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Abstract 

Recoverable energy in vehicle suspension systems has attracted intensive attention in recent 

years for the improvement of vibration suppression performance and the reduction of energy 

dissipation. Various design concepts and structures of regenerative suspensions have been 

presented and investigated to recover the energy of linear motion and vibration between the 

vehicle body and chassis from road disturbances. These studies concentrate on the energy 

conversion from kinetic energy to electricity. Although a large number of concepts and models 

have been proposed and evaluated to regenerate power for reuse, the previous simulation works 

have used significantly simplified models without considering parameter uncertainties and 

system losses. In addition, experimental works are too simple to support for modelling 

optimisation.  

To advance the technology, a regenerative hydraulic shock absorber is investigated rigorously 

by examining the system at various developing stages including modelling all hydraulic, 

mechanical, and electromagnetic processes, simulating its behaviours, identifying its uncertain 

parameters/variables, fabricating a prototype of a commonly used shock absorber, testing its 

desirable performance and evaluating its on-road usability, which has given an accurate 

understanding of dynamic behaviours and power regeneration of a regenerative hydraulic shock 

absorber system. 

Based on the configuration of the prototype, a comprehensive mathematical model is 

developed for the regenerative hydraulic shock absorber system. The various losses and 

nonlinearity have been taken into account in modelling hydraulic, mechanical, and 

electromagnetic processes, which allow more detailed influences and agreeable predictions with 

the experimental work to be obtained. The introduction of the gas-charged hydraulic accumulator 

into the system has been explored in both modelling and testing to provide power smoothing in 

an attempt to give a more stable recoverable power.  

Model parameter identifications and refinements based on online data are systemically 

investigated. It has found that the pressures, rotation speeds and electrical outputs, which are 

readily available in the system, are sufficient to determine and refine uncertain model parameters 

such as the voltage constant coefficient, torque constant coefficient, generator internal resistance 

and rotational friction torque using a common least square method.  
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The developed experimental rig and measurement systems for the study of regenerative 

hydraulic shock absorbers are designed and built. The variations in motor pressure and shaft 

speed under different excitations are evaluated, and also voltage output and recoverable power at 

different electrical loads are investigated. Additionally, the experimental work is not only used to 

validate the predicted results comprehensively, but also to offer a practical evaluation method for 

the system under various operating conditions. In particular, the system using piston-rod 

dimensions of 50-30mm achieves recoverable power of 260W with an efficiency of around 40% 

under sinusoidal excitation of 1Hz frequency and 25mm amplitude. Additionally, control 

strategies and their realisation on a general purpose PC computer are developed based on 

constant voltage, current and resistance schemes to carry out the investigation of the system 

performances, which allows it to be fully evaluated upon the compromise between the damping 

behaviour and power regeneration performance for different road conditions. 

Furthermore, the simulation of the entire system and parameter computations are all realised 

on the Matlab platform, which provides sufficient flexibility to take into account more influence 

factors for accurate and detailed analysis and thus can be an effective mathematical tool for 

further development research in this direction such as the optimisation of the structures, control 

strategies and system integrations.  
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List of Abbreviations  

ADC     Analogue-to-digital converter 

A/D      Analogue/digital 

ASCOD Ulan  Austrian Spanish Cooperation Development 

armoured fighting vehicle family, named Ulan. 

BAPG     Bosch Auto motive Proving Grounds 

CC      Constant current 

CV      Constant voltage 

CR      Constant resistance 

CVI      Cortical visual impairment 

DC      Direct current 

DOF     Degree of freedom 

ECASS     Electronically controlled active suspension system 

EMD     Electromagnetic damper 

EMF     Electromagnetic force 

EV      Eclectic Vehicle 

FCHV     Fuel cell hybrid vehicle 

HEV     Hybrid electric vehicle 

HMMWV     High Mobility Multipurpose Wheeled Vehicle 

IPH      Integrated piston head 

ISO      International standard organisation 

I/O      Input/output 
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GUI      Graphical user interface 

LVDT     Linear variable differential transformer 

mph      Miles per hour 

MIT     Massachusetts Institute of Technology 

ODE     Ordinary differential equations 

PC      Personal computer 

PCI      Peripheral component interconnect 

PLC     programmable logic controller 

PM      Permanent magnetic 

PMW     Pulse-width modulation 

PSD     Power spectral density 

RHSA     Regenerative hydraulic shock absorber 

RHSAs     Regenerative hydraulic shock absorber system 

RMS     Root mean square 

UT-CEM     University of Texas Centre for Electro-mechanics 

VLT     Variable linear transmission 
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List of Notation  

The key parameters and variables used in this thesis are shown in the following. Several 

descriptions have been simplified, and hence that more detailed description of the parameters 

and variables can be found in relevant subsection. In addition, some symbol will be altered their 

definitions due to the derivation of equations which will be obviously listed and redefined in the 

specific part of the thesis. Additionally, a few of the parameters and variables could be explicitly 

described due to the area of specialisation.  

Symbol  Description       Unit 

Aacc   Area of the accumulator inlet port    [m2] 

Acap   Full piston face area      [m2] 

Acv   Area of the effective check valve    [m2] 

Ai   Displacement amplitude     [m] 

Am   Area of motor inlet      [m2] 

Arod   Piston annular area      [m2] 

Ap   Cross section area of the pipe     [m2] 

aw,rms  Weighted RMS acceleration     [m2/s] 

ceq   Equivalent total damping     [Ns/m] 

cr    Equivalent viscous damping     [Ns/m] 

ce   Damping of the generator     [Ns/m] 

c   Suspension damping coefficient    [Ns/m] 

Cv   Viscous friction coefficient     [Nm/(rad/s)] 

Dm   Displacement of the hydraulic motor    [cc(1×10-6m3)] 

Dp   Diameter of the pipe      [m] 

E   Electromotive force      [V] 
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f   Frequency       [Hz] 

1mf 2mf and  Natural frequency      [Hz]
 

Fcap   Piston force       [N] 

Frod   Annular piston force      [N] 

Fst   Static force acting on the wheel    [N] 

Fdy   Dynamic force between the tyre and the road surface [N] 

FTC,RMS  RMS value of the total tyre-ground contact force  [N] 

g   acceleration of gravity     [kg] 

I   Instantaneous electric current     [A] 

Jt   Moment of shaft inertia     [kg·m2] 

k   stiffness       [N/m] 

Klk   Hydraulic motor leakage coefficient    [kgs2/m] 

kV,i    Incremental voltage constant coefficient   [Vs/rad] 

k1   Spring stiffness      [N/m] 

k2   Tyre stiffness       [N/m] 

kT   Torque constant coefficient                [Nm/A] 

kV   Electromotive voltage constant coefficient   [Vs/rad] 

L   Length of the pipe      [m] 

Lin   Internal inductance of the DC generator   [H] 

Lw   Wavelength       [m] 

m   Objective mass      [kg] 

m1   Sprung mass (vehicle body)     [kg] 
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m2   Unsprung mass (tyre & wheel mass)    [kg] 

n   Spatial frequency      [cycle/m] 

n0   Initial spatial frequency     [cycle/m] 

P   Relevant pressures (Pcap, Prod or Pm)    [Pa] 

Pa   Atmospheric pressure      [Pa] 

Pcap   Pressure of the cap-end chamber    [Pa] 

Pm   Pressure of the hydraulic motor inlet    [Pa] 

Pcv   Pre-load pressure of the check valve    [Pa] 

Pr   Total return pressure      [Pa] 

Prod   Pressure of the rod-end chamber    [Pa] 

Preg   Recoverable power      [W] 

Pf   Instantaneous accumulator port pressure   [Pa] 

Ploss   Pressure loss across the pipeline    [Pa] 

Pnom   Nominal motor pressure     [Pa] 

Pref   Reference pressure      [Pa] 

Ppc   Accumulator pre-charged pressure    [Pa] 

Pp   Power potential      [W] 

Pin   Piston power as power input     [W] 

Qacc   Accumulator port flow rate     [m3/s] 

Qcout  Fluid flow out of the cap-end chamber   [m3/s] 

Qrout  Fluid flow out of the rod-end chamber   [m3/s] 

Qcin   Return pressure of the cap-end chamber   [m3/s] 

Qrin   Return pressure of the rod-end chamber   [m3/s] 
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Qm   Hydraulic motor flow rate     [m3/s] 

Qcap,m  Theoretical flow from the cap-end chamber   [m3/s] 

Qrod,m  Theoretical flow from the rod-end chamber   [m3/s] 

QT   Total theoretical flow out of shock absorber body  [m3/s] 

Qm,m  Measured hydraulic motor flow    [m3/s] 

RL   External electrical load     [Ω] 

Rin   Internal resistance      [Ω] 

Rin,j   Incremental internal resistance    [Ω] 

S   Maximum displacement of the piston    [mm] 

S0   Initial position of the piston     [mm] 

Sa   Effective displacement of the piston    [mm] 

t   Running time       [s] 

Tm   Hydraulic motor driving torque    [Nm] 

Tl   Electromagnetic torque     [Nm] 

Trf   Rotational friction torque     [Nm] 

TH   Output torque of the hydraulic motor    [Nm] 

Tfm   Torque due to internal viscous drag    [Nm] 

T   Time end       [s] 

t0   Starting time       [s] 

U   Instantaneous voltage      [V] 

Upre   Voltage prediction for parameter determination  [V] 

v(t)   Piston velocity at time t     [m/s] 

vi   Maximum piston velocity     [m/s] 
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vh   Constant horizontal speed     [m/s] 

Vcap   Volume of the cap-end chamber    [m3] 

Vrod   Volume of the rod-end chamber    [m3] 

Vic   Initial volume of the cap-end chamber   [m3] 

Vir   Initial volume of the rod-end chamber   [m3] 

Vcyd   Dead volume of the cylinder chambers   [m3] 

VT   Total volume upstream of the hydraulic motor inlet  [m3] 

Vl   Fluid volume of the pipeline     [m3] 

Vf   Changing volume in fluid chamber    [m3] 

Vt   Total variable volume in accumulator   [m3] 

Vagd   Accumulator dead volume     [m3] 

wr   Road disturbance      [m] 

x1   Unsprung mass displacement     [m] 

x2   Sprung mass displacement     [m] 

1x    Sprung mass velocity      [m/s] 

2x    Unsprung mass veolocity     [m/s] 

1x     Sprung mass acceleration     [m2/s] 

2x    Unsprung mass acceleration     [m2/s] 

z   Relative displacement between vehicle body and wheels [m/s] 

z    Relative velocity between vehicle body and wheels  [m/s] 

βref   Reference bulk modulus     [Pa] 

βcap   Effective bulk modulus in cap-end chamber   [Pa] 
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βrod   Effective bulk modulus in rod-end chamber   [Pa] 

βm   Effective bulk modulus of the motor chamber  [Pa] 

σ   Kinematic viscosity of the hydraulic oil   [m2/s] 

µ   Dynamic viscosity of the hydraulic oil   [Pa s] 

ρ   Hydraulic oil density      [kg/m3] 

ηv   Volumetric efficiency of the hydraulic motor  [%] 

ηm   Mechanical efficiency of the hydraulic motor  [%] 

ηreg   regenerated power conversion efficiency   [%] 

ηcap   Captured power efficiency     [%] 

ωm   Shaft speed of the hydraulic motor and generator  [rad/s] 

ωnom  Nominal motor angular velocity    [rad/s] 

ωm,m  Measured motor shaft speed     [rad/s] 

Ω   Angular spatial frequency     [rad/s] 

Φ(Ω0)  A measure for the roughness     [m2/(rad/m)] 

Ω0   Reference wave number     [rad/m] 

Φ(Ω)  discrete PSD in spatial domain    [m3] 

Ω1   Lower limit of the angular spatial frequency   [cycle/m] 

ΩN   Upper limit of the angular spatial frequency   [cycle/m] 

Cd   Discharge coefficient      [-] 

Cq   Discharge coefficient of accumulator port   [-] 

HHp   High-pass filter      [-] 

HLp   Low-pass filter      [-] 

HAvt   Acceleration-velocity transition filter    [-] 
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HUs   Upward step filter      [-] 

zxH /1
HT   Transmissibility transfer function (equal to )  [-] 

wxxH )( 21   Suspension travel transfer function    [-] 

wxH
1   Body motion transfer function    [-] 

wxxH )( 12   Tyre deflection transfer function    [-] 

nr   Gas specific heat ratio of the entrained air   [-] 

i and j  Starting points of kV,I and Rin,j     [-] 

sp   Path variable       [-] 

s   Variable known as Laplace operator    [-] 

Wk   Frequency principle weighting factors for seat vibration [-] 

w   As waviness, and the undulation exponents   [-] 

w1 and w2  As waviness, and the undulation exponents 1and 2  [-] 

α   Gas ratio       [-] 

Φi   Random phase angles      [-] 

λRMS   Dynamic-static contact force ratio    [-] 

    Suspension damping ratio     [-] 
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Chapter 1 Introduction 

For the last twenty years, automotive manufacturers and researchers have paid considerable 

attention to improving the efficiency, handling and safety performance of vehicles. As an 

effective means for saving energy, recovery technologies have been investigated actively to 

realise regenerative braking, regenerative suspension and exhaust heat recovery.  

The subject of regenerative suspension is the focus of this study as it has more potential for 

achieving both energy recovery and performance improvement. To this end, the research aims 

and associated key objectives are defined. In addition, it also highlights the logical connections 

by outlining the content in the rest of the chapters in this thesis. 
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1.1  Energy recovery in vehicles system 

To prevent the consumption of fossil fuels and reduce air pollution, several new designs and 

techniques has been proposed to improve fuel economy and restrict emissions. Alternative 

energy has received more attention in the last decade to meet the requirements of the saveable, 

environmentally friendly and sustainable energy technology. With the rapidly increasing 

demands of energy for road transport, the development of a vehicle’s component design and 

powertrain system is an effective method to meet the purpose of energy saving while the 

configuration design is maintained for a conventional vehicle. The reduction of fuel consumption 

can be achieved by using the latest techniques of vehicle configurations, which has the potential 

for improving the overall energy efficiency of the vehicles, only approximately 30 to 40% is 

used for mechanical output [1]. Therefore, electromechanical design has been presented for the 

replacement of mechanical and hydraulic systems for energy saving, and the high demands of 

ride safety and comfort. 

1.1.1 Electric vehicle, hybrid vehicle and fuel cell hybrid vehicle 

Three different types of green vehicles have been proposed, including electric vehicles (EV), 

fuel cell hybrid vehicles (FCHV) and hybrid electric vehicles (HEV), which can be used for the 

next generation of vehicles with high energy conversion efficiency and effective driving 

capabilities.  

The electric vehicles (EV) use an electric motor for vehicle propulsion. The primary energy 

source is the battery, but the EV does not recharge the battery while driving, which means that 

the battery has to be charged from special electricity charging devices. The electric vehicle is 

common among trains, trolley buses and trolley trucks. Compared with a combustion engine, an 

electric vehicle has no air or noise pollution [2]. 

A fuel cell hybrid vehicle (FCHV) is similar to the EV. Both vehicles provide power to run 

the wheels via an electric motor. There is no difference between an FCHV and an EV for the 

propulsion system. But the electric energy supply system is totally different, the battery in the 

electric vehicles only charges from external charging devices. The fuel cell does not need to be 

charged, it generates electric power from hydrogen which is stored in the fuel tank. All the 

electric power used by vehicles is charging the battery by the fuel cell. From a mechanical view, 

the hydrogen FCHV and hydrogen internal combustion engine (ICE) vehicle are almost the same 

in operation and principle. In the ICE, pure hydrogen goes into the fuel tank. The water is 
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pumped out through the tail-pipe after the combustion process in the engine. Fuel cell vehicles 

are potentially as efficient as electric vehicles that are based on a cleaner power plant but it’s 

difficult to reach the efficiency in a practical way [2].  

Hybrid electric vehicle (HEV) is combined with an ICE and an electric motor to providing its 

propulsion. The ICE supplies the power to rotate the electric motor which as a main power 

supplier for the driven wheels. There are three different types of HEV: series HEV, parallel HEV 

and series /parallel HEV [2]. 

 

Figure 1-1 Alternative vehicle configurations [11] 

1.1.2 Regenerative braking 

In a conventional braking system, friction is produced between brake pads and brake rotors to 

slow or stop a vehicle, and a large amount of fiction is generated between the tyre and the road. 

It is well known that every time the driver steps on the brake pedal, the energy is simply 

dissipated as heat. The regenerative braking technology was first used in trolley cars. In 

regenerative braking systems, the goal is to recover some of the wasted energy (heat), store it, 

and return it back to the vehicle motion again. Regenerative braking can eventually be improved 
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to recover half of the wasted braking heat when brakes slow down or stop a vehicle by 

converting kinetic energy and the energy of motion. For designated types of vehicles, this 

specific recovery system would reduce the 10%−15% fuel consumption below the current fuel 

level. It also can reduce the drawdown of the battery charge and extend the overall life of the 

battery pack in EV, HEV and FCEVs [3]. However, a regenerative braking system is totally 

different than a conventional braking system, and this system is supported by DC motor inverse 

rotating and battery/fuel cell recharging for later use in minimising energy usage, and improves 

both dynamic performance of vehicles and fuel economy. In the HEV, the regenerative braking 

system can significantly improve fuel efficiency by 20-50% which is highly dependent on the 

size of electrical motor [4].  

In fuel cell hybrid electric vehicles, the brake system is controlled by one brake pedal with 

both regenerative and conventional brakes. At the beginning of the braking period, only the 

regenerative braking operates, and then if further pressure is placed on the pedal, the 

conventional base brakes would play a part in the whole braking operation. These kinds of 

brakes attempt to change to reverse mode of the motor in vehicle, therefore, the deceleration is 

caused by motor’s inverse rotation slows the vehicle. During the braking period, the motor acts 

as a generator to produce the electricity which can be fed back into vehicle’s batteries or fuel cell. 

In this period, a motor can produce alternating current (AC) which has to be converted into DC 

current to go into the battery through two large diodes. As the battery becomes fully charged, the 

regenerative system would reduce its effect in braking system and the base brakes action will be 

the main part of braking system to supplement more work for this system. Even for descending 

long hills or at low speeds, the regenerative system would be switched off and replaced by 

normal brakes action, as overcharging is really harmful to the batteries. Regenerative braking is 

variable and is also used as an accelerator to control the speed of the vehicle [2].  

1.1.3 Exhaust heat energy harvesting 

Recently, in transportation, the thermal dissipation in the ICE has serious losses in passage 

cars and heavy-haulage vehicles which have attracted vehicle manufacturers and researchers. 

Approximately 60−70% of the fuel energy is dissipated as waste heat, especially of the exhaust 

and coolant systems, and then causes harmful environmental pollution. Therefore, the exhaust 

heat recovery techniques are considered and developed to improve the energy conversion 

efficiency of the engine and reduce emissions [5]. In an attempt to turn thermal losses in the 

exhaust system into useful energy, researchers have presented many various methods and 
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concepts. Recently, the heat recovery technologies can be classified into exhaust gas heat 

recovery systems, Rankine Cycle systems and thermoelectric generators. BMW first proposed a 

Rankine system in exhaust heat recovery which was named Turbo-steamer [6]. Furthermore, 

research at Loughborough University and the University of Sussex both show that the fuel 

economy can be delivered between 6.3% and 31.7% using waster heat from light-duty vehicle 

engines [7]. In addition, Exoes invented an exhaust heat recovery systems based on the Rankine 

Cycle which achieved fuel saving from 5 to 15% [8]. Many automotive companies have been 

taking part in energy recovery research for transportation, including passenger cars, trucks and 

trains [9] [10] [11] [12]. 

1.2  Automotive suspension system 

In general, suspension has significant effects on vehicle reliability, stability, control and 

safety, and is normally equipped at each corner of the vehicle. Firstly, suspension is used to 

isolate the whole vehicle from external disturbances (road roughness) and internal disturbances 

(cornering, acceleration or deceleration). It reduces the influence of bump and bad road 

conditions for vehicles. Secondly, suspension can react to various loads, which are generated by 

different numbers of passengers, goods, or the internal disturbances. Thirdly, suspension travel 

causes relative variations of dynamic responses, and hence ensures the handling capability (ride 

safety) between the tyres and the road and provides the possibility of driving comfortably (ride 

comfort). Finally, suspension supplies a capability to carry the weight of the vehicle body, which 

plays a decisive role in designing, manufacturing or assembling road transports. When the shock 

absorbers are operating, the energy is converted into the heat as waste by viscous fluid. Although 

conventional passive suspension systems are the most popular for commercial vehicles, the 

hydraulic flow generates heat to dissipate all as waste. At present, suspension systems are 

classified as passive, active, and semi-active.  

1.2.1. Passive suspension system 

Passive suspension systems are most widely used in most commercial passenger vehicles due 

to their simplicity, small volume, low cost and high reliability [13]. It’s composed of a constant 

spring coefficient and damping coefficient which are difficult to adapt to various road conditions. 

The design of passive suspension can only reach the good performance of shock absorption 

under specific road roughness. Therefore, the non-changed spring and damping coefficients 

cannot achieve the expected operating conditions and reliable performance of shock absorption 
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for all road roughness. The performance of passive suspension is a compromise in designing for 

the goals of ride safety and road handling [14].  

1.2.2. Active suspension system 

 

Figure 1-2 Classification of automotive suspension systems [14] 

Active suspension systems deal with a system that adopts an active power drive to actuate the 

suspension through the expansion or contraction achieves their demands [15]. The most 

important issue in designing of vehicles’ suspension system keeps on the balance between ride-

comfort and handling in conflicting requirements. In an active suspension, controlled forces are 

introduced to the suspension by means of hydraulic or electric actuators, between the vehicle 

body and the wheel assemblies [16]. In active suspension systems, it can apply external force to 

the vehicle body in an up and down direction without considering the absolute velocities. For 

different movement points, lots of sensors need to be added on the active suspension to 

continuously measure the suspension performance during the driving experience. High weight, 

cost, power consumption and diminished reliability are the limitations for the practical 

implementation of active suspension in vehicles. In modern commercial vehicles, hydraulic, 

pneumatic and electromagnetic devices are used to design and perform most suspension systems 

in vehicles.  
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Active suspension can supply active force by an actuator. It means that active suspension can 

supply a variable force for each wheel to continuously adjust the ride-comfort and handling 

operations. Normally, an active suspension is comprised of an actuator and a mechanical spring 

or only an actuator, the other is a mechanical spring with a damper. If the active actuator 

operates mechanically in parallel with the spring, it’s the high-bandwidth of active suspension 

controlled between the vehicle body mass and the wheel’s mass. If the active actuator operates 

mechanically in series, it’s the low-bandwidth of active suspension only controlled by the sprung 

mass. A hydraulic/pneumatic active suspension includes hydraulic/pneumatic actuators. 

However, the obvious disadvantage of active suspension is it consumes plenty of energy to 

compromise with various oscillations of road roughness [14]. For commercial application, BMW 

developed an active stabiliser bar system to improve vehicles’ steering stability, cornering 

reliability and road handling [17]. In addition, Mercedes-Benz also proposed an active body 

control (ABC) system to position the magnitude of suspension travel [18]. Unfortunately, both 

commercial applications are either costly and complicated with additionally high energy 

consumption or unable to provide the optimal solution for all vehicle oscillation. Therefore, 

electromagnetic active suspension has been developed which can produce optimal active force 

and address vehicle oscillation problems rapidly. It consists of a mechanical spring and an 

electromagnetic actuator. The electromagnetic active suspension can provide the best ride 

comfort and handling capability whilst harvesting an amount of recoverable energy. The 

electromagnetic suspension designers have sacrificed the weight/volume of the potential 

products with the highest manufacturing costs in order to obtain the best dynamic performances, 

ride comfort and road handling. The automotive suspension classification is shown in Figure 1-2 

[14]. 

With the development of shock absorbers, regenerative active suspension is more attractive 

than conventional suspension for the improvement of ride comfort, dynamic performance, 

steering stability, passenger safety and the reduction of energy dissipation with regenerative 

energy. In real applications, the energy dissipation results in the reduction of performance as 

well as high energy consumption [19]. Suspension relative vibration between the vehicle body 

and tyres are enslaved to the excitation by road irregularities, bumping, steering and speed. 

Furthermore, the excitation not only affects the passengers’ comfort and safety, but also can 

influence vehicles’ run-ability and controllability. In addition, it produces mechanical friction 

and the dissipation of heat, hence reduces suspension vibration. Therefore, the key issues of the 
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regenerative suspension system are to convert more useful energy and decrease power 

consumption as much as possible while ensuring dynamic performance. 

1.2.3. Semi-active suspension system 

In mechanical layouts, semi-active suspension (also called adaptive-passive) is identical to a 

passive suspension system which can adjust the characteristics of the shock absorbers with 

various oscillations between vehicle and road. In this type of system, the conventional spring is 

still applied, but the normal shock absorber is replaced by a controllable one [14]. Active 

suspension systems need an external energy supply to power the actuator to control the effects of 

damping in demands, but semi-active systems just require an external power supply to adjust the 

damping levels, controllers and transducers. Therefore, the semi-active suspension system 

provides the piston force in the passive damper to switch the suspension absorption. Generally, 

semi-active systems are equipped with features between active and passive suspension systems. 

For the commercially recently manufacturing used, it relies on expensive cost units, such as 

solenoid valves as adjustable orifices, or controllable Magneto-rheological (MR) fluid and 

Electro-rheological (ER) fluid [20]. 

1.2.1. Shock absorber in automotive suspension system 

A shock absorber is widely known as a damper in suspension. It is an important component as 

the primary function of the automotive suspension system is to damp the vibration directly from 

the vehicle chassis which is caused by road roughness or disturbances. In addition, shock 

absorbers are designed to solve the emergent incidents of road disturbance to provide road 

handling and ride comfort for vehicles. Generally, there are two main categories of shock 

absorbers in the existing commercial market, which are passive and semi-active. Most 

conventional hydraulic shock absorbers are passive dampers in the suspension system to provide 

the damping characteristics and suppress unwanted vibrations passively by the pressurised fluid 

through the piston orifices during piston motion, such as mono-tube and twin-tube dampers. The 

damping effect is varied with the valve opening size caused by the reaction force due to pressure 

difference during the compression and extension strokes. The configuration of the mono-tube 

damper is much simpler than that in the twin-tube damper but the twin-tube damper can provide 

effective damping for low gas pressure due to its complex deign, and the passive dampers are 

shown in Figure 1-3. However, the passive damper is not able to provide enough solutions for 

suspension issues due to its inherent damping and elastic characteristics. 
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Figure 1-3 The configuration of mono-tube shock absorber and twin-tube shock absorbers 

[21] 

Semi-active dampers allow adjustable damping characteristics by applying power to alter the 

orifice size of the hydraulic valves (Electrohydraulic servo valve), or Magneto-rheological fluid 

and Electro-rheological fluid in which the viscosity of the fluids can be adjusted electronically, 

and hence the damping coefficient can be varied to meet a desirable level continuously or 

discontinuously. Generally, a semi-active shock absorber system is equivalent to a programmed 

closed-loop control process to prevent the driving quality. For instance, Audi has designed and 

manufactured an electromagnetic semi-active suspension system for commercial use based on a 

specific MR shock absorber. The effects of roll, pitch and yaw through linkages are unable to be 

eliminated without applied active force [22] [23].  

1.3  Driving safety and road profile 

Driving safety: Over one million people lose their lives around the world in road traffic 

accidents, and almost 50 million people suffered non-communicable diseases and injuries from 

road traffic fatalities annually [24]. A suspension system which could transmit the vibrations 

between the vehicle body and road unevenness is considered to ensure the capabilities of ride 

comfort and safety [25] [26]. A high level of ride comfort and handling can satisfy the constantly 

increasing demands for safe driving in road traffic.  

Road profile: The road surface roughness is the key source of vibration for the vehicle 

suspension system when the vehicle is travelling on real roads, and the shock absorber 
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experienced vibration is extremely dependent on the road conditions and vehicle driving speed 

[27].  

One of the most widely used techniques for road profile modelling is the method summarised 

in ISO 8608:1995 “Mechanical Vibration-Road surface profiles reporting of measured data”. 

This standard as a uniform method details an approach for the compilation and comparison of 

measured vertical road profile data [28]. In the ISO 8608:1995 report, the sections of Annexes B 

and C are mainly concerned for vehicle dynamics. Annex B details an approach for facilitating 

the allocation of the road profiles in various sources into reasonable classifications (Class A to H) 

depending on the roughness of the road construction; and a curve-fitting model is a 

representative method to the characterisation of spectral data. Additionally, Annex C describes 

the general information through the use of the predicted data for studies which is related to road 

comfort and handling, road profile and the parameters of the suspension system [28]. 

1.4  Potential of regenerative shock absorbers and motivation 

On-road vehicles consume massive amounts of energy worldwide. In 2013, road transport 

accounted for 74% (39.3 million tonnes of oil equivalent) of total transport energy consumption 

in the UK [29]. In addition, the United States Department of Energy had a large number of 

investigations into the commercial vehicle market. It found that approximately 70% of oil 

consumption was consumed by road transport. In the meantime, the Department of 

Transportation also reported that total oil consumption is over 175 million gallons in a calendar 

year.  

However, in commercial vehicles, only 10−20% of fuel energy is actually used for vehicle 

mobility and approximately 62% of fuel energy in the ICE is lost during the processes of energy 

conversion from chemical to mechanical energy [30] [31]. Much of the energy is wasted by the 

resistance from road roughness, friction of moving parts and thermal losses. The kinetic energy 

loss of the brake and shock absorber are also one of the notable causes of energy losses in 

vehicles (see Figure 1-4). The conventional hydraulic shock absorber converts the vibrational 

energy by dissipation in the form of heat to ensure ride comfort and road handling. Therefore, it 

is a feasible way to recover vibration energy from roads and convert kinetic energy into 

recoverable energy for later use in vehicles. Figure 1-4 indicates that regenerative shock 

absorbers can obtain a maximum of 10% total fuel efficiency for a typical vehicle based on the 

previous theoretical analysis [32]. 
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Figure 1-4 The energy consumptions in a typical vehicle and the potential [33] 

Therefore, to promote the energy efficiency of vehicles many manufacturers and researchers 

have focused on regenerative suspension systems in attempt to recover energy and decrease 

energy consumption whilst assuring high performance and reliability. Since the late 1970s, 

researchers have analysed the feasibility of regenerative shock absorbers and estimated the 

potential recoverable energy. The designs and developments start with theoretical study and 

model simulation at the initial stage of any feasible methods. Velinsky et al. [34] employed a 

four degrees of freedom (4-DOF) rear suspension model to simulate the relative velocity 

between damper and tyre and estimated how much energy was dissipated by the shock absorbers 

of vehicle suspensions. It also indicates that the energy dissipation of a shock absorber in a 

suspension system is highly dependent on the driving speed, suspension spring stiffness, 

damping coefficient and road roughness. Segal et al. [35] have investigated that four passive 

shock absorbers dissipated around 200Watts of energy in the roughness road condition at 

13.4m/s. Hence, it obviously found that suspension systems have a great potential for energy 

recovery under different road conditions. Browne et al. [36] measured the energy dissipation of 
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the damper in the suspension when vehicle was driving on urban roadways. The results show 

that the energy dissipation is approximately 40-60Watts of 4 total shock absorbers. F. Yu et al. 

[37] investigated both passive and active suspensions of vehicles to compare the difference of 

the energy consumption in simulation. The simulation was running over a Class C road (Road 

surface unevenness=5×10-6m3/cycle, which is equivalent to ISO 8608 Class B road) at driving 

speed 20m/s (≈45mph), and the simulation time was set to 20s. The results showed that the 

energy consumption of the passive suspension was close to 651kJ, while it had approximately 

645kJ energy consumption in active suspension. In the study of Yu, it has not considered the 

recovered energy so the energy consumption of the active suspension has no significantly 

reduced. However, the active suspension made full use of the relative motion between vehicle 

body and wheels for vibration isolation, and the root mean square (RMS) of the vehicle body 

acceleration was reduced 50% in passive suspension whilst indicating that the ride comfort had 

been significantly improved. This research reveals that the energy dissipation of the shock 

absorber in vehicle suspension systems is supposed to be widely noted in the vehicle industry.  

In an attempt to capture the dissipated energy, researchers have developed a number of 

techniques over recent years. Karnopp et al. [38] [39] showed that a reduction of vehicle energy 

consumption can be achieved with energy regeneration in a conventional passive shock absorber 

in response to the theoretical study of the suspension energy consumption and active suspension, 

in particular of the electric, hybrid electric and fuel cell vehicles. The energy dissipation for a 

four wheeled vehicle on an irregular road has been estimated to be 200W [40]. A General Motors 

‘impact’ model estimated the average recoverable energy for each wheel to be 100W on a 

motorway (is equivalent to ISO8606 Class A road), and it is roughly equivalent to 5% of the 

propulsion power which can be potentially recovered, as reported by Hsu et al. [41]. Yu et al. [42] 

[43] employed the full car model of an E-Class SUV (Hybrid Vehicle) in CARSIM software to 

predict the potential of shock absorbers. The ratio of the heat dissipation power of shock 

absorbers and the output power of an engine is close to 42.3% at driving speed of 10m/s (≈

22.4mph) on a Class C road. Liang et al. [44] applied a ball screw actuator which was designed 

to alternate the mode between active control and energy recovery. The simulation was operated 

in 10 seconds at a 15m/s (≈33.6mph) driving speed on a Class F road. From the simulated 

results, the active control and energy recovery was implemented, and the energy dissipation was 

289.3kJ in active control mode. Recovering 1.547kJ energy in energy-recovery mode was an 

optimal result. In line with the previous studies, it is clear that the energy dissipation of the shock 
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absorber is directly related to vehicle energy efficiency. However, it reveals that regenerative 

shock absorbers will significantly improve the suspension dynamic performance while obtaining 

recoverable energy to reduce vehicle fuel consumption and road roughness. Driving speed and 

shock absorber configuration are the key factors for both energy dissipation and energy recovery. 

With theoretical modelling of road roughness and vehicle dynamics, Zuo and Zhang [27] 

investigated potential energy regeneration for a passenger car, and showed that 100–400W can 

be recovered from the shock absorbers at a driving speed of 60mph on good roads and average 

roads. In addition, Zuo [45] also presented the range of values corresponding to the potential 

energy of regenerative shock absorbers in different applications, see Figure 1-5. 

 

Figure 1-5 Potential energy of regenerative shock absorbers for car, bus, truck, military 

vehicle and railcar [45] 

Furthermore, a mean power of approximately 100 to 1,500W is available from a conventional 

shock absorber on a single heavy haulage vehicle in term of road roughness and truck loading, 

and The Bosch Automotive Proving Grounds (BAPG) claimed that by providing 400W as the 

test power input which is assumed from regenerative shock absorbers on heavy duty commercial 

vehicles can deliver 0.44% fuel efficiency in empirical testing while the predicted efficiency gain 

is 0.69% on a motorway (equivalent to ISO 8608 Class B road) at approximately 20mph speed 

[46]. From an economic point of view, the average annual miles per driver in UK was calculated 
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at 7,900miles in 2013 [47], and fuel price at approximately £0.13 per diesel mile at 35mph on a 

Class B road, average £4.52 (0.44% fuel efficiency improvement [48]) can be saved for a driver 

in one year. Furthermore, there were 35 million vehicles licensed for use on the road in UK in 

2013 [49], and this found that approximately £158.2 million could be saved per year for the UK 

fuel economy. These theoretical works and data indicate that power regeneration has a great 

potential for green vehicle manufacturing. 

1.5  Scope 

Currently, it is necessary to utilise the general research processes for the development of a 

regenerative device at an early stage, and the process begins with the conceptual design, the 

simulation study, before flowing to the relevant experimentation. Therefore, the regenerative 

device can meet desirable requirements in more detail through the theoretical and practical 

studies. However, in this study, the research processes and studies of the regenerative shock 

absorber in vehicle suspension will provide a stable base for further development or 

industrialisation in the vehicle industry, and the research procedures have been illustrated in 

Figure 1-6. After researching a number of energy recovery techniques, automotive suspension 

systems and potential energy, there are many issues associated with the development of a 

regenerative shock absorber at this stage, such as feasible conceptual design, manufacturing cost, 

power conversion efficiency, weight/volume, service life, stability and reliability. However, it 

can be found that a regenerative shock absorber not only can recover useful energy as much as 

possible, but also the dynamic interaction of the system must be ensured. 

This study considers a design of regenerative hydraulic shock absorbers based on fluid 

dynamics which uses pressurised fluid to drive a generator that converts linear motion to rotary 

motion. A detailed modelling of the device must be explored and analysed under various 

influences in order to support further optimisation and experimental study. Based on previous 

research, it is clear that the most regenerative device modelling focused on the feasibility of 

design concepts or the potential of power regeneration which applied significantly simplified 

modelling without considering nonlinearity or losses, and hence that the most frequently 

considered inadequacy is the lack of realistic modelling in research, the parametric study and 

dynamics of the system components have not been evaluated in detail. However, although a 

large amount of energy can be recovered in a number of published works, these have not been 

considered system nonlinearities and losses which could significantly influence the efficiency 

and dynamic of the system components [50]. Furthermore, only few simulations have been 
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validated by relevant experimental results so the results in prediction provide insufficient 

confidence and credibility. Moreover, the evaluation on different roads was performed in 

simulations. There are few measured results that have been analysed in detail before further 

system optimisation or road tests in irregular waves (Road surface profiles). In addition, the 

adjusting external load is a feasible method to adjust recoverable power and damping force, but 

the electrical load was adjusted manually in most previous works [51] [52]. Hence, a feasible 

control method needs to be considered for a controllable external load, and it is a way to 

consistently vary with the changes of system performance. Finally, the previous modelling 

optimisations were performed in idealised models, which assumed that there were no system 

losses and nonlinearity. 

 

Figure 1-6 Research procedures of the regenerative hydraulic shock absorber system 

Overall, it is necessary to evaluate the dynamic performance and power regeneration of the 

regenerative shock absorber system with the consideration of losses and nonlinearity. The 

development of modelling can create a dynamic based model using Matlab ODE solvers to 

provide a way to fully understand system behaviours and parameters as an essential 

mathematical tool, and hence to further study a suitable control method and system optimisation. 

The modelling study can also provide guidance for the components selection, experimental rig 

setup and the preparation of measurement equipment. Furthermore, the validation of the 

predictions against measurements would conduct for the understanding of the effects on system 

behaviours and power regeneration which provide strong evidence for further research work. 
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Finally, the simulation of the suspension system under different driving speeds and roads would 

provide an overview of dynamic responses and also obtain better knowledge for the trade-off 

among the three indexes of ride comfort, road handling and recoverability to provide valuable 

suggestions to speed up the process of commercialisation of a regenerative shock absorber.  

1.6  Research aim and objectives 

The aim of this research is to model a comprehensive understanding of the nonlinear 

dynamics of a regenerative shock absorber and how factors affect the dynamic behaviours and 

power performance of the regenerative hydraulic shock absorber system (RHSAs). A further aim 

is to identify the uncertain parameters and variables (system losses and nonlinearities) and 

determine a control method which will contribute positively on the validation of the proposed 

model and the realisation of the RHSAs’ controllability. For the purpose of this and investigating 

the regenerative system under different operating conditions, a combined hydraulic-

electromagnetic model is created using ODE modelling approaches and a corresponding 

prototype is fabricated.  

In order to fulfil this aim, the research has been carried out according to following priority 

objectives: 

 Review of the various classification systems and designs of regenerative 

suspension/shock absorbers that provides a design concept of a regenerative hydraulic 

shock absorber system (RHSAs). 

 Create an idealised mathematical model of hydraulic flows, rotary motion and power 

regeneration for a hydraulic-electromagnetic based shock absorber system, and assess 

its performance. 

 Construct mathematical modelling with a consideration of the system losses, 

nonlinearities, the smoothing effect, and generator coefficients to provide more 

accurate modelling results. 

 Design and build an experimental rig and measurement system for experiments. 

 Determine the uncertain parameters and variables in the RHSAs experimentally. 
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 Validate the modelling results with the measured data from the developed 

experimental rig, and analyse the effects of excitation input, electrical load and 

accumulator capacity. 

 Investigate dynamic responses, power potential, ride comfort, road handling, and the 

parameter sensitivity analysis in a quarter-scale car model at various driving speeds 

and roads (ISO8608 standard) [27]. 

 Evaluate how the RHSAs would behave in more realistic conditions (random road 

surface profiles). 

 Apply controls to the RHSAs and verify their feasibility. 

 Examine and compare the predictions from the key parameters of the RHSA in order 

to provide better system behaviours and maximise recoverable power for the initial 

stage research. 

1.7 Outline of the thesis 

In this thesis, research is reported through eight correlated chapters, each of which is briefly 

described as follows: 

Chapter 1 has a brief introduction to energy recovery techniques in vehicles, and the 

classification of the suspension systems and shock absorbers. The project motivation and 

potential of the regenerative hydraulic shock absorber are presented, as well as the scope, aims, 

novel contribution and outline of the research work.  

Chapter 2 introduces the literature review which is focused on the difference of design 

concepts, modelling and testing of a regenerative shock absorber which has been evaluated. 

Previous studies of mechanical, electromagnetic and hydraulic configuration of regenerative 

devices are summarised, and the current development of commercialisation and invention 

patents are also provided. In addition, the system schematic of the regenerative hydraulic shock 

absorber system for this research is proposed.  

Chapter 3 describes and analyses the mathematical model of the regenerative shock absorber 

system using Matlab ODE solvers, which consist of linear oscillations, fluid dynamics, rotary 
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motion, and power regeneration processes. The evaluation is undertaken in an idealised model 

with or without the effect of the accumulator capacity, and then a more accurate model with the 

consideration of component losses and nonlinearities is presented, showing the difference of the 

predicted system behaviours and the capability of power regeneration under sinusoidal waves.  

Chapter 4 presents the design and the construction of the experimental rig and test facility, 

and then the instrumentations, data acquisition and data management used in experimental works 

are introduced. In addition, the experimental procedures are briefly described for the system 

measurements at various operating conditions.  

Chapter 5 briefly describes the test system and the measurements. Furthermore, a parametric 

study is applied to identify the uncertain parameters and variables for accurate predicted results, 

and then to validate against the measured results. In addition, the effects of excitation input, 

electrical load and accumulator capacity are evaluated by both simulation and experimental work 

in regular waves (sinusoidal waves). 

Chapter 6 investigates the creation and reconstruction of the random road surface profiles 

(ISO8608 standard), which are then employed to evaluate how the dynamic responses, ride 

comfort, road handling and power potential behave in a quarter-scale car model. A sensitivity 

analysis is also performed. Finally, an investigation of the behaviours and power regeneration is 

undertaken in more realistic road profiles.  

Chapter 7 presents a real-time computer-controlled method to achieve control functions on the 

proposed experimental system. Constant voltage and current methods are also studied and tested 

which can be regarded as the effect factors of behaviour and power variations. Additionally, the 

main parameters are also analysed in the model, which include cylinder dimensions, hydraulic 

motor displacement, and pre-charged pressure in the hydraulic accumulator.  

Chapter 8 summarises the achievements and findings of the research. The suggestions for 

further research are also presented. 
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Chapter 2  Literature Review: Regenerative Suspension System 

This chapter presents a comprehensive review of the literature on regenerative suspensions 

and shock absorbers. Different configurations of regenerative suspension systems regarding 

system design and modelling are summarised. Particular attention is given to the representative 

works presenting substantial advancements to recover energy from vehicle suspension systems. 

In addition, prototype regenerative devices in the industrial sector are also described. Finally, a 

system layout is developed according to the concept selection and analysis, to provide an 

overview of this research work at the initial stage. 
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2.1  Introduction 

The traditional vehicle suspension dissipates the kinetic energy as waste heat which can be 

recovered for reuse. Since the 1970s, several concepts and designs of regenerative suspensions 

have been proposed to improve the vibration attenuation effect and reduce energy dissipation. In 

recent years, research and development has been focussed on maximising recoverable power and 

improving power efficiency, whilst providing a better dynamic performance, ride comfort and 

road handling. At the initial stage, energy dissipation and the potential of regenerated power 

were investigated in simulations. Furthermore, based on principle research and several 

simulations, a number of research studies have focused on design and practical experiments to 

evaluate the available capability of the regenerated power and the characteristics of the test 

system. In addition, the regenerative suspension system has attracted much more attention from 

vehicle manufacturers and automotive institutes in the last decade for the commercial market. 

However, currently, based on the different working principles, a regenerative shock absorber is 

classified into three categories: mechanical, electromagnetic and hydraulic. 

2.2  Mechanical regenerative suspension 

Mechanical regenerative suspension normally uses hydraulic/pneumatic power to convert the 

kinetic energy into potentially recoverable mechanical energy with control methods, which can 

be stored for later use, in order to restrain vibration between the vehicle body and wheel 

assemblies, reducing energy consumption. In the study of Wendel [53], a hydraulic active low 

frequency suspension was given a new configuration of regenerative pumps to recover energy 

from hydraulic flow between the inner side and outer side of the suspension. However, because 

of the regenerative pump’s complicate structure, it’s not easy to mount it on the chassis of a 

vehicle. Fodor and Redfield [54] proposed a variable linear transmission (VLT) device to 

convert vibration energy into damped energy which can be recovered by mechanical 

transmission. By using a large hydro-pneumatic accumulator, the regenerative damper employs a 

power absorber to provide required damping force by adjusting input force. A lever beam and a 

movable fulcrum were used to make the system controllable and adjust the input force and 

velocity to achieve the expected damping force and dynamic performance. However, this 

conceptual design indicates that the energy generation in a VLT device is not sufficient to 

support the energy requirements in practical experiments. The schematic of the VLT was 

performed in a quarter-scale car model and is shown in Figure 2-1. Jolly [55] proposed a 

hydraulic device which used for the shock absorber of the vehicle seat to recycle energy and 
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adjust vertical motion by controlling hydraulic flow. Jolly’s investigation summarised that such 

an energy regenerative device can not only provide regenerative energy for reuse, but also hold 

the possibility of self-sustainability without external power supply by alternately extracting and 

releasing energy in a controlled state. Therefore, the storage of cylinder exhaust gas is also able 

to realise self-power for control actions itself to reduce energy consumption [56]. Noritsugu [57] 

applied an energy regenerative control device in pneumatic suspension to recover part of the 

exhaust from the cylinder, and store it in a pneumatic accumulator for reuse in order to minimise 

the energy consumption and control suspension vibration, improving suspension performance.  

 

Figure 2-1 VLT used in Quarter car model [54] 

 

Figure 2-2 Illustrates a regenerative suspension system and key components [58] 

Stansbury [58] proposed a regenerative suspension system which can replace or complement 

a conventional shock absorber in a vehicle suspension system with a hydraulic system. The 
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device uses a hydraulic pump to deliver pressurised fluid, air, MR fluid or other available 

materials to charge an accumulator. The accumulator can be switched between charge mode and 

release mode by controlling a solenoid/relief valve, and then to drive a hydraulic motor and 

electric motor for power regeneration. Figure 2-2 shows the regenerative suspension system with 

accumulator and method. However, there are some limitations of the mechanical system’s 

regenerative suspension/shock absorber. First, the weight and volume of the mechanical 

(hydraulic or pneumatic systems) is a considerable issue for installation and design in a vehicle. 

Furthermore, the restricted dynamic responses bandwidth of mechanical systems is the key factor 

impeding its development. Finally, the complicated system construction causes low transmission 

efficiency from vibration energy to recoverable energy. These key influences will limit the 

reliability and stability for future market potential demands in electrical or hybrid vehicles. 

2.3  Overview of electromagnetic suspension 

For the past few years, electromagnetic suspension has received more attention. Permanent 

magnetic motors (linear or rotary motors) are employed in the study of regenerative suspension 

to offer active force or damping force, and provide recoverable power from vibration isolation. 

Electromagnetic configuration converts the relative motion between vehicle body and wheels 

into the linear or rotary motion in electric motors to generate voltage output. Therefore, vibration 

energy can be converted into electricity for self-power, recharge the battery or power other 

devices. The actuator in the suspension system can switch over between the electric motor and 

generator to acquire both active control and energy regeneration for suspension vibration. 

Electromagnetic actuators can be classified into linear motors and rotary motors. In the later 

1970s, researchers and engineers attempted to apply linear motors and rotary motors to 

automotive suspension systems. The damping force in the shock absorber was adjusted by 

external electrical resistance to convert mechanical energy into thermal resistance, and hence 

semi-active control could be realised and improved with high transmission efficiency. However, 

there are still two disadvantages of this study which could significantly limit further development: 

heavy weight, large volume and weak magnetic flux. Therefore, rotary motors of 

electromagnetic suspension were proposed to remedy the defects of the linear motor type. The 

early scientific research achievements are shown in follow-up reviews. Karnopp [59] studied the 

effect of adding an active damping force to the suspension system. A linear electromechanical 

shock absorber was designed for vehicle suspension systems which consists of permanent 

magnetic and copper coils. It was proved that the oscillation frequency in road vehicle 
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suspensions, electro-dynamic variable shock absorbers are more reliable. Karnopp [60] studied 

the electromagnetics suspension system which was focused on designing linear permanent 

magnet motors used as variable mechanical shock absorbers. Ryba [61] built a new semi-active 

system with a rotational electromagnetic shock absorber. The theoretical studies were applied to 

simulate the absolute velocity signal by filtering acceleration, the delay of electromagnetic 

system and the locking through frictional force. In possible application, semi-active damping 

systems had the capability to eliminate the amplification of input vibrations caused by resonance. 

Karnopp and Ryba’s research was verified by Gupta’s experimental works afterwards. Gupta [62] 

[63] designed and built two different electromagnetic dampers to measure their efficiency of 

energy regeneration by sinusoidal and pulse excitations. The results show that the efficiency of 

the rotary type was much higher than the linear one.  

 

Figure 2-3 Schematic of the electromagnetic regenerative shock: Coil assembly and magnet 

assembly from Stony Brook University [64] 

Zuo [64] designed and fabricated a regenerative shock absorber weighing around 25kg. It is 

composed of a magnet assembly and a coil assembly which have been shown in Figure 2-3. The 

magnet assembly consists of the ring-shaped permanent magnets and the ring-shaped permeable 

spacers stacked on a rod. The coil assembly is made of copper coils wound on a delrin tube. The 

voltage output would be generated and restored when the copper coils move across the magnetic 

field. This fabrication is suitable for commercial vehicles; its weight is estimated at 28 kg. The 

electromagnetic dampers or electromagnetic devices can convert the kinetic energy from 

vibration isolation into electricity for reuse, and also, the electromagnetic dampers which as 
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actuators can be improved and developed for active suspension systems to achieve the purpose 

of energy recovery. However, the oscillations in a suspension system can be converted into 

recoverable energy that can power other devices or recharge the battery/cell by the use of a 

rotary/linear electromagnetic motor. 

2.4  Linear electromagnetic shock absorber 

In linear electromagnetic suspension, a linear motor or generator is used to replace the 

conventional hydraulic shock absorber, and to transfer suspension travel to electricity directly 

without a complicated transmission device. Okada et al [65] employed an energy regenerative 

vibration damper in active suspension systems. A linear DC electromagnetic motor was adopted 

to a damper. A double-voltage charging circuit was used to recover electricity through high 

speed motion of the actuator. The schematics of active vibration control and regenerative control 

of actuator have been shown in Figure 2-4. 

 

Figure 2-4 Active vibration control system and regenerative control of actuator [65] 

During the low speed motion, the actuator voltage was lower than that of the storage batteries. 

Moreover, the low speed of motion periods has no damping force and regenerative energy is 

generated. Passive damping was utilised to solve this problem by changing the actuator terminal 

to a resistance for low-actuator velocity. In their simulation results, it was shown that the 

isolation response was close to normal active systems in low frequency range, but the energy 

consumption of the whole system was higher than the energy regenerated. On contrary, the 

isolation response was close to the passive system with higher regenerated energy for the high 

frequency range. Based on the experimental analysis, it was found that vehicle vibration 

generally happens at a low frequency range, but the regenerative energy was not enough for 
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energy consumption of active control. Therefore, the most efficient way is to increase the 

regenerative voltage during low speed motion.  

Okada [66] continued this study; a detailed control circuit was employed to develop the 

performance of damping and energy recovery efficiency. For low-speed motion, an active or 

passive control algorithm was used in the same actuator to exploit the damping performance by 

regenerative or relay controls. In Okada’s next study [67], the energy regenerative suspension 

using pulse width modulation (PMW) step-up chopper to adjust resistance was shown to 

overcome the barrier in low velocity. Hence, a step-up chopper is applied between the actuator 

and the charging circuit to improve the damping characteristics and the efficacy of the 

regenerative suspension. With the sinusoidal function as an input and different forcing 

magnitudes, the experimental results showed that better performance can be obtained in 

controlled systems than the standard ones, but that energy recovery efficiency was very similar 

for both recovery designs. Suda [68] employed two linear motors for a self-powered active 

control to improve ride comfort and regenerate vibration energy. This study introduced that one 

DC motor can operate inversely to be a power supplier, and provide electricity to power the 

second motor as an actuator, and hence adjust the suspension performance. The electric 

generator as the energy regenerative damper in secondary suspension can charge the damper in 

the primary suspension to achieve the purpose of self-power through active vibration control 

with better isolation performance in a quarter car model. In his later research [69], a hybrid 

suspension system was presented with sky-hook control and energy regeneration which was 

developed from the self-powered active suspension in [68], see Figure 2-5. Approximate 20% 

increase of peak energy regeneration can be achieved in developed hybrid suspension systems 

with proposed control and also the energy flow has been improved for isolation performance at 

low frequency with random input.  

In Nakano and Suda’s later study [70], a similar suspension system was investigated. The 

self-powered active suspension was combined with the cabin of a heavy duty truck. Then, an 

electric motor as a regenerative damper and condenser was employed in front suspension truck 

chassis to recover the vibration energy into a storage capacitor; the generated energy from the 

regenerative damper can be supplied to electromagnetic actuators which acted as secondary 

suspension to provide active control using energy from the storage capacitor. The aim was to 

measure and compare vibration energy between chassis and cabin with different levels of mass. 

Based on the above studies, Nakano and Suda [71] applied two linear DC motors to improve ride 
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comfort by self-powered active control, and also proposed an active control method for energy 

regenerative suspension which can produce continuous control input. In Nakano’s studies, one 

motor worked as a generator to power the other as an actuator to modify the vibratory behaviour. 

Energy regenerated by the damper is stored in a condenser to power the primary actuator used 

for active control. Nakano [72] applied the sky-hook control approach to a self-powered active 

suspension system in a truck cabin. From the energy balance view, it can be summarised that the 

energy balance depends on the dynamic properties of the suspensions, power spectral density of 

the road distribution, feedback gain of the active controller, the specifications of the regenerative 

damper and the actuator. Graves [73] proposed the linear electromagnetic motor regenerative 

shock absorber and its output voltage must be high enough to exceed the potential of barriers in 

storage devices, such as a battery, capacitor or fuel cell. In addition, the industry attempted to 

manufacture the active suspension for commercial use to reduce fuel consumption and recover 

vibrational energy. Goldner [74] designed an electromagnetic linear generator and shock 

absorber which can recycle the energy efficiently but it weighed 70kg and was not suitable for 

commercial vehicles.  

 

Figure 2-5 Suspension models with self-powered active vibration control system and hybrid 

control system [68] [69] 

However, the linear electromagnetic motor shock absorber has a few fast-moving components, 

and hence caused a small amount of friction loss and maintenance, and long operating life but 

large magnetic flux leakage, power factors and low power efficiency significantly degraded the 

energy conversion efficiency. 

2.5  Rotary electromagnetic motor shock absorber 

For a rotary electromagnetic motor, based on different mechanical transmissions, it can be 

classified into 3 types as well: ball-screw, pinion-rack and planet gear. As for the motion and 
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efficiency of view, many researchers focus on a kind of regenerative absorbers comprised by ball 

screws and rotational electric motors. Arsem [75] first proposed ball screws in vehicle 

suspension system as a regenerative damper to convert mechanical energy into electricity which 

can be stored in batteries. Murty [76] employed an adjustable damper with variable damping 

coefficient in the suspension system to transfer the linear motion by ball screws to rotary motion 

by an AC generator. Alternating current passes through the rectifier circuit to direct current (DC). 

An electrical load was added to consume the vibrational motions to change the load impedance 

so as to acquire adjustable damping force. 

 

Figure 2-6 The configuration of a new electromagnetic damper (EMD) [77] 

Suda [77] demonstrated a design of an electromagnetic damper (EMD) composed of a DC 

motor, a planetary gear and a ball screw mechanism, shown in Figure 2-6. The DC motor can 

rotate in both directions to supply power and recover energy. The damper can reverse back and 

switch to regeneration mode. The ball screw mechanism can amplify vibration motions, and then 

a large amount of force will transfer it from wheels to the vehicle body. Further investigation 

was performed by Nakano and Suda [78], that employed numerical simulations and experiments 

of the electromagnetic damper which can convert linear motion to rotary motion combined with 

the screw and nut is applied to truck suspensions that claims up to 36.35% regenerative 

efficiency.  

In 2008, to further improve the dynamic response and increase energy efficiency, Kawamoto 

[79] studied energy consumption, vibration isolation and vehicle manoeuvrability using electro-

mechanical suspension (EMS). It indicates that the rotary configuration is able to solve the 

compatibility between vibration isolation and energy regeneration with the maximum 

regeneration of 44W. In addition, not only EMS but also other evaluations [80] [81] were shown 

that rotary type regenerative suspension can increase vibration isolation and transfer from wheel 

to vehicle body at frequencies above 7-10Hz, even with active control schemes, and hence this 
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effect significantly causes the degradation of ride comfort and vibration absorption. Kawamoto 

and Suda [82] also used experimental results to validate against the simulation results in both the 

modelling and testing of EMD. The measured results show that the total energy regeneration is 

15.36 W with 80 km/s in class C road of ISO 8608 standard, and the energy was recovered when 

the vibration was over 2 Hz in comparison with energy consumed when vibration was lower than 

2 Hz from the system energy spectrum diagram. Cao [83] utilised one commercial suspension 

structure as a testing platform and developed an electromagnetic actuator which combined a ball 

screw with permanent magnetic motor. The preliminary test verified the feasibility of that 

actuator. Furthermore, the electromagnetic actuator experiments were carried on whole vehicle 

experimental rig to measure its dynamic features and the capability of energy regeneration. 

Zheng [84] proposed a design concept of an electrical active suspension. The study on feasibility 

and design reveals that the proposed active suspension with a control method would be a feasible 

approach for both active control and energy regeneration.  

Furthermore, the configuration of rack-pinion is also widely used in rotary electromagnetic 

suspension system. Li et al. [85] proposed a novel rotary electromagnetic shock absorber. The 

designed gear transmission in this system induces a permanent magnetic (PM) generator, a 

gearbox, a bevel gear and a rack-pinion. The rotary shock absorber converts linear motion of 

suspension travel into rotary motion to drive the generator. The results shows that the rotary 

shock absorber can provide a large range of damping force while recovering power , and the 

structure of this regenerative shock absorber is shown in Figure 2-7. At 30 miles per hour (mph), 

19W on average can be captured. The power regeneration can be achieved by integrating a rotary 

or linear DC motor into a shock absorber to harvest the vibrational energy directly. However, the 

regenerative capability is restricted by the energy conversion efficiency and the limited 

excitation velocity. 

 

Figure 2-7 The structure of the regenerative shock absorber [85] 
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Figure 2-8 the general conceptual design of the linear electromagnetic actuator [86] 

The University of Texas Centre for Electro-mechanics (UT—CEM) designed a fully 

controlled active suspension system (Electronically Controlled Active Suspension System, 

ECASS) for heavy vehicles which employed an electromechanical controlled actuator to switch 

between an electric motor and generator since 1993 [87], and this approach has been patented in 

1997 in the USA [88]. Figure 2-8 shows the general conceptual design of a linear actuator which 

includes a rack and pinion and gearbox. ECASS helps military vehicles (HMMWV and ASCOD 

Ulan) to improve their stability, velocity, energy saving and energy regeneration [86] [89] [90] 

[91]. In recent years, ECASS has developed with L-3 Communication Electronic systems Inc. 

for its electronic system and Horstman Defence Systems Inc. for its gear system, and hence that 

ECASS will be developed for a broader commercial [92] [93]. Figure 2-9 shows the schematic 

drawing of InArrm hydro-pneumatic suspension system which is designed by the Horstman 

Defence System. Therefore, the rack-pinion configuration of electromagnetic suspension is 

suitable for both heavy commercial vehicles and for wheeled and tracked military 

vehicles/chariots. 

Overall, the rotary motor has advantages of high utilisation of energy and high efficiency of 

energy regeneration with a cramped structure and good reliability. If the rotary device is applied 

in a vehicle suspension system, a series of transmission mechanisms need to be mounted to 

convert the relative motion between the vehicle body and wheels into rotary motion. There have 

ball screws and rack-pinion configurations which are used to drive the electric motor or 

generator. The frequent change of the motor shaft direction leads to more inertia loss, and then 

causes the reduction of energy regeneration efficiency and suspension dynamic responses. In 

addition, according to the working principle of rotary motor, it is only fit for good road 
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conditions. The large relative motion causes damage in transmission mechanism which is 

difficult for maintenance, and hence to directly reduce its service life. 

 

Figure 2-9 The schematic drawing of the Horstman Defence System: InArm hydro-

pneumatic suspension system [93] 

 

2.6  Hydraulic regenerative shock absorber 

In a hydraulic configuration, the regenerative shock absorber converts the reciprocating 

motion of the hydraulic cylinder piston into the rotational motion of the hydraulic motor and the 

generator through the pressurised fluid, and stores the recoverable energy in energy devices or 

battery for later use. 

To improve translational efficiency, and to adapt to high excitation velocities, hydraulic 

transmission has been proposed to convert linear motion into rotary motion, and hence to 

produce electricity by a generator/electric motor. A team of Massachusetts Institute of 

Technology (MIT) students [94] [95] have patented an energy-harvesting shock absorber that 

captures energy resulting from the relative motion of a vehicle suspension system. This device 

employs the reciprocating motion of a cylinder with designed hydraulic circuit so unidirectional 

fluid is generated to drive the hydraulic motor and generator for more power from bumps due to 

road unevenness, see Figure 2-10. This invention has attracted interest from heavy-duty vehicle 

manufacturers and the US Army.  
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Figure 2-10 The MIT energy-harvesting shock absorber [94] [95] 

Furthermore, Xu L, Tucker and Guo [96] [97] [98] proposed similar approaches and 

mechanisms with the design of MIT to study an active shock absorber for energy regeneration. 

Afterward the dynamic features and the feasibility were investigated by theoretical study and 

preliminary test. The damping performance, energy recovery and energy losses were estimated at 

this initial stage in an attempt to provide the improvement strategy for further study [99]. Fang et 

al., [100] applied a hydraulic electromagnetic shock absorber prototype which includes an 

external hydraulic rectifier and accumulators, but the energy efficiency is only 16.6% at 

10Hz/3mm harmonic excitation. Although an algorithm based on a quarter-car model has been 

proposed for the hydraulic electromagnetic shock absorber to estimate the optimal electrical load 

and the damping ratio for maximising the energy-recycling power, the nonlinear effects of the 

hydraulic electromagnetic shock absorber are neglected [101].  

Li and Tse [102] fabricated an energy-harvesting hydraulic damper that directly connects the 

hydraulic cylinder, the motor and is where three-stage parameter identifications are introduced. 

However, without considering the nonlinearities of the system parameters and high-frequency 

noise in the process of the parameter identification, the parameter assumptions in the 

electromechanical model are all constant which cannot always be valid. Li et al. [103] designed 

and fabricated a hydraulic shock absorber prototype with a hydraulic rectifier to characterise and 

identify the mechanical and electrical parameters of an electromechanical model.  
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Figure 2-11 The layout of the hydraulic pumping regenerative suspension [51] 

In addition, Zhang et al. [51] introduced a hydraulic pumping regenerative suspension model 

shown in Figure 2-11, researching the asymmetric damping characteristics and regenerated 

power under different input frequencies, motor displacements and electrical loads but the system 

losses and nonlinearities were not considered and the validity of this modelling has not been 

confirmed by practical study.  

Overall, hydraulic regenerative shock absorbers integrate the flexibility of the hydraulic 

system and the high-efficiency of the electromagnetic regeneration. Regenerative hydraulic 

shock absorbers not only isolate vibration from excitation or road roughness, but can also 

recover dissipated energy by transferring dynamic flow to electricity for reuse. The dissipation as 

heat can be recycled, and hence reduce the temperature of the shock body and components to 

cause the degradation of dynamic performance. Furthermore, the damping characteristic can be 

adjusted by the external load applied to the electric motor or generator. Moreover, the inertia loss 

minimised by the hydraulic rectifier, which controls the shaft rotation in a one-way direction to 

extend the operating life and improve the efficiency for both hydraulic motor and generator. In 

addition, the smoothing effect of accumulator/gas reservoir was considered to provide constant 

on way flow to the hydraulic motor/pump for more recoverable power. However, the 

disadvantage of hydraulic regenerative shock absorber is the pressure drop, partial loss and 

internal friction in hydraulic circuit [104].  

2.7  Regenerative shock absorber techniques in industry 

Not only are researchers and engineers interested in mechanical energy regeneration devices, 

Nissan Automotive [56] [105] also designed a regenerative hydraulic shock absorber which 
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integrated a hydraulic cylinder and an accumulator. This shock absorber is controlled by 

hydraulic valves, which adjust the pressure of the accumulator, and hence reduce the isolation 

for suspension travel. Mechanical energy recovery shock absorbers normally use hydraulic or 

pneumatic as transmitters with some advantages, such as simple structure, good reliability, high 

regeneration efficiency and long operating life. 

 

Figure 2-12. The diagrammatic view of Bose suspension components [106] 

Bose’s active suspension [107] proposed a conceptual design of regenerative power 

amplifiers which can provide power to linear electromagnetic motors as the actuator unit and 

recycle electrical energy back from the motor in response to signals from the controller. The 

electromagnetic motor works in both the electric motor model and generator model to reduce 

vibrations and recover energy to reduce fuel consumption which is equal to 1/3 of the automotive 

air condition. A Bose suspension system consists of three main parts: a linear electromagnetic 

motor, wheel damper and torsion bar. The diagrammatic view is shown in Figure 2-12.  

Michelin [108] designed an active wheel which integrates an electrical drive motor and an 

electrical suspension motor, especially for lightweight vehicles. An Electrical drive motor 
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provides 30kW continuous output to stop the vehicle while the electrical suspension motor acts 

as an active suspension system to improve the ride comfort and road handling. The suspension 

system employs a controllable geared rack-pinion to replace the conventional hydraulic shock 

absorber. When propulsion and suspension components are installed in the steering wheel, it’s 

able to save space in front of the car and simplify the vehicle’s structure, obtaining a high 

performance of vibration absorption and reducing the weight of the vehicle in order to save 

energy. The structure of the Michelin active wheel is shown below: 

 

Figure 2-13 the structure of Michelin active wheel [109] 

Siemens VDO Corporation presented a new active wheel system which be called eCornor but 

this design is still at a conceptual stage. The eCorner, see Figure 2-14, integrates an in-wheel hub 

motor, an electronic shock absorber, an electronic wedge brake and electronic steering. In the 

suspension system of the eCorner, the vehicle weight is held by a coil spring, and the shock 

absorber is replaced by an electrical actuator which can be used to suppress vibrations whilst 

offering the potential for energy regeneration [110].  

For the Michelin active wheel and Siemens eCorner, they are focused on integration. The 

LevanPower Corporation [111] [112] [113] is developing a regenerative hybrid shock absorber 

named GenShock, and is shown in Figure 2-15. GenShock utilises flow valves to build a rectifier 

bridge to rectify the flow in the pipelines. When the reciprocating motion happens in the cylinder 

piston, the unidirectional flow passes through the hydraulic motor to the drive generator. The 
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prototype was built by MIT students, and obtained 800W continuous recoverable energy with a 

total of four shock absorbers on a smooth road which is 5 kW on a rough road condition. The 

regenerative energy can save 2-5% of fuel consumption and around 7 times the electricity than 

an alternative commercial vehicle. However, it is able to save 6% of fuel consumption for 

military vehicles and up to 10% fuel consumption in hybrid vehicles. For its high efficiency of 

energy regeneration, General Motor Corporation, the institutes of the American Navy and Army 

are investing in GenShock for the next generation of their vehicles. 

 

Figure 2-14 The schematic of the Siemens VDO eCorner and components [110] 

In 2012 [46], GenShock Alpha and Beta prototypes were fabricated and tested on a Class 8 

heavy-duty truck on a motorway to evaluate the performance and the capability of energy 

regeneration. The Alpha prototype was built using commercially available components, and the 

hydraulic motor and generator were separated from the main shock body and fed by a coaxial 

tube assembly. Although the Alpha prototype operated well at large displacement on the shock 

dyno, and was calibrated to match the stock damping curves of the shocks supplied with the 

truck demands, energy recovered from the Alpha prototypes was less than expected because it 

was unable to recover energy from small amplitude displacement which is occurred the majority 

of the time. The Alpha system provided valuable experience and evidence to optimise the design 

and performance of the Beta prototype. In contrast, the Beta prototype was improved in energy 

regeneration over highway terrain, adaptive damping and active roll-control performance. The 

optimal hydraulic motor-generator configuration was established by analysis before the Beta 

design to determine the optimal energy regeneration device to fit the requirement of input 

displacement and damping performance. 
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Figure 2-15 GenShock technology stracture and principle [112] [114] 

To improve power efficiency and reduce losses, the generator and hydraulic motor were 

close-coupled and mounted in the piston head of the damper. A specific device was designed and 

manufactured, called the Integrated Piston Head (IPH). The Beta IPH valve was integrated the 

hydraulic motor, generator, compression bypass valve and extension blow-off valve. Figure 2-16 

shows the developed Beta prototype of GenShock and the novel integrated valve design. 

Therefore, the capability of power regeneration in the Beta prototype was significantly improved 

from the Alpha. In the meantime, the performance and recoverable power in low frequency and 

small amplitude displacement were developed to acceptable levels. In this paper, two GenShock 

prototypes have been developed for the use of generating energy instead of dissipating it for 

heavy vehicles, while implementing adaptive damping based on a patented valve design. 

However, the primary consideration of regenerative suspension is to ensure ride comfort and 

road handling. Furthermore, the expected dynamic responses are difficult to coexist with the 

power regeneration in GenSshock prototypes. Therefore, ZF Friedrichshafen AG and Levant 

Power Corp. [115] announced an active suspension system based on GenShock technology with 

ability to balance power regeneration and dynamic performance will be hit the vehicle market in 

next few years. 
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Figure 2-16 The Beta prototype and Integrated Piston Head (IPH) [46] 

2.8  System layout 

A variety of design concepts of regenerative suspension to recover energy and dampen 

vibration have been reviewed and evaluated. It is expected that the hydraulic-electromagnetic 

configuration will be used due to its better flexibility and reliability of system performance and 

power regeneration. It is evident that the hydraulic-electromagnetic configuration has been 

improved by using linear theory, but it does not consider the practical problems with their 

conceptual designs such as energy losses, pressure stabilisation, and flow recirculation. In recent 

decades, research studies were using simplified hydraulic-mechanical-magnetic models with 

predicting assumptions to give evidence of their operation. It is therefore important to fully 

understand the interaction of the multidisciplinary regenerative suspension system in order to 

develop a combined model of the RHSAs with a comprehensive system layout including the 

consideration of energy losses and hydraulic smoothing which are pivotal in improving 

regenerative power efficiency and damping characteristics.  

As shown in Figure 2-17, a schematic design of a regenerative shock absorber is proposed 

which consists of a double-acting hydraulic cylinder, a hydraulic rectifier with four check valves, 

a hydraulic accumulator, a hydraulic motor, a permanent magnetic generator, pipelines and an oil 

tank. The key component of the system is the hydraulic cylinder that represents a traditional 

shock absorber. The design of the shock body adds two more ports in the cylinder body, which 

are P3 and P4. Port 3 and Port 4 are connected with the return line and oil tank to refill the 

cylinder chambers during the piston motions which are intended to improve the response of the 

pressurised flow. The cap-end and rod-end chambers of the cylinder are divided by the piston. It 

can be found that the flow rate and pressure will highly oscillate because of the time-varying 

motion of the piston. To smooth the pressure oscillation, a gas-charged accumulator with fast 

dynamic responses is connected before hydraulic motor inlet (high pressure side) [19].  
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In the RHSA system layout, the end of the shock absorber body is fixed to a stationary frame, 

and a piston rod is connected to a hydraulic actuator which provides oscillatory excitations to 

represent travel over uneven roads by moving the piston reciprocally. The upward and 

downward motions of the piston can be described as compression and extension motions 

respectively [116]. 

 

Figure 2-17 The schematic view of four ports symmetric cylinder 

The cylinder was designed to have four ports, symmetrically distributed at both sides of the 

cylinder body. As shown in Figure 2 18, these ports connect to four check valves which act as a 

hydraulic rectifier. Such a hydraulic rectifier (4 ports arrangement) is able to reduce the number 

of hydraulic components and minimise the minor loss in pipe or duct components. Through 

rectification, the fluid in both compression and extension motions passes through the hydraulic 

motor in unidirectional. 

The hydraulic motor is directly coupled to the generator via a shaft, and driven by the 

pressurised flow. The hydraulic motor converts the linear motion of the piston into rotary motion 

by transferring oil from the high-pressure side to the low-pressure side, and the subsequent 

rotation of the motor shaft drives the generator to produce electricity. Road excitation is 

simulated by a computer-controlled actuator, which can be controlled to input several types of 
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excitations, although in this design, a sinusoidal wave is used as the main excitation input and a 

road surface profile is also applied for the performance evaluation in irregular waves [116].  

 

Figure 2-18 Schematic view of the design concept for a regenerative shock absorber system 

Based on the system layout and model specification, a specific research methodology has 

been proposed to provide guidance and advice to support the research of the RHSA system, see 

Figure 2-19. The idealised model and developed model is built to give a basic understanding of 

the RHSAs and introduce its effects. Also, to validate the predictions, the performances of the 

RHSA will be evaluated on an experimental rig, and then model can be developed for more 

accurate result by a set of parameter studies. The experimental results of the RHSA are therefore 

measured and compared to relevant predicted results for model validation.  
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Figure 2-19. The study procedures of the RHSAs  
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2.9  Concluding remark 

To investigate the power potential regeneration and verify the technical practicability of 

regenerative suspension, from the literature a number of theoretical studies, simulation works 

and practical researches have been presented to maximise recoverable power and provide better 

suspension performance.  

Firstly, considering the cost, efficiency and reliability, hydraulic transmission electromagnetic 

configuration has the most potential of meeting the demands of the development trend of future 

vehicles. This configuration is certainly the primary motivation in this study, and it is definitely 

an achievable approach for exploring more details in modelling studies and experimental work.  

Secondly, it can be found that most research points on the regenerative hydraulic suspension 

mainly focus on the improvement of the modelling and experimental techniques, but lack 

detailed research on model validation and parameter identification. Their investigations indicate 

that the proposed methods show great potential for power regeneration without considering the 

practical issues, such as energy conversion efficiency, energy loss and parameter accuracy.  

However, most of these works were applied with simplified assumptions and do not consider 

the realistic energy losses and component parameters. In this chapter, it is therefore necessary to 

design a comprehensive system layout of the RHSA to better support the modelling and 

experimental approaches, which can be used to better understand the behaviour of the RHSAs 

under different influencing factors in Chapter 3.  
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Chapter 3 Modelling a Regenerative Hydraulic Shock Absorber  

To understand the mechanisms of a regenerative hydraulic shock absorber, a mathematical 

model is developed based on a generic configuration of the shock absorber. Hydro, mechanical 

and electromagnetic dynamic approaches are used to describe the oscillation of high pressure 

flows, the fluctuations in rotations and electrical outputs. Moreover, it also takes into account 

various system losses and potential nonlinearities.  
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3.1  Model objectives  

More recently, several modelling studies have been presented using a simplified hydraulic 

suspension model with a specific layout to investigate the power regeneration and damping 

characteristic. However, the predictions have not been verified by experimental work, and also 

the model has not considered unexpected practical problems such as parameter accuracy, system 

losses and nonlinearities. Therefore, a more comprehensive model of a regenerative shock 

absorber needs to be modelled, including the system losses and nonlinearities. The understanding 

of the previous works provides a concrete basis for effective development on the model and 

experimental works of a regenerative device. 

Creating a mathematical model for the regenerative hydraulic shock absorber system through 

the hydrodynamic approach is an accurate and efficient way to understand further the 

relationship of hydraulic flow, rotational motion and electrical power with the predicted 

processes. In this study, the main objective of presenting the mathematic model is to verify the 

flexibility of the conceptual design in Chapter 2, and investigate the model-related performances 

of the prediction while considering the losses and nonlinearities in such a system. The predicted 

results from the developed modelling will be validated and compared with the measured results 

obtained from the measurements in later Chapter. Secondly, conducting a modelling study 

allows forecasting the effect on the performance of the system design, and also expects to reduce 

the unnecessary time consuming and workload, provide more valuable information for the 

measurement system and cut down the experimental cost. Finally, the modelling in this study can 

used to predict and characterise a few system behaviours within limited parameters which are not 

easy to measure or detect in test system, such as flow rate, torque and losses. 

3.2  Dynamic modelling and procedures 

In this section, the techniques used to model the performance of the RHSAs are introduced. 

Initially, the fundamental assumption of an ideal RHSA model is built without applying the 

effect of the accumulator, system losses and nonlinearities, and then the behaviours of an ideal 

RHSA model are described as the initial understanding of dynamic equations which perform 

hydrodynamic-to-mechanical and mechanical-to-electrical energy. Secondly, the design concept 

and modelling approach for such a power transfer system is evaluated with applying an 

accumulator upstream of a hydraulic motor. This investigation helps to understand the influences 

of an accumulator in hydraulic system and to identify if the proposed modelling work as 

expected. Finally, based on the conceptual design of Figure 2-18, mathematical models have 
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been developed to obtain an accurate understanding of the system dynamics with regard to 

hydraulic flow, rotary motion and power output. In a practical hydraulic system, the circuits are 

nonlinear due to valve switching, fluid compressibility, hydraulic losses and leakage, and the 

system nonlinearities have been incorporated into the modelling, to obtain accurate predictions 

of system behaviours. In addition, the system losses can lead to inefficiency or inaccuracies 

whilst degrading the recoverable power. However, RHSAs is modelled by ordinary differential 

equations (ODEs) in the Matlab environment which contain one or more functions of one 

independent variable and its derivatives, and used to implement the prediction analysis and 

generate the model-related results.  

3.3  Hydraulic flows 

First, assume the shock absorber body is a vertical cylindrical configuration, using a single 

piston rod made for asymmetric diameters, with a connection to the actuator in its lower end. A 

real suspension system in three-dimensional space has six degree of Freedom (6-DOF), and is 

regard as rigid body, comprising of three translational DOF and three rotational DOF [117]. To 

create the equivalent dynamic model, the shock absorber, a single DOF is considered as the 

acceptable configuration which would be used to convert various vibration sources into 

recoverable electrical power output in modelling study. For a hydrodynamic-based regenerative 

shock absorber, there is no standard configuration or dependency specification, and the design is 

generally established using hydraulic cylinder to pump fluid, with valve control through pipeline 

into a hydraulic motor. A hydraulic motor converts fluid power of unidirectional flow into rotary 

power to drive an electric generator. At the initial stage, only a simple hydraulic circuit is 

considered with no complex hydraulic components included, such as a filter and servo valve. 

The aims of the RHSA are to convert the vibration oscillation provided into a smooth 

recoverable power, and then to evaluate the RHSA behaviours, such as pressures, flow rates, 

piston forces and power outputs. The ideal RHSA model is to understand the basic operations 

and verify the feasibility of the RHSAs ahead of further optimisation and evaluation.  

3.3.1 Vibration excitations  

The motion of oscillation directly works on the piston rod to drive the piston of the double-

acting cylinder which is rigidly connected to the frame in the upper end. For simplicity, the 

excitation to the system was predefined as a sinusoidal wave, and as such this can be considered 

as the fundamental element of a more complex and realistic road profile excitation, although the 
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primary motion of a vehicle suspension system often closely resembles such a simple form [102] 

[118]. The effective displacement Sa of piston can be represented: 

( ) sin(2 )aS t S f t           (3.1) 

where the velocity amplitude vi is 

2iv f S            (3.2) 

where f is the excitation frequency, and S the maximum amplitude of the excitation. As the 

ride simulator connects to the piston rigidly, the velocity v(t) of this input can be expressed as: 

( ) cos(2 )a
i

dS
v t v f t

dt
        (3.3) 

The volume variations of the cap-end chamber Vcap and the rod-end chamber Vrod during the 

vertical piston motion (compression and extension) can be calculated from the following 

equations: 
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

   
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where Acap is the full piston face area, Arod is the annular area of the piston, Vic is the initial 

volume of the cap-end chamber, Vir is the initial volume of the rod-end chamber and Vcyd is the 

dead volume of the cylinder chambers (referring to the fluid volume in the cylinder chambers at 

zero position). S0 is the initial position of the piston, referring to the middle of the cylinder.  
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3.3.2 Flow across check valves 

 

Figure 3-1 The schematic view of fluid flows in shock absorber body and hydraulic rectifier 

The fluid pressurised by the oscillation flows through a set of four check valves (Hydraulic 

rectifier) to ensure fluid always flow through hydraulic motor in one direction, and enables the 

chambers in the cylinder can be replenished as fast as possible for each run. 

Figure 3-1 shows the processes of fluid flows in compression and extension strokes. The 

effect of the check valves is to rectify the cylinder flows Qcout and Qrout from the cap-end and 

rod-end chambers, then flow into the pipelines, which can be calculated based on Bernoulli’s 

consghvP   2

2

1
principle according to  (P=pressure, =fluid density, v=fluid flow speed, 

g=acceleration due to gravity, h=the elevation of the point above a reference plane) [119]: 
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For flow returen to the shock absorber:
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      (3.7) 

The flows for returning oil to refill the two cylinder chambers, Qcin and Qrin are shown in 

Equation (3.7), where Cd is the discharge coefficient, Acv is the area of the effective check valve 

port, Pcv is the pre-load pressure of the check valves, Pcap, Prod and Pm represent the pressures at 

the high pressure side of the motor for the cap-end chamber, the rod-end chamber and the motor 

inlet respectively. ρ is the density of hydraulic fluid. Pr is the total return pressure in the low-

pressure side, it is the sum of the return pressures to the cylinder chambers (cap-end chamber: 

r cin rinP P P Pcin and rod-end chamber: Prin) during the compression and extension:  [116]. 

Considering the compressibility of hydraulic fluid with the effective bulk modulus in variable 

chambers, the pressures out of cylinder chambers during the piston motion can be described: 

  cap cap cout cincap

cap

A v t Q QdP

dt V

  
 (Compression)     (3.8) 

   rod rod rout rinrod

rod

A v t Q QdP

dt V

   
  (Extension)     (3.9) 

where βcap and βrod are the effective bulk modulus in cap-end and rod-end chambers, and all 

bulk modulus values are set to a constant 1.267×109Pa in the ideal model [120]. The effects of 

fluid compressibility will be explored in the later section.  

3.3.3 Flow through the hydraulic motor  

The total volume VT upstream of the motor inlet is equal to the volume of the pipeline Vl at 

mdP

dt
this stage. The pressure  at the inlet of the hydraulic motor is as follows: 

 m cout rout mm

T

Q Q QdP

dt V
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       (3.10) 
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where the fluid volume (equivalent to pipeline volume) before motor inlet is: 

T l pV V A L          (3.11) 

with a hydraulic motor flow rate of:  

2

m m
m

D
Q




        (3.12) 

where βm is the effective bulk modulus of the motor chamber, Ap is the cross section area of 

the pipe, L is the length of the pipe, Dm is the displacement of the hydraulic motor, ωm is the 

shaft speed of the hydraulic motor and generator, respectively. In Equations (3.4) to (3.11), the 

parameters of the hydraulic system are displayed. 

3.4  Modelling of power regeneration 

In response to the excitations of road vibration/predefined regular waves for the RHSAs, the 

hydraulic fluid would be pushed out of the shock absorber body in one of the chambers (Cap-end 

chamber or Rod-end chamber) across the hydraulic motor during the motion of the piston, and 

recirculate back either to refill the other chamber or back to the oil tank. The main function of 

the hydraulic motor is to convert linear vibration into the unidirectional rotary motion of the 

generator. Therefore, the shaft outputs of the hydraulic motor provide sufficient inputs to 

generate recoverable electricity by the generator.  

3.4.1 Rotational motion 

Due to the pressurised flow Qm, the hydraulic motor will rotate with driving torque Tm 

according to the following expression [121]: 

2

m m m
m

D P
T




        (3.13) 

where ηm is the mechanical efficiency of the hydraulic motor and Pm is the pressure of the 

hydraulic motor inlet.  

Using Newton’s second law of motion, the rotary motion ωm can be written as 

m m l

t

d T T

dt J

 
         (3.14) 

where Jt is the moment of shaft inertia and Tl is the electromagnetic torque. 
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3.4.2 Electrical power and efficiency 

In the regenerative power unit, an equivalent DC generator is modelled in the RHSAs. The 

electromagnetic torque produced by the generator can be changed with the varying induced 

current to alter the system behaviours and power generation; the electromagnetic torque is 

always inversed with the motor torque provided so that it is considered resistive torque for 

rotational motion. The electromagnetic torque Tl can be expressed based on the torque constant 

coefficient kT and the electric current I as follow [122]:  

l TT k I        (3.15) 

The electromotive force (EMF) E is given by [122]: 

V mE k         (3.16) 

where kV is the electromotive voltage constant.  

The dynamic model for the equivalent permanent magnetic DC generator depends on 

Kirchhoff’s voltage law [120]. Assuming that the susceptibility at any temperature and the flux 

that is established by the PM poles is constant, it can be expressed as  

 in L

in

E R R IdI

dt L

 
        (3.17) 

where Lin is the internal inductance of the DC generator, RL is the external electrical load and 

Rin is the internal resistance. The internal inductance is calculated based on measured voltages. 

The instantaneous voltage U is given by: 

LU I R            (3.18) 

The effective average power input is the sum of the damping forces Fcap and Frod multiplied 

by the effective piston velocity v. The areas and velocity of the piston are regarded as known 

parameters. The cap-end and the rod-end pressures act on both sides of the piston to generate 

compression and extension damping forces, which can absorb the body vibration in an 

automobile suspension system. Hence, the damping force is directly proportional to the pressure 

output from the shock absorber, meaning that the piston forces can expressed as: 

cap cap capF P A rod rod rodF P A and       (3.19) 
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The piston power generated by the RHSA: 

( ) ( )in cap cap rod rodP P A v t P A v t        (3.20) 

The most intuitive means of quantifying the power regeneration is from the instantaneous 

power output and the power efficiency. In modelling system, the regenerated power output Preg 

can be calculated from the I2R. From the view of measurement, the instantaneous voltage U at 

terminals of the electrical load can be used to estimate the power potential output, and hence an 

equivalent expression for Preg can be: 

2
2

reg L

L

U
P I R

R
         (3.21) 

The regenerated power conversion efficiency ηreg can be defined as the total efficiency of the 

regenerative hydraulic shock absorber system and can hence is expressed using Equations (3.21) 

and (3.22) as follows: 

reg

reg

in

P

P
         (3.22) 

Table 3.1 Key parameters used in modelling system 

Name Value Unit Name Value Unit 

Vcyd 1×10-5 cm3 Acv 3.93×10-5 m2 

Vic 3.93×10-4 m3 Ap 7.85×10-5 m2 

Vrc 6.38×10-4 m3 Arod 1.26×10-3 m2 

L 1 m Acap 1.96×10-3 m2 

Cd 0.7 --- f 1 Hz 

Dm 8.2×106 m3/rev Pcv 0.7 bar 

Lin 0.03 H S0 100 mm 

Sa 25 mm RL 10 Ω 

Rin 7.5 Ω Jt 0.003 kg∙m2 

 

Table 3.1 shows the model-related component parameters in the RHSA. In the ideal RHSA 

model, there are no reference values from any other relevant designs but are dependent on the 

sizes of a traditional shock absorber body in heavy-duty truck. In the idealised model, the 
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volumetric efficiency ηv in the hydraulic motor and the mechanical efficiency ηm are assumed to 

be of 100% with no losses.  

3.4.3 Offline parameter study of Generator: kT and kV 

Based on Equations (3.15) to (3.17), the factors of considerable influence on the recoverable 

power and shaft speed are the electromagnetic force Tl, the torque constant coefficient kT and the 

voltage constant coefficient kV in the equivalent permanent magnetic DC generator. 

In this study, an elementary offline test was performed to characterise the electrical 

parameters (kT and kV) of the generator including software design, rigid frame structure design 

and test design. Firstly, a rigid frame structure was designed to make a coaxial transmission line 

with a coupling between the electric motor and the generator. Secondly, a software design was 

applied for the measurement of the power outputs of the generator for further data analysis. 

Finally, test procedures were established to operate the generator at different working conditions.  

 

Figure 3-2 Offline paratemeter study of the generator: kT and kV 

As known to all, the electrical parameters (kV and kT) have significant influence on the 

electrical efficiency and dynamic behaviours of the whole system, and for this reason an initial 

evaluation of the electrical parameters was performed using an offline test approach thereby the 

generator was coupled directly to an electric motor drive as shown in Figure 3-2. A 

programmable power electronic load was used to adjust the external loads. A relevant test project 

is created to allow the efficient communication between power electronic load and operating 

computer in Microsoft Visual Studio which provides a flexible and efficient method to run the 

specific offline generator test and view performances in real time., and specific application test 

panel is designed for data acquisition, parameter setting and online observation in this offline 

parameter study, see Figure 3-3. In the directly coupled offline parametric test, the electrical load 
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was set to values of 11, 14, 16, 18, 20, 30, 40 and 50 Ω, and the torque, voltage and current were 

measured at 150, 300, 450, 600, 750 and 900rpm for each alteration of resistance [116].  

 

Figure 3-3 Test panel in offline parameter study for testing setting and data acquisition 
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Figure 3-4 Offline fitted voltage constant and offline fitted torque constant 

The average torque was calculated by a programmable logic controller (PLC), and the results 

are shown in Figure 3-4. The parametric tests provided the following values for voltage constant 

coefficient and torque constant coefficient, kV=0.9303 and kT=0.9274 [116].  

3.4.4 Analysis of the ideal model 

In real applications, the system losses and nonlinearities are real phenomena in the hydraulic 

circuit and the rotational motion throughout the whole system such as cylinder piston frictions, 

pipeline pressure losses, motor internal leakage and rotational torque losses in the hydraulic 

motor and generator. The working conditions and the components specification determine the 

majority of the losses which significantly influent the system behaviours. However, as an initial 

investigation to provide an overview of the RHSAs, the model is idealised to a simple 

configuration for easy understanding without the consideration of losses and nonlinearities. The 

results of the ideal model is shown in following.  
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Figure 3-5. First: Excitation (sinusoidal wave), Second: Pressures, Third: Flow rates for the 

ideal RHSA model with no accumulator and losses 

To investigate the behaviours of the ideal RHSA model, the excitation was set to 1Hz 

frequency and 25mm amplitude in a regular sinusoidal wave. In addition to comparing with other 

models in following sections, all three models were running at the same excitation and setting 

the same internal resistance value (of 7.5Ω). All predicted values can be positive due to the 

predefined displacement is set between 0 to 50mm. In Figure 3-5, it shows that the waveform of 

the pressures and the flow rates are approximately to the sinusoidal wave input. The peak 

pressures for each chamber are 89bar and 57bar at the maximum velocities of the motion. Figure 

3-6 indicates that power regeneration is only captured from the electrical load, and the capability 

of power regeneration is close to 100% that the mean value is 549.4W and the peak value is 

1,568W. Furthermore, the total power captured by the generator only depends on the setting of 

internal resistance and external load applied, which can be approximately equal to the 

mechanical power, fluid power and piston power in the ideal model, see Figure 3-7. 



Chapter 3 Modelling a Regenerative Hydraulic Shock Absorber 

 

83 

 

Figure 3-6. First: Shaft speed, Second: Piston forces, Third: Power regeneration  

 

Figure 3-7. First: Piston power, Second: Fluid power, Third: Motor mechanical power 
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3.4.5 Gas-charged accumulator flow 

The flow rate and pressure can significantly oscillate due to the differences of the piston area 

and annulus area in cylinder chambers, and then cause different fluid flows. In this subsection, a 

hydraulic accumulator is mounted on the inlet of the motor to adjust the pulsation of the fluid 

flow and explore its effect on the hydraulic behaviours and power regeneration. The fluid from 

the cylinder chambers is rectified by the check valves, via the hydraulic accumulator for 

smoothing high pressure fluid before the pressurised fluid passes through the motor to the drive 

generator. This means that the recoverable power can be resized by the inherent characteristics of 

accumulator which can be used for energy storage and fluid smoothing. In addition, the 

accumulator is able to adjust the hydraulic behaviours efficiently to reach the desirable 

waveform and value. Initially, the gas chamber is pre-charged to pressure Ppc and set to 20bar. 

The gas-charged accumulator can be considered in fully charged, partially charged and fully 

discharged states for calculation purposes. Its state depends on the instantaneous accumulator 

port pressure variation, the flow rate Qacc and the pressure Pf of the fluid in the accumulator. The 

effects of the gas-charged accumulator are reflected by the changing volume in fluid chambers Vf. 

Therefore, the pressure and volume variation of accumulator fluid can be written as: 

 1

0 ,

1 ,

r

f f pc

k

pc

f c f pc

f

V P P

P
V V P P

P

 


 
     

  

      (3.23) 

The rate of the accumulator fluid pressure Pf is therefore given: 

f r f

acc

t

dP n P
Q

dt V


         (3.24) 

The variation of total volume in accumulator is: 

t f agd cV V V V          (3.25) 

Fluid flow to accumulator: 

2
sgn( )

m f

acc q acc m f

P P
Q C A P P




        (3.26) 
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where Vc ,Vt and Vagd are the accumulator capacity the total variable volume in accumulator 

and the accumulator dead volume (Top dead volume is equal to bottom dead volume), 

respectively, Aacc is the area of the accumulator inlet port and nr is the gas specific heat ratio of 

gas-charged accumulator. Certain assumptions have been made to simplify the calculations [116]:  

1) The gas-charged accumulator is assumed to be adiabatic, ignoring the heat exchange 

that happens between the gas and oil under the condition of rapid-cycling. 

2) There is no frictions or thermal losses incurred during the charge/discharge cycles in 

the accumulator model. When the accumulator is running under variable pressure, 

thermal losses caused by variation in the gas temperature will influence gas behaviour. 

3) The pressures in the fluid chamber instead of those in the gas chamber are used for 

flow rate calculation, which is reasonable because of the transient pressure balance 

inside the accumulator. 

 

Figure 3-8. First: Pressures, Second: Flow rates, Third: Shaft speeds of the RHSA model 

with the hydraulic accumulator and no losses 
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To investigate the RHSA model behaviours with the accumulator effects compared to the 

ideal model, both modelling studies used the same parameters and predefined the same 

excitation. In Figure 3-8 to Figure 3-9, it is different in comparison with the ideal model. The 

pressure, flow rate and shaft speed of the motor attempted to keep an approximate constant after 

the accumulator smoothing, and hence the waveform of the piston force is close to a square in 

each side of the piston distinguished to the sinusoidal variety of the ideal model. Figure 3-9 also 

indicates that the current, voltage and recoverable power also alter with the waveform of the 

motor pressure to reach a smoother condition. In this stage, the system reaches a continuous and 

stable state, and the amplitude of the motor pressure varies between 35bar to 65bar for each full 

cycle. 

 

Figure 3-9. First: Piston force, Second: Current, Third: Shaft speeds, Fouth: Power 

regeneration of the RHSA model with the hydraulic accumulator and no losses 

As anticipated, Figure 3-10 shows that there are observable differences of these three powers. 

The piston power generated still resembles the sinusoidal character for each half cycle compared 

with the other two. However, the waveform of the fluid power and rotary power are not entirely 
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in accordance with those in the ideal model. With the smoothing effect by the accumulator, there 

is a slight decrease in the power conversion, piston−fluid−generator. In the idealised mode with 

the accumulator, the expected power and hydraulic behaviours are obtained through the use of 

the smoothing effect meaning that the accumulator can be used to resize the hydraulic outputs 

whilst providing efficient power generation. To entirely understand the theoretical performances 

of the RHSAs, it is necessary to ensure the reliability of the prediction through the use of more 

details in such a multidisciplinary system. 

 

Figure 3-10. First: Piston power, Second: Fluid power, Third: Mchanical power of the 

hydraulic motor of the RHSA model with the hydraulic accumulator and no losses 

3.5  System losses and model reconstruction 

In this subsection, a realistic model will be introduced through the description of system 

losses and nonlinearities to determine a more accurate prediction that the developed modelling 

procedures can be used in attempts to predict the RHSAs parameters. Ivantysynova [123] 

presents that the reliable prediction of losses of fluid power systems by system simulators 

requires a very high accuracy of steady state models of all components, but especially for the 

displacement machines in the whole parameter range. A more detailed model is hence presented 
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in which the considerable factors of the dynamics of hydraulic flows, rotational motion and 

power regeneration are taken into account. The behaviour of the RHSAs is based on the law of 

conservation of energy during the hydraulic-mechanical-electrical process, and the power 

generation is a consequence of the piston’s motion, which is influenced by the system parameters 

based on the geometry and nature of the components. To be able to predict accurate power 

generation response to the predefined excitation, a more accurate model than the conventional 

one must be developed, and in this study, the losses and nonlinearity include in the refined model 

are: 

 Hydraulic motor internal flow leakage 

 Fluid compressibility (Bulk modulus) 

 Motor volumetric efficiencies 

 Motor mechanical efficiency 

 Rotational torque friction (Viscous friction coefficient: Cv=0.005) 

 Pressure loss in the pipeline 

 Pressure losses pass through hydraulic rectifier (4-check valves distribution) 

 The predefined excitation will be resized through the measured results to refine on the 

displacement error in later chapter. 

To investigate how the model behaves at the preliminary stage of development, the 

volumetric and mechanical efficiencies of the hydraulic motor are assumed to be constants of 95% 

and 92% [51]. Additionally, the consideration of the viscous friction coefficient starts from 0.001 

in a small value, and then increases to 0.01 and 0.02 for the comparison of the system behaviours.  

The internal flow leakage in the motor is considered as a development, and a more accurate 

hydraulic motor flow rate can be expressed [120]:  

2

m m
m lk m

D
Q K P




         (3.27) 

Using the Hagen-Poiseuille coefficient KHP [120]: 
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 1m nom V nom

HP

nom

D
K

P

   
       (3.28) 

and dynamic viscosity of hydraulic oil:  

          (3.29) 

Thereafter, the hydraulic motor leakage coefficient is a mathematical expression of the 

effectiveness of the motor leaking, and it can be written as follows [120]:  

HP
lk

K
K


            (3.30) 

The pressure loss Ploss in the moving fluid at different flow rates across the pipeline  is 

calculated based on the Darcy−Weisbach equation [124] and Ploss is: 

2

32 ( )cout rout
loss

p cv

L Q Q
P

D A

  
       (3.31) 

where ηv stands for the volumetric efficiency of the hydraulic motor, σ is the kinematic 

viscosity of the hydraulic oil, µ is the dynamic viscosity of the hydraulic oil, ρ is the hydraulic 

oil density, KHP is the Hagen-Poiseuille coefficient, klk is the motor leakage coefficient and Dp is 

the diameter of the pipe. in addition, σnom, ωnom and Pnom are expressed as the nominal kinematic 

viscosity of the hydraulic oil, the nominal motor angular velocity the nominal motor pressure, 

respectively, and then their parameter settings are shown in Table 3.2 [125]. 

A more accurate hydraulic motor pressure can be obtained for the modelling, considering the 

smoothing effect of the accumulator, the internal leakage of the hydraulic motor and the loss in 

the pipeline. Therefore, the motor inlet pressure can be reconstructed as follows:  

 m cout rout m accm

T

Q Q Q QdP

dt V

   
       (3.32) 

where the total volume variation before the motor inlet includes the volume in the pipeline 

and the volume of the accumulator fluid , and it can be given by: 

T f lV V V          (3.33) 

and the pipeline volume is: 
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l pV A L         (3.34) 

Additionally, due to the pressurised flow Qm, the hydraulic motor will rotate with driving 

torque Tm according to the following expression 

 
2

m m loss m

m

D P P
T






        (3.35) 

The rotational friction torque Trf can be simplified as follows [126]: 

rf v mT C         (3.36) 

where Cv is the viscous friction coefficient, and ωm is the shaft speed. Based on Newton’s 

Second Law of Motion, the rotary motion can be written as 

m l rfm

t

T T Td

dt J

  
        (3.37) 

Table 3.2 Key parameters of Gas-charged accumulator and system losses 

Symbol Value Unit Symbol  Value Unit 

σ 22×10-6 m2/s Dp 9.525 mm 

ρ 872 kg/m3 Cv 0.001/0.01/0.02 --- 

µ 0.0012 kg/m/s Vc 0.16 litre 

Ppc 20 bar Dacc 12.7 mm 

ωnom 125.6637 rad/s Pnom 200 bar 

σnom 18.786×10-6 m2/s Cq 0.7 --- 

Vagd 0.1% Vc Litre (L) kr 1.4  

ηv 95 % ηm 92 % 

 

At the developing stage of the RHSA modelling, the model has been reconstructed and 

developed using the system losses, and the understanding of the action of this model will be 

shown in next subsection to suggest several meaningful details of such a system which can be 

used for further development.  

In this modelling study, it is assumed that the losses in the equivalent DC generator including 

copper losses, iron losses and mechanical losses, are not involved in this research. However, the 

main concern of this research is to optimise the hydraulic behaviour and maximise power 



Chapter 3 Modelling a Regenerative Hydraulic Shock Absorber 

 

91 

regeneration. Therefore, the power capture will be close to the rotary power (hydraulic motor 

mechanical power) in the modelling, and the power generation is only dependant on the 

electrical load applied at the end of generator terminals. However, the model was driven with the 

same predefined excitation and the system parameter settings as the previous two.  

Figure 3-11 to Figure 3-16 show the system behaviours and inevitable system losses in the 

developed model. By comparing Figure 3-8 and Figure 3-10, the waveform of the system 

pressures, flow rates and piston forces are similar but the amplitude of the hydraulic pressures is 

increased with the rotational torque friction. For the flow rate across the check valves, the peak 

values of each chamber are closed to these in previous models, but the check valve is opened 

very fast to make a high rapid rising of the flow rate at the beginning of piston direction altered 

whilst minimising the flow overshoot.  

 

Figure 3-11. First: Pressures, Second: Flow rates, Third: Piston forces for the RHSA model 

Figure 3-12 shows the predicted powers for the developed model. It can be found that the 

system losses can apparently cause the reduction of power conversion efficiencies. As expected, 

the power conversion efficiencies can be listed: piston to fluid: 96.14%, fluid to rotary: 96.39%, 

rotary to capture: 91.39% and the overall RHSA efficiency: 47.88%. This indicates that the 
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generator and motor are the main components, causing power loss during the transfer of power 

before power is regenerated. The largest power consumption is dissipated by the internal 

resistance of the generator, which can be immediately lost as heat in real applications, in the 

model, using numerical value instead. In addition, the efficiency of the hydraulic motor relays on 

its inherent operating nature which can be considered as the parameter settings in model, such as 

displacement, pressure and speed. Thereby, in different excitations, the motor efficiency can be 

varied by the system behaviours, and also can be improved by adjusting those parameters to 

adapt the variable system conditions.  

 

Figure 3-12 First: Piston power, Second: Fluid power, Third: Rotary power 

Figure 3-13 presents a detailed view of pressures and flow rates to explain the sequence of 

hydraulic behaviours during the alteration of piston motion in a full cycle. This will provide a 

detailed observation of the action of hydraulic fluid which is dependent on the RHSA model. 

Several explanations will be pointed out in following:  



Chapter 3 Modelling a Regenerative Hydraulic Shock Absorber 

 

93 

I. The behaviour of flow is based on the actuated piston in the shock absorber body (a 

double-acting cylinder). The fluid can be forced out of the cylinder to produce higher 

and lower pressure.  

II. Figure 3-13(a) indicates that the flows from the cylinder chambers across the check 

valves cause the variation of the pressures after a delay of 0.144s. Meanwhile, it is 

certain that the motor pressure synchronises with the pressures from both chambers 

during the motion of the piston.  

III. The shaft speed varies with the motor pressure after a short delay of 0.035s. The fluid 

out of cylinder takes time to cross the pipe and motor. The longer the pipe length 

causes the longer the time lag delay and the higher dead volume in hydraulic circuit. 

The inclusion of pipe also can reduce the fluid compressibility of such a hydraulic 

system.  

IV. At time=0.5s and 1s, the piston motion reaches its endpoints and there are zero flow 

across the hydraulic rectifier. At those points, the piston alters its direction of motion 

between compression stroke and extension stroke. The behaviours in compression and 

extension are very similar, and the only difference between them is the area on each 

side of piston. 

V. In the motion of the piston, the pressure in each chamber increases rapidly to force to 

open the check valves. In both compression and extension strokes, the fluid flow from 

the hydraulic rectifier is shown as a sharp rise in values which occurred during 

chamber pressures leading to the pressurised flow increasing, in the following Figure 

3.13(c) and (d).  

VI. At the end of the first half cycle of motion (the compression stroke), the cylinder 

piston stops to convey fluid flow as the first half cycle pass is done, and then the flow 

rate is not high enough to take action for next half cycle (extension stroke) 
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immediately, and hence keep still for approximately 0.088s, Time (Unit: Second) from 

0.0505s to 0.592s. The flow features of extension stroke are identical to that of 

compression stroke but the time gap is varying between 1.003s and 1.090s, see Figure 

3-13. It is worth to mention that the same time lag delay occurs through the entire 

reciprocating motion.  

VII. As we can see in Figure 3-8 and Figure 3-13, the only differences between these two 

predicted results are the inclusion of the unexpected losses. In Figure 3-8, the shape of 

the piston forces against sampling time resembles a square-type load with a faster 

responsiveness, and a large amplitude of flow rate. In contrast, the responsiveness is 

slightly decreased to enable a smoother flow rate with a low amplitude of flow rate 

and enhance the stability of the entire modelling. This indicates that the best 

responsiveness of hydraulic flow can be achieved by minimising the hydraulic losses 

and resistive motor torque. The responsiveness and losses could be balanced to 

provide more reliable performances of the whole system.  
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Figure 3-13. Detail view of: First: Pressures, Second: Flow rates, Third: Cap-end check 

valve open, Fourth: Rod-end check valve open 

In Figure 3-14, to predict accurate motor model, the internal leakage flow of the motor is 

determined using the Hagen-Poiseuille coefficient [127] [128]. The increased internal leakage 

flow is able to reduce the effective motor flow rates and pressures, and have an undesirable 

effect on the volumetric efficiency. The loss associated with the rotary motion is rotational 

torque friction, and only increased with the growth of the shaft speed. In hydraulic circuits, the 

losses in the hydraulic rectifier resembles a viscous friction which can be increased with the 

larger excitation inputs and higher fluid flows. The losses from the hydraulic pipelines occur 

when the fluid passes through, could be estimated using the Darcy-Weisbach equation in fluid 

dynamics [124]. To minimise pressure losses, the flow rate across the hydraulic rectifier can be 

reduced through the use of a smaller cylinder body. The cylinder dimensions are dependent on 

the requirements of various vehicle suspension systems to provide desirable performances for 

road handling whilst generating more recoverable power. In this case, the frictions inside the 

cylinder seem to be negligible compared to the obvious losses in hydraulic system. However, the 

considerations of inevitable losses are the key contribution in such a model study whilst 

a 

b 
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improving the reliability of the theoretical work, so the developed model will be used for further 

investigation. 

 

Figure 3-14. First: Hydraulic motor leakage, Second: Pressure losses in pipeline, Third and 

Fourth: Motor torque losses varying with time and shaft speed 

Figure 3-15 shows the variation of fluid compressibility over a range of the operating motor 

pressure. The bulk modulus is set to a constant in previous model but the fluid compressibility 

exists extensively in real hydraulic applications. Two factors can significantly vary its 

effectiveness, temperature and entrained air. It indicates that bulk modulus increases with the 

motor pressure and tends to be stable in higher pressure. In this study, Boes’ model is used to 

estimate the nonlinear bulk modulus due to its stability and reliability in low pressure systems 

[129]. According to the accuracy and complexity of the bulk modulus measurement, the different 

predictive models will be studied to explain how to determine Boes’ model theoretically in later 

chapter.  



Chapter 3 Modelling a Regenerative Hydraulic Shock Absorber 

 

97 

 

Figure 3-15. First: Fluid compressibility (Bulk modulus: Boes’model), Second: Total motor 

efficiency 

In Figure 3-16, the rotational torque friction produced by the motor and generator is changed 

with the variation of the shaft speed which can be considered a rotational resistor to reduce shaft 

speed in this model. It also shows a view of the power regeneration is of 378W on average with 

the peak value of 602W at viscous coefficient of 0.001. The recoverable power is lower than that 

in ideal model included accumulator, indicating that the losses have dramatically effect on the 

power regeneration. By increasing the viscous coefficient from 0.001 to 0.02, the peaks of the 

shaft speed, voltage and recoverable power are increased in values to a high level. It also can be 

seen that the amplitude of pressure oscillation can be supressed by applying a low viscous 

friction coefficient.  

Generally, the hydraulic motor efficiencies are always varied with the system operation and 

the constant efficiency can only be provided when it achieves at the rated working condition and 

results show an over optimistic prediction for the behaviour and power regeneration of the 

modelling. These behaviours indicate that the rotational friction torque seems to have little effect 
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on their variations. The modelling results can be developed by considering a function of 

rotational torque friction and shaft speed to obtain a sufficiently accurate hydraulic motor outputs. 

The rotational friction coefficient therefore needs to be identified experimentally for modelling 

and predictions to directly impact on the motor efficiencies and replace the constants. The 

parametric study of the rotational torque friction coefficient will be applied to provide an 

accurate model for the existing RHSA model in Chapter after setting up an experimental rig in 

Chapter 4.  

 

Figure 3-16. First: Shaft speed, Second: Current, Third: Voltage, Forth: Power 

regeneration 
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3.6  Concluding remarks 

In this chapter, a modelling technique is presented to theoretically study the behaviour of a 

regenerative hydraulic shock absorbing system. Firstly, the ideal model provides a general view 

of the entire system layout and an easy understanding of the modelling approach.  

An offline parametric experiment was designed and carried out to characterise the torque 

constant and voltage constant in the generator. After the analysis of the experimental data, the 

identified kT and kV are effective to improve the accuracy of the general behaviour and power 

performance for the modelling system.  

By using the hydraulic accumulator, the results show that a smoother power output is 

obtained and the behaviours of the entire system are improved significantly to a more stable 

condition by the accumulator’s smoothing effect with approximately constant regeneration 

efficiency. However, it indicates that the accumulator is capable of resizing the system 

behaviours and power performance to the desirable level.  

In the developed model, the system losses and potential nonlinearities cannot be overlooked 

as they have significant influence on the hydraulic circuit and the rotational motion throughout 

the whole system, such as pipeline losses, motor internal leakage and rotational friction torque, 

fluid compressibility and motor efficiencies. The working conditions and the components 

specification determine the majority of the losses which significantly influence on the system 

behaviours and power capability. 

As motor resistance increases, there is an increase of system pressure and a decrease of shaft 

speed. As expected, the inevitable losses have a significant reduction on the power conversion 

and power regeneration. The actions of hydraulic motor are crucial to improve the power 

efficiencies and hydraulic performances. The analysis of loss and nonlinearity was performed to 

make the reconstructed the RHSA model more comprehensively and also to provides a thorough 

modelling approach for further development. 

It can be concluded that the parametric study of the losses and nonlinearities are necessary to 

determine in both modelling and experimental studies of a prototype system. Therefore, the 

following chapter introduce the experimental rig and instrumentation, and provide an 

experimental support for the development of the RHSA system.  
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Chapter 4 Experimental Rig and Instrumentation  

To validate the model established this chapter addresses experiment-related subjects including 

the design and construction of a prototype RHSA, instrumentation, software development and 

test procedures. Firstly, a brief description of the experimental rig’s specifications and 

characteristics is provided. Secondly, the details of the experimental instrumentation and 4 post 

simulator system are presented. The data acquisition, related software and experiment procedures 

will be described in the final section.  
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4.1 Introduction 

To experimentally evaluate the RHSAs and validate the predicted results, the study of the 

regenerative hydraulic shock absorber system is necessary to be performed on an experimental 

rig. The experimental rig used for all experimental works undertaken in this project was designed 

and fabricated based around a traditional shock absorber/damper from a typical articulated heavy 

haulage truck. For such a damper, it has been estimated that the power potential that can be 

recovered is approximately 100−1500Watts depending on road conditions and truck loading [46]. 

The composition of the experimental rig is set up is based on the dimensions of a shock absorber 

commonly used for a heavy haulage vehicle. The structure of the supporting frame used in 

experimental studies was designed and arranged for flexible adjustment, therefore minimising 

unexpected shock and movement while the experimental rig is running, which could have 

significant influence on the validity of the measured results.  

The test system was thoroughly inspected and pre-tested before every set of experiments to 

ensure that all the system behaviours of the RHSA rig were performing as intended throughout 

the anticipated range of values. The system inspection and pre-test are capable of minimising or 

avoiding the unknown/uncertain faults on experimental rig using the observation of real-time 

displays in measurement system. The predefined excitations are controlled manually to start and 

stop by a servo-test 4 poster simulator system. Meanwhile, the servo-test system will measure 

the displacement, velocity and acceleration of the excitation and thereby monitor the correctness 

of the input signals. However, the details of the experiment-related are presented factors and 

described in this chapter, which include the fabrication of the experimental rig, instrumentation, 

software and experiment procedures. 

4.2 Experimental rig and components 

An experimental rig was designed and fabricated based on the conceptual design and 

modelling system. Based on the schematic in Figure 2-18, the key system components are 

selected, as shown in Table 3.1. Based on the maximum pressure of the cylinder and the motor 

torque [Equation (3.8) and (3.35)], it was found that an internal gear hydraulic motor meets the 

requirements of high torque at low rotational speed. 

A high inertia PM generator is selected to provide the additional benefits of rotational kinetic 

energy storage and improved the stability of rotary motion, contributing to the efficiency of 

power regeneration. A diaphragm accumulator suitable for a low volume system is connected in 
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front of the hydraulic motor to smooth the fluid flow on the high-pressure side by reducing the 

pulsations in pressure. According to the damping forces in a conventional shock absorber in a 

heavy-duty truck [46], a peak pressure of 35bar is estimated. The pre-charge pressure in the 

accumulator is set at 60% of the working pressure (20bar) to provide pressure pulsation damping. 

Due to Equations (3.27) to (3.31), low viscosity shock absorber oil is employed to minimise the 

leakage of the hydraulic motor and head loss in the pipes [116]. 

 

Figure 4-1 The main components of the experimental rig 

 

4.2.1 Shock absorber body 

In a conventional double acting cylinder, the cap-end chamber and the rod-end chamber have 

only one port each as an inlet and outlet. In this study, a standard cylinder is chosen with a 50mm 

bore, rod 30mm and 200mm stroke as the shock absorber body for the experimental rig. The 

shock absorber body is designed to have four ports, symmetrically distributed at both sides of the 

cylinder body. As shown in Figure 4-1, these ports connect to four check valves which act as a 

hydraulic rectifier. From a theoretical point of view, with the motion of the piston, the 

pressurised fluid passes through a set of check valves (in the form of recirculation), and the 

rectified unidirectional flow is then moved forward to experience the smoothing effect of the 

accumulator before passing through the hydraulic motor [116]. 



Chapter 4 Experimental Rig and Instrumentation 

 

103 

4.2.2 Hydraulic motor 

Hydraulic motor types can be classified into gear, vane axial plunger, radial piston motors 

types and gerotor etc. The hydraulic motor in this study is defined as a transfer device which is 

able to convert the unidirectional hydraulic flow/pressure into rotational motion/torque. An 

internal gear motor, with special gerotor-type gears, is selected for smoother and more efficient 

operations. The key features of the orbiting gerotor motor are showing as follow: Firstly, with 

the improving valve seal and constant clearance of gerotor sets, the orbiting motor operates 

smoothly and quietly with large displacement volume and low oil leakage. Secondly, high-

strength rigid components assist to reduce the number of components and make the whole 

structure much simpler. Thirdly, integrated check valves and high pressure seals increase the 

efficiency of fluid flow and extend leak-free performance. Fourthly, it is able to rotate in wide 

range speeds, and the higher torque can be produced at low angular displacement. Finally, both 

positive and negative rotations are available with a variety of shafts and mounts for special 

options to match different hydraulic performances.  

 

Figure 4-2 Hydraulic hose, alloy tube and hydraulic oil 

4.2.3 Check valve, hose and hydraulic oil 

The check valve is also known as non-return valve which only allow a one-way hydraulic 

flow. The check valve of 3/8 inch (9.525mm) and 45L/min (7.5·1×104m3/s) maximum flow rate 

is chosen to develop the efficiency of vibration energy recovery and reduce energy consumption 

around valves with the initial pressure as small as possible. However, the pre-load pressure of 

±0.04/0.07bar can be found from its specification, but for the ideal cranking pressure is close to 

0bar. To reduce the pressure loss and the response time, the spring in check valve was cut off 

one third to reduce its pre-load pressure.  
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The high pressure hydraulic hose and alloy tube were employed to connect each component in 

the experimental rig, and the parameters of hose were a set of 3/8 inch hoses and 10mm stainless 

tubes which can sustain 800MPa compressive pressure, which are shown in Figure 4-2. 

Table 4.1 Main components’ specifications of the regenerative shock absorber system. 

Name Specification 

Cylinder S0=100mm, Full stroke: 

200mm 

Dcap=50mm 

Drod=30mm 

Max. Pressure: 200bar 

Motor Dm=8.2cc (𝑐𝑚3/𝑟𝑒𝑣) Max. speed: 

ωmax=245rad/s 

Max. Power:<6000W 

Generator Internal resistance: 

Rin=5.6Ω 

Internal inductance: 

Lin=0.03H 

Max. current: 10A 

2.33 phase magnetic 

field, 

Built in rectifier 

Max. speed: 

1000rad/s 

 

Max. power: <2450W 

Accumulator Diaphragm 

accumulator 

Dacc=12.7mm Pre-charge pressure: 

Ppc=20bar 

Check valve 3/8' BSPP Max. pressure: 

350bar 

Preload pressure: 

Pcv=0.4bar 

Four post 

simulator 

Max. velocity: 1.9m/s Static load: 550kg Preload: 60kg 

Hose Dh=3/8' Length: L=1m Max. pressure: 800bar 

Shock absorber 

oil 

Density ρ=872𝑘𝑔/𝑚3 Viscosity: 22cSt  

 

4.2.4 Components adjustments 

Several components on experimental rigs have been adjusted and modified to meet desired 

agreements between prediction and measurement. Firstly, air bubbles mixed with air and fluid in 

the test system lead to a reduction in oil reliability and the bulk modulus. According to the theory 

of fluid compressibility, the air exhaust valve is employed to minimise the air volume in the 

hydraulic fluid to stabilise the bulk modulus of the oil [130]. Secondly, a part of energy is 

consumed in compressing the spring in the check valve. The length of check valve spring was 
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reduced by one-third to reduce the pressure losses and improve the dynamic response. Thirdly, 

the moving-mass orifices in the check valve are enlarged to allow a greater flow rate and a 

reduction of the non-dimensional effects in terms of Equations (3.6) and (3.7). Finally, according 

to Equations (3.28) to (3.31), low dynamic viscosity shock absorber oil is employed and the 

length of the hoses is reduced to minimise pressure loss when oil flows through the pipelines. 

4.2.5 Four post ride simulator 

The photo and specification of actuator is shown in below: 

Table 4.2 The specification of actuator in NVH 4 Poster [64] 

The specification of actuator in NVH 4 Poster 

 

Piston rod diameter 80mm 

Stroke 

displacement 

150mm 

Max. velocity 1.9m/s 

Max. acceleration 30g 

Preload  60kg 

Static load 550kg 

Force 25KN @ 155bar 

 

In experimental works, one actuator on 4 poster ride simulators will be employed to provide 

vertical inputs to evaluate the dynamic features of the hybrid shock absorber. The operation 

panel and process design of input signals are given in Figure A1 to Figure A4, Appendix 1. The 

4 poster ride simulator powered by an existing hydraulic supply or hydraulic power supplies 

integrated into the system. Moreover, it controlled by the servo-test state-of-the–art real-time 

control techniques to ensure optimum accuracy. The PULSAR digital control system depends on 

a progressive Input/output (I/O) system combined with distributed fibre-optic technology. A 

complete control system is provided a powerful, reliable and flexible control setting for 

experiments and simulations in servo-test pulsar controller [131]. However, the excitation of the 

experiments provides by single actuator of 4-posters.  
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4.3 Measurement equipment 

To investigate accurate and reliable measured data for the behaviour of the experimental rig 

and the modelling validation, the experiment-related test system was carefully instrumented to 

evaluate the RHSAs through the measurement of various operational parameters and the 

adjustments leading to the development of system behaviours. 

 

Figure 4-3 An overview of the RHSA experimental rig: components and transducers 

Figure 4-3 shows the key components for the experimental rig and measuring equipment used 

in this study. In addition to the fluid pressure measurements from the shock absorber body and 

the hydraulic motor, other transducers was installed on the experimental rig to collect operating 

parameters of such a regenerative system: fluid pressures, shaft speed, piston force, voltage and 

current. The above-mentioned signals were measured and collected by the following transducers: 

 Pressure transducers  

 Micro-photo sensor 
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 Linear variable differential transformer (LVDT) 

 Current transducer 

 Voltage transducer 

The pressure signals are used to analyse the dynamic behaviour of hydraulic pressure in the 

test system under pressurised flow. Five transducers measure the pressure at suitable points in 

the hydraulic circuit: 

 Shock absorber body (Cap-end chamber and rod-end chamber) 

 Gas-charged accumulator 

 Upstream and downstream of the hydraulic motor 

A micro-photo sensor is used to measure the shaft speed of the hydraulic motor and generator 

via the gear teeth on the shaft coupling. The speed signal is not only applied to study the 

rotational motion, but also used to the parametric study in later chapter. An LVDT was used to 

measure the effective input (Displacement) on the piston rod and provide the most intuitive way 

to avoid unexpected vibration and shock. Current and voltage transducers are also employed to 

measure the capability of power regeneration. The outputs from the transducers are recorded and 

saved in the data acquisition equipment and operating computer for further data analysis. 

The signals from the outlined instruments are directly fed to a Multifunction PowerDAQ PCI 

data collection interface. The excitation and piston force are collected in servo-test control 

system using the built-in transducers, such as load cell, LVDT, accelerometer. The PowerDAQ 

as an analogue-to-digital converter (ADC) has a 14-bit resolution of analogue inputs and 32 

digital I/O ports, which was used for transformation of the raw data from analogue to digital 

form, and enables the processing desktop to display, record and save collected data.  

4.3.1 Linear variable differential transformer (LVDT) 

A standard LVDT displacement transducer was fixed the shock absorber body to measure the 

linear position and effective displacement of the piston. The LVDT is composed of bobbin, one 

primary coil and two secondary coils, and a movable magnetic core which can cut through the 

bobbin. The relative position of the magnetic core provides a path for magnetic flux linkage to 

control the inductance between the primary coil and two secondary coils, and therefore obtain 
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the output amplitude and phase. The significant hysteresis and the deterioration of performance 

can be reduced using the non-contact design between the coils and the core, and keep better 

linear characteristics. The LVDT output also was used to compare with the displacement output 

from the servo-test system in order to synchronise the piston force output with the signal in the 

test system. Table 4.3 summarises the specifications of the non-contact LVDT which is used in 

measurement system to detect unexpected shock and misalignment. 

Table 4.3 The specification of LVDT [132] 

 

Stroke measurement 

range 

±200 mm repeatability <0.10±%  

Stroke range 

Signal output 0-5volt Output 

bandwidth 

100Hz 

Number of wires 3 Operating 

temperature 

range 

0 to 70°C on 

DC/DC models 

Supply current 35mA @ 

15V 

Vibration 

resistance 

20g up to 2kHz 

Max. output sink current 0.5milliamps Shock 

resistance 

1000g for 

10milliseconds 

Non-linearity <0.50±% 

Stroke range 

Environmental 

sealing 

IP54 

 

4.3.2 Pressure transducers 

A pressure sensor measures the pressure of hydraulic flow to generate a signal as a data 

representation. In the hydraulic circuit, a pressure signal not only is conducive to analyse other 

performances, such as hydraulic flow, energy loss and hydraulic motor efficiency, but also it can 

express the variation and amplitude of the hydraulic flow to verify the mechanism and improve 

the performance of such a test system. 
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In the experimental rig, the hydraulic pressures were measured using both voltage and current 

outputs types (A and B in Table 4.4) of the Omega’s PXM309 series transducer. A voltage 

output pressure transducer has a high level output which is suited to much more industrial 

environments. With considering the electrical resistance and noise of the cables used in the 

measurement system, the current output pressure transducer is used for the improvement of 

signal transmission over long distances (with the minimisation of electrical noise and resistance). 

The pressure transducers are designed to generate linear output by the applied force on the 

constant sensing element area. The selected pressure transducer is specially designed to work at 

the calibrated pressure 0-70bar based on the estimation of the modelling study in section 3, thus 

assuring the high accuracy and stability of the pressure output. 

Table 4.4 The specification of pressure transducer [133] 

 

Supply voltage Reverse polarity and over voltage protested 

0 to 10 Vdc output 

4 to 20 mA output 

15 to 30 Vdc at 10 mA 

9 to 30 Vdc 

4 to 20 mA 9 to 30 Vdc 

Static accuracy 350 mB to 700 

bar 

±0.25% FS BSL at 25℃  

(Linearity, Hysteresis and repeatability) 

Operating temperature C-40 to +85  

Response time 1 ms 

Bandwidth DC to 1KHz typ 

Pressure connection G ¼ male (1/4’’ BSPP) 

PXM319 Mini DIN connector with mating connector 

included 

Calibrated pressure 0 to 70 bar 
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4.3.3 U-shaped micro photoelectric sensor 

Hydraulic motor and generator shaft speed or rated speed play a major role in rotational 

motion analysis and in relating system conditions for the model validation and the parameter 

studies in later Chapter, so it is important to ensure the measurement of speed as accurate as 

possible. A photoelectric sensor, acts essentially like a small automatic flashlight, producing 

impulse when the light beam is interrupted or received. This type of sensor is a through beam 

arrangement which consists of an emitting part and a receiving part. The signal can be detected 

when the disc blocks the light beam communication between the receiver and the transmitter, as 

shown in Figure 4-4. It is significant that photoelectric sensor provides a high sensitive signal 

output in despite of its extremely small size and flexible installation, so that photoelectric sensor 

enables its application in varied fields where several conventional sensors cannot be applied and 

fitted, such as optical encoder. Therefore, photoelectric sensor has the potential to be widely 

employed for remote-sensing applications.  

  

Figure 4-4 U-shaped micro photoelectric sensor [134] 

In this study, a U-shaped micro photoelectric sensor is mounted in close proximity to the gear 

teeth disc applied on the shaft coupling. As can be seen in Figure 4-4, the sensor was 

perpendicular to the sensing disc using a small movable bracket, and the disc fixed in the centre 

of the sensing distance which is approximately 2mm (the width of disc 1mm) from the receiver 

or transmitter. The corresponding electric impulse, either light on output or dark on output, can 

be generated by the internal circuit of the sensor when the gear teeth every time passes through 

the light beam and switches between the received and interrupted conditions. Since the sensing 

disc has 18 gear teeth, it indicates that one complete revolution of the shaft can produce 18 

impulse responses. Therefore, it can be found that the number of teeth passed and detected in 

unit second is proportional to the measured shaft speed. 
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4.3.4 Voltage transducer and Current transducer 

LEM products have become the standards of electrical measurement components with over 

thirty years of research, design, development and production. The current and voltage outputs 

were measured by a LEM HX 03-P/SP2 type current transducer and LEM LV 25-P voltage 

transducer with a wide range of galvanic isolation between the primary and secondary circuits, as 

shown in Figure 4-6. Their specifications are shown in Table 4.5 and Table 4.6. The current and 

voltage were measured by a specially designed device which was captured signals from an 

electrical load connected with the generator. Such a power capture arrangement is widely used 

for energy management system or power regeneration system in research studies and industrial 

applications [135]. The physical principle of the current transducer is based on the closed loop 

Hall Effect. The closed loop transducers are also named Hall Effect compensated or zero flux 

transducers and are designed with a compensation circuit that significantly improves overall 

accuracy and linearity. The closed loop current transducer can convert a current into a voltage 

using a resistor in series with the output which is easy to measure. The output voltage of a closed 

loop voltage transducer is identical to that of a closed loop current transducer [136]. In Figure 

4-5, a special device relates to a current and voltage measurement comprising a circuit board, a 

DC power supply, circuit connectors and a plug connector, wherein the current and voltage 

transducers are soldered onto the circuit board, and the circuit connectors are symmetrically 

distributed on both sides of the box for input and output.  

Table 4.5 Specification of current transducer 

Parameter Value 

Primary nominal current RMS (A) 3 

Primary current measuring range (A) ±9 

Electrical offset voltage, T=25° +2.5V±50mA 
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Figure 4-5 Power measurement box and specifications 

Table 4.6 Specification of voltage transducer 

Parameter Value 

Primary nominal current rms (mA) 10 

Measuring resistance (Ω) with ±15V 325 

Electrical offset current ( mA), 

T=25° 
Max. ±0.15 

 

 

Figure 4-6 Circuit design of voltage and current transducers 

4.3.5 Power electronic load 

One of the main purposes of this research is for the power regeneration capabilities that 

convert the output of the generator into a usable form (electricity), outputed via a cable to power 
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an electrical load. The electrical load was variable and achieved by adjusting the resistance of the 

electrical load. Therefore, a DC electronic load was used to maximise power of the RHSAs and 

control the system behaviours, and proven by the experimental results shown in later chapter. 

The key features of the DC electronic load M9714B are summarised as following [137]: 

 High performance chips, high speed, high accuracy and with resolution of 

10mV(Voltage), 0.1mA(Current) and 10mW(Power) 

 Constant resistance (CR mode), constant voltage (CV mode) 

 Voltage range: 0−500V, accuracy: 0.015%; current range: 0−60A, accuracy: 0.03%; 

power range: 0−1200W, accuracy: 0.1%; 

 Resistance range: 0.03−5,000Ω, accuracy: 0.1%, 16-bit resolution 

 Dynamic measurement: 0−25kHz, 2.5A/us. 

4.3.6 PULSAR system measurements 

 

Figure 4-7 The Servotest load cell LC-065-10 built-in simulator for measurement 

The piston force (equivalent to the damping force) can be measured and monitored by using a 

precision-made load cell in the PULSAR system. A load cell is a force transducer device 

consisting of strain gauges which converted applied force into an electrical signal. The Servotest 

load cell LC-065-10 is used to measure the bidirectional forces for the extension and 

compression strokes, and is available in a wide range of load from 0 to 25kN [138]. In the 
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Servotest control system, the load cell is attached to the top of the linear actuator to measure the 

piston load by the pressurised flow, see Figure 4-7.  

Table 4.7 Specification of D5 LVDT displacement transducer [139] 

Specification  

Excitation/supply (acceptable) 0.5V to 7V rms, 2kHz to 10kHz (sinusoidal) 

Excitation/supply (calibrated) 5V rms, 5kHz (sinusoidal) 

Output load 100k Ohms 

Temperature coefficient (span) ±0.01% F.S. /°C (typical) 

Operating temperature range -20°C to 125°C 

Electrical termination 2m (integral cable) Longer available to order. 

 

In 4 post measurement system, the piston displacement/position of the ride simulator can be 

detected by a built in D5 LVDT displacement transducer (Table 4.7), and also recorded velocity 

and acceleration of the piston movement synchronously.  

 

Figure 4-8 The measured signals of displacement, acceleration, velocity and load during the 

motion of the piston 
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4.4 Data acquisition process 

The measurement equipment of the experimental rig is described and explained in detail in 

previous sections. A PowerDAQ board was used to convert original analogue to digital form as 

an analogue to digital converter (ADC) that can be further analysed using a personal computer. 

The PowerDAQ board acts as an interface between raw signals from the experimental rig and 

National Instruments Lab-Windows/CVI in processing computer.  

4.4.1 Analogue to digital converter  

Figure 4-9 shows the PD2-MF-16-2M/14H model in PowerDAQ series, which is a 

multifunctional data acquisition and control [140], shown in Figure 4-9. Thus it can be used to 

track and display the waveform of selected input channels, perform data (events) control and 

record data (events) for each run. The acquired data is transferred from the board through the 

PCI bus and stored by hardware for further analysis. The PowerDAQ can generate waveform and 

digital output simultaneously for real-time, multi-tasking experimental systems using built-in 

processor and on-card memory enable high-speed data collection and online analysis. 

Furthermore, the analogue/digital output on PowerDAQ multifunction board can be also used for 

real-time control and hardware-in-the-loop. 

Technical features of the PowerDAQ board (PD2-MF-16-2M/14H) are: 

 24-bit Motorola 56301 digital signal processor 

 PCI-bus host interface  

 32 channels analogue inputs, ±10V 

 2 channels analogue outputs 

 A 14-bit resolution with 2.2 MS/s capability, 10kHz A/D, two 12-bit resolution D/As 

 Three user counter/timers, each with its own Clock in/Gate controls 

 Simultaneous operation of Analogue In/Out, Digital in/Out and Counter/Timer.  

 Auto calibration 
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Figure 4-9 The PowerDAQ A/D multifunction board and cable incudes LabVIEW drivers 

4.4.2 Lab-Windows TM/CVI 

LabWindows/CVI is an integrated development environment and engineering toolbox for 

measurement and experiment created by National Instruments, which can be written in the 

programming language C, in an attempt to produce virtual instrumentation applications. It 

includes a large set of run-time libraries for the functions of automated test, instrument control, 

and data acquisition, the processing and analysis of data, and user-interface design. Designing 

and creating an engineering application with Lab-Windows/CVI starts with the user interface, 

and an intuitive creation of graphical user interface (GUI) designer is built. The Lab-

Windows/CVI offers several key features, such as advanced debugging, automatic code 

generation, data management and integrated source code control. Therefore, the Lab-

Windows/CVI is much easier to acquire the data from instruments using the built-in instrument 

I/O and drivers, and make developing using C language for measurement applications is much 

more convenient and faster than in traditional C development environment [141].  

4.4.3 Data acquisition software 

The data acquisition software is based on a Windows operating system and it is able to 

perform online data sampling, record, save and monitor the rig-running parameters such as 

displacement, pressures, speed, voltage and current. The software package is designed with 

multi-parameter setting pages so that the user can change and modify channel numbers, sampling 

frequency, data length, filenames, screen sampling points and monitoring /measuring mode. 

Figure 4-10 shows the set-up window screen used to select the channels, channel points, 

sampling frequency, time duration and other important factors and parameters. In all experiments 

of this study, the sampling frequency is set at 101,851Hz (over 100kHz) to enable embedded 
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high frequency such as transients and oscillation events to be captured. Each time 1,018,510 

points of data is saved for further offline analysis so that one complete piston cycle is able to be 

collected even at the low speed of 100rpm, and also the time duration always keeps 10 seconds 

for most of the experimental studies. For the configuration of channels, nine channels are set for 

the data collection and online observation.  

Figure 4-10 and Figure 4-12 show the progress of the data acquisition process. On this setting, 

the real time display is used to give users a clear overview of all nine channels of data on a single 

page. The latest data can be viewed as numerical indicators and as a diagnostic tool to ensure the 

reliability of the test system and the correctness of the measured data. There are nine channels of 

data being collected: one channel of shaft speed, one channel of piston displacement, five 

channels of pressure in the hydraulic circuit, one channel of current and one channel of voltage. 

The parameter settings in data acquisition system are automatically saved with data files as 

binary format to the hard disk drive. The measured data is collected for offline analysis using the 

MATLAB package which is a high-level programming language and an interactive environment 

including numerical computation, data analysis and visualisation. The MATLAB also provides 

variable tools and built-in functions for the signal and image processing, and hence all of the 

measured results and figures in later chapters of this research project are directly output from 

MATLAB.  
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Figure 4-10 System parameter set-up window screen 

 

Figure 4-11 Real-time calculation and operating status in process 
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Figure 4-12 Real-time display and data collection in progress 

4.5 Experimental rig set-up and procedures 

The main target for this research is to design and setup an experimental rig which is able to 

validate the predict results, and investigate the dynamic performances and power regeneration of 

the regenerative shock absorber system in regular wave and random road surface profile. The 

feasibility of the system in conditional operations is also evaluated to maximise the power 

regeneration. Figure 4-1 illustrates are photographs of the experimental rig, which help to show 

the overall design and arrangement.  

The models in Chapter 3 used throughout the modelling study included an asymmetrical area 

cylinder. In experimental rig, a double acting hydraulic cylinder with the area ratio 

approximately 5:3 is used. Hence, the hydraulic rectification circuit is distributed on both sides 

of the cylinder to ensure an unequal flow is generated in both extension and compression strokes, 

and maintain the unequal behaviour of such a system. This arrangement shows that the hydraulic 

fluids can be forced out and re-fed into the annulus piston chambers using the predefined linear 

reciprocating motion. In compression strokes, the pressurised flow produced from the cap-end 

chamber flows through the accumulator and hydraulic motor, and circulates back to the oil tank 

and the rod-end chamber that prevents cavitation and improves fluid dynamic response. However, 

the motion of flow in an extension stroke is identical to that in a compression stroke. The 

hydraulic rectifier does not need to discriminate between the compression and extension, and the 

fluid flows are integrated into one direction through the hydraulic motor. Furthermore, the 

accumulator mounted in the upstream of the motor acts has a flow smoothing function by 
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changing its volumes between gas and fluid. The fixed displacement orbiting motor is coupled 

with the generator which is applied the electrical load for each run. The adjustable electrical load 

is applied to the generator to enable the whole system behaviours to be variable and controllable. 

By adjusting the electrical load, the pressures and shaft speed can be varied to alter the piston 

forces and regenerative power. However, the electrical load provides significantly effects on the 

dynamic performance of the system, which will be evaluated and accounted in later chapter.  

The arrangement of the transducers makes a consistent with the outputs of the modelling to 

maintain the similarity and reliability between the modelling and the testing. In addition, the 

selected transducers were calibrated and tested offline individually before be installed on the 

experimental rig to ensure the data accuracy. The sensitivity of these transducers have been 

calibrated and shown in the following table: 

Table 4.8 The sensitivity of the selected transducers 

LVDT (Displacement) Micro photoelectric sensor 

(shaft speed) 

Voltage output pressure 

transducer 

0.0222 m/mV 𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
×

60

2𝜋
, (rpm) 

𝐷𝑎𝑡𝑎𝑏𝑢𝑓𝑓𝑒𝑟

0.7
, (bar/mV) 

Current output pressure 

transducer 

Voltage transducer Current transducer 

(𝐷𝑎𝑡𝑎𝑏𝑢𝑓𝑓𝑒𝑟−0.9)

0.0154
, (bar/mV) 

(𝐷𝑎𝑡𝑎𝑏𝑢𝑓𝑓𝑒𝑟+0.087)

0.025
, (V/mV) 

(𝐷𝑎𝑡𝑎𝑏𝑢𝑓𝑓𝑒𝑟−0.208)

2.62
, (A/mV) 

 

A set of tests was carried out by changing predefined inputs, which are regular waves 

(sinusoidal wave: 0.5Hz, 1Hz and 20mm, 25mm) and random road surface profiles (Class A, B, 

C and D) at four different electrical loads (Open-circuit, 11, 20, 30, 40Ω). The measured results 

for regular waves were processed and analysed for the modelling validation and the parameter 

study. In addition, the experimental works are also undertaken under predefined irregular waves 

(Road profiles). Finally, to develop the system, a real-time computer-controlled system, constant 

current and voltage methods are used to achieve control functions to regulate the behaviours and 

power. 
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4.6 Concluding remarks 

This chapter introduced the configuration of the experimental rig and the fabrication of the 

test system that would be used to measure dynamic behaviours and power regeneration under 

different operating conditions. Parametric study would be carried out to develop the simulation 

model of the RHSA depending on the accuracy of the rig design and measurement. The 

experimental rig is designed based on a commonly used shock absorber in heavy-duty vehicles. 

Although the rig is setup in the experimental stage, the experimental rig is fabricated for the 

specific purpose of behaviour evaluation and power regeneration, and the aim of the 

experimental rig and measurement system are to support for the real suspension needs in heavy-

duty vehicles whilst regenerating reusable power.  

In this chapter, the experiment used transducers of measurements and their arrangement are 

introduced. The data acquisition system used in experiments was described and then the 

measured data were analysed on Matlab programming in personal computer (PC). In general, the 

test system and measurement instrumentation are performed and confirmed to be sufficient for 

the hydraulic shock absorber system characterisation and power regeneration.  

 



Chapter 5 Model Parameter Determination and System Behaviour Evaluation 

 

122 

Chapter 5 Model Parameter Determination and System Behaviour 

Evaluation 

To use the model developed in Chapter 3 for subsequent studies on the subjects of 

regenerative performance optimisation, structure improvement and control approach 

development, this chapter firstly presents studies on the determination of key model parameters 

based on experimental works and theoretical analysis. Then it shows the quantitative behaviours 

(pressure, speed, electrical characteristics, efficiency, and damping force) of the system under 

different inputs and outputs, gaining a preliminary understanding of the regeneration 

performance under controllable sinusoidal excitations, known electrical loads and accumulator 

capacities. 
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5.1  Test system and measurement 

Numerous refinements are made to the test system to permit more reliable and accurate 

simulation. For example, air bubbles in the fluid within the test system lead to changes in oil 

viscosity and the bulk modulus [130] and, consequently, an air exhaust valve is employed to 

minimise the volume of air in the hydraulic fluid and to stabilise the bulk modulus of the oil. 

Furthermore, energy is consumed through compression of the spring in the check valve, and to 

minimise this effect, the length of the check valve spring was reduced by one-third to reduce 

pressure losses and improve dynamic response. In addition, the moving-mass orifices in the 

check valve are enlarged to allow a greater flow rate and hence to offset valve losses. Finally, 

based on Equations (3.27) to (3.36), low dynamic viscosity shock absorber oil is used and the 

length of the hoses reduced to minimise pressure losses in the pipelines [116]. 

 

Figure 5-1 Key components of regenerative shock absorber system 

Figure 5-1 shows how the pressure characteristics of the test system were analysed using two 

pressure transducers mounted upstream of the diaphragm accumulator port and upstream of the 

hydraulic motor inlet. A U-shaped micro photo sensor is used to measure the shaft speed, which 

was mounted on the shaft coupling. An electronic load bank was used as to vary the load as 

desired. A voltage transducer measured the electrical output for analysis of power regeneration 

and conversion efficiency. All of these measured outputs were fed into a multi-channel data 
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acquisition system which sampled the data at 10kHz with 14bit resolution. The measured signals 

could be observed during experiments in real time to ensure the correct functioning of the 

experimental rig. The main motivation for the design and setup of the test system is to determine 

the uncertain generator parameters and the rotational friction torque in open circuit, and then to 

further use the experimental data to validate the predicted results [116].  

Real road profiles are often represented as a combination of a number of individual sinusoidal 

waves [28], but in this study for simplicity a single sinusoidal wave (defined as a regular wave) 

representing the fundamental concept of the mathematic treatment for road surface was used as 

the system input for both modelling and testing. Such an input allows analysis to be performed in 

a highly accurate manner and hence a general understanding of the dynamic performances of the 

proposed modelling and test system can be obtained. During the experimentation, one corner of a 

four-post servo-hydraulic ride simulator with a digital control was employed as the source of 

vibration to excite the shock absorber system [116].  

5.2  Parameter study  

Table 5.1 Hydraulic parameters in modelling system and experimental rig [116] 

Name Symbol Value Unit Name Symbol Value Unit 

Accumulator 

inlet area 

Aacc 1.27×10-4 m2 Flow coefficient Cq 0.7  

Full piston face 

area 

Acap 1.96×10-3 m2 Specific heat 

ratio 

k 1.4  

Check valve 

area 

Acv 3.93×10-5 m2 Cylinder dead 

volume 

Vcyd 1×10-8 m3 

Pipe area Ap 7.85×10-5 m2 Accumulator 

dead volume 

Vagd 1%∙Vc m3 

Annular area of 

piston 

Arod 1.26×10-3 m2 Initial volume of 

cap-end 

chamber 

Vic 3.93×10-

4 

m3 

Discharge 

coefficient 

Cd 0.7  Initial volume of 

rod-end 

chamber 

Vrc 6.38×10-

4 

m3 
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*Vc is the accumulator capacity. 0.16litres, 0.32litres, 0.50litres and 0.75litres were used in 

this study. 

According to the setup of this test system shown in Figure 5-1, model parameters associated 

with geometric dimensions were determined by direct measurement, as shown in Table 5.1. The 

table also includes discharge and flow coefficients (Cd, and Cq) and the specific heat ratio of air k 

whose value is well known [116]. 

 

Figure 5-2. Known and uncertain parameters and variables in power regeneration unit and 

hydraulic system 

In the current system configuration, the table also shows that there are, however, a number of 

system parameters whose values are uncertain and that need to be estimated. As shown in Figure 

5-2, such parameters and variables can be categorised as [116]:  

1) Parameters related to power generation, including the voltage constant coefficient kV, the 

torque constant coefficient kT and rotational friction torque Trf.  

2) Variables associated with hydraulic flow which are the effective bulk modulus of the fluid 

β (which will different for the three locations βcap or βrod or βm), the mechanical efficiency ηm and 

the volumetric efficiency ηv of the hydraulic motor. 

The objective of this subsection is to obtain accurate parameters values for those parameters 

in the system which cannot be predetermined. The parametric study has been proposed by using 

an inverse determination procedure, which start from the electrical parameters, then the 

mechanical parameter and the hydraulic parameters in the end. A series of online tests was 



Chapter 5 Model Parameter Determination and System Behaviour Evaluation 

 

126 

performed to estimate kV, kT, Rin and Trf in the power regeneration unit. Furthermore, an offline 

test for the generator was designed to confirm the validity of kV and kT. In addition, to determine 

the system behaviour and power output more accurately, fluid losses and friction were 

considered in the modelling system, and thus ηm and ηv can be calculated for further 

improvement of the test system. From a fluid dynamics modelling standpoint, it is necessary to 

determine an appropriate bulk modulus model of the fluid in the hydraulic circuit – this is 

especially important for high pressure hydraulic systems [116].  

5.3  Generator parameter characterisation 

According to Equations (3.15) to (3.17), the performance of the equivalent DC generator to 

the rectified alternator used in the study is dependent upon the internal resistance Rin, the voltage 

constant coefficient kV and the torque constant coefficient kT. kV and Rin are the uncertain 

parameters that need to be identified. Based on an inverse estimation approach [142], these 

parameters were obtained with reference to online speed, current and voltage measurements under 

different external loads. Solving Equation (5.1) obtains the electrical current and then provides the 

, ,( , )pre V i in jU k Rvoltage prediction  across the external resistances under a number of incremental 

,V ik
,in jRvoltage constants  and internal resistances . The minimum value of the least square error 

between the measured and the predicted voltage according to Equation (5.1) can then be derived 

as follow: 

2

, ,

1 1

( , ) { ( , )}
m n

V in pre V i in j

i j

error k R U U k R
 

        (5.1) 

where U is the measured voltage, Upre presents the voltage prediction for the calculation of the 

electrical parameters study, m and n are the number of the seeking processes (data points), and i 

and j defined as the starting points. 

Figure 5-3 (a) shows the relationship between the voltage constants and the internal resistance 

obtained from measurements made directly on the experimental rig (referred to hereafter as 

online measurements), and using four different external resistances. The optimal internal 

resistance Rin and the voltage constant coefficient kV are clearly at the intersection point in Figure 

5-3(a), kV=0.9256 and Rin=5.6Ω. The offline tests in Section 3.4.3 provided the following values 

for voltage constant coefficient and torque constant coefficient, kV=0.9303 and kT=0.9274, there 
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compare to online estimation of kV=0.9256 and kT=0.9246, showing that there is close agreement 

between the estimation approaches and also that kV and kT are very similar in values. 

Figure 5-3 (b) shows the relationship between torque and current, the gradient of which is the 

torque constant kT. A parameter that plays an important role in the rotary motion of the motor 

and generator unit is the rotational friction torque Trf, and this was given priority in the 

estimation of kT. In Equation (3.14), it can be seen that Trf is proportional to the viscous friction 

coefficient and the shaft speed.  

 

Figure 5-3 a) online voltage constant coefficient vs internal resistance, b) online fitted 

torque constant coefficient, kT 

5.4  Mechanical friction torque 

To obtain an accurate relationship between rotary motion and regenerative power, a set of 

online open circuit measurements were taken to find the viscous coefficient. In these 

measurements the flow energy or the motor torque Tm is balanced by the frictional torque, 

m
t

d
J

dt


considering low rate increase process, the dynamic torque  can be ignored, which leads to 

the relationship of [116]: 

 
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where TH is the effective output torque of the hydraulic motor and Tfm is the torque due to 

internal viscous drag of the hydraulic motor. It will be included in to the total friction loss of the 

system by redefining: 

f rf fm v mT T T C             (5.3) 

For the quasi static and open circuit experiments, Equation (3.37) can be reset to 

0 and 0m
l

d
T

dt


  , the relationship of the torques can then written as: 

0m rfT T             (5.4) 

0H fm rfT T T             (5.5) 

Both Tfm and Trf are due to the friction, which is regarded as the effect of viscous loss: 

frictional torqueH fm rf v mT T T C           (5.6) 

 

Figure 5-4 Fitted viscous friction based on online pressure and speed measurements 
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Figure 5-4 shows the relationship between the motor torque Tm, calculated by using Equation 

(5.6), with the pressure and the speed obtained through measurement. It can be seen that they are 

linearly correlated, if the fluctuations due to the inertial torque are neglected. With the linear fit 

shown in Figure 5-4, the equivalent viscous friction coefficient Cv can be estimated to be 0.018.  

In the equivalent DC generator, it was assumed that there are no electromagnetic losses from 

effects such as eddy currents, hysteresis and dielectric heating. Therefore, the effective 

( )m rf mT T mechanical power  is approximately equal to the electrical power which is produced 

by the EMF and the current of the generator armature. It can be found that, in Figure 5-3, that, 

theoretically at least, kV is close in value to kT, and the slope of the curve of the torque constant 

coefficient can be found explicitly in Figure 5-3(b) as being kT=0.9246 [116].  

m
m rf I t

m

dE I
T T k I J

dt




          (5.7) 

5.5  Hydraulic parameter determination 

In this study, the mechanical and volumetric efficiencies in the hydraulic motor, and the 

effective bulk modulus of the hydraulic fluid, were determined by modelling the hydraulic 

system. The assumptions made during this process were as follows [116]:  

 Firstly, the hydraulic cylinder (shock absorber body) was assumed to be frictionless 

and without leakage.  

 Secondly, in Equation (3.28), the mean values of the time-varying pressure and speed 

of the motor were taken as the nominal pressure drop (for the calculation of the 

hydraulic motor leakage coefficient) and the nominal shaft speed, respectively.  

 Thirdly, the values of kT and kV were used as determined in subsection 4.1, meaning 

that there are no additional electrical losses in the generator model to be accounted for, 

and hence it can be assumed that the hydraulic motor power output Pm is equal to the 

power captured in the generator Pcap. 
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Mechanical and volumetric losses are the main influences on the hydraulic motor’s efficiency. 

Based on the above-mentioned assumptions, mechanical efficiency ηm can be expressed as:

 

 lossmm

flossm

m
PPD

TPPmD









2
        (5.8) 

The ratio of the Pcap to the initial input power Pin is defined as generator captured efficiency 

ηcap and expressed by Equations(5.10). The volumetric efficiency ηv of the motor was calculated 

using the captured power efficiency ηcap in the generator and the mechanical efficiency ηm in the 

hydraulic motor. Therefore, the ηv can be defined as:  

2( )cap in LP I R R           (5.9) 
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The effective bulk modulus of the fluid is representative of its compressibility, and is the 

gauge of stiffness within the hydraulic system; this will vary with temperature and the amount of 

entrained air. Any entrained air will cause air bubbles that will significantly reduce the bulk 

modulus value and hence adversely affect the power regeneration capability. The effective bulk 

modulus was estimated to vary nonlinearly with pressure, as shown in Figure 5-5, and as 

described below [116].  

The effects of entrained air and mechanical compliance can be determined from direct 

measurements, and the fundamental effects of the entrained air as proposed by Backe und 

Murrenhoff [143] then using following formulae for the isentropic bulk modulus of liquid-air 

mixtures (air ratio α), can calculated as follow [116]: 
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      (5.12) 

where Pa is the atmospheric pressure, nr is the gas specific heat ratio of the entrained air, and 

P is the relevant pressures (Pcap, Prod or Pm). In any hydraulic system, hydraulic fluid is always 
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accompanied by a small amount of non-dissolved and entrained gas, which can be quantified by 

the gas ratio α.  

Generally, there are a number of empirical equations for effective bulk modulus. Boes’ model 

is the one of the more commonly used expression for effective bulk modulus in a hydraulic 

cylinder based system, and have been used in this study because of its simplicity and specific 

application to low pressure systems (of under 100bar) [129]. In accordance with the guideline for 

hydraulic system modelling from the Institute for fluid power drives and controls, RWTH 

Aachen University, Germany [129] [143], the application specific parameter values of 0.5, 99 

and 1 in Equation (5.13) were selected became the system in a low pressure system [143].  

The Boes’s Model: 

0.5 log 99 1e ref

ref

P

P
 

 
    

 
 

      (5.13) 

In Boes’s model, the reference bulk modulus βref and the reference pressure Pref are constants, 

Pa9102.1  Pa7101and the values used are  and  respectively, again selected using the 

guideline in [143].  

To calculate the effective bulk modulus, the gas ratio α was set to values of 0, 0.005, 0.01, 

0.015 and 0.02 which are typical of a hydraulic cylinder [144]. For the same operating conditions, 

the smaller the predefined air ratio, the larger the motor pressure due to the reduced 

compressibility of the fluid. In real applications, it can be difficult to predefine a proper air ratio 

due to the variable solubility of the gas, which is dependent on the temperature and working 

pressure, and in Figure 5-5, the Boes’s bulk modulus shows a large variation from 9,860bar to 

12,450bar. The expressions for the determined effective bulk modulus are shown in Equations 

(5.14) to (5.16) [116]: 

=0.5 log 99 1
cap
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ref

P

P
 

 
     
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  (Cap-end chamber)  (5.14) 
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Figure 5-5 Hydraulic motor inlet pressure in different effective bulk modulus 

At this point, all of the parameter originally identified in Figure 5-2 can now be quantified, 

and expressions have been determined for all variables, as follows: 

 

Figure 5-6 Determined parameters and variables in power regeneration unit and hydraulic 

system 

5.6 Effect of excitation 

After the determination of the uncertain parameters and variables for the RHSAs, to validate 

the model predicted behaviour, the test facility described in Section 5.1 was used under different 
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excitations and electrical loads. In addition, the effects of the accumulator capacity were also 

considered. 

 

Figure 5-7 Predicted piston strokes at different excitations 

The excitation input from the road surface is the main source of vibration of a vehicle. The 

road surface profile is composed of a large number of regular waves, such as sinusoidal, triangle 

and bump waves. For simplicity, the excitation input can be predefined as a simple sinusoidal 

signal in time domain, and as such this can be considered as the fundamental element of a more 

complex and realistic excitation. For this reason, the first experiment applied different harmonic 

excitations (frequency-amplitude), four single-cycle harmonic excitations at A). 0.5Hz-20mm B). 

0.5Hz-25mm C). 1Hz-20mm and D). 1Hz-25mm (sinusoidal waves) are modelled for the first 

attempt of validation and evaluation [85] [102]. They all use an accumulator volume of 0.16L 

and an electrical load of 11Ω. Figure 5-7 and Figure 5-8 illustrate that the measured and 

simulated displacement is displayed under excitation A-D. It reveals that there have small 

reductions of measured displacement compared with the initial predefined excitations especially 

for the amplitude of 25mm, meaning that the experimental rig frame causes the vertical 

misalignment during system operations. Therefore, the average error of four measured 

excitations is approximate to 0.25mm. 
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Figure 5-8 Measured piston strokes at different excitations 

To predict the excitation inputs in the modelling work precisely, the predefined amplitudes of 

the sinusoidal wave are reduced to approximately19.75mm to 24.75mm respectively. 

The performance study is focused on the variation between the hydraulic motor pressure and 

the rotational motion. Using the refined parameters of the proposed system obtained from the 

parameter identification study of Section 5.2, a close agreement between the measured and 

predicted results was obtained. The hydraulic motor inlet pressure and the shaft speed between 

prediction and measurement are shown in Figure 5-9 and Figure 5-10. It can be seen that higher 

excitations cause greater pressure and hence resulting in higher motor speed [116].  

Although the predicted pressures and speeds show good agreement with the measurements, 

the measured peaks and the speeds at relevant endpoints of the piston motion are smaller than in 

modelling. However, it can be found that the maximum percentage differences based on average 

pressures and shafts speeds between predictions and measurements are 3.14% and 3.75%, 

respectively. There have three possibilities to explain how the reduction behaves under various 

excitations in measurements. Firstly, it is the unexpected shock of the experimental rig frame 

cause the piston oscillations and displacement errors, and then reduces the relevant speed in 
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values at the endpoints of the piston motion. Next, it can be found that the pressure drop across 

the hydraulic motor ∆P is slight smaller than in the prediction due to the motor outlet pressure. 

In Figure 5-13, it shows that the measured pressure and its mean value of the hydraulic motor 

outlet which has pressure fluctuation rather than a constant value assumed in modelling (is equal 

to 1bar). Therefore, the difference in measured pressure between the inlet and outlet of the 

hydraulic motor reduce the effective torque, and then slightly reduce the shaft speeds. Finally, 

the reason is that the nonlinearity of the rotational friction torque in measurement is varied with 

the hydraulic behaviours which is uses linear fitting algorithm in its modelling, seen in Figure 

5-4. Although the determined rotational friction model has significantly contributed to the 

accuracy of the modelling results, the high motor pressure with low shaft speed is still occurred 

in modelling results due to the use of the simplified equivalent viscous friction. For further 

development of friction model, this work will mainly focus on the assumption that the sum 

function of Stribeck, Coulomb, and viscous components to improve the online identification of 

friction without discontinuity.  

In line with the theoretical study of the gas-charged accumulator in Section 3.4.4, the 

accumulator uses the compressed gas to maintain the balance between the fluid and gas chamber, 

thus improve the stability of flow rate in which pass through the motor inlet and provide a stable 

environment for power regeneration. With the increases of the excitations, the volume of the 

compressed gas is decreased. Meanwhile, the rectification capability for the pressurised flows in 

a constant volume accumulator is gradually reduced. It indicates that the more stable hydraulic 

behaviours can be achieved by adjusting the accumulator capacity to meet the requirements of 

various excitations.  

As the response of the vibration excitation, the fluid flow passes through the hydraulic motor 

to convert the linear excitation into rotary motion of the generator and evaluate the capability of 

the power regeneration. The rotary speed transducer is mounted on shaft coupling to measure 

integrated speeds. According to shaft speed is dependent on effective torque and moment of 

inertia. A heavy generator is utilised in experimental study. The large moment of inertia can act 

as rotational kinetic energy storage to improve the stability of rotary motion. Based on 

Equations(3.15), (3.35) and (3.36), it can be discovered that the shaft speeds is dependent on the 

effective torque which includes motor torque, friction torques and electromagnetic torque. The 

input torque is produced from the hydraulic motor which varies with the delivered pressure. The 

motor shaft and generator shaft coupled as one, and generates inevitable friction torque to affect 
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the efficient rotary motion and power regeneration. Based on the determined rotational friction 

torque in Equation (5.3), the accurate shaft speed can be obtained in prediction, in the case that 

the friction torque increases with speed, and is also proportional to the excitation velocity. 

However, the continuous and stable shaft speed would contribute to the capability of power 

regeneration and the power efficiency [130]. 

 

Figure 5-9 Hydraulic motor pressure validation at 0.5Hz and 1Hz frequency, 20 and 25mm 

amplitude (External load RL=11Ω and Accumulator capacity Vc=0.16L) 
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Figure 5-10 Shaft speed validation at 0.5Hz and 1Hz frequency, 20 and 25mm amplitude 

(External load RL=11Ω and Accumulator capacity Vc=0.16L) 
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the piston to generate equivalent damping forces which can reduce the effect of a vehicle 
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and the both predicted and measured pressures increase regularly and effectively with the 

excitation increases. However, the pressures in both cylinder chambers indicate that the damping 

force is proportional to the excitation velocity. Furthermore, by comparing the pressures in cap-

end and rod-end chambers, it can be seen that the values of Prod are limited by the capacity of the 

rod end chamber, but the discrepancy of Pcap and Prod due to the different sectional areas can 

provide a large-scale of potential damping force, which can be considered for further study of 

semi-active or active controls in automobile suspension system [130].  

 

Figure 5-11 Predicted hydraulic cylinder pressures during compression and extension 

strokes with the peak values at various excitations (cap-end chamber and rod-end 

chamber) 

The detailed view of measured cylinder pressures during the compression and extension 

strokes is shown in Figure 5-11, It describes how the cylinder pressure behaves in an 

experimental study during one complete cycle of the piston motion (compression and extension) 

before across hydraulic motor. Considering the measured displacement in Figure 5-8, it can be 

found that a small oscillation occurs at its endpoints of the piston motion, and the piston 

oscillations in cylinder chambers lead to the relevant pressure oscillations when the piston 

changes its direction of the motion. At the change-points of the piston direction, the high 

pressure in the cap-end chamber alters to the low pressure in the rod-end chamber and vice versa. 

In Figure 5-11(a), at time 0.45s and 1.35s, the piston alters its direction of motion, and then the 

pressure in one of the chambers increases sufficiently to open the check valve and creates 

rectified flow. However, with the check valve open and close in either chamber, two set of fluid 

become one in pipeline and across the hydraulic motor at the same moving direction. In Figure 
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5-11(b), it can be found that there is an approximately 0.03s delay when the piston changes its 

direction due to the piston oscillation causing a reduction in the effective piston motion, and thus 

the pressure is insufficient to overcome the instantaneous pressure in the pipeline, and to 

maintain the pressure high enough to keep the check valve opening. In addition, the measured 

cylinder pressures drop significantly with the excitation increase during the period of the piston 

direction changes whilst causing the reduction of the motor pressure and shaft speed as well, see 

the pressure and speed validation in Figure 5-9 and Figure 5-10.  

 

Figure 5-12 Detail view of measrued cylinder pressures: a) 0.5Hz, b) 1Hz 

 

Figure 5-13 Hydraulic motor outlet pressures at different excitations 
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Figure 5-14 Predicted voltage, current, power and power efficiency at different excitations 

An equivalent DC permanent magnet generator (including a built-in AC/DC rectifier) has 

been selected and applied, the voltage U, current I at 0.16L accumulator and 11Ω electrical load, 

are simulated and tested to investigate power regeneration capability at different excitations. 

According to Faraday’s laws of electromagnetic induction [145], electromotive force (EMF) can 

be induced by the motion of the stationary armature and rotating magnetic field, while deriving 

current in armature. However, in line with the design of the RHSAs, the mechanical power 

produced by the hydraulic motor can be directly converted into recoverable power and stored in 

an energy device/battery for later use. In the test system, the voltage and current are measured at 

the terminals of the external electrical load.  
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Figure 5-15 Measured voltages, currents, recoverable powers and power efficiencies at 

various excitations 

In Figure 5-14 and Figure 5-15, the predicted and measured voltages, currents, recoverable 

powers and power efficiencies are displayed and compared at excitations A−D. It shows more 

clearly that the mean values of the voltage, current and recoverable power increase with the 

excitation inputs. As we know that the voltage is dependent on the generator armature speed and 

field current. The higher armature speed and field current, the stronger electromotive force EMF 

is induced to produce more effective electrical power.  

The power regeneration and power efficiency (the main concerns) have been calculated in 

modelling and experimentation. It can be seen that power regeneration is proportional to the 

growth of excitation velocity by altering frequency and amplitude. 

The predicted power inputs, the regenerative power and power conversion efficiency obtained 

are shown in Figure 5-14. The average power outputs calculated by Equation (3.21) are 68.8W, 
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112.8W, 224W and 321W with peak values of 108.7W, 199.3W, 331.9W and 544.7W in 

predicted results, and the average power inputs under the piston motions of four excitations are 

estimated approximately at 184.0W, 280.8W, 573.6W and 836.8W from Equation (3.20). In line 

with Equation (3.22), the recoverable power efficiency under the excitations A-D in modelling 

can be obtained 37.4%, 40.17%, 39.05% and 38.36%, respectively. By contrast, in experimental 

study, the peak values of regenerative power outputs are 113.9W, 197.3W, 370.8W and 580.8W, 

and the mean values are 65.92W, 107.8W, 224.7W and 313.1W with the corresponding power 

inputs of 175.1W, 277.5W, 587.1W and 841.2W, while the power conversion efficiency are 

37.64%, 38.85%, 38.23% and 37.22% respectively, see Figure 5-15. 

The most efficient excitation occurs at 0.5Hz frequency and 25mm amplitude. With the 

increase of the excitation input, the effective displacement is greatly reduced, and hence causes 

the reduction of the recoverable power in values especially for the excitation D. These results 

show that the excitation input has a great effect on the regenerated power and its efficiency, and 

the measurement gives a realistic view of the power analysis, and the efficiency of 37%−39% for 

the power can be regenerated at this case. 

As the predicted and measured cylinder pressures indicate, the forces acting on the piston 

increases with the increase of the excitation velocities, the reason is that, the large magnitude of 

the frequency and amplitude can create large piston velocity and relatively large flow rate in 

hydraulic circuits, and thus to obtain the fast rotary motion of the generator, more recoverable 

power and large damping force. In modelling, Equation (3.19) can be used for the calculation of 

the damping forces in the RHSAs, and the maximum damping forces of compression strokes are 

7,060N, 9,091N, 12,684N and 15,673N with respect to the excitation velocities A−D. In 

extension stroke, the peak values are -3,936N, -4,763N, -6,641N and -7,960N, respectively. The 

measured displacement-force loops and velocity-force loops, in response to the excitation 

velocity A−D, are displayed in Figure 5-16. It is obvious that the predicted damping forces peaks 

are close to those measured, meaning that the predicted damping force can be modelled using the 

cylinder pressures calculation. Referring to the above-mentioned features of the hydraulic circuit, 

it reveals that the fluid compressibility, the unexpected experimental rig frame misalignment and 

the rotational friction torque affected the damping forces in values inevitably. However, the test 

system and modelling produce similar damping forces which is approximate to Coulomb friction 

force (equivalent to Coulomb type damping force).  
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Figure 5-16 Displacement-force loops and velocity-force loops at different excitations 
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5.7 Effect of electrical load 

 

Figure 5-17 Excitation input: displacement and velocity 

For the regenerative shock absorber, the external load has significant effects on the capability 

of the power regeneration and the behaviours of the whole system [130]. In this study, the main 

aim is to analysis the results between predictions and measurements at various electrical load. 

Furthermore, to explore the power regeneration capability and in the process to validate the 

proposed model, voltage and power at different electrical loads were simulated and measured. In 

addition, the following analysis will also describe and discuss the characteristics of the hydraulic 

behaviours, rotary motion, damping force at various external loads. To ensure the validation and 

comparison between modelling and experiments, variable resistances have been applied with a 

specific predefined sinusoidal wave, 1.0Hz frequency and 25mm amplitude so excitation 

velocity can be calculated as v=0.05πsin(2πt), see Figure 5-17, and the accumulator capacity is 

set to 0.16L for fair comparison. In addition, to permit accurate prediction in modelling work, the 

unexpected displacement error in experimental rig has been estimated and considered in develop 

modelling system to give an approximately consistent excitation input with measurement.  
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Figure 5-18 Predicted pressures a) during compression and extension strokes, b) at motor 

inlet, with the peak values at different electrical load 

The predicted and measured pressures of the cap and rod end chambers and hydraulic motor 

inlet under the excitation inputs D with variable resistances are shown in Figure 5-18. With the 

parameters study in Section 5.2, the acceptable mean values of the hydraulic motor inlet 

pressures between predictions and measurements can be found in Figure 5-18(c) and Figure 5-19, 

and the measured results show a good validation to the developed modelling which is 

comparable to the results in [130]. Furthermore, both results indicate that the electrical load has 

significant influence on the fluid flow, and the reliability and stability of the pressurised fluid has 

been improved with the external load increases. In Figure 5-18(a), the cylinder pressures reveal 

that the damping forces will give the similar waveforms as the pressures from the cap-end and 

rod-end chambers which are quite similar with the Coulomb damping forces.  

0 1 2 3 4 5

-50

0

50

100

150

Time (s)

P
re

s
s
u
re

 (
b
a
r)

Predicted Pressures 
in Compression and Extension

 

 

Pressure peaks, 70.2bar&-54.5bar

Pressure peaks, 54.1bar&-43.1bar

Pressure peaks, 41.9bar&-35.0bar

Pressure peaks, 37.1bar&-31.2bar

0 1 2 3 4 5
20

30

40

50

60

70

80

Time (s)

P
re

s
s
u
re

 (
b
a
r)

Predicted Accumulator and Hydraulic 
Motor Inlet Pressures

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

30

40

50

60

70

Time (s)

P
re

s
s
u
re

 (
b
a
r)

Detail view of Accumulator and Motor Inlet Pressures

 

 11, Average, 52.4bar, 52.0bar

20, Average, 41.7bar, 40.7bar

30, Average, 33.5bar, 33.3bar

40, Average, 29.8bar, 29.5bar

a b

c



Chapter 5 Model Parameter Determination and System Behaviour Evaluation 

 

146 

 

Figure 5-19 Measured pressures at accumulator and hydraulic motor inlets 

Additionally, in Equations (3.23) to (3.26),the magnitudes of the accumulator inlet pressure 

are accounted for in the modelling but there is no significant reduction for predicted pressure 

pulsation than in measured results using the accumulator of 0.16L capacity at different external 

loads, the average reduction is up to 1bar at 20Ω, see Figure 5-18(c). The differences of 

measured pressures between the accumulator inlet and motor inlet can be clearly seen in Figure 

5-19 with the average pressure differences in values are between 1bar and 1.6bar, this because 

that the effects of the poppet valve inside the accumulator cause the pressure drop to keep 

accumulator port open in which has not been considered in the accumulator model but taken into 

account the volume variations and fluid rate changes instead. 

To evaluate the power regeneration capability and in the process to validate the proposed 

model, different electrical loads were applied. In line with Equations (3.17) and (3.18), the 

predicted average power can be seen to gradually decrease with an increase in electrical load but 

the average voltage keeps increasing with the electrical load, as shown in Figure 5-20 and Figure 

5-21.  
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Figure 5-20 Voltage validation at different electrical loads (0.16L accumulator and 1Hz-

25mm excitation) 

In Figure 5-20 and Figure 5-21, the voltage and recoverable power are in good agreement 

between prediction and measurement. However, for measured results, the electrical load of 20Ω 

provides the best efficiency (of 39.74%) with an average power recovery of 258.1W compared to 

37.22% and 311.9W at 11Ω, 38.5% and 206.9W at 30Ω, 36.88% and 168.3W at 40Ω in the 

RHSAs, see Figure 5-21 and Figure 5-23. Meanwhile, the mean predicted powers and power 

efficiencies can be found in Figure 5-21 and Figure 5-22. As electrical load rises, the capability 

and efficiency of power regeneration dramatically deteriorate, but it provides more reliable and 
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stable environments for the system behaviours, and further increase in resistance results in a 

relatively small amount of regenerated power [103]. 

 

Figure 5-21 Recoverable power validation at different electrical loads (0.16L accumulator 

and 1Hz-25mm excitation) 
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964.6rpm, 968.8rpm, 992.3rpm and 993.8rpm, respectively. Meanwhile, Figure 5-23 displays 

that the measured shaft speeds can be obtained from the measured data under different electrical 

loads, which are 933.8rpm, 960.1rpm, 984.5rpm and 996.6rpm with the peaks of 1,280rpm, 

1,209rpm, 1,180rpm and 1,142rpm, respectively. It can be found that the behaviours of predicted 

results are analogous to the measurement especially at 40Ω, and it reveals that the high electrical 

load is able to maintain a constant shaft speed to provide a more stable and reliable condition for 

power regeneration. Figure 5-22 and Figure 5-23 also shows the current in the prediction is 

greater than in the measurement due to the unexpected losses dissipated as heat in the generator.  

 

Figure 5-22 Predicted shaft speeds, currents and power efficiencies at different electrical 

loads 
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Figure 5-23 Measured shaft speeds, currents and power efficiencies at different electrical 

loads 

In this measurement, the forces acting on the RHSA are also recorded with the same 

excitation (displacement and velocity). The following analysis is to evaluate the effects of the 

electrical load to the damping force. Figure 5-24 shows that the relationships of the 

displacement-force loop and time-variant force under four different external loads. It can be seen 

that the backlash is occurred when the piston changed its motion from extension to compression. 

This is due to the returning fluid being insufficient to refill the cap-end chamber for next 

compression stroke during the extension stroke, and the backlash time is approximate to 0.04s at 

vibration excitation of 1Hz frequency and 25mm amplitude. Compared with Figure 5-16, it is 

shown that the backlash effects during the compression strokes are more notable with the 

increase of the excitation velocities due to the slow response of the returning fluid. However, the 

electrical load is not the main factor that caused backlash but it is an achievable factor to adjust 

the damping force. Based on aforementioned displacement-force loops in Figure 5-16 and Figure 

5-24, it is clear that a wide range of damping forces can be obtained by adjusting the electrical 
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load in response to various excitations in real road, and it can be further optimised for a semi-

active regenerative shock absorber in heavy haulage vehicles.  

 

Figure 5-24 Displacement-force loops and velocity-force loops at different electrical loads 

In real road surfaces, various frequencies are the one of the main effects of suspension’s 

dynamic responses, and it would also affect the hydraulic behaviours and electrical responses of 

the RHSAs. Therefore, the sweep frequency test has been taken into account and predefined with 

the amplitude of 15mm and the accumulator capacity of 0.5L, and frequency range of 1.1Hz to 

2Hz with the frequency rate of 0.1Hz/s. It is clear that the waveforms of the motor pressure, 

recoverable power and damping force are discontinuous and unstable when the excitation input 

is below 0.121m/s but the peaks tend to be increased in linear relationship. Figure 5-25 shows 

that the electrical load has significantly effect on the motor pressure, recoverable power and 

damping force at high frequency (high input velocity). In addition, the measured damping forces 

for the frequency sweep are still likely to be the Coulomb type damping force. It reveals that the 

electrical load can be adjusted to give an optimum match both in values of the damping force and 

recoverable power. 

Overall, the consideration of system losses and nonlinearities, and parameter identification for 

the modelling approaches and numerous refinements on the experimental rig permit the more 

accurate and reliable predictions and measurements. The predicted hydraulic motor pressures, 

shaft speeds, instantaneous voltage and recoverable power has been validated to ensure the 

effectiveness of the modelling approaches, and shown good agreement between predictions and 
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measurements. The effect of various excitations and electrical loads for the RHSAs has been 

evaluated. The results of the modelling and experimental rig indicate that the behaviours of the 

RHSAs and the capability of the power regeneration are highly dependent on the experienced 

excitations and the applied electrical load.  

 

Figure 5-25 Frequency sweep: from 1.1Hz to 1.9Hz at 20Ω and 30Ω (0.50L accumulator 

and 15mm amplitude), motor pressures, recoverable powers and force loops 

5.8 The smoothing effect 

Based on the theoretical study of the gas-charged accumulator flow in Chapter 3.4.5, it 

indicates that the accumulator capacity has a great effect on hydraulic behaviour, and affects the 

rotary motion and power regeneration. The detailed model has been developed to stabilise and 

regulate the fluctuation of the whole system behaviours with considering the effects of the 

accumulator capacity.  
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Figure 5-26 Predicted hydraulic motor pressure, shaft speed, predicted regenerative power, 

predicted power regeneration efficiency, at 0.16L, 0.32L, 0.50L and 0.75L accumulator 

capacities 

Testing under 1Hz frequency and 25mm amplitude excitation, with an optimal electrical load 

of 20Ω, was then evaluated at different accumulator capacities, and the predicted and measured 

results are displayed in Figure 5-26 and Figure 5-27. The hydraulic motor pressure, 

instantaneous voltage, recoverable power and power efficiency are studied using different 

accumulator capacity (0.16L, 0.32L, 0.5L and 0.75L diaphragm accumulators).  

The motor pressure and regenerated power show a close correlation between measurement 

and prediction. However, there is a slightly greater inconsistency between the predicted and the 

measured shaft speeds. With increasing accumulator capacities, the peak values of the shaft 

speed corresponding to the cap-end pressure decreased, representing an inverse variation with 
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those in the modelling – this effect increases with accumulator capacity. The motor outlet 

pressure in the test system was not uniform although it had been set as a constant in the model, 

and the effective pressure drop in the motor chamber was smaller than that used in modelling 

study. According to Equation (3.35) to (3.37), they indicate that the average and peaks of the 

shaft speed are smaller than those used in modelling study. In addition, the deflection of the 

experimental rig frame causes an inevitable small misalignment between the motor and generator 

shaft, which in turn reduces the effective motor torque and shaft speed [116].  

 

Figure 5-27 Measured hydraulic motor pressure, shaft speed, predicted regenerative 

power, predicted power regeneration efficiency, at 0.16L, 0.32L, 0.50L and 0.75L 

accumulator capacities 

Equations (3.23) to (3.26) and (3.32) indicate that the volume variation of the accumulator 

fluid chamber can smooth the flow oscillations, and hence help to minimise the instability of the 
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fluid flow. The gas-charged accumulator utilises compressed gas to maintain balance between 

the fluid chamber and the gas chamber, thus stability the flow rate through the motor inlet. 

In Figure 5-26(a) and Figure 5-27(a), the mean pressure in the accumulator port (which is 

upstream of the motor inlet) is around 41bar, and the excellent agreements can be found between 

predictive results and experimental measurements of the power regeneration efficiency which are 

in the range of 39% to 40%. Particularly, the recoverable power and the regeneration efficiency 

are approximately 260W and 40%, respectively. The variations of shaft speed and recoverable 

power are also acceptable between predictions and measurements. The results indicate that 

adjusting accumulator capacities is a feasible method to maximise power regeneration and 

control damping forces during the motion of the piston, and also making it a realistic probability 

for the application in a typical heavy goods vehicle. 

In Figure 5-26 and Figure 5-27, it can also be seen that increasing the accumulator capacity 

from 0.16L to 0.75L can improve the stability of the entire system without significantly 

influencing the average motor inlet pressure, shaft speed and recoverable power. The fluid 

volume in the accumulator Vf increases with the growth of the instantaneous motor pressure drop 

to vary the accumulated fluid volume, see Figure A5 in Appendix 2, and hence to smooth the 

pulsations of the motor pressure. The inherent characteristic of a diaphragm accumulator is such 

that it can prevent fluid shocks from highly oscillating flow and also balance pulsations of the 

fluid with only a small amount of the pressure consumption. The accumulator is also able to 

operate as a pressure compensation element or energy storage device in a low pressure process to 

provide continuity and stability to the pressurised flow [116].  

In the measured displacement-force loops and time-variant forces, which are shown in Figure 

5-28, it can be seen that the forces on the piston (equivalent to damping forces) are further 

stabilised and regulated during the compression stroke by increasing the accumulator capacity, 

and that the peaks decrease from 11.46kN to 9.33kN (close to a 20% reduction) in compression 

strokes but there are no obvious effect in values for damping force in extension stroke. The peak 

values of the damping forces at 0.5L and 0.75L accumulator volumes are similar in the 

compression and extension strokes because 0.5L are appropriate accumulator capacities for the 

magnitude of excitation. Additionally, the measured displacement-force loops and time-variant 

forces are shown in Figure 5-24 and Figure 5-28, it can be seen that appropriately selected 

electrical load and accumulator capacity are capable of providing adaptive damping 

characteristics that are suitable to use in a heavy haulage vehicle [116]. However, the effects of 
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the electrical load and accumulate capacity reveal that the regenerative shock absorber can allow 

acceptable damping force to the conventional hydraulic shock absorber and are comparable to 

the results for heavy-duty trucks or buses in [46].  

 

Figure 5-28 Displacement-force loops and velocity-force loops at different accumulator 

capacities 

Since the captured power has been assumed to be equal to the overall power output of the 

hydraulic motor, the volumetric efficiency was estimated through the power conversion in 

parametric study [Equation (5.8)−(5.11)]. The fundamental principle of the volumetric efficiency 

of a hydraulic motor states that the motor can achieve the expected speed by allowing more fluid 

flow through than the theoretical calculation due to the motor internal leakage and fluid 

compressibility, and the equation can be expressed as follow: 

actual

ltheoretica
v

Q

Q


demand)(PracticalflowActual

provide)to(OughtflowlTheoretica
      (5.17) 

In this study, to validate the availability of the volumetric efficiency, the experimental 

volumetric efficiency can be obtained by using an equivalent method, which is defined as the 

ratio of the fluid flow through the hydraulic motor (theoretical flow) to the total fluid flow out of 

the shock absorber chambers (actual flow). Therefore, the calculation process is given and shown 

in Figure 5-29. It assumes that the total fluid flow QT is equal to the theoretical flows from the 

shock absorber body (Qcap,m and Qrod,m) which is actuated by the excitation input v(t). The 

hydraulic motor flow Qm,m can be calculated by using the displacement of motor Dm and the 

-30 -20 -10 0 10 20 30

-5

0

5

10

15

Displacement (mm)

F
o

rc
e 

(k
N

)

Displacement-Force loops

 

 

0.16L

0.32L

0.5L

0.75L

0 1 2 3 4 5

-5

0

5

10

15

Time (s)

F
o

rc
e 

(N
)

Forces

 

 0.16L

0.32L

0.5L

0.75L



Chapter 5 Model Parameter Determination and System Behaviour Evaluation 

 

157 

measured motor shaft speed ωm,m, and then the average volumetric efficiency can also be 

estimated for measured results. The measured volumetric efficiency therefore can be provided to 

validate the numerical results. 

 

Figure 5-29 The calculation process of the measured volumetric efficiency 

 

Figure 5-30 a) Piston velocity, b) Flow rate in cylinder chambers, c) Predicted and 

measured volumetric efficiency 

Figure 5-30 shows that the predicted and measured volumetric efficiency are in good 

agreement. It also indicates that the effect of accumulator capacity can efficiently stabilise the 

system behaviours with acceptable recoverable power, and also the volumetric efficiency and the 
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regeneration efficiency decreased very slightly with the increment of the accumulator capacity. 

The proposed validation method is able to provide acceptable volumetric efficiency and to refine 

the leakage flow of the hydraulic motor. 

 

Figure 5-31 Hydraulic motor leakage flow, at 0.16L, 0.32L, 0.50L and 0.75L accumulator 

capacities, at 11Ω, 20Ω, 30Ω and 40Ω external loads 

Based on the above proposed method, the volumetric efficiency and the variation of the 

effective hydraulic motor flow rate at various electrical load and accumulator capacities are 

shown in Figure 5-31. It can be seen that the increase in electrical load causes low motor 

pressure with higher volumetric efficiency, which is similar to the variation of the effective 

hydraulic motor flow. According to the Equations (3.27)-(3.29), the motor leakage coefficient 

can be determined by using the motor leakage variation related to the average of the effective 

motor pressure linear fitting algorithm at a singular excitation of 1Hz and 25mm amplitude, as 

shown in Figure 5-31. A small variation of the leakage flow would be significantly effect on the 
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system behaviour. The determination method for the motor leakage coefficient therefore needs to 

be further optimised and found the degree of nonlinearity which can allow a more reasonable 

agreement with related operating conditions.  
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5.9 Concluding remarks 

The studies have shown that the following key model parameters can be determined to an 

acceptable accuracy based on line measurements: voltage constant coefficient (kV), torque 

constant coefficient (kT), generator internal resistance (RL), rotational torque friction coefficient 

(Cv), mechanical efficiency (ηm), volumetric efficiency (ηv) and bulk modulus (β).  

The online determination methods are effective to characterise the electrical parameters of the 

generator and the rotational friction torque coefficient for accurate regeneration performance. 

The identified rotational friction torque and bulk modulus are conducive to determine the motor 

efficiencies for accurate hydraulic behaviour and rotary motion. An accurate model is used to 

validate against the experimental results and the results are in good agreement.  

Both modelling and experimental results have shown that high excitation can significantly 

increase the peak damping force and average recoverable power due to the large flow rate. The 

electrical load and the smoothing effect of the hydraulic accumulator have a direct impact on 

general behaviour and power regeneration. The effective and reliable adjustment for the damping 

force and recoverable power are capable of achieving the semi-active force control. Particularly, 

the recoverable power and the regeneration efficiency are approximately 260W and 40%.  

However, this chapter presents a comprehensive assessment of the RHSAs that has been 

performed in both modelling and testing regarding the regenerative power and dynamic 

behaviours in regular waves. The evaluation of the RHSA would be continuously tested at 

random road surface profiles. Furthermore, according to the increase customer demands of the 

driving safety and healthy, it is necessary to take into account the trade-off between ride comfort 

and road handling with recoverable power in simulation analysis. Hence, it is the purpose of the 

following chapter to analyse the sensitivity analysis, ride comfort, road handling and potential 

power in a complete vehicle suspension system (quarter car model). 
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Chapter 6 The Performance of RHSAs under Different Road 

Profiles 

Having confirmed RHSAs behaviours under sinusoidal excitations in Chapter 5, this chapter 

investigates RHSA responses and performances to the excitations of different road profiles. ISO 

standard road classifications are based on models and simulate the road irregularity. A road-

regeneration-suspension system is then developed and used to characterise the vehicle’s dynamic 

responses and potential recoverable power under different road roughness and driving speeds, 

which demonstrates the potential improvement of the ride comfort and handling performance by 

utilising a RHSA with a varying loads and accumulator capacities. 
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6.1  Introduction 

In previous research, vehicle suspension travel is defined as a variety of amplitudes and trends, 

such as step, ramp, sinusoidal, triangular, and periodic waves. As a basis for comparison, the 

predefined excitation using one of the mentioned waveforms with a given frequency and 

amplitude is sufficient for evaluating the performance of a given suspension system or shock 

absorber system but the realistic excitation conditions are insufficiently considered in the study 

of vehicle suspension system or regenerative shock absorber systems. Several studies of the 

RHSAs have carried out simulations and experiments using sinusoidal signals which are defined 

as a stationary process in Chapter 3 and Chapter 5. The objective of this chapter is to evaluate a 

suspension system under realistic excitation conditions, and experiments based on the proposed 

experimental rig are performed to predict realistic power regeneration and system behaviours 

when subjected to irregular waves.  

The road surface roughness is the key sources of vibration for the regenerative shock absorber 

(RHSA) system when vehicle is travelling on real roads, and the shock absorber experienced 

vibration is extremely dependent on the road conditions and vehicle driving speeds [27]. In order 

to accurately model realistic excitation conditions for the evaluation of the quarter car model, the 

single degree of freedom and the RHSAs, random road surface profiles could be used in this 

study. Generally, the power spectral density (PSD) of the road displacement is used to describe 

the road roughness [146], the RHSAs behaviours and the capability of power regeneration is 

necessary to investigate in random road surface profiles due to its irregularity and closer relation 

to realistic driving conditions. The following sections detail the modelling method which will be 

applied for road profile modelling and reconstruction. 

6.1.1 Random wave spectra road profiles model 

The road surface roughness is the main source of kinematic excitation of a moving vehicle, 

which has an important influence on ride comfort, ride safety, vehicle manoeuvrability, driver’s 

and occupants’ comfort, and vehicle dynamic load [147] [148] [149].In general, real road 

conditions with various irregularities are influenced by a multitude of factors. The factors consist 

of weather conditions (temperature and humidity), road grading, road materials oxidation, 

deformed damage by heavy haulage vehicles, and amassed damage by passage carrying vehicles. 

Road surface profiles generally depends on its roughness, wave numbers and distribution, and it 

can be modelled by assuming that they consist of an infinite number of random fields [150]. 

These random fields are real-valued, zero mean and Gaussian [118]. Global road roughness is 



Chapter 6 The Performance of RHSAs under Different Road Profiles 

 

163 

considered as a stochastic process, can be described by a power spectral density (PSD) function 

in a spatial domain. The PSD of roads can be established by resolving a random wave profile 

into a large number of component sinusoidal waves, and determined by measuring the surface 

profile on the subject of a reference plane [151] [152]. 

In 1995, the contemporary international standard, ISO 8608 [28] was standardised as a road 

roughness assumption for the measured vertical road profile data from various roads and 

highways, due to classification of roads into eight classes as stated by their unevenness, equal 

intensity of road unevenness in the whole mathematical problems in Engineering range of 

wavelengths, and a general form of the fitted PSD was given. Road roughness can be classified 

from A to H. By comparing the PSDs associated with the classes, roads in smoother highways 

with a minimal degree are defined as high quality (very good or good) in Class A and B whereas 

in Class H roads with larger degrees of roughness are classified as extremely poor condition. 

Based on ISO 8608, the complete statistical description of road profiles is sufficient to specify its 

second order moments. Here, this requirement is satisfied by assuming that the road irregularities 

possess a known single-sided power spectral density, and can be approximated in form of 
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where Ω is the angular spatial frequency (cycles per meter), Lw is the wavelength, varying 

2
w

L from a few metres to thousands of metres, and , w denotes as waviness, and the 

undulation exponents(waviness index) are set in the range from 1.8 to 3.3, and w=2 is set for 

most of the road surface at constant velocity. Φ(Ω0) (m2/(rad/m)) provides a measure for the 

roughness of the road at the reference wave number Ω0=1rad/m, and n=Ω/2π is the spatial 

frequency with n0=0.1cycle/m [153].  

From Equation (6.1), it indicates that the increase of waviness w helps the longer wavelengths 

to become more observable while it suppresses the roughness at the shorter wavelengths [154]. 

For this reason, a three-division method fits much better to the simpler single sided spectrum 

which can be considered to provide an opportunity for approximating and making an initial 

judgement of the road surface roughness. ‘Although this simple parametric PSD may not 

accurately approximate the road roughness spectrum for the whole range of frequencies, it will 

correctly estimate the energy for the frequencies in the range which may excite the vehicle 

response. However, the model can further be developed by dividing the spectrum into three 



Chapter 6 The Performance of RHSAs under Different Road Profiles 

 

164 

wavebands’ [155]. It adopts the following standard formulation to describe road roughness PSD, 

more involved function: 
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In Equation (6.2), Φ(Ω) is the discrete PSD in spatial domain at the reference angular spatial 

frequency, Ω1 and ΩN are the limit of the angular spatial frequency. The ISO suggested 

Ω1=0.02π(rad/m) and ΩN=6π(rad/m) [156], and other presented parameters keep the same 

definition in this Equation. Typically for modelling Equation (6.2) w1 and w2 are set as the values 

of 2 and 1.5 respectively [157]. A large range of power spectral densities can be generated by 

using Equation (6.2). Throughout a large number of measurements, ISO 8608 standard lists a 

classification of road roughness in term of angular spatial frequency Ω, as shown in Table 6.1. 

Table 6.1 ISO 8608 Road Roughness Classifications by angular spatial frequency, Ω [28] 

 Classified roughness Φ(Ω0)×106 m3  

where Ω0 = 1rad/m 

Road class Geometric 

mean 

Lower limit Upper limit 

A (Very good) 1 --- 8 

B (Good) 4 2 8 

C (Average) 16 8 32 

D (Poor) 64 32 128 

E (Very poor) 256 128 512 

F 1024 512 2048 

G 4096 2048 8192 

H 16384 8192 --- 
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Figure 6-1 ISO 8608 Road surface profile roughness classification at geometric mean 

In order to simulate the effect of road roughness (PSD values), the geometric mean values in 

Table 6.1 are used for the performance evaluations of suspension system and the investigations 

of the RHSA experimental rig. Figure 6-1 illustrates the distribution of various levels of road 

roughness from Class A (very good) to Class E (very bad) at 30mph vehicle speed and 100m 

road distance. 

6.1.2 Reconstruction of Road profiles  

Turkay, Kropac and Wen summarise that [155] [158] [159]“The vertical road input is the 

most important factor for durability assessments of vehicles. The input from the road surface 

transferred to the vehicle components is not persistent in time domain and space, but is able to 

be varied in function of several factors such as vehicle mass, driving speed, suspension 

components, and road surface irregularities. For practical purposes, the quarter-car model can 

effectively be used to study the dynamic interaction between vehicle and road roughness, and 

therefore in the study of vibrations generated by road transports”. After defining and obtaining 

the road roughness characteristics of the various roads outlined by ISO 8608, it is of interest to 

further transform the data into a form that could be used as an input in the quarter car model. In 
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order for this data to be directly input into the previously defined quarter car model, it should be 

in the form of a height versus distance or a height versus time relationship. If the vehicle is 

assumed to travel with a constant speed over a given road segment in limit length, a random 

profile tracking can be used to predict the displacement versus distance relationship the 

following sum of sinusoidal approximation can be used:  

1

( ) sin( )
N
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z s A s 
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           (6.3) 

where the displacement amplitude Ai can express as follows: 
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iwhere ∆Ω is defined as , in rad/s, is the random phase angles, i is random 

 2,0variables from 1 to N which is included in a uniform distribution in the interval  and sp is 

the path variable.  

As an alternative to the displacement versus distance relationship shown above, Equations 

(6.1) and (6.2) can be further developed to output a height versus temporal relationships (time 

domain) directly. By assuming that a vehicle is traveling at constant horizontal speed vh, the 

following road profile can also be generated in the time domain as: 
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0

2
V

L


             (6.7) 

where V is the vehicle driving speed (Incident speed). Road irregularities can be further 

developed by the following:  
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Based on Equation (6.3), the excitation frequency in time domain can be expressed as follows: 
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          (6.9) 

Provided that a constant vehicle speed vh is constant, the excitation frequency of the road 

hv surface (rad/s) can be expressed as . Equations (6.8) and (6.9) indicate that the variable 

wavelengths are able to provide a desirable excitation with widely frequency range in a constant 

driving speed, or variable driving speed with a constant driving distance. However, to model a 

road surface model, both the driving distances and driving speeds can be considered as variables 

in reconstructed road model. The defined road model will be functioned as input for the 

performances evaluation of the previously modelled quarter car model. Moreover, the proposed 

road model will generate a set of roads which can be exported into a 4-poster system as input to 

evaluate the behaviours of the regenerative shock absorber system.  

6.2  Performances evaluation of quarter car model 

Based on a simple suspension system and a road surface model, an evaluation criteria for ride 

comfort and handling (safety), suspension deflection and velocity, power potential estimation 

and suspension parameters sensitivities, which can be met by suspension system, is presented. 

The evaluation is dependent on the average of power, and the root mean square (RMS) values of 

dynamic-static contact force ratio and vehicle body acceleration. This study intends to give a 

design guideline for the regenerative suspension system, the regenerative suspension in vehicles 

is not only for the power regeneration, but also the dynamic performances need to be evaluated 

to reach the increase customer demands of the driving safety and healthy. 

Figure 6-2 shows a quarter car model using a regenerative hydraulic shock absorber replaced 

a standard fluid viscous damping device for power regeneration. It can be noted that the 

regenerative shock absorber can provide desirable damping by adjusting electrical load RL to 

reach an ideal damping whilst recovering power for energy saving. In the proposed system, the 

equivalent damping of regenerative hydraulic shock absorbers can be written as [101]: 

ereq
ccc         (6.10) 
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where cr is the equivalent viscous damping (hydraulic rectifier) and ce is the damping of the 

generator, Am is the area of motor inlet and other parameters are keep consistency with those in 

chapter 3 [101]. 
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Using a regenerative shock absorber, energy of road roughness induced vibrations can be 

converted into recoverable energy which can be stored in a battery for further use, and an 

appropriate damping can be provided by adjusting electronic load which can be further 

developed for semi-active and self-powered force control. 

 

Figure 6-2 a) Linear quarter car model, b) Quarter car model with regenerative hydraulic 

shock absrober 

To evaluate suspension behaviour, quarter car model is represented as a linear two degree-of-

freedom (2 DOF) system; see Figure 6-2(a). The matrix representation of dynamic equation can 

be defined as: 

1 1 1 1 1 1 1
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   (6.12) 

It consists of a single sprung mass (vehicle body, m1), unsprung mass (tyre & wheel mass, 

m2), the spring/tyre stiffness (k1/k2), and damping (c) in suspension system. w defines as the road 

disturbance. The following table is shown the values of these parameters [160]: 
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Table 6.2 Parameters of quarter car model (Light duty truck) 

Variable  Value  Units Description 

m1 363 kg Vehicle body (Sprung mass) 

m2 40 kg Wheel mass (Unsprung 

mass) 

k1 20,000 N/m Spring stiffness 

k2 180,000 N/m Tyre stiffness 

c 1,388 N/m/s Damping coefficient 

 

According to Equation (6.12), key transfer functions can be defined by using Laplace 

transforms. The denominator of the transfer function is written as:  

2 2 2

1 1 2 2 1 1( )( ) ( )m s cs k m s k m s cs k            (6.13) 

s i  And s is the variable known as Laplace operator in the form of  .In this chapter, 

three transfer functions are points of interest for ride comfort and road handling [161]. 

 The transmissibility transfer function HT: This function relates the deflection of the 

1T x zH Hvehicle body to the road displacement, and also can be written as: .  
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The suspension travel transfer function . Suspension travel is the relative 

deflection between vehicle body mass m1 and the tyre mass m2. In suspension design, the 

suspension travel is considered to be optimised with varying driving speeds and road 

roughness to achieve the best ride comfort. The relation of the suspension travel to the 

road displacement is expressed as: 
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 
1x wHThe body motion transfer function . This function is similar to the suspension travel 

transfer function for ride comfort. The acceleration of vehicle body can be considered as 

the related index for further development to reach the optimal ride comfort of vehicles. 

Based on the transmissibility transfer function, the body motion transfer function can be 

wxHs /
2

1
further written as , shows as following:  
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 
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The tyre deflection transfer function . The tyre deflection is normally considered 

as the ability of the road handling relating to the road unevenness. This transfer function 

can be defined as following: 
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     (6.17) 

 

Figure 6-3 Transmissibility and body motion transfer functions 

0 5 10 15 20 25 30
0

1

2

3
 Transmissibility Transfer Function

Frequency (Hz)

0 5 10 15 20 25 30
0

10

20

Frequency (Hz)

 Body Motion Transfer Function



Chapter 6 The Performance of RHSAs under Different Road Profiles 

 

171 

Based on the expression of transfer functions, the frequency response is generally varied with 

the changes of the damping coefficient, mass, and stiffness in a normal suspension system. The 

higher spring stiffness k1 and damping coefficient c could lead to a low acceleration with a 

higher frequency and reduce the suspension travel in the lower frequency. It is well known that 

the increase of damping coefficient is able to reduce the suspension travel and improve the ride 

quality. In addition, the larger mass and spring stiffness could help to improve the road handling 

and ensure the ride safety [162]. 

Figure 6-3 shows the transmissibility and body motion transfer functions. It indicates that the 

peak value of vehicle body amplitude occurred around 1Hz, and there are two observed peaks of 

body motion transfer function, around 1Hz and 10Hz. However, the peaks in Figure 6-3 can be 

defined by calculating natural frequencies of quarter car model: 

1

1 2

1 2 1

1

2 ( )
m

k k
f

k k m



       (6.18) 

2

1 2

2

1

2
m

k k
f

m


        (6.19) 

Using the provided parameters in Table 6.2, the natural frequencies can be determined in 

1
1.12Hzmf 

2
11.26Hzmf Equations (6.18) and (6.19),  and , and natural frequencies are the 

peaks of transmissibility and body motion transfer functions. In Equations (6.18) and (6.19), it 

can be found that the value of stiffness and mass are the main effects for the natural frequency. 

The increasing of stiffness (spring or tyre) could decrease the natural frequency of vehicle body, 

but increase the natural frequency of wheel.  

Based on the defined models for a quarter car and road, Figure 6-4 illustrates the flows of 

performance evaluation including road roughness, dynamic vehicle model and vehicle response 

variables in time domain. The dynamic performances are evaluated in various driving speed 

including suspension travel (relative displacement between vehicle body and wheels), vertical 

velocity, static-dynamic contact force ratio, weighted acceleration and power potential. 

Therefore, the RMS values are used as the criterion for the evaluation of the system responses 

Figure 6-5 shows the complete dynamic responses of vehicle body and wheel at a single driving 

speed (of 30mph) in Class A road. The magnitude of dynamic behaviours induced by wheel 

mass (unsprung mass) are greater than these occurred in vehicle body (sprung mass), showing 

the general features of the suspension system.  
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Figure 6-4 Block diagram of the quarter car model evaluation processes 

 

Figure 6-5 a) Sprung mass (vehicle body) and unsprung mass (wheel) displacement. b) 

Velocities. c) Accelerations. d) Relative velocity at 30mph driving speed on Class A “Very 

good” road surface. 
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travel, vertical velocity, ride comfort, road handling, and potential recoverable power. The 

selected parameters with a range of predefined values are conducted, including sprung mass 

(vehicle body mass), unsprung mass (wheel mass), spring stiffness, tyre stiffness and viscous 

damping. The sensitivity study of quarter car model gives a detailed understanding for power, 

ride comfort and safety, and provides strong guidance to design and fabricate the regenerative 

shock absorber for various types of vehicles. 

6.2.1. Suspension travel, velocity and power potential 

In this subsection, the analysis based on the proposed quarter car model and road model are 

performed. In order to evaluate the influences of road roughness and driving speed on dynamic 

responses of quarter car model, different road roughness classifications based on ISO 8608 are 

used as excitation input from Class A (very good) to Class E (very poor) with various driving 

speed values ranging from 5mph to 100mph. The root mean square (RMS) value of suspension 

travel and velocity of each corresponding point are calculated and the values in each road 

roughness changes with various driving speeds, shown in Figure 6-6 and Figure 6-7.  

 

Figure 6-6 Suspension displacement analysis at driving speed from 5mph to 100mph 



Chapter 6 The Performance of RHSAs under Different Road Profiles 

 

174 

In Figure 6-7, it is clear that the value of suspension travel and velocity are increased with the 

increase of the driving speed on any road roughness. It indicates that the best ride comfort can be 

reached through the maximum use of suspension travel space whilst providing appropriate 

displacement for a majority of driving speeds and road conditions.  

At any driving speed, the RMS values are less than 5mm in Class A and Class B roads, and 

the range of RMS values are increased with the growth of the geometric mean of road roughness. 

The largest range of amplitude is from 6.5mm to 29.1mm when diving on Class E road at 5-

100mph. The peaks are generally occurred at high driving speed on any road roughness. Figure 

6-7 shows that the RMS suspension velocity is between 0.05 and 0.3m/s on Class A-D roads at 

driving speed between 5mph to100mph. It shows that the suspension velocity increases with the 

growth of driving speed, and road roughness has a significant impact on the value of the 

suspension velocity. In Very bad (Class E) road, the RMS suspension velocities are twice than 

these in bad road at driving speed range from 40mph to 100mph. The suspension velocity is 

representative of the vertical velocity between vehicle body and wheel, and has a significant 

effect on power dissipation of a shock absorber. However, it can be determined that the 

recoverable power is the maximum recovery of the power dissipation in suspension system. 

Therefore, the instantaneous power dissipation can be calculated as 

2

1 2( )pP c x x         (6.20) 

The mean power in the shock absorber that is proportional to the mean square of suspension 

velocity and damping coefficient is used for the analysis of the power potential at various speeds 

and different roads. Figure 6-8 shows that the power dissipation or potentially recoverable power 

at various speeds with changes of road roughness. At driving speed 50mph, there is a range of 

power from 4.1 to 1,051W when a car is driving on Class A to E roads for a single shock 

absorber. However, the power regeneration from vehicle suspension system has a great potential 

for the improvement of the fuel economy around the world. 
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Figure 6-7 Suspension velocity analysis at driving speed from 5mph to 100mph 

 

Figure 6-8 Potentially recoverable power in quarter car model. 
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6.2.2. Ride comfort and road handling 

The suspension system of modern automobiles could not only ensure the ride quality of 

passengers to provide excellent comfort over various road surface irregularities, and also prevent 

the physical fatigue of both vehicle and driver. This means that the suspension system is the 

main part of a vehicle, and its dynamic performance has a significant influence on the ride safety 

and road holding. Therefore, the requirements of the automotive markets considering ride safety 

and road holding of commercial vehicles are consistently increasing over time. To some extent, 

the ride comfort and road handling are conflict with each other. The best balance can be found to 

reduce this conflict by developing the specifications of suspension system or employing specific 

control methods, and hence that an optimal suspension system could give the maximum benefit 

for tyre-ground contact forces, vehicle body acceleration and potentially recoverable energy. The 

safety and holding aspects of automotive suspension system would provide the choice of 

standards for spring and shock absorber to use for any specification. However, the design of a 

regenerative shock absorber is necessary to consider the influences of ride comfort and road 

handling to satisfy the demands of the customer needs in further study. 

 

Figure 6-9 The road handling (road holding), dynamic-static contact force ratio between 

the road surface and the tyre. 

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Vehicle Speed (mph)

D
y
n
a
m

ic
-S

ta
ti
c
 c

o
n
ta

c
t 

fo
rc

e
 r

a
ti
o

Ride safty at various vehicle speeds

 

 

Class: A

Class: B

Class: C

Class: D

Class: E



Chapter 6 The Performance of RHSAs under Different Road Profiles 

 

177 

Road handling is also named ride safety, and is determined by the vertical dynamic response 

in suspension which could exchange forces between the tyre and the ground. Insufficient contact 

force or lose contact between the tyres and the ground will cause the vehicle lose its 

controllability, and can be directly effect by the driving moments that the event of extreme 

steering, braking inputs and powertrain. Therefore, the safety requirements on the handling 

performance of vehicle needs are considered as a key performance. The capability of road 

handling is simulated based on the vertical tyre-ground force response excited by the random 

road irregularities. The total contact forces in a moving vehicle are composed of static force 

gmmFst )( 21 acting on the wheel [ ] and dynamic force between the tyre and the road surface [

)( 22 wxkFdy  )], can be written as: 

,

0

1
T

st
TC RMS

dyt

F
F dt

T F


 
   

 
       (6.21) 

where FTC,RMS is the RMS value of the total ttyre-ground contact force, T is the time end, t0 is 

the starting time, dt is the time interval. The criterion of ride safety can be simplified, showing 

that the static wheel force is greater than the dynamic wheel force. This means that the ratio of 

dynamic force and static force should be equal or less than 1 to ensure the safety requirement. 

Hence, the RMS value of the dynamic-static contact force ratio λRMS can be calculated in term of 

the RMS responses at various driving speeds and road roughness, and shown as following:  

2 2

1 2

( )

( )
RMS

k x w

m m g






       (6.22) 

where g is the acceleration of gravity. The analysis of dynamic-static contact forces ratio is 

shown in Figure 6-9, it is noted that the ratio is increasing with the increase of driving speeds and 

higher road roughness, and also means that the driving condition has a higher potential risk of 

losing the controllability of vehicle between the tyre and the ground to cause the unaccepted road 

wxxH )(
12

accidents and driving hazards. The tyre deflection transfer function  in Equation (6.17) 

also indicates that the transmissibility from ground surface to the tyre deflection can cause the 

safety hazards by using improper damping coefficient, spring stiffness and vehicle body/wheel 

mass.  

Ride comfort is the combined sensation of the response of the road roughness and vehicle 

body motion for both driver and passengers. The ride quality during the short term or long term 
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travelling can avoid the high risk of traffic accidents, and reduce the related-injuries of passenger 

cars, trucks, and heavy haulage vehicles. It is necessary to detect and quantify ride comfort by 

using the standards to meet the safety requirements, and then to achieve maximum comfort while 

driving. To evaluate the performances of ride comfort, it is analysed by using the RMS value of 

weighted acceleration for the vehicle body, which can be referred to as human response to road 

excitations. In order to evaluate ride comfort, the ISO 2631 standard [163] is the most commonly 

used method to define the capability of ride comfort. ISO 2631 standard generally describes the 

evaluation of human body exposure to whole body vibrations. This standard is to quantify and 

evaluate the whole-body vibration using different frequency weighting factors related to human 

health, driver/passenger comfort, vibration perception and vehicle motion sickness. The filters 

proposed in the ISO 2631-1 are applied for a number of components based on different 

measurement and applications to provide a feasible method to calculate the filter coefficient. 

High-pass and low-pass band filter are used to limit the higher and lower frequency band. In 

addition, acceleration-velocity transition and upward step filters are also used for the other 

process in other components, and then the transfer functions of component filter are defined 

using Laplace transform as following [164]:  

High-pass filter 

2

2 21
1

1

( )Hp

s
H s

s s
Q






 

      (6.23) 

Low-pass filter 

2

2
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2

( )LpH s

s s
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
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

 
      (6.24) 

Acceleration-velocity transition filter 
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Upward step filter 
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2
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      (6.26) 

The overall frequency weighting filter for ISO 2631-1 are determined by Equations (6.23) to 

(6.26), and the key numerical values of Equations 6.23 to 6.26 are shown in Table 6.3. In this 

study, the frequency principle weighting factors Wk for seat vibration of Z-Axis and vertical 

direction is used to predict and to normalise the discrepancy in human sensitivity and safety, and 

then the combination of transfer functions for Wk can be defined and shown as following [164]: 

k Hp Lp Avt UsW H H H H          (6.27) 

Table 6.3 The key numerical values of Equations 6.23 to 6.27 [164] 

 HHp HHp HHp HHp 

 f1(Hz) Q1 f2(Hz) Q2 f3(Hz) f4(Hz) Q4 f5(Hz) Q5 f6(Hz) Q6 

Wk 0.4 20.5 100 20.5 12.5 12.5 0.63 2.37 0.91 3.3 0.91 

 

The filtered acceleration of the vehicle body in quarter car model is used to represent the 

human body response to vertical vibration. Therefore, the ride comfort is analysed using the 

weighted RMS value of the vehicle body acceleration. By comparing with the road handling in 

Figure 6-9, the similar tendency occurs to the evaluation of ride comfort in Figure 6-10, and it 

shows that the RMS weighted acceleration increases with the growth of the driving speed and 

road roughness whilst tending to reduce the safety and healthy.  

According to the particular interest of the weighted RMS acceleration aw,rms, the standard of 

ride comfort indications is defined in Table 6.4 to provide an obvious criterion:  

Table 6.4 ISO2631-1:1997(E): Vibration magnitude of ride comfort [164] 

Predicted 

Acceleration (m/s2) 

Ride Comfort 

Indications 

Predicted 

Acceleration (m/s2) 

Ride Comfort 

Indications 

˂0.315 Not uncomfortable 0.8–1.6 Uncomfortable 

0.315–0.63 A Little comfortable 1.25–2.5 Very uncomfortable 

0.5–1.0 Fairly 

uncomfortable 

˃2.0 Extremely 

uncomfortable 
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Figure 6-10 Ride comfort in term of the RMS weighted acceleration 

In Figure 6-10, the RMS value of weighted acceleration on Class A to C roads is 0.02m/s2 to 

0.61m/s2 in a comfortable driving condition for the seated person. According to driver’s 
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road are generally “Very good” or “Good” roads, the ride comfort is slightly altered with the 

increasing of the driving speed. The “Average” road (Class C) is equivalent to a B-road with the 

speed range from 30mph to 50mph, and the weighted acceleration is fairly acceptable for the 

human vibration sensitivity.  

6.2.3. The parametric sensitivity analysis 

By using 2 DOF suspension system and random road profile in previous subsections intended 

to evaluate the dynamic performances of a general quarter car model, and the evaluation is 

focused on the effects of various driving speeds and road roughness. However, there is more than 

one kind of vehicle, including passenger cars, trucks, military vehicles etc. and hence the 

performance of the quarter car model varies with the vehicle parameter changes, including the 

vehicle body mass, wheel mass, spring stiffness, tyre stiffness and damping coefficient [27]. The 

sensitivity analysis is a technique used to determine the ratio of the performance with the 
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changes of parameter values [165]. The sensitivity analysis of the quarter car model is necessary 

to be investigated to improve the design of regenerative shock absorber in suspension system. In 

the proposed quarter car model, the target parameters are rescaled within a certain range from 1 

1,..., ,...,nor ix x xto i ( ), and the performance indexes perceives each variation of the target 

)(),...,(),....( 1 inor xfxfxfparameter to be . The nominal of the target parameter and the 

and ( )nor norx f xperformance index can be defined as . However, the parameter sensitivity X(i) as a 

variable and the performance index Y(i) can be written as following [166]: 

1( ) i

nor

x
X i

x

        (6.28) 

1( )
( )

( )

i

nor

f x
Y i

f x

        (6.29) 

The nominal value of parameters is illustrated in Table 6.2. However, the process of the 

sensitivity analysis is illustrated in Figure 6-11 

 

Figure 6-11 The process of the sensitivity analysis 

Figure 6-12 and Figure 6-13 shows the normalised performances with the changes of the 

masses of vehicle body and wheel. The aw,rms and λRMS can be greatly influenced by the mass 

sensitivity, whilst increasing with the wheel mass and decreasing with the body mass, but they 

have no obviously effects on Pp. Theoretically, if the vehicle body mass is reduced to less than 

50% of its nominal value in some particular case, it should take note of potential safety issues 

that the vehicle could easily loss its controllability during braking, steering and propulsion. 

Furthermore, the less the vehicle body mass, the larger the vertical acceleration and the worse the 

comfort to human body. 

Based on the linear approximation in Equations (6.28) and (6.29), the parametric sensitivity 

analysis is performed to explore the performance indexes of the ride comfort, road handling and 
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power potential, and hence that the RMS values of the weighted acceleration aw,rms of vehicle 

body, dynamic-static contact force ratio λRMS and potentially recoverable power Pp are 

considered as the performance indexes in this study. The ISO 8608 “Class C” road at 40mph 

vehicle speed is applied as excitation input for the sensitivity analysis.  

Figure 6-14 shows that the tyre stiffness has an great impacts on aw,rms, λRMS and Pp with the 

tyre stiffness increases constantly from 40,000 to 320,000 N/m. A stiffer tyre (higher tyre 

stiffness) contributes negative impacts on the ride comfort and road handling, but also dissipates 

more power (potential to recovery more power). However, the more potential regenerative power 

does not mean the better ride comfort, road handling or safety.  

 

Figure 6-12 The performance studies in various vehicle body mass 
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Figure 6-13 The performance studies in various wheel mass 

 

Figure 6-14 The performance studies in various tyre stiffness 
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Figure 6-15 The performance studies in various suspension stiffness 

 

Figure 6-16 The performance studies in various damping coefficient 
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Figure 6-15 and Figure 6-16 illustrate the change of suspension stiffness and damping impact 

on the performances indexes. At a normalised suspension stiffness of 0.4, the optimal aw,rms and 

λRMS can be obtained for the best ride comfort and road holding in Figure 6-15. Meanwhile, 

Figure 6-16 plots that the optimal damping also occurs around 0.4 for the desirable ride comfort 

but the best road handling happens at the normalised damping of 1.54. The Pp has no sensitive 

dependency on the suspension stiffness and damping. That is because the suspension velocity is 

slightly varied with the approximate relationship of inputs at the same condition (on Class C road 

at 40mph). 

6.2.4. Power analysis in SDOF 

To investigate the potential for recoverable power using base excitation response in single 

degree of freedom (SDOF), the motion of the spring-mass-damper system is written as 

following: 

( ) ( ) 0mx c x y k x y           (6.30) 

the relative displacement is defined as: 

z x y             (6.31) 

the relative velocity is given: 

z x y            (6.32) 

xwhere  is the acceleration between the mass 𝑚  and random road input 𝑦 , and 𝑐  is the 

damping coefficient, and the damping ratio ξ 2 mk c  could be applied to rewrite it as: . The 

potentially recoverable power is defined as the same with the dissipation of shock absorber in 

suspension system. However, the mass is 363kg and the spring stiffness is 20,000N/m. 

In Figure 6-17, the RMS value of the recoverable power is predicted at driving speed range 

from 20mph to 100mph with the damping ratio increased 10% to 100% gradually. It is clear that 

the recoverable power increases as the damping ratio increases and closes to linear relationship 

with damping changes. In spring-mass-damper system, the driving speed has a significantly 

effects on the recoverable power. Figure 6-18 shows that the power of 0−100W is generated 

when random road inputs are predefined as the “bad and very bad” conditions at 5-20mph, and 
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0-50W on the “average” road at 5-50mph. Moreover, the power up to 58W is available for the 

“good” road at 100mph while only 14W power on the “very good” road.  

 
Figure 6-17 Recoverable power in SDOF with various damping ratio 

 

Figure 6-18 Effects of various driving speeds and road roughness for power potential  
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6.3  RHSAs behaviours and power regeneration in various roads 

Based on ISO8608 and F. Tyan’s study of random road profiles [28] [142], the random road 

inputs can be simulated which assumed to be a constant speed and road distance for each 

prediction to drive the proposed experimental rig. For the evaluation of the RHSAs, four type of 

roads are created, and the classification of road quality is given as follow:  

 Class A, ‘very good’−asphalt or concrete layer 

 Class B, ‘good’−old roadway 

 Class C, ‘average’ or Class D, ‘bad’−roadway layers consisting of cobblestones or 

similar material [153].  

In time domain, the road roughness is decided by the vehicle velocity or the road distance. 

Thereby, “Very good” road (Class A) at 70mph (≈113km/h), the road inputs of “Good” road 

(Class B) at 20, 30 and 50mph (≈32, 48, 81km/h), average (Class C) at 30mph (≈32 and 48Km/h) 

and poor road (Class D) at 20 mph (≈32 Km/h) are converted to the specific format which can be 

used by the servo-test 4 poster system as input vibration source to evaluate the capability of 

power regeneration.  

Based on Equations (6.1) to (6.8) the time/displacement versus road displacement relationship 

can used for the reconstruction of the road surface profile in different road classification. By 

assuming constant vehicle driving speeds for each class of road, the roads can be created in time 

domain, illustrating the relationship between time and vertical displacement of the roads. Figure 

6-19 shows the construction of the roads from Class A to Class D at different driving speeds, and 

after creating the simulated random road profiles, the input data is directly converted for 

experimentation use. According to the limitations of the experimental rig, the inputs only drive 

the proposed RHSAs instead of the complete suspension system of vehicles. In this section, the 

performance evaluation and power regeneration of the RHSAs is investigated on various roads, 

and applied on the same experimental rig, measurement equipment and data acquisition system 

in Chapter 4. In the following study, the experiments are conducted in a variety of factors 

(created road surface profile with various driving speeds), are shown as follow:  

 Road roughness (ISO 8608 standard): Class A (at 70mph) and Class B (at 50mph), 

(Electrical load: 30Ω and Accumulator capacity: 0.5L) 
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 Driving speeds: 20, 30 and 50mph at Class B road, (Electrical load: 30Ω and 

Accumulator capacity: 0.5L) 

 Electrical load: Class D road on 30 and 50Ω electrical load, (Accumulator capacity: 0.5L) 

 Accumulator capacity: Class C road 0.16litre and 0.50litre accumulator capacity, 

(Electrical load: 30Ω) 

 

Figure 6-19 ISO8608 Road surface profiles as inputs, Class: A, B, C and D 

Refer back to the effects of electrical load and accumulator capacity for RHSAs in regular 

waves (In Chapter 5), and further investigation will be performed based on irregular waves in 

this study. However, the roads just mentioned are created for a duration of 8 seconds for each set 
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of experiments, and shown in Figure 6-19 and Figure 6-22. By comparing the roads at different 

driving speeds in Figure 6-19, it indicates that the peaks of the vertical displacement gradually 

increases with the values of geometric mean related to the road class (from A to D), and the 

values of absolute peaks are 6.11, 9.79, 19.32 and 35.6mm.  

6.3.1 System evaluation on Class A and B roads 

To approach initially the evaluation of the RHSAs in irregular waves, a Class A road at 

70mph and Class B road at 50mph are applied to acquire understanding of the system behaviours 

and power regeneration under random road surface profiles. The first noticeable aspect is that the 

measured displacement is much smoother that these inputs. The reason is that a low-pass filter is 

applied in the 4 post simulator control system to minimise the road profile irregularities and 

attenuate the high spatial frequency components. The RHSAs are influenced by the sharp 

increase of wave amplitude and frequency, and remains relative stable during the smaller and 

very gradual waves. The higher excitation frequency of the road surface causes the larger 

velocity, motor pressure, shaft speed, voltage and power regeneration, and especially for higher 

damping force which tend towards infinity. Hence, the low-pass filter also plays an important 

role to prevent the physical damage of the experimental rig. However, system behaviours and 

power regeneration are highly dependent on the change of incident road input, which is 

proportional to the excitation frequency and amplitude.  

As can be seen in Figure 6-20, the largest wave occurs around 6.31s, and then the piston 

force, shaft speed, voltage and power output all meet the peaks afterwards with the values of 

5.7kN, 370rpm and 40W respectively. In addition, it is clear that the system needs at least 3.8bar 

motor pressure to overcome the starting torque at zero speed, and the shaft rotation keeps non-

zero speed due to the effects of the rotational inertia. 

By comparing the effects of the road roughness, the experiment is performed on Class B road. 

A large number of incident waves causes the large vertical displacements and velocity, and thus 

to increase the system performances and power in values. Figure 6-21 shows that power 

regeneration have an average value of 7.8W with the peak of approximate 53.9W. Furthermore, 

the increases of road roughness provide the larger motor pressure and piston force in values, and 

the more consecutive shaft speed is obtained with the average of approximate 245rpm. It seems 

that the rough road is beneficial to the capability of the power regeneration in the RHSAs but 

that does not mean it can provide optimum performance for the suspension system.  
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Figure 6-20 Performance evaluation and power regeneration on Class A road at 70mph  
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Figure 6-21 Performance evaluation and power regeneration on Class B road at 50mph 

6.3.2 Effects of driving speeds 

In this study, the RHSAs is excited by an “average” Class B road at 20 and 30mph, and road 
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Figure 6-22 Input: Class B road at 20mph and 30mph 

It is known that the higher driving speed causes more power dissipation compared to the 

lower speeds as the suspension velocity is increased by larger displacement and excitation 

frequency corresponding to higher energy consumption, see Figure 6-8. In Figure 6-23, the 

relevant performances on Class B at 20mph are visualised to compare those at 30mph and it can 

be seen that the performances of the RHSAs is significant. The peaks of the performances and 

power in values are mildly increased with the incident speeds, and the faster driving speed can 

produce more excitation events and thus to provide more regenerative power.  

To further evaluate the system performances and recoverable power, Figure 6-22 and Figure 
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the differences. The piston force is not significantly increased with the varied motor pressure, 

and the peaks during compression and extension strokes remain between 5.5kN and 6kN. The 

average shaft speed is increased from 187rpm to 245rpm accordingly to slightly increase the 

power regeneration which the peaks are approximate from 44.8W to 53.9W. However, the 

different driving speeds has a great effect on the behaviours of the RHSAs and power output, and 

it will be considered as one of the key factors to develop the design and practical use of a 

regenerative shock absorber. 
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Figure 6-23 Effects of the driving speed on the RHSAs behaviours and power 
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6.3.3 Effects of electrical load 

 

Figure 6-24 Effects of the electrical load on the RHSAs behaviours and power 
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high electrical load is applied in irregular waves because the larger resistance contribute to 

produce more stable performances.  

The piston forces and regenerative power are directly influenced by the applied external 

electrical load RL [52] [167], Figure 6-24 illustrates that the analysis of the RHSAs at resistance 

of 30Ω and 50Ω. It is shown that larger resistance can effectively reduce the motor pressure at 

extremely high velocity of the incident waves, and the means of motor pressure are close to 16.6 

and 13.3bar, and then to reduce the maximum of the piston forces from 10.3kN to 9.3kN. Based 

on Equation (6.11), it can be found that varying the resistance can change the damping in the 

RHSAs, and hence to alter the motor pressure experienced by the fluid flow in hydraulic circuit 

and also change the power output. The reduction of motor pressure and piston force using larger 

resistance reveals that the wide range of damping force can be produced by adjusting the 

electrical load, which could be available for semi-active control in practice application. 

Furthermore, the similar trends of speed, voltage and power occur under both applied loads. The 

peaks of the power output are 120.4W and 119.4W, and the mean values are 45.2W and 34.9W 

respectively. However, adjusting the external electrical load is an effective method to obtain the 

expected system behaviours which is particularly for damping force whilst recovering power in 

regular or irregular waves.  

6.3.4 Effects of accumulator capacity 

To confirm the effects of accumulator capacity on RHSAs, the system behaviours and power 

regeneration which are evaluated in regular waves and will be further verified with irregular 

waves. Four types of accumulator capacity were used with sinusoidal waves (regular waves) but 

in this work only 0.16 and 0.5Litres with 20 bar pre-charged pressure will be applied with 

random roads (irregular waves). In addition, to determine if the system outputs can be smoothed 

by accumulator capacity, the experiments will be run with a random road profile on Class C at 

30mph vehicle speed and both measurements use the same irregular waves. It is known that the 

instantaneous pressure and the change of volume in accumulator are dependent on the incident 

wave variations. However, varying the accumulator capacity will alter the volume in hydraulic 

circuit whilst changing the level of the hydraulic pressure and fluid flow, and hence to adjust the 

waveforms of the shaft speed and power.  
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Figure 6-25 Effects of the accumulator capacity on the RHSAs behaviours and power 

In Figure 6-25, Class C road at 30mph is used as the input wave, and two different 
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events at 0.5L accumulator has a greatly complement when the piston motion is in extension 

strokes. In addition, the large accumulator capacity is able to provide sufficient smoothing for 

high pressure/damping force at high wave velocity whilst increasing these at low velocity to 

obtain a stable shaft speed of the hydraulic motor, and then the constantly varied power could be 

expected to maintain relatively stable. However, the stability and continuity of power at 0.5L is 

significantly improved between compression and extension stroke compared with the smaller 

accumulator. Consequently, the damping force can be adjusted by the accumulator capacity to 

overcome continuously varying road surface profiles which can achieve the purpose of semi-

active control in regenerative suspension system and obtain relatively good ride comfort and 

road safety. Therefore, for further investigation of the regenerative shock absorber, the design 

optimisation and close loop force-power control is essential to be implemented.  
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6.4  Concluding remarks 

In this chapter, the suggested ISO 8608 standard was created to classify the grade of roads 

using power density spectrum (PSD) with the assumptions of the three-sided band PSD, constant 

driving speed and linear relation of the power potential This method was effective to predict the 

road conditions with a strong realistic irregularity in a stationary random process.  

Using the irregular road profiles as inputs, the available regenerated power is of 50-1000W 

from one shock absorber of a typical light duty truck at driving speed of 50mph between a “Very 

good” road and a “Very bad” road. Additionally, the potential regenerated power is highly reliant 

on the vehicle driving speed, road roughness and tyre stiffness. The increase of tyre stiffness 

would be the factor that allows negative action to the power regeneration significantly, while the 

ride comfort and safety have greatly sensitive dependence on the shock absorber damping and 

suspension stiffness. The best compromise between ride comfort and road handling is available 

by controlling a trade-off between damping and suspension stiffness. Although a larger tyre 

stiffness have potential to regenerate more power, the performances of the ride comfort and 

safety would be dramatically degraded. It indicates that interference between the potential 

regenerated power and the vibration suppression would be occurred in a regenerative suspension 

system. In addition, heavy vehicle body and light wheel mass are beneficial for the ride comfort 

and safety but have no contribution for the recoverable power.  

Finally, the RHSAs were further tested and analysed by using the suggested road standard as 

excitation inputs. The results from irregular waves confirmed that the behaviour as with the 

regular waves can be effectively varied with the electrical load and accumulator capacity. 

Similar to the power potential, the power performance of the RHSA is also highly dependent on 

the vehicle driving speed and road roughness. Due to the variability and irregularity of event 

excitations, the damping force are different with in sinusoidal excitation which behave like a 

traditional hydraulic damper and the recoverable power would be less than expected. In 

particular, 120.4Watts of power can be recovered under Class D road and 30Ω electrical load, 

(Accumulator capacity: 0.5L and Driving speed: 20mph). After the evaluation of the RHSAs in 

different road profiles, the study will be focus in control methods which are potential to comprise 

between the damping force and power regeneration in Chapter 7.  
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Chapter 7 Control Strategies for RHSA based Suspensions and 

Sizing the Key Structure Parameters 

To compromise the power regeneration and damping performance, this chapter proposes 

different control strategies to be undertaken on the RHSAs. In particular, a real-time control 

method is proposed, and its feasibility was also verified based a PC computer. Then, the sizing of 

key parameters is investigated to provide a general understanding of how the structure 

parameters can be optimised to maintain the power performance and asymmetrical damping 

characteristics of the RHSAs.  

 



Chapter 7 Control Strategies for RHSA based Suspensions and Sizing the Key Structure Parameters 

 

200 

7.1  Constant current and voltage methods 

In a previous study, the regenerative hydraulic shock absorber system was modelled and 

tested to evaluate the behaviour variations and the capability of the power regeneration. An 

equivalent power charge circuit was built to power an external load resistor which is directly 

connected to the terminals of the generator. The only considerable factor of the electronic load 

was the external electrical load in modelling and testing at initial stage of this research. 

Regenerated electricity from the RHSAs needs a more realistic power charge circuit to store it 

for reuse. The most commonly used charging methods for vehicle batteries are constant current 

and constant voltage , which can be described as the following [168]: 

 Constant current (CC): CC is a conventional charging method to maintain a constant 

current flow which is applied to batteries by varying the generated voltage [169]. 

Constant current charge is normally used for nickel-cadmium and nickel-metal 

hydride batteries [170].  

 Constant voltage (CV): As opposed to CC method, CV method provides constant 

charging voltage to the battery by altering generated current. However, the CV method 

is beneficial to relevant controller with a simple design and structure. 

In this study, a DC electronic load is therefore used for the actuator of the CC and CV 

methods by setting the functions to CC mode and CV mode. The predefined current and voltage 

will be applied to the generator as electronic loads. The CC mode and CV mode are similar to 

each other on their working principle as electronic load, and the electrical circuits of the CC and 

CV modes are shown in Figure 7-1 and Figure 7-2, respectively. However, the fundamental 

operation of the CC mode and CV mode in power electronic load are described in the following: 

 CC mode: Once the generator is driven to produce chargeable current and voltage 

outputs. The generator voltage is applied to provide the relevant electronic load to 

support CC operation. Thereafter, the generator current as electronic load input is 

regulated in the current amplifier by using the voltage of the current shunt resistance 
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to compare with the reference voltage which can be used to control the turn on/off the 

load switch circuit (load FET).  

 CV mode: The operation principle is quite similar to the CC mode, see Figure 7-2. 

The voltage amplifier is applied instead of the current amplifier in the CC mode, and 

the amplified voltage is then used to compare the voltage difference with the generator 

voltage output through the voltage divider in order to check the reference voltage. If 

the generator output is large enough to reach the setting of the reference voltage, the 

load FET would be turned on by the voltage amplifier to set the voltage to the 

expected value as required.  

 

Figure 7-1 Power electronic load circuit of constant current mode 

 

Figure 7-2 Power electronic load circuit of constant voltage mode 
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The voltage-current diagram of the CC operation mode is illustrated in Figure 7-3. The 

electronic load attempts to seek a loaded current in line with the predefined current value. The 

CC mode working point maintains a constant value along the CC setting line while the loaded 

voltage source varied depending on the load changes. The CV working point behaves in a similar 

way like CC mode which intends to hold a constant voltage value by changing the loaded current 

with the varying load conditions. The diagram of the CV mode is shown in Figure 7-3. 

 

Figure 7-3 Constant current (CC) mode diagram and constant voltage (CV) mode diagram 

In this study, the CC and CV methods can be performed in a programmable DC electronic 

load. Therefore, a set of relevant experimental works are conducted under various constant 

current and constant voltage values to investigate the motor inlet pressure and recoverable power, 

and shown in Table 7.1. The experimental rig was pretested to reduce the entrained air in 

hydraulic fluid and to calibrate the transducers in measurement system. In addition, DC power 

electronic load was performed offline test and calibration before the experiments to ensure the 

predefined values at a reasonable range while the electronic load can adjust itself to provide 

accurate current or voltage and to avoid failed self-adjustment. Additionally, the predefined 

excitation is set to 1Hz frequency and 25mm amplitude and the accumulator capacity of 0.5litre 

is used in the testing. The rest of system components remain the same with previous 

experimental works in Chapter 5. In particular, the current and voltage transducers not only 

apply to measure the electrical output for recoverable power, it can be used to verify the 

accuracy of the loaded current/voltage.  
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Table 7.1 The experimental works in CC and CV methods 

Electronic Load Setting Test 1 Test 2 Test 3 Test 4 

Constant Current (CC) mode 2A 3A 4A 5A 

Constant Voltage (CV) mode 55V 60V 65V 70V 

 

 

Figure 7-4 Measured hydraulic motor inlet pressure, current, voltage, recoverable power 

and power efficiency, at different constant currents 

In CC method evaluation, the predefined current values are set to 2A, 3A, 4A and 5A due to 

the currents were varied approximately between 1.7A and 7A at the excitation of 1Hz and 25mm 

in previous studies. These four loaded current values are in the range of the measured current, 
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and hence the electronic load continuously adjusts itself to hold the predefined setting. Figure 

7-4 shows that the average motor pressure is gradually increased with the increase of CC values 

from 27.92bar to 50.44bar, and the average voltages are distinctly reduced from 75.31V to 

55.03V but the recoverable power is increased to the peak power of 427.4W at 5A loaded current. 

Furthermore, the peak values of motor pressures indicate that the damping forces can be altered 

by changing the loaded current but the difference of the peak forces in compression and 

extension are reduced with the increase of the loaded current.  

 

Figure 7-5 Hydraulic motor inlet pressure, current, voltage and recoverable power, at 

different constant voltages 

At CC value of 5A, the peak forces of the compression and extension are approximately 

5,902N and 3,501N. This reveals that a fast response CC controller can adjust the damping force 
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to achieve asymmetry characteristics during the motion of the piston as required while 

suppressing the vibration from different road conditions. In addition, the power efficiencies of 

CC mode are 34.41%, 36.5%, 35.89% and 34.11%, and the best efficiency is occurred at 3A. 

However, the evaluation of the CC method indicate that the time-variant optimal CC is a 

possible method to provide required damping force and reach the highest power efficiency under 

the realistic road conditions. 

To ensure the self-adjustment function, the voltage outputs in the CC method evaluation have 

been considered as reference range. CV values are therefore set to 55V, 60V, 65V and 70V. 

Figure 7-5 shows that the averages of the motor pressure, current and recoverable power are 

decreased with the growth of the CV values but the power efficiencies have no obvious increases 

which are 33.12%, 33.86%, 33.95 and 34.19%, respectively. Similar to the CC method, CV 

method is able to adjust the damping force whilst recovering power from the RHSAs. However, 

both CC and CV methods applied for a regenerative system have good potential to achieve the 

damping force control with the potential charge ability to vehicle batteries or cells. 

In Chapter 5, the variations of the external electrical load can be defined as the constant 

resistance (CR) method. However, CR, CC and CV methods were tested on the experimental rig 

of the RHSAs to study on their influences on the system behaviours and recoverable power of 

the proposed RHSAs which can be regarded as the equivalent single-point control methods. It 

also attempts to provide a feasible way to approach to a semi-active force-power control. 

7.2  Computer process control and evaluation 

Based on the above mentioned control studies of the CR, CC and CV methods, a more 

efficient control method needs to take into account responding to the system variations at 

different levels to ensure stable and consistent system operations. Therefore, a computer process 

control is designed to process continuous operations according to the outputs in the RHSAs for 

more appropriate behaviour. The computer process control is widely performed in many actual 

operations in real applications, such as telecommunication, transportation management and 

industrial production etc. [171]. Computer-controlled system have been well known since 1960s 

when computer process controls were created for special industrial or military use to reach its 

full potential [172]. There are several advantages of a computer-controlled system. Firstly, the 

cost of such a system is cheap without the cost of additional installations. Next, it is easy to have 

communication to an analogue system which can be rewritten flexibly by reprogramming. 
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Finally, the control algorithm can be programmed in data acquisition software, and then provided 

more reliable and faster digital-to-analogue conversion. It is therefore beneficial to execute the 

process in time whilst displaying real-time performance and collecting data. In this study, a real-

time control method based on computer process is proposed to adjust a continuous-time signal 

close loop in the RHSAs. The hydraulic motor inlet pressure is therefore used as a demand signal 

to adjust the external electrical load. However, the designed computer process control is shown 

schematically in Figure 7-6.  

 

Figure 7-6 Schematic diagram of the designed computer process control 

Figure 7-6 shows that the original demand signal (Hydraulic motor inlet pressure) from the 

measurement of the RHSAs is a time-variant signal which is converted into digital by the 

analogue-to-digital (A-D) converter (PowerDAQ board) which is located in the desktop. The 

converted demand signal from the A-D conversion (y(tc)) is operated at the predefined sampling 

time tc with a sequence of points, and then the converted demand signal is rearranged to be a 

certain sequence of points (u(tc)) by applying the designate algorithm. It is worth mentioning that 

a clock is used to synchronise the time with the computer. Thereafter, the u(tc) is converted into 

new analogue signal (u(t)) by a digital-to-analogue (D-A) converter to perform the tasks (adjust 

the resistance in electronic load). Meanwhile, the controlled output (y(t)) from the process would 

make an impact on the overall behaviours of the RHSAs.  

To evaluate how the computer process control would be effect on the experimental rig of the 

RHSA, two control strategies are designed which are dependent on the investigations of the 

measured motor pressure in Chapter 5. The strategy A and B used as algorithm is given in Table 
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7.2. For this evaluation, the sinusoidal excitation of 0.5Hz-20mm and 0.5Hz-25mm are applied 

to validate the feasibility of the strategy A and B, and also a 0.5Litre accumulator is mounted 

upstream of the hydraulic motor. 

Table 7.2 Algorithm process of strategy 1 and strategy 2 

Method Algorithm (Hydraulic motor inlet pressure as Demand signal) 

Process (Electrical load in the DC power electronic load) 

Strategy A 30bar≤Pm≤50bar 20bar≤Pm≤30bar Pm≤20bar 

30Ω 20Ω 11Ω 

Strategy B 20bar≤Pm≤40bar 10bar≤Pm≤20bar Pm≤10bar 

30Ω 20Ω 11Ω 

*The initial applied resistance of the DC electronic load is 20Ω. 

 

Figure 7-7 Control strategy 1 and 2: a) Controllable resistance, b) Recoverable power, c) 

Instantaneous current output, d) Damping force, at 0.5Hz frequency and 20mm amplitude 
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Figure 7-8 Control strategy 1 and 2: a) Controllable resistance, b) Recoverable power, c) 

Instantaneous current output, d) Damping force, at 0.5Hz frequency and 25mm amplitude 

Figure 7-7 shows a big difference between strategy A and B. It indicates that the motor 

pressures at 0.5Hz-20mm are varied between 20bar and 50bar. Therefore, in strategy A, the 

resistance keeps constant at 20Ω while the motor pressure alters between 20bar to 30bar. In 

strategy B, the motor pressure is changed with the algorithm to adjust the resistance, and then 

lead to the variations of damping force and recoverable power. Figure 7-7 (d) shows that the 

alternations of resistance can slightly change the damping force at low excitation and 

significantly reduce recoverable power. It reveals that the regenerative shock absorber needs to 

sacrifice the power regeneration for optimal damping force.  

The excitation of 0.5Hz frequency and 25mm amplitude is used for the next experiment and 

the results are shown in Figure 7-8. In strategy A, it shows that two spikes in resistance are 

occurred at the early stage of the operation, and the resistance keeps constant at 20Ω until the 

motor pressure becomes to stable. Compared to the damping force in strategy A, it can be found 

that the peak damping force is observably reduced in strategy B at a higher excitation while the 
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recoverable power is also decreased with the increase of the electrical load. However, the 

designed computer process control is able to adjust the damping force and recoverable power by 

controlling the electrical load but this control method also has the limitation of the 

synchronisation between the process response and the system dynamic response. However, more 

practical algorithms are required to meet the standards of the shock absorber in different vehicles 

whilst recovering useful power from wasted heat.  

7.3  Analysis of sizing the key parameters 

In subsections 7.1 and 7.2, the control methods have been proposed and evaluated on the 

RHSAs. It shows the feasibility of real-time control and the control method has potential to meet 

the criteria of the hydraulic shock absorber in vehicle suspension systems. However, the design 

and construction of the RHSAs needs to be further explored in order to provide references and 

evidences for future design and control method in different applications. Considering the purpose 

of the shock absorber, first ensure that the shock absorber can produce sufficient damping force 

as demands, and then attempt to recover power as much as possible. This study focuses on the 

effect of the key parameters which includes the sizes of shock absorber body, hydraulic motor 

displacement and accumulator pre-charged pressure. Hence, the investigation is performed on 

the proposed modelling to study the RHSAs behaviour and power level.  

7.3.1 Sizes of the shock absorber body 

Modelling under 1.67Hz frequencies and 50mm amplitude excitation, with an optimal load of 

20Ω, a small accumulator capacity of 0.16L and a larger hydraulic motor displacement of 12.5cc, 

is then evaluated at different sizes of the shock absorber body. All other parameters keep the 

same with the previous studies in Chapter 5. The sizes of the shock absorber body are 

determined according to the standard, QC/T 545-1999 [173]. Therefore, the piston-rod sizes are 

32mm-20mm, 40mm-25mm and 50mm-30mm. It well known that a conventional-viscous shock 

absorber has asymmetrical damping characteristic due to its inherent design structure which can 

provide different damping forces during the compression and extension strokes.  

According to the study of the hydraulic flow in subsection 3.4.2, the main reason is that the 

difference of the piston area and the annulus area lead to different ratios of compressed and 

extended flow during the motion of the piston.  
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Table 7.3 The peaks of the damping force and recoverable power (Piston-rod) 

                                                  Piston-rod 

Stroke 

32mm-20mm 40mm-25mm 50mm-

30mm 

Compression (Peak force) 5,120N 9,780N 21,360N 

Extension (Peak force) 3,029N 5,096N 9,243N 

forcepeaknCompressio

forcepeakExtension
ratioSymmety 

 

≈0.592 ≈0.521 ≈0.433 

Compression (Peak power) 213.4W 830.4W 4,058W 

Extension (Peak power) 175.2W 529.6W 1,760W 

 

 

Figure 7-9 Hydraulic motor inlet pressure, shaft speed and recoverable power at different 

dimensions of shock absorber body 

Figure 7-9 shows that the peaks and averages of the pressure of the hydraulic motor inlet, 

shaft speed and recoverable power are significantly increased at larger body size with the better 



Chapter 7 Control Strategies for RHSA based Suspensions and Sizing the Key Structure Parameters 

 

211 

asymmetrical feature. The peaks of force and power in compression and extension are then to be 

shown in Table 7.3. It can be found that the change of body size can dramatically affect the 

system performance and the recoverable power to meet the requirements of various vehicle 

suspension systems at the initial stage of design. It is also obvious that the asymmetrical feature 

of damping force is degraded with the small size of body. By increasing the size of the shock 

absorber body, the recoverable power is significantly up to 4,058W with the average power of 

1,746W at the size of 50mm-30mm.  

Refering back to the smoothing effect of the hydraulic accumulator in subsection 3.4.5, a gas-

charged accumulator is applied to reduce the fluctuation of the pressurised flow to improve the 

capability of the power regeneration but it dramatically reduces the asymmetrical damping. The 

pre-charged pressure as another factor in the hydraulic accumulator will be considered to 

improve the damping characteristic. In addition, according to the study of the hydraulic flow in 

subsection 3.3, the hydraulic motor displacement is one of the key influences of the hydraulic 

flow and shaft speed. Therefore, the pre-charged pressure of the hydraulic accumulator and the 

hydraulic motor displacement are considered as the influence factors to adjust the damping force 

and to maximise the recoverable power in the following study.  

7.3.2 Effect of the hydraulic motor displacement 

Modelling for the effect of the hydraulic motor displacement, the piston–rod is set to 50mm–

30mm and the pre-charged pressure of 0.5L accumulator is decreased to 15bar. The hydraulic 

motor displacement was set to 8.2cc at the earlier stage of modelling and testing. In the current 

investigation, the displacement is raised to 12.5cc, 16cc and 20cc and the results are shown that a 

small increment of motor displacement can dramatically reduce motor pressure, shaft speed and 

recoverable power, as shown in Figure 7-10. The results also verify that the hydraulic motor 

displacement and it has a direct impact on the shaft speed, and then effect on the recoverable 

power which is decreased from 1,919W to 429.2W.  

Additionally, the peaks of the motor pressure and recoverable power are calculated and shown 

in Table 7.4. It reveals that the growth of the motor displacement has no contribution for 

asymmetric damping characteristic, but the peaks of damping force are efficiently reduced in 

values by altering displacement from 12.5cc to 20cc which are sufficient to meet the demands of 

light trucks and heavy-duty vehicles. In particular, the damping effect at 20cc reaches the 

industry standard of the shock absorber design [173]. Therefore, an appropriate motor 
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displacement is helpful to obtain an acceptable damping force with higher power efficiency in 

different design criteria. 

Table 7.4 The peaks of the damping force and recoverable power (Motor displacement) 

                                   Motor displacement 

Strokes 

12.5cc 

(1×10-6m3) 

16cc 

(1×10-6m3) 

20cc 

(1×10-6m3) 

Compression (Peak force) 23,400N 11,520N 6,120N 

Extension (Peak force) 9,399N 5,044N 2,990N 

forcepeaknCompressio

forcepeakExtension
ratioSymmety 

 

≈0.402 ≈0.438 ≈0.489 

Compression (Peak power) 4,872W 1,865W 775.7W 

Extension (Peak power) 1,862W 840.6W 426.4W 

 

 

Figure 7-10 Hydraulic motor inlet pressure, shaft speed and recoverable power at different 

dimensions of shock absorber body 
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7.3.3 Effect of the accumulator pre-charged pressure 

Although the accumulator smoothing effect can provide a more reliable and stable 

environment for rotary motion and power regeneration in the previous evaluation, this study 

attempts to investigate the behaviour and power level by varying pre-charged pressure of the 

hydraulic accumulator. The hydraulic motor displacement is set to 16cc.  

Figure 7-11 shows that large pre-charged pressure has a great reduction on high hydraulic 

oscillation, and therefore influences on the overall performances. Based on Equations (3.21) to 

(3.24), it can be seen that, the lager the pre-charged pressure, the less the fluid passes through the 

hydraulic motor, and hence that the average and peak of the motor pressure and shaft speed are 

decreased soon afterwards. Moreover, as the pre-charged pressure increases from 5bar to 25bar, 

the average of recoverable power is decreased from 1,248W to 813.2W.  

 

Figure 7-11 Hydraulic motor inlet pressure, shaft speed and recoverable power at different 

dimensions of shock absorber body 
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A better asymmetric damping can be obtained at a low pre-charged pressure, as shown in 

Table 7.5. The peaks forces in compression and extension also indicate that, similar to the large 

accumulator capacity, an increase of pre-charged pressure is effective on the large flow rate from 

compression in comparison to extension stroke. Table 7.5 also shows that the symmetry ratios 

are significantly reduced to a low level at the pre-charged pressure of 5bar and 10bar, which are 

under 0.4, and this ratio is close to 0.5 at 25bar. Normally, the symmetry ratio of the damping 

force (Extension force/Compression force) maintains from 1/3 to 1/2 to meet the requirements of 

passenger cars [51]. It is therefore can be found that the pre-charged pressure from 5bar to 25bar 

can all meet good agreements to this demands but the damping force in values still needs to 

explore as required by adjusting the structure dimensions and the motor displacement at the 

initial stage of the design. Furthermore, a development of the asymmetric damping and its value 

can also be obtained by designing an electrical circuit to vary the electronic load, which would 

make a valuable contribution for a semi-active force control in a regenerative suspension. 

Table 7.5 The peaks of the damping force and recoverable power (Pre-charged pressure) 

                                   Pre-charged pressure 

Strokes 

5bar 10bar 25bar 

Compression (Peak force) 16,640N 13,080N 10,100N 

Extension (Peak force) 5,681N 5,148N 4,992N 

forcepeaknCompressio

forcepeakExtension
ratioSymmety 

 

≈0.341 ≈0.394 ≈0.494 

Compression (Peak power) 3,952W 2,408W 1,436W 

Extension (Peak power) 1,057W 872.2W 826W 

 

To examine the power capability of the key parameters study, power efficiency is therefore 

calculated based on Equations (3.21). Figure 7-12 shows that power efficiency is gradually 

increased with the piston−rod dimensions and dramatically decreased with the increment of the 

hydraulic motor displacement. The key reason for the power efficiency reduction is two reasons: 

First, the smaller shock absorber body can decrease the flow rate and shaft speed, and then 

obtain a small amount of recoverable power. Second, the increase of motor displacement would 

reduce the shaft speed directly, which also can reduce the power output from the generator. In 

addition, the power efficiency of the pre-charged pressure shows that the highest efficiency is up 



Chapter 7 Control Strategies for RHSA based Suspensions and Sizing the Key Structure Parameters 

 

215 

to 68.7% at 10bar. It also indicates that the best power capability can be achieved at various 

pressure amplitudes by setting appropriate pre-charged pressure.  

Overall, it can be summarised that optimal asymmetrical damping and power efficiency can 

be achieved by adjusting the piston-rod dimension, hydraulic motor displacement and 

accumulator pre-charged pressure at the earlier stage of design. In general, the purpose of the 

semi-active or active suspension is to provide better performance of ride comfort and road 

handling, but less energy can be recovered for reuse. In future design and study, the main aim is 

not only to maximise the recoverable power, but also to continually provide desirable damping 

force for better ride comfort and road handling of a driving vehicles. An electrical circuit needs 

to be designed by considering the balance between power regeneration and suspension dynamic 

response. However, the balance between the force control and the power regeneration will be a 

crucial challenge of the future of a regenerative shock for both purposes: better performance and 

energy saving. 

 

Figure 7-12 Power efficiencies of different piston-rod dimensions, hydraulic motor 

displacement and accumulator precharged pressure 
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7.4 Concluding remarks 

Similar to the constant resistance (CR) method, the investigation was conducted by 

experimentation with CC and CV electronic loads. The results show that the CC and CV 

methods can make effective change to overall system like the CR method (different electrical 

load), and have good potential to control the damping force with the charge ability. 

A computer-controlled system was created to provide a continuous-time close loop control in 

the RHSAs. The damping force control was achieved through the pre-set control strategy but the 

recoverable power was significantly degraded due to the frequent alteration of electrical load. It 

indicates that the regenerative shock absorber has to sacrifice the power regeneration for 

appropriate damping force. 

For sizing the key structure parameters, a small increment of the motor displacement can 

dramatically reduce the damping force and power performance. The asymmetric damping feature 

can be achieved to expect level by changing the size of shock absorber body (piston−rod 

dimension) and the pre-charged pressure as required.  

However, the appropriate structure design and control method are key to realise the goal of a 

semi-active regenerative suspension system. 
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Chapter 8 Conclusion and Future Work 

This chapter summarises the objectives and achievements of the research project described in 

this thesis. The findings and conclusions of the modelling and testing on the regenerative 

hydraulic shock absorber are presented. The next focus is to explicitly summarise the novel 

contributions of this research project accomplished until now. At the end of this chapter, 

according to the accomplished work, the suggestions of how to develop the future research on 

this area are provided.  
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8.1 Review of research objectives and achievements  

This subsection outlines the objectives and achievements which have been accomplished 

throughout this research project, and the contributions are also included as part of this research. 

This research project has focused on developing regenerative hydraulic shock absorber systems 

(RHSAs), especially on the prototype design and fabrication (see Chapter 2), detailed dynamic 

modelling (see Chapter 3) and test system establishment (see Chapter 4).  

The key scope of this research is to give an accurate understanding of the behaviours and 

power regeneration in the RHSAs. Therefore, by considering the losses and nonlinearity, the 

modelling is built and developed to enhance its reliability and adaptability. Thereafter, the 

variations of the system behaviour and power regeneration are investigated in different 

influencing effects. Additionally, the validation of the modelling against the measured results 

shows an impressive demonstration for this work in Chapter 5. Furthermore, the road surface 

profiles based on ISO 8608 standard was created to predict the road roughness for the ride 

analysis and the power potential in vehicle suspension model, and then the experimental rig of 

the RHSAs is tested under the suggested ISO roads in Chapter 6. Finally, the control methods 

and the key parameters are studied in Chapter 7. 

According to the objectives of this research work in subsection 1.5, the key achievements are 

described in the following:  

Objective 1: Review the various classification systems and designs of regenerative 

suspension/shock absorbers so that provides a design concept of a regenerative hydraulic shock 

absorber system (RHSAs). 

Achievement 1: A general introduction of the energy recovery techniques and the suspension 

system in vehicles was presented. The literature review of regenerative suspension/shock 

absorber with the concentration on the different structure designs and operating principles have 

been summarised. A system layout of the RHSAs was proposed which was created to produce 

unidirectional hydraulic flow to drive the motor and generator to generate recoverable power.  

Objective 2: Create the idealised mathematical model of hydraulic flows, rotary motion and 

power regeneration for a hydraulic-electromagnetic based shock absorber system, and assess its 

performances. 
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Achievement 2: An idealised model of the RHSAs was modelled through the use of a 

simplified hydrodynamics modelling approach to better understand and simulate hydraulic flows, 

rotary motion and power regeneration processes. According to this idealised model and its 

analysis, a general view of the entire system layout and the modelling approach were provided at 

the earlier stage of the modelling study.  

Objective 3: Construct the mathematical modelling with the consideration of the losses, 

nonlinearities, the smoothing effect, and the generator coefficients (voltage constant coefficient 

and torque constant coefficient) to provide more accurate modelling results. 

Achievement 3: First, a hydraulic accumulator was considered in order to smooth the system 

behaviours. Second, the electrical coefficients of the generator have been determined to ensure 

the accuracy of the recoverable power. Finally, with considering the losses, efficiencies and fluid 

compressibility, the model was developed and reconstructed to provide a thorough modelling 

approach for further study of the model validation and the key parameters.  

Objective 4: Design and build an experimental rig and measurement system for experiments 

Achievement 4: A comprehensive RHSA experimental rig and its measurement system 

having ability to operate under different testing conditions, were designed and built in 

accordance with the conceptual design and the mathematical model in the Automotive 

Laboratory at University of Huddersfield.  

Objective 5: Determine the uncertain parameters and variables in the RHSAs experimentally.  

Achievement 5: The uncertain parameters and variables of the RHSAs have been identified 

to offer the accurate system behaviours and maximise power regeneration. The online 

determination approach was used to characterise the parameters of the generator and rotational 

friction torque loss. The fluid compressibility and the motor efficiencies were then determined 

through the modelling approach.  

Objective 6: Validate the modelling results with the measured data from the developed 

experimental rig, and analyse the effects of excitation input, electrical load and accumulator 

capacity. 

Achievement 6: The experimental rig was developed to validate the modelling work. The 

validation not only has been performed for the variations in motor pressure and shaft speed under 
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different excitations, but also voltage output and recoverable power under electrical loads, and 

the results between prediction and measurement were in good agreement. In this way, the 

influencing factors have been investigated and analysed, and were supposed to be a means by 

which the hydraulic behaviours and recoverable power can be further optimised.  

Objective 7: Investigation of the dynamic responses, power potential, ride comfort, road 

handling, and the parameter sensitivity analysis in quarter car model at various driving speeds 

and roads (ISO8608 standard). 

Achievement 7: The ISO 8608 standard was used to classify the grade of roads using power 

density spectrum (PSD), and this method was employed to predict the real road roughness and 

create irregular waves as inputs in a stationary random process. Using the irregular wave as input, 

the evaluation of the power potential from vehicle suspension and the effect of driving healthy 

and safety at different road surfaces and incident speeds were performed by the suspension 

model. The parameter sensitivity analysis of the quarter car model was also evaluated. It has 

understood that the power potential in suspension, vehicle road handling and ride comfort, or 

vehicle parameter settings, which are important basis of further optimisation and development 

for a regenerative suspension/shock absorber.  

Objective 8: Evaluate how the RHSAs would behave in more realistic conditions (Random 

road surface profiles). 

Achievement 8: The effects of the electrical load, accumulator capacity, driving speed and 

road roughness were analysed on experimental rig by applying the suggested road standard as 

excitation input.  

Objective 9: Apply controls to the RHSAs and verify their feasibility. 

Achievement 9: The theoretical foundation of the constant current (CC) and constant voltage 

(CV) methods in the power electronic load was described. The investigation was conducted by 

experimentation at CC and CV electronic loads. In particular, a computer-controlled system was 

created to provide a continuous-time close loop control which was realised on the experimental 

rig. In this way, the system can meet to the pre-set levels experimentally.  

Objective 10: Examine and compare the predictions from the key parameters of the RHSA in 

order to provide better system behaviours and maximise recoverable power for the initial stage 

research. 
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Achievement 10: The investigation of the key parameters which can offer the guidance of 

design for the different automotive suspension systems, were evaluated by the developed RHSA 

model, focussing on the effect of the shock absorber body size (piston−rod dimension), hydraulic 

motor displacement and hydraulic accumulator pre-charged pressure. 

8.2 Findings and Conclusions 

This research has modelled, tested and analysed a regenerative hydraulic shock absorber 

(RHSA) which is able to convert fluid power of unidirectional flow into rotary power to drive a 

generator for power regeneration. Particularly, the research has focus on how the RHSA behaves 

through both the modelling approach and experimental testing at various operating conditions. 

The research findings and conclusions arising from this thesis were summarised in the following: 

8.2.1 Conclusion on the modelling studies 

An attempt has been made to create and develop a mathematical model through the 

hydrodynamic approach which is capable of simulating the processes of hydraulic flow, 

rotational motion and electrical power and predict the system behaviours and power regeneration 

capability. In particular, parametric study has been performed experimentally for the 

improvement of the proposed model to support model validation and verification. Then, the 

model has been validated against the experimental results at various operating conditions. 

Additionally, the ISO 8608 standard was employed to predict the real road roughness and create 

irregular waves as inputs in a stationary random process. A quarter car model with irregular 

wave was then applied to perform the performance evaluation (ride comfort, road handling etc.) 

and the sensitivity analysis, and also to estimate the power potential. 

Conclusion 1: There are many designs in the development of regenerative suspensions or 

shock absorbers. Amongst them, regenerative hydraulic shock absorber is more potential due to 

its inherent design benefits (based on the summarisation of the literature reviews in Chapter 2) of 

the unidirectional-flow with low inertia loss, reliable hydraulic transmission and high 

regeneration efficiency. 

Conclusion 2: In developed model, as hydraulic motor friction increases, there is an increase 

of system pressure and a decrease of shaft speed. The inevitable losses have a significant 

reduction on the power conversion and power regeneration. The actions of hydraulic motor are 

crucial to improve the power efficiencies and hydraulic performances. It also reveals that the 
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working conditions and the components specification determine the majority of the losses which 

significantly influent on the system behaviours and power capability. 

Conclusion 3: The recoverable power and power potential are both highly reliant on the 

vehicle driving speed, road roughness and tyre stiffness. The ride comfort and safety have 

greatly sensitive dependence on the shock absorber damping, suspension stiffness and tyre 

stiffness. The best compromise between ride comfort and road handling is available by 

controlling a trade-off between damping and suspension stiffness. In vehicle parameters, the 

increase of the tyre stiffness contributes negative action for the power regeneration. In addition, 

heavy vehicle body and light wheel mass are beneficial for the ride comfort and safety but have 

no contribution for the recoverable power. 

8.2.2 Conclusion on the experimental works 

To experimentally evaluate the RHSAs and validate the predicted results, the experimental rig 

used for all experimental works undertaken in this project was designed and fabricated based 

around a traditional shock absorber/damper from a typical articulated heavy haulage truck. The 

conclusion on the experimental works have been extracted from this research, as shown in the 

following: 

Conclusion 4: The high excitation can significantly increase the peak damping force and 

average recoverable power due to the relevant large flow rate. As electrical load rises, the 

capability and efficiency of power regeneration are dramatically deteriorated but it provides 

more reliable and stable environments for the system behaviours, and further increase in 

resistance any results in a relatively small amount of recoverable power.  

Conclusion 5: The volume variation in the accumulator fluid chamber can smooth the flow 

oscillations, and hence allow effective minimisation to the instability of the fluid flow. The 

results also indicate that the effect of accumulator capacity can efficiently stabilise the system 

behaviours with acceptable power performance, and also the volumetric efficiency and the 

regeneration efficiency are changed very slightly. Particularly, the system achieves recoverable 

power of 260W, with an efficiency of around 40%. 

Conclusion 6: It can be found that the predicted hydraulic motor pressures, shaft speeds, 

instantaneous voltage and recoverable power has been validated to ensure the effectiveness of 

the modelling approaches, and shown good agreement between predictions and measurements. 
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Model parameter identifications and refinements based on the online data are sufficient to 

determine and refine uncertain model parameters such as the bulk modules, rotational friction 

and fluid frictions using a common least square method.  

Conclusion 7: The potential regenerated power highly relies on the vehicle driving speed, 

road roughness and tyre stiffness. The best compromise between ride comfort and road handling 

is available by controlling a trade-off between damping and suspension stiffness. Although a 

larger tyre stiffness has potential to regenerate more power, the performances of the ride comfort 

and safety would be dramatically degraded. In addition, heavy vehicle body and light wheel 

mass are beneficial for the ride comfort and safety but have no contribution for the recoverable 

power. 

Conclusion 8: Experimental studies were performed to evaluate how the RHSAs behave 

under random road surface profiles. The rough road and fast incident speed can generate more 

recoverable power and much larger damping force due to more excitation events produced, and it 

also confirms that the behaviours and power as with the sinusoidal excitations can be varied by 

adjusting electrical load and accumulator capacity to overcome continuously varying excitation 

events from roads. Due to the variability and irregularity of event excitations, the damping force 

are different with in sinusoidal excitation which behave like a traditional hydraulic damper, and 

the recoverable power would be less than expected.  

Conclusion 9: The CC and CV control methods can make effective change to overall system 

like the CR method (different electrical load), and have good potential to control the damping 

force with the charging ability. Particularly, the computer process control can effectively control 

the damping force but the recoverable power was significantly degraded, which can allow to 

make a compromise between the damping performance and power level for different operating 

conditions. 

8.3 Research contributions to knowledge 

This research project has a number of new findings and understandings throughout the 

research work and also has brought many key contributions to the knowledge of regenerative 

hydraulic shock absorber. These contributions in this thesis are outlined below: 

Contribution 1: Model parameter identifications and refinements based on the online data 

are systemically presented for the first time, allowing the electrical parameters, mechanical 
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parameters and the hydraulic parameters of the model to be estimated with good degree of 

accuracy. Significantly, these determination methods can be widely used for any regenerative 

suspension systems. By identifying the uncertain model parameters and variables, the modelling 

system is able to provide greater accurate solutions in modelling works compared to the 

experimental measurements.  

Contribution 2: The original experimental rig and measurement system for the study of 

regenerative hydraulic shock absorber are designed and built. Particularly, the validation against 

to experimental results in a two-stage process is a novel, which has been not only validated for 

the variations in motor pressure and shaft speed at different excitations, and also voltage output 

and recoverable power at different electrical loads. Additionally, the experimental works is not 

only used to validate the predicted results comprehensively, but also to offer a practical 

evaluation of the RHSAs at various operating conditions.  

Contribution 3: A comprehensive mathematical model is developed for the regenerative 

hydraulic shock absorber system. The inclusion of various losses and fluid nonlinearity in 

modelling, which allows more agreeable predictions with experimental works, is novel as no 

previous works has been found that does so. 

Contribution 4: The introduction of the gas-charged hydraulic accumulator has not 

appropriately been explored in both modelling and testing to realise the smoothing effect in 

previous works. The effect of the accumulator in a regenerative hydraulic shock absorber system 

have also been evaluated and shown to be a novel means by which the hydraulic behaviour and 

recoverable power can be improved with desirable damping performance and acceptable 

regeneration performance. 

Contribution 5: Control strategies and realisation on a general purpose PC computer are 

developed to carry out the investigation of the system, which allows it to be fully evaluated upon 

the compromise between the damping behaviour and power regeneration performance, rather 

than the use of special hardware for implementing the investigation which is less flexible and not 

suitable for such development applications. 

Contribution 6: It is the first time that the simulation of the entire system is realised on the 

Matlab platform, which provides sufficient flexibility to take into account more influence factors 

for accurate and detailed analysis which can be used for hardware-in-the-loop system of 

regenerative suspension, compare with other more specialised software packages. 
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8.4 Suggestions for future research 

Overall, a number of research studies have been carried out throughout this thesis which is 

focused on the development of a regenerative hydraulic shock absorber system. Main 

suggestions and possible solutions are now considered for further improvement and optimisation 

in this research field.  

Recommendation 1: The increasing demands of driving safety and healthy in vehicle market, 

the road test of the RHSA would allow further understand the performance in realistic operations 

in an attempt to develop ride comfort and road handling.  

Recommendation 2: Improve and optimise the structure design for specific applications, 

such as the dimension of shock absorber body, hydraulic accumulator, hydraulic motor, valves 

and generator. Therefore, the sensitivity analysis on the resizing of RHSA needs to perform for 

optimal parameters in values to achieve the demands of target vehicle and system integration 

with low-cycle cost for the automobile industry. 

Recommendation 3: Further development would be focus on the component arrangement. 

The cooperative optimal design of the hydraulic rectifier (check valves), hydraulic motor and 

generator is possible to minimise leakage losses and frictional losses to provide fast system 

dynamic response and high power regeneration efficiency (improve to 50%), especially under 

low speed or high pressure conditions.  

Recommendation 4: The performances of the RHSA are different with the conventional 

hydraulic shock absorber. Therefore, the design of the semi-active or active controllers are 

possible to adjust the damping force as required and also regenerated power can charge the 

battery/cell for reuse. The key of a controller is to provide better performance and maintain the 

regeneration capability in a high level.  
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Appendices 

Appendix 1 SERVOTEST Operation panel and process design input signals 

 

Figure A1 The main operation panel of the 4-post ride simulator system 

 

 

Figure A2 The waveform setting for of the 4-post ride simulator system 
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Figure A3 The system process flowchart for the measurement using the ISO 8608 road 

surfaces 

 

 

Figure A4 The system process flowchart for the measurement using the frequency sweep 
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Appendix 2 The fluid variation of accumulator 

 

Figure A5 The variations of the fluid volume in the gas-charged accumulator at various 

electrical loads (11Ω, 20Ω, 30Ω, 40Ω and 50Ω) and different accumulator capacities (0.16L, 

0.32L, 0.5L and 0.75L) 
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Appendix 3 Measured acceleration using ISO standardised road profile 

 

Figure A6 The measured accelerations at various roads and driving speeds 
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