], subdivided the factors that influence the uncertainty of measurements into 

four categories: equipment, environment, workpiece and operator. Classification made by 

Kruth et al [48], consisted of workpiece, hardware, sampling and evaluation strategy. 

Salsbury [49], used a categorization scheme of machine components, probe components, 

part components and repeatability components. 

 

Nonetheless, rather than a classification scheme, it is important to determine all the sources 

of uncertainty and to incorporate them in the uncertainty assessment of the measurement. 

Each principle error source should be further considered at a granular level. The errors are 

divided into four logical categories based on their source of occurrence: machine tool, probe 

system, environment, workpiece/ artefact factors, thus providing modular architecture to 

facilitate the determination of uncertainty. This would create a framework that would allow 

analysis of the different machine configurations in different environmental conditions under 

different machining processes. 

 

The four categories are: 

 

Machine tool: This category contains errors originating from machine tool components, 

caused by mechanical misalignment, manufacturing imperfections [13], thermos-elastic 
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deformation [18] in the machine structure etc. Based on above mentioned sources, factors 

that are considered are geometric errors, machine tool repeatability and thermal errors.  

 

Probe system: Probe system will usually have a notable influence on measurement 

uncertainty. The influence of probing error will depend on type of probe that is used. The 

factors included in this category are repeatability of probing system (including probing-tool 

changing and relocation repeatability), various probing  parameters (switching speed, force 

and stylus length etc.) [30] and sampling strategy (number and location of probing 

points) [48]. 

 

Environment: Environmental conditions will have important influence on measurement 

uncertainty. Temperature here is of extreme importance. Other environmental factor like 

vibrations can also influence the measurement uncertainty [45].  

 

Workpiece/artefact factors:  The workpiece itself has an important influence on 

measurement uncertainty. These uncertainties relate to properties of the workpiece and 

measurement interaction with workpiece. Common sources of uncertainty are thermal 

distortion of workpiece due to the heat loss-taking place during probing when performed 

intermittently or immediately after machining [50], effect of clamping force [51] and 

presence of surface contamination [30].  

 

Figure 6 illustrates the categories of factors influencing the uncertainty in OMP performance 

and further levels of complexity are detailed in Table 1. The factors mentioned in Table 1 

are discussed in-depth in the subsequent sections of this chapter. It can be pointed out that 

not all factors are of equal importance in every application and it is possible that in most 

circumstances a few of these error sources will outweigh the others.  Effects of thermal 

errors are normally significant, contributing more than 50% of total machine error [18]. 

Also, the uncompensated rigid body errors of the machine tool are important.     

 

Based on the effectiveness of uncertainty factors in thermal error model correction, they are 

further short listed and utilized in probing system uncertainty model.  
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2.1 Sources of uncertainty in On-Machine Probing  

 

During the probing operation, the machine tool axes carry the probe. Therefore, the 

measurement data that it takes inevitably includes the probing errors and those originating 

from the inaccuracies of a machine tool as well as any deviation in the part or artefact being 

measured. Each of these error sources must be understood and evaluated to be able to 

establish a measurement with a stated uncertainty. This section describes the sources of 

uncertainty in OMP in detail.  

 

 

        

Figure 6 Categories of factors influencing the performance of the on-machine 

probing 
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Probe system 
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Category  Factors 

Machine tool  Geometric errors 

Machine tool repeatability 

Thermal errors 

Probe system Probe qualification 

Repeatability of probing system, including Probing-tool 

changing and relocation repeatability 

Time delay and time delay variation 

Pre-travel variation  

Over travel distance 

Switching speed and force 

Stylus length 

Number and location of probing points 

Environment Temperature 

Vibration  

Workpiece/Artefact factors Workpiece/artefact thermal distortion 

Surface contamination 

Fixture distortion 

 

Table 1 Factors influencing the measurement performance of the on-machine 

probing system 
 

2.1.1 Machine tool  

 

Errors originating from machine tool that influences the OMP operation are further 

categorised into geometric errors, thermal errors and machine tool repeatability. 

2.1.1.1 Geometric errors and machine tool repeatability 

 

Uncompensated machine tool rigid body geometric errors are one of the important sources 

of error. For each linear axis, six functions of axis position are required: position error along 

the axis, straightness in the two orthogonal directions and three angular errors namely roll, 

pitch and yaw as well as out of squareness value for each axis pair. Thus giving a total of 21 

error components for a three axis Cartesian machine tool [8]. The introduction of the rotary 

axis would require a similar set of six functions and additional two squareness parameters. 
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While all the parameters mentioned above can be measured, the calibration process is time 

consuming depending on the size of the machine tool, in the order of a week or more and 

requires skilled personnel [52].  

 

2.1.1.2 Thermal errors  

 

Thermal errors can contribute more than 50% of the total machine error [16-18]. They are 

caused by the thermo-elastic deformation in the machine structure and results in geometric 

inaccuracies of the work-piece. Non-linear thermal expansion of the structural elements 

caused by the thermal gradient produces an intricate interaction between tool and 

workpiece. Different heat sources combined with a different mechanism of heat transfer 

causes the temperature distribution of a machine tool to change in time. As a result, the 

relative position and orientation of a tool with respect to the workpiece table changes in 

time and with axis position, since the materials commonly used (for e.g. steel, aluminium, 

etc.) expand and /or bend with temperature (gradient) rise. These thermally induced errors 

can deteriorate the positioning accuracy of machine tools leading to the geometrical 

deviations of manufactured workpiece. Thermal deformation of the machine tool and 

consequent changes in accuracy arising as a result of this constitute a major problem [19]. 

 

Thermal errors are usually categorised as deriving from internal and external heat sources. 

Internal heat sources are often the major contributors, which are typically motors, belts 

drives, spindle bearings, gear boxes, hydraulic systems, etc. [20]. Examples of external 

heat sources include heat generated by the machining process, machine electric 

components, cabling and cabinets, other machines, workshop heating, etc., [21]. Also, daily 

day and night temperature fluctuations create a variable response of the machine structure, 

temperature variations particularly affecting multi-shift production [12]. Environmental 

influences cause slow variations of machine tool temperature but affect the whole 

volumetric performance. Internal influences lead to a local deformation of the machine tool 

structure, which changes the volumetric performance partially. Displacements caused by 

internal heat sources are less predictable and can change faster than those caused by the 

environment [18]. 

 

Thermal errors are the major source of error among the various sources of error in machine 

tool accuracy. Reducing these errors is the key to improve the CNC machine accuracy [19]. 

Review of thermal error modelling techniques is performed in section 2.4. 
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2.1.2 Probing system errors 

 

Apart from machine tool errors, probing systems can have a significant effect on the 

uncertainty of on-machine probing as the probe is an integral part of the measurements 

system. The main influences on the performance of the probing system are repeatability of 

probing system [35], including Probing-tool changing and relocation repeatability [34], 

probe qualification, time delay and time delay variation, switching speed and force, pre-

travel variation, stylus length and number of probing points [30]. 

 

2.1.3 Environment errors  

 

Every measurement is influenced by the environmental temperature change and 

vibration [52]. In case of on-machine probing, machine is in static condition at the time of 

probe measurement. Thus, influence of machine vibration can be neglected [45].  

 

2.1.4 Workpiece/artefact errors   

 

These errors originate from properties of the workpiece material and measurement 

interaction with the workpiece.  

 

2.1.4.1 Fixture-workpiece distortion  

 

Fixture distortion, in this case, means distortion of the workpiece induced by the clamping 

forces. This distortion results in the workpiece dimensional error. For every combination of 

machine, cutting tool and workpiece material, selection of suitable clamping force is 

essential. The clamping mechanism should hold the workpiece in its position while 

machining is taking place without causing permanent distortion to it [53]. 

 

The errors originating from clamping force essentially comes from three aspects. Firstly, the 

insufficient clamping force can cause the workpiece to slip and vibrate during machining, 

resulting in error, and can potentially damage workpiece and cutting tool. Secondly, 

improper clamping procedures and uneven clamping forces can shift the workpiece from its 

ideal position, consequently introducing the further error. Thirdly, the clamping force can 

elastically deform the workpiece. Thus, after the machining when the force is released, due 

to the spring back deformation phenomenon, the part can get measured inaccurately. 
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Whereas, under the clamped condition part might be measured with required accuracy [51, 

54].    

 

2.1.4.2 Workpiece/artefact thermal distortion during machining 

 

The mechanical and thermal loads affect a workpiece geometric shape and properties during 

metal cutting operation [55]. During the machining operation, high temperatures are 

generated, depending on the cutting parameters and material, at the interface between 

cutting tool and the workpiece due to the plastic deformation and friction. This heat 

generation influences the material’s properties and cutting force [56]. The temperature can 

reach up to 1000 oC in the cutting zone, while tool-chip interface experiences the maximum 

temperature [57]. 

 

Most of the heat flows with chip while 10-25 % of the heat generated is conducted into the 

workpiece [58]. The process induced heat produces high temperature in the workpiece 

(>100 OC) with inhomogeneous temperature distribution. In addition, the heat induced into 

the workpiece is different for roughing and finishing operations. The heat induced during the 

finishing process is three times the roughing process. Due to the high thermal gradients, 

movement of heat sources and poor accessibility of the workpiece, it is difficult to measure 

the temperatures during the machining process [50].  

 

During the on-machine probing measurement, cutting tool is replaced by the probe [26]. 

Thus, no more heat is induced in the workpiece. In fact, while probing is taking place, 

workpiece is loosing the heat to the surrounding due to the temperature difference and 

causing the distortion of the workpiece. Affected by the number of probing points and 

strategy used, this can introduce an uncertainty in OMP. The more the number points and 

complex the strategy, it is going to take longer time to complete the probing routine, 

resulting in more distortion of the workpiece and vice versa.  

 

2.1.4.3 Surface contamination  

 

The contamination of the surface due to the swarf (thin metal chips produced during 

machining) and coolant can have an influence on the measurement of OMP [34]. The 

presence of contamination can be falsely regarded as a workpiece or artefact itself, resulting 

in a distorted readings. Hence, the surface to be measured should be clean to avoid any 
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deviation in the OMP results.  During the machining coolant is often used, it helps to clean 

the surface of any swarf and dust particles but traces of coolant remain on the surface [30]. 

One way to make sure reliable surface detection for on-machine measurement is to clean 

the surface manually. However, this is a time consuming, cumbersome and non-automated 

process.  

 

2.2 Displacement sensor  

 

Displacement is one of the fundamental variables which are required to be measured, 

indicated, transmitted or controlled in many industries or scientific fields for various 

applications. Displacement sensors can, therefore, be used to detect a range of measurands 

such as deformation, distortion, thermal expansion, vibration, strain, mechanical shock and 

much more [59-61]. Several physical properties are utilized in different types of 

displacement transducers [62, 63]. Some of the commonly commercially available sensors 

are based upon capacitance [64], induction, eddy current [65], linear variable differential 

transformers (LVDT) [66], optical interferometry [67], optical linear encoders [68], laser 

triangulation [69], confocal principle [70], etc. Often the measuring range, resolution, 

bandwidth, etc. can vary significantly even for sensors utilising the same physical properties 

either due to the sensor design or the signal conditioning. It is, therefore, difficult to give 

precise general descriptions of their capabilities as a generalisation. However, some 

example values can be provided based on a review of specification sheets and values in the 

review article by Fleming [71].   

 

2.2.1 Review of commonly used technologies  

 

Capacitive sensors have a typical measurement range of 10 μm to 10 mm with a resolution 

in the order of 1 nm. Eddy current sensors typically have a linear range of 100 μm to 80 

mm and resolution in the order of 10 nm. Interferometers (excluding those designed for 

short range surface measurement) can operate over several metres and typically have a 

resolution of 1 nm. LVDT’s usually operate over 0.5 mm to 500 mm with a resolution of 

5 nm [71]. Optical sensors based on the laser triangulation principle generally have a 

measuring range of few millimetres and a resolution of 0.005 % of Full Scale Output 

(FSO) [72]. Laser confocal sensors have a typical measurement range of 0.3 mm to 30 mm 

with a resolution of 0.004% of FSO [73].  
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Capacitive sensors are relatively simple in construction and provide the highest resolution 

over short ranges. However, they are sensitive to the surface irregularities, variations in 

humidity and temperature. Also, their performance is affected by the contamination of 

interfacial fluid (air in most cases) which is important in industrial environments where 

clean measuring surfaces and environments cannot be guaranteed [74]. Eddy current 

sensors are insensitive to dirt, dust, oil and moisture/coolant and can be used with all 

electrically conductive materials [75] but are more sensitive to temperature than capacitive 

sensors [76]. Inductive sensors have also been developed, but nanometric resolution 

remains difficult to reach because of magnetic disturbances and variability in the subsurface 

material causing electrical run-out. LVDT sensors are among the most popular in industrial 

applications. They are simple and hence robust, have a high intrinsic linearity and can be 

magnetically shielded. However, their maximum resolution is limited by the physical 

construction of the transducer which is generally suited to ranges greater than 1 mm [71].  

 

Compared to other sensor technologies, laser interferometers and optical linear encoders 

provide a good solution in terms of nanometre resolution over longer distances such as a 

few metres of range. Nevertheless their price, complexity of installation, alignment and 

relatively large space requirement for operation can be prohibitive in many 

applications [77]. The triangulation based optical displacement sensor operation is 

dependent upon the surface texture (energy reflectance characteristics of surfaces being 

examined) of the target [78] and the sensor head is relatively large compared to other 

systems due to the integrated electronics and optical detector. They have also been found 

to have significant issues of self-heating, requiring periods of tens of minutes to achieve 

thermal equilibrium. The laser confocal sensor requires a clean environment in the optical 

path for accurate operation.    

 

Sensors are also fundamental in closed loop control systems. The capability to develop 

integrated and compact apparatus is still a key point for most measurement and control 

systems [79]. It is, therefore, imperative that they are robust to self-induced or unwanted 

exogenous influences.  

 

Optical sensors are particularly useful in a number of applications since they are often 

relatively immune to various perturbations like stray electromagnetic effect, capacitive 

effect, etc., which are observed in many non-optical sensors [73, 80]. However, such 

systems can be affected by thermal distortion (misalignment of optical receivers) [61] or 

contamination by ambient light [81]. They must, therefore, be fully evaluated before being 
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applied to measurement or control problems. Fibre Bragg Grating (FBG) displacement 

sensors are receiving more attention owing to all the inherent advantages of optical 

fibre [82] and due to the advantages such as wavelength encoded information, they offer 

immunity against power source fluctuations as well as insusceptible to noise caused by 

variations in light levels [83]. However, the cost of interrogation systems for FBG sensors is 

very high. In addition, temperature compensation is required for pure displacement 

measurement applications, increasing the complexity of the system [84].   

 

2.2.2 Research into low cost solution 

 

A significant amount of research has been carried out to develop sensors or measurement 

systems combining the advantages of simplicity, high resolution and low price. Low-level 

technological barriers can be rapidly addressed by making adapted use of mass-produced 

components for consumer electronics. Due to the various advantages discussed above, low 

cost optical sensors have been investigated for use for displacement measurement. For 

example, Delmas [85] proposed a system where the displacement of a moving stem is 

measured by an optoelectronic displacement measuring sensor consisting of a light source 

(Light Emitting  Diode)  and light sensitive sensor (Photodiode). A similar optoelectronic 

displacement sensor has been designed for the absolute measurement of displacement in 

the micrometre range [86].  

 

A significant amount of research has been carried out to develop sensors or measurement 

systems combining the advantages of simplicity, high resolution and low price. Low-level 

technological barriers can be rapidly addressed by making adapted use of mass-produced 

components for consumer electronics. Due to the various advantages discussed above, low 

cost optical sensors have been investigated for use for displacement measurement. For 

example, Delmas [85] proposed a system where the displacement of a moving stem is 

measured by an optoelectronic displacement measuring sensor consisting of a light source 

(Light Emitting  Diode)  and light sensitive sensor (Photodiode). A similar optoelectronic 

displacement sensor has been designed for the absolute measurement of displacement in 

the micrometre range [86].  

 

Shan et al. [87] evaluated the performance of a low cost reflective IR (focussed and non-

focussed) sensor for measurement of a ± 200 µm range and found that its performance 

(focussed) was comparable with the commercially available inductive sensor in terms of 

linear distortion, range and bandwidth. The unfiltered resolution of the IR sensor was within 
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sub-microlevel range but the specific value was not quoted. The observed maximum 

sensitivity was 0.010 V/µm and 0.002 V/µm for non-focussed and focussed IR sensors 

respectively.  This type of sensor requires sufficiently large reflective target size (at least 

twice the lens surface area for focussed sensor and six times for non-focussed). The 

performance of the reflective sensor based on the intensity of the back scattered IR light is 

dependent on the reflectance of the surrounding object and can produce imprecise 

results [88] and requires more complex techniques such as phase shift measurement and 

triangulation for range measurement. Lin et al. [81] used a single transmissive IR photo-

interrupter (with collimated lenses in front of source and collector) with knife edge to 

develop a displacement sensor with a range greater than 100 µm and the experimentally 

obtained maximum sensitivity was 0.2 V/µm. To lower the effect of the thermal expansion 

of the steel knife-edge, another block of aluminium coated silica was prepared, but the 

experimental results of use of this new block were not mentioned.  

 

The effects of ambient light variation have not been considered in the evaluation of Shan et 

al [87], or Lin et al [81], where the entire setup was covered in opaque box with external 

lights turned off. In an industrial environment, variation in ambient light conditions is 

inevitable unless uninterrupted guarding is present, so it is necessary to study its impact on 

the output of the sensor. Neither paper reported the effects of environmental temperature 

fluctuations or the long-term stability of the sensor. 

 

2.3 Machine tool structural monitoring system and sensor data 

fusion 

 

The primary goal of the machine tool is to automate the cutting process to achieve higher 

accuracy to meet the greater quality requirements. Several factors play a crucial role such 

as machining conditions, cutting tool, type of workpiece etc. Various sources of error like 

shifting mass, component weight, temperature etc., hinder the possibility of achieving strict 

accuracy demands for the manufacturing process. Errors arise during building of the 

machine or occur over the time [10, 89]. Error reduction requires greater understanding of 

the machine tool capabilities and error sources. This results in the need for a machine tool 

structural monitoring system. Studies have been carried out on monitoring techniques that 

are based on the application of single or multiple sensors [90, 91]. Application of different 

sensors provides the ability to detect a wide range of system parameters like temperature, 

displacement, strain etc.  
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Sensor fusion provides the complete outlook of the process, thus, state of the machine [91] 

delivering more reliable and accurate information. For example, by observing the change in 

the strain of the structure with respect to variation in temperature provides the response of 

the system, which would be difficult to obtain by simply monitoring either strain or 

temperature; change in strain can derive from several causes while explicit prediction of 

distribution from temperature is a major challenge. Synergetic combination of data available 

from multiple sensors is called sensor fusion [92]. Varieties of techniques are used for 

sensor fusion such as Kalman filter, algebraic functions, weighted average, Bayesian 

estimation etc. [92, 93]. For high performance operational systems neural network [94, 95] 

and fuzzy logic [96, 97] techniques are applied for fusion purposes.  

 

Developing data acquisition software (DAQ) for machine tool monitoring sensor fusion is a 

major challenge. At the moment, any commercial sensor in the market has either some 

application provided by manufacturer or open source software for capturing and/or 

analysing data. There is no general DAQ software available for this purpose. Software 

provided by manufacturers has restricted usage for research application. They often lack the 

flexibility and extensibility required for research.  

 

Fusion of sensor data is an indirect method. It involves feeding of numerous sensor signals 

into the fusion model. Fusion model is fundamentally a function developed to extract 

corroborative and relevant information on the state of the manufacturing operation. In 

machining, application of sensor fusion is inspired from the perspective where sensors can 

be used that can operate reliably in an industrial environment. Each can sensor can sense a 

different variable with different correlation efficiency and their effective and cooperative 

fusion is expected to produce better estimation result [95].  

 

2.4 Review of analytical methods for thermal error modelling    

 

With increased global competition, the manufacturing sector is vigorously working on 

enhancing the efficiency of manufacturing processes in terms of quality and cost. Consistent 

product quality is important for both machine tool manufacturers and end users. To improve 

this quality, the stability and accuracy of the machine tools needs to be enhanced. 

Machining accuracy is chiefly governed by the relative position between cutting tool and 

nominal workpiece and this directly affects the dimensional accuracy of machined 

parts [18]. The main causes of errors in manufactured workpiece are low static stiffens of 



27 

 

 

 

the machine structure, low dynamic performance of the feed drives, tool wear and thermal 

deformation of the tool, machine and workpiece [17, 98]. 

 

Thermal errors can contribute more than 50 % of the total machine errors [16] and with 

effective compensation of other error sources, this percentage can be much higher. 

Thermally induced deformations in machine tools leads to varying displacements between 

tool and workpiece [89]. A non-uniform temperature distribution increases the complexity of 

thermal errors in CNC machine tool; this distribution becomes non-linear and non-stationary 

and varies with time. The mutual coupling of the strength of the heat sources and different 

heat transfer and expansion coefficients of various components of a machine tool structure 

create complex thermal characteristics [99]. Thermal deformations are determined by not 

only the instantaneous thermal environment, but also the previous thermal status of the 

machine tool. This thermal memorizing phenomenon leads to a hysteresis effect [12] can 

reduce the robustness of the static modelling approach, and thus compensation of the error 

[100]. 

 

According to available literature, various methods have been employed for characterising 

the thermal performance of the machine, e.g., finite element analysis (FEA) [101], multiple 

regression analysis (MRA) [102], fuzzy expert system [103], artificial neural networks 

(ANNs), adaptive neuro-fuzzy inference system (ANFIS) [104] etc.    

 

The use of FEA technique for thermal characterisation of the machine tool is 

well-established. In FEA method, machine structure is divided into smaller elements and 

each element is subjected to heat flow. Standard heat flow equations (convection, 

conduction and radiation) are used to estimate the thermal behaviour. Each element is 

exhibits thermal effect on its neighbours, leading to overall estimate of the structure [20].   

 

FEA has been efficiently used for thermal error estimation and reduction from 70 µm to 

10 µm for a production machine and FEA results were closely correlated (65% to 90%) to 

the experimental results for various tests [101]. In another study, thermal error 

compensation accuracy of 80% was achieved using FEA [105]. 

 

However, building a numerical model can be a great challenge due to the problems of 

establishing the boundary conditions, structural complexity of the machine geometry, and 

accurately obtaining the characteristics of heat transfer. This requires testing of the machine 

tool for successful application of the technique. Thus, developing these models can be time 
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consuming, expensive and in some cases practically unfeasible for real-world 

machines [82]. 

 

The MRA technique is a statistical modelling method to establish a relation between input 

variable (temperature, mechanical strain etc.) and resultant output variable (thermal 

displacement of the machine tool). Multiple Linear regression (MLR) is the simplest 

technique, least-square and least absolute deviation approach is used by Miao et. al. [102], 

to develop a thermal error models. The least-square (LS-MLR) technique is more mature in 

terms of theory and is commonly used in practical applications. The least absolute 

deviation (LA-MLR) method is comparatively less susceptible to outliers, thus, is a more 

robust technique. But, LA-MLR is an computationally intensive process. However, 

performance of LS-MLR was found to be more superior to LA-MLR for well-managed data in 

the case of large quantity of data [102]. 

 

Although, MRA can provide reasonable results for a particular test regime, thermal errors 

are stochastic in nature and can change with variation in machining process, and 

environmental conditions, thus, resulting in an erroneous model output.    

 

Fuzzy inference systems (FIS) can be used in a situation where there is sufficient 

knowledge available about the system and that knowledge is intended to be added into the 

model. These systems are called ‘white box’, since the model designer can explicitly 

determine how the model achieved its goal. The membership functions are usually manually 

tuned by trial and error approach [103] based on the experience of experts. Fuzzy models 

are easy to understand, since, they are based on natural language. Also, they have good 

extrapolation capability. 

 

Nonetheless, there are no standard methods to transform expert knowledge into fuzzy 

models. Compared to neural networks they have poor generalization capability. In addition, 

FIS are prone to a loss of accuracy due to engineering judgements, since, they are based on 

expert knowledge [106].  

 

ANNs have the ability to learn from the available data rather than assumptions based on 

expert knowledge. Models can be developed with minimal system information. They are 

called ‘black box’, since, there is no information available regarding the method by which 

the goal is achieved. ANNs have better generalisation capability than FIS [106]. 
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A number of methods have been derived from the working principals of ANNs and used for 

machine tool thermal error modelling. Feed forward neural networks (FNN). Integrated 

recurrent neural network (IRNN), hybrid networks, back propagation network (BPN) and 

cerebellar model articulation controller networks (CMAC) etc. Chen [107] implemented FNN 

to measure and compensate thermally induced errors of the spindle and leadscrew. The 

experimental results showed more than 85% thermal errors can be reduced after 

compensation. Yang et. al. [108] developed an IRNN to track non-linear time varying 

machine tool error under varying thermal conditions. IRNN could predict 80% maximum 

thermal error with maximum residual error less than 15 µm due to spindle rotation. 

Yang et. al. [109] proposed a CMAC neural network for spindle drift error. This model 

showed insensitivity to sensor placement and robustness to sensor failure compared to 

MRA.   

 

The research based on NNs has revealed good prediction accuracy and creation of robust 

models for the validation exercises reported.  It can also be determined that NN models can 

be created by finding temperature key points without knowledge of the actual structure. 

Thus, ANN was selected for thermal error modelling in this study [20].  

 

 

  

Figure 7. Basic ANN architecture [110] 
 

Nevertheless, for reliable prediction model, sensor must be robust and should be placed 

strategically. Also, there is no deterministic approach available to find NN parameters 
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(number of hidden layers, number of nodes in hidden layers etc.). Since, it’s a ‘black box’ 

approach, obtained optimal solution can exhibit unrealistic characteristics that might not 

extrapolate in other situations [110]. 

 

Figure 7 demonstrates the basic architecture of the ANN. The detail design steps for ANN 

are shown in Figure 9.  In Figure 9, R stands for correlation coefficient between measured 

output and predicted output.  

  

 

 

Figure 8. Basic ANFIS architecture [111] 
 

The ANFIS is an Adaptive Neuro-Fuzzy Inference System that utilises fuzzy system and 

neural network in the same system. The ANN is used to optimise the fuzzy parameters, 

thus, allowing the model to learn from training set of data. The model designer can evaluate 

the solution mapped out by the FIS, consequently, permitting a realistic representation of 

the system [111]. The nodes and hidden layers are determined precisely FIS in the ANFIS 

network, therefore, eliminating the well-known difficulty in the modelling of ANN of defining 

hidden layers and improving forecasting capability. However, number of fuzzy rules 

increases exponentially when number of input variables rises, thus, creating a 

computational burden [112].  

 

Figure 8 shows the basic ANFIS architecture. The detail design steps for ANFIS are shown in 

Figure 10. 
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Figure 9. Design steps for ideal ANN model 
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Thus, based on the literature study, ANN and ANFIS techniques were deemed suitable for 

the thermal error analysis and reduction. 

 

 

 

 

 

Figure 10. Design steps for ideal ANFIS model 
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2.5 Methodology 

 

To achieve the aims and objectives set in the thesis, a methodology based on literature 

study and experimental design is developed.  

 

Various sources of uncertainty for on-machine probing are investigated in section 2.1 and 

are broadly classified into four categories: machine tool, probe system, environment and 

workpiece/artefact factors. To evaluate each of the uncertainty categories, they are further 

sub-divided at a granular level. 

 

In Chapter 3, a series of experiments and simulations are designed to estimate the 

magnitude of uncertainty contributors. To study the errors originating from the machine 

tool, geometric and thermal errors, a 3-axis c-type machine, with axis travel of X= 

500 mm, Y=400 mm, and Z=300mm, is selected to carry out the experiments. This 

machine was chosen because it represents a large proportion of the manufacturing machine 

tool base. It was also readily available for experimentation. 

 

Since probe is carried by the machine tool for the OMP application, data obtained from the 

probing operation is contaminated by the errors originating from machine tool axes. Thus, it 

is necessary to evaluate the machine tool errors.  

 

To evaluate geometric error, experiments based on international standards such as the 

ISO230 series, were designed and executed at a nominally constant temperature.  Thermal 

errors are investigated by inducing heat by oscillating the machine axes at various feed 

rates to simulate machining. Temperature is measured by thermal sensors and the resultant 

distortion is measured by a standard OEM probe routine.  

 

To understand the influence of the probe system errors, tests are designed to analyse 

probe repeatability, and probe-tool changing and relocation repeatability. Tests are 

performed on several machines by probing the centre of the top surface of a workpiece 10 

times. For probe tool relocation repeatability, the same test is conducted but this time the 

probe is removed from the turret and replaced again. By testing on separate machines, the 

influence of the probe alone can be deduced. 
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The errors of a calibrated probe can be compensated if they have a specific known value. 

These include: stylus length, speed and particular probing direction, other factors such as 

pre-travel variation, time delay and time delay variation.  

 

The effect of environmental temperature changes on OMP is evaluated by keeping the 

machine stationary and probing the test spheres at regular intervals. During on-machine 

probing, if the probing speed is consistent then the influence of machine vibration can be 

neglected.  

 

For errors originating from workpiece factors, finite element analysis (FEA) simulations 

using SolidWorks are designed to study distortion caused by clamping force and thermal 

loading while machining. According to available literature, FEA is a well-established 

technique, and its application to machine design and analysis is well-accepted. Therefore, 

further validation with experiments is not considered.  Experiment is designed to 

understand the influence of workpiece surface contamination on OMP using coolant of 

different viscosity by varying its concentration.  

 

Thermal distortion is a problem on machine tools because large parts of the structure are 

not covered by the feedback loop. To overcome this, many researchers use temperature 

measurement and estimate the resultant distortion for machine members outside this loop. 

However, this approach results in inaccuracies because of thermal hysteresis, assumptions 

regarding thermal coefficients etc. Another solution is directly monitoring the distortion. 

However, this approach is difficult or expensive.  

 

Synergetic combination of data available from multiple sensors is called sensor fusion. 

Sensor fusion culminates in a more holistic view of the process and in turn the state of the 

machine. Different signals have different correlation efficiency and their effective and 

cooperative fusion is expected to produce better estimation result.  By observing the change 

in the strain of the structure with respect to variation in temperature provides the response 

of the system, which would be difficult to obtain by simply monitoring either strain or 

temperature; change in strain can derive from several causes while explicit prediction of 

distribution from temperature is a major challenge. In the current work, data is acquired 

from two sources: temperature sensors for temperature measurement and Fibre Bragg 

Grating (FBG) sensors or the newly developed sensor for strain measurement. 
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In Chapter 4, a novel displacement sensor is developed for sensor data fusion to reduce 

uncertainty of on-machine probing. Various tests are performed to characterise this sensor. 

First, the characteristic curve is calibrated to obtain sensitivity, linear range and 

non-linearity. The repeatability of the sensor is found out by experiments and analysis 

based on ISO 5725. The resolution of the sensor head is determined by applying a 

sinusoidal signal with varying amplitude to PZT and measuring the corresponding response 

of the sensor. Immunity of the sensor against power supply variation is checked by varying 

the power supply voltage and against ambient light variation by generating strobe light 

effect using white LED source. To study sensor drift, an experiment is conducted in a 

temperature-controlled room for 9 hours and thermal response of the sensor is checked by 

varying the temperature of the room. 

 

In Chapter 5, a modular machine tool structural monitoring system is designed and 

implemented based on LabVIEW. It is developed to facilitate sensor data fusion by acquiring 

the data from various sensors, as described in Chapter 3, and fuse it using various 

techniques selected from the literature review. This program is also capable of performing 

bi-directional communication with the machine controller (Siemens 840Dsl), thus, allowing 

transfer of error compensation values to the machine controller.  

 

In Chapter 6, a multi sensor data fusion model is developed using principal component 

analysis (PCA) and artificial neural networks (ANN), to reduce the thermal errors. Fibre 

Bragg Grating (FBG) and temperature sensors were used to train the sensor fusion model. 

Experiments are performed on the ram of a 5-axis gantry machine. This machine was 

chosen because its thermal errors are sufficiently large to present the system with a 

significant challenge. 
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Chapter 3- Sources of on-machine probing 

uncertainty  
 

3.1 Sources of uncertainty in On-Machine Probing  

 

During the probing operation, the machine tool axes carry the probe. Therefore, the 

measurement data that it takes inevitably includes the probing errors and those originating 

from the inaccuracies of a machine tool as well as any deviation in the part or artefact being 

measured. Each of these error sources must be understood and evaluated to be able to 

establish a measurement with a stated uncertainty. This section describes the sources of 

uncertainty in OMP in detail.  

 

3.1.1 Machine tool  

 

Errors originating from machine tool that influences the OMP operation are further 

categorised into geometric errors, thermal errors and machine tool repeatability.  

 

3.1.1.1 Geometric errors and machine tool repeatability 

 

In order to understand the geometric errors of the machine tool the parametric errors of the 

x-axis of the 3-axis machine tool were measured using laser interferometer (Renishaw 

make). The result of the positional deviation in x-direction is shown in Figure 11.  

 

The measurement of position error showed a considerable error of 14 µm over a 450 mm 

travel of X-axis. It is likely that the positional deviation can be reduced by recalibrating the 

machine tool. However, it not possible to eliminate the error. The machine was installed in 

an industrial environment and the part of the positional deviation can be attributed to the 

surrounding and machine tool temperature changes.  

 

As it can be observed from Figure 11, the error is not constant along the entire x-axis. 

Similarly, other parametric errors along the Y and Z-axis will change throughout the travel. 

Thus, value of all the components of geometric errors will in general vary in the entire 

volume of the machine.  Same can be said about the machine tool axis repeatability, it will 

vary over the working volume of the machine.  
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At each location in the working volume of the machine, there will be a distribution of the 

measured values. Thus, every time the point is measured using the probe in the working 

space, some value will be drawn from that distribution. This value needs to combined with 

other uncertainty contributors to give the overall point uncertainty. This point uncertainty 

has to propagate further through the measurement uncertainty to get the overall 

uncertainty. 

 

 

 

Figure 11 Measurement of position error Exx 
 

3.1.1.2 Thermal errors  

 

Based on literature review, thermal errors play significant role in the accuracy of machine 

tool. Therefore, They must be reduce. To better understand the thermal errors series of 

experiments were conducted in a 3-axis machine tool. The schematic of the test setup is 

shown Figure 12.  

 

Initially thermography was used to obtain the thermal signature estimation of the machine 

structural elements. The Location of temperature sensors was decided after examining the 

heat distribution measured using the thermal imaging camera (FLIR 

ThermaCAM S65) [111], engineering judgement and based on the previously conducted 

tests.  
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Total 43 temperature sensors (digital DS18B20 sensors) were used to monitor the thermal 

distribution of the entire machine structure. Thirteen sensors were attached on spindle 

carrier, fifteen on the column, two on spindle and seven on three Cartesian axis (axis 

motor, ballscrew nut and bearing cap). To measure the ambient temperature, six more 

temperature sensors were placed around the machine.  

 

The above mentioned sensor locations were selected in order to gain the information about 

thermal status of the machine when any individual axis or combination of axes heating test 

is performed with or without spindle in operation, and ambient temperature data in varying 

environmental conditions.  

 

In this section, our objective is to simply evaluate the thermal error rather than to 

determine the relation between thermal error and corresponding sensitive temperature 

sensors. Furthermore, various sensor optimization techniques can be utilised, e.g. 

clustering, FEA, correlation coefficients etc., to reduce the number of temperature sensors 

for thermal error analysis to reduce the overall system cost and improve the robustness of 

thermal error modelling.  We have used correlation coefficient technique with principle 

component analysis (PCA) to reduce the number of temperature sensors. This is discussed 

in detail in chapter 6.  

 

In addition, the test setup consists of four measurement spheres mounted on the table-top 

in a specific arrangement to measure the thermal error to cover the working volume of the 

machine that is used in most of the cases on this type of production machine and to isolate 

X, Y and Z components efficiently. 

 

The touch trigger kinematic probe RMP60 was used for the measurement purpose. Table 2 

provides the description of all the sensors and their location.  

 

The tests were carried out for X and Z-axis at 50 and 100 % of their speed at various 

heating and cooling cycles. Similarly, spindle-heating tests with different speeds and cycles 

were performed.  

 

Test result for Z-axis heating test is shown Figure 13 and test conditions are given in Table 

3 Test condition for Z- axis heating test at 100%Table 3. From Figure 13, it can be observed 

that the maximum error of 220 µm for sphere 2 in z-direction and similar magnitude of the 
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error can be seen for sphere 3 and 4. The thermal displacement error is 90 µm for sphere 1. 

Thus, magnitude of the thermal error in Z-direction is position dependent  

 

 

Figure 12 Schematic of the thermal error test setup 

 

 

Sensors Location Function 

T1-T7 Carrier temperature sensor 

strip (bottom) 

Carrier surface temperature measurement  

T8 Z-axis bearing bottom  Ambient temperature measurement (Z-axis) 

T9 Column – Electric panel  Ambient temperature measurement  (column/ 

electric panel) 

T10 Column Bolt Bottom Column surface temperature measurement  

T11 Column Bolt Top Column surface temperature measurement 

T9 

S1 

S2 

S3 S4 

P1 

T39 

T37 
T38 

T8 

T42 

T41 

T43 

T35-T35 

T1- T7 

T27 

T29 

T28 
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T12 Column front internal Column surface temperature measurement 

T13 Column front internal Ambient temperature measurement 

T14-T15 Column rear internal Column surface temperature measurement 

T16 Column rear external  Ambient temperature measurement (column) 

T17-T21 Column front external Column surface temperature measurement 

T22-T26 Column rear external  Column surface temperature measurement 

T27 Spindle front bottom  Spindle temperature measurement 

T28 Spindle ambient Ambient temperature measurement (spindle) 

T29 Spindle motor Spindle temperature measurement 

T30-T35 Carrier temperature sensor 

strip (top) 

Carrier surface temperature measurement 

T36 Carrier left side  Carrier ambient temperature 

T37 X-axis bearing cap X-axis temperature measurement 

T38 X Ballnut 

T39 Y Axis Motor Y-axis temperature measurement 

T40 Y Ballnut 

T41 Z Axis Bearing Cap Z-axis temperature measurement 

T42 Z Ballnut 

T43 Z Motor 

P1  On-machine probe Thermal deformation measurement in X,Y and Z 

direction 

S1-S4 Top of machine tool table Measurement spheres  

 

Table 2 Sensor description 

 

 

Test Conditions 

Cycle Traverse Speed (%) Duration(min) Probes interval(min) No. of probes 

Initial 

condition 

0 30 10 3+1 

Heating 100 120 10 12 

Cooling 0 60 variable 10+6 

Description  1. Initially machine is at rest for 30 mins with probing every 10 mins.  

2. During the Heating cycles machine performs bidirectional runs along Z-

axis at 100% (35000mm/min) speed for 2 hours. Probing is 



41 

 

 

 

performed every 10 mins 

3. Heating cycle is followed by the cooling cycle of 1 hour. Probing interval 

is variable. 

Cooling 

Probing 

routine 

1. 1st 10 continuous probe cycles without any time interval. 

2. After 10 continuous cycles, probing after every 5 mins for 6 cycles. 

3. Thus total probing cycles during cooling is 10+6=16 

Probe 

Routine 

1. Reference probing speed = 800mm/min 

2. Measurement probing speed = 30mm/min 

3. Total probing cycles = 31  

 

Table 3 Test condition for Z- axis heating test at 100% 
 

 

 

Figure 13 Z-axis heating test at 100 % speed, thermal displacement error in Z-

direction 
 

Spheres 2, 3 and 4 are the same height. Whereas, sphere 1 is at higher level than rest of 

them. Smaller magnitude of the thermal displacement in Z-direction of sphere 1 can be 

possibly explained the bending phenomenon of Z-axis due to the heat induced into it. Thus, 

as Z-axis travel in the positive direction error reduces.  
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When the same test was performed at the 50 % speed, magnitude of the thermal error is 

reduced for all the spheres. In case of sphere 1 it was found to be 70 µm and for spheres 2, 

3 and 4 it was approximately 130 µm.  

 

Similar results were obtained while carrying out the test using X-axis heating. Nonetheless, 

magnitude of the thermal displacement error is significant as compared to geometric errors. 

Hence, thermal errors can be considered as the largest contributor of the uncertainty for 

on-machine probing.  

 

3.1.2 Probing system errors 

 

In this section, errors originating from probing system are studied. The main influences on 

the performance of the probing system are Repeatability of probing system, including 

Probing-tool changing and relocation repeatability, probe qualification, time delay and time 

delay variation, switching speed and force, pre-travel variation, stylus length and number of 

probing points. 

 

To understand the influence of the probe repeatability test was performed on a 3-axis 

machine tool using a kinematic touch trigger probe RMP60. The setup is shown in a Figure 

15. The centre of the top surface of the workpiece was probed in Z direction 10 times with 

delay of 1 sec in between. Then the standard deviation of all 10 readings were calculated. It 

was 0.3 µm.  

 

To understand the effect of the probe-tool changing and relocation repeatability same set up 

as shown in Figure 12 was used and again 10 readings were measured at top centre of 

sphere 1. However, this time probe was removed from the spindle turret and replaced 

again. The repeatability in X and Z was 0.1 µm. and in Y was 0.05 µm.  

 

All other factors can have a significant effect in the case of uncalibrated probe is used for 

measurement.  But, when the probe is calibrated for a particular stylus length, speed and 

particular probing direction, other factors such as pre-travel variation, time delay and time 

delay variation can have a specific known value. Thus, they can be compensated.  

 

Number of probing points and their location can introduce a measurement uncertainty, 

when probing is performed right after the machining due to distortion of the workpiece. This 
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is discussed in detail in section 2.1.4.2. It is possible to avoid this situation if enough cool 

down is provided to the workpiece but this can be time consuming and expert knowledge is 

required to calculate the cool down period for the workpiece.  

 

3.1.3 Environment errors  

  

To understand the influence of environmental temperature on as an uncertainty contributor 

test was performed using the setup shown in Figure 12. This test was performed right after 

one of the axis heating tests. For this test machine was in a stationary condition and 

probing was taking place every 10 mins. Tests results for X-axis thermal displacement error 

with temperature data is shown Figure 14.  

 

It can be observed from Figure 14 that initially when the temperature is dropping after the 

heating test thermal error is also reducing for approximately 500 mins. After that when 

temperature settles down, error is within +/- 1 µm. That means there is a direct correlation 

between environmental temperature variation and thermal error displacement. Thus, if 

there are greater variations in environmental temperature, corresponding variations in 

displacement error can be expected.  

           

Figure 14 Environmental test, temperature and thermal displacement error 
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3.1.4 Workpiece/artefact errors   

 

These errors originate from properties of the workpiece material and measurement 

interaction with the workpiece.  

 

3.1.4.1 Fixture-workpiece distortion  

 

To understand the impact of clamping force on workpiece deformation, a case study was 

undertaken. Figure 15 shows the clamping mechanism with workpiece before machining. 

 

                 

 

Figure 15 The clamping mechanism with workpiece before machining 

 

 

In this study, simulation using finite element method (FEM) of different magnitudes of 

clamping forces on a workpiece with various materials was carried out. SolidWorks 2015 

software was used for the purpose of FEM analysis.  

 

There are several off-the-shelf commercial software packages available to perform finite 

element analysis (FEA), e.g. Abaqus, ANSYS, SolidWorks Simulation etc. Each software has 

certain advantages and disadvantages over the others in terms of their ability to handle 

complex geometries, nonlinear analysis capabilities, mesh robustness, boundary condition 

controls, user-friendly interface, cost of the package, and steepness of the learning curve 

involved. 

 

Clamping mechanism  
Workpiece before machining  
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In this study, simple geometry (solid block of dimension 200mm x 200mm x 50mm) is used 

to analyse the structural distortion of a workpiece due to the clamping forces and thermally 

induced geometric distortion due to the heat generated while machining. The effect of 

clamping force was investigated by a static linear study.  

 

The influence of thermal distortion was examined by steady state and transient thermal 

study with nonlinear displacement analysis. A standard mesh was applied for both the 

cases. (Next section 3.1.4.2)  

 

The criteria for FEA package selection was based on ability to solve simple geometry with 

linear and nonlinear analysis, automated mesh control, seamless integration of CAD design 

with FEA module, user-friendly interface, ready availability and easy learning curve.  

 

SolidWorks is a readily CAD design software with integrated SolidWorks Simulation package 

with FEA capability. Abaqus and ANSYS are capable of solving complex geometries with 

nonlinear analysis. Since, only simple geometry with rudimentary FEA was required in the 

study, SoildWorks was seemed suitable for this study. However, investigation of complex 

geometries with in-depth nonlinear analysis is a subject of further work, where an 

alternative may be required.   

 

The FEA is a computational mechanics technique to develop and simulate discretised 

mathematical model of a continuum system using a numerical method [20] and is 

extremely valuable tool used to calculate various aspects such as stresses, deformations 

etc., resulting from mechanical and thermal loads.  

 

Numerous studies have demonstrated that FEA results qualitatively agree well with 

experimentally obtained values. Mian et al [101] in their study on thermal error prediction 

in a machine tool have validated FEA results are in close agreement with experimental 

results ranging from 65% to 90% for variety of test regimes reducing the error from 70 µm 

to 10 µm. In the study carried out by Creighton et al [105] on analysis of high speed 

micro-milling spindle, thermal errors were well predicted using FEA and led to compensation 

accuracy of 80% under a random speed test. Temperature distribution within the workpiece 

and thermo-mechanical behaviour of the structural part has been successfully investigated 

and predicted using FEA in various research activities [50, 55]. A good agreement between 

numerical and experimental data shows the validity of the FEA based simulation models in 

handling real-world problems. 
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The finite element analysis is a well-established technique, and its application to machine 

design and analysis is well-accepted. However, care must be taken with parameterisation, 

especially of boundary conditions. Nevertheless, the literature study provided enough 

confidence to trust FEA results for analysis of simple geometries without further 

experimental validation.   

  

Figure 16 demonstrates the effect of clamping force on the workpiece deformation; it shows 

the schematic of a workpiece (8a) of dimension 200mm x 200mm x 50mm with its finite 

analysis model (8b). The finite analysis model was constructed using a standard solid mesh 

in Soildworks. The force was applied on the two sides of the workpiece (8c) for this study 

and fixed geometry was applied to the rear surface. Figure 16d illustrates the case of 

deformation caused by the application of equal amount of clamping forces on the two 

opposite surfaces of the workpiece and Figuree exhibits the case of application of uneven 

forces on the workpiece.  

 

Workpiece Material 

                                    Force              

0.1KN 1KN 10KN 

Resultant maximum 

displacement (µm)  

Resultant maximum 

displacement (µm)  

Resultant maximum 

displacement (µm)  

1060 Aluminium Alloy 0.006  0.06 0.6  

Plain carbon steel 0.004  0.039 0.39 

Malleable cast iron 0.004  0.043 0.43 

Stainless steel (ferritic) 0.004 0.041 0.41 

 

Table 4 Simulation results of deformation caused by clamping forces 
 

Simulation results for equal forces (Figure 16d) are given in Table 4. Four commonly used 

workpiece materials [113] were used in the simulation; 1060 aluminium alloy, plain carbon 

steel, malleable cast iron and stainless steel. The clamping force in normal conditions can 

vary from few Newtons to kilo- Newtons [53, 55, 114]. For this study, clamping force 

normal to the workpiece surface was applied at 0.1, 1 and 10KN magnitude. The force of 

10KN was chosen to produce greatest possible deformation on the workpiece to reduce the 

effect of other factors on simulation result [53]. The maximum resultant displacement from 

the nominal position of the node for all the combinations of forces and materials is reported 

in Table 4. The resultant displacement is a combination of displacements in X, Y and Z 
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direction. The nodes at four corners of front surface experiences the maximum resultant 

displacement.  

 

 

Figure 16 Deformation of workpiece due to the clamping force. a) Schematic of 

workpiece to be machined b) The finite element model c) Application of clamping 

force d) Simulation result of equal force e) Simulation result of uneven force 

a b 

c d 

e 
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When uneven forces of 1KN and 10KN are applied to the opposite sides of the 

workpiece (Figure 16e) for 1060 aluminium alloy (simulation was carried out only on 

aluminium alloy since this is the softest material of all the 4 materials. Hence, maximum 

resultant displacement can be observed in this case), maximum resultant displacement of 

1.2 µm in the direction of 10KN force and 0.04 µm in the direction of 1 KN was observed. 

This uneven deformation is clearly a result of uneven application of clamping force.  

 

The simulation results for deformation caused by the equal clamping force is in the range of 

0.004 µm to 0.6 µm depending on applied force and the material. This deformation on a 

whole is insignificant. In the case of uneven force, deformation up to 1 µm is observed for 

aluminium alloy. However, corresponding applied force is too large (10KN) and the opposite 

forces differ by the magnitude of 9KN, which is not a good practice. Thus, in general effect 

of clamping force can be ignored as a significant OMP uncertainty contributor.  

 

3.1.4.2 Workpiece/artefact thermal distortion during machining 

 

To study this case, we performed the finite element analysis on the workpiece block. We 

considered block of the same dimension as shown in Figure 16a. Material used for the 

analysis is aluminium alloy 1060. 

 

Based on the literature study, during machining process, cutting region temperature can 

reach up to 1000OC  [57] and 10-25 % of the heat generated is conducted into the 

workpiece [58]. The workpiece heat input fluctuates massively and is dependent on the 

machining process, and the process parameters. The quantitative statement pertaining to a 

percentage share of heat distribution cannot be made, due to pronounced variations in 

workpiece geometry, material properties, and cutting conditions. The process-induced heat 

produces high temperatures (>100oC) in the workpiece resulting into omnidirectional 

distortion, due to inhomogeneous temperature distribution [50]. Thus, according to 

available literature [50, 57, 58], the temperature of 150oC is deemed representative of 

machining induced thermal loading of the block for this work.  

 

In this study, simple geometry is used to perform rudimentary FEA; hence, the bulk 

temperature was considered instead of regional fluctuations in the workpiece temperature 

to estimate the thermal distortion. However, to further analyse distortion resulting from 
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inhomogeneous temperature field, local variation should be considered. This is an area for 

further research.  

 

The FEA was performed using SolidWorks 2015. Three-step procedure was followed for this 

exercise. First the static thermal analysis was performed with the initial temperatures of 

150 OC (just after the machining process as discussed earlier) applied to the entire 

workpiece. Then transient thermal analysis was performed for 300 sec with step size of 10 

sec while ambient temperature of 20 OC and convection coefficient of 6 W/m2k. The third 

step was to perform non-linear displacement study corresponding to each step of the 

transient thermal study and the resultant displacement was measured from its initial 

condition at different time stamps. 

 

The resultant thermal error and change in temperature for 300 sec is shown in Figure 17. 

The Figure 18 shows the thermally distorted workpiece and node 9268 used for the 

measurement. The resultant thermal error of 12.65 µm can be observed with drop in 

temperature of 5.5 OC in 300 sec. These values are specific to the particular material and 

node of measurement. Thus, these parameters have to considered while on-machine 

measurement. Thus, depending on the time it takes for probing routine to complete, 

workpiece distortion is going to be different, resulting in the uncertainty of measurement.  

 

 

 

  

Figure 17 Change in temperature and resultant thermal error at node 9268 with 

respect to time 
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Figure 18 Thermally distorted workpiece with node 9268 
 

3.1.4.3 Surface contamination  

 

To analyse the influence of presence of coolant several tests were conducted. The setup for 

the tests is shown in Figure 15. The probe used for this study was Renishaw RMP60 with 

100 mm stylus. The coolant used in this case was QUAKERCOOL 7101 LF. The tests were 

performed using various concentrations (2.2, 4.2 and 6.2 %) of the coolant. The machine 

tool manufacturer recommended concentration is 4.2 %.  

 

For these tests, the coolant was placed on the top surface of a workpiece. The workpiece 

was probed in Z direction at the same location (the centre of the top surface)10 times and 

probing repeatability was found out as given in Table 5 using the standard deviation of the 

readings. The probing repeatability is 0.3 µm without coolant and 0.5 µm with coolant. 

Interestingly, no variation in repeatability can be observed in case of variation of 

concentration of coolant. 

 

Thus, it can be commented that the presence of a thin film of the coolant on the surface of 

the workpiece has insignificant effect on the probing repeatability. However, further 
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investigation is required in case the coolant is not used during the machining, resulting in a 

surface contamination due to the swarf and dust.  

 

 

 

Figure 19 Test setup to measure influence of surface contamination 
 

 

Coolant concentration Probe repetitions  Repeatability (µm) 

No coolant 10 0.3 

Coolant (2.2%) 10 0.5 

Coolant (4.2%) 10 0.5 

Coolant (6.2%) 10 0.5 

 

Table 5 Influence of a presence of a coolant on pobe repeatability 
 

3.3 Summary   

 

In this chapter, we investigated the various sources of uncertainty for on-machine probing. 

They are broadly categorised into machine tool, probing system, environment and 

workpiece/artefact factors. 

 

In case of machine tool, errors due the geometric, thermal and machine tool repeatability, 

all contribute significantly towards the on-machine measurement uncertainty. 

Coolant  
Workpiece  
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Environmental temperature directly influences the measurement error. Factors such as 

surface contamination due to thin film of coolant and workpiece distortion due to the 

clamping do not contribute significantly to the uncertainty. Distortion of workpiece during 

machining and probing routine due variation in thermal field needs to be considered.  

 

Thermal errors are the largest contributing factors for on-machine measurement, reaching 

magnitude up to 220 µm. Hence, they need to be reduced significantly.  
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Chapter 4 – Novel displacement senor 
 

This chapter is published in a journal article by Potdar et. al. [115]. 

 

This chapter presents a robust displacement sensor with nanometre-scale resolution over a 

micrometre range. It is composed of low cost commercially available slotted photo-

microsensors (SPMs). The displacement sensor is designed with a particular arrangement of 

a compact array of SPMs with specially designed shutter assembly and signal processing to 

significantly reduce sensitivity to ambient light, input voltage variation, circuit electronics 

drift, etc. The sensor principle and the characterisation results are described in this chapter. 

The proposed prototype sensor has a linear measurement range of 20 µm and resolution of 

21 nm. This kind of sensor has several potential applications, including mechanical 

structural deformation monitoring system. 

 

4.1 Principle of measurement  

 

The principle of measurement for the new displacement sensing head is based upon 

optoelectronic sensing of the position of the specially designed moving mechanical shutter. 

Figure 20a illustrates the principle of operation of the sensors. Each sensor is composed of 

an infrared emitter (light emitting diode) on one side and an infrared detector 

(phototransistor) on the other side facing each other, separated by a small gap in which the 

mechanical shutter is situated. The movement of the shutter is proportional to the 

displacement encountered by it, resulting in a change in the amount of obstruction to the 

optical path between the emitter and receiver. Since the output voltage from the receiver is 

a function of the intensity of light beam incident on it, the corresponding movement of the 

shutter will be detected. The sensing range depends upon the gap between emitter and 

receiver.  

 

It was observed during the benchmark testing that the single sensor output voltage is 

sensitive to the supply voltage variations, ambient light and temperature changes; this is to 

be expected given that the sensors are typically used for binary presence detection in 

process control applications and such small drifts would not be an issue. To improve the 

stability of the sensor, the head design incorporates four SPMs, S1 to S4, acting together 

with a specially designed shutter (Figure 20b) to provide cancellation. The shutter is 

designed to cluster the sensors pairwise; it blocks the light to one sensor while 
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simultaneously allowing the light on the second sensor.  Thus, sensor S1 and S2 form a 

pair; when S1 loses the light, S2 gains the light in same proportion. Similarly, S3 and S4 

form another pair. This produces a differential voltage output for each pair, cancelling the 

effect of input voltage variation. Averaging the two differential outputs reduces the influence 

of ambient light variations and differential thermally induced expansion between the sensor 

circuit and shutter.  This novel arrangement allows self-correction for the external 

perturbations as mentioned earlier. Equation 1 represents the displacement of the shutter 

with output voltages of all the sensors. 

 

𝐷 = 𝐾 ×
[
(𝑉1−𝑉2)

2
+

(𝑉3−𝑉4)

2
]

2
                                                                                       (1) 

 

Where, D is the displacement (µm), K is a calibration constant (µm/ mV), V1 to V4 are the 

output voltages of SPM1 to SPM4 (V). 

 

           

(a)      (b) 

 

Figure 20 (a) Cross section view of a single sensor and shutter and (b) schematic 

of the overall system  
 

4.2 Prototype system 

 

The design of the proposed prototype opto-electro-mechanical head assembly is shown in  

 

Figure 21. The shutter is mounted on the shutter head and the SPM board, which will then 

be attached to an amplification device, while the SPM board is mounted on the reference 
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structure. There are vast array of different SPM sensors available in the market. The type 

used in the prototype device was selected on the basis of its low cost, compact size 

(3.4 mm x 3 mm X 3 mm) and small aperture width of 150 µm for high sensitivity. 

Additionally, the chosen unit has a gap between emitter and receiver of 1 mm, which is 

sufficiently small that it reduces the effect of incident ambient light variation with free 

movement of the shutter; this ensures optimum light transfer. The realisation and physical 

dimensions of the SPM board are represented in Figure 22 

 

The biasing circuit used to establish proper operating conditions for the SPMs, is designed to 

be remote from the SPM board in order to avoid the effect of local self-heating from 

electrical components. 

 

                                     

 

Figure 21 Sensing head 

                                         

 

Figure 22 Prototype SPM board 
 

Figure 23 shows a thermal image of the first design of the SPM board, highlighting the heat 

input from the biasing resistors where the SPMs and their corresponding biasing resistors 

were on the same board. It can be seen that temperature of the resistors is significantly 

Shutter 

Head 

Shutter  

SPM 

Board 

 18mm 

    22mm 
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higher than the SPMs. In order to minimise the cost of the overall setup, standard resistors 

(330Ω, 1/2W) were used.   

 

The mechanical shutter, shutter head and sensor base were manufactured using aluminium 

to reduce the thermally induced errors in the sensor. Although aluminium has a high 

coefficient of thermal expansion, using the same material throughout, coupled with the high 

thermal conductivity, means that the head assembly and self-correction mechanism of the 

setup will be more reliable than using more exotic materials, for the given cost.      

A Farnell L30-2 stabilized power supply is used to provide power to the entire electric 

circuit. Raw output voltages generated by the sensing head proportional to the displacement 

are fed into the analogue to digital converter (ADC: NI-USB 6363, 16-bit resolution). This 

ADC output is then further given to the data logging computer. An in-house developed 

LabVIEW program [116] is used to convert the voltages into the equivalent displacement 

using equation 1. 

                                        

 

Figure 23 Thermal image of the biasing resistors 
 

4.3 Sensor characterization  

 

A schematic of the experimental setup used to perform a series of tests on the sensing head 

for characterisation is shown in the Figure 24. Figure 25 shows a photograph of the actual 

setup. The equipment was placed on the granite bed of a Coordinate Measuring Machine 

(CMM) (Zeiss Prismo Access 09/18/09) as a mechanically and thermally stable reference. In 

particular, the SPM board was located on the granite bed and the shutter head was 

mounted on the head of the CMM. The CMM was located in a temperature controlled room 

which was measured to be 21 oC± 1oC, during the entire duration of the tests, with the 

exception of tests requiring specific temperature variation for thermal characterisation. For 

Biasing 

resistors 

SPM Sensors 

Sensors 
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the purpose of this test, the CMM axes were used to produce the required displacement. 

This was convenient and provided good control for small movements. 

 

Tests were performed by moving the CMM over the entire range of the sensor head in 

increments of 2 µm. A  Renishaw XL-80 laser Interferometer system (accuracy: ±0.5 ppm, 

resolution: 1 nm and range 80 m) was used as the independent reference measurement of 

the displacement. Retro-reflector optics of the laser were attached to the bottom of the 

CMM head and the shutter of the sensor was fixed to the one end of the retro reflector 

(Figure 26). Thus, the shutter of the SPM head and the laser’s optics experiences the same 

displacement. Test results are discussed in the subsequent sections. 

 

 

 

         

 

Figure 24 Schematic of sensor calibration setup 
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Figure 25 Sensor calibration setup 

 

 

                                 

 

Figure 26 Close up of CMM and SPM sensor head setup 
 

4.3.1 Characteristic curve  

 

The experimentally obtained static characteristic curve of the sensor is shown in Figure 27, 

illustrating the variation in SPM head output voltages with change in shutter position 

measured by the XL-80 laser interferometer. It can be observed that the relationship 
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between measured voltage and displacement is non-linear in nature and the sensitivity 

(gradient) of the curve is not consistent over the entire input displacement range.  

The characteristic curve was divided into three sections based upon the change in the slope 

by finding the first derivative; the two end sections (1 and 3) have non-linear response and 

a middle section (2) where the output is proportional to the input. The slope of section 2 

was found to be 0.17 V/µm. This characteristic allows the sensor to be used reliably over 

the given input range with a well-determined output. Sections 1 and 3 could also be used 

with further refinement, but for the remainder of this work, only the linear portion is 

investigated.  

 

                 

 

Figure 27 Characteristic curve of SPM head 
 

4.3.2 Calibration of the characteristic curve and linear range of the 
sensor 

 

Calibration of the curve is performed using the Least Square Regression (LSR) technique. 

The linearly fit curve is specified by equation 2. 

 

𝑉 = 𝑠𝐷 + 𝑑𝑜                                                                                                       (2) 
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Where V is the SPM output voltage (V), s is the sensitivity (V/µm), D is the displacement 

(µm) and do is an offset. 

The mean value of the sensitivity obtained by LSR is 0.1648 V/µm with confidence interval 

of ±  0.0009 for 99% confidence level using student’s t-distribution. For all further 

calculations, this value will be used over the full scale range (FSR) of 20 µm. 

Since the linearization function described by equation 2 is an approximation of the actual 

curve, it does not describe the actual curve perfectly introducing the mapping linearity 

error. Figure 28 shows the mapping linearity error in terms of percentage of FSR after least 

square fitting was removed. It is calculated using equation 3 and 4. 

𝑒𝑚(𝑣) =  𝑓𝑎(𝑣) − 𝑓𝑐𝑎𝑙 (𝑣)                                                                                    (3) 

 

Where, em(v) is a mapping error in volts, fa(v) is an actual output obtained by experiment 

and fcal(v) is the predicted value obtained by calibration curve. The value of me(v) is then 

converted into microns using the value of sensitivity achieved from equation 2. 

   

𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 (%) = ±
𝑚𝑎𝑥|𝑒𝑚| 

𝐹𝑆𝑅
× 100                                                              (4) 

 

Where, 𝑚𝑎𝑥|𝑒𝑚| is a maximum mapping error, which is within ± 0.2 µm. Thus, the linearity 

error due to the calibration curve approximation is found to be within ±1 % of FSR 

 

           

 

Figure 28 Mapping Error due to calibration curve approximation 
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4.3.3 Repeatability 

 

In order to find the sensor repeatability, the same test was repeated five times over the 

entire linear range under the same operating conditions. The output value of the SPM head 

and corresponding XL-80 laser interferometer reading was recorded for targets every 2µm 

of CMM displacement in a bi-directional test. Figure 29 illustrates the deviation in SPM 

measurement readings from the laser for the five tests. The standard deviation (SD) at 

every target position was calculated and the maximum SD among all the positions in both 

the directions was considered as the repeatability of the sensor; the ISO 5725 defines the 

repeatability as the precision (one SD) under repeatability condition [117]. Table 6 shows 

the SD of all positions in the forward and reverse direction. Thus, the proposed sensor has a 

repeatability of 90 nm. 

 

Displacement (µm) 0 2 4 6 8 10 12 14 16 18 20 

Forward SD (nm) 0 47 60 33 28 31 41 35 50 42 60 

Reverse SD (nm) 21 35 62 35 71 25 73 77 48 86 60 

 

    

Table 6 The Standard deviation (SD) at each position 
 

4.3.4 Resolution and noise 

 

The resolution of sensors is often limited by the noise in the overall measurement system 

rather than the ADC resolution (which in this case is 1 nm using 16-bit ADC for 

0.1648 V/µm of sensitivity). An uncertainty is introduced in the measured displacement 

value due to random noise. This uncertainty can produce an error in the sensor output if the 

measured readings are closer to each other than the value of the uncertainty. The 

resolution can be quantified then by a multiple of the standard deviation (σ) of the noise. 

 

The noise level is calculated to be 6𝜎 to achieve 99.7% confidence [71]. 

The sensor was quantified for static performance at ten places along its measurement 

range. The data was captured at 1 kHz and the corresponding standard deviations were 

calculated. The worst case, at one of the extremities, is presented in  

Figure 30 This therefore shows a worst-case noise floor of 6𝜎 = 21 nm across the sensor’s 

measurement range, when used statically. 
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To validate the resolution of the sensor in dynamic operation, a small PZT (Lead Zirconate 

Titanate) actuator P-810.10 from Physik Instrumente (PI) GmbH was utilized to generate 

very small movements. The PZT was directly attached to the rear end of the XL-80 retro 

reflector. The resolution of the sensor head was determined by applying a sinusoidal signal 

with varying amplitude from a function generator to PZT actuator. The amplitude of the 

signal was reduced in each cycle until the SPM head was unable to detect the sinusoidal 

wave. The PZT was excited by a sinusoidal signal of 1Hz frequency with amplitude of 0.6 V 

and corresponding readings were measured. 

 

 

 

Figure 29 Repeatability test for the sensor head 
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Figure 30 Time domain recording of the sensor head output sampled at 1 KHz 
 

 

 

(a)                                                                                (b) 
 

 

Figure 31 SPM sensor head resolution test result 

 

Figure 31a illustrates the SPM head output with low pass filter at 10Hz.  

Figure 31b shows the measured voltage equivalent displacement of the SPM head and the 

output of the XL-80 laser interferometer. As it can be observed, the SPM output is sinusoidal 

in nature and is comparable with the reference measurement from the laser. A short time 

delay can be noticed between the two signals, this is due to the mismatch between trigger 
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inputs of the two data logging applications. Due to the very small magnitude of the 

sinusoid, the SPM head result includes the SPM noise and mechanical noise in the setup; 

both SPM head and XL-80 measurement are affected by noise in the setup equally and 

hence can be ignored. The SD of noise in SPM head is 17 nm and that of XL-80 is 13 nm. 

Thus, system resolution is comparable to that of laser interferometer.  

 

4.3.5 Immunity against variation in power supply and ambient light 

 

Stability of the SPM head output depends on the stability of the input power supply. Any 

variation in the power supply will affect the intensity of the light beam emitted by the LED. 

This in turn will have an effect on the incident light on a receiver. Since displacement is a 

function of the intensity of an incident light on the receiver, there is a possibility of a false 

displacement reading with respect to input voltage.  

 

Thus, a stabilised DC power supply was used to energize the circuit. However, in the field it 

is possible that output of the DC power supply is susceptible to variation in mains-line 

power. In order to reduce the effect of power supply variation, as mentioned in section 2, a 

four-sensor configuration was used to design the SPM sensor and equation 1 was used to 

calculate the final output.  

 

To investigate the sensitivity of a sensor to power supply variation, the output of the DC 

supply voltage was changed within ± 10 mV and the output of all four sensors S1, S2, S3 

and S4 was measured as V1, V2, V3 and V4. Figure 32 shows the a) differential voltage 

(DV1) output between sensor S1 and S2, b) differential voltage (DV2) output between 

sensor S3 and S4 as well as c) average of the two differential outputs (DV1 and DV2). It 

can be clearly seen that from Figure 32 that the use of the differential voltage schema 

reduces the influence of power supply variation and the final average output voltage of an 

SPM head is within ± 2 mV, which equates to ±12 nm. 
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Figure 32 SPM sensor head insensitivity to the variation in power supply voltage; 

a) Differential voltage (DV1) between sensor S1 and S2, b) differential voltage 

(DV2) between sensor S3 and S4, c) final SPM output (average Voltage) 
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Figure 33 SPM sensor head insensitivity to the variation in ambient light; a) 

Differential voltage (DV1) between sensor S1 and S2, b) differential voltage (DV2) 

between sensor S3 and S4, c) final SPM output (Ave. Voltage) 
 

Change in ambient light can also cause misreading of optical systems. In the prototype 

head, the receiver (phototransistor) has peak spectral sensitivity wavelength of 920 nm in 

the spectral range of approximately 850 to 975 nm with 90% relative sensitivity. The 

emitter has peak emission wavelength of 940nm, which is near to the peak spectral 
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sensitivity wavelength of the receiver. The small size of the emitter and receiver aperture 

window (width of 150 µm) with gap of 1 mm between emitter and receiver along with 

meticulous sensor head design can minimize the influence of ambient light.  

 

The four sensor configuration helps to reduce the effect of ambient light; to examine this, 

strobe light effect using white LED source was generated. The intensity of the light was kept 

at 250 and 360 Lux to simulate the factory conditions. The results of the test at 250 Lux is 

shown in Figure 33. Differential voltages DV1 (Figure 33a) and DV2 (Figure 33b) decreases 

the effect variations in individual sensor outputs (V1, V2, V3 and V4) due changes in the 

incident light. The SPM output, which is an average of DV1 and DV2, keeps the final output 

within ± 1 mV (±6 nm). The results at 360 Lux were identical. Further improvements in the 

results can be achieved by keeping the sensor inside an enclosure to protect from ambient 

light variations. 

 

4.3.6 Sensor Drift 

 

Long term stability of the sensor is important, to ensure the validity of the measurement 

results. Drift in the displacement sensor output can take place even though there is no 

change in the environmental or measurement conditions, due to signal conditioning 

electronics for example and is normally measured against elapsed time.  

 

This experiment was conducted in a temperature-controlled environment, in which the 

temperature variation was maintained at less than 1oC. The experimental setup is shown in 

Figure 25. The temperature was measured using a digital temperature sensor DS18B20 and 

the test duration was 9 hours. This test was run by keeping the mechanical shutter 

nominally stationary for the entire duration. The Renishaw XL-80 laser interferometer was 

used to validate the test results.  

 

Figure 34 shows the result of the conducted experiment. The measured environmental 

temperature variations were within 0.5 oC. The SPM head output during this period changes 

by 0.22 µm and the XL-80 reading changes by 0.3 µm. The deviation in the differential 

displacement between SPM head and XL-80 reading is within ± 0.2 µm; some of the 

detected variations are likely due to the quantization of the XL-80 long term logging 

application. Thus, in a relatively stable temperature, the differential drift between the XL-80 

and SPM head is less than the uncertainty of the setup.       
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To investigate the effect of setup temperature variation on the prototype SPM sensor head, 

the temperature of the environment was increased using a heating coil (2000W) for two and 

half hours (Heating process) and then allowed to cool down. The heating coil temperature 

was gradually increased to avoid any thermal shock to the CMM structure. The results are 

shown in Figure 35. 

  

For the purpose of analysis, the differential displacement between the XL-80 and SPM head 

on the experiment (shown by the green line in Figure 35) can be considered to isolate the 

effect of thermal distortion of a CMM structure. The XL-80 optics were carefully setup 

(Figure 35) to minimize the effect of dead path error and Abbe error, which were reduced to 

75 mm and 25 mm respectively. During the first 50 minutes of the heating cycle, initial drift 

of 0.8 µm can be observed in the differential displacement (shown by green line in  

Figure 35); thereafter displacement variation is within 0.4 µm for rest of the heating cycle. 

The displacement is a maximum of 2 µm during the cooling cycle for a drop in temperature 

of 2 oC. It can be observed that parameters are related but there is no direct correlation of 

the sensor output deviation to the temperature. It is assumed that the variation is likely due 

to the residual offsets of the setup and CMM movement. The results confirm that the sensor 

is very robust to ambient temperature variation. 

 

 

Figure 34 Measurement results for SPM head stability test 
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Figure 35 Temperature drift of the SPM head 

 

4.5 Sensor cost 

 

In this study, we have used commercially available and inexpensive (0.5 GBP each) infrared 

transmissive sensors, also known as slotted photo-microsensors or photo-interrupters. The 

remainder of the device consists of basic electrical components (resistors, capacitors and 

connectors) and mechanical housing. The cost in 2015 was calculated as £26. The output of 

the sensor is compatible with any standard data acquisition hardware and software. 

However, an industrial quality data acquisition system (typically >= 16bit, high SNR) would 

be recommended; even a good quality, 24-channel system would only add approximately 

£600. 

 

The cost of the sensor can be compared to that for a comparable capacitive or inductive 

sensor, which are in the region of £1000 per sensor. A data acquisition system would also 

be required. High-quality laser triangulation devices can be acquired for a similar price to 

the capacitive sensors, while even low-cost laser triangulation devices cost several hundreds 

of pounds.  

 

Typical applications for these sensors would include mechanical structural deformations 

monitoring, piezo-actuator control, and vibration monitoring system. For the machine tool 

fusion problem being addressed in this thesis, both elongation and distortion should be 
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monitored, therefore for a single element (such as the column) at least four sensors are 

required, although better results can be achieved with higher spatial density. For this 

example, the comparative cost of a system using the proposed sensor would be 

approximately £700 plus fixturing. The same system using capacitive probes would be 

approximately £4600 plus fixturing. These savings will increase as the number of elements 

being monitored rises. 

 

4.6 Sensor applications 

 

The intended application for this sensor is to reduce the largest uncertainty component 

during on-machine probing, namely the thermal error, using sensor data fusion. The novel 

displacement sensor can be used with suitable reference rod fixed to the structure for direct 

measurement of thermos-elastic deformation within the structure of the machine tool. This 

displacement data can be utilised with temperature sensor data using sensor fusion 

technique to compensate for thermal error.  

 

The inert rod is used to measure the small distortion relative between the two anchoring 

points of (i) the rod and (ii) the sensor head. The range of the sensor therefore only needs 

to be sufficiently large to measure this displacement, rather than the distance between the 

two points. The measurement range of the sensor is 20 micrometres in the linear range and 

60 micrometres full-scale, which can be used if calibrated. By applying the sensors on a 

structural member in stages, to detect localised distortion, the magnitude of the localised 

elongation will be within the range of the sensor. If a larger range were required, for 

example if measuring the overall elongation of a machine ram, then a design modification to 

the sensor would be required. 

 

The measurement range for alternative sensors is similarly a compromise with resolution or 

accuracy. Inductive, capacitive and LVDT devices could all be found with ranges limited to a 

few micrometres or up to several millimetres. The choice of sensor therefore becomes an 

engineering design problem.  
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Figure 36. Displacement sensors with rods installed on a column for distortion 

measurement. 
 

4.7 Summary  

 

In this chapter, the design of a new nanometre-scale resolution displacement sensor based 

on an opto-electro-mechanical sensing head has been described and the capabilities of a 

prototype system have been fully characterised. The proposed system is capable of self-

compensation against the perturbations due to power supply and ambient light variations. 

Although the design of the shutter is in contact with the object to be monitored, overall 

sensor design is minimally invasive. The cost of the prototype sensor head is 26 GBP, less 

than 10% of their uncalibrated capacitive and inductive counterparts without electronics. 

The output of the sensor is compatible with any standard data acquisition hardware and 

software. It is a low cost, compact sized sensor with small footprint that can be designed 

with a relatively small number of components without any complex signal processing 

circuits.   

 

Static and dynamic experiments were carried out to investigate the performance 

characteristics of the prototype sensor head. The static linear range and resolution (6σ) 

Machine column 
Inert rod 

Displacement sensor 
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were evaluated to be 20 µm and 21 nm respectively, with a sensitivity of 0.1648 V/µm. The 

linearity error is within ±1 % of full-scale range. The repeatability of the sensor is 90 nm 

and the observed noise in the sensor signal is 21nm without the use of any filter.  

 

The practical limitation of the current implementation is the mechanical shutter design with 

tight tolerances on its physical dimensions. The potential applications include, but are not 

limited to, mechanical structural deformation monitoring, piezo-actuator control, vibration 

monitoring systems, etc. 
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Chapter 5 - Development of modular machine tool 

structural monitoring system 
 

This chapter is published in a conference proceeding by Potdar et. al. [116] 

 

Although designed to be structurally stiff, machine tool deformation takes place due to the 

various sources of errors such as shifting mass, component weight, temperature etc. In 

order to facilitate research activities and acquire further scientific insight on the deformation 

process, a computer-based on-line monitoring system has been developed. A variety of 

sensors can be used to capture data for numerous parameters like temperature, 

displacement, strain etc.  

 

This chapter presents the design and implementation of a LabVIEW based multi-sensor data 

acquisition program. It was designed in a three-layer modular structure. In addition to data 

acquisition, the program is also capable of data processing, logging and implementing 

various error reduction techniques using online communication between LabVIEW and the 

MATLAB run-time engine for computation purpose. These calculated compensation values 

are then transferred to the machine controller via Ethernet. This chapter also describes an 

example of application of such a system for a 5-axis CNC machine tool. 

 

The motivation for this work came from a practical application for a modular machine tool 

structural monitoring and compensation system requiring the development of a multi-sensor 

data capture system. This DAQ system can capture data from several sensors like digital 

temperature sensor, laser position sensor and Fibre Bragg Grating (FBG) sensor for 

measuring temperature, displacement and strain respectively. Data can be logged in a 

format that can be used off-line by third party applications such as MATLAB or Microsoft 

Excel. Apart from these tasks, this application is programmed to implement compensation 

techniques during the process using parametric models and artificial intelligence techniques 

such as Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy Inference System 

(ANFIS). Obtained compensation values are then transferred to the machine controller using 

Ethernet.  

 

The Objectives of this chapter are to design a simple, reliable and flexible DAQ system, to 

implement this program to integrate different sensors and test the application on a real 

machine application.  
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5.1 System Overview 

 

In this chapter a computer based on-line monitoring system has been developed. A block 

diagram of this system is as shown in Figure 37. The system hardware consists of a number 

of sensors and a computer. The system communicates with a CNC machine tool Siemens 

840D interface. The Sensors used are: 

 

The digital temperature sensors used are 1-wire protocol. Unlike traditional analogue 

temperature sensors, e.g. thermocouples, RTD etc., these sensors have an advantage of 

communicating serially on a 1-wire bus system when using multiple sensors, which 

significantly reduces the cabling, and interface effort. In addition, they do not require any 

special signal conditioning hardware thus reducing the complexity and cost of the system.  

 

They have a programmable resolution of 12 bit (0.0625OC) with response time of 750ms 

and a temperature range of -55OC to +125OC. To communicate with a computer, it 

additionally requires an adapter either USB or serial port. 

 

The laser position sensors used are Riftek RF603. They are used for measuring 

displacement of a test bar (attached at the bottom of a moving spindle) caused by thermal 

distortion of the machine.  

 

They work on the principle of laser triangulation and have a base distance of 10mm with 

measurement range of 2 mm. Resolution of this sensor is 0.01% of its measurement range. 

The resolution and measurement range of this sensor is suitable for the application. This 

sensor uses a serial port interface to communicate with the computer, which in some cases 

requires a RS232-USB converter. They are capable of producing analogue output if 

required. Alternate sensors were explored for the operation, e.g. eddy current sensors (base 

distance 0.5 mm). The base distance was not suitable for the operation for the safety 

reasons.   

 

The Fibre Bragg Grating (FBG) sensors are used for strain measurement purpose[118].  

FBG sensors have inherent advantages of fibre optic sensors; they are relatively immune to 

various perturbations like stray electromagnetic variations, capacitive effects etc., compared 

to their non-optical counterparts, e.g. resistive strain gauges. FBGs have wavelength-

encoded information thus providing immunity against power supply fluctuations as well as 

insusceptibility to noise caused by variations in ambient light levels. Additionally, drift in 
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measured strain value of FBG sensors is relatively small, allowing a direct comparison 

between instant and reference strain levels, even after long time periods and repeated 

system shutdowns. Apart from this, FBG’s offer high resolution and accuracy. 

 

FBG’s are supplied by SMARTEC (based in Switzerland). They use Fabry-Perot Tuneable 

filter technology. Multiple FBG sensors are used in the wavelength range of 1510 

to 1570 nm. The resolution is 0.2 µε and accuracy is 2 µε. FBG sensors have their own 

reading unit by Micron Optics, which can read at 2 Hz and has 4 optical channels 

expandable up to 16 channels. The reading unit communicates with the computer using the 

Ethernet protocol. 

 

FBG sensors and temperature sensors can be used for structural monitoring of the machine 

tool for off-line and on-line research purposes. Strain values obtained from FBG and 

temperature values from temperature sensors can be captured and recorded over the 

desired time period. Logged data can be used for further off-line analysis purpose.  

 

The software installed on the Data Computer (DC) performs all the major tasks like data 

acquisition, logging and processing. To make advanced on-line analysis and computation 

more efficient, the software includes a live interface with the MATLAB run time engine. This 

program computes the compensation values, which are transferred to another LabVIEW 

program on the Communication Computer (CC). This communication is realized through the 

Ethernet protocol. 

  

The Program on the CC uses a Dynamic Data Exchange (DDE) link to communicate with the 

machine controller via Ethernet. Finally, compensation values are applied to the machining 

process by updating values in the part program. This rudimentary method of compensation 

is suitable for research purpose, but would be replaced by more robust methods in a 

commercial implementation. 

 

5.2 Software Design 

 

This section discusses the different criteria that were kept in the mind while designing the 

software. It also talks about the software architecture. 
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5.2.1 Design Criteria 

 

The software was designed to provide a simple machine tool structural monitoring system 

for researchers using LabVIEW based multi sensor data acquisition program.  Several 

aspects that were considered are mentioned as follows: 

Usability: All the functions of the program can be performed under the required conditions 

reliably. Flexibility: It should be flexible enough to modify various parameters and 

configurations for different sensors. Reusability: Modules designed in this program should 

be able to be used by other programs without any modification or with trivial changes. 

Extensibility: Additional features can be easily incorporated without any substantial 

alterations to the program structure. Cost-efficiency: Cost involved in the development and 

maintenance of the program should not be high.  

 

 

 

Figure 37. System Overview 

 

 

Numerous factors need to be considered while selecting the programming language, such as 

programming skills of the developer, availability of the drivers for various sensors, time 
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required for the development of the program, parallel programming capability, ease of 

debugging etc., [119, 120] Considering the above mentioned factors and due to the several 

other advantages of LabVIEW over other text based languages, it was selected for 

developing a data acquisition program [121, 122].  

 

5.2.2 Software structure 

 

For any software, well designed architecture is crucial for its success. This program was 

designed in a modular fashion to offer independent as well as interconnected control of 

various signals and the three-tier structure was implemented for the development. 

 

The top layer consists of graphical user interface developed using a LabVIEW user interface 

control. The low level tier is designed for the communication by means of hardware drivers 

and LabVIEW I/O commands to send and receive data from sensors and hardware devices. 

The middle tier connects top and bottom layer and provides platform for the development. 

It performs many tasks and is made up of some of the core modules: FBG Module, 

Temperature sensor module, laser position sensor module, Controller communication, 

LabVIEW and MATLAB online communication, data logging and error handling module. Each 

of these key modules are discussed in detail in later sections. All the principle modules are 

programmed in independent loops to improve the reusability of the program. The three-tier 

structure is as shown in the  Figure 38.   

 

A modular structure in the software allows integration of new types of sensors or additional 

sensors without making considerable modifications to the system architecture to easily 

achieve the desired extensibility. Apart from sensors, extensibility permits the addition of 

new features in the software as per the requirement in the later stages of research. 

 

5.2.3 Data acquisition process. 

 

A typical data acquisition process is as illustrated in  
Figure 39. The system is first initialised to establish a communication between computer 

and different sensors. In the second step, depending on the type of the sensor, the program 

either reads the raw data or sends configuration command. For example, in case of laser 

position sensor, it reads the raw data; for temperature sensor, a convert command is sent 

for temperature conversion and for FBG sensors, channels are configured. Subsequent steps 

in the flowchart are based on the parameters set by the user. Data acquisition process is 



78 

 

 

 

started from capturing the data form the sensors. Sampling rate of each type of sensor can 

be controlled individually. Raw data is processed to obtain engineering values before 

displaying it and saving it to a file if required.    After data is read from all the configured 

sensors, program completes the acquisition operation. 

 

 

 

 

 

Figure 38. Three tier structure of the program 
 

 

5.3 Implementation of Main Modules 

 

5.3.1 Sensor data acquisition Module 

 

Different modules are created for different sensors to maintain the modularity of the 

structure. Software Development kit (SDK) for programming these sensors is provided by 
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their manufacturers. These SDK’s contain sample LabVIEW sub-VIs (Virtual Instrument) and 

drivers necessary to perform fundamental operations. 

 

 

 

 

 

Figure 39. Flowchart for data acquisition 

 

5.3.2 LabVIEW and MATLAB interface module  

 

This LabVIEW DAQ program is designed to implement various machine tool error 
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analysis of these compensation techniques was carried out in MATLAB. Due to this, many 

complex inherent functions of the MATLAB were utilized during the design phase. It was 

observed that direct conversion of MATLAB code into the LabVIEW was time consuming and 

prone to error during translation which potentially could generate different output for the 

same input. Thus, an interface between LabVIEW and MATLAB was used to simplify the 

adoption of off-line optimised model with reduced uncertainties that would be involved in 

the code conversion.  

 

This interface was achieved using LabVIEW’s MATLAB Script module. It uses Microsoft 

ActiveX technology for communication.  Thus, .m file generated by MATLAB can be directly 

imported into the LabVIEW eliminating the need for code conversion. Some of the off-line 

models such as ANFIS generate files in “.fis” format. Such a files can be called in the 

LabVIEW code without any recompilation.  

Data captured from various sensors by LabVIEW is passed in the MATLAB Script code 

containing compensation model, which in turn generates the corresponding output. This 

output is returned backed to LabVIEW, which is passed to the machine controller.  

 

5.3.3 Controller communication module 

 

The purpose of this module is to establish a bi-directional communication between the 

machine tool controller and the CC. This communication link is established in two steps. In 

the first step, calculated compensation value is transferred from the DC to CC using 

Ethernet. Standard TCP (Transmission Control Protocol) toolkit is used for this purpose. In 

the second step, the DDE link using Ethernet is used to communicate with the controller. 

These compensation values are then used to modify the parameters in the controller, which 

are subsequently used by the CNC code to modify the values of Machine Co-ordinate 

System (MCS) during the machining process. MCS values can be transferred from the 

controller back to the LabVIEW program for analysis.          

   

5.3.4 Data Logging Module  

 

Data captured from all the sensors as well as MCS values with absolute time can be logged 

using this module. This is achieved with the help of LabVIEW file I/O functions. Data is 

saved in “.CSV” (comma-separated values) format. This format was chosen because it can 
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be easily imported in other applications for further analysis purpose. Data logging time is 

programmable. 

 

5.4 Demonstration of the software 

 

5.4.1 Program overview 

 

In this section, a brief introduction to the developed LabVIEW program is provided. 

Screenshots of the front panel of the software are illustrated in Figure 45. For each 

individual module such as for different sensors, compensation, communication and data 

logging separate tab is created. This way modularity of the structure is maintained in the 

front panel as well.  

 

 The front user interface contains 7 key segments: FBG spectrum, strain, temperature, laser 

sensor, compensation, communication and data log. Various configuration settings and 

sampling time for each type of sensor is programmable. Data for each sensor can be plotted 

live. Different compensation models can be configured as per the required parameters and 

their output can be plotted and observed in continuous manner.  

 

5.4.2 Examples of the software application 

 

In this section, three brief examples of the software application are mentioned. In the first 

two examples, tests were performed on a 5-axis Geiss machine tool. Third example 

discusses about the performance evaluation test of the laser tracker (LT).  

 

The first was performed for the period of 14 days and machine was not in operation during 

this period. The purpose of this test was to monitor the thermal response of the crossbeam 

structure of the machine tool with change in environmental temperature. FBG sensors were 

mounted on the crossbeam structure (refer Figure 37) with digital temperature sensor to 

observe the thermal response. Data for all the sensors was logged every minute. All the 

measured data was used for the post analysis purpose. Test result is shown in Figure 40. 

 

The primary motive of the second test was to observe the deformation taking place in the 

ram of the machine along the Z-axis direction due to the heating of the C-axis motor during 

prolonged operation and to compensate it during the running process itself.  
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   Figure 40. Test results for environmental thermal response of crossbeam 
 

 

FBG sensors were mounted on each side of the ram structure (refer Figure 37). The design 

and implementation of ANFIS model for thermal error reduction is carried out by Ali 

Abdulshahed as part of his PhD thesis [123]. The Output of the FBG sensors was used by 

the ANFIS compensation model. Calculated compensation values were used to modify the 

CNC code to maintain the position of the ram.  Laser position sensors were used for the 

validation purpose. Data for all the sensors was logged at every 1 second. On-line 

screenshots of the output of the compensation model and laser sensor are shown in Figure 

45 and test results are shown in Figure 46. Residual error in the range of 10 µm was 

observed during the test. 

 

ANFIS Design 

 

The structure of ANFIS used in this study is shown in Figure 41. It is a five-layer network. 

The ANFIS model was developed using MATLAB. The ANFIS constructs a fuzzy inference 

system (FIS) whose membership function parameters are tuned using the hybrid 

optimisation method. The hybrid optimisation method is a combination of the least-square 

method and the backpropagation algorithm. The Sugeno fuzzy reasoning with Gaussian 

membership functions (MFs) for each inputs were used. The Sugeno fuzzy system was 

utilised in this study because of its computational efficiency, versatile procedures and ability 

better ability for handling non-linear relations of input and output [124]. The Gaussian type  
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Figure 41. ANFIS structure for thermal error modelling  
 

 

 

Figure 42. Fuzzy block scheme for thermal error model. 
 

MF was incorporated because it provides a smoother model behaviour [125]. A linear 

defuzzifier was used in the output part of each rule; and total output is the weighted 

average of each rule output. The network consists of four inputs (FBG data), one output 

(thermal error) and six membership functions for each input. The fuzzy block scheme is 

presented in Figure 42. The Figure 43 shows the membership functions (MFs) used for input 
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variable and Figure 44 illustrates the MF used for output variable. Six fuzzy rules are 

derived from six MFs. 

 

 

 

Figure 43. Membership function block for input variable 
 

 

 

Figure 44. Membership function block for output variable 
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Figure 45. Compensation model output during the operation 
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Figure 46. Test Results for thermal displacement of Z-axis 
 

 

           

 

Figure 47. Test results for thermal response of laser tracker 
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In the third example, only temperature measurement module of the software was used for 

performance evolution of the laser tracker. This test was carried out for the period of 

14 hours, data was logged at every 25 sec. Data acquisition for temperature and LT was 

carried out using different softwares.  Figure 47 illustrates test results showing effect of 

temperature variation on reparability of LT 

 

5.5 Summary 

 

Using the LabVIEW environment a machine tool structural monitoring application was 

developed; offering the prospect of using computer based data processing to expedite the 

development path. This program was created in the modular structure to provide 

user-friendly software and to allow desired flexibility and extensibility. Various modules 

prepared in this program can be easily used for other applications with minimal or no 

alterations.  

 

This chapter also describes an example of application of such a system for data monitoring, 

logging, control model calculation and communication for compensation values for a 5-axis 

CNC machine tool. The extensibility of the design is of paramount importance to efficient 

development. 
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Chapter 6 - Application of multi sensor data fusion  
 

This chapter is published in a conference proceeding by Potdar et. al [126]. 

 

Due to the various heat sources on a machine tool, there exists a complex temperature 

distribution across its structure. This causes an inherent thermal hysteresis, which is 

undesirable as it affects the systematic tool –to-workpiece positioning capability. To monitor 

this, two physical quantities (temperature and strain) are measured at multiple locations. 

This chapter is concerned with the use of Principal Component Analysis (PCA) and Artificial 

Neural Networks (ANN) to fuse this potentially large amount of data from multiple sources. 

PCA reduces the dimensionality of the data and thus reduces training time for the ANN, 

which is being used for thermal modelling. This chapter shows the effect of different levels 

of data compression and the application of rate of change of sensor values to reduce the 

effect of system hysteresis. This methodology has been successfully applied to the ram of a 

5-axis gantry machine with 90 % correlation to the measured displacement. 

 

6.1 Introduction 

 

In the current work, data is acquired from two sources: temperature sensors for 

temperature measurement and Fibre Bragg Grating (FBG) sensors for strain measurement. 

Neural Network (NN) can map the nonlinear relationship by training with back-propagation 

algorithm [127]. As the relationship between thermal deformation of the machine and 

temperature measurement is nonlinear [100], it is reasonable to use Artificial Neural 

Network (ANN) to build the thermal deformation estimation model. However ANN 

sometimes loses its generalization capability due to the over fitting which reduces the 

robustness of its estimation ability. To make sensor fusion useful, it is essential to pre-

process data and to consider temporal development of data in an appropriate way [128]. In 

this case, Principal Component Analysis (PCA) is used for dimensionality reduction of the 

data and to improve the ANN’s estimation performance while reducing the training time.  

 

This chapter also demonstrates different levels of data compression i.e. comparison of ANN 

performance is made with various kinds of inputs. Inputs being: i) all available sensors, ii) 

principal components of all sensors, iii) sensors having good correlation with the measured 

output and iv) principal components of these correlated sensors. This methodology is then 

applied to the ram of a 5-axis gantry machine. 
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6.2 System Architecture  

  

 

 

Figure 48. System architecture of the PCA-ANN based prediction model. 

 

A block diagram of the system architecture is shown in Figure 48. Eight FBG and six 

temperature sensors were used as a system input. A Laser position sensor was used to 

measure the displacement in the ram of a machine. Technical specifications of all the 

sensors used can be found in [116]. Data obtained from measurements was pre-processed 

using a moving average filter with window size of five to remove any undesired noise signal 

before normalising it. This processed input data was used for PCA, which was further on 

used to train the ANN model, and after the completion of training, used as input layer to 

test the model with a completely new and independent set of inputs. The ANN’s predicted 

output was compared with the measured thermal displacement response in terms of 

percentage correlation (% R) and Root Mean Square Error (RMSE) between them to check 

the performance of the thermal model. 

 

PCA is a statistical technique and is used to transform a set of inter-dependent variables 

into significant and independent ones called Principal Components (PCs). This 

transformation is performed in such a way that the first PC has the largest possible variance 

and each succeeding PC in turn has the highest variance possible while being orthogonal to 

the preceding one. The detailed mathematical background of PCA is given by Jolliffe  [129]. 

Experimentally obtained measurement data was represented by a 720 × 14 sensor data 

matrix. The fourteen columns correspond to the eight FBG and six temperature sensors and 

the 720 rows are data samples for each sensor. This data matrix is the input data set for 

PCA.  Figure 49 illustrates the percentage of total variance by fourteen principal 

components, corresponding to fourteen sensors, obtained by PCA of three tests. First PC 

represents the maximum information which explains more than 90 % of total variance and 

the combined PC1, PC2 and PC3 holds more than 99 % of the information while remaining 

PCs account for less than 1 % of the total data. Hence, to ensure the dimension reduction 
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and integrity of the original data, first three PCs were selected. Thus, the new data set is of 

the dimension 720 × 3. This is the new input set for the ANN model.      

 

 

 

Figure 49. Percentage of total variance illustrated by all the principal components 

for three tests 
 

ANN design 

 

For thermal modelling using sensor fusion, a three layer feed forward ANN based on 

multilayer perceptron was selected. To reduce the training time of the ANN and to check its 

performance with reduced data set obtained using PCA, four models were created. Model 1 

was trained with all available input sensors i.e. fourteen sensors (FBGs and temperature 

sensors) and model 2 was trained with three PCs extracted from fourteen sensors. 

 

Model 3 consisted of only those sensors which had the highest correlation among all sensors 

with measured displacement. From Table 7 we can comment that the first three FBG 

sensors have highest correlation with the measured data as well as temperature sensor one, 

three and four. Hence, we selected three FBGs and three temperature sensors for this 

model. PCA was performed on these correlated sensors and three PCs extracted from them 

were used to train model 4.  
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FBG 

Sensor 

% correlation with 

measured 

displacement  

Temperature 

sensor 

% correlation 

with measured 

displacement 

1 98.04 1 96.5 

2 91.86 2 79.32 

3 99.31 3 81.05 

4 69.28 4 81.14 

5 81.62 5 64.16 

6 86.68 6 44.69 

7 82.81  

8 77.77 

 

Table 7. Table presenting % correlation of all the sensors with the measured 

thermal displacement 
 

The size of the input layer was either fourteen, three or six depending on the model. The 

hidden layer was made up of ten neurons and one neuron in the output layer. The method 

of supervised learning using back propagation strategy with Levenberg-Marquardt algorithm 

was used. Table 8 illustrates in detail the ANN architecture and training parameters used in 

the investigation. The ANN structure used in this study is presented in Figure 50 and the 

training statistics are shown in Figure 51. 

 

For learning purposes, each data matrix was divided into three sets: a training set 

consisting of 70 % of data; a validation set using 15 %; and a testing set of 15 %. The 

training data set was used to train the ANN by adjusting its weights, the validation set was 

used to minimize over-fitting and the test set was used to evaluate the performance of the 

ANN after completion of the training phase. Once the learning of the ANN was completed, 

an independent data set was presented to the ANN model and the performance of all the 

four models was checked.     

 

MATLAB was used for all the PCA and ANN training, testing and analysis of the data. 
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Parameters Type/Value 

Number of neurons in Input layer 3/6/14 (model dependent) 

Number of hidden layers 1 

Number of neurons in hidden layer 10 

Number of neurons in output layer 1 

Training algorithm Levenberg-Marquardt 

Training Function trainlm 

Transfer function Sigmoid for hidden layer and linear for 

output layer 

Performance criteria Mean Square error (MSE) 

 

Table 8. Details of developed ANN network 
 

 

 

 

Figure 50. ANN structure for thermal error modelling using sensor fusion 
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Figure 51. ANN training statistics 

 

 

6.3 Experimental Setup  

 

The experimental setup is described in Figure 52. Tests were performed on a 5-axis gantry 

machine, the aim of which was to monitor thermal displacement in the Z direction due to C-

axis motor heating while in operation. Temperature sensors (T1, T2, T3 etc.) were mounted 

on front and rear faces of the ram. Location of temperature sensors was decided after 

examining the heat distribution measured using a thermal imaging camera. Additionally, 

FBG sensors were also mounted on the ram structure. Displacement in the Z direction is 

measured by laser triangulation sensors. For data acquisition and logging, applications using 

LabVIEW were developed. This is reported in Potdar et al [116].  
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Figure 52. CNC machine and ram structure with sensors location. 
 

Tests consisted of a heating and cooling cycle lasting for approximately three hours each. 

During the heating period, the C-axis motor was rotated at 60 revolutions per minute to 

simulate 5-axis machining and held stationary during the cooling phase. To facilitate the 

laser measurement during the heating phase the C axis was stopped intermittently. 

Sampling rate for FBGs and temperature sensor was 30 seconds. Results of the experiment 

are discussed in the next section.  

 
The data represented in both Figure 53 and Figure 54 belongs to test number 3, which was 

completely independent to the training phase of the ANN. Figure 53 demonstrates the 

variation of temperature change taking place during the test duration of six hours. Data 

from only three temperatures sensors with highest correlation is selected for the 

demonstration purposes based on table 1. As expected, an increase in temperature can be 

observed due to the heat induced by the C-axis motor located inside the bottom of the ram. 

Surprisingly the thermal time constant was high, evident from the gradient after three 

Z direction 

Rotation of 

C axis 
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hours. During the cooling cycle, increase in temperature slows but no typical exponential 

cooling occurred. Figure 53 shows the thermal displacement in the negative Z direction 

indicating expansion that reached a maximum of 120 µm after three hours. A further 

analysis revealed that the thermal displacement decreased when the motor was non-

operational.   

 

 
 

Figure 53. Temperature variation and corresponding thermal response in 

Z direction of the ram. 
 

  

Similarly, Figure 54 shows the expected response of the FBG sensors. During the heating 

increased strain due to expansion can be observed and steady reduction during the cooling 

stage. The FBG’s provide the overall strain over the length of ram structure, but not 

localised distortion. 
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Figure 54. Variation in strain and corresponding thermal response in Z direction of 

the ram 
 

6.4 Result  

 

Estimated thermal displacements obtained from the four models were compared with the 

actual measured displacement. Table 9 compares percentage correlation between measured 

output and predicted output by four models. Although model 4 training is marginally worse 

than the other 3 models, it is appreciably better than them for both the validation trials. It 

can be clearly seen that the model 4 output has better than 90 % correlation to the 

measured displacement compared to the other models.  

 

The RMSE for all the four models is presented in Table 10. Again, excluding the training 

(test one), model four shows lowest RMSE, 8 µm for test two and 12 µm for test three. 

 

From Table 11, it can be seen that training time for the ANN is reduced from 59 seconds for 

model 1 to 1.28 seconds for model 4. This is mainly due to the reduction in the dimension 

of the input dataset from 720×14 to 720×3, showing the validity of the technique. Applying 

this method to a full machine model would have greater benefits. 
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Table 9. Table showing percentage correlation (R) between ANN output and 

measured output 

 

 

 

 

 

 

 

 

 

Table 10. Table showing root mean square error (RMSE) between ANN output and 

measured output 
 

 

 

 

 

 

 

 

Table 11. ANN training time required for all models. 

 

Figure 55 (a, b, c and d) shows outputs of the four models with measured thermal 

displacement. Additionally it also shows the residual error, obtained by calculating the 

difference between predicted and measured output. Maximum residual error for model 1 is 

220 µm, model 2 is 50 µm, model 3 is 40 µm and for model 4 is 26 µm. Thus model 4 

shows improvement of 78 % (absolute error) over the original measured thermal 

displacement of 120 µm. 

 

Test no. Model 1 

R/% 

Model 2 

R/% 

Model 3 

R/% 

Model 4 

R/% 

1 (Training) 99.99 99.83 99.83 99.28 

2 26.85 77.56 88.41 94.20 

3 26.74 57.56 82.58 96.14 

Test Model 1 

RMSE/µm 

Model 2 

RMSE/µm 

Model 3 

RMSE/µm 

Model 4 

RMSE/µm 

1 (Training) 2 2 2 4 

2 51 16 12 8 

3 168 36 36 12 

 Model 1 Model 2 Model 3 Model 4 

Training Time/Second 59 0.53 1.87 1.28 
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Figure 55. Comparing measured output and predicted output of test 3 for all 

models; a) model 1 b) model 2 c) model 3 d) model 4. 
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6.5 Summary 

 

In this chapter, output scores of the PCA used to train a sensor fusion model developed 

using ANN for thermal error modelling. ANN model output with correlated sensors with 

extracted PCs showed better than 90 % correlation with the measured data compared to 

other models and least RMSE. Thus, it can be concluded that predication and generalization 

capability of the ANN was improved. The method of correlation analysis used for 

temperature and FBG sensors reduces the number of variables in modelling and thus can 

reduce the cost of the system.  

 

PCA further reduces the dimensionality of the measured input data, thus reducing the 

computation time of the ANN. This can be especially useful in case of large amount data 

obtained for a long period of time or if close to real time calculations are needed for active 

compensation. 
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Chapter 7 – Conclusion and future work 
 

This thesis has investigated the use of on-machining probing as a means of acquiring the 

data necessary for the calibration of thermal correction models affected by uncertainty. 

Therefore, method of improvement is required.  It then goes on to design and develop a 

displacement sensor for data fusion to reduce the uncertainty. Software capable of 

multi-sensor data acquisition with the ability to apply fusion technique was designed and 

implemented using LabVIEW. A sensor fusion technique by means of artificial neural 

network (ANN) and principal component analysis (PCA) was developed.  

 

Metrology is a science, which considers all the factors contributing to the uncertainty of the 

measurement. This includes machine tools errors as well as effects from the machining 

process, both of which should be minimised. Machine tool errors hinder the possibility of 

achieving tight accuracy requirements for high-value manufacturing processes. The 

volumetric accuracy of the machine tools primarily depends on the magnitude of quasi-

static geometric errors; non-rigid body errors; and thermal errors. Thermal errors can 

contribute more than 50 % of the total machine errors. Due to the complex interaction of 

various factors, thermal errors are non-linear and transient in nature. Hence, it is relatively 

complicated to achieve an accurate error map for them.  

 

The error correction can be achieved using pre-calibrated or active error compensation 

techniques. The pre-calibrated compensation techniques are effective only when both 

machining and measurement processes are repeatable in nature. The active error 

compensation is a potentially more desirable solution in an industrial application, since, an 

on-line semi-closed loop is used, the error is monitored during the actual process and the 

same is used for on-line error compensation. However, the downside to such a strategy is 

the additional cost requirement and physical constraint that such a system would require.  

 

An attractive solution is to fuse on-line measurement to supplement a pre-calibration 

schema. Thus, there is a need for an on-line measurement system for error monitoring so 

the machining process can be altered during the same operation. On-machine probing is a 

readily available technology that can help achieve this. However, this is intermittent, so 

fusing with sensor providing continuous data yields greater returns.  

 

The thesis then discusses the advantages and disadvantages of the coordinate measuring 

machines (CMMs) and on-machine probing (OMP). An on-machine probe is a relatively 
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inexpensive and easy to use accessory that can be directly and automatically mounted on 

the spindle of CNC milling machine or in the lathe turret. Thus, this kind of arrangement 

provides functionality similar to a CMM measurement. However, a machine tool does not 

have the stability of a CMM due to the factors described above.  

 

Taking experimental data from a machine tool to assess the distortion that comes from 

thermal changes is the means by which thermal error models are calibrated, either to tune 

parameterised models or for self-learning techniques, such as Artificial Intelligence (AI). 

 

The uncertainty of measurement plays a critical factor in the fidelity of models that are 

achieved by empirical means, so should be minimised.  

 

Traditional methods of measuring the thermal distortion include laser interferometers, 

spindle analysers, etc. These are well-defined, independent metrology tools, whose 

uncertainties are therefore well understood. However, the availability of on-machining 

probing systems means that utilising them for capturing data is extremely attractive; the 

capital cost has already been borne and there is no additional requirement for specialist 

knowledge/training to set them up. 

 

The main limiting factor in using the probe as a reliable, traceable part of the quality audit 

for a produced part is that the same axes that create the part also drive the measurement 

device. This means that some of the errors in machining will not be picked up by the 

measuring procedure; it is not an independent check. Probes measure parts while moving 

the erroneous machine tool axes, thus on-machine measurement data inevitably includes 

the probing errors as well as errors originated from the inaccuracies of a machine tool. This 

thesis has considered the influencing factors on the accuracy of on-machine probing 

systems when used to calibrate a thermal model. 

 

Thus, the goals of the research were formulated as follows: 

 

1.To investigate and evaluate the uncertainties of on-machine probing for machine tool 

thermal error model calibration. 

 

2. To reduce the uncertainty using sensor data fusion. 

 

3. To develop a novel displacement measurement sensor. 
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7.1 Contribution to knowledge 

 

This section summarises the most important contributions of the research work. 

 

7.1.1 Investigation of sources of uncertainties and sensor data 

fusion 

 

This thesis investigates the uncertainty contributors at granular level for on-machine 

probing for a particular case of thermal error model calibration. Thermal errors are often 

found to be the largest contributing factors for OMP. In experiments on production 

machine, these were found to reach a magnitude of up to 220 µm. Hence, they need to be 

reduced significantly.  

 

Machine tool geometric error, although less than thermal errors in magnitude, make a 

significant contribution towards the uncertainty of OMP, but can be considerably reduced 

owing to their repeatable nature using machine tool calibration and modern advanced 

compensation. 

 

The probing system errors owing to factors such as pre-travel variation, time delay and time 

delay variation can have a specific known value. Thus, they can be compensated using 

probe calibration. However, it must be evaluated on a machine by-machine basis. The 

probe-tool changing and relocation repeatability for the tested machine was under 0.5 µm, 

making it an insignificant contributor. Similarly, probe repeatability was obtained by 

experimental analysis; it was less than 0.5 µm. 

 

It was observed that there is a direct correlation between environmental temperature 

variation and thermal error displacement. Thus, if there are greater variations in 

environmental temperature, corresponding variations in displacement error can be 

expected. Nevertheless, environmental temperature changes takes place very slowly. 

Typical probing routine time is comparatively short. Hence, the influence of environmental 

temperature as an uncertainty contributor is insignificant unless there is a large variation. 

During on-machine probing, if probing speed is consistent then the influence of machine 

vibration can be neglected. 

 

Factors such as surface contamination due to thin film of coolant and workpiece distortion 

owing to clamping do not contribute significantly to the uncertainty. The probing 
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repeatability of 0.3 µm without coolant and 0.5 µm with coolant was observed during the 

experimental analysis. If the lubrication, e.g. cutting oil, were used then this needs to be 

considered.  The FEA simulation of workpiece distortion due to clamping, in the case of 

equal application of force on a simple workpiece was in the range of 0.004 µm to 0.6 µm. 

This deformation on a whole is insignificant. Consideration of deflection on thin walled 

workpieces is the subject of further work. The resultant workpiece thermal error due loss of 

heat to the surrounding while probing is taking place is 13 µm for a particular case study. 

This value is arrived at again using FEA.  

 

To reduce the influence of the significant uncertainty source, the thermal error, sensor data 

fusion model using ANN and PCA was developed. The output of this model showed better 

than 90% correlation with the measured thermal displacement error. Fibre Bragg Grating 

(FBG) and temperature sensors were used to train the sensor fusion model. 

 

The PCA helps in the dimensionality reduction on the measured data, thus reducing the 

computation time of the ANN.  It condenses the input sensor data size from 720 x 14 to 

720 x 3. The training time for ANN was reduced to 1.3 sec from 59 sec. This can be 

especially useful in case of large amounts of data obtained for a long period of time or if 

close to real-time calculations are needed for active compensation.  

 

PCA further helps to improve generalization capability of the ANN. This is because when all 

the sensor input data is fed to the ANN during supervised learning process, ANN sometimes 

loses its generalization capability due to the over fitting which reduces the robustness of its 

estimation ability. Due to the dimensional reduction aspect of the PCA, not all of the input 

data is used to train the ANN model, thus, reducing the overfitting problem of ANN. The 

same is reflected by the overall improvement in the root mean square error (RMSE) 

between ANN output and measured output. The highest RMSE is 12 µm for the optimal 

model (model 4), an improvement from 168 µm for the initial model (model 1). In addition, 

correlation is better than 90 % between ANN output and measured output. 

 

LabVIEW based modular structured software was built, capable of multi-sensor data 

acquisition (DAQ), sensor fusion using various techniques and able to communicate with the 

controller. Any commercial sensor in the market has either some application provided by 

the manufacturer or open source software for capturing and/or analysing data. There is no 

general DAQ software available for this purpose. Software provided by manufacturers has 

restricted usage for research application. They often lack the flexibility and extensibility 
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required for research. Thus, the software offering the prospect of using computer-based 

data processing to expedite the development path was developed. This program was 

created in the modular structure to provide user-friendly software and to allow desired 

flexibility and extensibility. Another advantage is the ability to deploy advanced MATLAB 

models within the data acquisition system.  

 

7.1.2 Displacement sensor  

 

The use of temperature-only thermal compensation models has been shown to leave 

residual error, due in part to the thermal hysteresis. While consideration of this aspect was 

not part of this work, it became clear that supplementing temperature data with direct 

distortion measurement would provide greater accuracy in the model. 

 

In this thesis, the testing of a novel photo-microsensor based displacement sensor is 

presented.  This sensor has a static linear range and resolution (6σ) of 20 µm and 21 nm 

respectively, with a sensitivity of 0.1648 V/µm. The linearity error is within ±1 % of full-

scale range. The repeatability of the sensor is 90 nm and the observed noise in the sensor 

signal is 21nm without the use of any filter. 

 

The proposed system is capable of self-compensation against the perturbations due to 

power supply and ambient light variations. Although the design of the shutter is in contact 

with the object to be monitored, overall sensor design is minimally invasive. The cost of the 

prototype sensor head is 27 GBP, less than 10% of their uncalibrated capacitive and 

inductive counterparts without electronics. The output of the sensor is compatible with any 

standard data acquisition hardware and software. It is a low cost, compact sized sensor with 

small footprint that can be designed with a relatively small number of components without 

any complex signal processing circuits. 

 

This sensor can be used to reduce the error in the thermal model, and is therefore well 

placed to provide structural distortion data to be fused with the on-machine probing results 

to further reduce uncertainty of measurement.  
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7.2 Summary 

 

This thesis investigates the sources of uncertainty for on-machine probing at a granular 

level with experiments and simulation. 

 

Uncompensated geometric errors contribute considerably towards the on-machine 

probing (OMP) uncertainty, albeit, less than thermal errors in magnitude. However, they are 

repeatable in nature, thus, can be reduced significantly by calibration of the machine.  

 

Thermal errors are the largest contributing factors for OMP with magnitudes of up to 

220 µm being measured in this work. Hence, they need to be reduced significantly.  

 

To reduce the thermal error, a PCA and ANN based senor fusion model was developed. The 

output of this model shows better than 90 % correlation with the measured data. Fibre 

Bragg Grating (FBG) and temperature sensors were used to train the sensor fusion model.  

 

LabVIEW-based modular structured software was built, capable of data acquisition, sensor 

fusion using various techniques and able to communicate with the machine tool controller.  

 

Finally, a novel photo-microsensors based displacement sensor is presented. This sensor 

has the potential to provide the information similar to the FBGs, but at a fraction of a cost. 

Thus, they can be utilised for the training of the sensor fusion model. The proposed sensor 

has a static range of 20 µm, resolution of 21 nm and repeatability of 90 nm. 

 

7.3 Future work 

 

The work in this thesis has provided the first step in evaluating and reducing the 

measurement uncertainty of on machine probing (OMP) for efficiently calibrating thermal 

error models. 

 

This work can be extended to combine all the uncertainty contributors in OMP according to 

the established standards and then using Monte Carlo simulation to estimate their effects. 

This would have the benefit of providing an all-encompassing solution, which can then be 

generally applied throughout precision manufacturing.  
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In addition, the work can be further extended to include the use of on-machine tool-setters 

as a means of acquiring data. By their nature, these generally only provide information for a 

single-point on the machine and are therefore less useful than the spindle-mounted probes. 

However, they are often available, unlike probing spheres, so can provide useful feedback 

over time without being invasive to the normal manufacturing operation.   

 

In this thesis, rudimentary finite element analysis has been carried out on an example with 

simple geometry to analyse the influence of clamping force and thermal load on a workpiece 

distortion. This work should be further extended for complex geometries with consideration 

of localised heat sources. It should also focus on the special case of “thin walled” parts, 

where the effects of clamping can be particularly significant. 

 

More extensive analysis of the effect of variation in ambient conditions, such as temperature 

and vibration, can then be carried out by combining the additional FEA work with the 

statistical Monte Carlo approach.  

 

The thesis has produced a prototype data fusion system, which has been trialled on part of 

a machine tool structure. This should be developed, using the new displacement sensor, to 

produce a complete system on a full machine tool, incorporating all the significant structural 

components.   
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