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ABSTRACT  

The next generation of space-borne instruments for far infrared astronomical spectroscopy will utilize large diameter, 

cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic 

facilities are required for the cryogenic testing of materials, components and subsystems. The University of Lethbridge 

Test Facility Cryostat (TFC) is a large volume, closed cycle, 4 K cryogenic facility, developed for this purpose. This paper 

discusses the design and performance of the facility and associated metrology instrumentation, both internal and external 

to the TFC. Additionally, an apparatus for measuring the thermal and mechanical properties of carbon-fiber-reinforced 

polymers is presented.   

Keywords: Cryogenics, cryostat design, far infrared astronomy, material characterization, Carbon-fiber–reinforced 

polymer 

1. INTRODUCTION  

The European Space Agency’s Herschel Space Observatory1 represented a major step forward in terms of both the 

sensitivity and spatial resolution of far infrared spectroscopic measurements of astronomical sources. Whereas Herschel’s 

suite of instruments were cooled to temperatures of ~4 K, its primary mirror could only be passively cooled to an 

operational temperature of ~85 K1. The relatively large thermal background from the Herschel telescope limited the 

sensitivity of the broadband spectrometers. The next generation of far infrared space borne observatories will feature large 

aperture actively cooled telescopes (<6 K2) to essentially eliminate this thermal background, resulting in gains of over two 

orders of magnitude in sensitivity compared with Herschel3. As new instrument concepts are developed to exploit the low 

background environment of actively cooled telescopes, there is a need for ground based cryogenic facilities with sufficient 

volume and cooling power to test materials and components for far infrared spectroscopic instrumentation at equivalent 

background levels. To this end a large-scale, cryogen-free test facility cryostat has been developed by the Astronomical 

Instrumentation Group (AIG) at the University of Lethbridge, in collaboration with Quantum Technology Corporation. 

We outline the design considerations and performance specifications of the newly built Test Facility Cryostat (TFC), and 

describe the complementary suite of diagnostic instrumentation.  

While the ultimate purpose of the TFC is to test complete, self-contained spectrometers, along with an internal source and 

detector, the facility also serves as a general purpose cryogenic facility for testing material properties at low temperatures. 

As an example of the latter, we discuss in this paper the measurement of the temperature-dependent thermal expansion of 

carbon fiber reinforced polymers (CFRPs) in the 300 to 4 K range. This project formed part of a study of CFRP optical 

components manufactured by Glyndwr University as part of the FP7-FISICA program4. 

2. CRYOSTAT DESIGN 

Several designs were considered for the TFC, including a horizontal, cylindrical vessel5. The purpose of the horizontal 

design was to maximize the usable 4 K volume inside a simple cylindrical vacuum chamber. Figure 1 shows the 

cantilevered mechanical support structure of the original design. Simulations showed, however, that this structure could 

not be made stiff enough to reduce vibrational mode amplitudes to levels required for sensitive interferometric 

measurements (Figure 1). After several design iterations, a rectangular, vertical design was selected. The rectangular 
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arrangement provided better mechanical stiffness as well as ease of access, both in terms of the cryogenic work space and 

optical access via multiple viewports on the external vacuum vessel (Figure 2). The design included careful study of all 

heat transfer mechanisms within the TFC. Details of the design are given in the following sections. 

 

 

 
Figure 1. Renderings of the original design for the Test Facility Cryostat. (Left) The outer vacuum 

chamber is shown in red. The transparent section of the chamber is removable to access the 4 K 

volume. (Right) An FEA simulation of the first vibrational mode for the original TFC design (scale 

is arbitrary). The large amplitude oscillations near the end of the cantilevered plate made this 

design unsuitable for sensitive interferometric measurements.  

 

2.1 Vacuum Chamber 

The main body of the outer vacuum chamber (OVC) is constructed from welded 9.5 mm thick AISI type 304 stainless 

steel plate, selected for its high yield strength and weldability. The top plate, however, is 20 mm thick 6061-T6 aluminum 

alloy, chosen for its relatively easy machinability, and also because the top plate must necessarily be thicker to allow for 

internal threaded blind holes to attach the internal support structures. The vacuum chamber is split horizontally across the 

middle and a scissor lift is incorporated into the cryostat support frame to allow the heavy OVC to be raised and lowered 

with ease. This provides convenient access to either the lower 4 K working volume, or the upper wiring harness and 

support framework, by lowering either the bottom half of the OVC, or the entire OVC, respectively.  

The 4 K working volume of the TFC is surrounded with removable flanges, which provide a means of coupling external 

optics to instrumentation in the internal cryogenic chamber. The rectangular design allows access to any part of the 4 K 

volume from at least one of the nine available ports. One 150 mm diameter port and two 70 mm diameter ports are situated 

on each long side of the OVC, one 70 mm port on each of the short sides, and one 70 mm port on the underside. These 

flanges also provide the option of adding mechanical feedthroughs for mechanical property measurements of cooled 

samples. 

2.2 Cooling Mechanism 

The TFC was designed to accommodate two identical Cryomech PT415 pulse tube coolers6 (PTCs). While the system can 

operate with only a single PTC, the additional cooling power of the second PTC improves the cooldown time and cooling 

power at the base temperature. Mechanical cryocoolers offer several advantages over conventional liquid helium cryostats, 

including the inconvenience, expense, and potential hazards associated with handling liquid cryogens. Each PTC provides 

1.5 W of cooling power at 4.2 K, and an additional 40 W of cooling power at an intermediate stage at 45 K6. The main 

disadvantage of PTCs is that they introduce vibrations into the cryostat from oscillating helium gas within the cooler. To 

minimize the impact of these vibrations, the cold heads at both stages of the PTC are attached to the cryostat cold stages 

with flexible oxygen-free, high-conductivity (OFHC) copper braids which provide a good thermal conduction path while 

decoupling mechanical vibrations (Figure 3). The braids have a length of 110 mm and a total cross-sectional area of 128 

mm2. The cold plates themselves were manufactured from 12.7 mm thick OFHC copper and both the plates and braids 
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were gold plated with pure 24K gold plating solution to a nominal thickness of 5 µm for better thermal conductivity at 

mechanical connections and reduced emissivity. 

 

 

Figure 2. (Left) The TFC after delivery to the University of Lethbridge. A single PTC can be seen 

on the top plate. The horizontal split in the vacuum chamber allows for the bottom half of the 

chamber to be lowered by the scissor jack. Three blank flanges for the side apertures are also 

shown. (Right) A cross sectional view of the TFC. The dual pulse tube arrangement, CFRP 

supports, and rectangular, paneled shields are shown. 

 

 
Figure 3. An image of the OFHC copper braid, with a 5 µm gold coating, connecting the 4 K pulse 

tube cold head and the 4 K plate. The flexible copper braids decouple the system from mechanical 

vibrations generated by the pulse tube, while maintaining high thermal conductivity.  
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2.3 Mechanical Supports 

The cold heads can support a maximum load of 10 kg and 5 kg for the first and second stages respectively6, but the total 

mass of cold plates and radiation shields is approximately 20 kg for the first stage and 40 kg for the second stage. To 

accommodate the mass of the shields and cold plates, as well as the added mass of the systems under test, a series of 

CFRP plates provide mechanical coupling between the interior cold surfaces and the OVC top plate (Figure 4). CFRP 

was selected for its high stiffness, low thermal conductivity, and low coefficient of thermal expansion (Figure 5). This 

allowed the construction of thin supports which conduct minimal heat, especially at low temperatures. The rigidity of the 

CFRP supports helps ensure that the optical axis of an instrument mounted on the 4 K stage does not shift significantly 

with respect to the OVC due to mechanical vibrations, and that shifts due to thermal contraction during cooldown are 

minimized. The supports were machined from commercially available CFRP sheets to reduce thermal conduction cross 

section while retaining rigidity, using waterjet cutting to minimize fraying of the sheets at the edges. The CFRP supports 

were installed in a parallel sheet configuration for added rigidity, as well as ease of removal and access to the internal 

volume when necessary. Bolt holes in the CFRP supports were slotted to accommodate differential thermal contraction 

of the copper cold plates relative to the CFRP sheets, and also to relax machining tolerances of the assembly. 

 

 
Figure 4. The upper levels of the TFC, showing the CFRP support plates. The top of the image 

shows the underside of the room temperature aluminum plate. The 45 K plate is pictured in the 

center of the image and the 4 K plate near the bottom. Below the extent of the photograph are the 

4 K shields and the 4 K optical bench enclosed within. 
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Figure 5. The thermal conductivity of CFRP rods, shown in red, from room temperature to 4 K. 

The thermal conductivities of other common cryostat materials are shown as a comparison. The 

CFRP data are measured values; data for the other materials are taken from the NIST cryogenic 

material properties database7. 

 

2.4  Radiation Shielding 

Two radiation shields surround the 4 K volume, connected to the 45 K and 4 K PTC stages respectively. The warmer first 

stage shield is aluminum wrapped in loose fitting aluminized Mylar multi-layer insulation (MLI); individual sheets being 

~20 µm thick. The MLI was cut to size for each of the 45 K plate panels and was attached and sealed at the edges. Holes 

were punctured into the edges of the MLI enabling the panels to be fastened together. Small perforations were also made 

to expedite outgassing between the layers. All panels of the 45 K shield and the top of the 45 K plate are covered in 20 

layers of MLI, which proved to be sufficient for the shields to reach a temperature of less than 100 K (Section 3.2). The 

second stage shields are constructed from OFHC copper, and gold plated to ~1 µm thickness to decrease the emissivity of 

the shield surface. The 4 K radiation shields reach a temperature of 9 K at the warmest point and enclose the 4 K optical 

bench.  

2.5 Electrical Wiring 

Since the  TFC is  a general purpose facility for testing cryogenic instruments, a range of  electrical connections are required 

for actuators and transducers A key consideration in the wiring harness is  the wire type, diameter and length which must 

be carefully selected for each application to minimize heat flow, while also meeting current carrying capacity requirements. 

The selection of appropriate wire parameters was determined by striking a balance between minimizing heat conduction 

down the wires from room temperature and minimizing Joule heating generated by current flowing in the wires. The Joule 

heating is given by 𝑃 = 𝐼2𝑅; the thermal heat conduction is calculated using an integral form of Fourier’s Law,  
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The wiring is divided into two groups: low current transducer wiring, and high current actuator wiring. Thermometry 

wiring consisted of looms of 12 twisted pairs of 90 µm diameter copper wiring. Although copper is usually avoided for 

low current wiring as the heat conduction is much higher than other material options, the extremely thin wire mitigated 

this issue. In addition, each Detoronics DT series8 23-pin hermetic connector on the room temperature connector flange of 

the TFC is associated with five CernoxTM resistance temperature detectors (RTDs). With a four-wire measurement for 

each of the ten thermometers connected in this way, three wires are spare in each loom. Using copper allows for some 

spare wires on the loom to be used to connect small heating elements if necessary. Where wire looms could not be used 

for thermometers, 127 µm diameter, quad-twist, phosphor bronze wiring is used9. This allows multiple thermometers 

connected to a single electrical socket to be located on different cold stages of the cryostat. Five thermometers are 

connected in this way, measuring the temperatures of components above the 4 K volume.  In total, 20 phosphor-bronze 

wires and 40 copper wires are used for 15 thermometers within the cryostat. 6 copper wires are left available as spares. 

Approximately one meter of wire is used between the room temperature and 45 K stages and another 1 meter between the 

45 K and 4 K stages.  

One 23-pin electrical socket on the TFC is dedicated for high current applications (up to 500 mA). This socket is currently 

wired to a room temperature diode laser for optical metrology. In this case, wire selection is not critical since thermal 

loading is not a concern. However, there are high current wires reaching the 4 K stage for driving the scanning arm of a 

far infrared interferometer and operating a stepper motor controlled iris. For these applications, 34 AWG copper, twisted 

pair wires are used.   

Table 1. Provisional wiring for TFC. The number and diameter of high current wiring is subject 

to change, depending on the current use of the TFC. 

Number of wires Material Diameter (µm) 

46 Copper 90 

20 Phosphor Bronze 127 

22 Copper 160 

 

2.6 External Instrumentation 

The TFC is equipped with multiple viewports, to which external instruments may be coupled in order to facilitate high 

precision measurements at 4 K. The instruments that are used are those for which there is no feasible low temperature 

counterpart that may be placed inside the cryostat. Currently two external instruments find extensive use: a Renishaw 

differential interferometer10, and a PLX autocollimator11.  

The Renishaw Differential Interferometer uses a HeNe laser coupled by an optical fiber to a head which mounts on the 

exterior of the TFC vacuum chamber (Figure 6). The head consists of optical components for a double-pass, differential 

interferometer and a detector. With fringe counting capabilities, this instrument measures the relative displacement of a 

plane mirror target with respect to a reference mirror with a resolution of 38.6 pm.  

The PLX autocollimator, shown in Figure 7, is an electronically controlled instrument which measures the tilt of a plane 

mirror target. With an 84’ x 84’ field of view, the autocollimator can measure the tilt of a plane mirror up to 42’ with a 

precision of 2.5” and a resolution of 0.1”. In addition, this system has been used to test for performance degradation of 

corner cube retroreflectors from a cryogenic cooling cycle.  
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Figure 6. (Left) An image of the Renishaw RLD10 differential interferometer, mounted to the 

TFC with a custom-made set of aluminum plates. The plates allow for slight positional corrections 

to be made outside the cryostat, as well as easy detachment and re-attachment of the 

interferometer without realignment. (Right) A schematic, showing the optical layout of the 

interior of the RLD10 differential interferometer10. 

 

 

Figure 7. (Left) An image of the PLX electronic autocollimator mounted on one of the large 

viewports in the TFC. A shelf was constructed to hang from the viewport so that the 

autocollimator could be mechanically coupled to the TFC to reduced vibrational errors in the 

measurements. The viewport flange, shelf, and autocollimator can be removed from the TFC as 

a single unit. (Right) A schematic, showing the operation of the autocollimator11.  

3. TFC PERFORMANCE 

The performance of the TFC has been evaluated over several cooldown cycles. The TFC reaches a base temperature of 

3.5 K with a single pulse tube cooler in approximately 25 hours. In this section, we discuss the cooling specifications, 

both predicted and measured and the cooling power at base temperatures. 

 

3.1 Vacuum 

The TFC is evacuated using a 4-foot-long, KF40 bellows, and an Edwards XDS35i dry scroll vacuum pump12. The 

roughing pump allows for a base pressure of 1 mTorr to be reached in around 15-20 hours. However, since the cool down 

takes a substantial amount of time, it is usually safe to begin the cooling cycle once the pressure reaches around 10 mTorr, 

which occurs after about 4 hours. The residual pressure is measured with an MKS 910 DualTrans Vacuum Transducer13. 

While turbo pumps are required for cryogenic facilities operating at liquid nitrogen temperatures, a roughing pump is 

Proc. of SPIE Vol. 9904  99045E-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/29/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



1000

1 0

..` ti -
-, .. ,. _.. -a -

_._...a. -,_._._ ._._._._._. _
_ ._. _.._..._..._..._..._

10
-45KPTC

45K Plate
4K PTC
4K Plate
45K Shield Middle
45K Shield Bottom
4K Shield Middle

1

1 I I I u 1111 11111111111111111111111111111
0 10 20 30 40

Time [hours]

 

 
 

 

sufficient for the TFC operation. Once the temperature of the second stage of the PTC drops below 77 K, cryopumping of 

residual atmospheric gases occurs and the pressure abruptly drops to 10-5 Torr, the limit of the gauge.  

3.2 Cooling Time 

The TFC was designed to cool down in around 24 hours with one PTC. In practice the system takes approximately 25 

hours to reach 4 K, although the cooling time may vary depending on the heat capacity of the experimental setup.  Figure 

8 shows a typical cool down curves for various elements of the TFC. The base temperature of the cold plate attached to 

the 4 K cold head is 3.5 K, while the base temperature of the 45 K stage is 60 K. The disparity between the 45 K cold head 

and 45 K stage temperatures is a result of insufficient thermal conduction through the flexible braid links. A new braid 

system is being developed which will allow for the 45 K stage to reach even lower temperatures (Section 5.3).  

 

Figure 8. A plot of the PTC cold head, plate, and shield temperatures during a typical cool down 

of the TFC.  

 

3.3 Cooling Power 

To measure the residual cooling power at base temperatures on the 4 K bench, a large 5 W heater was placed on one end 

of the 4 K bench. Two thermometers, one placed near the heater and one on the furthest edge of the plate, measured the 

thermal gradient across the plate during these tests. The heater was wired to a PID control system internal to a Lakeshore 

340 temperature controller. As the temperature was adjusted to different set points, the current through the heater was 

controlled and the voltage drop across the heater was measured using separate measurement leads. The heater output power 

(P=VI) was recorded as the residual cooling power at the temperature of the plate once the temperature of the plate reached 

equilibrium. From the results, we conclude that 1.25 W of the 1.5 W cooling power available from a single PTC is lost to 

parasitic heating effects of the supports, wires, and shields, leaving 250 mW of cooling power available at 4 K.  
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Table 2. Performance specifications of the TFC.  

Parameter Predicted (with 2 PTCs) Actual (with 1 PTC) 

Size 1.5m x 0.75 m x 2 m 1.5m x 0.75 m x 2 m 

4 K Volume 580 mm x 480 mm x 250 mm 580 mm x 480 mm x 250 mm 

MLI Up to 30 layers 20 layers 

Pump Out Time < 8 hours 4 hours to 10 mTorr  

Cool Down Time < 24 hours 25 hours 

Warm Up Time 24 hours 40 hours 

Cooling Capacity 1.5 W 250 mW 

Thermometry Channels Up to 16 15 

Viewports 2 x 150 mm dia., > 2 x 70 mm dia. 2 x 150 mm dia., 7 x 70 mm dia. 

 

 

4. CFRP THERMAL TESTING RESULTS 

One of the first tests of the TFC was to measure the thermal expansion of CFRP. CFRPs are a class of composite material 

consisting of two components: a polymer resin matrix, and carbon fibers. CFRPs exhibit favorable properties for structural 

components, such as high stiffness, tensile strength, and a high strength-to-mass ratio. Additionally, CFRPs can be 

designed to have a very low thermal expansion, as well as a low thermal conductivity. These mechanical and thermal 

properties make CFRP a strong contender for mechanical supports in cryogenic applications. A disadvantage of CFRP, 

however, is that the thermal properties of the material depend strongly on the type, density, orientation, and size of fibers 

used, as well as the type of polymer resin. Therefore, it becomes necessary to measure the thermal properties of each CFRP 

composition and fabrication process. In the following section, we outline an apparatus that was designed to measure the 

thermal expansion of CFRP plates from 4 to 300 K. The measurement of CFRP thermal properties was done in 

collaboration with Glyndwr University, under the EU FP7-FISICA program. The goal of this study was to determine the 

feasibility of using CFRP in the design of lightweight, cryogenic mirrors for space interferometery4.  

 

4.1 Apparatus 

The measurement of the thermal contraction of CFRP was performed using the Renishaw Differential Interferometer. This 

instrument measures the relative displacement between two mirrors, so the apparatus was designed as a straight-legged 

tripod configuration of CFRP plates attached to aluminum plates on either end (Figure 9). These plates held the mirror 

targets, and the interferometer measurement beams were directed along the axis of the CFRP samples. By recording the 

relative displacement over an entire cooling cycle, the total thermal contraction could be determined for any temperature 

range between 4 K and 300 K. Thermometers were attached to both end plates and across the CFRP to determine the 

temperature of each mirror and any thermal gradients present across the CFRP. 
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Figure 9. The tripod system with CFRP plate samples installed. The system was positioned 

horizontally inside the TFC with the interferometer beams entering from a side viewport. 

CernoxTM RTDs are located at three positions on the CFRP plate, measuring the temperature 

gradient. 

 

4.2 Results 

The thermal expansion of CFRP was measured down to an average sample temperature of 20 K. Lower temperatures were 

not reached due to the high emissivity of CFRP plates, as well as the low thermal conductivity of the samples, leading to 

large thermal gradients across the samples induced by stray light through the viewports in the 4 K chamber. Two sets each 

of three different types of samples were measured. The samples were distinguished by the orientation of carbon fibers. 

One set had fibers oriented along the measurement axis (called the 0° axis), another sample set had fibers oriented 

perpendicular to the measurement axis (90° axis), and the last sample set had layers of alternating orientations stacked 

together in a “quasi-isotropic” configuration. 

As shown in Figure 10, thermal contraction was minimal along the axis of the fibers and at a maximum when perpendicular 

to fiber orientation. This follows from theoretical expectations, because the thermal contraction of the epoxy matrix is 

much greater than that of the carbon fibers. The thermal contraction of the quasi-isotropic sample fell between these 

extreme cases. With this technique of measuring thermal contraction, a measurement precision of 10 nm was achieved, 

proving that this technique is viable for the measurement of small dimensional changes in low thermal expansion materials 

at cryogenic temperatures. While initially we were concerned that the vibrations induced by the PTC would preclude 

precision metrology measurements during the cool down phase of the TFC, the differential nature of the measurement and 

the mechanical isolation provided by the copper braids have allowed such measurements.  
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Figure 10. Thermal expansion results of the CFRP plates from room temperature to 20 K. Error 

bars shown are shown ever 50 data points and represent 1σ uncertainties. The temperature 

uncertainty was the dominant source of error, due to the thermal gradient present along the 

CFRP plates while cooling. 

 

5. FUTURE WORK 

5.1 Second PTC 

With the addition of the second pulse tube cooler working in parallel with the currently installed unit, there will be a 

dramatic increase in the performance of the cryostat. The cooling time is expected to be cut in half with a significant part 

of the 1.5 W cooling power of the second PTC available at 4 K.  

5.2 Cryogenic Iris 

The use of external instrumentation requires a window in the TFC. In the current configuration a single pulse tube cooler 

is not sufficient to cool the system to 4 K with a window open to the laboratory environment. The total radiant power 

through a window (40 mm diameter), calculated by the Stefan-Boltzmann Law amounts to: 

 

𝑃𝑟𝑎𝑑 = 𝐴𝜎𝑇4 ≈ 0.5 𝑊 (2) 

Where A is the diameter of the window, T is 295 K, and 𝜎 is the Stefan-Boltzmann constant. This heat input is double the 

residual cooling power of the TFC at 4.2 K, increasing the base temperature of the TFC to 5 K. To address this concern a 

cryogenic, motorized, zero aperture iris has been designed and developed which will allow the TFC to reach a base 

temperature of 4 K with the iris closed. 
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5.3 Thermal Braids 

The copper braids which serve to decouple mechanical vibrations of the pulse tube from the cold plate also limit the 

cooling power supplied to the cold plates. In Figure 8, the thermal gradient which is present between the 45 K cold head 

and the 45 K plate is evidence of this. Thermal calculations show that the actual cooling power supplied to the 45 K plate 

is 13 W, rather than the intended 40 W. By modifying the braids (i.e. decreasing the length or increasing the cross-sectional 

area), there will be more available cooling power at the 45 K plate. The result of this modification will be a decreased 

temperature of the 45 K shields, which should result in an increase in available cooling power at the 4 K stage. 

 

5.4 Mechanical Feedthroughs 

Mechanical feedthroughs have not yet been incorporated into the design, but will be added to enable application of external 

loads to internal components in order to measure mechanical properties of materials at low temperatures (e.g. Young’s 

modulus). 

 

5.5 Computer Controlled 

All of the ancillary equipment associated with the TFC (vacuum pump, pulse tube compressor, Resistance Bridge, 

differential laser interferometer, autocollimator etc.) have the capability of being controlled remotely. Our goal is to fully 

automate and remotely control of the facility. 
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