De Santis, E., Edwards, A.A., Alexander, B.D., Holder, S.J., Biesse-Martin, A-S, Nielsen, B.V., Mistry, D., Waters, Laura J., Siligardi, G., Hussain, R., Faure, S. and Taillefumier, C. (2016) Selective complexation of divalent cations by a cyclic α,β-peptoid hexamer: a spectroscopic and computational study. Organic & Biomolecular Chemistry, 48. pp. 11371-11380. ISSN 1477-0520
Abstract

We describe the qualitative and quantitative analysis of the complexation properties towards cations of a cyclic peptoid hexamer composed of alternating α- and β-peptoid monomers, which bear exclusively chiral (S)-phenylethyl side chains (spe) that have no noticeable chelating properties. The binding of a series of monovalent and divalent cations was assessed by 1H NMR, circular dichroism, fluorescence and molecular modelling. In contrast to previous studies on cations binding by 18-membered α-cyclopeptoid hexamers, the 21-membered cyclopeptoid cP1 did not complex monovalent cations (Na+, K+, Ag+) but showed selectivity for divalent cations (Ca2+, Ba2+, Sr2+ and Mg2+). Hexacoordinated C-3 symmetrical complexes were demonstrated for divalent cations with ionic radii around 1 Å (Ca2+ and Ba2+), while 5-coordination is preferred for divalent cations with larger (Ba2+) or smaller ionic radii (Mg2+).

Information
Library
Documents
[thumbnail of c6ob01954d.pdf]
Preview
c6ob01954d.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
Statistics

Downloads

Downloads per month over past year

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email