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Abstract

Most desired applications for planning and scheduling typically have the

characteristics of a continuous changing world. Unfortunately, traditional

classical planning does not possess this characteristic. This drawback is

because most real-world situations involve quantities and numeric values,

which cannot be adequately represented in classical planning. Continuous

planning in domains that are represented with rich notations is still a great

challenge for AI. For instance, changes occurring due to fuel consumption,

continuous movement, or environmental conditions may not be adequately

modelled through instantaneous or even durative actions; rather these re-

quire modelling as continuously changing processes. The development of

planning tools that can reason with domains involving continuous and com-

plex numeric fluents would facilitate the integration of automated planning

in the design and development of complex application models to solve real

world problems.

Traditional urban traffic control (UTC) approaches are still not very effi-

cient during unforeseen situations such as road incidents when changes in

traffic are requested in a short time interval. For such anomalies, we need

systems that can plan and act effectively in order to restore an unexpected

road traffic situation into a normal order. In the quest to improve reasoning

with continuous process within the UTC domain, we investigate the role of

Model Predictive Control (MPC) approach to planning in the presence of

mixed discrete and continuous state variables within a UTC problem. We



explore this control approach and show how it can be embedded into ex-

isting, modern AI Planning technology. This approach preserves the many

advantages of the AI Planning approach, to do with domain independence

through declarative modelling, and explicit reasoning while leveraging the

capability of MPC to deal with continuous processes.

We evaluate the possibility of reasoning with the knowledge of UTC struc-

tures to optimise traffic flow in situations where a given road within a

network of roads becomes unavailable due to unexpected situations such

as road accidents. We specify how to augment the standard AI planning

engine with the incorporation of MPC techniques into the central reason-

ing process of a continuous domain. This approach effectively utilises the

strengths of search-based and model-simulation-based methods.

We create a representation that can be used to capture declaratively, the def-

initions of processes, actions, events, resources resumption and the struc-

ture of the environment in a UTC scenario. This representation is founded

on world states modelled by mixed discrete and continuous state variables.

We create a planner with a hybrid algorithm, called UTCPLAN that com-

bines both AI planning and MPC approach to reason with traffic network

and control traffic signal at junctions within the network. The experimental

objective of minimising the number of vehicles in a queue is implemented

to validate the applicability and effectiveness of the algorithm. We present

an experimental evaluation showing that our approach can provide UTC

plans in a reasonable time. The result also shows that the UTCPLAN ap-

proach can perform well in dealing with heavy traffic congestion problems,

which might result from heavy traffic flow during rush hours.
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Chapter 1

Introduction

1.1 Motivation

The field of Artificial Intelligence Planning, or AI Planning, deals with the problem of

finding a sequence or partially ordered set of actions whose execution leads from an

initial state to a state in which a goal condition is satisfied. Actions in plans are ordered

in such a way that executability of every action is guaranteed. Hence, it is now possible

to transform the environment from an initial state into a desired state that satisfies some

goal conditions. A planning problem thus involves deciding “what” actions to do, and

“when” to do them. The “when” part of the problem refers to “scheduling”.

Most desired application for planning and scheduling typically have the following

characteristics: a continuous changing world; multiple agents (both cooperative and ad-

versarial); uncertainty of the state of the world; communication with external sources

(sensors, databases, human users) to get information about the world; overlapping ac-

tions; time constraints and numeric computations involving resources, probabilities,

spatial relationships and geometric. Unfortunately, traditional classical planning does

not possess any of these characteristics.

This drawback of classical planning is due to the fact that most real-world situations

involve quantities and numeric values, which are not properly represented in classical
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planning. The need to express numeric quantities of entities within a domain represen-

tation led to the development of metric planning [42; 73]. Also, continuous planning

in domains that are represented with rich notations has long been a great challenge for

AI [35]. For instance, changes occurring due to fuel consumption, continuous move-

ment, or environmental conditions may not be adequately modelled through instanta-

neous or even durative actions; rather these require modelling as continuously chang-

ing processes. The combination of time-dependent problems and numeric optimisation

problem create a more challenging and hard task of time-dependent metric fluents.

Thus, automated planning had to move away from the restricted classical planning

with the introduction of real world problems which included some non-classical plan-

ning. From 2002, there has been an introduction of elementary notation of timing and

resources. In 2004, inference rules and derived effects were added with a new track

of planning in probabilistic domains. 2006 witness addition of soft goals, trajectory

constraints, preferences, plan metrics, and expressions of constraints in temporal logic.

AI Planning has evidenced a significant advancement in planning techniques in the

last 10 - 15 years, which has led to the development of efficient planning systems that

can input expressive models of applications. The existence of these general planning

tools has motivated engineers in designing and developing complex application models

that closely approximate real-world problems. These improvements enable automated

planning application to cut across several disciplines with different applications ranging

from space exploration, education, health care, business and commerce to entertainment

industry.

Urban traffic management is an application area that we believe could benefit from

the applications of AI Planning and is the motivating application for this thesis. Current

urban traffic management centres (UTMCs) have systems that help to minimise delay

within day to day traffic flows using controls such as self-tuning traffic light clusters.

They are effective in coping with local expected changes in traffic flows, but are not

designed, however, to adjust flow regionally. Demands such as re-routing vehicles to

2



avoid poor air quality hotspots, utilising the network fully, or working adequately in

the face of unplanned exceptional events such as road closures or accidents, cannot be

met by Urban Traffic Management Centres on a day to day basis. For instance, UTC

operators have no technological help to synthesise and coordinate collections of inter-

ventions (light phase changes, message signs) to influence the build-up of traffic related

flow over a region. Throughout the world urban operators, and hence road users, would

benefit from tools to support the effective regional management of roads. Integrating

the knowledge of control engineering into the field of AI planning and scheduling to

create hybrid technology that can solve these kinds of complex planning problems of

regional management could prove the foundation for a breakthrough for the transporta-

tion industry.

The area of AI Planning and Scheduling (AIP & S) involves modelling a system

in a knowledge-based way, with declarative data structures representing goals, states,

resources, actions to mention a few, and creating tools that can reason about them logi-

cally. Plans are created as output to achieve goal conditions in a future state. In this case,

goals and actions can be easily changed or even generated themselves automatically (for

example, a trigger on pollution monitoring data feeds could lead to the generation of

goals to be fed into a planning engine that would output the appropriate plans to be car-

ried out by traffic controls). As well as the flexibility of input language, a characteristic

of this approach is that the human user can understand and inspect the output plan, to

help validate the approach, and to promote a mixed-initiative interaction with the system

operators. There are drawbacks, however, in that few if any planning engines can rea-

son with models described by continuous processes, and the computational complexity

of the planning problem can be prohibitive without strong heuristics.

This thesis addresses these drawbacks and proposes a planning algorithm that can

reason with continuous processes using approach that are aimed at handling the com-

putational complexity of the UTC planning problem.

3



Control Engineering, on the other hand, have developed techniques to control a

continuous process by the varying of a control variable over a fixed time horizon. The

motivation for this originates in areas of chemical engineering. Here the process is

modelled by some approximating function, and the ”goal” is to ensure that certain of the

variables of the dynamic system stay within a specified interval. A simple example is to

adjust gas on a burner to ensure a pan will simmer but not boil over. The advantages of

Control Engineering approaches in this area, such as embedded in the popular “Model

Predictive Control” technique, is that they can work with dynamical systems described

as continuously changing processes, and output controls that take into account future

events. On the other hand, these approaches are not as flexible, nor as transparent, as

the AIP & S approaches.

This thesis aims to transform areas of control engineering and AIP & S by for-

mulating plan generation algorithms, and execution architectures, which combine the

advantages of both approaches into one unified approach. The algorithms can produce

readable plans to achieve goal conditions where the dynamical system model includes

continuous processes. This thesis will lead to the creation of shared, flexible, generic

tools to perform planning capable of being used in UTC management. It will lead to

a number of specifications of sample problems that can be used to characterise the ap-

plication of the technology. The planner produced is inspired and motivated by urban

traffic control problem: the output technology is tested as part of the solution to UTC

control for UMTCs. Our present effort is focused on using a Model Predictive Con-

trol(MPC) architecture to implement a continuous planner that can generate plans that

can serve as advisory to traffic officers as well as urban traffic controller(agent) in other

order to optimize traffic flows in urban areas.

In this thesis, we explore the application of AI planning technology and control en-

gineering to the problem of Urban Traffic Control(UTC) system. We design a generic

architecture for self-management systems which is inspired by Human self-management

Nervous System. Our architecture consists of several components, which is discussed
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in the context of the Urban Traffic Control Domain. We investigate the feasibility of

using this approach in an urban road traffic domain to generate plans, where learned

or reactive behaviours fail because of unforeseen situations. We show how this is ac-

complished by the creation of a declarative representation of a road network in a town

centre area in the United Kingdom. The task is to navigate effectively cars through a

network of connected roads during an unforeseen situation.

1.2 Thesis Contribution

This thesis describes a continuing effort to unite control engineering technique with

automated planning approach towards solving controls problems in the area of urban

traffic management. Our contributions are as follows, the first being the most important.

• The design, implementation and testing of a planner algorithm which can input

expressive domain descriptions, output solution plans containing continuous pro-

cesses, events and actions. This work is the first AI Planner we are aware of to

integrate MPC with AI search - based planning techniques.

• An investigation into the role of Model Predictive Control(MPC) architecture in

automated planning.

• The Design of a hybrid planner algorithm that is angled towards applications

exemplified by the urban road traffic management problem

• Modelling of a declarative representation of the road network of Huddersfield

town centre area of West Yorkshire in the United Kingdom. Thus, creating an-

other benchmark domain for the planning community

• The design of a generic UTC architecture for self-management systems which is

inspired by Human self-management Nervous System.
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• Evaluating the possibility of reasoning with knowledge from UTC domain and

optimising traffic flow in situations where a given road within a network of roads

becomes unavailable due to an unexpected situation such as a road accident

• Evaluating the advantages and challenges of using AI Planning Technology in

Urban Traffic Control

1.3 Thesis Layout

This thesis is divided into eight main chapters, the contents of individual chapters are

summarised below.

Chapter One Chapter one explains the introduction to this research work. It discusses

our motivation for this piece of work and the contribution it has to knowledge. It

also gives a brief outline of the content in individual chapters of the entire thesis.

Chapter Two Chapter two explains the concept of Automated Planning as a branch

of artificial intelligence and how it applies to real-world problems. It gives an

overview of various terminologies in Automated Planning used by different chap-

ters in this thesis. It also gives an insight into what constitutes an automated

planning approach with a detailed explanation of planning language semantics

and their associated planning engines called “planners”. This chapter ends with

an overview of some applications of automated planning in the different field of

knowledge.

Chapter Three This chapter introduces Urban Traffic Control Problem.

Chapter Four This chapter explores the application of AI planning technology to the

problem of Urban Traffic Control(UTC). This application is accomplished by

the creation of a declarative representation of a road network in a town center

area in the United Kingdom. The task is to navigate cars effectively through a
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network of connected roads during an unforeseen situation. As part of this effort,

we embed the knowledge of UTC structure into a planning domain and evaluate

the possibility of reasoning with this knowledge and optimising traffic flow in

situations where a given road within a network of roads becomes unavailable

due to an unexpected situation such as road accidents. From this simulation, we

demonstrate the advantages and shortcomings of using AI Planning in UTC.

Chapter Five This chapter introduces model predictive control as a branch of control

engineering. It explains the strategy and approach of MPC in controlling and

stabilising process control within the field of Engineering. This chapter ends by

comparing the similarities and difference between MPC and AI planning to make

a judgement call for a hybrid solution that incorporate both technologies to solve

problems involving both discrete and continuous state variables.

Chapter six This chapter introduces Urban Traffic Control and the design of a generic

architecture that is aimed at using both AI planning and MPC approach to creating

self-management properties in UTC. In this chapter, the characteristics of a self-

managed system and the need for a certain level of self-management in UTC

is discussed. It explains the design of a generic self-management architecture

which is inspired by Human self-management Nervous System. Our architecture

consists of several blocks. This chapter describes each of the blocks in the context

of the Urban Traffic Control Domain.

Chapter Seven This chapter describes our efforts towards using a Model Predictive

Control (MPC) approach to creating a hybrid planner. It explains an urban traffic

control planning (UTCPLAN) algorithm and implementation, which is aimed at,

integrating a control engineering techniques with automated planning approach to

create a hybrid planning system that can reason with domains containing discrete

and continuous state variables such as found in UTC problems.
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Chapter Eight This is an evaluation chapter that discusses and analyse the result of

our experiments. It also discusses the challenges in this research work.

Chapter Nine This is the concluding chapter of this thesis. It summarises the overall

work that has been accomplished so far and gives the future direction of the next

step in our implementation process.
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Chapter 2

Introduction to Automated Planning

Approach

The ability to reason with the dynamics of life and its environment by creating and im-

plementing plans to solve everyday challenges; is one of the uniqueness of human race.

Embedding this quality of man into artificial entities such as machines, is the founda-

tion of Automated Planning. This makes Automated planning a branch of Artificial

Intelligence, which deals with the problem of finding a sequence or partially ordered

set of actions whose execution leads from an initial state to a state in which a goal

condition is satisfied. Actions in plans are ordered in such a way that executability of

every action is guaranteed within the model [57]. A Planning Problem could consist

of a set of concrete objects, an initial state, a goal condition and available actions that

can be performed in each situation. An initial state is represented by a set of assign-

ments and predicates that are true at the initial state. The predicates and assignment give

the abstraction of the state of the world at any specific time. Fig 2.1 is an example of

predicates and assignment from the tea making environment.A planning problem thus

involves deciding “what” actions to do, and “when” to do them. The “when” part of the

problem refers to “scheduling” [63].
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in(water, kettle) // means water is in the kettle

on(kettle) // means the kettle is switched on

. . .

Figure 2.1: Sample Predicates and Assignment in the Tea Making Environment

(action :switch_off

:parameter [kettle]

:preconditon on(kettle)//means kettle is ON

:effect off(kettle) // means kettle is now OFF

)

Figure 2.2: Sample Action Declaration in the Tea Making Environment

A goal situation is could be represented by a set of relational, logical expressions

or both (assignments and predicates) that are valid at the goal state. Actions, on the

other hand, are the list of operators that changes the state of an environment from one

state to another whenever it precondition is satisfied. Figure 2.2 is an example of action

declaration in the tea making environment is:

A plan is a solution of a given planning problem if and only if every action is ap-

plicable in the given time-stamp (its precondition is fulfilled) and after all action are

executed all expressions specified in the goal situation are satisfied. For example,the

plan to make a cup of tea might include the steps show in Figure 2.3.

The sample plan above shows; the time each line of statement should be exe-

cuted;the actions that should be performed at every step; the objects of those actions

and the time duration for the execution of each line of action.

Time Action Parameter Duration

0:001 Get_Water [water,tap, kettle] 3:00

3:000 Switch_On [Water,kettle] 10:00

3:100 Get_TeaBag [teaBag,cup] 3:00

3:000 Pour_Water [water,cup] 2:00

. . .

Figure 2.3: Sample Plan to Make a Cup of Tea
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Technically, state space of AI planning tasks can be defined as a state-transition

system specified by 4-tuple (S,A,E,γ) where:

• S is a set of states

• A is a set of actions

• E is a set of events

• γ : S× (A∪E)→ 2S is a transition function

A Planning Domain(description of an environment) consists of a set of predicates

and numeric fluents describing the environment and a set of planning operators. One

of the ways of modelling a Planning Operator is to specify via its precondition and

effects. The precondition of a planning operator is represented by a set of relational or

logical expressions or both. Effects are represented by a set of assignments or set of

literals (predicates or their negations) or both. An action on the other hand, is a ground

instance of a planning operator that can modify the environment. Application of an

action a in some state s results in a state in γ(s,a), where γ(s,a) contains set of states.

2.1 Planners

The concept of a planner in the field of Automated planning is similar to a brain box

of a system. It takes in the knowledge of the environment(domain) and the its associ-

ated problems(planning problem) to produce a sequence of solution that would change

a given situation(initial state) to a desirable state(goal state). A planner’s input com-

prises of the planning problem, with initial situation, the potential operators that can be

applied to the problem and some goals state that needs to be met. After going through

the available resource allocated for the task and the corresponding time constraint (if

any, the planner produces the sequence of actions to achieve the goal.
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Some planners work offline, which means they only generate plans and do not re-

ceive any feedback about the execution of the plan nor the state of the environment

where the plan is executed. The generation of a plan is only based on the formal de-

scription of the environment. The state of the system at the time of executing the plan is

assumed to be adequately modeled. Hence, a change in a state prior to plan execution is

not taken into consideration. Thus, the domain model is usually robust enough to take

care of the gaps or differences between the conceptual model and the real world. An

example of offline planning is the generation of a regional advisory plan for traffic op-

erators by a planner to solve an environmental problem using declarative knowledge of

traffic strategies and policies within such environment. In this case, the plan generated

has to be readable and interpretable by the user for decision making (by following the

action sequence in the plan).

However, in a domain where the difference is more than what the planner can handle

(in a non-deterministic environment) then, the planner will need to have constant feed-

back from the effect of its actions on the domain environment. Thus, online planning

is usually employed in this situation. An example of online planning is an intelligent

motion robot that uses AI planning for decision making. Such robot needs to continu-

ally sense, interprete and generate execution plans to change his state and the state of

the world which it finds itself.

2.1.1 Planners Coverage

The coverage of a planner depends on the classes and complexities of problems that can

be solve by the planner. Most planners have the ability to solve varieties of problems

while some are tailored towards specific real world problems. A brief comparison of

planners, based on their coverage area, will be explain in the next section with emphasis

on domain independent planners. This is because most planners are domain indepen-

dent and only few planners are tailored towards specific real world problems. Planner
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coverage area can be categorised into three forms:

1. Domain Specific Planners

2. Domain configurable planners and

3. Domain Independent Planners

Domain Specific Planners These planners are tailored to work in a specific domains

and might not work in other domains unless major modifications are made to the plan-

ning system. The planner in this categories uses specific information and knowledge

from the domain to boost the planner performance and enhance the quality of plans

generated at every instance of time. This is achieved by constraining the reasoning

of the planner to search into a small part of search space. Thus, instead of searching

through all forms of unnecessary states transitions to find a valid plan, the searching is

restricted with the use of domain specific heuristics built into the planner code. These

types of planners are very effective in creating plans for the target domain though, it

might not be useful in any other planning domain; this might require building entirely

another new planner. For instance, a planner designed specifically to solve problems in

an urban traffic control domain cannot be use to solve problem in machine calibration

domain. Example of planning in this category is HSTS [129].

Domain Independent Planners For several year, automated planning has been dom-

inated with research on domain independent planning approach. This was facilitated by

the creation of domain independent planners, show cased at every International Plan-

ning Competitions (IPC) 1. These planners are meant to solve problems in varieties of

domains. Example of planner in this category is LAMA planner [122].

Domain-Configurable Planners In domain reconfigurable planning, the planning

engine is domain independent with some input of domain specific knowledge to guide
1http://ipc.icaps-conference.org
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the search space. This makes it possible for the planner to work effectively in a new

domain by providing additional information of the new domain to the planner function-

ality.
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2.1.2 Planner Coverage Analysis

The above planner coverage could be compared based on three things:(a) Effort to con-

figure the planner for a new domain.(b) Planner performance in a giving domain and (c)

Coverage across many domains.

In terms of the effort needed to configure the planner for a new domain, domain

specific planning requires the most effort to reconfigure for a new domain, because

of the huge effort needed to build a new planner from scratch. Domain-independent

planner on the order hand, do not need to be rebuilt provided the new domain satisfies

all the restrictions of the planner. A domain-configurable planner requires encoding new

domain descriptive information as part of the planning system, but does not need the

creation of an entire new planner from scratch. Hence, domain configurable planners

are somewhere in-between domain specific planners and domain-independent planners.

In practice domain independent planners have large coverage area compare to do-

main specific planner, this is because the later typically works with only one planning

domain. On the other hand, domain specific planners have good and most effective

performance when properly built. This is because, it is easy to encode domain specific

problem directly in the planner.

Domain independent planner has the least level of performance, since it will not

take advantage of any specific property of the domain.

As a result of the above analysis, a domain specific planner is more suitable to solve

urban traffic domain problem and this thesis is a step towards realising that goal. As a

result of the above analysis, a domain specific planner is more suitable to solve urban

traffic domain problem and this thesis is a step towards realising that goal.
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Domain Qualities High Average Low

Planner Performance Domain Specific Domain Configurable Domain Independent
Domain Coverage Area Domain Configurable Domain Independent Domain Specific
Creation Effort Domain Specific Domain Configurable Domain Independent

Figure 2.4: Table of Planner Coverage Analysis

2.2 Planner Algorithms

It is evidenced that even in very simple problems, the number of visible states in a

planning problem could explode and be many orders of magnitude greater than the

number of particles in the universe! Hence, it is impossible in any practical sense to

list all of states in a giving planning problem explicitly. As a result of this, there is

increase in the need for potent implicit representations that depict the necessary subset

of a planning state in a more compact way that can be searched effectively. There arises

several planning algorithms to solve planning problems. Some of the approach used for

solving planning problems includes but not limited to:

• Plan-Space Planning

• Planning Graph

• State-Space Planning

• Problem Translation and

• Combination of Algorithms

Plan-Space Planning

This is a planning algorithm approach, whose nodes are set of partially-instantiated

operators with some constraints. these constraints are increased until a plan is found.

Plan-Space Planning searches through graph of partial plans such that, each node rep-

resents partially specified plans; each arc represents plan refinement operations, and the
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solution is a set of partial-order plans. The idea behind this technique is to plan for a

set of goals g1, ...,gk by having a separate plan for each of the individual goal, while

maintaining various bookkeeping information for detecting and resolving interactions

among the plans for the realization of individual goals. It is a bit slower that some other

approach, but new heuristics are now invented to improve it speed [36].

State-Space Planning

This is the algorithm approach that has been used in some planners that are successful

IPC. Though, its usage in the past had been minimal, because of poor heuristic to guide

the search. A breakthrough was made when it was realized that, heuristic values could

be computed relatively quickly by extracting them from relaxed solutions [34; 87; 147].

In State-Space Planning, the search space is a subset of the state space such that, each

node represents a state of the world; each arc represents a state transition, and the plan

corresponds to the path through the search space. This is the basis of planning algo-

rithms such as Fast Forward [74] planner and now used by most state of the art planners.

Planning Graph

Planning graph is another planning algorithm whose approach is useful in extracting

heuristics for planners. A planning graph is of several levels such that for each n level,

level n includes every action a such that at level n−1, the preconditions of a are satisfied

and do not violate certain kinds of mutual exclusion constraints(mutex) of all the literals

in that level. The literals at level n include the literals at level n−1, plus all the effects

of all additional actions at level n. As a result, the planning graph represents a relaxed

version of the planning problem in which several actions can appear at the same time

even if they conflict with each other. In a planning graph, it is possible to eat your

cake and still have it. This is because, ‘eat your cake’ and ‘having your cake’ could be

included in the same graph expansion level.
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The basic planning graph algorithm is as follows:

For n = 1,2... until a solution is found, create a planning graph of n levels. Do a

backwards state-space search from the goal to try to find a solution plan, but restrict

the search to include only the actions in the planning graph.

Considerable number of planning algorithms had been created out of planning graph [131],

this is due to its ability to compute in a polynomial amount of time (that is, compara-

tively quicker). It seems to run faster than the plan-space planning algorithms. The

efficiency of the backward search is noticeably improved, because of the backward

search restriction to operate within the planning graph.

Problem Translation

This technique involves the conversion of planning problem into another kind of com-

binatorial problem, example is a satisfiability of integer programming, which has an

already existing efficient problem solvers. The translated problem is then solved with

this solvers and the solution found from this solvers (integer programming or satisfia-

bility) is then translated into a plan. One of the major drawback of this approach is the

ability to cope with large domains with enormously large systems of constraints. For

instance, a function with many argument k would generate a collection of atoms of size

exponential to k [126]. However, this technique had led to several satisfiability planners

that could solve complex problems [44; 80; 81; 143].

Planning in Non-deterministic and Probabilistic Domains

Researchers have been able to extend planning techniques to work in nondeterministic

and probabilistic planning domains. Non deterministic planning domain [2] are prob-

lems whose state of the world are not completely known to the planner. This types of

problem shares some similarities with probabilistic planning domain, except that, the

outcomes of a nondeterministic domain might have no probabilities attach to them. In,
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a probabilistic domain, there are multiple possible and valid outcomes in an environ-

ment that is partially observable or non deterministic, the probability of each possible

outcome has to be taken into consideration [86; 138].In this case, the most favourable

outcome has to be selected and considered in every step of the planning process.

Combination of Algorithms

Planning algorithms could be derived from a combination of existing approach. Some

planners use one or more combination of the above algorithms. For example, a state

space planner might use satisfiability approach to optimise numeric fluent and a plan

space planner might employ a Markov decision processes to choose favourable outcome

in a probabilistic domain. A planner(portfolio) might also combine several independent

planners with different algorithms in a single planner for the purpose of solving varieties

of problems [137].

2.3 Planning Modes and Capability

Planning has evolved over the years from the basic simple logical planning(Classical

planning) to the complex stochastic and continuous planning. This means that the abil-

ity of planners to reason with increasingly complex real world problems is a field of

knowledge that is still explored by most researchers in the field of automated planning.

This sections explains the various types and modes of planning platforms with their

associated approach towards problem solving.

2.3.1 Classical Planning

This planning approach [68] involves abstraction of environmental information and

problems into a declarative logical representation model. The abstracted model is meant

to represent the environment without compromising any necessary detail for the envi-

ronment to function effectively. Classical planning has some restrictive assumptions
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which represents the beliefs of the state of the world. Some of the assumption that

could be made for a given system are as follows:

1. Assuming that the system has a finite set of states

2. It is fully observable. This means that, one has complete knowledge about the

state of the system.

3. It is deterministic, which means that every state and event or action is determin-

istic. Whenever an action is applied to a state or event, it makes a deterministic

system transit to another deterministic state or event.

4. It is a closed system. This means there are no exogenous events.

5. The goal state is explicitly specified as a goal state or a set of goal states that

must be attained, irrespective of any constraints on state trajectories, state to be

avoided and utility functions.

6. Solution plans to a planning problem are often linearly ordered sequence of ac-

tions.

Classical planning is the simplest form of AI planning in which the set of events E

is empty and the transition function γ is deterministic (i.e. γ : S×A→ S). The least

of which is the STRIPS approach to planning [53]. STRIPS planning involves finding

a sequence of operators in a space of world models to transform a given initial state

to a goal state where the goal holds. The planner increment the plan with additional

actions trying to create an effective transformation from the initial state to the goal state.

The operation of the STRIP planning is in the form of OP = (pre,del,add), where

‘pre’ means the precondition that needs to be valid immediately before the operator is

applied, ‘add’ and ‘del’ are the set of literals that are added or deleted from the present

state after the operator is executed. The instantiated operator which is being added to
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a plan is called action. However, the expressivity of the STRIPS actions model is very

limited, since it does not allow to abstract knowledge in different levels.

Some desired application for planning and scheduling typically have the following

characteristics: a continuous changing world; multiple agents (both cooperative and ad-

versarial); uncertainty of the state of the world; communication with external sources

(sensors, databases, human users) to get information about the world; overlapping ac-

tions; time constraints and numeric computations involving resources, probabilities,

spatial relationships and geometric. Unfortunately, classical planning does not pos-

sesses any of these characteristics.

2.3.2 Metric Planning

Real world situations often involves quantities and numeric values, whose representa-

tions and manipulations are not depicted in classical planning. The need to express

numeric quantities of entities within a domain representation led to the development of

metric planning. Numeric planning introducing the use of numeric optimisation func-

tion which is stated within the problem descriptions file. For instance, an objective to

minimise travel times can be used in domains where the traveling value is a numeric

variable. An optimisation function could also be in problem file which includes the

special variable “total-time”, representing the total duration of execution (makespan)

for the plan.

One line of approach to metric planning is to represent numeric values in planning

domains as discreet numeric variables. Action can have conditions expressed in terms

of this numeric values and have effect that act upon them. The heuristic guidance for

such scenario can be provided by [74] by introducing an extension to the relax plan-

ning graph(RPG) heuristic [74], the Metric RPG heuristics generates a relaxed plan that

support the computation of problems involving discrete numeric change. This is similar

to RPG by performing- forward searching while ignoring the delete effect of actions.
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However, in this case ignoring decrease effect does not always relax the problem, be-

cause a variable could hold a value more than the given constant in the condition. Thus,

the upper and lower bound on the values of numeric variables are computed and used

during the extension of reachability analysis. A later alternative to the Metric RPG was

proposed by [31] in LPRPG using a linear programming to incrementally capture the

interaction between actions. This approach provides a more accurate heuristic guidance

for metric domains especially in problems where metric resources must be exchanged

for one another in order to complete a solution. The setback with this approach is that,

it is only restricted to action with linear effects compared with Metric-FF [73] which

is a general approach. Though, the optimisation of metric function is a bottle neck

for planners, but some planner still attempt to optimise these functions such as LPG

planner [64].

2.3.3 Temporal Planning

Temporal planning extends classical planning by considering time. Actions have dura-

tive effects which means that executing an action takes some time and effects of the ac-

tion are not instantaneous. Temporal Planning has had several contributions prior to the

introduction of PDDL2.1. The introduction of chronicles [91] by IXTeT pioneered the

use of many temporal representation in planners including single temporal network and

linear constraints. It consists of temporal assertions and constraints over a set of state

variables, and timelines which defines chronicles for single state variables. Timeline

representation also used by some planners that follow a different path of advancement

than that led by the PDDL family [9; 25; 129].
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One line of approach to temporal planning is the use of Temporal Graph Plan(TGP)by [130].

TGP allows constant durations to be attached to actions which require preconditions to

be true for the entire duration of the action. The effect of the actions instantaneously

becomes true at the end of the action execution. The semantics is that, the values of

variables within actions should be observed during the interval of execution of the ac-

tion and plans should be conformant with all the changes in values of these variables

during the action interval. However in TGP, actions are treated as undefined and in-

accessible during the implementation interval. This setback in TGP was solved with

the temporally extended version of Graphplan planning graph to cope with temporal

constraints. A constraint propagation approach was developed to handle the temporal

heuristic effect of this type of planning problem by [70; 141]. Most temporal plan-

ners such as MIPS-XXL [47] still makes use of this restricted TGP semantics through

the exploitation of simplification of PDDL 2.1 encoding known as action compression.

Though applying this compression can leads to incompleteness which could result in

the failure of a planner to solve certain problems [30]. Some planners are able to reason

with the PDDL2.1 ‘start’ and ‘end’ semantics, as opposed to relying on a compression

approach such as VHPOP [149] - a partial-order planner.

SAPA planner [43] is one of the foremost forward-search planners to solve temporal

PDDL2.1 problems. It works by building a priority queue of events. This allows SAPA

to reason with concurrency and to solve certain problems which required concurrency

in execution. This is achieved by queuing the end point of a durative action to a time

in future at which it needs to be executed. Thus, the planner has a choice to start any

new action, but also a special wait action which computes and advances time to the next

entry in the queue, and the resultant action is executed. It also uses multiple integer

programming to optimise plan metrics and sequence. It uses the FF heuristics and

helpful actions to guide search. A drawback with SAPA is the fact that its search space

does not include all necessary overlapping of actions to achieve a complete search.

This is as a result of the waiting time approach for the priority queue, because it is
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hard to determine explicit waiting time if the next interesting time point depends on the

interaction of actions that have not yet even been selected.

The Crikey family on the other hand [30; 32], employed a different approach to

temporal planning compared with SAPA. It uses the relaxed graph plan [74] with an

extension of some guidance from the temporal structure of the plan, to guide a for-

ward search. The planners use a Simple Temporal Network(STN) to model and solve

the temporal constraints between the action end points as they are accumulated during

successive action choices.

The Temporal Fast Downward(TFD) planner [48; 72] uses an approach that is a

slight enhancement of the compressed action model used by TGP, allowing some re-

quired concurrency to be managed. Both TFD and SAPA face the same problem in

situations in which an action must be started sometime after the last happening, but

before the next queued event: neither planner includes this choice in its search space.

There are other temporal planners that use SAT solvers, such as [76], that was

developed using ‘planning-as-SATisfiability’ paradigm. This uses a combination of

Graphplan to SATisfiability approach ‘Graphplan-to-SAT’ encoding. This approach is

especially suitable for problems where an appropriate time increment can be identified.

Most of the temporal planners mention so far is restricted to the computation and man-

agement of discrete changes. Continuous duration changes cannot be handled by these

planners.
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2.3.4 Continuous Planning

Continuous planning extends temporal planning by considering constantly changing

state variables with respect to time. Continuous planning in domains which are repre-

sented with rich notations has long been a great challenge for AI [19]. For instance,

changes occurring due to fuel consumption, continuous movement, or environmental

conditions may not be adequately modelled through instantaneous or even durative ac-

tions; rather these require modelling as continuously changing processes. The combi-

nation of time dependent problems and numeric optimisation problem create a more

challenging and hard task of time-dependent metric fluents.

One of the earlier work that involves planning with continuous processes includes

the Zeno system [113]. In this case, processes are described using differential equations

rather than as continuous update effects, so that simultaneous equations must be consis-

tent with one another rather than accumulating additive effects. McDermotts OPTOP

system [99] is another early planner to handle continuous processes. A forward search

planner that avoids grounding the representation using a unique approach to generate

heuristics(relaxed plan estimates of the number of actions required to achieve the Goal)

from a given state.

TM-LPSAT [145] was built upon the earlier LPSAT [145]. It was the first planner to

implement the PDDL+ Semantics [58] and an addition capability of handling variable

durative actions. This includes durative actions with continuous effects and duration-

dependent end-effects. It uses PDDL+ semantics to compile a collection of SAT formu-

las from a horizon bounded continuous planning problem, together with an associated

set of linear metric constraints over numeric variables. The compiled formulation is

passed to a SAT-based arithmetic constraint solver, LPSAT [4]. The SAT-solver parses

triggered constraints to the LP-solver, if there is no solution the horizon is increased

and the process repeats, otherwise the solution is decoded into a plan. The novelty of

TM-LPSAT lies in the compilation of the PDDL+ semantics and decoding of the SAT
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solver into a plan, since both solvers are well-established systems.

The theory behind TM-LPSAT is very promising with the capability of solving large

class of problem with varied continuous dynamics. However, empirical data suggests

that the planner requires large CPU time to generate plan and unable to solve problems

requiring plans of more than a few steps.

Kongming [94; 95]is another domain dependent continuous planner that solves a

class of control planning problems with continuous dynamics. The language used is

a version of PDDL2.1 extended to enable dynamics to be encoded. It is based on the

building of fact and action layers of flow tubes, using the iterative plan graph structure

of Graphplan algorithm [17]. As the graph is expands, every action produces a flow tube

which contains the valid trajectories as they develop over a period of time. Reachable

states at any time can be computed using the state equations of the system starting

from a feasible region, and applying actions whose preconditions intersect with the

feasible region. Kongming translates a planning problem into Mixed Logical-Quadratic

Program (MLQP) using the plan-graph encoding with the continuous dynamics of the

system. The planners metric objectives function can be defined in terms of quadratic

function of state variable. Time is discretised to support state update within the plan -

successive layers of the graph are separated by a constant and uniform time increment.

UPMurphi is another planner [116] that uses PDDL2.1 to reasons with continuous

processes on a batch chemical process [115]. It alternatively refines a discretisation of

continuous changes until the solution to the discretised problem validates against the

original problem specification. UPMurphi starts by discretising the continuous repre-

sentation of the problem. Specific values within feasible ranges are taken as actions.

Given rise to several version of each actions. The current discretisation is then used

to explicitly construct and explore the state space. Plans are constructed in the form

of planning-as-model-checking paradigm [28] with no heuristic to guide the search.

When a plan is found, it is validated against the original continuous model, using the

plan validator [56]. If it fails to find a plan at one discretisation, it alterate again at a
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finer grained discretisation. Successive refinements lead to ever denser feasible regions,

which might be increasingly complex to construct.

COLIN [33] is a forward-chaining heuristic search planner that uses the temporal

semantics of PDDL2.1 and also capable of reasoning with continuous linear numeric

change. It combines forward chaining search of FF to prune state, with the use of

a Linear Program (LP) to check the consistency of the interacting temporal and nu-

meric constraints at each state. The Temporal Relaxed Planning Graph heuristic of

CRIKEY3 [32] is also extended to support reasoning with continuous change. A mix

integer programming is used for post processes to optimise the timestamps of the ac-

tions in the plan.

There are other approaches to continuous reasoning which might not be listed in

this thesis. An example of such approach is to model continuous resource consumption

and production in terms of uncertainty about the amount consumed or produced [102].

This lead to the construction of a Markov Decision Process (MDP) consisting of hybrid

states.

Automated Planing in continuous process, allows us to model actions, process and

event [58] as part of domain operators. One line of representation of continuous domain

is to use PDDL+ [58], an extension of PDDL2.1 to represent exogenous events and

processes as well as durative actions. It is assumed that an action can causes a discrete

state change which might trigger a continuous process. This process continues over

time until an event is initiated leading into a new state. While in that new state another

action might be taken which could trigger a new process or a new action.
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The following additions extends the class of temporal-metric problems to temporal-

metric-continuous problems:

• a set of linear continuous numeric effects is added to the component of each action

a. This corresponds to the PDDL2.1 effect (increase(v) (∗ # t k)) which denotes

an increases in v at the rate of k per unit of time.

• e f f`n and e f fan may additionally include durative parameter ?duration for both

start or end effects of actions. This denotes the duration of the action, and could

be written as:

〈v,op,w · v+ k · (?duration)+ c〉, such that op ∈ {+=,=,−=},c ,k ∈ κ

where w is a vector of constants and ?duration may have a constrain value that

lie within a range of values, e.g. (?duration > v1) • (?duration 6 v2), for some

numeric variables v1 and v2.

The relationship between time and numbers is more complex in a continuous plan-

ing problem than in temporal-metric problems. The extension to the action component

allows the value of a variable v to depend on the period time elapsed from the beginning

of the continuous effect acting upon it. The second extension the durative effect implies

that, ?duration do not always need to be fixed, since the the value of variables can now

depend on the duration assigned to the action.

2.4 Planning Representation and Language Semantics

There exist planning representation and ontologies for representing problems and do-

main information in a way that is comprehensible to a planner. An instance of this is

the Stanford Research Institute Problem Solver (STRIPS) approach to planning [53].

STRIPS represents a model of the world as an arbitrary collection of first-order predi-

cate calculus formulas. For example ‘girl(rofia)’ means Rofia is a girl.
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Different representations has evolve over time, depending on the nature of the im-

plementation and the type of planner that can interpret the language semantics. For

instance, Object Centered Language(OCLh)is developed for the acquisition of hierar-

chical domains [97][98] . It is based on the idea of engineering a planning domain so

that the universe of potential states of objects can be defined first , before operator defi-

nition. It is object centred because it deals with object and it relationship with dynamic

or static states. Another example is PPDDL [148] (an extension of PDDL) or RDDL

[125] for modelling conformant planning problems.

However, planing Domain Description Language (PDDL) [100] is currently the

dominant language within the planning community for describing planning domains

and problems. This is due to the need to have a uniform language within the plan-

ning community for the creation of benchmarks(domains) in the International Planning

Competition (IPC)1. PDDL is the closest language to the representation used in this

thesis, thus the next section gives an overview of PDDL semantics.

Planning Domain Definition Language (PDDL)

PDDL can be understood as a language, with a lisp like syntax, for describing plan-

ning domain and modelling abstractions of real world problems. It was developed from

STRIPS in 1998 by Drew McDermott with the aim of being a specification of planning

models and later improved upon and show cased at every International Planning Com-

petitions (IPC). It is used due to the need for representation and exchange of domain

model within the planning community [100].

It is also important to know that PDDL has different family of languages such as

PPDDL, RDDL as mention in the previous section. Figure 2.5 shows an example of a

painting domain expressed in PDDL. This domain required two robots to paint five dif-

ferent rooms at different time duration and having some constraint with the paint pots.

They need to get and move all the require painting material with them before painting

1http://ipc.icaps-conference.org
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(:durative-action wet_brush

:parameters

( ?ppot - paintpot ?rob - robot

?bru - paintbrush ?bruc - paint

?potc - paint ?r - room )

:duration

(= ?duration 4)

:condition

(and

(over all(in ?rob ?r))

(over all(rob_hold ?rob ?bru))

(over all(at ?ppot ?r))

(over all(colour ?ppot ?potc))

(at start(colour ?bru ?bruc))

)

:effect

(and

(at start(not(colour ?bru ?bruc)))

(at end(colour ?bru ?potc))

)

)

Figure 2.5: A excerpt of a PDDL painting domain model showing the action to
wet brush with paint

and there is limitation to the number of rooms the paintbrush can paint. The generated

plans for the execution is shown in Figure 2.6. .

Levels of PDDL

An advancement of the STRIPS representation to deal with numeric fluents and tempo-

ral actions can also be represented in PDDL2.1 [57]. PDDL2.1 has different levels with

level 1.0 restricted to propositional models. Level 2.0 introduces numeric fluents, to

create reasoning about numeric values in domains. Though, the use of numeric fluents

at level 2.0 is restricted to basic numeric operations, but it was able to solve some basic

numeric problems compared to level 1.0.
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Time: (ACTION) [action Duration; action Cost]

0.0000: (PICK JOHN BRUSH2 ROOM2)[D:2.0000; C:0.1000]

0.0000: (MOVE ALAN ROOM1 ROOM2) [D:3.0000; C:0.1000]

2.0000: (DIP_BRUSH_IN PAINTBUCKET2 JOHN BRUSH2 WHITE BLUE ROOM2)[D:4.0000; C:0.1000]

3.0000: (PICK ALAN PAINTBUCKET1 ROOM2) [D:2.0000; C:0.1000]

5.0000: (MOVE ALAN ROOM2 ROOM3) [D:3.0000; C:0.1000]

6.0000: (PAINTING JOHN ROOM2 WHITE BLUE BRUSH2 PAINTBUCKET2)D:40.0000; C:0.1000]

8.0000: (DROP ALAN PAINTBUCKET1 ROOM3) [D:2.0000; C:0.1000]

10.0000: (MOVE ALAN ROOM3 ROOM2) [D:3.0000; C:0.1000]

13.0000: (PICK ALAN BRUSH1 ROOM2) [D:2.0000; C:0.1000]

15.0000: (DIP_BRUSH_IN PAINTBUCKET2 ALAN BRUSH1 WHITE BLUE ROOM2)[D:4.0000; C:0.1000]

19.0000: (MOVE ALAN ROOM2 ROOM3) [D:3.0000; C:0.1000]

22.0000: (PAINTING ALAN ROOM3 WHITE BLUE BRUSH1 PAINTBUCKET1)[D:30.0000; C:0.1000]

46.0000: (DIP_BRUSH_IN PAINTBUCKET1 JOHN BRUSH2 BLUE RED ROOM2)[D:4.0000; C:0.1000]

50.0000: (PAINTING JOHN ROOM2 BLUE RED BRUSH2 PAINTBUCKET2)[D:40.0000; C:0.1000]

50.0000: (DROP ALAN BRUSH1 ROOM3) [D:2.0000; C:0.1000]

90.0000: (MOVE JOHN ROOM2 ROOM3) [D:3.0000; C:0.1000]

93.0000: (DROP JOHN BRUSH2 ROOM3) [D:2.0000; C:0.1000]

95.0000: (MOVE JOHN ROOM3 ROOM4) [D:3.0000; C:0.1000]

98.0000: (MOVE JOHN ROOM4 ROOM5) [D:3.0000; C:0.1000]

Solution number: 1

Total time: 0.02

Search time: 0.00

Actions: 19

Execution cost: 1.90

Duration: 101.000

Plan quality: 101.000

Figure 2.6: Painting Plan generated by lpg-td-1.0 planner for two robots painting several
rooms with time and resource constraint
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Level 3.0 captures reasoning with time by introducing durative actions.The problem

is still a tuple 〈A, I,G〉 with a modification to the action declaration. The durative action

defines a model of time to reason with the start and end of actions. The conditions in a

durative actions can be defined to either hold at the start, at the end or for the entire ac-

tion execution(invariants). Fluent are assigned instantaneous values at the initial states

or by an action. This could be definite value, or an increase or decrease by a value; or

the use of basic arithmetic operators (+,−,∗,÷) to modify fluent base on arithmetic

expressions. The durative action imposes a upper and lower bound constraint on the

action operator. The declarative language for the constraint bound is dictated by a nu-

meric expression with a language declaration similar to that of numeric preconditions;

this could be equal in the case of fix durations. This level encompasses the numeric

characteristics of level 2.0 given rise to the challenges of manipulation time and numer-

ics within planning problems. Numeric conditions used in dur, pre `, pre←→, pre a

and G can be expressed in the form:

〈 f (v),op,c〉, such that op ∈ {>,>,=,<,6}, c ∈ κ

where v is a vector of metric fluents in the planning problem, f(v) is a function

applied to the vector of numeric fluents and c is an arbitrary constant.

Also, numeric effects used in e f f ` and e f f a can be expressed as:

〈v,op, f (v)〉, where op ∈ numeric operators such as {∗=,+=,÷=,=,−=}

Each operator comprises of 〈dur, pre `,e f f `, pre←→, pre a,e f f a〉, where:

• pre ` is the start condition of action a at the state in which a starts and pre a is

the end condition of a at the state in which a ends. This two condition must hold

for a in both situation.

34



• e f f ` is the start effects of a at the state in which a starts and e f f a is the end

effect of a at the state in which a ends. Both e f f ` a and e f f a a updates

the world state according to these effects. Thus, a given collection of effects

e f fz,z ∈ {`,a} , consists of:

– e f fz−, propositions to be deleted from the world state

– e f fz+, propositions to be added to the world state

– e f fzn, effects acting upon numeric fluents

• pre←→ is the invariant conditions of a which must hold at every point in the

open interval between the start and end of a.

• dur refer to the special parameter ?duration, which denotes the duration of a. It is

the the duration constraints of a, compute on the basis of the world state in which

a is started, and restraining the length of time that can pass between the start and

end of a.

Level 4.0 PDDL 2.1 expresses linear continuous change of numeric fluents. This

represents a continuous change in numeric value, according to some specified numeric

functions, over the entire period of execution of an action. A differential equation of the

form d p
dt = f (P)+ c, specifies the effects on a variable p where P is the vector of state

numeric variable, f (P) is a mathematical function over these numeric variables, and c

is a constant.
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Level 5.0, also referred to has PDDL+ proposed a realtime temporal model that

includes actions, exogeneous events, and autonomous processes. This is an extension

of level 4.0 with an introduction of process and event operator. This type of problem

has been dealt with by some planners [116; 145], yet this nature of problems is still a

challenge in the planning community especially in complex continuous domains with

multi-modal resources. The input level for the planner implementation in this thesis is

at the level of PDDL+ with few modifications that will be discussed in Chapter 6.

2.5 Automated Planning Applications

Automated planning application cut across several disciplines and different applications

ranging from business and commerce to entertainment entrainment industry. This sec-

tion summaries some of the exiting implementation of Automated planning towards

solving real world problems.

2.5.1 Software Development

In software development, AI planning techniques can now be used to support automatic

generation of evolution paths [8], when developing a theoretical framework to help soft-

ware architects make better decisions when planning software evolution. Goal-driven

automated composition of software components, an important problem with stream pro-

cessing systems is now managed with the use of Hierarchical Task Network (HTN)

planning for the composition of stream processing applications [133].

2.5.2 Space System

The need to maximise resources; optimise constraint and cost of operation have led

NASA and others to utilise AI planning in other to move towards total on-board au-

tonomy [26][22]. Also AI planning was is used to create an automated system that
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support the management of the (Technology Demonstration Payloads )TDP operations

of a spacecraft [121] by coordinating all the different, possibly conflicting, payload op-

erations of the spacecraft. Another recent development in the field of space exploration

systems is the use of AI planning approach to manage the solar arrays that powers the

International Space Station (ISS) [61]. It uses constraint management and automated

planning capabilities to manage the solar arrays that powers the International Space

Station (ISS). This approach automatically generates solar array operations plans by

reasoning about constraints, finding optimal array configurations subject to these con-

straints and solution preferences.

Health Sector

AI planning enables the automatic generation of patient-tailored treatment plans. This

approach uses multiple Computer Interpretable Guidelines (CIG) languages [14; 39]

as a basis for expressing computational knowledge in clinical decision support for the

treatment of patients with specific conditions[51]. Another solution in the health sector

is the use of AI planning to create a planning-based socially intelligent agent that in-

teract and helps children with Autism Spectrum Disorder to acquire and develop some

social communication skills [15].
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2.5.3 Business Management and Commerce

The creation of domain independent planners and execution environment that is suitable

for binding business applications [134] increases the curiosity of researchers to inves-

tigate the use of AI planning to enhance business management. AI planning approach

was later used to generate a working plans in organisation processes by translating the

Business Process Modelling Notation (BPMN) into a model that can automatically ex-

ecute, monitor and optimise planning process and resources, base on the desired plans

[52]. In addition, action base planning language [3] is used to specify a business process

from the banking domain that is representative of an important class of business pro-

cesses of practical relevance, to automatically solve reasoning tasks that arise in specific

business context.

AI planning and scheduling approach is use to help business planners and con-

trollers, in one of the largest limousine cab company in the world, to handle and man-

age fleet while maintaining high quality service. This project helps to maintain effective

and efficient delivery of quality service to customers despite continuous expansion of

resources and constraints[27] within he business. Furthermore, automated planning

is use to optimise control of integrated devices and appliances with the objective of

saving energy while the comfort and productivity of the occupants in an office environ-

ment is preserved [62]. This approach uses simple sensors from the office environment;

process context information from ontology-based occupant activity recognition and an

automated planing system to control appliances. This strategy has a recognising accu-

racy of about 80 percent when tested in an actual living lab. A similar approach used

AI planning to reduce the energy consumption of network systems (servers, network

equipment, air-conditioners, etc.) within an office space [5].
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Web services on, the other hand, have attracted significant interest as a low-cost

and flexible technology alternative for delivery of on-demand business processes, en-

abling intra-organizational systems amalgamation, and in the long term, development

of dynamic inter-organizational process networks that is now transforming electronic

commerce. PORSCE II [71] is an example of an integrated system that uses automated

planning to performs automatic Semantic Web service composition. This is achieved

by dynamically translating the Web service composition problem into a solver-ready

planning domain and problem, the desired composite service solution is obtained from

a domain independent planning system and is translates back to Web service terms.

Another example is the area of tourism is the use of automated planning to customised

tourism preferences in web services application [23][109] and the use of both plan-

ning and constraint programming approaches to compute optimal solutions in problems

involving the designing of personalised museum visits [16].

2.5.4 Education Sector

In order to make the learning process more efficient, attractive and accessible to stu-

dents, customise learning design for student was implemented using AI planning [24].

This helps to create an automated planning and monitoring system that is able to build

up a learning path for a specific student which is adapted to its user profile. Timeline-

based planning is also use in dynamic training environment for crisis managers [37].

This helps a trainer to create and deliver engaging and personalized training lessons for

decision making skills within a crisis management domain.
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Also, an hybrid planning formalism is now used to create a domain independence

assistance which combines a number of planning and interaction components to real-

ize advanced user assistance [13]. This is aimed at assisting users to achieve certain

complex task, such as assisting a user in the assembly of this home theater.

2.5.5 Game

The vitual world of Games have attracted significant interest in the entertainment in-

dustry. An offline planning approach is used to optimise the global plotlines structure

in a role-playing game based on knowledge of players preference [93]. This approach

uses a partial order planning and a hierarchical decomposition of the main plot line

into several quests comprising of a primitive task and associated rewards to achieve

the semantic meaning of the original plot. An adaptive algorithm was created that can

alternatively search using partial order planning to optimise the selection of the pre-

ferred story line by its ability to create, repair and eliminate causal links between plans

(additive and subtractive improvement mechanisms).

2.5.6 Industrial Control

Jana and Daniel where able to use information gotten from a learned lift traffic pat-

tern in a controlled algorithm to prioritise and control the way different floor are served

during lift operation. Thus, destination control NP-Hard online problem [83] was mod-

elled in terms of a planning and scheduling problem as well as a constraint satisfaction

problem [107]. The allocation algorithm was address as combination of static, offline

optimisation problem and a dynamic, online allocation problem. The optimisation met-

ric was based on the combination of waiting and journey times. It was able to augment

a fast forward technique with a depth-first branch and bound search algorithm for the

offline process.
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Planning is also used to generate detailed procedures in industrial manufacturing

processes [124] by which work fragment pieces are converted from the raw material

form to the desired form. The use of AI planning for machine tool calibration was

another burgeoning project that aim at reducing calibration error while reducing the to-

tal time taken for the entire tool calibration process [111]. The performance evaluation

shows that automatically generated plans are faster and more error-free than human gen-

erated plans. This research was later improved to reduce uncertainty of measurement in

machine tool calibrating with the use of state-of-the-art artificial intelligence planning

tools to generate optimal calibration plans that reduces uncertainty of measurement in

machine tool calibration [112].

Similarly, a substantial reduction in the cycle time of remote laser welding for au-

tomotive industrial operation has recently been proposed by introducing a new model

and algorithm for task sequencing [85]. This is achieved by modelling the problem as

a travel sales man and path planning problem; the problem is them solved with a tabu

search algorithm

The use of robotics in industrial control is also supported by AI planning technol-

ogy. An example of robotic in industrial application is the coordination of fleets of

autonomous, non-holonomic vehicles. This multi-robot approach [29], can jointly plan

for multiple vehicles to generates kinematically feasible and deadlock-free motions.

Another contribution is the application of planning to enable task-based social interac-

tion between robot and multiple human agent in a bartending domain [118]; the the aim

of serving different customers irrespective of there preferences.

Another development in the field of power industry is the use of AI planning to

optimise power flow in distribution in power grids. AI planning solves the electricity

network balancing problem which is aim to ensure that the electricity demands of the

consumers are met by the committed supply [119]. This is achieved by using action

planning to find feasible state trajectories in a discrete state space from an initial state

to a state that satisfies the goal condition while allowing the complex numeric changing
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parameters to be handle by an external module(connected to the planning engine).

In the transport sector, AI planning is used for intelligent transportation network.

For instance,multi-agent planning approach is used to implements a decentralized, schedule-

driven traffic signal control [18]. Scalable Urban Traffic Control(SURTRAC) computes

a schedule that optimizes the flow of currently approaching traffic at each intersection

independently (and asynchronously). The resulting schedule is used to decide when to

switch green phases and to indirectly influence the schedule of neighbouring intersec-

tion. This helps to provide real-time responsiveness to changing traffic conditions and

coordinated signal network behaviour. This thesis is also an effort towards applying AI

planning to transport which will be discussed subsequent chapters.

2.6 Summary

This chapter gives an overview of various terminologies in Automated Planning used

by different chapters in this thesis. It explains the concept of Automated Planning as a

branch of artificial intelligence and how it applies to real world problems. This chapter

ends with an overview of some applications of automated planning in different field of

knowledge. The next chapter introduces the basic concept of Urban Traffic Control.
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Chapter 3

Introduction to Urban Traffic Control

The evolution of Urban Traffic Control (UTC) throughout the past century has been a

continued effort to maintain and stabilise the increase in vehicle demand without vio-

lating the ever more complex policy objectives of transport systems. UTC has evolved

since the creation of mobile entities for commuting people and goods with the use of

traffic officers for signalisation, monitoring and control. The first generation of auto-

mated traditional controller uses fixed timing signals to control traffic at junctions. The

second generation of traffic control used historic data to pre-configure traffic timing and

control. The third generations use real traffic data for re-adjusting and choosing traf-

fic signals with the use of detectors for the collections of real traffic data. The fourth

generations were able to compute and manipulate data for forecasting traffic conditions

for the creations of traffic control programs and strategies for optimal control of traf-

fic situation. These trends continue, until the introduction of intelligent traffic control,

which propose the use of artificial intelligent techniques combined with all other ex-

isting traffic approaches for real-time detection; traffic forecasting; traffic signalization

incident detection based on the principle of integrated embedded and control system

engineering [69]. The field of intelligent transport systems (ITS) is now honed in the

twenty-first century with advances in efficiency, quality and manufacturability of sens-

ing and communication systems for traffic control. Efficient UTC system has helped
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3. Introduction to Urban Traffic Control

to reduce congestion, increased economic efficiency and improved road safety and air

quality [69]. Thus, urban Traffic management involves planning, monitoring and con-

trol of traffic flows with the aim of maximizing the effectiveness of the use of traffic

infrastructure; ensuring reliable and safe operation of transport system while address-

ing environmental goals and policy objectives [55; 144].

3.1 Basic Component of Urban Traffic Control System

There are basic components that are fundamental to the implementation of urban traf-

fic control system. These includes Road Traffic Network and Disturbances; Traffic

Control Strategies and Rules; Traffic Operator(human and non-human) and Traffic De-

vices(controllers and sensors). This section gives a brief overview of these components.

3.1.1 Road Traffic Network and Disturbances

A real traffic network contains information about the state of a road traffic environment

at any specific point in time. Changes to the state of a traffic network are under the

influence of various disturbances. Disturbances are factors that affect the normal func-

tioning of a road network. Disturbances could be planned or unplanned. An example of

planned disturbance is a set of road works. This disrupts the normal flow of traffic for

the entire duration of its construction. During such road works, the adjoining route and

intersection signal need to be optimised in other to minimise the effect of road or lane

blockage during the period of the maintenance or upgrade. Unplanned disturbances, on

the other hand, are factors that are not envisaged before there interruption of the traf-

fic network. These factors include but is not limited to road incident and unexpected

change in traffic demand and severe weather conditions.
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3. Introduction to Urban Traffic Control

Figure 3.1: Basic Component of Urban Traffic Control System

3.1.2 Traffic Control Strategies and Rules

Traffic Control Strategies and rules are extracted from the Traffic Management Policy

and Guidance which is one of a series of policy documents that outline how a County

Council manages, maintains and is developing transport infrastructure. Traffic Control

Strategies and rules varies from county to county and changes over a period of time. A

change in this rules could alter the metric and goals of any traffic control system. Traf-

fic Management measures can include on-street parking controls, speed limits, HGV

restrictions, direction signing, traffic calming, movement restrictions and pedestrian

crossing facilities.

3.1.3 Traffic Operator

Controlling road traffic involves directing vehicular and pedestrian traffic within a net-

work of connected roads; around a construction zone; accident or other road disruption.

Thus, the major role of traffic operators is to manage the road network so as to ensure,
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3. Introduction to Urban Traffic Control

as far as possible, the safe and convenient movement of traffic. They also ensure the

safety of emergency response teams, construction workers and the general public. This

could be done manually or through the use of sensing and controlling devices within

the network of roads. The traffic operator is empowered to influence the control of

the entire system whenever there is genuine reason to alter the goal or metric of the

system as a result of policy change. Human-machine interface is the communication

interface between the traffic environment and a human operator. Traffic system allows

the flexibility of being altered by a human operator. Human rules and desires are sub-

ject to changes, thus, the operator is able to influence the operating policy of the system

by changing the goals and metric of the system when the need for changes arises, this

might require re-installation of part or entire traffic component due to such changes.

3.1.4 Traffic Devices

Surveillance and sensing devises are embedded into some road network. Road traffic

monitoring agencies make use of surveillance and sensing devices for retrieving the sta-

tus of road networks. These devices upload the real time data in a format that can be

retrieved and understood by a system or a traffic officer. For example in an urban area,

existing traffic detection technologies includes but not limited to: Video Camera, Induc-

tive Loops, Microwave and Infrared Sensor technology, Magnetic technology, Acous-

tic technology, Radio Frequency technology, Radar technology and Global Positioning

System (GPS).

Control devices are called actuators in classical control terminology. They are em-

bedded into systems to change their performance to a desirable state. Control devices

play vital role in UTC environment ranging from the simple traffic light to the complex

controller box for signal heads. They all help to control and maintain smooth traffic

operation in road network. The control devices change the state of the road network to

desires state and example is the traffic signal heads.
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3.2 Urban Traffic Control Application

There are several applications of artificial intelligence to urban traffic control with the

aim of creating intelligent systems that will optimise the flow of traffic in urban cen-

ters [69]. This section discusses few of the UTC control that are related to our research

interest. This involves the use of different techniques or combination of two of more

techniques involving model predictive control (MPC) to solve traffic problems.

Model Predictive Control is used to control junction-based subsystems within a traf-

fic network [142]. Such that each junction has a different MPC controller that take its

input from both control effect and control input of adjacent subsystems junctions. This

approach makes it possible to handle larger network because of its distributed nature,

thus making it suitable for complex urban networks.

A similar approach uses a rolling horizon for optimisation of traffic-responsive op-

timal signal split taking uncertainty into account [139]. In this case, a traffic control

problem is formulated in a centralized rolling-horizon fashion such that the traffic pre-

diction is influenced by unknown, but bounded demand and queue uncertainty. The

objective function of a constrained minimax optimization formulation is minimised to

obtain the green time combination of the traffic control.

Another application is the uses a generalise Model Predictive Control(MPC) frame-

work to minimize network congestion when applied to both centralized traffic signal

and route guidance systems [89]. The result shows that using a central control scheme

may reduce the congestion inside a network while still achieving better throughput com-

pared to that of other conventional control schemes.

Likewise, similar application also uses dynamic traffic assignment on urban traffic

control problem to show the applicability of traffic models in cases that are an anomaly

to the standard test network of similar research [103].

Model Predictive Control (MPC) framework can help to improve the network effi-

ciency in urban traffic network by formulating signaling split control as an MPC prob-
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lem [146]. This control strategy proof more efficient in relieving traffic congestion of a

whole traffic network when compared to the conventional fixed time control.

Model predictive approach is also used to create a hierarchical control structure that

combines the optimal coordinated model-based ramp metering control strategy AMOC

(Advanced Motorway Optimal Control), with a local feedback ramp metering strategy

ALINEA and a variation of it [84]. The coordinated ramp metering problem is con-

sidered as a finite horizon constrained non-linear discrete-time optimal control problem

with a local feedback regulator based on downstream occupancy or density and flow

measurements. The simulated result shows good promising scalability when tested on

an Amsterdam ring road.

Traffic policy in urban areas can also be controlled with the use of MPC [128]. This

involves the design of a trimodal model of urban traffic consisting of private vehicle,

buses and Bus Rapid Transit (BRT). The approach is based on traffic-responsive Urban

Control (TUC) strategy to present a predictive control model that minimizes a cost

function to control urban traffic.

A customised linear prediction algorithm could be used to estimate future traffic in-

tensities at different intersections within an urban traffic network [106]. A central con-

troller could reduce the congestion level of traffic at such intersection by re-routing the

vehicles and adaptively changing the signaling cycles based on the prediction. This ap-

proach is uses the Vehicular Ad-hoc Network (VANET) architecture with a novel com-

munication scheme to propose a predictive road traffic management system (PRTMS).

Performance improvement was recorded with this approach in terms of total journey

time and waiting time of the vehicles.

Certain traffic control applications are agent-base. Agent-base technology involves

the use of UTC programmes that can act and take decisions on behalf of human traffic

officers. For example, intelligent agents exhibiting some aspect of artificial intelligence

such as reasoning and learning; autonomous agents have the ability to modify their ob-

jective prior to execution; distributed agents could be executed on several distinct sys-
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tems and multi-agent systems had the communication property and cooperation among

several other agents to achieve common objectives [7; 21; 66; 77].

An example of agent application in UTC, is the use of multi-agent planning ap-

proach to implements a decentralized, schedule-driven traffic signal control [132]. Scal-

able Urban Traffic Control(SURTRAC) computes a schedule that optimizes the flow of

currently approaching traffic at each intersection independently (and asynchronously).

The resulting schedule is used to decide when to switch green phases and to indirectly

influence the schedule of neighbouring intersection. This helps to provide real-time re-

sponsiveness to changing traffic conditions and coordinated signal network behaviour.

Despite numerous research on urban traffic control, there are still some challenges

with UTC. The next section discusses some of the problems of UTC.

3.3 Urban Traffic Control Problem

Traffic congestion in urban roads often lead to increase in environmental pollution and

could also leads to a strong degradation of the network infrastructure [110]. However,

the need for efficient and robust integrated network management of urban traffic net-

works is still one of the problems of intelligent transport systems(ITS) [89]. Modelling

and control of metropolitan traffic still remains a complex problem with lots of research

efforts towards solving this problem [41].

Traffic control problem could originate from the design, installation, operation and

control of signals. It could also originate from a fault in comprehensive maintenance

function for a region’s traffic signal network. However, a comprehensive and robust

traffic control strategy would reduce the ripple effect of traffic problems on road users.

Urban Traffic Control should provide high-quality traffic signal control service to

the district and the Highways Agency. Ideally, the following abilities would be incor-

porated into a road traffic control system.

Reduce travel time Car travel time and carbon emission will automatically be min-
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imised when the flow of traffic are optimised irrespective of the road situation.

Give real-time information to Users Variable Massage Signs VMS, are used to influ-

ence the road users decisions while travelling on the road. This is done by the

road monitoring officer to give out road situations and speed variations to road

users. However, this could be done automatically with little or no human inter-

vention by a UTC system. The VMS is part of the entire system and should give

out information based on the processes and constraint faced by its internal com-

ponent. This information can be accessed and use by road users to take decision

while traveling on the road.
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Give priority to some classes of vehicle This is the ability of a UTC system to give

privileged to priority vehicles - such as ambulance, at road junctions.

Save energy Energy consumed by the traffic systems could be optimise at off peak time

such as midnight till down when road usage in inner streets are close to zero. The

ability of a road traffic system to change mode to sleep mode during this period

will go a long way to save energy cost annually. This could be achieved when

there is no vehicle detected on the street for a long period, with reference to the

timing of the day.

Manage accident Accident and car brake down could impair traffic flow for a long

time if the situation is not well managed. An intelligent UTC system can optimise

this situation.

Store Traffic Knowledge An intelligence UTC should be able to store and retrieve the

following:

• The knowledge of existing traffic situations

• Different traffic problem that was encountered and

• Processes and decision that was generated to solve those problems

Adaption and reuse of knowledge from past traffic situation Past knowledge should

be use for accurate and precise future forecast through techniques such as Traffic

Trend Mining.
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3.4 Conclusion

There is a need for a system that can reason with the capabilities of the control assets,

and the situation parameters as sensed by road sensors and generate a set of actions

or decisions that can be taken to alleviate the situation [40; 79]. Therefore, we need

systems that can plan and act effectively in order to restore an unexpected road traffic

situation into a normal order. A significant step towards this is exploiting Automated

Planning techniques that can reason about unforeseen situations in the road network and

come up with plans (sequences of actions) achieving the desired traffic situation. Ac-

cording to Danko and Roozemond , there are three aspects where intelligent traffic con-

trol and management can improve current state of the art traffic controls (TC)systems:

ability to learn and adapt its behaviour from previous situation; ability to communicate

co-operate and turn signal plans and ability to exhibit proactive behaviour, this allows

traffic system to plan ahead prior to execution [123]. This pro-active nature of traffic

control is part of the contribution of this thesis.

3.5 Summary

This chapter gives a brief introduction to Urban Traffic Control, its components, appli-

cation and problems. The next chapter explores the application of AI planning technol-

ogy to problem of Urban Traffic Control(UTC).
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Chapter 4

Applying AI Planning in an Urban

Traffic Domain

This chapter explores the application of AI planning technology to the problem of Ur-

ban Traffic Control(UTC). This is accomplished by the creation of a declarative rep-

resentation of a road network in a town center area in the United Kingdom. The task

is to navigate vehicles effectively through a network of connected roads during an un-

foreseen situation. As part of this effort, we embed the knowledge of UTC structure

into a planning domain and evaluate the possibility of reasoning with this knowledge

and optimising traffic flow in situations where a given road within a network of roads

becomes unavailable due to an unexpected situation such as road accidents.

4.1 The Road Traffic Domain Model

This section describes the design of a Road Traffic Domain Model (RTDM). From the

automated planning perspective, we have to compromise between making RTDM re-

alistic and the computational resources for solving RTDM planning problems. A very

practical RTDM should be able to reason about continuous processes (e.g. cars are

moving on the road continuously), uncertainty (e.g. a driver can decide its route or
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alternative way); and unexpectable events could occur (e.g. traffic accidents). Contin-

uous planning without reasoning about uncertainty is not well developed. On the other

hand, classical planning (the simplest form of planning) is very well developed, how-

ever, not very suitable for RTDM since classical planning does not reason about time

(i.e., Effects of actions are instantaneous). Hence, the reasonable compromise is us-

ing temporal planning that can in addition to classical planning reason about time (i.e.

executing actions takes requires a time frame).

RTDM consists of two main parts – static and dynamic. The static part represents

road network topology, i.e., roads, their capacity, length and junctions connecting the

roads. The dynamic part stands for how many cars are on each road (and where) and

whether the road is operational. The term ’operational’ means that the road is available

and accessible within the road network system. Clearly, the dynamic part is changing

through the time as cars are moving through the road network.

4.1.1 Resources and Constraints

In every system design, there are resources available for execution. These resources

come with associated limitations (constraints) which must be identified and optimised

for effective implementation of the system. In UTC, we are dealing with various re-

sources often limited by constraints. For example, we have road junctions, which can

be understood as bottlenecks of traffic, where we must ensure that cars are not permit-

ted to go through the junction in colliding directions. Also, each road had its capacity,

i.e., the maximum number of cars on it. Situational awareness of the system can be

sustained by various sensors that are placed on roads and intersections.
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Each action has its duration in which is being executed. For instance, the duration

of action for vehicle movement from a head to a tail of the road depends on the road’s

length and the speed of the vehicle.

1. Resources from the component of road traffic system which includes: road inter-

sections, traffic lights, variable message signs, ramp metering and state switching

at the intersection.

2. Resources from road sensors that include: status of roads and intersections, the

capacity of the road and length of queues.

3. Constraints in this model could be further broken down into:

Resource Constraint The execution of an activity, needs certain resources that

must be optimised at every resulting state from, during and after every action

within the domain.

Temporal Constraint Every action have their duration that must be valid within

any within the action in the execution framework. For instance, the duration

of allowed action for vehicle movement is according to the road’s queue

length in relation to the road capacity of neighbouring routes.

Conditions and Effects Constraints Action duration specifies numeric time frame

at which the condition and effect become true. For instance, the action ”RE-

LEASE” would make it possible for a vehicle to move at the start and disable

the movement after a period of time.

4. System functions Ability to switch between allowing and stopping of vehicles on

the road, while maintaining good traffic flow and minimising travel times. They

should satisfy all the preconditions necessary to change the status of the road and

the after effect based on the available resources.
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Figure 4.1: Map showing the network entry and exit points and the blocked roads in a
part of town center of Hudderfield, West Yorkshire, United Kingdom. It is used for our
empirical analysis.
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4.1.2 RTDM Specification

This section shows the RTDM specification(originally derived in [79]). A Road Net-

work can be represented by a directed graph, where edges stand for roads and vertices

stand for either junctions, entry or exit points. Entry points are places where cars en-

ter the network while exit points are places where cars exit the network. At junctions,

we must take into account the fact that, in some directions, cars cannot go through the

junction simultaneously. Hence, we have to specify sets of mutually exclusive (mutex)

directions by which cars cannot pass through the junction simultaneously. Every road

has its length (determining how long it takes for a car to through it) and capacity (i.e. a

maximum number of cars it can serve). The network model is enhanced by considering

time intervals when a road is not operational (e.g. closed due to an accident).

Let (V,E) be a directed graph such that ∀v ∈ V : (indeg(v) = 0⇒ outdeg(v) =

1)∧ (outdeg(v) = 0⇒ indeg(v) = 1). Edges in E represent one-way (or one direction

of two-way) roads. A vertex v ∈V represents:

• entry point if indeg(v) = 0

• exit point if outdeg(v) = 0

• junction otherwise

Let M = {M1, . . . ,Mn} be a set of sets of conflicting ways such that Mi is defined as a

set of triples in form (eix ,vi,eiy) such that a junction vi is a tail of eix and a head of eiy .

Let C : E → N be a function representing road capacity and l : E → R be a function

representing road length.

Let O be a mapping from edges (E) to sets of time intervals representing operationality

of the road. Then N = 〈V,E,M,C, l,O〉 is a Road Network.
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Given the definition of the Road Network, which gives us constraints referring to

a static part of the environment, we have to specify a dynamic part of the environment

which is related to traffic. We define a function use : E × T → N0 which refers to a

number of cars on the road in a given time-stamp. Clearly, it must hold that ∀t ∈ T,r ∈

E : use(r, t) ≤ C(r). It is also necessary to distinguish whether cars are on the head

or the tail of the road. For this purpose we define functions head and tail such that

head : E×T → N0 and tail : E×T → N0.

An RTDM Planning Problem addresses the problem of effective navigation of cars

through a given Road Network from entry points to exit points. To achieve this, we

have to take two types of decisions, i.e., which way cars should take and when traffic

lights should be set to green or red. Initially, it is given the number of cars at each entry

point and frequency of their releasing. This can be represented by a set time-stamps in

which the entry points are ‘opened’. The goal situation is determined by numbers of

cars in exit points while minimising ‘makespan’, the time needed to navigate all the cars

through the road network. In our model we consider four planning operators which are

defined as follows. Note that ∆t stands for operator’s execution time which might differ

for different operators’ instances (e.g driving through different roads may take different

amount of time).

• In a given time-stamp t, an operator release-cars(r,n, t) releases n cars to the

head of the road r ∈ E if r is an outgoing edge from a given entry point and

∀t ′ ∈ 〈t; t +∆t) : C(r)≥ use(r, t ′)+n and r is operational in t ′. The effect of this

operator is that use(r, t +∆t) = use(r, t)+n and head(r, t +∆t) = head(r, t)+n.

58



• An operator drive-through-junction(r1,v,r2,n, t) navigates n cars from the road

r1 ∈ E through the junction v ∈ V to the road r2 ∈ E if tail(r1, t) ≥ n, ∀t ′ ∈

〈t; t +∆t) : C(r2) ≥ use(r2, t ′)+ n, r2 is operational in t ′ and no instance of op-

erator drive-through-junction(rx,v,ry,nx, tx) is executed such that tx ∈ 〈t, t +∆t〉

and 6 ∃M ∈ M : {(r1,v,r2),(rx,v,ry)} ⊆ M. The effect of this operator is that

tail(r1, t)= tail(r1, t)−n, head(r2, t+∆t)= head(r2, t)+n, use(r1, t)= use(r1, t)−

n and use(r2, t) = use(r2, t)+n.

• An operator drive(r,n, t) moves n cars from a head of r to its tail in a time-stamp t.

That is if head(r, t)≥ n, then head(r, t +∆t) = head(r, t)−n and tail(r, t +∆t) =

tail(r, t)+n.

• An operator exit-cars(r,n, t) allows n cars to leave the network in a given exit

point (r is an incoming edge to the exit point) in a time-stamp t. If tail(r, t)≥ n,

then tail(r, t +∆t) = tail(r, t)−n.

4.1.3 Modeling RTDM in PDDL

Modeling an RTDM problem in PDDL(explained in Chapter 2.0) holds several chal-

lenges. The most critical of these is that in real-world drivers have true agency and

are therefore not strictly under our control. Thus, in a real world scenario, we propose

the use of variable message signs(VMS) with strict traffic signal head control. This

VMS should be connected to the planner so that the re-direction and traffic calming

and metering can be uploaded and communicated from the planner to road users in real

time. The control plan should also be used to switch signal heads(an assembly of one

or more signal faces) in other to enable or disable the flow of traffic for desired optimal

operation.
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(:durative-action DRIVE

:parameters (?r - road ?n - num)

:duration (= ?duration (length ?r))

:condition

(and

(at start (>= (head ?r) (val ?n)))

(over all (operational ?r)

)

:effect

(and

(at start (decrease (head ?r) (val ?n)))

(at end (increase (tail ?r) (val ?n)))

)

)

Figure 4.2: The PDDL encodings of the drive planning operator.

This in turns influence and control the decision of drivers to a large extent. The flow

of traffic is, therefore, best modelled as a complex hybrid process. However, this process

is difficult to define and would lead to a problem too challenging for contemporary

temporal planners. The next chapter explained how we resolve this problem using our

continuous planner.

For our purpose, we have used PDDL 2.1 [57] since it encapsulates features needed

for representing temporal planning domains and problems. The environment of RTDM

is modelled by using predicates or fluents. Predicates refer to relations between objects,

for example, if a predicate (operational r1) is present in some state, then in this state the

road r1 is operational, otherwise not. Fluents can operate with more (numerical) values,

for instance, a fluent (use r1) represents a current use of the road r1 which is in a range

〈0,C(r1)〉.

Figure 4.2 depicts the planning operator drive (in PDDL 2.1 planning operators

are called ‘durative actions’). Time-stamps in which the operator can be executed are

not explicitly modelled as operator’s parameter in PDDL, only duration of operator’s

execution is defined :duration (= ?duration (length ?r)).
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Time-stamps are, therefore, modelled relatively. Given the notation from the pre-

vious subsection, i.e., the operator is executed in a time-stamp t and the duration of

its execution is ∆t, at start refers to t, at end refers to t +∆ and over all refers to the

interval 〈t, t +∆t〉 (note that over all can be only used for preconditions). To keep the

consistency of the environment we cannot apply effects at the same time the precondi-

tion is being checked (e.g. apply (at start (decrease (head ?r) (val ?n))) at the same

time when (at start (>= (head ?r) (val ?n))) is being checked). This issue is handled

by applying the effect just after the precondition has been checked, so for a very small

ε the effects are applied in t + ε (at start) or in t +∆t + ε (at end). Another issue in

PDDL 2.1 is impossibility to have a numeric parameter (all the parameters must be ob-

ject types). This issue can be handled by introducing a special object type num and a

fluent (val ?n) which maps a numerical values to num objects.

In all considered models, the goal of the planning problem is to route a certain num-

ber of vehicles through the network to the exit points, while minimising the makespan

of the plan irrespective of any disruption in the network of connected roads.

A typical RTDM problem requires a method of releasing cars at the entry points at

given (periodic) time-stamps. Releasing cars can be understood as an event. However,

events are not supported in PDDL 2.1. Releasing cars by the operator release-cars is

executed at any time when its precondition is met. This issue can be overcome by using

timed initial literals which is a feature supported by PDDL 2.1. We introduce a fluent

(ready ?x) for each entry point, representing the number of cars that are ready to enter

the road network.

Therefore, several statements of the form:

(at 0 (= (ready a) 5))

(at 10 (= (ready a) 5))

....

can be added to the initial state.
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We believe that this is an attractive approach as it ensures the flow of traffic into the

system in a more realistic way rather than simply adding all vehicles at time 0. Also,

we might use timed initial literals for defining temporary road blockages.

Unfortunately, the use of fluent assignments in timed initial literals is not supported

in PDDL (or at least by the planners we experimented with), and so another approach

was necessary. We use the unary predicate ready to denote that an entry point is ready

to release cars with the duration of a RELEASE-CARS action, this is deleted to ensure

that only a single instance of the ground action can be executed at any one time. At

the end of the action, the entry point is set to ready again. The duration is set to the

amount of time successive waves of vehicles can enter the network. Therefore, several

statements of the form:

. . . .

(ready a)

(at 0.1 (not (ready a)))

(at 10.0 (ready a))

(at 10.1 (not (ready a)))

(at 20.0 (ready a))

. . .

A weakness of this approach is that a planner is free to schedule RELEASE-CARS

actions as far apart as it chooses. In this respect, the domain does not adequately model

the fact that the vehicles should enter the network at regular intervals, regardless of

when the planner chooses to release them. We do not know of a remedy to this situation

other than the use of timed initial literals; and as previously discussed, this proves im-

practical with current planners. Pragmatically this problem is reduced by the fact that

for the makespan to be optimized it is sensible to release the cars as early as possible.
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Prob.no. Blockages
Crikey Optic

runtime makespan runtime makespan
1 No 0.16 156 0.19 53
1 Yes 0.14 156 0.16 64
2 No 1.22 122 0.35 43
2 Yes 1.28 170 0.40 52
3 No 36.84 299 1.79 57
3 Yes 51.52 446 1.54 70

Table 4.1: Our experimental results showing planners’ performance in given settings.
Runtime (in seconds) stands for a time needed by a planner to produce a plan. Makespan
stands for a duration in which the plan can be executed.

4.2 Evaluation

For evaluation purposes, we selected known planning engines Crikey [32], Optic [12]

and LPG-td [64] which are capable of handling PDDL 2.1 features (including timed

initial literals). LPG-td, however, is not very useful for our problem for two reasons.

Firstly, it does not successfully complete preprocessing when the problem has more

than a few objects (e.g. roads). Secondly, it cannot handle well concurrency from

actions sharing some fluent(s), i.e., actions having the same fluent in their descriptions

are never considered as concurrent.

The experimental setting consists of several ‘specific’ problems that are defined on

the top of the road network depicted in Figure 4.1. Uncertainty is not considered in our

experiments. Problem 1 addresses the problem of navigating five cars from Lord Street

(bottom right corner of the map) to Wood Street (upper part of the map). Problem 2

addresses the problem navigating cars (two at each entry point) through the network

such that they are evenly distributed in the south, north and east exit points (individual

vehicles are not distinguished). Problem 3 has the same settings as but has five cars at

each entry point. Problems 1-3 are considered in two different variants, i.e., without

blockages and with blockages. Experiments were run on Intel Core i7 2.9GHz, 5GB

RAM, Ubuntu 12.04.1 LTS.
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4.3 Result

Table 8.1 shows the results of the preliminary experimental settings using the Crikey

and Optic planners. We can observe that Optic clearly outperforms Crikey in both

criteria - makespan (a time needed for executing the plan) and runtime (a time needed

by a planner to provide a plan). Moreover, Optic is an incremental planner, i.e., after

finding a plan it searches for a better one (with lower makespan) until a given time limit

is reached.

The results of Optic are very promising given the fact that plans have been re-

trieved in a very reasonable time (at worst slightly above one second), and their quality

(makespan) is satisfactory. Cars can be therefore navigated reasonably through the road

network even in case of some unexpected event that could lead to road blockage. Also,

given the fact that in a real-world environment, cars are entering the road network con-

tinuously, which we have not been able to model reasonably (it is discussed later), good

quality of plans (regarding makespan) can somehow ensure that the traffic flow remains

continuous and roads will not become congested.

A plan depicted in Appendix 3, a solution of Problem 1 (no blockage), generated

by the Optic planner, shows some interesting aspects. Firstly, despite going from the

same entry point to the same exit point cars are split during the way such that some cars

are navigated through Northumberland Street (e1) and some cars are navigated through

St. Peter Street (v2). This might be useful when some unexpected event occurs (e.g.

an accident on St. Peter Street) and there is no time to redirect traffic. Secondly, the

Optic planner is not much able to consider more than one car in a single action (nn1)

even though it is possible. This is a shortcoming because it does not lead to optimal

(or very nearly optimal) solutions. Such a plan, when executed, allows one car to go

through the junction, and then the other cars have to wait until that car drives through

to the connected road. This approach is quite counter-intuitive and consequently to this

plans are not optimal.
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Another observation is that both Crikey and Optic do not handle timed-initial literals

well. For example, if a road is blocked only for a given time interval, then the planners

conclude that there does not exist a solution despite the fact that a solution exists for the

same problem whenever it is blocked for the entire planning duration.

4.4 Challenges

The PDDL domain model does not allow the explicit modelling of complex resource

consumptions that are specific to UTC environment. The planners also loop endlessness

without generating a plan, whenever an attempt is made to specify explicitly most of

the resource constraint in the domain description. Also, the planners fail to produce

a plan whenever the numeric fluents within the domain description are increased to

higher values of real world traffic scenarios. For example, changing (q = 2,5,10, ...) to

(q = 20,50,300, ...) where q = queuelenght of cars on roads in meters.

These setbacks show that using state-of-the-art domain-independent planning en-

gines does not lead to optimal solutions even in quite simple cases. Also, planners’

performance significantly decrease on larger road networks. On the other hand, de-

veloping a domain-dependent planner specifically tailored to RTDM might overcome

(some of) these issues.

4.5 Conclusion

In summary, embedding planning component into the UTC might be beneficial since

it enables (centralised) reasoning in a given area which, for instance, can more easily

overcome non-standard situation (e.g. road blockage after an accident). Our results

show that the makespan of the plans (given by the Optic planner) did not increase much

even though some roads were blocked. Minimising makespan, which is a goal of any

UTC system, will help to reduce road congestion and pollution in the environment.
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4.6 Summary

This chapter explores the application of AI planning technology to problem of Urban

Traffic Control(UTC) system. This is accomplished by the creation of a declarative

representation of a road network in a town center area in the United Kingdom. The

task is to navigate cars effectively through a network of connected roads during an

unforeseen situation. As part of this effort, we embed the knowledge of UTC structure

into a planning domain and evaluate the possibility of reasoning with this knowledge

and optimising traffic flow in situations where a given road within a network of roads

becomes unavailable due to an unexpected situation such as road accidents.
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Chapter 5

Introduction to Model Predictive

Control

This chapter introduces model predictive control as a branch of control engineering.

It explains the strategy and approach of MPC in controlling and stabilising process

control within the field of Engineering. This chapter ends by comparing the similarities

and difference between MPC and AI planning to make a judgement call for a hybrid

solution that incorporate both technologies to solve problems involving both discrete

and continuous state variables.

5.1 Introduction to Model Predictive Control

Control engineering is a field of knowledge within the engineering discipline; that ap-

plies control theory to design and implement systems with desired behaviors. Predictive

controls are a branch of controls engineering that are used in adapting and forecasting

the future trend of control processes in other to manipulates it inputs for a desirable re-

sult in a future time. There exist different types of predictive controls, for example, the

Receding Horizon Predictive Control(RHC); the Generalised Predictive Control (GPC)

and the Model Predictive Controls (MPC).
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5. Introduction to Model Predictive Control from AI Planning Perspective

MPC has attracted notable attention in the control of dynamic systems and has

gained a significant role in the control practice [140]. MPC was developed in the indus-

trial area has an alternative algorithm control to the conventional Proportional Integrate

Derivative [11](PID) controls. MPC formulation integrates optimal control, stochastic

control, control of processes with dead time, multi-variable control and future refer-

ences when available [20].

There are various MPC algorithms, they differ in the way they represent the model

of the process, disturbance and the cost function to be minimised. Its algorithm has been

constantly improved and refined to increase its robustness for real-time processes [1;

50; 135; 140]. Some of the well-known algorithms include: Dynamic Matrix Control;

Model Algorithmic Control; Predictive Functional Control; Extended Prediction Self-

Adaptive Control; Extended Horizon Adaptive Control and General Predictive Control.

It has been implemented in varieties of application processes ranging from pro-

duction planning [92]; industrial production [136] and supply chain [117];Intelligent

Transport Systems [90]; agriculture [6] and robot manipulation in path planning [38;

45; 49; 82]. MPC is suitable for most control problems, however it displays its main

strength when applied to problem involving:

• A large number of manipulated and controlled variables

• Constraints imposed on both manipulated and controlled variables

• Change in control objectives or system failure(sensors, actuators)

• Time delay

5.1.1 MPC approach

The mathematical model of controlled process, as well as the assumed disturbances that

might occur during its operation, is built based on the past experience of operation and

past data from similar operations within the same system. A cost function is derived
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5. Introduction to Model Predictive Control from AI Planning Perspective

from the available resources and constraints that need to be optimised for the entire

duration of the process. The system uses the pre-defined model as a guide to maximise

the cost function, given: a set of varying input parameters, output parameters and the

dynamic changes in the state of the environment. The system plan over a period of

time in the future, which is known as the horizon. The generated plan is applied to

the system to control the process by changing it current state to a desirable state for a

given period of time. The new state is sampled again. It re-plans for another horizon

taking the present state from the feedback loop as well as all the system constraints into

consideration. This approach of planning is called, ”receding horizon”. This planning

and re-planning approach makes MPC robust and able to keep a control process in a

desirable state for an extended period of time. It also allows it to function in a partially

observable environment, because of its ability to sample dynamic environment at every

sampling time during a re-plan.

5.1.2 MPC Concepts and Terminologies

MPC is used to predict the future behaviour of processes or output of a system over

a period of time in the future. This is achieved by computing the future input param-

eters at each step while minimising a cost function under disparity constraints on the

manipulated controls and controlled variable. MPC applies only the first set of control

variables on the controlled system and repeats the previous step with new measured

parameters [140].
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Basically, an MPC strategy entails three main steps:

Past Make use of past data to model a system

Future Predict the impact of future control event with the help of the model

Present Select and perform the control action that is expected to yield the best long-

term outcome.

MPC Elements MPC is basically composed of three elements

• The Predictive Model

• The Objective function

• The Control Law

The Predictive Model

The prediction Model comprises of a model of the process under consideration, a model

of the possible disturbance that could affect the process, the Free and Forced Response

or both. MPC model formulations involve the combination of different methodologies

with the use of varieties of models for the specific control process. Some of the ap-

proaches that can be employed during modeling of a control process include:

• Impulse response

• Step response

• Transfer function

• State space

• Others
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5. Introduction to Model Predictive Control from AI Planning Perspective

The Truncated Impulse Response Model measures the output whenever the process

is excited with an impulse from the input. It allows complex dynamics such as non-

minimal phase to be described, and the identification process simplified with no need

for prior information about the process. For instance, given an impulse response whose

output is related to the input by: y(t) =
∞

∑
i=1

hiu(t − i) where hi is the sampled output

when the process is excited by an impulse.

Then the prediction might be: ŷ(t + k|t) =
N
∑

i=1
hiu(t + k− i|t)

Closely related to impulse response is the Step response model which measures the

output when input is stepped. The step response share both advantages and disadvan-

tages with impulse response. For a given stable system, the truncated response could

be given by : y(t) = y0 +
∞

∑
i=1

gi∆u(t− i) where gi are the sampled output value for the

stepped input and ∆u is the change in input values written as ∆u = u(t)−u(t−1)

The prediction could be : ŷ(t + k|t) =
N
∑

i=1
gi∆u(t + k− i|t)

The Transfer Function model, on the other hand, requires only a small parameter

and is valid for all kind of processes; a prior knowledge of the process is essential in

this case though it has an advantage of the fact that it only needs a few parameters.

The State-Space Model uses current information about the state variable represen-

tation at a given time to predict ahead the future control input and output of the system.

It is also utilised in some formulations for describing multivariable processes.
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For instance, a single-input-single-output system can be described by:

x(k+1) = Ax(k)+Bu(k) and y(k) = Cx(k) where u is the manipulated variable or

input variable; y is the process output and x is the state variable; A, B are input matrix

of the system and C is the output matrix of the system with the assumption that there is

no disturbance in the system.

The prediction of the system output trajectory could be :

~y = P̄x(k)+ H̄~u

where

~y = [y(k)T y(k+1)T ...y(k+N−1)T ]T and

~u = [u(k)T u(k+1)T ...u(k+N−1)T ]T

MPC Models can also be represented by a non-linear model, neural network and

fuzzy logic in some applications.

The Objective Function

The objective function is the generation of a criterion for an optimiser to predict the

next future input to a control system. It comprises of the constraints of the system; the

system parameter and the reference trajectory(goal condition). The objective function

generates the required cost function for obtaining the control law.

The Control Law

An MPC control law is a control plan that needs to be executed by the controlled system

to keep the system in a desirable state. The process of obtaining the control law is

achieved by differencing the actual performance to the expected performance(using the

objective function) to obtain the future errors. The optimizer calculates next sequence

of input actions taking into consideration the future tracking error, the cost function and

the constraints. The optimiser provides the control action which it an important factor

in any MPC strategy.
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5.1.3 MPC Strategy and Structure

A process model is used to predict the future output for a determined prediction horizon

L at each instance of time t. This predicted output ŷ(t + k|t) indicate the value of the

variable at the instance t + k calculated at instance of time t for k = 1, ...,L. The pre-

dicted output depends on the known values up to instance of time t which includes the

previous input and output values and on the future control input values u(t+k|t), k = 0,

. . ., L− 1. The process is kept as close as possible to the reference trajectory w. The

reference trajectory is usually a set point or an approximation of a set point that needs

to be maintained for an optimal performance of the process. The reference trajectory is

a goal condition that has to be achieved and maintained over a period of time.

This is achieved by using some defined criterion to create a future control plan that

helps to keep the process closed to the fixed reference trajectory. The control criterion

is usually the error between the predicted output plan and the reference trajectory. This

error is included in the objective function and used as part of the input to the optimiser

to generate future input u(t + k|t) to the model. This loop sequence of activities is

repeated within the control loop of Figure 5.1 while Figure 5.2 illustrates the structure

for the implementation of this strategy.

For instance, a general model could be derived from a sample process model:

y(t)+a1y(t− k)+ ...+any(t−nk) = b1u(t− k)+b2u(t−2k)+ ...+bn(t−nk)

Where u is the input to controller, y is process output, and k is the time interval. This

sample general equation relates previous process output y(t − k) and previous controller

input u(t − k). This equation is often derived from knowledge of specific systems in

control engineering. It can sometime be created from past experimental data. At time t,

total previous behavior yp becomes: yp = f (y(t),y(t− k), ...,u(t− k),u(t−2k), ...)

While the future output process y f can be predicted using present control u(t) and

future input control u(t + k): y f = f (u(t),u(t−h), ...,u(t +Nk))
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Figure 5.1: Model Predictive Control Feedback Loop

Both y f and yp could be created from experimental data, but are usually derived

from explicit equations related to a given system. Any irregularities from the expected

system behaviour yd produce an error function e(t) which could be computed as: e(t) =

(y(t) − yd(t)) for a change in control actions ∆u(t) = u(t) − u(t − k)).

The objective function J to be minimized could be in the form of: J(u(t),u(t −

k), ...,u(t + kh)) =
t+N
∑

k=1
e(t +hk)2 +ρ(∆u(t +(h−1)k))2

The first set of the control inputs that minimize the above objective function can be

applied to the system by the controller over the time interval and the process is repeated.

It should be noted that the control input function F could also be determined implic-

itly by optimization. u(t) = F(y(t),y(t−k), ...y(t−nk),u(t−k),y(t−2k), ...,u(t−nk))
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Figure 5.2: Graph to Depict the Structure of an MPC
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Figure 5.3: Representation of urban roads using links and junctions

5.2 Sample MPC Model Analysis

Traffic flow models are of three distinguished types: macroscopic model; microscopic

model and mesoscopic model. A detailed overview of existing traffic models could

be found in [75]. Macroscopic models is considered in this analysis through the use

of aggregated variables to describe traffic flows [67]. Macroscopic models are suited

well for online control such that, the prediction will be implemented online in a traffic

optimization operation. A store-and-forward traffic flow model is used to formulate a

state-base MPC model, this enables a mathematical description of the traffic flow, using

state space method. store-and-forward traffic flow model was developed in 1963 by of

Gazis and Potts with the hope of getting a balanced trade-off between control accuracy

and computational efforts. The next subsections show the store-and-forward flow model

that depict the urban traffic control model.

5.2.1 Store-and-forward modeling

Roads networks can be described as sets of links z ∈ Z and junctions j ∈ J as shown in

Fig 5.3. There are sets of incoming links I j and outgoing links OJ in each signalized
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junction j. Fig 5.3 depicts a sample urban roads with two neighboring junctions M and

N ,where z ∈ IN and and z ∈ OM. The remaining essential variables are:

xz(k) number of vehicles in link z, this refers to the length of queue at step k ,which

implies the state variable

g j,i the green time of stage i at junction j , this is the control input

Sz saturation flow of link Z

tw,z turning rate towards link Z from the links w that enter junction M

C j cycle time of junction j

T discrete time step, this is the control interval

vz the set of stages where link z has right of way

k discrete time index, k = 0,1,2...

j the junction identifier

i the stage identifier

Assuming that the cycle times C j for all junctions j ∈ J are equal and fixed, namely C j =

C. The dynamics of link z can therefore be represented by the conservation equation:

xz(k+1) = xz(k)+T [(1− τz) ∑
w∈IM

Sw ∑
i∈vw

gM,i(k)

C
−

Sz ∑
i∈vz

gN, j(k)

C
] (5.1)

Saturation flow Sz gives the outflow capacity of each link z ∈ Z during its green time.

Assuming the exit rates τz are known. Sz is also assumed to be known and constant, this

could be calculated by another approach or using a standard value. Turning rates tw,z of

w ∈ I j and z ∈ O j, are also set using a statistical value or estimated in real-time.
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Assuming T = C while replacing the second and third term with some simplified

variables, equation 5.1 can be described as:

xz(k+1) = xz(k)+T [pz(k)−qz(k)+dz(k)− ez(k)] (5.2)

where pz(k) are the inflow to link z and qz(k) are the outflow from link z, in the

sample time [kT,(k+ l)T ]; dz(k) and ez(k) are the demand and the exit flow in the link

z, respectively. The exit flow ez(k) can be estimated by sz(k) = τz pz(k). The outflow

can be represented by:

qz(k) =
Sz ∑

i∈vz

gN,i(k)

C
(5.3)

The modeled flow does not consider red-green switching in a cycle to reduce com-

putational efforts. However, the flow is an average of real flow for each period.

Given a linear scalar equation for describing a given link as shown in equation 5.1.

Organising all interconnected conservation equations for each link in a state space form,

a state space model defining a whole traffic network would be given by:

x(k+1) = x(k)+Bg(k)+d(k) (5.4)

where x(k) is the state vector representing numbers of vehicles in each link(queue

lenght); B is a constant coefficient matrix of proper dimensions representing the net-

work characteristics, such as topology and turning rates; g(k) is the control vector rep-

resenting all green time settings and d(k) is the disturbance within the network.
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Figure 5.4: Applying MPC to UTC structure

5.2.2 MPC Constraints Example on UTC Model

Given a UTC traffic model, there are some constraints that have to be considered. The

constraints are formulated from the store-and-forward model discussed in the previous

section

5.2.3 Non-negative control constraints

The number of vehicles that moves through link z at time k is a non-negative num-

ber.Given Thus, the green duration for a direction at an intersection is between a traffic

light cycle:

g j,i ≥ g j,min,∀i ∈ J (5.5)
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5.2.4 Traffic Light Cycle Constraints

The constraint of control input which is the green time holds at junction j in stage i :

The queues on a link are subjected to the length of a link between two junctions:

N j

∑
i=I

g j,i(k)≤C−L j,∀ j ∈ J (5.6)

where N j is the number of stages at junction j . L j is the fixed lost time at junction j.

5.2.5 Green Duration Constraints

The upper and lower bounds of green time is given by:

g j,min ≤ g j,i ≤ g j,max,∀ j ∈ J (5.7)

where g j,min and g j,max, represents the minimum and maximum permissible time at

junction j respectively, to set enough green time for other phases at the junction, such

as the pedestrian phase.

5.2.6 Flow Conflict Constraints

Two links may collide at an intersection. In this case, at most one link may be active at

a time.

5.2.7 Non Negative Queue Constraints

The queues on a link are subjected to the length of a link between two junctions:

0≤ xz ≤ xz,max,∀z ∈ Z (5.8)

Where xz,max is the maximum admissible numbers of the vehicles in link z. This

limitation helps to avoid over saturation of a link in rush hours. It also makes sure that
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the value of a queue length on a road is non-negative during the computation of control

input.

5.2.8 Capacity Constraints

The capacity of a link must not be exceeded. Thus, the number of leaving vehicles of

any link will be limited by the state and capacity of the downstream link.

5.2.9 The Objective Function

The objective of this MPC formulation is to reduce the number of vehicles waiting

in line at a junction. This is evaluated in Chapter 8. as the total time it requires for

our planner to exit the vehicles waiting at individual connected junctions in the the

network. Thus, to minimise the number of vehicles in queues, a quadratic costs function

satisfying 5.4, 5.6 and 5.7 is given by 5.9, with the aim of minimising queues and green

times at a junction.

J =
Np

∑
k=1

(‖ x(k) ‖2
Q + ‖ g(k) ‖2

R) (5.9)

5.3 Comparison between MPC and AI Planning

The ability to reason with a model makes MPC an attractive technique from the point of

view of AI planning. The MPC control structures shares similarities with AI planning

strategies. Some of the similarities include:

1. Given a domain of interest with facts and description of the environment and

problems within that domain, a model could be defined as a construction of a

symbolic system that has inference and rules that represents the domain of inter-

est. Both MPC and planning require modeling of the system under consideration.
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2. State space MPC(detailed above) is also similar to State Space planning approach

(detailed in Chapter 2.)

3. MPC applications are mostly implemented in continuous processes like chemical

process. AI planning is now being introduced in continuous domains such as

chemical processes with the aim of modelling continuous processes and events.

4. MPC continuously generates a sequence of control plan to keep processes opera-

tion in a desirable state. AI Planning with continuous state variables also aims to

generate control sequences that can keep a process in a desirable state.

5. MPC produces control plans by gradually work towards maintaining a reference

trajectory(explained above). AI planning, on the other hand, generates series of

state transitions that gradually work towards a state satisfying the goal conditions

(similar to reference trajectories).

Despite all the similarities, MPC and AI planning also have some differences which

include:

1. MPC makes use of a functional mathematical model to represent numeric values

of the system in consideration while planning uses logical models augmented

with numeric and function representations.

2. In most cases, the input variable to an MPC is in the form of complex numeric

values from sensors such as temperature, flow rate and pressure. In Planning,

planners take set input of input values in the form of a text file such as problem

file containing declarative statements about the (initial) state and goal.

3. MPC generates control laws by converting the problem into an optimisation prob-

lem (QP/LP) that can be solved by a solver while minimising a cost function.

AI planning, on the other hand, converts the planning problem primarily into a

search problem (with few exceptions) using some heuristic function to cope with

the combinatorial explosion within the search space.
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4. MPC takes care of Multiple Input and Multiple Output (MIMO) constraints. This

features making it very suitable for multimodal domains such as Urban Traffic

Control (UTC). However, some existing domain independent planner would fail

in multimodal domains due to inability to handle complex constraints.

5. MPC has the ability to predict the state of the future output of a system using

receding horizon in a feedback loop that compensates for dynamic changes in the

system. While classical AI planning predicts future states, generating necessary

steps that could lead to a desired future goal condition without taking the dy-

namics of the environment into consideration(offline planning). Thus, some AI

planning implementations are offline while MPC implementation must be online

in order to have real-time control of the continuous process.

5.4 Conclusion

Exploiting the relationship and building on the synthesis of MPC and AI planning tech-

niques to solve problems involving both discrete and continuous state variables, is the

heart of this research work. We consider an Urban Traffic Control (UTC), because

its model consists of both discrete(e.g., traffic light switch) and continuous(e.g., traffic

flow rate) state variables. The next chapter explains our perspective of UTC and our

self-management architect that aimed at using both AI planning and MPC approach in

creating self-management properties in UTC. Chapter 6. describes the hybrid planner

that is built from knowledge of these two technologies.
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5.5 Summary

This chapter introduces model predictive control as a branch of control engineering.

It explains the strategy and approach of MPC in controlling and stabilising process

control with the field of Engineering. This chapter ends by comparing the similarities

and difference between MPC and AI planning to make a judgement call for a hybrid

solution that incorporate both technologies to solve problems involving both discrete

and continuous state variables. The next chapter introduces the hybrid environment of

interest that is used for the evaluation of this research work - Urban Traffic Control.
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Chapter 6

A Self-Management System for Urban

Traffic Control

This chapter describes the design of a generic architecture which is aimed at using both

AI planning and MPC approach in creating self-management properties in UTC. Our

architecture consists of several blocks. This chapter describes each of the blocks in the

context of an Urban Traffic Control Domain.

6.1 Introduction

The need for planning and execution frameworks has increased interest in designing

and developing system architectures that use state-of-the-art plan generation techniques,

plan execution, monitoring and recovery to address complex tasks in real-world envi-

ronments [88; 104; 105]. An example of such an architecture is T-Rex (Teleo-Reactive

EXecutive): a goal-oriented system architecture with embedded automated planning

for onboard planning and execution for autonomous underwater vehicles to enhance

ocean science [101; 120]. Another planning architecture, PELEA (Planning and Exe-

cution LEarning Architecture), is a flexible modular architecture that incorporates sens-

ing, planning, executing, monitoring, replanning and even learning from past experi-
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ences [78].

A similar research to our architecture in the field of UTC is Urban Traffic Control

system using self-organization by [127]. This work is inspired by a technique exploited

by social insects to coordinate themselves and specialize their behaviour, without any

centralized coordination or explicit communication. It uses a distributed approach at

each intersection. Each intersection has a controller that controls local traffic by ex-

ecuting simple local reactive rule-based policies. Every intersection controller selects

on its own which policy to use in response to stimuli perceived from the environment

through the use of sensors. This approach implies that each local control is indirectly

being influenced by the decisions of other adjacent controllers. Individual execution

of simple reactive local policies to control local traffic, leads to the emergence of an

overall traffic control of an entire network, with certain complex behaviours not de-

fined a priori and unaware to the single controller. The primary difference between this

approach and our architecture is that, while this approach relies on a reactive policy,

we introduce deliberation into our controller, such that it will not only react to existing

problems but can deliberate before execution when encountered with unforeseen prob-

lems. Our approach makes it possible for our architecture to work both centrally over

an entire region or distributed on local traffic controls.

Advanced control systems should be able to reason with their surrounding environ-

ment and take decisions with respect to their current situation and their desired service

level. This could be achieved by embedding situational awareness into them, giving

them the ability to generate necessary plans to solve problems themselves.

Self-managed systems (SM) are required to have an ability to learn process patterns

from the past and adopt, discard or generate new plans to improve control systems.
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Our self-managed system architecture is inspired by the functionality of the Human

Autonomic Nervous System (HANS) that handles complexity and uncertainty with the

aim to realise computing systems and applications capable of managing themselves

with minimum human intervention.

The main difference between traditional and our self-management architecture is

depicted in Figure 6.1. Traditionally, a control loop consists of three steps: sense,

interpret and act [65]. In other words, data are gathered from the environment with

the use of sensors, the system interprets information from these sensors as the state

of the environment. The system acts by taking necessary actions that are feedback

into the system in other to keep the environment in the desirable state. Introducing

deliberation in the control loop allows the system to reason and generate effective plans

to achieve desirable goals. Enabling deliberative reasoning in UTC systems is important

because of its ability to handle unforeseen situations that have not been previously learnt

nor hard-coded into a UTC. This would help to reduce traffic congestion and carbon

emissions.

In a quest to embed SM attributes into an urban traffic control system, we explore the

feasibility of integrating an automated planning component into an urban traffic control

system and using MPC to resolve some of the challenges envisaged in this architecture.

The next section gives an overview of the architectural design of our approach.

6.2 The Self-Managing System Architecture

The key to the contents of the architecture in Figure 6.2 is a declarative description

of the system itself: the individual components that make up such a system; the dy-

namic environment that can influence the performance of such system; and its sensing

and controlling capabilities. A novel feature is its ability to reason and deliberate us-

ing a combination of model predictive control (MPC) approach [20] and AI planning

paradigm.
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Figure 6.1: Comparison of traditional and deliberative controls in Urban Transport Sys-
tems.
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Figure 6.2: Diagram of a Self-Managing System Architecture



6.2.1 Road Traffic Network and Disturbances

Disturbances are factors that affect the proper functioning of a road network(detailed

explanation in Chapter 3.0). Our perception of the traffic situation within a network of

roads is that a network of traffic(detailed explanation in Chapter 3.0) will continue to

operate as planned until a disturbance makes it act otherwise. Changes to the state of a

traffic network are under the influence of various disturbances. For example, a sudden

increase in the volume of traffic on a road network because of the end of a football game

in a nearby arena becomes a disturbance to such road network, if the network has not

been previously programmed or adapted to such a traffic change. In this work, a network

of roads within Huddersfield town center area of United Kingdom was considered for

our experimental analysis as detailed in the subsequent chapters.

6.2.2 System Description Block (SD)

A system needs both to be situationally aware, and have a knowledge model of its

components, its environment and the relationship between them before a self-aware

property can be created in such a system. The latter is achieved by extracting operational

knowledge of a road traffic domain and representing that knowledge in a language that

can be understood by the system. In the implementation of this work, much of the

domain knowledge is represented in PDDL [100]. PDDL gives a formal representation

of all the entities and operation policy of a road network in a language that is understood

by an automated planning function.

The system description block comprises of the model of the road network domain.

It is the storage for the declarative description of all the system elements, the system

environments and their components. It also gives a declarative description of the rela-

tionship between those components.
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Formally, the system description block is a triple 〈D,X ,S〉 where

• D is a finite set of system components

• X is a finite set of artefacts

• S is a set of states, where each state si ∈ S is a set of assignments fk(yl) = vm

where yl ∈ D∪X and vm is a value of yl .

The components are all the objects that can be controlled by the system, for example,

traffic control signal heads, variable message signs(VMS) and traffic cameras.

In the UTC domain, for instance, SD consists of a declarative description of the road

network of an area that needs to be controlled while optimising the traffic flow patterns.

This includes the representation of the road map as a directed graph. Below is a snippet

of the the connections between individual roads in our experimental example:

. . .

(:objects

markStr

//there exist a road in the network called mark street

....

(:init

(conn JWInts north brookStr)

//north of Brook street is connected

to south of John William’s intersection.

(link lordStr south brookStr)

//south of Brook street is

linked with Lord street

. . . .
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The system components are the available objects in the system that can be manipu-

lated and optimised for smooth traffic flow. This includes the signal heads and message

boards. These objects have a set of properties and relations which record information,

and changes to the objects are recorded through changes to these properties and rela-

tions. For example, an object called road has a name property called, ”byramStr” and

a road capacity limit of 20 cars. The capacity limit is the maximum number of the

vehicles a road can contain at any giving period.

....

(= (capacity brookStr) 11)

//the maximum capacity of Brook street is 20 cars

(= (capacity byramStr) 20)

//the maximum capacity for Byram Street is 11 cars

...

This implies that whenever the road sensor shows a total of 20 vehicles on Byram

street for a period of time without a dynamic change in the state of the vehicle(i.e. not

moving), then such road is blocked and vehicles should be diverted from using it until

the number of vehicles in such road is reduced.

6.2.3 Sensor and Effector Block (SE)

This is the sensory nerves of the system. It serves as the information interchange be-

tween the high-level reasoning component of the system and the road network. It has

an input mode and an output mode.

The Input Mode

Surveillance and sensing devices are embedded into almost every road network. Road

traffic monitoring agencies make use of surveillance and sensing devices for retrieving

the status of road networks. These devices upload the real-time data in a format that
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can be retrieved and understood by the system. The raw sensor data becomes the start

of an information processing pipeline that ends up as values that describe the properties

and relationships of objects that are defined in the SD described in the section above.

For example, in the UTC domain, sensing can be done by road sensors and CCTV

cameras. After information processing, this would result in a state file for urban traffic,

for example:

. . .

(operational brookStr)// Brook street is operational with no

disruption

(operational byramStr)// Byram Street is operational with no

disruption

. . .

(= (val north brookStr) 3)// number of vehicles on Brook Street

(= (val south byramStr) 12)// number of vehicles on Byram Street

. . .

An excellent example of recovering information from an array of sensors, and ex-

tracting PDDL-like states and activities from them via information processing, is given

in Laguna’s thesis [88]. Here the sensors were RFID and camera, and the activity being

sensed was cooking in a kitchen, but the parallel between this and the UTC domain is

clear.
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The Output Mode

Control devices are called actuators in classical control terminology. They are em-

bedded into control systems to change their performance to a desirable state. Control

devices play a vital role in UTC environment, from the simple traffic light to the com-

plex controller box for signal heads. They all help to control and maintain smooth traffic

operation in a road network.

SE is responsible for executing control plans (sequences of actions) retrieved from

the Planning and Action block. Generated control plans are received from this block,

formatted and passed as system instructions to appropriate control devices for execu-

tion. The control devices change the state of the road network to the desired state. An

excerpt from the generated control file is:

. . .

25.010: (enable v2 north brookStr) [50.000] //release vehicles on

Mark Street for 50 seconds

26.007: (disAble v1 south JW) [30.000] //stop vehicles on south of

John Williams for 30 seconds

27.009: (divert-through-intersection y2 JWInts north brookStr)[60.000]

//divert vehicles through south of john William’s intersection

. . .

Executing actions is done by system components via the control devices. Since we

have to consider uncertainty, after executing a sequence of actions, the sensors sense the

current state, and if the current state is different from the expected one, the information

is propagated to the Planning and Action block that provides a new plan.
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6.2.4 Planning and Action (PA) Block

PA can be understood as a core of deliberative reasoning and decision making in the

system. This is ‘the brain’ of our architecture. It has several components:

• an estimated current state

• a description of desired states or service levels[108]

• the model of the domain

• the planning problem file

• the planner program

• heuristics, such as ways of estimating how far a goal is away from a state.

The PA block receives an update to the estimated current state of the system from

SE, and system goals (desired states or service levels input from the Service Level

Checker, explained below). It produces a plan that aims to meet the system goals from

the current state. The default planning technology to carry out this technique is AI

Planning [108]. The plan produced is passed to the SE block for execution. However,

it is well known from planning and execution systems [59] that producing a plan given

a planning problem does not guarantee its successful execution. The SE block, which

is responsible for plan execution, verifies whether executing an action provides the de-

sired outcome. If the outcome is different (for whatever reason), then this outcome and

current estimated state is passed back to the PA, which is requested to re-plan. In the

UTC domain, if some road is congested, then the traffic is navigated through alternative

routes. Hence, PA is responsible for producing a plan that may consist of showing in-

formation about such alternative routes on variable message signs and optimising signal

heads towards such route.
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6.2.5 MPC Solution to Challenges in PA Block

There are theoretical limits to the success of automated planning (even simple planning

problems are intractable in general), however, and hence PA might not guarantee to

generate plans in a reasonable time. In a dynamic environment, where a system must

be able to react quickly to avoid imminent danger, this may be a significant problem.

Real-time processes require fast response times to deal with exogenous events. To cope

with this we need to be able to satisfy two situations where:

• no valid plan can be found to meet the system goals

• the environment has changed before the generation and execution of a control

plan.

These two planning problems can be minimised by utilising a Model Predictive

Control(MPC) approach [20] to supplement an automated planner.

MPC techniques help to reduce the situation whereby the environment has changed

before generation and execution of plans. Rather than using only the system model,

the generating of the problem file takes all possible disturbances into consideration. It

also sends the planning problem to the planner in a receding horizon approach. This

means that the problem represents what is likely to happen in few seconds ahead. This

allows the planner to generate plans with consideration for future timing and reduces

the possibility of an entirely changed environment prior to plan execution.

The MPC approach also helps to minimise the likelihood of situations where no

valid plan can be found for given system goals.

This is achieved by breaking search exploration into horizons such that the best

node at every horizon is explored further if planner time limit is not exceeded. This is

because exploring more search space will delay output time for a real time system, and

the output time might not be predictable since the time it takes to generate valid plans

depends on the complexity of the task. This complexity varies at different stages of the
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entire process life span. The planner searches, considering all the possible combinations

of the input constraints over a period of time or node counts and returns a sequence of

steps that will take the road network from its current state to a partial or goal state.

We use the phrase partial or goal state because the planner will return a plan from its

current state irrespective of whether the goals are met or not. This will make sure a plan

is available to follow at every instance of time. Thus, allowing the planner to search

for a limited resource count and returning the partial or complete goal plan at every

time stamp, means that the planner will always generate a plan that will take the system

closer to the goal trajectory provided that the fixed searching time and the node count

are well guided.

Specifically, after searching for the fixed time or node count, the planner commu-

nicates the partial or completely generated control plan to the control network devices

through the sensor and effectors block, aiming to effect a change in state from an initial

state to a fully or partially desirable state. The SE takes new samples from the reaction

of the network to the effect of these sequences of control action. The network’s new

state with the corresponding dynamic input parameters from the environment is fed

back into the planner to generate another sequence of steps that will take the network

traffic from its current state to another partial/goal state for another sampling time, and

so on.

This generates a control loop, which when continued over a period of time, will

produce a continuous curve like that of an MPC as shown in Figure 6.3. This process

takes the road network from its initial state to a goal state and maintains that goal state

as long as the process is still active. The ability of the system to take the current state

of the dynamic changing input parameters into consideration during planning process

increases the robustness to unexpected events in the environments or system itself. This

feedback loop also compensates for the few deviations in the production of sub-optimal

plans. In fact, the smooth series of state changes can only be achieved if the heuristics

for the planner are sound. This means that the planner must always produce a correct
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Figure 6.3: Illustration of a well guided real-time process curve.

(but not necessarily optimal) partial plan in the time allotted for plan generation.

6.2.6 Learning Block

The inputs to the learning component are the generated plans and the associated prob-

lem files within the domain. Generated plans and associated problems are mapped and

stored for adaptation purposes. The most common learning technique in UTC research

systems is reinforcement learning: this learns appropriate actions for traffic patterns

over a period, utilising the idea of assigning blame or positive feedback over repeated

trials [10; 46]. Learning has also been implemented in several planning applications.

The most common is the use of decision tree classifier to combine the generated plans

with problem instances and learn a policy for the MDP(Markov decision process) from

which the problem were drawn [60]. Thus, our emphasis in this part of the architecture

is not in learning the pattern alone, but in generating new heuristics from the learning

component to improve the performance of the planning engine. These heuristics in-

cludes macro actions for specific goals; the best horizon limit set for similar problems

and the goal distance heuristics common to that environment at a particular period of

time. One distinct advantage of the use of AI Planning in UTC is that the actions, goals
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and states are all defined in a declarative fashion. This means that plans achieving a

particular set of goals can be explained logically, using the operational semantics of the

actions. Through this explanation, we can derive the weakest precondition of a plan, in

other words, the smallest set of features in a state such that, if those features are seen

again, the same plan can be re-used to achieve the same goals.

6.2.7 Service Level Checker (SLC)

The Service Level Checker, as the name implies, repeatedly checks the service level of

the entire system to see if the system is in a ‘good condition’. It gets the current state of

the system from SE and compares it with the ‘ideal’ service level. If the current state is

far from being ‘ideal’, then the system should act in order to recover its state to a ‘good

condition’.

Formally, we can define an error function ε : S→R+
0 which determines how far the

current state of the system is from being ‘ideal’. ε(s) = 0 means that s is an ‘ideal’ state.

If a value of the error function in the current state is greater than a given threshold, then

SLC generates goals (desired states of a given components or artefacts) and passes them

to the problem file to generate new goals and metrics.

An example of this in UTC domain can be seen in an accident scene at a junction.

The ‘ideal’ service level for such a junction is to maximise traffic flow from the junc-

tion to neighbouring routes. The present state of the system shows that the traffic at that

junction is static with road sensors indicating static vehicles(i.e. vehicles are no longer

moving). Such a situation is not ‘ideal’, the error function in such a state is high. Hence,

new goals are generated by the SLC to re-route incoming traffic flowing towards such

junction as well as divert existing traffic in such locations to a different route through

connected roads.

It is also possible to alter the error function by an external system controller. For in-

stance, a self-managed UTC system can also accept inputs from the traffic controller
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(Motoring Agencies). This means that the system behaviour can be altered by the user

if needed.

6.3 Challenges

This architecture is presently implementable in systems that have a time delay. It cannot

be implemented with real-time processes that require continuous changes in nanosec-

onds/microseconds. This is because prediction can be computationally demanding, so

posing a challenge to implement it in real time. However with technology advance-

ment on CPU processing speed and the introduction of High-Performance Computing

(HPC), future implementation are possible. It is also important to know that the con-

troller might anticipate set-point changes that may not be desirable. This could be as

a result of a grossly inaccurate model that will yield poor control decisions although

the method is surprisingly robust. To achieve a highly tuned controller, a very accu-

rate model is needed, because one can only control as precisely as one can model. The

sampling of the environment at every period(state selection) for control plan generation

should also encompass all significant dynamics and disturbances. Otherwise, perfor-

mance may be reduced, and significant events may be unobserved.

The most important lesson learnt with this deliberative architecture is that the heuris-

tics that the planners use must be well guided. This is directing our research into de-

veloping specialised planners that are tuned for UTC use. This will allow us to take

advantage of the peculiarities of UTC application area, with the hope to create opera-

tionally successful planners.

6.4 Conclusion

This chapter describes our vision of self-management at the architectural level within a

UTC management system. We created a self-management architecture made of several
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blocks that are discussed in the context of the Urban Traffic Control Domain. We de-

scribed the functionality of each block, highlighting their relationship with one another.

We also highlighted the role of AI planning and MPC in enabling a self-management

property in the systems architecture.

6.5 Summary

This chapter describes the design of a generic architecture which is aimed at using both

AI planning and MPC approach in creating self-management properties in UTC. Our

architecture consists of several blocks. This chapter describes each of the blocks in the

context of an Urban Traffic Control Domain.

The next chapter demonstrates our efforts to create a hybrid planner that could work

with this architecture to generate plans in the UTC domain. The hybrid planner is an

integration of MPC approach into existing planning techniques to create a continuous

planner that could reason with continuous nature of UTC domains in the present of

multivariable environmental constraints.
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Chapter 7

Design and Implementation

In the previous chapter, we described the design of a generic architecture which is aimed

at using both AI planning and MPC approach in creating self-management properties

in UTC. This chapter demonstrates our present efforts towards creating a hybrid al-

gorithm for Urban Traffic Control PLANner(UTCPLAN), that could work within the

self-management architecture to generate plans for certain continuous problems using

UTC problem as an example.

7.1 Introduction

We propose the use of a Model Predictive Control(MPC) architecture in continuous

planning to solve problems in domains that are modelled using variables whose values

are changing continuously and to model processes and events that are internal and ex-

ogenous to our domain of concern. We design a hybrid algorithm that integrates MPC

approach to existing planning techniques to create a continuous planner that could rea-

son with the continuous aspect of a problem domain in the presence of multivariable

environmental constraints.

AI planning(detailed in Chapter 2.) uses algorithms with heuristics to search for

a feasible plan to solve a problem. These existing approaches have been an excellent
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Figure 7.1: The Agony of a Continuous Planner

approach to generating satisficing plans, most especially in classical domains, but this

method sometimes fails when problems become more complex [54]. MPC(detailed in

Chapter 5.) on the other hand, has been known for its ability to optimise continuous

processes in the presence of multi-variable constraints.

The continuous nature of MPC is combined with certain discrete numeric features of

AI planning to create a novel algorithm called UTCPLAN. The algorithm is embedded

into a planner that could reason with the set of parameters in a continuous domain and

generates plans in a reasonable time. The planner design is broken down into two main

categories.

1. The design of a declarative language for representing domain model and problem

information.

2. The design of the planning algorithm that could reason with the set of parameters

in the domain and problem.
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Figure 7.2: The Planner as a Black Box

7.2 Planner Language Representation

UTCPLAN addresses planning domain descriptions that involve durative actions and

metric resources with an extension of durative processes in the presence of events. The

planner supports the modelling of continuous change brought about by exogenous pro-

cesses and events. It can partly represent both the discrete and continuous numeric

changes that occur as a result of its processes with influences on events.

The domain description language syntax and semantic of the planner is similar to

PDDL+. PDDL+ proposed a realtime model that includes actions, exogenous events,

and autonomous processes. Refer to the work of M. Fox and D. Long [58] for de-

tailed explanations of the syntaxes and semantics of PDDL+ including the semantics

on which implementations of state representation and state progression must be con-

structed.

Numeric fluents is introduced, to create reasoning about numeric values in domains.

Though, the use of numeric fluents is restricted to basic numeric operations. Fluent are

assigned instantaneous values at the initial states or by an action. This could be a defi-

nite value or an increase or decrease by value; or the use of basic arithmetic operators

(+,−,∗,÷) to modify fluent base on arithmetic expressions. The durative action im-

poses an upper and lower bound constraint on the action operator. Continuous change in

numeric value, according to some specified numeric functions, over the entire period of

execution of an action are linearised. A differential equation of the form d p
dt = f (P)+c,

specifies the effects on a variable p where P is the vector of state numeric variable, f (P)
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is a mathematical function over these numeric variables, and c is a constant.

A set of linear continuous numeric effects is added to the component of each action

a. (increase(v) (∗ # t k)) which denotes an increases in v at the rate of k per unit of

time.

e f f`n and e f fan may additionally include durative parameter ?duration for both

start or end effects of actions. This denotes the duration of the action, and could be

written as:

〈v,op,w · v+ k · (?duration)+ c〉, such that op ∈ {+=,=,−=},c ,k ∈ κ

where w is a vector of constants and ?duration may have a constrain value that lie

within a range of values, e.g. (?duration > v1) • (?duration 6 v2), for some numeric

variables v1 and v2.

The extension to the action component allows the value of a variable v to depend

on the period elapsed from the beginning of the continuous effect acting upon it. The

second extension to the durative effect implies that ?duration do not always need to

be fixed, since the value of variables can now depend on the duration assigned to the

action.

7.3 Planner Algorithm

The planner implements UTCPLAN algorithm to find feasible solution plan from prob-

lems description in a continuous domain. UTCPLAN algorithm uses an A∗ search al-

gorithm technique for node exploration from the initial state to the goal state. Node

implies a point in a search space at which search frontiers or pathways intersect or

branch.State information and transition are also stored in a node. Preconditions of the

operators are checked against the proposition and numeric fluent at each node, if it is

satisfied, the operator effect is applied and the new state becomes the current state. The

resource optimisation problem within the domain model is solved at specific nodes dur-
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ing node exploration. The search proceeds by applying each applicable operator to the

current states in a receding horizon until a goal state is found or the node set is empty.

The following subsection gives a description of UTCPLAN algorithm.

7.3.1 UTCPLAN Algorithm Preliminaries

This section contains definitions that are fundamental to the design of the planner algo-

rithm.

Definition 1 (State) A state S is a pair 〈P,N〉, where P is the set of atomic propositions

and N is an assignment for numeric variable to values. A state describes what is true

of some world at a snapshot of time assuming a Close World Assumption(CWA) on S.

Definition 2 (Initial State) Initial State I = 〈P,N〉, where P is the set of atomic propo-

sitions and N is an assignment of values to numeric variables that are true at the start

of some planning problem.

Definition 3 (Goal Condition) A Goal Condition G= 〈P,N〉, where P is a set of atomic

propositions N is a set of numeric variables. For a goal to be achieved in some state S

values v satisfies some numeric constraints vL < v < vU specified by G. Thus, S satisfies

the goal condition if p ∈ P for every proposition in S and ∃v = c ∈ N : VL < c <VU for

all v in N. Where c is a constant whose values is between the upper bound and lower

bound of v.

Definition 4 (Domain Model) A Domain Model DM, consist of:

• A set of Propositions {p1, ..., pk} ∈ P

• A set of numeric Functions {n1, ...,nk} ∈ N

• A set of Resources {r1, ...,rk} ∈ R and

• A set of Actions {a1, ...,ak} ∈ A
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(:action switch_to_green

:parameters [at_junction, this_phase, from_road1, to_road2]

:duration dur

:cost

:precondition [(intersect at_junction this_phase from_road1 to_road2)]

[(>(queueLenght (from_road1 0.0))

(<(interuptLevel (to_road2 7.0))]

:effect ([(JflowActive at_junction this_phase from_road1 to_road2)])

)

Figure 7.3: Sample of an Action Declaration

• A set of Processes {c1, ...,ck} ∈C

• A set of Events {e1, ...,ek} ∈ E

Definition 5 (Action) An instantaneous action is characterised by preconditions that

must hold before the action and effects that hold after the action. The logical basis for

actions is modelled as a collection of propositions P, and a vector of numeric variables

v. Both P and v are manipulated and referred to by actions. The executability of an

action is determined by their conditions. For example, the action switch to green has

the precondition that the light is red and has the effect that the light is green. A durative

action A has three sets of preconditions: The condition that must hold at start pre⇐A,

at the end pre⇒A and throughout the execution of the action pre⇔A. Effect could be

durative or instantaneous, instantaneous effects are bound to the start e f f+⇐ and e f f−⇐

or end of the action e f f+⇒ and e f f−⇒ where positive and negative denote the propositions

added and deleted at the start and end of A respectively. Also numeric effect e f f n
⇐ and

e f f n
⇒ are updated at the start and end respectively. An example of action declaration

is shown in Fig 7.3.

Definition 6 (Processes) A process p comprises of a precondition, C, and a set of con-

tinuous effects, E, such that, if S |= C then the continuous effects are active at state

S.

107



(:process Jtraffic_flow

:parameters [at_junction, this_phase, from_road1, to_road2]

:duration dur

:cost

:precondition [(JflowActive at_junction

this_phase from_road1 to_road2)]

:effect ([(decrease(queueLenght (from_road1 (* #t flowrate)))

(increase(queueLenght (to_road2 (* #t flowrate)))])

)

Figure 7.4: Sample of an Process Declaration

For instance, the inflow process of vehicles V to a road R through a junction J. This

process has a precondition that a given phase at junction J is active that is ‘Green’

and that the road use level of R less than the road-capacity-level; and the constraint

that J is a connected inflow junction to road R. Once R is filled or blocked, an event

is triggered that stops the process. Inflow process has the effect of increasing R traffic

level at the rate of flow of V as shown in figure 7.4. At any point in time, the derivative

of traffic level in R is the sum of the rates of the active inflow process processes.

Definition 7 (Event) An event e is a state transition (C, E), where C is a declaration

expressing the triggering condition of e and E describes the effects of the event. The

event e is triggered in any state S such that S |= C. A new state s′ is results upon the

application of the effect E such that s′ a E.

An ordered finite set of event, ECS = {e1, ...,en}, with conditions {c1, ...,cn}, will

cascade triggered in a state S , such that for every event ei in ECS, either S |= ci or the

subset of events ordered before ei achieves a state s′ such that s′ |= ci. For example an

event ‘upstreamFilled’ to be triggered, it requires the estimated number of vehicles on

such road to be equal or greater that the road capacity limit of such road as shown in

Figure 7.5.

Definition 8 (Operators) Given a set of proposition P(s) and numeric fluents N(s) as

describe above, a numeric operator δ is a pair 〈pre(δ ),e f f (δ )〉 given that:
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(:event upstreamFilled

:parameters [at_junction, from_road1, to_road2]

:duration dur

:cost

:precondition [(>=(queueLenght (to_road2 capacity_of_road2)))]

:effect ([(assign(queueLenght (to_road2 capacity_of_road2))

(assign(interuptLevel (to_road2 7.0))])

)

Figure 7.5: Sample of an Event Declaration

• The condition for applicability pre(δ ) of an operator δ consist of:

– a proposition or set of propositions prepropδ define over P

– a numeric or set of numeric comparisons prenumδ of the form (exp{>,≥

,<,≤,=}exp′).

• The effect of an operator e f f (δ ) consists of:

– an additional proposition e f f+(δ ) produced and a deleted proposition

e f f−(δ ) removed after the operator execution.

– set of numeric operations e f f+num(δ ) in the form (n,op,exp), where n ∈ N

is the numeric fluent affected by the operation op, which could be one of

{+=,=,−=}.

In this definition, the arithmetic expression exp and exp′ involves variables from N.

These are recursively defined constants, numeric fluent or an arithmetical combination

of {+,∗,−,�} among expressions.

Definition 9 (Operators Applicability) An operator δ is said to be applicable in a

state s iff its propositional and numeric preconditions are satisfied by s. That is,

• preprop(δ )⊆ P(s) and

• prenum(δ ) must be valid(i.e equal or in range of values) in all n where n ∈ N(s)
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Definition 10 (Plan) A plan comprises of a sequence of actions, with associated pro-

cesses, that transforms the initial state into a state satisfying the goal state, respecting

all the constraints in the conditions imposed.

Given a continuous planning problem Ψ = {I,G,DM} where, I is the initial state,

G is a set of goal conditions and DM is a set of operators. A solution for Ψ is a total

ordered set of operators from δ , such that the ordered sequence of execution of these

operators transforms I into a state where G is satisfied

Algorithm 1 Top level algorithm of UTCPLAN
Input: I,G,DM.
Output: Plan.

1: n := (I,R)
2: Q := {n}
3: repeat
4: n.ℜ := OptimiseNumerics(n, DM, ℘)
5: i := 0
6: while Q 6= {} and i < Nc do
7: n := PopQueue(Q)
8: N := Expand(n)
9: if SolutionFound(N) 6= T RUE then

10: PushQueue(N,Q)
11: i := i+1
12: end if
13: end while
14: n.℘ := UpdateDynamicInformation(n, Np, Nc, DM)
15: until Q = {} or SolutionFound(Q)

7.3.2 Top level algorithm of UTCPLAN

The input to the planner is the initial state, goal condition and the domain model as

defined in the preliminary definitions. The planner output is a sequence of operators

(actions and processes) as described in the preliminary definitions. Line 1 initialises

the initial state with the associated resource declarations at the initial state. The initial

state is set to the initial node in Line 2. and stored at the first node of a priority queue.
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Line 3. to 15. repeats the search and optimisation processes from the current node until

solutionFound flag is true or the node is empty.

Line 4 uses the state at the node with it associated resource values and constraint to

optimise the numeric fluents in the domain model(DM) assumed the dynamic informa-

tion ℘ at the initial state is zero. Line 5. initialises the control horizon Nc counter to

zero value.

While the priority queue is not empty and the horizon control value Nc is not ex-

ceeded, a new node is popped out from the queue and expanded in Line 7. to 13. The

search terminates when solutionFound flag becomes true or the node is empty. Oth-

erwise, the expanded node is pushed back to the priority queue in Line 10. and the

horizon value is incremented in Line 11.

The current node is expanded in Line 8. with the application of an operator, details

of the expansion algorithm is given in Algorithm 2. Line 9. checks the expanded state

to see if the goal condition has been met. Definition of the goal condition has also

been defined in the preliminaries given in the previous section. The search terminates

when solutionFound flag becomes true or the node is empty. Otherwise, the expanded

node is pushed back to the priority queue in Line. 10 and the horizon control value is

incremented in Line 11.

Whenever the fix control horizon Nc is exceeded, the UpdateDynamicInformation

(UDI) function is called from the current node in line 14. The EDI function extracts

stored numeric changes and information from the planner, generates dynamic prediction

values ℘ over the period of horizon Np. ℘ is sent to OptimiseNumeric function to

optimise the constraints in the domain DM at node n . The new controlled value is

updated in the node. The horizon window Np is reinitialise for another fixed period and

the search continues. The search and optimisation processes are repeated in Line 15.

until solutionFound flag becomes true or the node becomes empty. The next subsections

explain the procedures in the top level algorithm.
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7.3.3 Expand Search Node(n)

The current node n is expanded by selecting the appropriate operator that satisfies the

condition at a node. The effect of the operator changes the state at a node from n into an-

other state N as show in Algorithm 2. The procedure for the application of an operator,

grounded process or an event is explained in Algorithm 3, 4 and 5 respectively.

Algorithm 2 Procedure for Expand(n)
Input: n
Output: N

N := {}
for all operators o ∈ DM do

O := {o′|o′ is an instantiation of o, and n.s makes o′.pre true }
for all o′ ∈ O do

s1 := apply o′ to n.s
E := {e′|e′ is an instantiation of some e ∈ DM, and s1 makes e′.pre true };
s2 := apply all events in E sequentially to s1
P := {p′|p′ is an instantiation of some p ∈ DM, and s2 makes p′.pre true }
s3 := s2 with all processes P started
N := N∪{(s3,n.r)}

end for
end for

7.3.4 Action Application

Definition 11 (Apply Action) Given a state s and an action a, such that a is applicable

in s, the application of a in s, denoted by s[a] to produce a new state s′ is as shown in

Algorithm 3.

An action is an instance of a ground operator within the domain whose execution

takes the state to a state that is closer to the goal condition. It preconditions could be

logical, or both logical and numeric inequalities and its effect are usually logical and

sometimes numeric update to the current state where the action is executed.

For instance, the action ‘switch to green’ in Fig 7.3 has a logical precondition that

the two roads must be intersected at the junction and must be sharing the same green

112



phase. It also has numeric preconditions such as the interrupt level of the connected

road must be less that interrupt level seven. The effect of this action changes the logical

state of the phase at the junction of the two roads to be active, which subsequently starts

a process at that junction in the next node. The planner selects the best sequence of

action that could take the current state at any particular node to a state that satisfies the

goal condition.

Algorithm 3 Action Application
Input: s,a
Output: s′.

1: s′ is initialised to be s;
2: All propositions present in e f f+a that are not already in s are added to P(s)
3: All proposition present in e f f−a are removed from P(s)
4: All numeric fluent f such that ( f ,op,exp) ∈ e f fnum(δ ) is updated and modified

according to the defined op and exp involved.
5: All state s ∈ S obtained by a non applicable operator is undefined and does not

satisfy any condition.

7.3.5 Simulate Process

Definition 12 (Simulate Process) Given a state s and a ground process c, such that c

is applicable in s, the application of c in s, denoted by s[c+] to simulate continuous

numeric changes in s for a period of time is as shown in Algorithm 4.

A grounded process within the domain runs for a period of time once it is ini-

tiated within the search node. The time is discretised into single step counts(E.g.

t = 1,2,3...tn) where tn is the duration of simulation of the process. Processes are

started as a result of an action initiating the process or an event triggering the start of

a process. The preconditions could be logical or numeric inequalities and their effects

are also numeric update to the current state where the process is activated.

An example of a process initialisation is the resulting effect of an action “switch-to-

green” in a domain. This action effect could lead to a process flow of queues from one
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road to another at the rate of flow of traffic in that junction for the duration of active

green phase at the junction as shown in Fig 7.4. The process would continue to run until

the specified simulation time elapses or there is an internally generated event that halt

the process. Once the duration of computing the process elapse, the current state of the

process is also pushed to the priority queue.

Algorithm 4 Simulate Process
Input: s,c
Output: s′.

1: initialise process duration time count = dur
2: repeat
3: All numeric fluent f such that ( f ,op,exp) ∈ e f fnum(c) is updated and modified

according to the defined op and exp involved
4: Time #t and other primitive numeric variables are updated
5: until event e is triggered or dur exceeded.

7.3.6 Event Application

Definition 13 (Apply Event) Given a state s and an a ground event e, such that e is

applicable in s, the application of e in s, denoted by s[e] produces a new state s′ as

shown in Algorithm 5.

The application of an event is similar to an action operator, except that, whereas an

action may occur if its preconditions hold, an event, on the other hand, must occur if its

precondition hold. An event in the domain could be internally triggered from within a

process, or outside the control of a process. Internally triggered event are interrupts that

are activated while a process is running, it preconditions are usually numeric inequali-

ties and their effect are also numeric assignments. These numeric assignments are set

as preconditions for some actions in the domain. This means that the interrupts tell the

planner to execute an emphaction that could change the emphstate of the system or flag

a display.
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An example of event is to manage the constraint of traffic spill-over at junctions

during rush hour as shown in Fig 7.5. It has a precondition to check the capacity of the

connected road during the process of traffic flow at a junction. The effect of this event

stops the current running process from transferring queue to the upstream road. This is

achieved by an interrupt trigger that halts the process and pushes the current state of the

node to the priority queue node.

Externally triggered event are a result of interaction between domain objects. The

preconditions could be logical or numeric inequalities and their effects are also numeric

update to the current state where the event is activated. An example of an external

event is the activation of connectors that link two separate roads. Once the condition

for the connector is satisfied, the queue from the previous road flows to the connected

routes. This is outside the control of a junction, but the ripple effect of such event

(traffic flow) affects the queues at downstream of the junctions. The different between

this connecting event and an action is that once the event precondition is satisfied, it

has to be activated, computed and updated to the current state, however, an action might

only be selected if it necessary get the state closer to the goal state.

Algorithm 5 Apply Event
Input: s,e
Output: s′.

1: s′ is initialised to be s;
2: All proposition present in e f f−e are removed from P(s)
3: All propositions present in e f f+e that are not already in s are added to P(s)
4: All numeric fluent f such that ( f ,op,exp) ∈ e f fnum(δ ) is updated and modified

according to the defined op and exp involved.
5: Time #t and other primitive numeric variables are updated

7.3.7 Optimise Numeric Fluents(n, DM, ℘)

The input to the OptimiseNumerics is the current node n, the predicted dynamic traffic

information℘and information from the domain model DM. This resource optimisation
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sub procedure works as a planning satisfiability(SAT) problem (originally used in [4;

126]). The conflicting resource parameters with their corresponding constraints values

are translated at a given search node into a linear programming problem. The problem

is them optimised by using an embedded constraint solver. The optimised values are

updated at the point of call to this sub procedure. For example, this sub procedure will

generate a new set of controlled variable(g(k)) at a search node, for the state vectors

(x(k)) during search space whenever the value of the control horizon Nc is exceeded. It

optimises all the updated dynamic traffic information ℘ and domain constraints in DM

with the objective of minimising the state variables (x(k)) on the controlled variable

(g(k)).

7.3.8 Update Dynamic Information(n, Nc, Np, DM)

The input to the UpdateDynamicInformation is the current node n, the horizon pre-

diction value Np, the value of control horizon window Nc and information from the

domain model DM. This subprocedure stores the past trends of numeric changes within

the nodes as search progresses within search space.

Whenever the horizon control value Nc is reached, past numeric fluents are retrieved

from the planner. This numeric information is used to generate a dynamic prediction

table over the period of prediction horizon count Np. The generated values are parse to

an optimiser to compute the best control values for the next set of alteration taking into

considerations all the constraints in the domain. The new values are updated dynami-

cally while the search space progresses for another period of control horizon Nc. This

process is repeated once a call is made to the procedure until the goal conditions are

satisfied.

For instance, assuming Nc is set to 500 node count and Np is set to two minutes. The

planner would keep tract of the node counts and retrieve past numeric fluent at every

500 node count. It will use these numeric information to generate a dynamic prediction
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table of changes in numeric values over the period of prediction horizon of two minutes.

The generated values will be parse to an optimiser to compute the best green split value

for subsequent search period taking into considerations all the constraints in the domain.

The new green split would be altered and updated dynamically at the node that initiates

the call while the search space progresses for another period of 500 node count (control

horizon Nc).

Algorithm 6 UpdateDynamicInformation (n, Np, Nc, DM)
Input: n, Np, Nc, DM
Output: n.℘

1: Q := {n}
2: i := 0
3: repeat
4: n.h̄ = store numeric changes
5: i := i+1 increment i
6: if i equals Nc then
7: n.ℑ = extract numeric changes from n.h̄
8: n.ρ = generate prediction values from n.ℑ over a period of Np
9: n.ℜ = OptimiseNumerics(n.ρ , DM, ℘’)

10: n.℘= n.℘
⋃
{(n.ρ,n.ℜ)}

11: i := 0
12: end if
13: until Q = {} or SolutionFound(Q)

7.4 Planner Implementation

The planner is implemented in Netbeans Java 8.0. The domain and problem represen-

tation (traffic description) are also developed with advanced Java to facilitate smooth

data transfer between planner and network information description. The experiment

was carried out on an Intel(R) Core(TM) i7-4702MQ CPU, 2.20GHz, 16GB RAM with

a 1.5 Terabyte memory capacity.

The network traffic problem comprises of twelve connected roads, two linked roads

and three junctions as shown in Appendix F. The domain model contains actions, pro-
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cesses and events that apply to the domain as shown in Appendix E.

The input to the planner includes the state variables represented by the queueing in

meters of road at any instance of time; The control variable represented by the green

split duration of the traffic control; declarative description of the map of the sampled

area; The available actions operators, ground processes and event in the domain and the

problem situation of the domain represented by the initial and goal state of the traffic

situation.

The goal is to reduce traffic congestions on roads and to divert traffic in the event of

any unexpected situation on roads. Technically, the goal is to reduce queue length on

roads from source to sink at the shortest period of time using the minimum number of

actions and processes to achieve the goal condition. The traffic problem supplied to the

planner consist of a declarative representation of the road network; The initial queues

form the source and the goal conditions for the queues at the sink are also supplied at

the initial state.

The node exploration in search space compensates for the MPC approach as de-

scribed by algorithm 1. The search proceeds by applying each applicable operator to

the current state and put each resulting state into a priority queue. The horizon value

Np is fixed at 10 seconds count. Different control values were used for sampling dur-

ing node exploration. A control window Nc of three node count is selected, because of

its suitability for this domain compared to other control windows. Though, sampling at

every node count give a better control result, but sampling at every node counts requires

more computational time compared to sampling at a multiple of three node counts. Both

the Nc and Np values are chosen after multiple tests to decide a suitable horizon value

for the planner.

Optimising all constraints by calling the numeric solver at every node makes it dif-

ficult or impossible to generate a plan at the shortest possible time, because of the

complexities of numeric constraint in a UTC domain. Thus, changes in large numeric

values in a node, which might have occurred due to changes in numeric values from
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process simulations, are detected and updated during every sampling time(Nc). Other

changes in primitive numeric expression are computed and evaluated by the numeric

capacity of the planner at every node.

7.4.1 Planner Implementation Assumptions

The network state maintains the numeric counts (continuous approximation) of queue

length at different abstractions of locations based on the following: route (R) explored

by the planner during search space; queue (Q) denoting the numeric value of each

road object at any instance of time; Source (Sc) which represents the entering road to

the networks and sink (Si) which represents the exit roads. Vehicles originate from

the source, passes through roads, connectors and junctions, then end up in sink upon

reaching the destination.

At each time instant, a road may be active or inactive. For the instants during which

a road is active, vehicles are assumed to move on that road at the flow rate of the road

(veh/s). We assumed the flow rate of the roads were known and fixed at the initial state.

When a link is inactive, it means there is no vehicles movement through the road and

flowrate of such road is zero.

Each of the junctions has two phase (1 and 2). Traffic can move from north to south

or from east to west at junctions. Two conflicting roads cannot be activated at the same

time at a junction. The domain model, incorporate declarative descriptions of grounded

event that monitors the movement of traffic within linking roads. The planner select the

appropriate green phase duration to controls the traffic of roads connected at a junction.

All dynamic inputs, such as turning rates, with an exception of the state variables

and controlled variables, are assumed to be constant. The flow rate of individual junc-

tions is also assumed to be constant. Rate of flow of vehicles is represented as a unit

value per seconds of time (veh/sec).

We assume that time evolves in discrete steps (k = 0,1,2, ...,kn) corresponding to
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traffic light cycles. We denote the network state vector by x(k) and the control vector is

denoted by g(k). We assume we cannot control drivers behaviour; thus, we only control

the green split (the controlled variable). We also assumed that the traffic flow dynamics

are fully defined and included in the domain file.

We consider a linearised version of the quadratic problem that simplifies real-time

calculations. The objective is to minimise the total numbers of vehicles in a queue on

all roads at any instance of time within the traffic network. See Chapter 5. for details

of domain constraints and objective function. The optimisation problem is solved using

an embedded API to Java called OjAlgo Solver.

OjAlgo is a solver that contains LP (Linear Programming), QP (Quadratic Program-

ming) and MIP (Mixed Integer Programming) solvers. ojAlgo is Open Source Java code

that has to do with mathematics, linear algebra and optimisation. The core of ojAlgo is

a linear algebra framework complete with various matrix decompositions using highly

efficient multidimensional arrays. It can use double, BigDecimal or ComplexNumber

as matrix elements. Though, there are lots of commercial solvers that are better than

ojAlgo; however, ojAlgo is chosen due to it open source advantage. It also a simple

framework to model problems using standardised expressions as well as the ability to

read MPS (Mathematical Programming System) files.

Linearised methods often led to suboptimal solutions and could not consider the

limits of some constraints exhaustively. Therefore, exploring more complex optimisa-

tion solution that can scale better in preferred for future purpose. The main objective of

this implementation is not to scale the output metrics, but to investigate the feasibility

of using our UTCPLAN approach in this domain of interest(UTC).

7.5 Conclusion

We propose an integration of MPC approach into existing planning techniques to create

a hybrid algorithm(UTCPLAN) for a continuous planner. This algorithm works with a
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blend of planning and constraint optimisation to optimise a given traffic flow problem

from initial state to a state that satisfies the goal conditions. The node exploration in

search space of UTCPLAN is modified to compensate for the MPC approach. This is

achieved by introducing a feedback strategy into the search space to sample the state at

a node whenever the value of controlled horizon window is exceeded. Constraints are

optimised over a future horizon value while the optimisation effect is only used within

the next control horizon window. This repetition is continued within the search space

until the goal conditions are satisfied. The algorithm is implemented in Java Netbeans

8.0 and tested with a declarative description of an urban traffic network.

7.6 Summary

This chapter describes the design and implementation of a planner that can input ex-

pressive domain descriptions containing continuous processes, events and actions and

produce solution plans through the integration of MPC with AI search - based planning

techniques. The next chapter explains the result and evaluation of our implementation.
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Chapter 8

Evaluation and Results

The main evaluation criterion is to show that UTCPLAN can accept inputs expressive

domain descriptions containing continuous processes, events and actions and output so-

lution plans through the integration of MPC with AI search - based planning techniques.

This evaluation is measured by creating an expressive declarative description of a UTC

domain with traffic flow problems to test if UTCPLAN can generate execution plans

that can transform any given traffic condition to a state that meets the specified goal

conditions.

The experimental traffic network(domain) is designed to have more than one con-

nected junctions in other to test the centralise reasoning of UTCPLAN to manage up-

stream and downstream of traffic from connected road to the junction. This also allows

us to test the feasibility of junction to junction traffic relationship within the network.

Each junction is designed to have more than one signal phase to test the ability of UTC-

PLAN to split the green time between the two phases at a junction base on the current

state of the queue length associated with each road at the junction. The network model

also has connected roads linking other roads without a signalled junction, in other to test

the ability of UTCPLAN to reason with the dynamic state of those connected roads that

are not directly linked to a junction in the network. Figure 8.1 shows a sample output

plan generated by UTCPLAN from an urban traffic control problem of Appendix F. and
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a UTC domain declaration of Appendix E.

Having achieved the main evaluation criteria, we also evaluate the effectiveness

of the embedded MPC approach in the UTCPLAN algorithm to optimise traffic flow

during changes in the traffic situation. We test the performance of the planner base on

its ability at controlling the signalled junctions to accommodate for the changes in the

traffic situation.

To achieve this, we create two signalled situation in our experiment:

Fixed The signal at the junctions are fixed from initial state to goal state, the planner

cannot alter the signal duration during search space. It would reason with the

domain and generate solution plans using the fix signal value at the junction.

Controlled The signal is controlled by the planner. In this case, the signal is set at

the initial state, but the planner can change the signal value during search space

using the embedded MPC approach in UTCPLAN to optimise the green phase at

junction base on traffic demands within the network.

We investigate the speed of UTCPLAN on selected volume of traffic to test the

performance of UTCPLAN during traffic congestion. This is achieved by increasing the

queue length on roads and comparing the time taken to generate plan when the signal

is fixed or controlled. We also evaluate the quality of plans generated by comparing

the number of actions and processes in the fix signalled plan to the controlled signalled

plan.

8.1 Results

The output of the planner is a sequence of steps that takes the problem from it initial

state to a state that satisfies the goal condition. Figure 8.1 shows a sample of plan

generated by UTCPLAN to solve an urban traffic control problem of Appendix using

a domain description of Appendix. The plan contains the sequence of action operators
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needed to optimise traffic flow within an urban traffic network, until the goal condition

is satisfied. The plan also shows the status of processes at junctions and between con-

nected roads. The status of event are not displaced in the plan, but the effect of events

on processes within the connected roads is reflected in the plan(example : [process]

Rtraffic flow).

8.1.1 Evaluation Policy

The planner output contains the following information about the plan:

Total Time Total time to generate a new plan

Makespan Total plan execution time

Plan Length Total length of the output plan which includes the total number of pro-

cesses, actions and some events effects in the plan. This also gives the quality of

the output plan, the shorter the length the better the plan.

NodeCount Number of nodes explored in search space

No. of Actions Total number of actions required to achieve the goal condition

No. of Processes Total number of processes initialised within the plan

In the field of AI planning, the total time taken to generate a plan is a metric that

shows the efficacy and speed of the planner. The total time depends majorly on the

planner algorithm. It is also dependent on some other factors such as the language used

to implement the planner and the hardware configuration of the system that the planner

resides on. The faster it is to achieve the goal condition the lesser the total time to

generate a plan and vice versa. The total time taken to generate a plan is an essential

criterion for the evaluation of planners in AI planning. A planner is effective in a domain

of problem if the total time to generate a plan for problems in that domain remains

steady and stable. However, if the total time to generate a solution in a domain of
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MAKESPAN OPERATOR STATUS PARAMETER DURATION

0.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 5.0

5.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 5.0

10.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 5.0

15.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 5.0

20.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 5.0

25.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 5.0

40.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 5.0

45.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 5.0

50.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 5.0

55.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 5.0

60.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 5.0

65.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 5.0

70.0 [process] Rtraffic_flow [nLSouth, wDStr] 5.0

75.0 [process] Rtraffic_flow [lDSouth, pTStr] 5.0

90.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 5.0

95.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 5.0

100.0 switch_to_green [JunctionB, phase1, wDStr, lDSouth] 5.0

105.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 5.0

110.0 switch_to_green [JunctionC, phase1, pTStr, bmStr] 5.0

115.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 5.0

120.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 5.0

125.0 [process] Jtraffic_flow [JunctionB, phase1, wDStr, lDSouth] 5.0

130.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 5.0

135.0 [process] Jtraffic_flow [JunctionC, phase1, pTStr, bmStr] 5.0

140.0 [process] Rtraffic_flow [nLSouth, wDStr] 5.0

145.0 [process] Rtraffic_flow [lDSouth, pTStr] 5.0

160.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 5.0

165.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 5.0

170.0 switch_to_green [JunctionB, phase1, wDStr, lDSouth] 5.0

175.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 5.0

180.0 switch_to_green [JunctionC, phase1, pTStr, bmStr] 5.0

185.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 5.0

190.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 5.0

195.0 [process] Jtraffic_flow [JunctionB, phase1, wDStr, lDSouth] 5.0

200.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 5.0

205.0 [process] Jtraffic_flow [JunctionC, phase1, pTStr, bmStr] 5.0

210.0 [process] Rtraffic_flow [nLSouth, wDStr] 5.0

215.0 [process] Rtraffic_flow [lDSouth, pTStr] 5.0

230.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 10.0

240.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 10.0

250.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 10.0

260.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 10.0

270.0 switch_to_green [JunctionB, phase1, wDStr, lDSouth] 10.0

280.0 switch_to_green [JunctionB, phase1, wDStr, lDSouth] 10.0

290.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 10.0

300.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 10.0

310.0 switch_to_green [JunctionC, phase1, pTStr, bmStr] 10.0

320.0 switch_to_green [JunctionC, phase1, pTStr, bmStr] 10.0

330.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 10.0

340.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 10.0

350.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 10.0

360.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 10.0

370.0 [process] Jtraffic_flow [JunctionB, phase1, wDStr, lDSouth] 10.0

380.0 [process] Jtraffic_flow [JunctionB, phase1, wDStr, lDSouth] 10.0

390.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 10.0

400.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 10.0

410.0 [process] Jtraffic_flow [JunctionC, phase1, pTStr, bmStr] 10.0

420.0 [process] Jtraffic_flow [JunctionC, phase1, pTStr, bmStr] 10.0

Total Makespan: 430.0

Number of Actions Operators in PLAN: 26

Number of executed PROCESSES in PLAN: 32

Total Output Steps: 66

Node Count: 10

Timings in milliseconds:

Preprocessing Time is 77

Total Searching Time is 1382

Total Planning Time is 1459

Total Planning Time in Seconds: ~ 1seconds

Figure 8.1: A sample plan generated by UTCPLAN
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problem is astronomically increasing with an increase in the complexity of the problem,

it means the planner might get stuck during certain problem situation in such domain.

The total length of a plan is the number of the steps it will take to get to a goal con-

dition from an initial problem situation. The total length of a plan for a given problem

varies from planner to planner. The shorter the length of the generated plan, the better

the quality of the plan. The number of Actions and processes in the plan, contribute to

the total length of the plan. The lesser the number of actions and processes needed to

achieve a goal state the better the quality of the plan for such problem domain.

To investigate the applicability and effectiveness of UTCPLAN, we use three eval-

uation criteria for comparison: total time taken to generate a plan; the average number

of processes used and the average number of actions initiated in the plan. We did not

consider the makespan in this criteria because this implementation does not include a

scheduler for makespan optimisation in the plan. Thus, using makespan as a major

metric would not be suitable as criteria for evaluation of the planner.

We consider the performance of the planner with fixed and controlled signal value.

Fixed duration means the duration of the green split is fixed at the initial state of the

problem and would be the same throughout the planning time. The planner accepts

the initial fixed timing from the problem file and uses this during the entire search

space to generate the best combination of steps needed to achieve a goal condition that

satisfies the problem situation. Controlled duration means that the duration is fixed

at the initial state, but subject to changes whenever the planner anticipates a better

optimum green phase than the fixed value during search space. In this case, the planner

stores the past trends of numeric changes within the roads as search progress within

search space. The past information of individual road input along with some dynamic

information is retrieved from the planner. This numeric information is used to generate

a dynamic prediction table over a fixed period of time. The generated values are sent to

an optimiser to compute the best green split values for the next set of alteration taking

into considerations all the constraints in the domain. The duration of green split at a
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junction is updated dynamically during search space while the search progresses. This

approach helps the planner to track and maintain changes in numeric fluents during

search space.

We generated different traffic situation by increasing the percentage of road queues

to create heavier traffic flow in the experiment. The simulation results for fixed time

duration and controlled strategy are presented in Table 8.1. Given that x2 is the new

average value and x1 is the previous average value, the percentage change in value y%

is measured by equation 8.1 and recorded in table8.1.

y(%) =
x2− x1

x2
∗ 100

1
(8.1)

This help to visually illustrate the trend in plan quality of both the fixed and the con-

trolled experiment. A decreasing (↓) trend in the value of y implies a good quality plan

while a continuous increase (↑) in value of y means that the planner output is affected by

the complexity of the problem in the domain. The more complex the problem becomes

the more the challenge to generate quality plan at reasonable time. Moreover, when

y is zero, it means the output plan is steady and stable despite an increase in problem

complexity.

8.1.2 Evaluation Performance

In this result, we consider the performance of the planner with fixed and controlled

signal value. Table 8.1 shows the percentage rate of increase in the queues within the

network and the effect of those percentage increase on the average total time; the av-

erage number of processes and an average number of actions in the output plans. It is

observed that the average total time required to generate a plan varies with a variation

in queuing distance and the green split values as shown in Figure 8.2. The percentage

change in total time increases with respect to an increase in queue length at fixed sig-

nal. However, the percentage change in total time of the controlled signal is remarkable
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Figure 8.2: The average planning time at different fixed signal timings compared with
the controlled UTCPLAN approach with an increasing traffic queues

at a low increase rate with increase in queue length. The result also shows a percent-

age decrease in the controlled signal at 80 metres and 300 metres queueing distance

respectively.

Table 8.1 also shows the percentage change in the average number of processes

initiated by the plans. The percentage change in the average number of processes in-

creases with increase in queue length at fixed signal. However, the percentage change

in the average number of processes is reduced to zero percent despite an increase in

queue length when the signal is controlled by UTCPLAN. It increases a little at 200

metres queueing distance but later drop back to zero percent. It is observed that the to-

tal number of initiated process varies with a variation in the green split values as shown

in Figure 8.3. The total number of processes initiated by the planner to achieve the goal

condition increases with an increase in the congestion rate whenever the signal is fixed.

However, the changes are minimum and often becomes steady despite the increasing

queues in the network when the green split is controlled by the UTCPLAN approach

within the traffic network.

Similarly, Table 8.1 shows the percentage change in the average number of action

operator within the plans increases an increase in queue length at fixed signal. However,
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Figure 8.3: The average total number of processes initiated by the planner to achieve the
goal condition at different fixed signal timings compared with the controlled UTCPLAN
approach with increasing traffic queues
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QueueLenght Increase in Change in Change in Change in
Avg. Planning Time(%) Avg. No. of Processes(%) Avg. No.of Actions(%)

Variation QueueLenght(%) Fixed Controlled Fixed Controlled Fixed Controlled
5 ↑ 100 ↑ 100 ↑ 100 ↑ 100 ↑ 100 ↑ 100 ↑ 100
20 ↑ 75 ↑ 31.3 ↑ 56.5 ↑ 35.0 ↑ 45.8 ↑ 50 ↑ 58.3
40 ↑ 50 ↑ 61.2 ↑ 22.5 ↑ 41.2 0.0 ↑ 50 ↑ 42.9
80 ↑ 50 ↑ 48.1 ↓ 13.2 ↑ 45.2 0.0 ↑ 50 0.0
160 ↑ 50 ↑ 34.5 ↑ 3.9 ↑ 25.3 0.0 ↑ 34.4 0.0
200 ↑ 20 ↑ 42.1 ↑ 8.7 ↑ 29.7 ↑ 4.0 ↑ 29.1 0.0
300 ↑ 33.3 ↑ 28.5 ↓ 5.7 ↑ 22.9 0.0 ↑ 22.5 0.0

Table 8.1: Planner result showing the percentage increase in number of vehicles in the network and the corresponding percentage changes
in the plan generation time; number of processes and actions respectively. Fixed duration means the duration of the green split is fixed at
the initial state and would be the same throughout the planning time. Controlled means that the duration is fixed at the initial state, but
subject to changes during search space whenever the planner anticipate a better optimised green phase than the fixed value.



Figure 8.4: The average total number of action operators in the plan at different fixed
signal timings compared with the controlled UTCPLAN approach with respect to in-
creasing traffic queues

the percentage change in the average number of action operator is reduced to zero per-

cent despite an increase in queue length when the signal is controlled by UTCPLAN.

It is observed that the total number of actions operators that are required to get the

problem from initial state to a state that satisfies the goal condition also varies with a

variation in the green split values as shown in Figure 8.4. The total number of actions

generated by the planner to achieve the goal condition increases with an increase in

the traffic congestion rate whenever the signal is fixed. However, the changes are also

minimum and often becomes steady despite the increasing queues in the network when

the green split is controlled by UTCPLAN approach within the traffic network.

UTCPLAN was also tested on some classical planning problems to see its appli-

cability on other known planning domain. It was able to generate satisficing plans for

problems in the “blockworld domain” [96] and “thermal domain” [114] as shown in

Appendix H and Appendix G respectively.
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8.2 Discussion

The percentage change in output value, as shown in table 8.1, gives a visual illustra-

tion of thee trend in plan quality of both the fixed and the controlled experiment. A

decreasing (↓) trend in the output value implies a good quality plan while a continuous

increase (↑) in output value means that the planner output is affected by the complexity

of the problem in the domain. The more complex the problem becomes, the more the

challenge to generate quality plan at reasonable time. Moreover, when the percentage

change in output value is zero, it means the output plan is steady and stable despite

an increase in problem complexity. Stability in plan metrics can not be achieved by a

planner with fixed duration. It can only be achieved by a planner that has the ability

to establish a unique approach to numeric fluents during search space. The stability in

the controlled output plan metric is achieved through the novel integration of MPC ap-

proach with AI planning. This implies that the time to generate a valid plan, as well as

the quality of plan generated, becomes stable at some point irrespective of the increase

in complexity of the problem domain.

For instance, the result shows that a controlled approach is required to optimise

any traffic situation. The ability of the UTCPLAN approach at tracking changes and

evaluate the effect of those changes over a period of time in the future helps to anticipate

increasing or decreasing queue trends within the network. The controlled green time is

always suited to the changes in the network. This help to keep the network in a stable

state despite increasing congestion.

The above result shows that both strategies perform well in lesser traffic condition

while controlled approach is a little better leading to a reduction of both evaluation crite-

ria. However, there is a vast difference between the two methods when the traffic condi-

tion becomes heavier. Controlled approach is superior resulting in a large improvement

while the performance of fixed time strategy gets worse. Large traffic demand creates a

larger search space and, therefore, the solution requires more computational time espe-
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cially at lower fix duration, but with the controlled technique, more substantial demand

is not more intensive.

The goal is to minimise vehicles waiting in queue and relieve the congestion in urban

traffic networks and the controlled approach provides a good solution. This implies that

the average number of vehicles in a queue will almost not increase when intensive flow

is added. However, the criteria of fixed time strategy increase significantly which means

it cannot adapt to heavy traffic condition and when the signal is fixed for heavy traffic

purpose, it cannot adapt to lighter traffic situation.

The planner ability to represent rich representation of the domain makes it easier to

take care of some constraints within the road network which a simple MPC controller

might not be able to handle. MPC approach, on the other hand, helps to dynamically

control the green split within the domain which the searching mechanism might not be

able to simulate. Combining the two approaches help to control a signalled junction

while still taking care of the logical reasoning within the network of roads.

The planner could be use online or offline. At the moment, the planner works of-

fline, which means it only generate plans and do not receive any feedback about the

execution of the plan nor the state of the environment where the plan is being executed.

The generation of plan is only based on the formal description of the environment. The

state of the system at the time of executing the plan is assumed to be adequately mod-

elled. Hence, a change in a state prior to plan execution is not taken into consideration.

Thus, the domain model has to be robust enough to take care of the gaps or differences

between the conceptual model and the real world. An example of offline planning is the

generation of a regional advisory plan for traffic operators by a planner to solve an envi-

ronmental problem using declarative knowledge of traffic strategies and policies within

such environment. In this case, the plan generated has to be readable and interpretable

by the user for decision making.

However, in a domain where the difference is more than what the planner can handle

(in a non-deterministic environment), the planner will need to have constant feedback
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from the effect of its actions on the domain environment. Thus, online planning will

be employed in this situation. An example of online planning is a real time intelligent

traffic controller that uses AI planning for decision making. Such controller will con-

tinually sense, interpret and generate execution plans to change its state and the state of

the urban traffic situation within its domain of control.

8.2.1 Scaling Difficulties

The AI planning approach in this implementation needs to integrate state-of-the-art

heuristics in planning to improve the performance stability and robustness of the plan-

ner. Also, good commercial optimisation API need be employed to improve robustness

to larger networks of constraints, rather than the simple solver that was employed in this

implementation.

8.3 Conclusion

MPC strategy can predict the system behaviours in advance and avoid the unexpected

situations with a consideration of constraints explicitly while AI planning approach can

reason with both logical and numeric properties of the road network which helps to

generate plans during unexpected events or changes within the network. Combining the

two approaches is advisable to solve UTC traffic problem.

We tested the implementation of UTCPLAN algorithm to control traffic flow in

other to relieve traffic congestion. We introduce congestion to the traffic problem by

increasing the percentage of queue length from the source into the network of connected

roads. We evaluate the performance of the planner when the traffic is light and when

it is congested. Experimental simulations with an objective of minimising the number

of vehicles in a queue are implemented to validate the applicability and effectiveness of

the algorithm. The result shows that UTCPLAN approach performs well to deal with

heavy traffic congestion problem, which might result from heavy traffic flow during
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rush hours.

8.4 Summary

This chapter explains the result and evaluation of UTCPLAN algorithm when tested on

a network of connected roads. The result shows that UTCPLAN approach has demon-

strated to be effective and applicable in urban traffic networks domain.
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Chapter 9

Conclusions and Future Work

Most real-world situations involve quantities and numeric values, which are not prop-

erly represented in classical planning. The need to express numeric quantities of entities

within a domain representation led to the development of metric planning. Also, contin-

uous planning in domains that are represented with rich notations has long been a great

challenge for AI. For instance, changes occurring due to fuel consumption, continu-

ous movement, or environmental conditions may not be adequately modelled through

instantaneous or even durative actions; rather these require modelling as continuously

changing processes. The combination of time-dependent problems and numeric opti-

misation problem create a more challenging and hard task of time-dependent metric

fluents. Creating a continuous planner also requires a real world benchmark, an appro-

priate benchmark for this kind of problem is an Urban Traffic Control (UTC) problem.

Advanced urban traffic control (UTC) systems are often based on feedback algo-

rithms. They use road traffic data which has been gathered from a couple of minutes to

several years. For instance, current traffic control systems often operate using adaptive

green phases and flexible coordination in a road (sub) networks based on measured traf-

fic conditions. However, these approaches are still not very efficient during unforeseen

situations such as road incidents when changes in traffic are requested in a short time

interval.

For such anomalies, we need systems that can plan and act effectively in order to

restore an unexpected road traffic situation into a normal order. Creating a generic
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architecture that enables control systems to reason automatically with knowledge of

their environment and their controls, in order to generate plans and schedules to manage

themselves, is a significant step forward in the field of Intelligent Transport System.

In this thesis, we describe the design of a generic architecture for UTC which en-

ables the network to manage itself both in normal operation and in unexpected scenar-

ios. To accomplish this, we create a representation that can be used to capture declar-

ative definitions of processes, actions, events, resources and the structure of the envi-

ronment in a UTC scenario. This description is founded on world states modelled by

mixed discrete and continuous state variables. We demonstrate that the description is

capable of capturing a wide range of such scenarios, using a realistic example.

The reasoning and self-management aspects are implemented using automated plan-

ning techniques inspired by both the symbolic artificial intelligence area and traditional

control engineering. Using this technology, we show how the system can reason about

unforeseen situations in the road network and generate plans (sequences of actions) that

when executed can achieve the desired traffic outcome.

We highlight the challenges of implementing our UTC architecture in the context of

continuous on-line planning platform. Significantly, not only do state-of-the-art plan-

ning engines fail to find optimal solutions, but their performance significantly decreases

on larger road networks.

In the quest to improve reasoning with a continuous process in our architecture and

reducing the time taken to generate new plans, we investigate the role of the Model

Predictive Control (MPC) approach to planning in the presence of mixed discrete and

continuous state variables. Urban traffic control is a flow optimisation problem and

is analogous to a certain degree with the problem of controlling chemical flow pro-

cesses. These kinds of problems are often solved using an MPC strategy. We explore

this control approach and show how it can be embedded into existing, modern AI Plan-

ning technology. This preserves the many advantages of the AI Planning approach, to
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do with domain independence through declarative modelling, and explicit reasoning,

while leveraging on the capability of MPC to deal with continuous processes.

Thus, we create a UTC dependent, but scenario and configuration independent plan-

ning system called UTCPLAN. The is due to the need to develop planning technology

specifically tailored to the parameters of applications such as urban traffic control. We

describe the development of UTCPLAN that supports the analysis of domain descrip-

tions and plans containing continuously changing processes, events and actions, and

identify new approach for such problems areas which, in particular, takes into account

the complexity of the numeric variables involved in urban traffic processes. Such a plan-

ner can reason with continuous processes in urban traffic domain and has the potential

to generate control and execution plans and schedules that will keep an urban traffic

controlled region in a desirable state for the entire life span of traffic flow processes.

We present experimental evaluation showing that our approach can provide plans in

a reasonable time. We describe the implementation and performance of our UTCPLAN

hybrid algorithm when tested on a network of connected roads. The result shows that

UTCPLAN approach has demonstrated to be effective and applicable in urban traffic

networks to deal with the congestion problem.

In a real-world scenario where data such as road queues are uploaded in real-time

from road sensors with traffic signals connected to a planner, we believe that our ap-

proach can divert road traffic from a blocked road without human intervention, thus,

satisfying some of the objectives of self-management in transport systems.

9.1 Future Work

We shall integrate state-of-the-art planning heuristics into the search base and plan gen-

erations phase of UTCPLAN to reduce search time and optimise makespan during plan
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generation. This aspect of our future work would help to improve the performance,

stability and scalability of the planner to problems with huge search space.

We also hope to employ good commercial optimisation solver (such as GUROBI)

to improve robustness to numeric complexities of larger traffic networks and constraints

within the network of connected roads.

This UTCPLAN would also be embedded within our self-management architecture

and evaluate its performance on a simulation platform as well as testing it on a real road

situation that is an ongoing pilot project in Manchester metropolitan area.

We also plan to provide a deeper evaluation of our approach, especially to compare

it with traditional traffic control methods and assess the effort and challenges required

to embody the model within a real-world environment. Other aspects of improvement

would include:incorporating learning into our architecture which will store plans for

the purpose of re-using valid plans and save the cost of re-planing at every instance;

incorporating the actual road policies in our model; increase interaction with road users;

build a knowledge base from generated (optimal) plans; consider various speed limits;

consider weather conditions and priority vehicles.
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9.2 Summary

This thesis explains the design, implementation and testing of a UTCPLAN, which

can input expressive domain descriptions, output solution plans containing continuous

processes, events and actions, and is the first AI Planner we are aware of to integrate

MPC with AI search - based planning techniques. This thesis also shows how to embed

the knowledge of UTC structures into an augmented AI planning domain. It evaluate

the possibility of reasoning with this knowledge to optimise traffic flow in situations

where a given road within a network of roads becomes unavailable due to unexpected

situations such as road accidents. We show how the problem of self-management of a

road traffic network during an unforeseen episode can be solved using an AI planning

approach. To solve the continuous planning problem, we specify how to augment the

standard AI planning engine with the incorporation of MPC techniques into the central

reasoning process. This approach effectively utilises the strengths of search-based and

model-simulation-based methods.
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Appendix A: A PDDL Domain Model

PDDL file for Urban Traffic Domain model of urban traffic network.

(define (domain transport)

(:requirements :typing :durative-actions :fluents :timed-initial-literals)

(:types road junction num)

(:predicates

(ready ?road - road)

(operational ?road - road)

(free ?junction - junction)

(connected ?road1 - road ?junction - junction ?road2 - road)

)

(:functions

;(flowrate ?road - road) ; it’s not used in the model...

(capacity ?road - road) ; capacity of the road

(length ?road - road) ; time taking to drive to the road

(head ?road - road) ; no of cars at the head of the road

(tail ?road - road) ; no of cars at the tail of the road

(use ?road - road) ;number of cars on the road

(val ?n - num) ;for explicite expressing variable duration, or numbers of cars to drive etc.

)

(:durative-action RELEASE-CARS

:parameters (?r - road)

:duration (= ?duration 1)

:condition (and (at start (ready ?r)) (at end (< (use ?r) (capacity ?r))))

:effect (and (at start (increase (use ?r) 5)) (at start (not (ready ?r))) (at end (ready ?r))(at end (increase (head ?r) 5)))

)

(:durative-action DRIVE-THROUGH-JUNCTION

:parameters (?r1 - road ?j - junction ?r2 - road ?n - num)

:duration (= ?duration (val ?n))

:condition (and (at start (>= (tail ?r1) (val ?n))) (over all (connected ?r1 ?j ?r2)) (at start (free ?j)) (over all (operational ?r2)) (at start (<= (+ (use ?r2) (val ?n)) (capacity ?r2))))

:effect (and (at start (not (free ?j)))(at end (free ?j))(at start (decrease (use ?r1) (val ?n)))

(at start (increase (use ?r2) (val ?n)))(at start (decrease (tail ?r1) (val ?n)))

(at end (increase (head ?r2) (val ?n))))

)

(:durative-action DRIVE

:parameters (?r - road ?n - num)
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:duration (= ?duration (length ?r))

:condition

(and

(at start (>= (head ?r) (val ?n)))

(over all (operational ?r))

)

:effect

(and

(at start (decrease (head ?r) (val ?n)))

(at end (increase (tail ?r) (val ?n)))

;(at end (increase (tail ?r) 5))

;(at start (assign (head ?r) 0))

)

)

; (:durative-action FLOW2

; :parameters (?road1 ?road2 - road)

; :duration (= ?duration 1)

; :condition

; (and

; (at start (connected ?road1 ?road2))

; (at start (>= (capacity ?road2) (+ (use ?road2) (flowrate ?road1))))

; (at start (< (use ?road1) (flowrate ?road1)))

; (at start (> (use ?road1) 0))

; (at start (operational ?road2))

; )

; :effect

; (and

; (at end (decrease (use ?road1) (use ?road1)))

; (at end (increase (use ?road2) (use ?road1)))

; )

; )

)
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Appendix B: PDDL Problem File for

an Urban Traffic Network

PDDL Problem File for the Urban Traffic Network area of Huddersfield Town center
area of West Yorkshire in United Kingdom tested on some domain independent plan-
ners. Each of the alphabets represents corresponding names of objects in the network.

(define (problem hud1)

(:domain transport)

(:objects

a1 a2 b c1 c2 d1 d2 e1 e2 f1 f2 g1 g2 h i j k l m n1 n2 o p q r s t u v1 v2 w x y1 y2 z zz - road

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 - junction

nn1 nn2 nn3 nn4 nn5 - num

)

(:init

(connected a1 j1 g2)

(connected a1 j1 c2)

(connected c1 j1 a2)

(connected c1 j1 g2)

(connected g1 j1 c2)

(connected g1 j1 a2)

(connected c2 j2 b)

(connected c2 j2 d2)

(connected zz j2 c1)

(connected zz j2 d2)

(connected zz j2 b)

(connected d1 j2 c1)

(connected d1 j2 b)

(connected d2 j3 e2)

(connected e1 j3 d1)

(connected z j3 d1)

(connected z j3 e2)

(connected e2 j4 f2)

(connected e2 j4 y1)

(connected f1 j4 e1)

(connected f1 j4 y1)

(connected y2 j4 e1)

(connected y2 j4 f2)

(connected g2 j5 m)
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(connected i j5 g1)

(connected i j5 m)

(connected h j6 i)

(connected h j6 j)

(connected j j7 k)

(connected l j7 k)

(connected m j8 l)

(connected m j8 n1)

(connected t j8 l)

(connected t j8 n1)

(connected n2 j8 l)

(connected n1 j9 q)

(connected n1 j9 o)

(connected u j10 t)

(connected u j10 s)

(connected u j10 zz)

(connected q j11 r)

(connected q j11 p)

(connected s j11 r)

(connected s j11 p)

(connected r j12 u)

(connected r j12 z)

(connected r j12 v1)

(connected v2 j12 u)

(connected v2 j12 z)

(connected v1 j13 y2)

(connected v1 j13 x)

(connected y1 j13 v2)

(connected y1 j13 x)

(connected w j13 v2)

(connected w j13 y2)

(connected w j13 x)

(free j1)

(free j2)

(free j3)

(free j4)

(free j5)

(free j6)

(free j7)

(free j8)

(free j9)

(free j10)

(free j11)

(free j12)

(free j13)

(= (capacity a1) 10)
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(= (capacity a2) 10)

(= (capacity b) 10)

(= (capacity c1) 4)

(= (capacity c2) 4)

(= (capacity d1) 3)

(= (capacity d2) 3)

(= (capacity e1) 5)

(= (capacity e2) 5)

(= (capacity f1) 5)

(= (capacity f2) 5)

(= (capacity g1) 4)

(= (capacity g2) 4)

(= (capacity h) 3)

(= (capacity i) 4)

(= (capacity j) 3)

(= (capacity k) 10)

(= (capacity l) 4)

(= (capacity m) 3)

(= (capacity n1) 5)

(= (capacity n2) 5)

(= (capacity o) 5)

(= (capacity p) 5)

(= (capacity q) 3)

(= (capacity r) 7)

(= (capacity s) 5)

(= (capacity t) 3)

(= (capacity u) 3)

(= (capacity v1) 5)

(= (capacity v2) 5)

(= (capacity w) 10)

(= (capacity x) 4)

(= (capacity y1) 7)

(= (capacity y2) 7)

(= (capacity z) 7)

(= (capacity zz) 7)

(= (length a1) 10)

(= (length a2) 10)

(= (length b) 10)

(= (length c1) 4)

(= (length c2) 4)

(= (length d1) 3)

(= (length d2) 3)

(= (length e1) 5)

(= (length e2) 5)

(= (length f1) 5)

(= (length f2) 5)

(= (length g1) 4)

(= (length g2) 4)

(= (length h) 3)

(= (length i) 4)

(= (length j) 3)

(= (length k) 10)

(= (length l) 4)

(= (length m) 3)

(= (length n1) 5)

(= (length n2) 5)
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(= (length o) 5)

(= (length p) 5)

(= (length q) 3)

(= (length r) 7)

(= (length s) 5)

(= (length t) 3)

(= (length u) 3)

(= (length v1) 5)

(= (length v2) 5)

(= (length w) 10)

(= (length x) 4)

(= (length y1) 7)

(= (length y2) 7)

(= (length z) 7)

(= (length zz) 7)

(= (use a1) 0)

(= (use a2) 0)

(= (use b) 0)

(= (use c1) 0)

(= (use c2) 0)

(= (use d1) 0)

(= (use d2) 0)

(= (use e1) 0)

(= (use e2) 0)

(= (use f1) 0)

(= (use f2) 0)

(= (use g1) 0)

(= (use g2) 0)

(= (use h) 0)

(= (use i) 0)

(= (use j) 0)

(= (use k) 0)

(= (use l) 0)

(= (use m) 0)

(= (use n1) 0)

(= (use n2) 0)

(= (use o) 0)

(= (use p) 0)

(= (use q) 0)

(= (use r) 0)

(= (use s) 0)

(= (use t) 0)

(= (use u) 0)

(= (use v1) 0)

(= (use v2) 0)

(= (use w) 0)

(= (use x) 0)

(= (use y1) 0)

(= (use y2) 0)

(= (use z) 0)

(= (use zz) 0)

(= (head a1) 0)

(= (head a2) 0)

(= (head b) 0)

(= (head c1) 0)

146



(= (head c2) 0)

(= (head d1) 0)

(= (head d2) 0)

(= (head e1) 0)

(= (head e2) 0)

(= (head f1) 0)

(= (head f2) 0)

(= (head g1) 0)

(= (head g2) 0)

(= (head h) 0)

(= (head i) 0)

(= (head j) 0)

(= (head k) 0)

(= (head l) 0)

(= (head m) 0)

(= (head n1) 0)

(= (head n2) 0)

(= (head o) 0)

(= (head p) 0)

(= (head q) 0)

(= (head r) 0)

(= (head s) 0)

(= (head t) 0)

(= (head u) 0)

(= (head v1) 0)

(= (head v2) 0)

(= (head w) 0)

(= (head x) 0)

(= (head y1) 0)

(= (head y2) 0)

(= (head z) 0)

(= (head zz) 0)

(= (tail a1) 0)

(= (tail a2) 0)

(= (tail b) 0)

(= (tail c1) 0)

(= (tail c2) 0)

(= (tail d1) 0)

(= (tail d2) 0)

(= (tail e1) 0)

(= (tail e2) 0)

(= (tail f1) 0)

(= (tail f2) 0)

(= (tail g1) 0)

(= (tail g2) 0)

(= (tail h) 0)

(= (tail i) 0)

(= (tail j) 0)

(= (tail k) 0)

(= (tail l) 0)

(= (tail m) 0)

(= (tail n1) 0)

(= (tail n2) 0)

(= (tail o) 0)

(= (tail p) 0)

(= (tail q) 0)
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(= (tail r) 0)

(= (tail s) 0)

(= (tail t) 0)

(= (tail u) 0)

(= (tail v1) 0)

(= (tail v2) 0)

(= (tail w) 0)

(= (tail x) 0)

(= (tail y1) 0)

(= (tail y2) 0)

(= (tail z) 0)

(= (tail zz) 0)

(= (val nn1) 1)

(= (val nn2) 2)

(= (val nn3) 3)

(= (val nn4) 4)

(= (val nn5) 5)

(operational a1)

(operational a2)

(operational b)

(operational c1)

(operational c2)

(operational d1)

(operational d2)

(operational e1)

(operational e2)

(operational f1)

(operational f2)

(operational g1)

(operational g2)

(operational h)

(operational i)

(operational j)

(operational k)

(operational l)

(operational m)

(operational n1)

(operational n2)

(operational o)

(operational p)

(operational q)

(operational r)

(operational s)

(operational t)

(operational u)

(operational v1)

(operational v2)

(operational w)

(operational x)

(operational y1)

(operational y2)

(operational z)

(operational zz)
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; (ready a)

; (at 0.1 (not (ready a)))

; (at 10.0 (ready a))

; (at 10.1 (not (ready a)))

; (at 20.0 (ready a))

; (at 20.1 (not (ready a)))

; (at 30.0 (ready a))

; (at 30.1 (not (ready a)))

; (at 40.0 (ready a))

; (at 40.1 (not (ready a)))

; (at 50.0 (ready a))

; (at 50.1 (not (ready a)))

(ready w)

; (at 0.1 (not (ready e)))

; (at 10.0 (ready e))

; (at 10.1 (not (ready e)))

; (at 20.0 (ready e))

; (at 20.1 (not (ready e)))

; (at 30.0 (ready e))

; (at 30.1 (not (ready e)))

; (at 40.0 (ready e))

; (at 40.1 (not (ready e)))

; (at 40.0 (ready e))

; (at 40.1 (not (ready e)))

)

(:goal

(and

;(>= (tail a) 5)

;(>= (tail j) 2)

;(>= (tail k) 0)

(>= (tail b) 5)

)

)

(:metric minimize (total-time))

)
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Appendix C: Sample Plan Generated

by a Domain Independent Planner

The plan generated by the Optic planner for Problem 1 of PDDL Problem File for

the Urban Traffic Network area of Huddersfield Town center area of West Yorkshire

in United Kingdom when tested on some domain independent planners. Each of the

alphabets represents corresponding names of objects in the network without considering

blockages

0.000: (release-cars w) [1.000]

1.001: (drive w nn1) [10.000]

1.002: (drive w nn1) [10.000]

1.003: (drive w nn1) [10.000]

1.004: (drive w nn1) [10.000]

1.005: (drive w nn1) [10.000]

11.002: (drive-through-junction w j13 y2 nn1) [1.000]

12.003: (drive y2 nn1) [7.000]

12.003: (drive-through-junction w j13 v2 nn1) [1.000]

13.004: (drive v2 nn1) [5.000]

18.005: (drive-through-junction v2 j12 u nn1) [1.000]

18.006: (drive-through-junction w j13 v2 nn1) [1.000]

19.004: (drive-through-junction y2 j4 e1 nn1) [1.000]

19.006: (drive u nn1) [3.000]

19.007: (drive v2 nn1) [5.000]

19.007: (drive-through-junction w j13 y2 nn1) [1.000]

20.005: (drive e1 nn1) [5.000]

20.008: (drive y2 nn1) [7.000]

22.007: (drive-through-junction u j10 zz nn1) [1.000]

23.008: (drive zz nn1) [7.000]

24.008: (drive-through-junction v2 j12 z nn1) [1.000]

24.009: (drive-through-junction w j13 v2 nn1) [1.000]

25.006: (drive-through-junction e1 j3 d1 nn1) [1.000]

25.009: (drive z nn1) [7.000]

25.010: (drive v2 nn1) [5.000]

26.007: (drive d1 nn1) [3.000]

27.009: (drive-through-junction y2 j4 e1 nn1) [1.000]

28.010: (drive e1 nn1) [5.000]
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29.008: (drive-through-junction d1 j2 b nn1) [1.000]

30.009: (drive b nn1) [10.000]

30.009: (drive-through-junction zz j2 b nn1) [1.000]

30.011: (drive-through-junction v2 j12 u nn1) [1.000]

31.010: (drive b nn1) [10.000]

31.012: (drive u nn1) [3.000]

32.010: (drive-through-junction z j3 d1 nn1) [1.000]

33.011: (drive d1 nn1) [3.000]

34.013: (drive-through-junction u j10 zz nn1) [1.000]

35.014: (drive zz nn1) [7.000]

36.012: (drive-through-junction d1 j2 b nn1) [1.000]

36.013: (drive-through-junction e1 j3 d1 nn1) [1.000]

37.013: (drive b nn1) [10.000]

37.014: (drive d1 nn1) [3.000]

40.015: (drive-through-junction d1 j2 b nn1) [1.000]

41.016: (drive b nn1) [10.000]

42.015: (drive-through-junction zz j2 b nn1) [1.000]

43.016: (drive b nn1) [10.000]

}
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Appendix D: Sample plan generated by

UTCPLAN

The plan generated by UTCPLAN at a fix duration of 5seconds count when both phase

are active and no blockage in any of the connected roads.

***************************************************************************************

Plan . . . .

MAKESPAN OPERATOR STATUS PARAMETER DURATION

0.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 5.0

5.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 5.0

10.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 5.0

15.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 5.0

20.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 5.0

25.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 5.0

40.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 5.0

45.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 5.0

50.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 5.0

55.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 5.0

60.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 5.0

65.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 5.0

70.0 [process] Rtraffic_flow [nLSouth, wDStr] 5.0

75.0 [process] Rtraffic_flow [lDSouth, pTStr] 5.0

90.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 5.0

95.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 5.0

100.0 switch_to_green [JunctionB, phase1, wDStr, lDSouth] 5.0

105.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 5.0

110.0 switch_to_green [JunctionC, phase1, pTStr, bmStr] 5.0

115.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 5.0

120.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 5.0

125.0 [process] Jtraffic_flow [JunctionB, phase1, wDStr, lDSouth] 5.0

130.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 5.0

135.0 [process] Jtraffic_flow [JunctionC, phase1, pTStr, bmStr] 5.0

140.0 [process] Rtraffic_flow [nLSouth, wDStr] 5.0

145.0 [process] Rtraffic_flow [lDSouth, pTStr] 5.0

160.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 5.0
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165.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 5.0

170.0 switch_to_green [JunctionB, phase1, wDStr, lDSouth] 5.0

175.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 5.0

180.0 switch_to_green [JunctionC, phase1, pTStr, bmStr] 5.0

185.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 5.0

190.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 5.0

195.0 [process] Jtraffic_flow [JunctionB, phase1, wDStr, lDSouth] 5.0

200.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 5.0

205.0 [process] Jtraffic_flow [JunctionC, phase1, pTStr, bmStr] 5.0

210.0 [process] Rtraffic_flow [nLSouth, wDStr] 5.0

215.0 [process] Rtraffic_flow [lDSouth, pTStr] 5.0

230.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 5.0

235.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 5.0

240.0 switch_to_green [JunctionB, phase1, wDStr, lDSouth] 5.0

245.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 5.0

250.0 switch_to_green [JunctionC, phase1, pTStr, bmStr] 5.0

255.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 5.0

260.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 5.0

265.0 [process] Jtraffic_flow [JunctionB, phase1, wDStr, lDSouth] 5.0

270.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 5.0

275.0 [process] Jtraffic_flow [JunctionC, phase1, pTStr, bmStr] 5.0

280.0 [process] Rtraffic_flow [nLSouth, wDStr] 5.0

285.0 [process] Rtraffic_flow [lDSouth, pTStr] 5.0

300.0 switch_to_green [JunctionA, phase1, nLNorth, nLSouth] 5.0

305.0 switch_to_green [JunctionA, phase2, jWNorth, jWSouth] 5.0

310.0 switch_to_green [JunctionB, phase1, wDStr, lDSouth] 5.0

315.0 switch_to_green [JunctionB, phase2, brStr, lDSouth] 5.0

320.0 switch_to_green [JunctionC, phase1, pTStr, bmStr] 5.0

325.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 5.0

330.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 5.0

335.0 [process] Jtraffic_flow [JunctionB, phase1, wDStr, lDSouth] 5.0

340.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 5.0

345.0 [process] Jtraffic_flow [JunctionC, phase1, pTStr, bmStr] 5.0

350.0 [process] Rtraffic_flow [nLSouth, wDStr] 5.0

355.0 [process] Rtraffic_flow [lDSouth, pTStr] 5.0

370.0 switch_to_green [JunctionB, phase1, wDStr, lDSouth] 5.0

375.0 switch_to_green [JunctionC, phase1, pTStr, bmStr] 5.0

380.0 [process] Jtraffic_flow [JunctionA, phase1, nLNorth, nLSouth] 5.0

385.0 [process] Jtraffic_flow [JunctionA, phase2, jWNorth, jWSouth] 5.0

390.0 [process] Jtraffic_flow [JunctionB, phase1, wDStr, lDSouth] 5.0

395.0 [process] Jtraffic_flow [JunctionB, phase2, brStr, lDSouth] 5.0

400.0 [process] Jtraffic_flow [JunctionC, phase1, pTStr, bmStr] 5.0

Total Makespan: 405.0

Numebr of Actions Operators in PLAN: 28

Numebr of executed PROCESSES in PLAN: 41

Total Output Steps: 81

Node Count: 14

Timings:

Preprocessing Time is 58
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Total Searching Time is 1278

Total Planning Time is 1336

Total Planning Time in Seconds: ~ 1seconds
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Appendix E : Sample UTCPLAN

Domain Model

Road Traffic Domain Model in within UTCPLAN showing the java declaration of the

domain and the formatted output representation of the domain.

public TrafficDomain(){

this.dName = ("Traffic Domain");

// this.t.setTime(10);

}// construct

//DECLARE ALL PREDICATES

public Predicate intersect(Junction j1,

Phase p1,

Road r1, Road r2)//predicate intersect(Road1, Road2)

{

//String intersect = new String();

return getPredicate("intersect",

j1.junctionName, p1.phaseName,

r1.roadName, r2.roadName);

}

public Predicate link(Road r1, Road r2)//predicate intersect(Road1, Road2)

{
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//String intersect = new String();

return getPredicate("link", r1.roadName, r2.roadName);

}

public Predicate JflowActive(Junction j1,

Phase p1, Road r1, Road r2)

//predicate intersect(Road1, Road2)

{

//String intersect = new String();

return getPredicate("JflowActive",

j1.junctionName, p1.phaseName, r1.roadName, r2.roadName);

}

public Predicate RflowActive(Road r1, Road r2)//predicate intersect(Road1, Road2)

{

//String intersect = new String();

return getPredicate("RflowActive", r1.roadName, r2.roadName);

}

//DECLARE ALL FUNCTIONS

public CFunction queue(String operand,

Road r1, float value)//function queuelenght(Road1)

{ return getFunction("queueLenght",

operand, r1, value, cfunctionList);

}

public CFunction queue(String operand,

Road r1, NValues nvalue)

//function queuelenght(Road1)

{ return getFunction("queueLenght",

operand, r1, nvalue, cfunctionList);
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}

public CFunction capacity(String operand, Road r1, float value )

{

CFunction capacity = new CFunction();

capacity.setTerminology("capacity");

capacity.setcFunction(operand, r1.roadName, value);

cfunctionList.add(capacity);

return capacity;

}

//DECLARE ALL FUNCTIONS

public CFunction interupt(String operand,

Road r1, float value)//function queuelenght(Road1)

{ return getFunction("interuptLevel",

operand, r1, value, cfunctionList);

}

public CFunction interupt(String operand,

Road r1, NValues nvalue)//function queuelenght(Road1)

{ return getFunction("interuptLevel", operand, r1, nvalue, cfunctionList);

//cfunctionList.add(queue);

//return queue;

}

//DECLARE ALL ACTION OPERATORS>>>>>>>

//Action greenSplit for Road1 and Road2 at Junction 1

public Action greenSplit(Junction j1, Phase p1, Road r1, Road r2)

{ declareSplitAction(j1, p1, r1,r2);

Action switch_to_green = new Action();
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switch_to_green.setDuration(adur);

switch_to_green.setAction("switch_to_green",

j1.junctionName, p1.phaseName,

r1.roadName, r2.roadName);

switch_to_green.setPreconditions(intersect(j1, p1, r1, r2),

queue(">", r1, 0) ,

interupt("<", r2, 7));

switch_to_green.setEffects(JflowActive(j1, p1, r1, r2));

//switch_to_green.setcEffects(queue("assign", r1, 0),

queue("assign", r2, 0));//increase roadA decrease roadB

actionList.add(switch_to_green); //add action to list of actions

opList.add(switch_to_green); //add action to list of actions

return switch_to_green;

}

//DECLARATION for greenSplit for Road1 and Road2 at Junction 1

void declareSplitAction(Junction j1, Phase p1, Road r1, Road r2)

{

Action switch_to_green = new Action();

switch_to_green.setAction("switch_to_green",

j1.junctionName, p1.phaseName,

r1.roadName, r2.roadName);

switch_to_green.setDuration(adur);

switch_to_green.setPreconditions(setIntersect(j1, p1, r1, r2),

queueLenght(">", r1, 0),

interuptLevel("<", r2, 7));

switch_to_green.setEffects(setJFlowActive(j1,p1, r1, r2));

// switch_to_green.setcEffects(queueLenght("assign", r1, 0),

queueLenght("assign", r2, 0));//increase roadA decrease roadB

}

//DECLARE GROUNDED PROCESSES>>>>>>
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// PROCESS traffic_flow for Road1 and Road2 at Junction 1

public Proces JtrafficFlow(Junction j1 , Phase p1, Road r1, Road r2)

{ InitNValues();

declaretrafficFlow(j1, p1, r1,r2);

Proces Jtraffic_flow = new Proces();

Jtraffic_flow.setProces("Jtraffic_flow",

j1.junctionName, p1.phaseName,

r1.roadName, r2.roadName);

Jtraffic_flow.setDuration(adur);

// traffic_flow.setPreconditions(intersect(j1, r1, r2),queue(">=", r1, 10));

Jtraffic_flow.setPreconditions(JflowActive(j1,p1, r1, r2));

Jtraffic_flow.setcEffects(queue("decrease", r1, calJVehicleNo),

queue("increase", r2, calJVehicleNo));//increase roadA decrease roadB

prcList.add(Jtraffic_flow); //add process to process List

opList.add(Jtraffic_flow); //add process to operator list List

return Jtraffic_flow;

}

//DECLARATION for traffic_flow for Road1 and Road2 at Junction 1

void declaretrafficFlow(Junction j1 , Phase p1, Road r1, Road r2)

{ InitNValues();

Proces Jtraffic_flow = new Proces();

Jtraffic_flow.setProces("Jtraffic_flow", j1.junctionName,

p1.phaseName, r1.roadName, r2.roadName);

Jtraffic_flow.setDuration(adur);

//traffic_flow.setPreconditions(setIntersect(j1, r1, r2),

queueLenght(">=", r1, 10));

Jtraffic_flow.setPreconditions(setJFlowActive(j1, p1, r1, r2));

Jtraffic_flow.setcEffects(queueLenght("decrease", r1, calJVehicleNo),

queueLenght("increase", r2, calJVehicleNo));//increase roadA decrease roadB

}
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//DECLARE GROUNDED PROCESSES>>>>>>>>>>>

// PROCESS traffic_flow for Road1 and Road2 at Junction 1

public Proces RtrafficFlow(Road r1, Road r2)

{ InitNValues();

declareRtrafficFlow(r1,r2);

Proces Rtraffic_flow = new Proces();

Rtraffic_flow.setProces("Rtraffic_flow", r1.roadName, r2.roadName);

Rtraffic_flow.setDuration(adur);

// traffic_flow.setPreconditions(intersect(j1, r1, r2),queue(">=", r1, 10));

Rtraffic_flow.setPreconditions(RflowActive(r1, r2));

Rtraffic_flow.setcEffects(queue("decrease", r1, calJVehicleNo),

queue("increase", r2, calJVehicleNo));//increase roadA decrease roadB

prcList.add(Rtraffic_flow); //add process to process List

opList.add(Rtraffic_flow); //add process to operator list List

return Rtraffic_flow;

}

//DECLARATION for traffic_flow for Road1 and Road2 at Junction 1

void declareRtrafficFlow(Road r1, Road r2)

{ InitNValues();

Proces Rtraffic_flow = new Proces();

Rtraffic_flow.setProces("Rtraffic_flow", r1.roadName, r2.roadName);

Rtraffic_flow.setDuration(adur);

//traffic_flow.setPreconditions(setIntersect(j1, r1, r2),

queueLenght(">=", r1, 10));

Rtraffic_flow.setPreconditions(setRFlowActive(r1, r2));

Rtraffic_flow.setcEffects(queueLenght("decrease", r1, calJVehicleNo),

queueLenght("increase", r2, calJVehicleNo));

//increase roadA decrease roadB

}
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//DECLARE GROUNDED EVENTS>>>>>>>>>>

//external events in the domain checking status of road

public Eventt linkingRoads(Road r1, Road r2)

{ declarelinkingRoads(r1,r2);

Eventt road_linked = new Eventt();

road_linked.setEvent("road_linked", r1.roadName, r2.roadName);

road_linked.setDuration(adur);

road_linked.setPreconditions(link(r1, r2),

queue(">", r1, 0) , interupt("<", r2, 7));

road_linked.setEffects(RflowActive(r1, r2));

evtList.add(road_linked); //add action to list of actions

opList.add(road_linked); //add action to list of actions

return road_linked;

}

//DECLARATION for greenSplit for Road1 and Road2 at Junction 1

void declarelinkingRoads(Road r1, Road r2)

{

Eventt road_linked = new Eventt();

road_linked.setEvent("road_linked", r1.roadName, r2.roadName);

road_linked.setDuration(adur);

road_linked.setPreconditions(setLink(r1, r2),

queueLenght(">", r1, 0) , interuptLevel("<", r2, 7));

road_linked.setEffects(RflowActive(r1, r2));

}

//internal event checking status of road

public Eventt upstreamFilled(Junction j1, Road r1, Road r2)

{ InitNValues();

declareUpstreamFilled(j1, r1,r2);

Eventt upstreamFilled = new Eventt();
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upstreamFilled.setEvent("upstreamFilled",

j1.junctionName, r1.roadName, r2.roadName);

upstreamFilled.setDuration(1);

// traffic_flow.setPreconditions(intersect(j1, r1, r2),

queue(">=", r1, 10));

upstreamFilled.setPreconditions(queue(">=", r2, 200));

upstreamFilled.setcEffects(queue("assign", r2, 200),

interupt("assign", r2, 7));//create an interupt

evtList.add(upstreamFilled); //add process to process List

opList.add(upstreamFilled); //add process to operator list List

return upstreamFilled;

}

//DECLARATION for traffic_flow for Road1 and Road2 at Junction 1

void declareUpstreamFilled(Junction j1, Road r1, Road r2)

{ InitNValues();

Eventt upstreamFilled = new Eventt();

upstreamFilled.setEvent("upstreamFilled", j1.junctionName,

r1.roadName, r2.roadName);

upstreamFilled.setDuration(1);

//traffic_flow.setPreconditions(setIntersect(j1, r1, r2),

queueLenght(">=", r1, 10));

upstreamFilled.setPreconditions(queueLenght(">=", r2, 200));

upstreamFilled.setcEffects(queueLenght("assign", r2, 200),

interuptLevel("assign", r2, 7));//increase roadA decrease roadB

}

//DECLARE ALL CLACULATIONS AND TRAFFIC FORMULARS

// initialise all numeric formular for calculating dynamic continous changes

public void InitNValues(){
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calJVehicleNo.setNValues("*",CONSTANTS.Fj ,

jActiveTime.getTime());

//junction flowrate * active green time = number of vehicles leaving J

calRVehicleNo.setNValues("*",CONSTANTS.Fz,

rActiveTime.getTime());

//road flowrate * road active time=number of vehicles leaving R

calJTime.setNValues("*", 10,1);

}

//DECLARE MICELLENIOUS UTILITY METHODS>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

public Predicate setIntersect(Junction j1, Phase p1, Road r1, Road r2)

{

Predicate intersect = new Predicate();

intersect.setPredicate("intersect",

j1.junctionName, p1.phaseName,

r1.roadName,r2.roadName);

predicateList.add(intersect);

return intersect;

}

public Predicate setLink(Road r1, Road r2)

{

Predicate link = new Predicate();

link.setPredicate("link", r1.roadName,r2.roadName);

predicateList.add(link);

return link;

}

public Predicate setJFlowActive(Junction j1, Phase p1, Road r1, Road r2)
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{

Predicate JflowActive = new Predicate();

JflowActive.setPredicate("JflowActive",

j1.junctionName, p1.phaseName,

r1.roadName,r2.roadName);

predicateList.add(JflowActive);

return JflowActive;

}

public Predicate setRFlowActive(Road r1, Road r2)

{

Predicate RflowActive = new Predicate();

RflowActive.setPredicate("RflowActive", r1.roadName,r2.roadName);

predicateList.add(RflowActive);

return RflowActive;

}

public Predicate setStatus(Road r1, Road r2)

{

Predicate status = new Predicate();

status.setPredicate("status", r1.roadName,r2.roadName);

predicateList.add(status);

return status;

}

public Predicate status(String status , Road r1, Road r2)

{

//String intersect = new String();

return getPredicate("status", r1.roadName, r2.roadName);

}
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public Predicate getPredicate(String name, String obj1, String obj2 ) {

Predicate pred = new Predicate();

for(int index= 0;index<predicateList.size();index++ ){

Predicate p = predicateList.get(index);

//if ((p.getName() == "intersect")

&& (p.getObj(0) == obj1)

&& (p.getObj(1) == obj1))

// return p;}

if ((p.getName().equals(name))

&& (p.getObj(0).equals(obj1))

&& (p.getObj(1).equals(obj2)))

pred = p;

}

return pred;

}

public Predicate getPredicate(String name,

String obj1, String obj2,

String obj3 , String obj4 ) {

Predicate pred = new Predicate();

for(int index= 0;index<predicateList.size();index++ ){

Predicate p = predicateList.get(index);

//if ((p.getName() == "intersect")

&& (p.getObj(0) == obj1)

&& (p.getObj(1) == obj1))

// return p;}

if ((p.getName().equals(name))

&& (p.getObj(0).equals(obj1))
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&& (p.getObj(1).equals(obj2))

&& (p.getObj(2).equals(obj3))

&& (p.getObj(3).equals(obj4)))

pred = p;

}

return pred;

}

public Predicate getPredicate(String name, String obj1, String obj2, String obj3 ) {

Predicate pred = new Predicate();

for(int index= 0;index<predicateList.size();index++ ){

Predicate p = predicateList.get(index);

//if ((p.getName() == "intersect")

&& (p.getObj(0) == obj1)

&& (p.getObj(1) == obj1))

// return p;}

if ((p.getName().equals(name))

&& (p.getObj(0).equals(obj1))

&& (p.getObj(1).equals(obj2))

&& (p.getObj(2).equals(obj3)))

pred = p;

}

return pred;

}
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public CFunction queueLenght(String operand, Road r1, float value)

{ CFunction queue = new CFunction();

queue.getFunction("queueLenght", operand, r1.roadName, value);

cfunctionList.add(queue);

return queue;

}

public CFunction queueLenght(String operand, Road r1, NValues nvalue)

{ CFunction queue = new CFunction();

queue.getFunction("queueLenght", operand, r1.roadName, nvalue);

cfunctionList.add(queue);

return queue;

}

public CFunction interuptLevel(String operand, Road r1, float value)

{ CFunction interupt = new CFunction();

interupt.getFunction("interuptLevel", operand, r1.roadName, value);

cfunctionList.add(interupt);

return interupt;

}

public CFunction interuptLevel(String operand, Road r1, NValues nvalue)

{ CFunction interupt = new CFunction();

interupt.getFunction("interuptLevel", operand, r1.roadName, nvalue);

cfunctionList.add(interupt);

return interupt;

}

//

//

//

public CFunction getFunction(String functionTerm,

String operand, Road r1, float value, ArrayList flist) {
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CFunction funct = new CFunction();

for(int index= 0;index<flist.size();index++ ){

CFunction f = (CFunction)flist.get(index);

//if ((p.getName() == "intersect")

&& (p.getObj(0) == obj1)

&& (p.getObj(1) == obj1))

// return p;}

if ((f.getTerminology().equals(functionTerm))

&& (f.getcOperator().equals(operand))

&& (f.getcName().equals(r1.roadName))

&& (f.getcSigValue() == value))

funct = f;

}

return funct;

}

public CFunction getFunction(String functionTerm,

String operand, Road r1,

NValues nvalue, ArrayList flist)

{

CFunction funct = new CFunction();

for(int index= 0;index<flist.size();index++ ){

CFunction f = (CFunction)flist.get(index);

//if ((p.getName() == "intersect")

&& (p.getObj(0) == obj1)

&& (p.getObj(1) == obj1))

// return p;}

if ((f.getTerminology().equals(functionTerm))
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&& (f.getcOperator().equals(operand))

&& (f.getcName().equals(r1.roadName))

&& (f.getcValue() == nvalue))

funct = f;

}

return funct;

}

————–Example of Java formated and Generated Domain Model

Domain Information

File Name: class basicplanner.domainFiles.DomainParameters

Domain Name:

Traffic Signal Control

Domain Predicates:

(intersect at_junction this_phase from_road1 to_road2)

(JflowActive at_junction this_phase from_road1 to_road2)

(link from_road1 to_road2)

(RflowActive from_road1 to_road2)

Domain Functions:

(=(queueLenght (this_road 10.0))

(=(capacity (this_road 200.0))

(=(interuptLevel (this_road 0.0))
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Domain Operators:

(:process Jtraffic_flow

:parameters [at_junction, this_phase, from_road1, to_road2]

:duration 5.0

:cost

:precondition [ (JflowActive at_junction this_phase from_road1 to_road2)][][]

:effect ([][(decrease(queueLenght (from_road1 (* #10.0 1.0))),

(increase(queueLenght (to_road2 (* #10.0 1.0)))][])

not([][][])

(:process Rtraffic_flow

:parameters [from_road1, to_road2]

:duration 5.0

:cost

:precondition [ (RflowActive from_road1 to_road2)][][]

:effect ([][(decrease(queueLenght (from_road1 (* #10.0 1.0))),

(increase(queueLenght (to_road2 (* #10.0 1.0)))][])

not([][][])

(:action switch_to_green

:parameters [at_junction, this_phase, from_road1, to_road2]

:duration 5.0

:cost

:precondition [ (intersect at_junction this_phase from_road1 to_road2)]

[(>(queueLenght (from_road1 0.0)),

(<(interuptLevel (to_road2 7.0))][]

:effect ([ (JflowActive at_junction this_phase from_road1 to_road2)][][])

not([][][])
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(:event upstreamFilled

:parameters [at_junction, from_road1, to_road2]

:duration 1.0

:cost

:precondition [][(>=(queueLenght (to_road2 200.0))][]

:effect ([][(assign(queueLenght (to_road2 200.0)),

(assign(interuptLevel (to_road2 7.0))][])

not([][][])

(:event road_linked

:parameters [from_road1, to_road2]

:duration 5.0

:cost

:precondition [ (link from_road1 to_road2)]

[(>(queueLenght (from_road1 0.0)),

(<(interuptLevel (to_road2 7.0))][]

:effect ([ (RflowActive from_road1 to_road2)][][])

not([][][])

Total number of Predicate:4

Total number of numeric Functions:3

Total number of Operators:5

---------------------------------------------------------------------------

BUILD SUCCESSFUL (total time: 0 seconds)
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Appendix F: Sample UTCPLAN

Problem File

Object file for the Road Traffic Network

Problem Information

File Name: class basicplanner.domainFiles.DomainParameters

Problem Name: Traffic Problem

Domain Objects:

nLNorth nLSouth jWNorth jWSouth wDStr lDSouth

brStr lDNorth pTStr bmStr pLNorth pLSouth

Source Sink JunctionA JunctionB JunctionC

phase1 phase2

Domain Resources:

(:Resource GreenPhase1

:parameters

lower_Bound: 1.0

upper_Bound: 20.0

weight: 0.05

)
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(:Resource GreenPhase2

:parameters

lower_Bound: 1.0

upper_Bound: 20.0

weight: 0.18

)

Domain Resource Constraints:

(:Constraints GreenPhaseTime

:parameters

lower_Bound: 5.0

upper_Bound: 30.0

:linearFactors

GreenPhase1 10.0

GreenPhase2 5.0

)

(:Constraints GreenPhaseTime

:parameters

lower_Bound: 5.0

upper_Bound: 30.0

:linearFactors

GreenPhase1 10.0

GreenPhase2 5.0

)

: Initial Condition
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(intersect JunctionA phase1 nLNorth nLSouth)

(intersect JunctionA phase2 jWNorth jWSouth)

(intersect JunctionB phase1 wDStr lDSouth)

(intersect JunctionB phase2 brStr lDSouth)

(intersect JunctionC phase1 pTStr bmStr)

(intersect JunctionC phase2 pLNorth pLSouth)

(link nLSouth wDStr)

(link lDSouth pTStr)

(=(queueLenght (nLNorth 300.0))

(=(queueLenght (nLSouth 0.0))

(=(queueLenght (jWNorth 300.0))

(=(queueLenght (jWSouth 0.0))

(=(queueLenght (wDStr 0.0))

(=(queueLenght (lDSouth 0.0))

(=(queueLenght (brStr 300.0))
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(=(queueLenght (lDNorth 0.0))

(=(queueLenght (pTStr 0.0))

(=(queueLenght (bmStr 0.0))

(=(queueLenght (pLNorth 0.0))

(=(queueLenght (pLSouth 0.0))

(=(interuptLevel (nLNorth 0.0))

(=(interuptLevel (nLSouth 0.0))

(=(interuptLevel (jWNorth 0.0))

(=(interuptLevel (jWSouth 0.0))

(=(interuptLevel (wDStr 0.0))

(=(interuptLevel (lDSouth 0.0))

(=(interuptLevel (brStr 0.0))

(=(interuptLevel (lDNorth 0.0))

(=(interuptLevel (pTStr 0.0))

(=(interuptLevel (bmStr 0.0))

(=(interuptLevel (pLNorth 0.0))

(=(interuptLevel (pLSouth 0.0))
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: Goal Condition

(>(queueLenght (jWSouth 200.0))

(>(queueLenght (bmStr 200.0))

BUILD SUCCESSFUL (total time: 0 seconds)
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Appendix G: Sample Thermal Problem

and Solution Generated by the Planner

Domain Information

Domain Name: ThermalControl

Domain Predicates:

(on ?heater)

(in ?water ?heater)

(evap ?water)

(boil ?water)

(off ?heater)

Domain Functions:

(=(temp 20.0))

Domain Operators:
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(:action switch_on

:parameters [heater]

:duration 1.0

:precondition [ (off ?heater), (in ?water ?heater)]

[(<(temp 60.0))][]

:effect ([ (on ?heater)][(increase(temp 10.0))][])

not([ (off ?heater)][][])

(:process water

:parameters [water]

:duration 10.0

:precondition [ (on ?heater), (in ?water ?heater)]

[(>(temp 60.0))][]

:effect ([][(increase(temp (* #10.0 1.0)))][])

not([][][])

(:event boils

:parameters [water]

:duration 2.0
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:precondition [ (on ?heater), (in ?water ?heater)]

[(=(temp 100.0))][]

:effect ([(boil ?water)][(increase(temp (* #10.0 1.0)))][])

not([][][])

(:process boiling

:parameters [water]

:duration 10.0

:precondition [ (on ?heater), (in ?water ?heater),

(boil ?water)][(>(temp 120.0))][]

:effect ([][(increase(temp 20.0))][])

not([][][])

(:event evaporates

:parameters [water]

:duration 2.0

:precondition [ (in ?water ?heater), (boil ?water),

(on ?heater)][(>(temp 130.0))][]

:effect ([(evap ?water)][(increase(temp (* #10.0 1.0)))][])
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not([ (boil ?water), (in ?water ?heater)][][])

(:action switch_off

:parameters [heater]

:duration 1.0

:precondition [ (on ?heater),(evap ?water)]

[(>(temp 130.0))][]

:effect ([ (off ?heater)][][])

not([ (on ?heater)][][])

Initial Condition:

[ (off ?heater), (in ?water ?heater)]

[]

Goal Condition:

[ (off ?heater), (evap ?water)]

[]

Solution Plan Generated by the Planner

MAKESPAN OPERATOR STATUS PARAMETER DURATION
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0.0 switch_on [heater] 1.0

1.0 [process] water [water] 10.0

11.0 [event] boils [water] 2.0

13.0 [process] boiling [water] 10.0

23.0 [event] evaporates [water] 2.0

25.0 switch_off [heater] 1.0

Timings in Nanoseconds, because it is too small for milliseconds

Total Searching Time is 86

Total Planning Time is 91

Preprocessing Time is 5

BUILD SUCCESSFUL (total time: ~0 seconds)
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Appendix H: Sample Block World

Problem and Solution Generated by

the Planner

Domain Information

File Name: class basicplanner.domainFiles.DomainParameters

Domain Name: BlockWorld

Domain Predicates:

(handEmpty robot_hand)

(on x y)

(clear x)

(holding x)

(onTable x)

Domain Functions:
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Domain Operators:

(:action pick_up

:parameters [robot_hand, x]

:duration 1.0

:precondition [ (clear x), (onTable x),

(handEmpty robot_hand)][][]

:effect ([ (holding x)][][])

not([ (onTable x), (clear x),

(handEmpty robot_hand)][][])

(:action put_down

:parameters [robot_hand, x]

:duration 1.0

:precondition [ (holding x)][][]

:effect ([ (onTable x), (clear x),

(handEmpty robot_hand)][][])

not([ (holding x)][][])

(:action stack

:parameters [x, y, robot_hand]
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:duration 1.0

:precondition [ (holding x),(clear y)][][]

:effect ([ (on x y), (clear x),

(handEmpty robot_hand)][][])

not([ (clear y),(holding x)][][])

(:action unstack

:parameters [x, y, robot_hand]

:duration 1.0

:precondition [ (on x y), (clear x),

(handEmpty robot_hand)][][]

:effect ([ (holding x), (clear y)][][])

not([ (on x y), (clear x),

(handEmpty robot_hand)][][])

Total number of Predicate:5

Total number of numeric Functions:0

Total number of Operators:4

-------------------------------------------------------------------------------------------------------------------
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-------------------------------------------------------------------------------------------------------------------

Problem Information

File Name: class basicplanner.domainFiles.DomainParameters

Problem Name: fourBlock

Domain Objects:

A B C D robot_Hand

: Initial Condition

(clear A)

(clear B)

(clear C)

(clear D)

(onTable A)

(onTable B)

(onTable C)

(onTable D)

(handEmpty robot_hand)
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: Goal Condition

(on A B)

(on C D)

Solution Plan Generated by the Planner

MAKESPAN OPERATOR STATUS PARAMETER DURATION

0.0 pick_up [robot_hand, A] 1.0

1.0 stack [A, B, robot_hand] 1.0

2.0 pick_up [robot_hand, C] 1.0

3.0 stack [C, D, robot_hand] 1.0
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