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Abstract 
Introduction and purpose 

The importance of measuring ankle muscle strength (AMS) has been demonstrated in a 
variety of research, clinical and sporting areas. Isokinetic dynamometry is a common method 
of AMS measurement and it has been demonstrated that the Cybex Norm isokinetic 
dynamometer is a reliable and valid measure of AMS. Reference values are commonly used 
to contextualise the understanding of measured values, however no AMS reference values 
using the Cybex Norm exist. 
 
Design / methodology 
A systematic review identified sixty papers which used the Cybex Norm to measure AMS. 
From those papers eight common methodological variables were identified and a protocol 
was produced based on these. It was demonstrated that the protocol was reliable and was 
subsequently used to test 100 participants.  
 

Results 
A stepwise linear regression analysis based on height, body mass, age, gender and shoe size 
was performed to produce a predictive model for each of the eight measures of AMS. The 
reference models were validated by accurately predicting AMS in a validation group. 
Furthermore, a t-test showed there was no statistical difference between the predicted and 
actual measures of AMS.  
 
The validated equations were then used to predict AMS in elite football players. The results 
indicated that concentric and eccentric eversion AMS was higher than the predicted normal 
range in the footballers. All other measures were within the predicted range. 
 
Applications / limitations 
The limitations of the predicted values are in the absolute accuracy. Whilst the predictive 
equations have been validated for small groups, it is not possible to predict an individual’s 
normal range. Further research into variables that predict AMS would enable a more 
accurate set of equations to be produced.  
 
The eight reference value equations described could be used in a range of sporting and 
clinical settings. For example in examining relationships between AMS and both falling 
episodes and functional movement in the elderly as well as general ankle stability. A 
reference range could be used as an indicator of the effectiveness of intervention strategies 
and the effectiveness of rehabilitation. Where reduced strength is due to disease rather than 
injury an AMS reference range could inform on the progress of disease. 
 
The research presented here has demonstrated the importance of eight different variables 
in terms of isokinetic testing of the ankle. It was concluded that all eight of these variables 
should be addressed when measuring isokinetic ankle strength and, furthermore, should be 
taken into consideration when comparing results. 
 

Originality / value 
This thesis has produced eight novel validated reference equations which can predict normal 
average AMS in groups of individuals using the Cybex Norm isokinetic dynamometer. These 
equations could aid the understanding of disease progression, injury, rehabilitation and 
athletic performance. 
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between mass and concentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 

141 

Figure 8-11 Scatterplots demonstrating the relationship in males 
between mass and eccentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; ecc = eccentric. 

142 

Figure 8-12 Scatterplots demonstrating the relationship in males 
between mass and concentric inv and eve. The lines 
represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion; con = concentric. 

143 

Figure 8-13 Scatterplots demonstrating the relationship in males 
between mass and eccentric inv and eve. The lines 
represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion; ecc = eccentric. 

144 

Figure 8-14 Scatterplots demonstrating the relationship in females 
between mass and concentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 

145 

Figure 8-15 Scatterplots demonstrating the relationship in females 
between mass and eccentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; ecc = eccentric. 

146 

Figure 8-16 Scatterplots demonstrating the relationship in females 
between mass and concentric inv and eve. The lines 
represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion; con = concentric. 

147 
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Figure 
Number 
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Figure 8-17 Scatterplots demonstrating the relationship in females 
between mass and eccentric inv and eve. The lines 
represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion; ecc = eccentric. 

148 

Figure 8-18 A graph showing the relationship in AMS between males 
and females in the 60-79.9kg mass group. PF = plantar 
flexion; DF = dorsiflexion; con = concentric; ecc = 
eccentric; Inv=inversion; Eve=eversion; con = concentric; 
ecc = eccentric. a=significantly different to female peak 
torque. 

150 

Figure 8-19 A graph showing the relationship in AMS between males 
and females in the 80-99.9kg mass group.  PF = plantar 
flexion; DF = dorsiflexion; con = concentric; ecc = 
eccentric; Inv=inversion; Eve=eversion; con = concentric; 
ecc = eccentric. a=significantly different to female peak 
torque 

151 

Figure 8-20 Scatterplots demonstrating the relationship in males 
between height and concentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 

153 

Figure 8-21 Scatterplots demonstrating the relationship in males 
between height and eccentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 

154 

Figure 8-22 Scatterplots demonstrating the relationship in males 
between height and concentric inv and eve. The lines 
represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion. 

155 

Figure 8-23 Scatterplots demonstrating the relationship in males 
between height and eccentric inv and eve. The lines 
represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion. 

156 



23 
 

Figure 
Number 

Description Page Number 

Figure 8-24 Scatterplots demonstrating the relationship in females 
between height and concentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 

157 

Figure 8-25 Scatterplots demonstrating the relationship in females 
between height and eccentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 

158 

Figure 8-26 Scatterplots demonstrating the relationship in females 
between height and concentric inv and eve. The lines 
represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion. 

159 

Figure 8-27 Scatterplots demonstrating the relationship in females 
between height and eccentric inv and eve. The lines 
represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion. 

160 

Figure 8-28 A graph comparing AMS between genders in the 165.0-
169.9cm height group. PF=plantar flexion; 
DF=dorsiflexion; con=concentric; ecc=eccentric; a= 
significantly different to female average peak torque. 

162 

Figure 8-29 A graph comparing AMS between genders in the 170-
174.9cm height group. PF=plantar flexion; 
DF=dorsiflexion; con=concentric; ecc=eccentric; a= 
significantly different to female average peak torque 

164 

Figure 8-30 A graph comparing AMS between genders in the 175.0-
179.9cm height group. PF=plantar flexion; 
DF=dorsiflexion; con=concentric; ecc=eccentric; a= 
significantly different to female average peak torque 

166 

Figure 8-31 Scatterplots demonstrating the relationship in females 
between shoe size and concentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 

168 
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Figure 8-32 Scatterplots demonstrating the relationship in females 
between shoe size and eccentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; ecc = eccentric 

169 

Figure 8-33 Scatterplots demonstrating the relationship in females 
between shoe size and concentric inv and eve. The lines 
represent a linear line of best fit and 95% Inv = inversion, 
eve = eversion; con = concentric; 

170 

Figure 8-34 Scatterplots demonstrating the relationship in females 
between shoe size and eccentric inv and eve. The lines 
represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion; ecc = eccentric 

171 

Figure 8-35 Scatterplots demonstrating the relationship in males 
between shoe size and concentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 

172 

Figure 8-36 Scatterplots demonstrating the relationship in males 
between shoe size and eccentric PF and DF. The lines 
represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; ecc = eccentric 

173 

Figure 8-37 Scatterplots demonstrating the relationship in males 
between shoe size and concentric inv and eve. The lines 
represent a linear line of best fit and 95% Inv = inversion, 
eve = eversion; con = concentric; 

174 

Figure 8-38 Scatterplots demonstrating the relationship in males 
between shoe size and eccentric inv and eve. The lines 
represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion; ecc = eccentric 

175 
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Figure 9-1 A graph comparing the AMS peak torque between athlete 
and inactive groups. a= significantly greater than 
inactive population. PF = plantar flexion; DF = 
dorsiflexion; inv = inversion; eve = eversion; con = 
concentric; ecc = eccentric 

205 
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Glossary of Abbreviations. 

1RM – 1 rep max 

AMS – ankle muscle strength 

ANOVA – analysis of variance 

CAI – chronic ankle instability 

CI – confidence interval 

con - concentric 

DF – dorsiflexion 

ecc - eccentric 

EMG - electromyography 

eve - eversion 

FAI – functional ankle instability 

ICC – intraclass correlation coefficient 

inv - inversion 

Nm – Newton meters 

PF – plantar flexion 

ROM – range of movement 

RSD –residual standard deviation 

SD – standard deviation 

SE – standard error 

SEM – standard error of measurement 

VIF – Variance inflation factor 
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Glossary of Terms 

Concentric and eccentric strength 

Muscles can contract both concentrically and eccentrically. During a concentric contraction 

the muscle generates force as its length shortens. These movements are mainly propulsive 

for example the gastrocnemius and soleus muscles contract concentrically to generate a 

plantar flexion movement which pushes the body forward during the gait cycle. During an 

eccentric contraction the muscle generates force but the length of the muscle increases. This 

movement type has a breaking function for example the gastrocnemius and soleus muscles 

contract eccentrically when landing from a jump, slowing the body down and absorbing the 

impact. 

Plantar flexion 

Plantar flexion (PF) is brought about by contraction of the gastrocnemius and soleus muscles 

and to a lesser extent peroneus brevis and peroneus longus to produce downward 

movement of the forefoot centered around the talocrural joint.  

Dorsiflexion 

Dorsiflexion (DF) is produced by contraction of muscles whose tendons run into the foot 

anterior to the ankle joint. These include tibialis anterior as the prime mover as well as 

extensor digitorum longus and extensor hallucis longus. This is the antagonistic movement 

to PF around the talocrural joint. 

Inversion 

Inversion (inv) movement rotates the foot medially about the subtalar joint. This is brought 

about by contraction of the tibialis posterior and tibialis anterior 

Eversion 

Eversion (eve) movement rotates the foot laterally about the subtalar joint and is the 

antagonistic movement to inv. This movement is brought about by contraction of peroneus 

longus and peroneus brevis. 

Within all four of these movements the muscles can act concentrically or eccentrically 

Isokinetic test 

A muscle contraction where the resistance is altered to produce a fixed speed throughout 

the range of movement (ROM) 

Isometric test 

A test in which the muscle / tendon complex length neither increases nor decreases. 
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Isotonic test 

A test in which the external load is constant throughout the range of motion. 

 

For further information on these terms refer to Tortora and Derrickson (2008). 
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Chapter 1 
 

Introduction and research aims 
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1. Introduction 

1.1 Reference Values 

A frame of reference is necessary in order to fully understand the implications of a 

measurement. A common method of achieving this frame of reference is the use of reference 

values, also referred to as normal or normative values. These values represent the expected 

score or measurement for a given set of circumstances. A common example is dietary 

reference values that allow the comparison of actual calorie and nutrient intake to 

recommended values (Aranceta & Pérez-Rodrigo, 2012). In terms of ankle muscle strength 

(AMS), a reference value would indicate how much torque should be produced at the ankle 

in a given movement for a given population (Harbo, Brincks, & Andersen, 2011). Indeed, 

Kaminski and Hartsell (2002) observed with reference to AMS: 

  

“A normative strength database is needed, consisting of values that will allow the 
clinician and researcher to make comparisons among studies and to develop 
rehabilitation goals and objectives.”  
(Kaminski & Hartsell, 2002) p403 

 

If reference data sets are available then it is possible to quantify individual scores relative to 

their peers, from which deviations below ‘normal’ can be identified and response to 

interventions monitored.  

 

1.2 The Importance of ankle muscle strength reference values 

This thesis is specifically concerned with reference values for AMS. AMS is defined here as 

the torque production capability of the muscles that act across the ankle. There are a number 

of muscles which contribute to AMS and they can be grouped into physiological movements 

namely, plantar flexion (PF), dorsiflexion (DF), inversion (inv) and eversion (eve) strength 

(see Glossary of Terms (p.14) for definitions). The importance of measuring AMS has been 

demonstrated in a variety of research, clinical and sporting areas. These include 

investigating relationships between AMS and increased risk of falling (Rubenstein & 

Josephson, 2006) and mobility in terms of a sit to walk movement in the elderly (Dehail et 

al., 2007) and general ankle stability (Fox, Docherty, Schrader, & Applegate, 2008). 

Measurement of AMS has been suggested as a predictor of injury in athletic populations 

(Tsiokanos, Jamurtas, Kellis, & Kellis, 2002; Witchalls, Blanch, Waddington, & Adams, 2011) 

as well as an indicator of the effectiveness of intervention strategies (Li, Xu, & Hong, 2009) 
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and the effectiveness of rehabilitation (Sekir, Yildiz, Hazneci, Ors, & Aydin, 2007). Where 

reduced strength is due to disease rather than injury measurement of AMS can indicate the 

progress of certain diseases (Schiottz-Christensen et al., 2001). The literature suggests that 

AMS plays a role in predicting and assessing severity of injury and disease as well as 

assessing the efficacy of rehabilitation and intervention measures. In order to quantify the 

severity of an injury or the effect of disease AMS reference values would be of benefit as they 

would demonstrate the difference between healthy and affected ankles. These reference 

values would also enable the determination of an appropriate rehabilitation strategy and 

possible prediction of future injury.  

 

1.3 Measuring Ankle Strength 

AMS can be measured using a number of different types of equipment isometrically, 

isotonically and isokinetically, concentrically and eccentrically (see Glossary of Terms (p.14) 

for definitions). Measurement of strength for each of these movement modes requires a 

different type of test. For example Andrews et al (1996) produced reference values for 

isometric strength in multiple muscle groups including ankle DF using a hand held 

dynamometer. Although this system has been shown to have good test-retest reliability (C. 

Y. Wang, Olson, & Protas, 2002) and good inter-rater reliability (Bohannon & Andrews, 

1987) isometric muscle contractions are not representative of functional movement at the 

ankle. During an isometric contraction the muscle neither lengthens nor shortens. As the 

muscle produces torque in a fixed position any results are angle specific so the full ROM of 

the ankle is not easily tested. An isotonic contraction is a better representation of functional 

movement as, during an isotonic contraction, the joint moves full the full ROM with fixed 

resistance. A common isotonic test is the one rep max (1RM). However, a review by Kaminski 

and Hartsell (2002) concluded that 1RM data for AMS are scarce due to the small muscle 

groups involved and lack of available equipment for this type of measurement. The gold 

standard for testing muscle strength is considered to be isokinetic dynamometry and this is 

the preferred option of most clinical studies (Martin et al., 2006). A review by Caruso, Brown, 

and Tufano (2012) indicated that the reliability of isokinetic dynamometry as a whole was 

acceptable or better. The isokinetic contraction provides maximal torque data throughout 

the ROM as the resistance varies to match the torque produced. It has been demonstrated 

that the Cybex Norm isokinetic dynamometer is a reliable piece of equipment with which to 

measure strength at the ankle and so is suitable for use in determining AMS reference values. 
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The Cybex Norm can also be used to indicate strength impairment due to injury and, with 

subsequent testing, efficacy of a treatment programme and rate of recovery. Equally, the 

Cybex Norm can assess the extent of disease and be used to monitor the effect of an 

intervention. 

 

1.4 Research Aims 

A review of the literature suggested that reference values for the eight measures of AMS 

using the Cybex Norm Isokinetic Dynamometer do not exist. As such, one of the objectives of 

this thesis was to undertake a systematic review to identify all of the papers that have used 

the Cybex Norm to measure AMS. The systematic review found no papers which set out to 

produce reference values for AMS, furthermore, due to variations in the protocols used, 

reference values could not be produced by meta-analysis. In the absence of reference values 

the main body of this thesis is concerned with the production and testing of reference values 

for AMS. Specifically the following research aims were explored and empirically tested: 

 

a. As there are a number of variables which need to be defined when measuring AMS, 

once the systematic review was complete, the first aim of this thesis was to develop a 

protocol for measuring AMS with each variable justified (Chapter 4). This included 

determining the effect of altering the angle at which the knee is fixed on AMS (Chapter 

6). 

 

b. As this protocol was to be used to take measurements of AMS from which reference 

values would be generated, the second objective was to ensure the protocol and the 

Cybex Norm were robust using a test re-test experimental design. (Chapter 7). 

 

c. Using the justified and reliable protocol, the main aim of this thesis was to determine 

reference ranges for AMS collecting data and using a linear regression analysis to 

produce reference range equations (Chapter 8). 

 

d. Previous research has indicated that there is variation in strength with variation in 

different anthropometric measurements, for example height, weight, age and gender. 

In the production of reference values knowledge of the factors which affect AMS are 
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crucial. Thus, the data collected was also used to explore a fourth aim, the effect of 

variations in anthropometric measurements on AMS (Chapter 8). 

 

e. Validated reference equations for AMS could have a range of clinical, rehabilitation 

and sporting applications. The fifth aim of this thesis was to demonstrate an 

application of the validated reference equations. (Chapter 9). 

 

Before undertaking the experimentation which would address the aims of the thesis, it is 

first necessary to understand the rationale behind the need for AMS reference values. The 

following chapter addresses the literature relevant to this.  
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Chapter 2 
 

Literature review 

  



35 
 

2. Literature Review  
 

In order to fully understand the need for reference values for AMS, this chapter explores the 

usefulness of reference values alongside the importance of ankle muscle strength and the 

robustness of AMS testing using the Cybex Norm isokinetic dynamometer. 

 

2.1 Reference Values 

A review of the literature by Danneskiold-Samsøe et al (2009) noted a lack of reference 

values for strength. They subsequently tested muscle strength in 121 women and fifty-three 

men of mixed age to produce reference values for the wrist, elbow, shoulder, trunk, hip, knee 

and ankle using a Lido Active isokinetic dynamometer. These reference values have 

subsequently been used as a benchmark in several studies, thus demonstrating the 

importance of reference values. Eitzen et al. (2010) used the reference values produced by 

Danneskiold-Samsøe et al (2009) whilst demonstrating the efficacy of a five week post-

surgery exercise programme on knee strength. They argued that the patients in their study 

had regained adequate muscle strength as their post-exercise programme torque 

measurements were similar to the reference values supplied by Danneskiold-Samsøe et al. 

(2009). 

 

Harbo et al. (2011) stated that an evaluation of all major muscle groups both isometrically 

and isokinetically had not been performed before in the same population. They tested eighty-

five females and ninety-three males between 15 years and 83 years old. They produced 

reference values for the hip, knee, ankle, shoulder, elbow and wrist using the Biodex System 

3 PRO isokinetic dynamometer. Severinsen, Jakobsen, Overgaard, and Andersen (2011) then 

used knee strength reference values published by Harbo et al. (2011) to interpret severity of 

muscle impairment in chronic hemiparetic stroke patients. The reference values enabled the 

researchers to quantify the level of impairment, thus allowing for assessment of potential for 

resistance training in the rehabilitation programme. The same reference values have also 

been used in the assessment of taping to treat musculoskeletal injuries (Fratocchi et al., 

2012) and to compare the joint torque in patients with a reverse shoulder prosthesis (Alta, 

Veeger, Janssen, & Willems, 2012). 



36 
 

2.2 Using AMS to predict injury 

2.2.1 Predicting injury in older populations 

Research suggests that falls in the elderly have multifactorial predisposing causes, one of 

which is AMS. This was demonstrated by Wolfson et al (1995) who compared concentric PF 

and DF between a group of seventeen older ‘fallers’ (nursing home residents, average age 

84.6 years, who had two episodes of unexplained falls in the prior year) and an age and 

gender matched control group with no history of falls, also nursing home residents. They 

found reduced PF and DF strength in the fallers compared to the control. From this they 

concluded that strength is a major factor in balance, gait and the occurrence of falls. A 

systematic review by Moreland et al (2004) produced thirty studies from two databases that 

examined muscle weakness as a risk factor for falls in older adults. They concluded that 

lower extremity muscle strength including ankle DF should be assessed in elderly 

populations at risk of falls. This conclusion was supported by Rubenstein and Josephson 

(2006) who presented a review of evidence of falls and their prevention in elderly 

populations. They found that from sixteen studies examining multiple risk factors, lower 

extremity weakness was the most significant risk factor. Pijnappels, van der Burg, Reeves, 

and van Dieën (2008) also supported this conclusion, demonstrating a correlation between 

isometric ankle PF strength and fallers in an elderly population. Furthermore, Cattagni et al. 

(2014) concluded from testing 90 individuals aged from 18 to 90 years that measuring ankle 

torque could be used in clinical practice to identify potential fallers. 

 

Elderly people who fall are associated with a high cost both in monetary terms and in quality 

of life. In the UK three million people aged over 65 years of age fall every year costing the 

NHS £2.3billion. The most common injury suffered when falling is a fractured hip. Half of the 

people with this injury never regain their former level of function and 20% will die within 

three months (AgeUK, 2011). The research described here suggests AMS strength is a 

significant risk factor for falls in older populations. While there are other fall risk factors, the 

evidence presented here suggests treating AMS deficits could help retain quality of life and 

save money. An appropriate reference value for AMS could inform as to who is at risk and 

where interventions should be targeted. 
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2.2.2 Predicting injury in younger populations 

A key concept in predicting ankle injury is determining the physiological abnormalities that 

predispose an individual to an injury and then differentiating these abnormalities from those 

that are caused by the actual injury. If muscle weakness, for example, is the cause of ankle 

injury then reference values indicating what normal muscle strength should be could be used 

to predict and prevent injury. Research has indicated that previous injury is a significant 

predictor of future injury although the reasons for this are not clear (Brinkman & Evans, 

2011). It has been postulated that subsequent injury is a result of physiological weakness 

caused by the initial injury (Kaminski & Hartsell, 2002). In terms of AMS several studies have 

set out to determine if diminished peak torque can predict injury. If this was the case 

improving strength could prevent injury in healthy individuals or prevent re-injury in those 

with existing conditions. A number of literature reviews examining the relationship between 

ankle strength and injury within the literature have, however, produced apparently 

contradictory results. 

 

An example of this apparent contradiction was demonstrated in a literature review by 

Beynnon, Murphy, and Alosa (2002). They investigated predictive factors for lateral ankle 

sprains and concluded that the literature was divided as to whether muscle strength was a 

predictive factor. This was, however, based on only two papers, both of which they 

published. The first paper by Baumhauer, Alosa, Renström, Trevino, and Beynnon (1995) 

examined twenty-one college athletes before and after one athletic season to determine 

potential risk factors for ankle ligament injuries. They found that higher PF torque as well as 

higher inv/eve ratios and lower DF/PF strength ratios may predispose an individual to 

injury. It may not be that the high PF torque is directly related to injury susceptibility, rather 

that higher PF torque is related to higher sports participation rates, which then increase the 

likelihood of injury. The second paper by Beynnon, Renström, Alosa, Baumhauer, and Vacek 

(2001) investigated the predictive value of ankle strength in ankle ligament injuries in 

college athletes again, but using a larger cohort of 118 students. They found no correlation 

between any of the eight measures of AMS or AMS strength ratios and ankle injury. However, 

from the credible sample size of 118, the injury rate remained low. Thirteen women and 

seven men were injured which limits the statistical power of the findings. They attributed 

the difference in findings to different methods of statistical analysis used in each study. The 
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effect of using different statistical analysis methods will be examined in Chapter 4. Thus, 

these papers suggest a lack of clarity regarding the effect of AMS in predicting injury. 

 

A review by de Noronha, Refshauge, Herbert, and Kilbreath (2006) searched four databases 

for papers which measured intrinsic predictors of injury and then monitored injury 

occurrence. Their search revealed twenty-one studies which met their search criteria. They 

concluded that none of these studies provided evidence that voluntary ankle strength was 

predictive of future injury. It is of interest to note that this review considered the previously 

mentioned paper by Baumhauer et al. (1995) as well as two papers by (Willems et al., 2005a; 

Willems et al., 2005b) all of which demonstrated a relationship between AMS and future 

ankle injury. However, these findings were discounted by de Noronha et al. (2006) as the 

papers did not provide data on predictive accuracy.  

 

A systematic review with meta-analysis by Witchalls et al. (2011) searched five relevant 

databases for papers which examined pre-existing deficits in ankle structure and function 

related to future ankle injury in previously healthy ankles. The meta-analysis combined the 

results of the five papers that examined AMS. The results indicated that reduced eccentric 

eve strength was associated with increased risk of ankle injury. Based on the combined data 

from the papers by Willems et al (Willems et al., 2005a; Willems et al., 2005b) Witchalls et al 

(2011) also concluded increased PF strength was associated with future ankle injury in 

agreement with Baumhauer et al. (1995). It is interesting to note that these papers were 

included in the review by Witchalls et al. (2011) whereas they were not in the review by 

Noronha et al (2006). This inclusion would account for the differences in conclusions 

between the two reviews. Furthermore, neither of the papers by Willems et al (Willems et 

al., 2005a; Willems et al., 2005b) individually found concentric PF strength to be predictive 

of future injury. It was only when the data was combined in the meta-analysis that the 

relationship was revealed. Although the type of ankle injury being investigated was different, 

an experiment by Mahieu, Witvrouw, Stevens, Van Tiggelen, and Roget (2006) also indicated 

a relationship between PF and ankle injury. They concluded from examining sixty-nine army 

recruits that reduced PF strength was a significant predictor of Achilles overuse injury. This 

further supports the need for reference values for AMS as this conclusion suggests they could 

be used to predict and prevent Achilles overuse injuries. 
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Both studies by Willems et al (Willems et al., 2005a; Willems et al., 2005b) found increased 

concentric DF strength to predict future injury. These results did not influence the 

conclusions of the review as the significance of the ankle strength was only apparent after a 

regression analysis. There was no significant difference between injured and uninjured 

ankles in the populations tested. The review by Witchalls et al. (2011) also indicated that the 

large effect size of the eve/inv ratio, whilst not significant (P = 0.052) is worthy of future 

study.  

 

The apparent disagreement between these studies indicates that any investigation into the 

relationship between ankle strength and injury should use all the data available as well as 

appropriate statistical analysis techniques. Causes of ankle injury are likely to be multi-

factorial and from the evidence presented here it is clear that further research is needed in 

assessing the influence of AMS. The availability of reference values for AMS would enable 

future researchers to identify groups with low ankle strength and compare injury rates to a 

group with high ankle strength.  

2.2.3 AMS and Functional movement  

Papers by Reeves et al. (Reeves, Spanjaard, Mohagheghi, Baltzopoulos, & Maganaris, 2008, 

2009) examined the role of AMS in stair ascent and decent in older and younger populations. 

Their aim was to establish the strength needed to ascend and descend stairs relative to the 

muscle’s maximum capability. When examining stair descent Reeves et al (2008) found that 

an elderly population used the same percentage of their maximum capacity of ankle 

extension (PF) as a younger population. However, because the maximum capacity of the 

muscles in the older population was significantly less than that of the younger population 

the absolute power produced was less. Increasing the torque production at the ankle to the 

same of that in the younger population would mean exerting over 90% of the maximum 

force, which would make stair decent exhausting and unsafe. From this research they 

concluded that the ankle was essential in stair descent and ankle strength should be the 

major focus of exercise based interventions to improve stair descent safety. Reeves et al 

(2009) examined stair ascent in the same population and found that older population used 

93% of their maximal PF capacity to perform the task. Because this figure is so high Reeves 

et al (2009) concluded that PF strength at the ankle is the most critical factor in terms of 

ability to climb stairs unaided. Based on the measurements they had taken they suggested a 

torque threshold value of 1.5 Nm kg-1 below which individuals would experience difficulties 
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in climbing stairs unaided. This is, however, based on the data from seventeen participants 

in the study which limits extrapolation of the data to the wider population. A larger number 

of participants would need to be studied to give this figure greater external validity.  

2.2.4 AMS Interventions 

If measures of AMS are able to predict injury as described above then it is possible to target 

those populations with interventions to strengthen ankles and possibly reduce the 

occurrence of injuries. A number of interventions have been examined which aim to prevent 

injury in populations that are deemed at risk of ankle injury. Xu et al (2006) examined an 

older population for differences in muscle strength and endurance between long term Tai 

Chi practitioners, joggers and a sedentary control group. They found that PF and DF AMS was 

higher in the Tai Chi and jogging groups compared to the control group. The conclusion from 

this was that Tai Chi and jogging were both useful in preserving muscle strength in an older 

population. If reference values were available then it would be possible to comment as to 

whether these interventions preserve ‘normal’ muscle strength. If this is the case reference 

values would also be able to identify ‘at risk’ individuals to be able to recommend these 

interventions. Li et al (2009) measured ankle strength pre and post a 16 week Tai Chi course. 

Their results showed a significant increase in ankle strength in the Tai Chi intervention 

group as well as the control group who were asked to continue with their normal exercise. 

They concluded that a longer exercise programme may be needed in order to elicit 

improvements. The availability of reference values would indicate if the initial AMS was 

greater or less than ‘normal’. The initial strength of the participants could influence the 

magnitude of strength gains of a training programme. This could account for the lack of 

improvement in the Tai Chi group compared to the control group. 

2.2.5 Determining the effects of ankle injury on AMS 

The previous section described research investigating the predictive value of AMS and 

injury. Across the globe ankle instability is a major issue. In the UK ankle sprains account for 

1-1.5 million visits to accident and emergency departments every year (NHS, 2012) and in 

the US 25,000 people sprain their ankle every day (Hannafin, Kitaoka, & Panagis, 2009). A 

number of papers have sought to determine the effect of ankle injury on AMS. A systematic 

review by Loudon et al., (2008) concluded that treatment which included muscle 

strengthening exercise reduced the reoccurrence of ‘giving-way’ episodes (defined as an 

uncontrolled ankle joint inversion episode by Delahunt et al. (2010)) in patients with 
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functional ankle instability. Ankle injuries are also common in sport. Ankle injuries in sport 

are costly both in terms of lost revenue to players through time off and in terms of training 

missed. Research by Woods et al (2003) found that 2033 matches were missed in the English 

FA over two seasons because of ankle injuries. A systematic review on epidemiological 

studies on sports injuries by Fong et al. (2007) found that the ankle was the most commonly 

injured body site in twenty-four sports including basketball, cricket, gymnastics, netball, 

football and ultra-marathon running. In this review ankle sprain was the most common 

ankle injury in thirty-three out of forty-three of these sports. Equally, Hootman et al. (2007), 

found ankle injuries, specifically ankle ligament sprains, to be the most common injury from 

182,000 injuries in fifteen sports examined over a 16 year time period and 49.3% of ankle 

injuries in the US between 2002 and 2006 occurred during athletic activity (Brian, Brett, 

Shaunette, Michael, & Philip, 2010).The annual cost to the Dutch nation through sport related 

ankle injuries is £157 million (Hupperets et al., 2010).  The prevalence and cost of ankle 

related injuries detailed here highlights the importance of research in this area. The 

following sections will discuss implications of strength associated with the different 

physiological movements. 

2.2.5.1 Inversion and eversion strength 

Sekir et al. (2007) presented eleven papers that concerned inv and eve AMS in populations 

with ankle injuries. Details of these papers are listed in Appendix 1. Although this is not the 

totality of research in this area these papers demonstrate the varied results produced when 

examining the relationship between AMS and functional ankle instability (FAI). For example, 

six of the eleven papers found no significant difference in eve AMS between injured and non-

injured ankles. However, five of these six papers compared unilateral injuries to the 

contralateral ankle (Bernier, Perrin, & Rijke, 1997; Heitman, KovaleskiI, & Gurchiek, 1997; 

Lentell et al., 1995; Lentell, Katxman, & Walters, 1990; Munn, Beard, Refshauge, & Lee, 2003). 

Several papers have concluded that there is no difference between dominant and non-

dominant inv and eve peak torque (Ersoz, Simsir Atalay, Kumbara, & Akyuz, 2009; 

Konradsen, Olesen, & Hansen, 1998; Leslie, Zachazewski, & Browne, 1990 ). Hence, it could 

be argued that in cases of unilateral ankle injury both ankles are predisposed to injury due 

to muscle weakness. This argument is consistent with the results of Hiller et al (2008) who 

examined eighteen different measures as potential predictors of subsequent ankle injury in 

115 dancers. They found that a history of previous ankle sprain was associated with 

increased risk of future sprains in the contralateral ankle. Weakness in both ankles would 
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explain the apparently contradictory results from Hartsell and Spaulding (1999), Willems et 

al (2002) and Yildiz et al (2003) also cited by Sekir et al (2007). These papers compared 

individuals with injured ankles to a healthy control group and found a significant difference 

in AMS between groups. As the healthy control groups had no history of ankle injury they 

were less likely to be predisposed to injury. Thus, if eve AMS is a predisposing factor, the 

control group were likely to have stronger muscles. 

 

Of note, data produced by Kaminski et al. (1999) contradicts the above research theory. They 

compared concentric and eccentric eve AMS between a group with FAI and a healthy control 

group and found no difference in any AMS measures. These results should, however, be taken 

with caution. One reason they suggested for the lack of difference was a number of their 

participants were intercollegiate athletes who, despite injury, continued to play their 

respective sports. The inclusion criteria for the experiment included experiencing one 

significant lateral ankle sprain in the last year and one subsequent episode of ‘giving way’. 

The average time between the last giving-way episode and testing was 6 weeks. This may 

allow the subject time to recover their strength if they were still playing sport, particularly 

as the injuries were not debilitating as they were able to continue with their sport whilst 

injured.  

 

This argument appears to be consistent for measurements of eve AMS, however, this is not 

the case for inv AMS. Two papers cited by Sekir et al. (2007) namely Ryan (1994) and 

Wilkerson et al. (1997) found a significant difference in concentric invertor strength 

between the injured ankle and uninjured contralateral ankle. Hartsell and Spaulding (1999), 

was another of the papers presented by Sekir et al. (2007). They tested concentric inv, 

however, they compared injured individuals to a healthy control group. They found the 

injured group significantly weaker compared to the control group. Conversely Bernier et al. 

(1997) compared eccentric inv and eve both with the contralateral ankle and a healthy 

control group. They found no significant difference in inv AMS between injured and 

contralateral ankles or between the injured and control groups. Interestingly they did find a 

significant difference between dominant and non-dominant ankles in the uninjured group 

but not in the injured group with the non-dominant ankle producing greater torque. If the 

injured ankles were the non-dominant ones and ankle strength were reduced then it follows 
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that there would be no difference between injured and uninjured ankles if the non-dominant 

inv AMS was the greater from the start. 

 

The results of the papers described by  Sekir et al. (2007) highlight the complex nature of the 

muscle actions acting across the ankle. Studies have examined individuals with ankle injuries 

and monitored for subsequent injuries, however, this does not address the question of 

reduced functionality being a consequence of or the reason for the initial ankle injury (Gross 

1987). It may be that certain muscle weakness, for example in concentric inv, predispose an 

individual to injury hence the results shown by Ryan (1994) and Wilkerson et al. (1997). 

Equally research suggests that other muscle actions are weakened because of injury as 

concluded from the results of Willems et al. (2002) and Y. Yildiz et al. (2003).  

 

This inconsistency within the conclusions of the papers would be resolved if results could be 

compared to reference values. By comparing the results to reference values it could be 

ascertained if unilaterally injured individuals have weaker muscles bilaterally. The effect of 

ankle injury on AMS could also be determined with comparison to a reference value. 

Unfortunately reference values are not available for inv and eve AMS. Furthermore, analysis 

of the papers described by Sekir (2007) indicate that the protocol used to measure AMS 

varied from paper to paper. Variations in the protocol used to generate AMS will alter the 

outcome measure irrespective of strength (this will be discussed in detail in Chapter 3). 

Variability in the protocols suggests results may not be comparable which is consistent with 

the contradictory results. Hence, it is also argued that standardisation of testing is needed to 

allow comparison of results to reference values. 

2.2.5.2 Plantar flexion and dorsiflexion strength 

Delahunt’s (2010) definition of giving way suggests instability injuries are a result of going 

over in a lateral movement. As the inv and eve muscle groups control this action it is these 

that ankle stability research has focussed on. There are, however, a number of papers that 

have examined PF and DF strength in terms of stability at the ankle. In a case – control study 

Fox et al (2008) demonstrated reduced eccentric PF strength in twenty individuals with a 

history of FAI compared to a healthy control group. They argued that this could be due to 

damage of the muscle as a result of the initial injury or reduced post injury motor unit 

excitability. However, they did not find any difference between the injured and uninjured 

side of the FAI group. This suggests that both ankles were weaker to start with and as such 
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susceptible to injury compared with the healthy controls. Furthermore these results also 

suggest that the ankle injury did not cause a drop in muscle strength. Use of reference values 

would have been beneficial to clarify the results, particularly in determining if the healthy 

ankles were inherently weaker in the affected individuals.  

 

As discussed previously there are several muscles involved in PF and DF as well as inv and 

eve. For example tibialis anterior is involved with DF as well as inv, the peroneals are 

involved with eve as well as PF. Because of this dual role there is likely to be some correlation 

between strength of the PF and DF and lateral ankle stability. However, because the roles of 

the inv and eve muscles in PF and DF are minor then it is likely that any significant 

correlation, for example between peroneals and stability, could be masked by the strength 

of the gastrocnemius or soleus.   

2.2.6 Evaluation the effects of disease on AMS 

There are a number of diseases that affect the ability of the muscles which act across the 

ankle to produce functional movement. Durmus et al. (2010) demonstrated reduced PF and 

DF strength in twenty-four patients diagnosed with Parkinson’s disease. They observed that 

muscle weakness was related to the clinical severity of the disease as assessed using the 

Unified Parkinson’s Disease Rating Scale. Furthermore, fall risk, as determined by self-

reported number of fall events in the last 6 months, was also found to be related to muscle 

weakness. These relationships were determined using a mean average of hip, knee and ankle 

muscle strength; however, they also demonstrated that both ankle PF and DF concentric 

strength was significantly reduced in Parkinson’s patients. No comment was made as to 

whether the individual hip, knee and ankle measurements were individually related to fall 

risk or clinical severity.  However, these results suggest that reference values could be used 

to determine the extent of the disease.  

 

The use of muscle strength to assess the extent of disease activity was demonstrated by 

Schiottz-Christensen et al. (2001) in patients with Rheumatoid arthritis. They studied thirty-

six females diagnosed with classic rheumatoid arthritis over a 1 year period and isokinetic 

muscle strength was measured five times during this period. From the results they 

concluded that isokinetic muscle strength was a valid measure of disease activity and could 

be used to describe the degree of disability in patients. While this research examined muscle 

strength at the knee, Valderrabano et al. (2006) also found a decrease in strength associated 
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with disease when they examined PF and DF strength in fifteen osteoarthritis patients. If 

reference values for healthy individuals or individuals diagnosed with mild to severe forms 

of a disease were available then it would be possible to assess the clinical severity of the 

disease with a single test.  

 

Charcot-marie-tooth disease (CMT) is a neuropathic disorder which produces atrophy and 

weakness in distal muscles, particularly the muscles involved in DF (Burns, Ryan, & Ouvrier, 

2009). In a case study by Burns, Raymond, and Ouvrier (2009) it was demonstrated that 

ankle strength training in a 15 year old girl significantly improved PF and DF muscle strength 

which resulted in improved walking ability in terms of cadence, step length, step time and 

speed. Again, reference values would enable clinicians to plot the course of the disease in 

patients with CMT and monitor improvements due to AMS training interventions. 

 

Similar arguments for the benefits of reference values can be put forward in other areas. For 

example Ng, Lo, and Cheing (2014) used the Cybex Norm to measure AMS in eighty-five older 

adults with type 2 diabetes. They were investigating the factors affecting mobility as 

measured by a timed up and go test. They found that concentric PF and DF AMS correlated 

significantly with the time it took to stand up, walk 6m and sit back down again. The 

availability of reference values would allow a minimum level of AMS for mobility to be 

known, thus allowing clinicians to know if mobility could be improved by increasing AMS. 

 

Johansen et al. (2003) demonstrated a drop in DF strength in thirty-six patients undergoing 

haemodialysis compared to healthy controls; P.-Y. Lin, Yang, Cheng, and Wang (2006) 

investigated the relationship between isometric PF and DF strength and gait velocity in sixty-

eight stroke patients. They found that reduced gait velocity in stroke patients was due to a 

drop in DF strength;  Engsberg, Ross, and Collins (2006) determined that increasing PF and 

DF strength in children with Cerebral Palsy improved function, gait speed and quality of life 

as determined by the PedsLQ questionnaire. In all of these medical conditions the availability 

of reference values would aid clinicians in either determining the severity of disease or 

setting rehabilitation targets. Section 1.2.1.1 discussed the role of AMS in prediction of falling 

episodes. From the arguments outlined above it may also be possible to use AMS reference 

values to assess the risk of falling in arthritis patients, diabetic patients, haemodialysis 
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patients, stroke patients and patients with any disease that affects AMS and so initiate 

preventative treatment.  

 

In addition to the above there are instances in the published literature where the availability 

of reference values would add clarity to the results. For example Gigante et al (2008) used 

isokinetic testing for the measurement of Achilles strength (determined by PF AMS) post 

Achilles rupture repair. They compared three approaches to the management of an Achilles 

rupture: conservative treatment where a cast is worn to immobilise the joint in maximal PF, 

open surgical repair and percutaneous surgical repair. Testing the strength of the Achilles 

post repair was an appropriate outcome measure as it is the strength of a tendon that is 

crucial to normal operation. They concluded that percutaneous repair produced the best 

results but did not state whether PF AMS in any of the experimental conditions had returned 

to ‘normal’. The availability of a reference value for PF strength would have enabled the 

researchers to assess how effective each method was in terms of returning the Achilles to 

‘normal’ function as measured by AMS PF magnitude. Urguden et al (2010) used Cybex Norm 

to measure concentric inv and eve as an indicator of ankle sprain rehabilitation. AMS was 

tested before and 1.5 months after the rehabilitation period. There was a significant increase 

in strength after the training period in both the injured and uninjured ankles indicating that 

the rehabilitation increased strength. However, there was no significant difference in 

strength between the injured and uninjured ankles either before or after the rehabilitation. 

It was, therefore not possible to ascertain if both ankles were weak to start with and it was 

chance that only one was injured. In both of these studies if relevant AMS reference values 

were available it would be possible to determine if there was muscle insufficiency in both 

ankles prior to the rehabilitation period as well as whether the ankle was fully rehabilitated 

by the end of the study.  

2.2.7 Prediction of performance in athletic populations 

The previous sections have discussed AMS reference values in terms of predicting injury, 

assessing the effectiveness of rehabilitation and the severity of disease. It is also possible 

that measurement of AMS may be useful in the prediction of performance. For example 

Nesser et al (1996) examined the relationship between lower limb strength and sprint speed 

using a regression analysis. They identified concentric DF and 10m sprint time as predictors 

of 40m sprint performance. In a computer simulated model Cheng (2008) stated that the 

ankle as well as the knee were the most important joints in generating jump height. 
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Koutsioras et al. (2009) demonstrated a correlation between concentric PF strength and long 

jump performance but only in a combined group of males and females. When the genders 

were separated there was no such correlation. From this it could be concluded that the 

correlation between strength and jump performance was not causative but was due to males 

being stronger and able to jump further than females.  

 

The evidence presented here suggests there is some relationship between AMS and 

performance in sport. The availability of reference values would allow researchers to 

identify relationships between AMS and performance as well as providing targets for 

individuals for performance optimisation. Screening for potential athletic capability may 

also be possible. Schemes such as ‘Sporting Giants’, ‘Power2Podium’ and ‘Fighting Chance’ 

have been used to screen athletes for beneficial physiological characteristics. Based on the 

results of the screening athletes have been directed towards sports to which they are 

physiologically suited (Sport, 2012). If there is a relationship between AMS and athletic 

performance, using AMS reference values to help determine the athletic potential of 

individuals would be of benefit to the screening process. 

 

2.3 Isokinetic Dynamometry 

Measurement of isokinetic movement has been available since the late 1950s with the first 

speed controlled device, the Cybex 1, introduced by Perrine in 1967. Since then there have 

been many adaptations and modifications designed to improve the accuracy and reliability 

of the equipment. Major recent advances have been the introduction of brush motors and 

improved force transducers which increase the accuracy of the readings and improved 

algorithms within the software which reduce noise and artefact. Torque measurement has 

increased in sophistication from model to model and the Cybex Norm with Humac 2009 

software can be considered the industry standard (Whimpenny, 2011). Humac bought the 

system in 2003 and rebranded it the Humac Norm. Although other isokinetic dynamometers 

are available such as the Biodex System 4, the KinCom, Con-Trex or the Lido active, the 

Humac (Cybex) Norm was ranked highest for measuring and improving performance in an 

independent poll of 30,000 isokinetic equipment users (Whimpenny, 2011). For this reason 

it is the dynamometer that will be used in this research. There are many papers which have 

demonstrated the reliability, reproducibility and validity of isokinetic testing using the 
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Cybex Norm as well as other isokinetic dynamometers. It is these papers that will be 

discussed in this section.  

2.3.1 Inter model reproducibility 

Dynamometers generate torque readings by measuring application of torque around a 

central point. The distance from the central point to the point where force is applied will 

affect the torque produced. The further from the centre the force is applied, the greater the 

torque produced. Thus, any variation in the adapter that attaches the limb to the equipment 

will affect the torque produced. This would account for the results in an experiment by 

English et al. (2011) who compared AMS measurements between the Cybex Norm and 

MARES (muscle atrophy and research exercise system). They found that both systems 

provided reliable results, however, the MARES produced consistently higher values and as 

such had poor agreement with the Cybex Norm. Bardis et al (2004) demonstrated the Com-

Trex MJ and Cybex Norm dynamometers produced consistently different results when 

testing knee extension and flexion at 60°/s and 180°/s in thirty-five males. Conversely Cotte 

and Ferret (2003) found a significant difference between the Com-Trex MJ and Cybex Norm 

dynamometers when testing knee flexors at 180°/s but no difference when testing extensors 

at the same speed. They also found no difference between machines when testing knee 

extensors and flexors at 60°/s. The reasons for the differences in results between these two 

papers are not clear as both papers tested at the same speed and used similar protocols. One 

reason may be, although the distance between the centre of the axis of motion and the 

application of force was standardised in both papers, each paper standardised the 

positioning in a different way. For instance Cotte and Ferret (2003) positioned the tibial pad 

0.3m from the centre of the axis of movement of the knee. This does not take the limb length 

of the participants into account, whereas Bardis et al. (2004) positioned the tibial pad one 

finger width above the lateral malleolus. It is possible that the variations in limb length 

skewed the data which may account for the differences in conclusions. The arguments 

presented here suggest that, providing the same protocol is used and particular attention is 

paid to the setup of the equipment and the positioning of the participant, the reference 

ranges produced by one machine would be relevant to users of other isokinetic 

dynamometers. 
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2.3.2 Intra model reproducibility 

The popularity of the Cybex Norm described by Whimpenny (2011) means reference values 

generated using this equipment would be valuable in a range of areas. The Cybex Norm 

produces repeatable peak torque results when used to measure muscle torque across many 

joints in the body. For example Impellizzeri, Bizzini, Rampinini, Cereda, and Maffiuletti 

(2008) performed a test-retest reliability study on eighteen physically active healthy 

subjects. They found the Cybex Norm to be reliable when testing concentric and eccentric 

knee flexion and extension. Other papers have found the Cybex Norm to be reliable when 

measuring peak torque around various joints. These include knee extension and flexion in 

cancer patients (Wilcock et al., 2008), trunk extension and flexion (Karatas, Gögüs, & Meray, 

2002), eccentric hip adductor (but not concentric and eccentric hip flexors, suggested as the 

result of the unfamiliar movement needed to produce torque) (Emery, Maitland, & 

Meeuwisse, 1999). In terms of AMS, Sekir et al. (2008) found concentric and eccentric inv 

and eve peak torque to be a reliable measurement on the Cybex Norm when testing at 

120°/s. Laughlin et al (2009) used the Cybex Norm to assess test-retest reliability of 

isokinetic knee, ankle and trunk extension and flexion concentrically and eccentrically. They 

found all of the measures to be highly reliable apart from concentric ankle DF. They 

explained this result as a consequence of lack of variability in DF strength between subjects 

as opposed to a limitation of the dynamometer. van Cingel et al., (2009) also demonstrated 

test-retest reliability of inv and eve peak torque using the Humac Norm isokinetic 

dynamometer. A review of the literature indicated that not all eight measures of AMS have 

been tested for reliability using the Cybex Norm. A test-retest experiment described in 

Chapter 4 demonstrates the reliability of this piece of equipment in concentric and eccentric 

PF, DF inv and eve. 

 

2.4 Conclusion 

The review of the literature presented here indicates that AMS is indeed and important 

measure in terms of research, clinical and sporting applications and reference values would 

be useful in each of these fields. It can also be concluded that isokinetic dynamometry and 

specifically the Cybex norm isokinetic dynamometer is an appropriate reliable and popular 

measurement tool. 
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3. A study on the need for reference values for AMS 
 

The previous chapter concluded there is a need for information on reference values for AMS 

due to their relevance to ankle injury and rehabilitation. It was further concluded that the 

Cybex Norm is a popular and reliable piece of equipment with which to test ankle strength. 

These conclusions give a clear rationale for further investigation of AMS reference values 

produced using the Cybex Norm Isokinetic Dynamometer. This chapter will identify studies 

within the literature that have used the Cybex Norm to measure ankle strength. These 

studies will then be analysed to determine the current understanding of reference values for 

AMS. A summary of the process and findings of this research has been published in Fish, 

Milligan, and Killey (2014). 

 

3.1 Literature Search  

3.1.1 Rationale for the search 

As stated in section 2.1 several studies have produced AMS reference values. At the time of 

embarking on this doctoral study Danneskiold-Samsøe et al. (2009) had suggested that 

reference values had not previously been published and produced reference values for the 

wrist, elbow, shoulder, trunk, hip, knee and ankle using the Lido Active isokinetic 

dynamometer. Harbo et al. (2011) stated that an evaluation of all major muscle groups both 

isometrically and isokinetically had not been performed before in the same population and 

went on to produce reference values for the hip, knee, ankle, shoulder, elbow and wrist using 

the Biodex System 3 PRO isokinetic dynamometer. However, as previously discussed, 

differences in measurements between dynamometers means any reference values produced 

are specific to that machine. Therefore, reference values relevant to the appropriate 

dynamometer should be used when making comparisons. 

 

The previous chapter indicated that a number of studies have used the Cybex Norm to 

measure AMS. However, a brief review of the literature revealed no reference values for AMS 

have been produced using the Cybex Norm. Thus, an in-depth narrative review was 

necessary to determine this was true across all of the literature. 
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3.1.2 Search methodology  

This chapter describes a narrative review based on the principles of a systematic review 

which was performed to identify those studies which have measured AMS in terms of peak 

torque using the Cybex Norm. Traditional reviews of academic literature aim to give an 

overview of certain aspects of research. The systematic review is increasingly replacing 

traditional reviews as a way of summarising research evidence (Hemingway & Brereton, 

2009). This type of review systematically identifies previous work using defined criteria. A 

systematic review incorporates a protocol that justifies the search process and analysis. This 

transparency allows the reader to assess whether all of the relevant literature has been 

covered and identify any potential bias in the analysis process. It attempts to apply the same 

level of rigour to reviewing research evidence as was used conducting the studies 

(Hemingway & Brereton, 2009). In this thesis a narrative review was performed using the 

principles of a systematic review. The difference between a systematic review and the 

narrative review performed here is the number of researchers undertaking the review. A 

systematic review will typically employ multiple researchers to assess whether potential 

papers meet the inclusion criteria for the search. The nature of a PhD means that only one 

researcher undertakes the literature review. However, because the remaining principles of 

a systematic review were followed, the review process was rigorous and the data gathered 

was a true reflection of the level of research into AMS using the Cybex Norm. 

 

Green et al. (2011) suggested that for a systematic review to be considered robust and to be 

able to draw meaningful conclusions from the data gathered, it must itself satisfy a number 

of criteria including: 

 1. A clearly stated set of objectives with pre-defined eligibility criteria for studies; 
 2. An explicit, reproducible methodology; 
 3. A systematic search that attempts to identify all studies that would meet the eligibility 

criteria; 

(Green et al., 2011) p.6 

Each of these criteria represents a separate step in the review process and is concerned with 

the thoroughness of the search. These principles will be followed here. 
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3.1.3 Objectives of the search and eligibility criteria 

The objective of the narrative review was to identify those studies which have measured 

AMS in terms of peak torque (PT) using the Cybex Norm. Paper inclusion criteria consisted 

of a defined dynamometer (Cybex Norm) for the assessment of strength using concentric or 

eccentric active isokinetic PF, DF, inv or eve. For a paper to be considered it must have 

present data from healthy adults as part or all of the population tested. The search was not 

restricted to one experimental type, as the outcome measures listed above could come from 

multiple experimental designs. 

3.1.4 An explicit, reproducible method for a systematic search 

The academic literature databases searched were chosen based on their coverage of relevant 

topic areas. This process was described by Fish et al. (2014): 

 

 In order to access the maximum number of papers six electronic databases were 

 searched and three academic search engines used. Four of these six databases could 

 be searched through the National Library for Health website (NICE, 2011), thus 

 allowing the automatic elimination of duplicate results from these databases. These 

 were MEDLINE, EMBASE (Excerpta Medical Database), CINAHL (Cumulative Index of 

 National Allied Health Literature) and AMED (Allied and Complimentary Medicine). 

 The span of the search was January 1995 (when the Cybex Norm Isokinetic 

 Dynamometer was first introduced) to August 2015. The remaining two of the six 

 databases, namely Science Direct (ScienceDirect, 2011) and Pubmed (PubMed, 2011) 

 were searched outside of the National Library for Health website. Three academic 

 search engines were also used; Summon (Summon, 2011), a search engine used in 

 some higher education institutions which provides access to scholarly material; The 

 Web of Science (WebofScience, 2011) and Google Scholar (Google, 2005). Manual 

 removal of duplicate papers was necessary from these five resources. 

 

The search terms determine the number of journal papers found. If a general term is used 

for example ‘ankle’ then a large number of papers will be returned.  As Fish et al. (2014) 

explain: 

 To identify studies likely to meet the eligibility criteria the terms ‘Cybex’, ‘norm’, 

 ‘isokinetic’ and ‘ankle’ were used to search the databases and in the search engines. 



54 
 

 There are a number of different isokinetic dynamometers such as Kin-Com, Biodex 

 and Lido so the term ‘Cybex’ was used to limit the search to the relevant machine. 

 There is a large amount of physiological testing equipment under the Cybex brand 

 and a number of older versions of the isokinetic dynamometer (CSMi, 2005c). To 

 isolate the specific piece of equipment the term ‘norm’ was also used. The National 

 Library for Health website (NICE, 2011) and Google Scholar allows quotation marks 

 to enable searching for exact phrases. “Cybex Norm” was used to determine only 

 papers which contain this phrase.  

 

The Boolean phrase AND (which ensures only papers containing all of the search terms are 

returned) was used to include the search terms ‘ankle’ and ‘isokinetic’ to discount unrelated 

research concerning the shoulder, elbow, wrist, hip and knee as well as isometric and 

isotonic tests. The search terms ‘”Cybex Norm” AND ankle AND isokinetic’ would ensure only 

papers in the database that contained all of these terms would be returned. One of the 

potential failings of a traditional review is the absence of a search protocol. If the review is 

not explicit regarding the selection and assessment of the papers included it is not possible 

for the reader to assess if selection, publication or the reviewers’ personal bias has 

influenced the review process (Hemingway & Brereton, 2009). 

3.1.5 Systematic search results 

The objective of this narrative review was to identify those studies which have measured 

AMS using the Cybex Norm. The six databases were searched using the search term ‘”Cybex 

norm” AND isokinetic AND ankle’, the same search terms were entered into the three 

academic search engines. The results of the searches are shown in Table 3-1. 
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Table 3-1  

Search engine and database search results for journal papers using the search term ‘”Cybex 

norm” AND isokinetic AND ankle’ 

Database or search engine used 

 

Number of 

papers found 

Medline, EMBASE, CINAHL, AMED 14 

Pubmed 14 

Science Direct 79 

Summon 147 

Web of Science 5 

Google Scholar 678 

 

3.1.6 Application of eligibility criteria 

Table 3-1 indicates that the search of the literature found 937 papers. The titles and abstracts 

of all the papers, and where necessary the full paper, were examined to ascertain whether 

they met the eligibility criteria described in the previous section. The Science Direct results 

are discussed here to illustrate this process as they were typical of the results across the 

databases. Of the seventy-nine results from Science Direct only seven were accepted. Forty-

eight did not test the ankle, one did not measure PF or DF strength, nine did not contain data 

from healthy participants, one was a review paper, one did not use the Cybex Norm, three 

did not measure strength, five were did not measure isokinetic strength, and five were not 

journal papers and had no relevance to this search. Although only one reason for rejecting 

each of the papers is listed here many of the papers were discounted as they failed to meet 

multiple eligibility criteria. An overview of the application of the eligibility criteria is shown 

in Figure 3-1. 
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Figure 3-1 A flow chart showing the number of papers at each stage of the search process 
based on Fish et al. (2014). 

Application of the eligibility criteria resulted in 801 papers being rejected. Of the remaining 

136 papers seventy-six were duplicates leaving sixty papers which have used the Cybex 

Norm to measure AMS. 

 

3.2 Meta-analysis of control populations 

A meta-analysis is the synthesis of results from two or more separate studies.  This is often 

used to produce a synthesis of the findings in the studies identified in a systematic or 

narrative review. In this way the statistical power of the data increases and patterns can be 

identified which may not be evident when analysing smaller populations (Deeks, Higgins, & 

Altman, 2011). Of the sixty papers which have used the Cybex Norm to measure AMS there 

was no single paper which set out to produce reference values, however, many of the papers 

measuring AMS in specific populations have compared their findings to a control group. The 

control group provides reference values for that specific population so a meta-analysis 

combining the results of several control groups could produce reference values for a wider 

population. However, before this was done it was necessary to determine the homogeneity 

of the data, i.e. to ensure the populations used to collect the data from are comparable. 
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Appendix 2 shows each of the sixty papers in terms of the experimental and control 

populations. It has been demonstrated that changes in population demographics such as 

gender and age can affect the amount of torque produced (Danneskiold-Samsøe et al., 2009). 

The graph in Figure 3-2 shows the breakdown of populations described in Appendix 2 in 

terms of age and gender. For reference values to have sufficient external validity a large 

amount of data should be considered. Significant numbers of a single gender were only 

tested in the under 18 years, 18 – 29 years and 50-59 years, 60 – 69 years and 70-79 years 

age ranges. As such reference values could potentially be produced by combining the data 

for these studies. 
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Figure 3-2 A graph showing the numbers of males and females tested in each of the age groups. 
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Keating and Matyas (1996) investigated measurement of extremity muscles across 200 

papers and concluded that both the subject and test design had a large influence on the 

outcome measures. As such each of the papers which used the Cybex Norm to measure AMS 

were studied and the test design examined in detail. Each paper discussed its own 

methodological variables. When comparing these variables between papers it became 

apparent that there were eight common methodological variables. These were: position of 

the body, degree of knee flexion, warm up procedure, contraction type and speed, the 

number of sets and repetitions used, foot dominance, feedback and encouragement and the 

experimental population. Appendix 3 describes the sixty research papers which used the 

Cybex Norm to measure AMS in terms of these key variables. The influence of these variables 

on AMS peak torque production will be discussed in the following chapter with a view to 

producing a reliable protocol with which to produce reference values. 
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4. Analysis of the methods used to measure AMS using the Cybex 
Norm isokinetic dynamometer 

 

The previous chapter described a systematic review of the literature that identified a limited 

number of studies that used the Cybex Norm isokinetic dynamometer to measure AMS. The 

search revealed zero studies that produced AMS reference values. Furthermore a meta-

analysis found that it is not possible to produce AMS reference values from these papers due 

to the variations in population and experimental protocols used. Hence, the key variables 

that affect the measurement of AMS derived from these papers will be presented and 

discussed in detail. The conclusions drawn from this discussion will be used as justification 

for the recommended data collection method described in Chapter 4. This chapter will also 

discuss the statistical methods used in the literature to produce reference values from a 

given set of data and discuss the effects these methods have on the resulting values. 

 

4.1 Discussion of the key variables 

Analysis of the papers identified in the previous chapter revealed eight key variables which, 

if altered, may affect the AMS outcome measures. These eight key variables are: body 

position, degree of knee flexion, warm up procedure, contraction type and speed, the number 

of sets and repetitions, foot dominance, feedback and encouragement, and the population 

tested. These variables will be discussed in detail here. 

4.1.1 Body position 

The table in Appendix 3 indicates that out of the forty papers which measured PF and / or 

DF eleven tested the participant in a prone position, twenty-two in a supine position and 

seven did not state the position or indicated that a ‘standard positioning’ was used. Seymour 

and Bacharach (1990) found that when using a Cybex II+ to measure ankle PF there was a 

significantly lower peak torque produced in a prone position compared to a supine position 

at 0°/s (50.22ft lbs compared to 31.00ft lbs P < 0.05) and at 30°/s (55.22ft lbs compared to 

39.00ft lbs P < 0.05). As they used the Cybex II+ and not the Cybex Norm isokinetic 

dynamometer it is difficult to draw an exact comparison. However, due to the lack of 

empirical evidence using the Cybex Norm as described in the previous chapter, it is 

necessary to infer the effect of an alteration in body position from a closely related protocol. 

Thus, it can be concluded that a meta-analysis combining data from different papers and any 
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reference values produced should consider the position of the participant on the Cybex 

Norm. 

Inv and eve strength were measured in a supine position in all of the studies identified in 

Chapter 2. The relative position of the dynamometer and the chair make it impossible to 

perform this test in a prone position. The prone position is possible when testing PF or DF; 

however, due to the ergonomics of the Cybex Norm when the participant is in the prone 

position, it is necessary for the leg to be straight and so the knee is at 0°. In the supine position 

the knee can be flexed which is beneficial for the accuracy of AMS data collection. This will 

be discussed in the next section. As this thesis is concerned with PF, DF, inv and eve is it 

recommended that a supine position is used for all tests as this would allow the knee to be 

flexed, reduce the test time and standardise the visual field for each participant. 

4.1.2 The degree of knee flexion 

Research has indicated that altering the degree of knee flexion will alter the amount of AMS 

peak torque produced. The degree to which AMS peak torque is altered depends upon the 

aspect of AMS being measured and the angle at which the knee is flexed (Lentell, 1988; 

Wakahara, Kanehisa, Kawakami, & Fukunaga, 2009). Twenty-four of the papers, described 

in Appendix 3, that measured PF and DF placed the leg in a straight position described 

variously as 0°, 180° or ‘straight leg’. This included the papers that measured peak torque in 

a prone position which necessitates full extension of the knee. The gastrocnemius is a two-

joint muscle acting over the knee and the ankle joint. Extending the knee stretches the 

muscles involved in PF and reduces ROM as the DF displacement angle is reduced (Souza, 

Fonseca, Gonçalves, Ocarino, & Mancini, 2009). This limit of movement of agonist by the 

antagonist as it stretches over a joint is termed ‘passive insufficiency’ (Lehmkuhl & Smith, 

1983p.133). PF peak torque occurs at near full DF (Billot, Simoneau, Ballay, Van Hoecke, & 

Martin, 2011) so the passive insufficiency caused by fully extending the knee may limit 

development of peak torque during a concentric contraction. However, during an eccentric 

contraction, the increased tension in the PF muscles as a result of extending the knee 

produces higher peak torque compared to a flexed knee as demonstrated by Wakahara et al. 

(2009). When measuring Achilles tendon force (calculated as PF peak torque divided by the 

moment arm of the tendon) with the knee in full extension (0°) compared to the knee flexed 

at 90° they found that the tendon force (and so PF torque) increased from 2.7kN (±0.7 SD) 

to 3.7kN (±0.8 SD); (P < 0.05) indicating the knee in full extension produced more eccentric 

torque. To avoid the problems of passive insufficiency the leg could be flexed. Twelve of the 
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papers identified in Chapter 2, which tested PF or DF, did so with the knee fixed in a flexed 

position. Stabilising the knee in a flexed position when testing PF and DF would allow the full 

ROM but could also allow recruitment of the quadriceps and so give an artificially high peak 

torque reading. Another factor which must be acknowledged is the possible effect of active 

insufficiency. Active insufficiency occurs when the muscle fibres are too short to produce a 

noteworthy contractile force per the sliding filament theory, an example of this would be the 

gastrocnemius when the knee is fully flexed. As previously discussed, the gastrocnemius acts 

across both the knee and ankle joints, when the knee is fully flexed the gastrocnemius is 

shortened and so has a reduced ability to produce power irrespective of the angle of the 

ankle. (Herzog, 2000). Kennedy and Cresswell (2001) argue that this is due to an increase in 

the motor unit activation threshold in the shortened muscle fascicles. As this will affect the 

amount of PF torque an individual can produce, the occurrence of active insufficiency is a 

further argument for stating the angle at which the knee is fixed. Fifteen of the papers 

identified in Chapter 2 did not state the angle at which the knee was fixed suggesting either 

a lack of robustness in the research or that the authors of these papers did not think that 

knee angle was a relevant factor.  

 

In terms of inv and eve, due to the design of the Cybex Norm it is not possible to use the 

Cybex Norm chair to measure inv and eve AMS with the knee in full extension. Because of 

this, with the exception of van Cingel et al. (2009), all of the papers that have tested inv and 

eve peak torque using the Cybex Norm have done so with the knee flexed between 80° and 

110°. Instead, van Cingel et al. (2009) tested ankle inv and eve using the Cybex Norm with 

the knee fixed at 10°. In order to achieve this a bench was used instead of the Cybex chair to 

raise the participants to a sufficient height allowing the testing. Based on the findings of 

Lentell (1988), van Cingel et al. (2009) stated 10° of flexion was the most appropriate angle 

as it minimised use of the hamstrings and also minimised tibial rotation in inv and eve. 

Lentell (1988) demonstrated a significant (P < 0.05) increase in inv and eve peak torque 

when the ankle of the knee was changed from 10° flexion to 70° flexion when testing on the 

Cybex II. (Actual data was not given on this paper, however, it was stated that when changing 

between 70° and 10° knee flexion there was a 25% and 29% drop in inv peak torque when 

testing at 30°/s and 120°/s respectively. There was also a 24% and 37% drop in eve peak 

torque when testing at 30°/s and 120°/s respectively). When testing inv and eve it is possible 

that flexing the knee could allow the recruitment of other muscle groups, for example the 
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hamstrings, which would lead to an over estimation of muscle strength. Indeed, they had 

recorded an increase in the electromyography (EMG) activity of the hamstrings and 

concluded that it was the activity of the hamstrings that lead to the increase in torque 

production. However, the EMG activity was only measured in five of the twelve participants 

due to lack of time. With such small numbers it is hard to draw definite conclusions regarding 

the relationship between the EMG activity and AMS. Furthermore, there was no significant 

increase in the EMG activity in one of the AMS measures (eve at 120°/s) yet there was still 

an increase in torque production. The EMG signal would be produced if the knee was stable 

and the hamstring muscles were acting isometrically but this would have no direct impact 

on the amount of torque produced. In order for the participants to be positioned with the 

knee flexed at 10° whilst performing the inv and eve test it was necessary for them to be sat 

on a separate bench. For the hamstrings or quadriceps to be recruited there would need to 

be some movement at the knee. The design of the knee support for the Cybex Norm allows 

the knee to be completely fixed so the muscles acting across the ankle can be isolated. This 

is necessary as the design of the chair and relative position to the dynamometer means it is 

not possible to test inv or eve with the knee at 0° without excessive PF. One of the major 

advantages of the Cybex Norm is the fixed chair and dynamometer ‘in line’ design which is 

considered the industry standard (Whimpenny, 2010). Altering this by using a stand-alone 

treatment couch could affect the stability of the leg as the purpose built knee and hip 

restraints could not be used and so peak torque values produced may be compromised. The 

effect of using the added bench for testing with the knee flexed to 10° and the Cybex chair 

for testing with 70° knee flexion is not commented on by either Lentell (1988) or van Cingel 

et al. (2009) but further investigation would reveal if this contributed to the difference AMS 

between the degrees of knee flexion. Whilst it is clear that Lentell (1988) produced a 

statistically significant difference in peak torque values it is not clear if the differences were 

clinically significant. If a Cohen’s d test were performed then the effect size of the difference 

in torque could be assessed; however, this was not provided in the paper and is not possible 

to calculate with the data given. Nevertheless, the use of additional equipment including a 

separate bench adds another extraneous variable which should be avoided. 

 

As the discussion above suggests the literature is unclear as to whether altering knee angle 

will significantly affect all measures of AMS. To that end, Chapter 6 describes an experiment 

using the Cybex Norm to compare the effect of altering the angle at the knee on the eight 
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measures of AMS discussed in this thesis, including the use of a bench to allow measurement 

of inv and eve with 10° knee flexion. The results of this experiment indicated a significantly 

greater concentric and eccentric PF AMS peak torque was produced with the participant in 

long sitting with the knee fixed at 10°. To the author’s knowledge this experiment has not 

been published previously and so it was not possible to compare these findings. It was 

observed through the testing that the participants were able to push back against the chair’s 

backrest to generate extra force with the knee fixed at 10°. With the knee fixed between 80° 

and 110° this was prevented from happening by the knee support. It was concluded that this 

was the reason for the higher peak torque produced with the knee fixed at 10° and therefore 

PF and DF AMS testing should be undertaken with the knee flexed between 80° and 110°.  

 

The results also demonstrated that fixing the knee at 10° produces significantly lower 

concentric inv and eve as well as eccentric eve compared to that produced when the knee is 

fixed between 80° and 110°. These results are in agreement with the data produced by 

Lentell (1988); however, the Cohen’s d value indicates that the effect size is not large which 

suggests that the size if the difference between the values may not be clinically relevant. The 

paired sample t-test described in Chapter 6 also indicates that there is a significant 

correlation between the two knee angle conditions (10° and 80° – 110°) in concentric and 

eccentric inv and eve. In the production of reference values it could be argued that changes 

in inv and eve AMS would be apparent as long as the reference value was produced with the 

knee fixed at the same angle as the subsequent test. Furthermore, if PF and DF are tested 

with the knee fixed in a flexed position, it would be more efficient to test inv and eve in the 

same manor. 

 

It is clear that any meta-analysis or production of reference values should consider the 

degree of knee flexion used. Based on the results of the experiment described in Chapter 6 

and the observations made in its undertaking it is recommended that PF, DF, inv and eve 

testing should be performed with the knee fixed between 80° and 110°. It is acknowledged 

that this may allow for recruitment of the hamstrings resulting in elevated inv and eve torque 

results. However, the question of the clinical relevance of these elevated results coupled with 

the added time needed to participate in the experiment outweigh potential errors. 

Furthermore, the evidence suggests that testing PF with the knee at 10° produces an 

artificially high results. As testing both PF and DF, and inv and eve with the knee fixed at the 
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same angle would further reduce the time needed to perform the experiment then both PF 

and DF, and inv and eve should be tested with the knee fixed between 80° and 110°. 

4.1.3 Warm up procedure 

Several of the papers identified in Chapter 2 described the warm up procedure used prior to 

exercise; these can be split into 3 distinct sub categories, cardiovascular warm up, stretching 

and familiarisation. 

4.1.3.1 Cardiovascular warm up 

A number of the papers identified in Chapter 2 described a cardiovascular warm up. For 

example the participants studied by S. Eyigor et al. (2008) and Sibel Eyigor, Karapolat, and 

Durmaz (2007) ran on a treadmill whereas the participants studied by Gopalakrishnan et al. 

(2010) and Xu et al. (2006) warmed up on a cycle ergometer. For some the rationale for a 

cardiovascular warm up is that exercise would increase the muscle temperature and so 

improve the neuromuscular function and performance (McArdle, Katch, & Katch, 2007). A 

search of the literature found no research pertaining to the effect of a warm up on the 

measurement of AMS. However, when examining reliability of isokinetic strength 

measurements of the elbow and knee, Madsen (1996) found that using a cardiovascular 

warm up had no effect on peak torque measurements. These experiments indicate a warm 

up would not improve the results; however, it could still be necessary in terms of injury 

prevention. Soligard et al (2008) examined the effect of a comprehensive warm up 

programme including 10 minutes of running exercises and 10 minutes of plyometric and 

strength exercises on the incidence of injury in 2540 young female football players. Their 

results indicated no significant difference in match or training injury rate between warm up 

and control groups. Therefore, as there is increased control in the ankle movements used 

when testing AMS compared to those used in football, it can be concluded that a 

cardiovascular warm up is unlikely to prevent injury when testing AMS using the Cybex 

Norm. As the research presented here indicates a cardiovascular warm up would not 

improve performance or prevent injury, this type of warm up is not recommended here. 

4.1.3.2 Stretching 

Five of the papers identified in Chapter 2 used stretching as part of the warm up (Gerodimos, 

Manou, Stavropoulos, Kellis, & Kellis, 2006; Keles, Sekir, Gur, & Akova, 2014; Sekir et al., 

2007; Sekir et al., 2008; Y. Yildiz et al., 2003). However, a review on stretching and its effect 

on performance by McHugh and Cosgrave (2010) stated there is an acute loss of strength 
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after a relaxed muscle has been stretched. This conclusion supports the ankle specific 

research by Rosenbaum and Hennig (1995) and Fowles and Sale (1997) both of whom 

demonstrated that static stretching prior to testing significantly reduced PF peak torque 

production. The rationale for stretching prior to exercise is to reduce injury, however, 

systematic reviews by Herbert and Gabriel (2002) and Tortora and Derrickson (2008) found 

that there was no evidence that stretching prior to exercise did reduce injury. Therefore, it 

can be concluded that stretching prior to strength testing would be detrimental to 

performance and as such is not recommended here. 

4.1.3.3 Familiarisation 

If the participant is not familiar with the equipment then it is possible that they will not 

achieve peak torque due to poor technique. For example, Du Toit, Buys, Venter, and Olivier 

(2004) demonstrated that a familiarisation session was warranted when they tested the 

isokinetic strength of the neck musculature in eighty-one teenagers. They found that the 

peak torque was increased in the second and third session compared to the first session. 

They also found a strong correlation between the results of the second and third sessions 

but not between the first and second. This conclusion is also reflected in the ankle specific 

literature as fifty-one of the sixty papers identified in Chapter 2 use familiarisation sessions 

which involve sub-maximal repetitions of the movement involved prior to the testing. 

 

In conclusion, eight of the papers identified in Chapter 2 did not state whether or not warm 

up exercises were performed and only one of these papers said a warm up was not 

performed (Høiness, Glott, & Ingjer, 2003). In justifying this they cited the work of Madsen 

(1996) who found that using a warm up had no effect on peak torque measurements as 

previously discussed. The evidence presented here suggests familiarisation and stretching 

as part of a warm up both have an effect on peak torque production and so should be 

considered when using a meta-analysis to produce reference values. Based on this evidence 

it is recommended here that a familiarisation session is used but not a cardiovascular or 

stretching based warm up. 

4.1.4 Contraction type and speed 

The type of muscle contraction measured in an experiment will affect the amount of torque 

generated. For example, Keles et al. (2014) demonstrated that eccentric DF and eve were 

greater than concentric DF and eve. Sekir et al. (2007) and Sekir et al. (2008) provided a 
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comparison of concentric and eccentric muscle strength in inv and eve and concluded that 

an eccentric contraction produces greater torque than a concentric contraction. This is an 

important point when considering the implications of published papers. For example, 

Urguden et al (2010) and van Cingel et al (2009) both measured inv and eve strength; 

however, neither paper stated contraction type which limits the usefulness of the 

conclusions drawn. The aim for van Cingel et al (2009) was to examine test-retest reliability 

of ankle inv and eve testing and they concluded that the test was reliable. However, without 

stating whether the test was concentric or eccentric, it is difficult to justify the use of this 

protocol or equipment based on this experiment only. The aim for Urguden et al (2010) was 

to examine the effectiveness of a rehabilitation programme in reversing muscle atrophy, 

proprioceptive loss and slowing of the muscle reflex time after an ankle sprain. Without 

knowing whether concentric or eccentric measurements were taken it is not possible to 

compare the results of this experiment with others which have assessed rehabilitation 

programmes in this way. Similarly nine of the thirty-one papers that measured PF and DF 

using the Cybex Norm did not state whether concentric or eccentric contractions were used. 

Thus, when producing reference values for AMS it is recommended that both concentric and 

eccentric measurements are taken as both are clinically relevant.   

 

The speed at which the muscle contracts will also affect the outcome measures in terms of 

the peak torque. Concentrically, faster contraction speeds produce lower peak torque values 

when compared to slower contraction speeds, conversely slower eccentric speeds produce 

lower peak torque compared to faster speeds. This is explained schematically in Figure 4-1. 

This was demonstrated in a paper by Schulze et al (2002) who measured concentric and 

eccentric PF at 30°, 60°, 120°, 180°, 240° and 300°sec-1. They found that peak torque 

decreased with each increase in velocity. This makes it impossible to generate reference 

values by pooling data from papers which have tested at different speeds. As with the 

contraction type, any method in a paper which investigates a specific population should 

measure at the appropriate speed. For example Li, Xu, & Hong (2009) examined the effect of 

practicing Tai Chi on muscle strength in an elderly population. Tai Chi consists of slow 

controlled movement, to reflect this the strength measurements were taken at 30°/s. 

Conversely, Behrens et al (2010) investigated a rehabilitation programme for short track 

speed skaters after an ankle sprain. To reflect the high speed of the contractions involved 
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short track speed skating them muscle strength tests were performed at 240°/s. However, 

many activities may utilise a range of contraction speeds in the entirety of that task. 

 

 

Figure 4-1 A schematic of the relationship between velocity and the muscle force generated. 

 
Of the papers identified in Chapter 2 the most commonly tested speed was 60°/s for PF and 

DF measurements and 120°/s for inv and eve. Whilst these represent an arbitrary speed for 

testing, research suggests they are reflective of common clinical practice and as such can be 

compared to other studies. Thus, these testing speeds are recommended here.  

4.1.5 The number of sets and repetitions used 

When measuring peak torque it is important to ensure that participants are given the 

opportunity to perform maximally. If participants were given just one attempt at achieving 

peak torque using an isokinetic dynamometer it is unlikely the results would be reliable as 

without practice the movement can be unfamiliar as previously discussed. Equally fatigue 

has been shown to alter muscle strength (Forestier, Teasdale, & Nougier, 2002) so multiple 

attempts at achieving peak torque at one speed or movement type could reduce peak torque 

achieved in subsequent tests. Of the experiments described in Appendix 3, one set of three 

or five repetitions were the most common testing pattern used. When testing PF and DF on 

the Cybex Norm Laughlin et al (2009) showed both concentric and eccentric movements to 

be reliable using one set of five repetitions as determined by a repeated measures analysis 
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of variance (ANOVA) test. However, the statistical analysis showed that concentric DF had a 

lower intraclass correlation coefficient (ICC) score than the other measures. The ICC is a 

method of statistical analysis which quantifies the relative consistency of results, thus 

indicating the reliability of the measurement (Weir, 2005). The low ICC score for concentric 

DF suggests low reliability. Based on the results presented there would have to be an 18.4% 

difference in the peak torque results to be 95% confident that the results were due to 

strength changes and not measurement error. Laughlin et al (2009) concluded that this 

anomaly was due to the lack of variation in DF strength between subjects. van Cingel et al. 

(2009) found the highest reproducibility for inv and eve testing in terms of high ICC and 

small standard error of measurement (SEM) when calculations were based on peak torque 

measurements determined by three sets of three repetitions, compared to a single set of 

three repetitions. The SEM is an indication of expected measurement ‘noise’; a small SEM 

score means a result is very precise (Weir, 2005). The number of sets and repetitions used 

should also be considered when analysing papers in terms of a meta-analysis or producing 

reference values. It is common practice to include a period of recovery time between sets. 

van Cingel et al. (2009) allowed 30 seconds between sets and 5 minutes between speeds. As 

a protocol using three sets of three repetitions with 30 seconds rest between sets has been 

shown to be reliable and precise, these parameters recommended for use here. ICC and SEM 

scores will be discussed in further detail in the next chapter. 

4.1.6 Foot dominance 

There is conflicting evidence regarding the effect of limb dominance on the level of PF and 

DF AMS. Some evidence suggests that there is no difference between dominant and non-

dominant strength at the ankle in terms of PF and DF peak torque (Ersoz et al., 2009; 

Konradsen et al., 1998; Leslie et al., 1990 ; So, Siu, Chan, Chin, & Li, 1994). Whereas 

Theoharopoulos and Tsitskaris (2000) found a significant difference between dominant and 

non-dominant PF peak torque at 60°/s in basketball players. Özçaldiran and Durmaz (2008) 

also found a significant difference between left and right median DF at 30°/s in runners. 

However, they found no such difference in PF at 30°/s or in PF or DF at 120°/s. In swimmers 

they found no significance difference between left and right PF and DF AMS at either 30°/s 

or 120°/s. Both Özçaldiran and Durmaz (2008) and Theoharopoulos and Tsitskaris (2000) 

found, in instances where there were significant differences between left and right, the non-

dominant side was significantly stronger. Each paper concluded that this was a result of the 

activities undertaken by the participants. For example, Theoharopoulos and Tsitskaris 
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(2000) concluded that the non-dominant PF muscles were stronger as basketball players 

jump from the opposite leg to the dominant hand with which they release the ball. Thus 

demonstrating increased use of the PF muscles increases the torque capabilities. Similarly, 

Özçaldiran and Durmaz (2008) concluded that the non-dominant DF muscles are stronger 

in elite sprinters as these bear most of the body mass when the sprinter is in a starting 

position. Again increased use of the muscles increases the torque capabilities. 

Theoharopoulos and Tsitskaris (2000) stated that no differences in PF or DF peak torque 

were evident between dominant and non-dominant ankles in sprint swimmers due to 

swimming being a symmetrical sport.  

 

In terms of inv and eve peak torque the limited literature that is available suggests that there 

is no difference between dominant and non-dominant sides. Of all of the papers that have 

used the Cybex Norm to measure inv and eve muscle strength only van Cingel et al (2009) 

measured strength in both ankles in healthy volunteers. Unfortunately a dominant vs. non-

dominant comparison was not made. However, by using the supplied data to calculate the 

confidence intervals (CI) it can be inferred that there is no significant difference for males or 

females between inv or eve peak in dominant and non-dominant ankles at 30°/s or 120°/s 

(see Appendix 4 for an explanation of this calculation). This inference is supported by papers 

in the literature; for example, Lin et al (2009) concluded there were no differences in inv nor 

eve peak torque between dominant and non-dominant ankles when testing concentric 

strength at 30°/s and 120°/s using a Biodex 3 dynamometer. Similarly, Konradsen et al 

(1998) demonstrated no difference in isometric eve between left and right ankles 6 weeks 

post unilateral ankle injury. They assumed peak torque in the contra lateral ankle was the 

same as the involved ankle pre-injury based on unpublished data cited in the paper.  

 

Of the papers identified in the previous chapter, only eight did not identify whether the left 

or the right ankle was used. However, none of the papers made a direct comparison between 

left and right AMS. The suggestion that there is a difference in specific populations would 

contraindicate the use of both left and right data in a meta-analysis. It is recommended here 

that the dominant ankle is used for testing. In a normal population, based on the evidence 

presented here, a reference value based on the dominant ankle data would be relevant to 

both ankles. In a specific population which may have stronger ankles on one side a 

comparison could be made to normal dominant ankles. 
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There are several ways of determining which limb is dominant, for example Aadahl and 

Jørgensen (2003) used four manipulative tests to identify limb dominance when examining 

limb dominance and type of task. The participants were asked to kick a ball, step on an insect, 

write a word with the foot, and take a step forwards. The majority of the papers identified in 

Chapter 2, where the method of identifying the dominant leg was stated, used the kick ball 

test; Aadahl and Jørgensen (2003) found that 90% of their participants (the same percentage 

that are right handed) used the right foot for this task. Based on this evidence the kick ball 

test is recommended for use here in order to determine foot dominance. 

4.1.7 Feedback and encouragement 

The screen of the Cybex Norm can display torque readings as they happen. This can be used 

as feedback for the participant to try and improve on the last repetition and encourage them 

to improve their score. Verbal feedback may also encourage a greater peak torque; however, 

different people respond differently to verbal encouragement in terms of peak torque 

production (Kannus, 1994). Therefore, standardising verbal feedback so the participants are 

encouraged to the same extent is impossible. Some of the papers described in the previous 

chapter used feedback where others did not, many papers did not state whether feedback 

was used or not. As Kannus (1994) demonstrated the use of feedback can affect AMS 

measures in some people it should be considered when conducting a meta-analysis. Based 

on these results it is recommended here that feedback is not used. 

4.1.8 The Population tested 

It is likely that the demographics of the population tested will affect the AMS peak torque 

produced. As such, this should be considered when performing a meta-analysis or producing 

reference values. Based on an analysis of the population demographics of the papers 

identified in Chapter 2, as well as application of biomechanical principles, the following have 

been identified here as potential independent variables affecting AMS: gender, height, mass, 

age, and shoe size. The literature relating to these variables and reasons for their inclusion 

will be discussed here. A review of the literature revealed little data on the relationship 

between anthropological measures and AMS hence a large proportion of the arguments put 

forward here are based on the findings of Danneskiold-Samsøe et al. (2009) and Harbo et al. 

(2011). Both of these studies tested muscle strength in large numbers of participants from a 

general population (189 and 178 respectively) and so could examine the relationship 

between anthropometric variables and strength. These papers are limited in that while they 
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measured strength across multiple joints, in terms of AMS, each paper only measured 

concentric PF and DF. Where possible other papers have been cited to inform on other AMS 

measures. 

4.1.8.1 Gender 

Whilst it is accepted that males are generally physically stronger than females a search of the 

literature suggested there are a limited number of papers which discuss the differences in 

AMS between genders. The experimental population of Danneskiold-Samsøe et al. (2009) 

consisted of sixty-three males and 126 females. They concluded that women have lower 

muscle strength than men in the upper limb (shoulder, elbow, wrist and grip strength), trunk 

and lower limb (hip, knee and concentric PF and DF). This conclusion was supported by 

Harbo et al. (2011) who also found that males were stronger than females in the shoulder, 

elbow, wrist, hip, knee and ankle (concentric PF and DF) when they compared ninety-three 

males and eighty-five females. Results of a literature search for a comparison of inv and eve 

strength between males and females was limited to one paper. Ersoz et al. (2009) found no 

significant difference in the average eve to inv ratio between forty-seven females and thirty-

two males. However, the actual eve and inv strength scores were not given and the ratio data 

is not enough to assume that there is no difference in strength between genders. If results 

indicated twice the strength in one gender compared to the other in both inv and eve the 

strength ratios would be the same for both genders. 

 

Appendix 2 describes the experimental populations in all of the papers which used the Cybex 

Norm to measure AMS; none of these compared male and female strength. Based on the 

conclusions of Danneskiold-Samsøe et al. (2009), Harbo et al. (2011) and conclusions of the 

general literature that males are stronger than females (McArdle et al., 2007), it could be 

assumed that males are stronger than females in all ankle strength measures, not just 

concentric PF and DF. This may be the reason that all but one of the papers in Appendix 3 

which tested both genders used approximately equal numbers of males and females. Collado 

et al. (2010) is the exception as within their experimental population there was an imbalance 

in genders between experimental and control groups (three women and six men in the 

experimental group compared to eight women and two men in the control group) when 

comparing concentric and eccentric training in rehabilitation of lateral ankle sprains. 

However, the measure of the efficacy of the intervention was a comparison of healthy and 
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injured ankles in the same individual, thus, the gender ratios within the groups were not an 

issue. 

 

Although there is evidence of a difference in concentric PF and DF between genders, this area 

requires further investigation to complete the data. As such, any meta-analysis should be 

gender specific and any investigation into AMS using the Cybex Norm should examine gender 

differences in all eight measures of AMS. 

4.1.8.2 Mass 

When discussing AMS in particular it is reasonable to assume that heavier individuals have 

greater strength as this would be necessary to support and move a greater body mass. This 

assertion is supported by Winegard, Hicks, Sale, and Vandervoort (1996). They performed a 

longitudinal study over 12 years and found that a decline in ankle strength with age was 

related to loss in muscle mass which in turn contributed towards an overall drop in body 

mass in twenty-two older participants. Harbo et al. (2011) suggested that body mass was a 

contributing factor in muscle strength. They produced thirty-six prediction models for 

isometric and isokinetic muscle strength for different movements around six different joints 

including PF and DF. Mass was a significant predictor of muscle strength in twenty-seven out 

of the thirty-six models produced. However, they do not state in which of twenty-seven 

models mass is a predicting factor. Thus, their evidence of the extent to which mass predicts 

PF and DF is not clear. Danneskiold-Samsøe et al. (2009) concluded that female but not male 

‘lower extremity’ muscle strength (a combination of measured strength in the hip, knee and 

ankle) was dependent upon mass, thus, it is not possible to draw specific conclusions from 

their data regarding the relationship between ankle strength and mass.  

 

The relationship between AMS and mass is complicated by the relationship between mass 

and gender. Janssen, Heymsfield, Wang, and Ross (2000) assessed the anthropometric 

characteristics of 268 males and 200 females and found males to be significantly heavier 

than females (P<0.01). According to UK government statistics the average English female 

weighs 70.2kg whereas the average English male weighs 83.6kg (Matheson, 2010). 

Therefore, the variation in AMS between genders may be due to differences in mass. Due to 

the limited nature of the current evidence concerning the relationship between AMS and 

mass, any investigation into reference values for AMS should include this variable as well as 



75 
 

considering the relationship between mass and gender. Any meta-analysis performed would 

also need to control for these inter-relationships. 

4.1.8.3 Height 

Research by Harbo et al. (2011) suggested that strength increases with height. Their data 

showed that whilst height did contribute to the variation in muscle strength, statistical 

significance of this contribution was only demonstrated in thirteen out of the thirty-six 

models previously discussed. They do not state which thirteen models include height so it is 

not clear if height was a significant predictor of PF or DF specifically. Danneskiold-Samsøe et 

al. (2009) did not find a significant correlation between ‘lower extremity’ strength and 

height, but again, as the ankle data was combined with other data, it is not possible to draw 

conclusions regarding the specific relationship between ankle strength and height. They also 

suggested this lack of relationship may be due to the lack of variation in height within the 

gender groups. None of the papers described in Appendix 3 which have used the Cybex Norm 

to measure AMS have examined the relationship between height and AMS and the 

relationship is not clear from the wider literature. This is, therefore, an area which requires 

further investigation in terms of relevance to reference values and inclusion of papers in a 

meta-analysis. 

4.1.8.4 Age 

Both Danneskiold-Samsøe et al. (2009) and Harbo et al. (2011) concluded that general 

muscle strength declines with age. However, the data they presented indicated that the 

decline varied between muscle groups and was not uniform across ages. Danneskiold-

Samsøe et al. (2009) divided their population into age groups each spanning a decade. They 

found that general muscle strength fell in a linear fashion from the 20-29 years age group to 

the 70-79 years age group in males, whereas in females the muscle strength remained 

constant between 20 and 40 and did not start to decline until the 40-49 years age group. The 

decline between 40 and 75 years was between 48% and 92% depending on the muscle group 

analysed. With specific reference to AMS there was a decline in both male and female values, 

however, in both males and females the decline in concentric PF did not start until 60-69 

year age group. Male concentric DF strength started to decline from the 50-59 years age 

group and female concentric DF strength only showed decline from the 70-79 years age 

group. Harbo et al. (2011) also split the experimental population into age groups and found 

that age was a significant predictor of strength for twenty-four of the thirty-six muscle 
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actions measured; however, the paper does not state which muscle actions these are. 

Buckley, Cooper, Maganaris, and Reeves (2013) compared eccentric PF between fifteen older 

adults (75±3 years) and seventeen younger adults (25±4 years) and found the younger 

adults to be significantly stronger. S. Kim, Lockhart, and Nam (2010) compared fourteen 

younger (25±3 years), fourteen middle-aged (41±3 years) and fourteen older individuals 

(70±3 years). They found a significant difference in concentric PF and DF at 30°/s, 60°/s and 

120°/s between the younger and older groups in agreement with the research by 

Danneskiold-Samsøe et al. (2009). However, contrary to the data presented by Danneskiold-

Samsøe et al. (2009), they also found a significant difference between the younger and 

middle age groups in PF but not DF at 30°/s and in DF but not PF at 60°/s. No significant 

differences were found in any of the AMS measures between the middle age group and the 

older group. The differing results from these two studies may be the result of differences in 

equipment and methods. Danneskiold-Samsøe et al. (2009) used a Lido Active dynamometer 

to measure strength at 15°/s, 30°/s and 45°/s whereas S. Kim et al. (2010) used the Biodex 

System 3 to measure muscle strength at 30°/s, 60°/s and 120°/s. As previously discussed 

both speed of contraction and type of equipment will affect the peak torque produced. 

Moreover, where Danneskiold-Samsøe et al. (2009) used discrete single gender groups 

spanning a decade, S. Kim et al. (2010) used a broader age range per group and the groups 

were mixed gender. As age and gender also affect AMS these too could be the reason for the 

discrepancy between results.  

 

All of the papers which have used the Cybex Norm to measure inv and eve AMS are shown in 

Appendix 3; however, none compare inv and eve AMS between age groups. A search of the 

wider literature revealed little data on the differences between age groups in concentric or 

eccentric inv and eve. Spink, Fotoohabadi, and Menz (2010) found a significant difference in 

concentric PF, DF, inv and eve when comparing younger (23.2±4.3 years) and older 

(77.1±5.7 years) populations with the younger populations being between 24% and 37% 

stronger. As this and the evidence presented in the previous section demonstrate a 

relationship between age and AMS, any meta-analysis should control for age and any 

reference values produced should be age group specific. 

 

Age is also related to height and mass. In a longitudinal study of data from 185,192 

individuals over a period of 20 years Peter, Fromm, Klenk, Concin, and Nagel (2014) 
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determined that mass increased with age until the age of 70 when it started to decrease and 

height increased between the ages of 20 and 35 and then started to decrease. They explained 

the increase in mass as an increase in fat mass whereas a loss of fat free mass drove loss of 

mass in the over 70 age ranges. They had no explanation for the initial increase in height; 

however, this does illustrate that the relationship between AMS and age is complex and may 

be influenced by height and mass. This complex relationship adds to the problems of 

undertaking a meta-analysis and the production of reference values for AMS. 

4.1.8.5 Shoe size 

The setup of the Cybex Norm necessitates the identification of the axis of movement about 

which the joint moves, in the case of PF and DF this is commonly taken as the lateral 

malleolus (Dehail et al., 2007; Frasson, Rassier, Herzog, & Vaz, 2007; Hamill & Knutzen, 

1995). When testing PF the foot is secured to the footplate with two Velcro® straps and force 

is exerted through the metatarsal heads. When testing DF, force is exerted through the 

dorsum of the foot. Torque is a function of the force multiplied by the distance from the axis 

of motion at which it is applied (Tortora & Derrickson, 2008) A greater foot size would 

increase the distance of force application from the axis of movement, which results in a larger 

lever arm with which to produce torque. It therefore follows that larger feet would give 

greater PF and DF peak torque if all other variables remained constant. None of the papers 

produced in the previous chapter indicated the shoe size of the participants, thus, further 

investigation is needed into the influence of shoe size on AMS peak torque production. 

 

The evidence presented here demonstrates that variations in the experimental population 

demographics can influence certain measures of AMS. It also demonstrates that the 

literature concerning the relationship between anthropometric measurements and AMS is 

not complete. While there are a number of research papers which have examined the role of 

height, mass, age and gender in relation to concentric and eccentric PF and DF, the papers 

identified in Appendix 3 indicate that there is no research to relate the anthropometric 

measurements and concentric and eccentric inv and eve using the Cybex Norm. A search for 

papers including other isokinetic dynamometers suggested that this conclusion is indicative 

of the literature as a whole. To the author’s knowledge, up to August 2015, the role of shoe 

size in any measure of AMS has not been investigated. This further complicates generation 

of reference values for AMS based on a meta-analysis of the current literature. 
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4.2 Analysis of the collected data 

Once the AMS data had been collected using a method sympathetic to the above 

methodological variable arguments (see Chapter 4 for a detailed explanation of this method) 

the data was analysed to determine the relationship between AMS and the anthropometric 

variables measured. This was undertaken with a view to producing reference values. 

Possible ways of achieving reference values from the collected data will be discussed in this 

section. 

4.2.1 Integrity of the data 

Prior to analysis of the data it is necessary to assess the robustness of the data. Collection of 

multiple sets of peak torque repetitions enabled the calculation of the Coefficient of Variance 

(COV). The COV is the ratio of the standard deviation (SD) to the mean (Abdi, 2010). A low 

COV means the torque produced in each of the individual reps are closely matched; if peak 

torque produced in each repetition was the same COV = 0. A high COV indicates a large 

variation in the peak torque produced between repetitions. This can suggest unfamiliarity 

with the equipment and so maximal peak torque may not be achieved due to poor technique 

(Whimpenny, 2000). Mean results from experimentation may be skewed by outlying results 

so using a 20% threshold or COV of 0.2 is recommended to maintain the integrity of the data 

(Whimpenny, 2000). 

4.2.2 Calculating reference values 

A common way to achieve a reference value from a data set is to take the mean average. If 

the data, in this case AMS, has been taken from individuals with normal ankle strength then 

the average value ± SD could be taken as the normal range. This was the method employed 

by Lategan (2011) when producing reference values for muscle strength across a number of 

joints including the ankle using the Cybex II. This method assumes that individuals have 

normal ankle strength which is controlled for by a medical questionnaire as this would 

exclude individuals with conditions that may affect ankle function. However, Lategan (2011) 

examined 438 males aged 19.06±1.86 years. As a consequence any reference values based 

on the mean peak torque of the data would be specific to males aged 19 years as both age 

and gender affect AMS. For a reference value to have a wider clinical relevence it should be 

produced from a mixed gender population with a wider anthropometric range. See section 

6.1 for a comparison of reference values produced by different papers.  
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The data collected for this thesis and presented in Chapter 5 describes the mean average ± 

SD calculated from a mixed gender population aged between 18 and 59 years old. This mean 

average reference range was validated by comparing it with the results of a validation group. 

It was found that only three of the eight measured values of AMS in the validation group were 

within normal range (see Chapter 5 for details of results and the validation process). It was 

concluded that this discrepancy was the result of variations in the population demographics 

between the group used to generate the reference values and the validation group. As such 

further analysis was required to determine a reference value which considers these 

anthropometric variables.  

 

Danneskiold-Samsøe et al. (2009) generated reference data using a Lido Active isokinetic 

dynamometer from a population of 128 males and 296 females aged between 20 and 80 

years. As in the paper by Lategan (2011) the mean (±SD) peak torque was calculated; 

however, this data was then grouped by gender and further split into six age groups each 

spanning a decade. As reference values were generated for each gender in each of the age 

groups, both age and gender were controlled for. This did, however, result in lower numbers 

in each of the groups (between nine and twenty-three). These low numbers may 

compromise the external validity of the reference values. Furthermore, there was no 

consideration of mass, height and shoe size which as previously discussed may affect AMS, 

thus altering the reference values produced.  

 

As this thesis is concerned with eight measures of AMS spanning both genders and six age 

groups, using a similar method to Danneskiold-Samsøe et al. (2009) would result in the 

production of ninety-six different reference values. This would not include consideration of 

height, mass and shoe size which, as previously discussed, may alter AMS outcome measures. 

However, Harbo et al. (2011) suggested a reference equation for each measure of AMS which 

could be calculated from a regression analysis using independent variables that predict 

muscle strength. They used a Biodex System 3 dynamometer to measure muscle strength in 

ninety-three male and eighty-five female participants aged between 15 and 83 years. Using 

this data and the independent variables of height, mass, age and gender, they performed a 

linear regression analysis from which predictive equations were produced. This method has 

larger potential for application than that of Danneskiold-Samsøe et al. (2009) as it allows 

anthropometric variables to be taken into consideration. However, a linear regression 
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analysis using all of the independent variables measured may include variables which do not 

affect the dependent variable. For example Harbo et al. (2011) produced thirty-six equations 

based on a linear regression analysis, using age, height and mass as independent variables, 

for muscle strength around various joints in the body. They found that age was significantly 

related to muscle strength in twenty-four of the thirty-six equations. However, they did not 

state which twenty-four. Each of the equations they presented included all three 

independent variables. As such it would not be possible to say which equation included non-

significant variables that could reduce the accuracy of the prediction from the equation.  

 

A stepwise linear regression analysis would identify which of the anthropometric variables 

significantly contribute to each of the eight AMS measures being tested. Only the significantly 

predictive variables would be used in the individual equations, thus improving the accuracy 

of the reference value. Based on the arguments presented in this chapter a stepwise linear 

regression analysis is recommended for use here. Details of this will be discussed further in 

the next chapter. 

 

4.3 Summary 

This chapter has described the eight key methodological variables in the measurement of 

AMS. The evidence presented here suggests if a meaningful comparison of results between 

experiments is to be achieved then standardisation of the variables is necessary. It is clear 

from the discussion above that the highlighted variables will influence some AMS outcome 

measures. However, a lack of research in some areas of AMS measurement means that the 

extent of this influence is not clear. Furthermore variability between the methods used 

means determination of reference values by meta-analysis is not possible. Chapter 5 will 

describe and assess a method for the production of reference values for PF, DF, inv and eve 

based on the arguments put forward in this chapter. It will also describe a stepwise linear 

regression analysis method which will identify the anthropometric variables that contribute 

to the eight AMS measures being examined. 
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General method of data collection 
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5. General method of AMS data collection 
 

5.1 Introduction 

Chapter 4  identified and described eight variables common to research studies that used the 

Cybex Norm isokinetic dynamometer to measure AMS. Alterations in the variables used were 

discussed in terms of the physiological consequences of applying such constraints. A 

comparison of statistical analysis methods was also presented and a stepwise linear 

regression analysis was recommended for the production of predictive equations for AMS. 

Based on the findings of Chapter 4 this chapter will propose and test a protocol for AMS 

measurement using the Cybex Norm and will describe the statistical methods used to analyse 

the collected data. Specifically the following research aims will be explored and empirically 

tested using the proposed protocol: 

 

a. As there are a number of variables which need to be defined when measuring AMS, 

once the systematic review was complete, the first aim of this thesis is to develop a 

protocol for measuring AMS with each variable justified (Chapter 5). This includes 

determining the effect of altering the angle at which the knee is fixed on AMS (Chapter 

6). 

b. As this protocol is to be used to take measurements of AMS from which reference 

values would be generated, the second objective is to ensure the protocol and the 

Cybex Norm are robust using a test re-test experimental design. (Chapter 7). 

c. Using the justified and reliable protocol described in this chapter, the main aim of this 

thesis is to determine reference values for AMS collecting data and using a linear 

regression analysis to produce reference value equations (Chapter 8). 

d. Previous research has indicated that there is variation in strength with variation in 

different anthropometric measurements, for example height, weight, age and gender. 

In the production of reference values knowledge of the factors which affect AMS are 

crucial. Thus, the data collected will also be used to explore a fourth aim, the effect of 

variations in anthropometric measurements on AMS (Chapter 8). 

e. Validated reference equations for AMS could have a range of clinical, rehabilitation 

and sporting applications. The fifth aim of this thesis is to demonstrate an application 

of the validated reference equations. (Chapter 9). 
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5.2 Ethical considerations 

Ethical approval for this experimentation was given by the ethics panel in the School of 

Human and Health Sciences at the University of Huddersfield on 11th November 2010. The 

main ethical considerations of beneficence and non-maleficence were protecting the 

participants from harm during testing. To minimise risk to the participants the equipment 

(Cybex Norm) was serviced and calibrated in accordance with the manufacturers guidelines. 

A risk assessment was produced to ensure all reasonable precautions were taken when using 

the equipment and the laboratory (see Appendix 5). A medical questionnaire designed to 

demonstrate fitness to proceed (Appendix 7) was completed and signed by each participant. 

If the answers to any of the questions raised doubt as to the eligibility of the participant they 

were not permitted to undertake the testing phase. To further reduce risk of injury the 

participants were instructed in the appropriate use of the equipment and sub-maximal 

familiarisation tests were performed for each of the eight movements tested. 

 

The participants were informed of the testing procedure and the rationale behind the 

experiment. Each person was given an opportunity to ask questions prior to and throughout 

the testing. Following this a consent form approved by the School Ethics Committee was 

signed by each participant (Appendix 8). The privacy of the participants was ensured by 

referring to them by participant number within the collected data. All data was kept in a 

password protected computer folder. The participants were assured of the ability to 

withdraw from the study at any point if they so desired. 

 

5.3 Participant Recruitment 

The research population consisted of a convenience sample of staff and students at the 

University of Huddersfield who were asked by e-mail and via posters (see Appendix 6) to 

participate in the experiment. The eligibility of each participant was determined by a 

questionnaire completed prior to commencing the study (see Appendix 6) with the intention 

of ensuring the safety of the participants as well as the validity of the data gathered.  

 

5.4 Participant questionnaire 

The participant questionnaire was split into two sections. The first section was concerned 

with the participant’s anthropometric measurements and the second section with their 

medical history.  
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5.4.1 Anthropometric measurements 

The questionnaire (Appendix 7) required the participant to state their gender, age, height 

mass, shoe size and limb dominance. As the evidence for strength discrepancies between 

dominant and non-dominant ankles is not definitive (see section 3.2.6) the dominant ankle 

was tested as determined by the participant kicking a ball with the foot used deemed to be 

the dominant one (W.-H. Lin et al., 2009; Munn et al., 2003; Sekir et al., 2008). 

5.4.2 Medical history 

Obtaining the patient’s medical history was necessary as there are a number of illnesses and 

injuries that could be exacerbated by the test or impair torque production as discussed in 

Chapter 1 (sections 1.2.2 and 1.2.3). One of the strongest predictors of future injury to the 

ankle is previous injury (Brinkman & Evans, 2011). Hence, previous injury may affect 

strength and so the amount of peak torque produced may be reduced, thus, reference values 

based on these measurements would be inaccurate. It is therefore logical to ascertain if 

participants have previously sustained ankle injuries. However, a systematic review by van 

Rijn et al (2008) found full recovery from acute ankle sprain (defined as torn or partially torn 

ankle ligaments) was reported by between 36% and 85% of patients after 3 years. They also 

found three different definitions of recovery used within the literature. As the literature is 

not clear on how long an individual takes to fully recover from ankle injury and there is no 

consistent definition of ‘fully recovered’, the participants within this study were asked if they 

had any ankle pain, injury or other impairment that affects every day function. They were 

also asked if they had ever consulted a health professional regarding an ankle injury. 

Answering yes to either of these questions would render the individual ineligible to 

participate. 

 

Numerous papers have discussed the deleterious effect of illness on muscle strength. For 

example in a study of thirty-six type II diabetic patients Andersen et al (2004) concluded 

ankle weakness may exist in this population due to peripheral neuropathy. Neuromuscular 

disorders such as Charcot-Marie-Tooth disease, by definition, affect muscle strength (Rose, 

Burns, & North, 2010) and thus, individuals with such disorders could not be considered part 

of a ‘normal’ population in terms of ankle strength. Durmus et al. (2010) observed decreased 

lower limb muscle strength in patients with Parkinsons disease and this correlated with 

number of falls.  Any disease which affects the muscles, bones or nervous system may have 
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an effect on peak muscle torque measurements across the ankle. Questions 4 – 7 of the 

questionnaire (see Appendix 7) dealt with these disorders and answering yes to any of these 

questions indicated the individual was ineligible for the study. 

 

The final question of this section of the questionnaire referred to lower back pain. It is 

possible that an individual suffering from lower back pain could exacerbate the problem by 

performing ankle strength tests. Because of this anyone with pain in the lower back that 

affects every day movement was also considered ineligible. 

 

5.5 Test Procedure 

The dominant ankle was tested, as determined by asking the participant to kick a ball; the 

foot used was assumed to be the dominant one. (W.-H. Lin et al., 2009; Munn et al., 2003; 

Sekir et al., 2008). The participants were seated in the dynamometer chair and strapped in 

to minimise movement of the upper body. The dominant foot was strapped in to the footplate 

using Velcro® straps and the thigh stabiliser tube and pad were used to support and prevent 

movement of the knee in accordance with the manufacturer’s instructions. The knee angle 

was fixed between 80° and 110° (Sekir et al., 2007; Urguden et al., 2010; Yavuz Yildiz et al., 

2007). Prior to the PF and DF testing the axis of rotation of the dynamometer arm was 

aligned with the participant’s lateral malleolus (Frasson et al., 2007, Dehail et al., 2007). Due 

to the construction of the Cybex Norm foot plate it is not possible to align both the medial 

and lateral malleolus of the ankle with the axis of motion of the dynamometer arm. As such 

there may be some variation in the participant position and so the torque produced between 

torque measurements produced by the Cybex and those produced by other machines where 

this is possible. Prior to measurement of inversion and eversion the axis of motion of the 

dynamometer arm was aligned with an approximation of the anterioposterior axis of motion 

of the ankle. This was determined by observation of movement of the ankle about the 

anterioposterior axis.  

5.5.1 Warm Up 

The test was performed on a Cybex Norm isokinetic dynamometer (Phoenix Healthcare, 

Nottingham, UK). To familiarise the participants with the equipment full instructions were 

given on its use and each participant performed five sub-maximal repetitions concentrically 
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and eccentrically at 120°/s in inv and eve and at 60°/s in PF and DF (Du Toit et al., 2004; 

Gopalakrishnan et al., 2010; Muller et al., 2007; Patterson & Ferguson, 2010).  

5.5.2 Testing inversion and eversion strength 

The following was the method used to test inv and eve strength. Each point in the method is 

based on the discussion presented in Chapter 3. The numbers in brackets refer to the section 

in which the particular item was discussed. 

• Familiarisation: five sub-maximal reciprocal repetitions of concentric inv and 

eve at 120°/s (3.2.3). 

• Three sets of three maximal repetitions (3.2.5) of reciprocal concentric inv and 

eve at 120°/s (3.2.4) should be performed with 30 seconds rest between sets 

(3.2.5). 

• Sixty seconds rest were allowed between concentric and eccentric testing 

(3.2.5). 

• Familiarisation: five sub-maximal reciprocal repetitions of eccentric inv and 

eve at 120°/s (3.2.3). 

• Three sets of three maximal repetitions (3.2.5) of reciprocal eccentric inv and 

eve at 120°/s (3.2.4) were performed with 30 seconds rest between sets 

(3.2.5). 

• Five minutes rest between inv and eve testing and PF and DF testing were 

allowed (3.2.5). 

5.5.3 Testing plantar flexion and dorsiflexion strength 

• Familiarisation: five sub-maximal reciprocal repetitions of concentric PF and 

DF 60°/s (3.2.3).  

• Three sets of three maximal repetitions (3.2.5) of reciprocal concentric PF and 

DF at 60°/s (3.2.4) were performed with 30 seconds rest between sets (3.2.5). 

• Sixty seconds rest between concentric and eccentric testing was allowed 

(3.2.5). 

• Familiarisation: five sub-maximal reciprocal repetitions of eccentric PF and 

DF 60°/s (3.2.3).  

• Three sets of three maximal repetitions (3.2.5) of reciprocal eccentric PF and 

DF at 60°/s (3.2.4) were performed with 30 seconds rest between sets (3.2.5). 
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5.6 Analysis of the results 

All statistical analysis was carried out using SPSS software package version 20. The COV of 

each set of three repetitions was calculated by the Cybex Norm software. Data from sets 

which produced a COV of greater than 0.2 were discarded. Peak torque for each of the eight 

measures of AMS being concentric and eccentric PF, DF, inv and eve, was taken as the highest 

torque achieved on any single repetition throughout the ROM. 

 

5.7 Pilot Study 

Prior to testing a large population a pilot study to test AMS using the method detailed above 

was undertaken to answer the following questions: 

 

1. Are the inclusion and exclusion criteria sufficient to include eligible individuals 

whilst protecting potentially vulnerable individuals? 

2. Is there a fatigue effect dependant on the experimental order? 

3. Is it possible to consistently achieve a COV of less than 0.2 for all ankle strength 

experiments performed? 

4. How long will the whole experiment take per participant? 

5. Are there any other factors which have not been considered in the methodology 

which may affect the safety and dignity of the participants or the accuracy of the 

data collected? 

5.7.1 Subjects 

Participants were recruited as a convenience sample of staff and students of the University 

of Huddersfield between 20th November and 12th December 2010. The purpose of the 

experiment was explained and twenty participants, eight male and twelve female, were 

recruited. Volunteers were assessed for eligibility by use of a medical questionnaire 

(Appendix 7) and informed consent was obtained (Appendix 8). Table 5-1 shows the 

anthropometric data for the population tested.  
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Table 5-1  

Pilot study participant demographics 

 

Gender Minimum Maximum Mean Std. 

Deviation 

Female 

(n=12) 

Height 157 173 164.83 5.39 

Mass 57 104 70.56 13.70 

Age 22 54 41.25 9.42 

Footsize 4 7 5.92 1.18 

     

Male 

(n=8) 

Height 169 190 181.88 8.17 

Mass 62 110 84.73 14.09 

Age 20 38 23.88 5.82 

Footsize 8 12 10.12 1.36 

Note Height is measured in cm, mass in kg, age in years and foot size is UK standard 

 

5.7.2 Test procedure and data analysis 

AMS testing was carried out according to the protocol previously described in section 5.5 on 

a Cybex Norm isokinetic dynamometer. Statistical analysis was carried out using SPSS 

version 20. A Shapiro-Wilk test was carried out to determine if the collected data was 

normally distributed, based on the results of this test either a one way repeated measures 

test was performed or a Friedman’s test was performed to assess the effect of test order on 

AMS peak torque production. 

5.7.3 Results 

Table 5-2 shows the mean AMS peak torque values and SD for the whole population tested 

and males and females individually. 
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Table 5-2  

Mean AMS peak torque values of the pilot population as a whole and split by gender.  

 

Gender Minimum Maximum Mean Std. Deviation 

female PFcon 26 65 40.67 10.96 

 DFcon 9 14 11.75 1.71 

 PFecc 26 168 96.00 42.37 

 DFecc 23 41 28.67 5.53 

 Invcon 14 28 17.42 4.12 

 Evecon 9 20 15.42 3.53 

 Invecc 15 33 22.45 5.11 

 Eveecc 16 34 26.83 5.95 

      

Male PFcon 33 96 76.00 21.99 

 DFcon 12 31 22.25 6.67 

 PFecc 38 188 139.67 57.18 

 DFecc 22 79 47.38 21.17 

 Invcon 14 33 21.88 5.84 

 Evecon 14 41 21.25 8.50 

 Invecc 12 54 34.00 12.47 

 Eveecc 12 46 30.75 10.40 

      

Combined PFcon 26 96 54.80 23.73 

 DFcon 9 31 15.95 6.78 

 PFecc 26 188 113.47 51.81 

 DFecc 22 79 36.15 16.47 

 Invcon 14 33 19.20 5.24 

 Evecon 9 41 17.75 6.51 

 Invecc 12 54 27.32 10.45 

 Eveecc 12 46 28.40 8.02 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = 
concentric; ecc = eccentric 
All torque values are in Nm. 
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5.7.3.1 Coefficients of variance 

Twenty participants performed each of the eight ankle movements, concentric and eccentric 

PF, DF, inv and eve. Of these 160 movements performed, 154 produced at least one set with 

a COV of less than or equal to 0.2.  The six movements where the COV was greater than 0.2 

included five eccentric PF movements and one eccentric inv movement. 

5.7.3.2 Test order  

A Shapiro-Wilk test was carried out to determine if the collected data was normally 

distributed. The results of this test indicated that eccentric PF, inv and eve were normally 

distributed and the rest of the measures were not normally distributed. To analyse any 

differences in test order a one-way repeated measures analysis of variance was used for the 

normally distributed data and a Friedman’s test was used for the data which was not 

normally distributed. Because of the reduced number of people who did not achieve a 

reliable reading for PFecc it was not possible to determine the effect of the test order on that 

measurement. 

 

Parametric tests 

The means and SD are presented in Table 5-3. In terms of eccentric inv Wilks’ Lambda = 0.04, 

F(3,1) = 7.34, P = 0.264, for eccentric eve Wilks’ Lambda < 0.001, F(3,1) = 1025.65, P = 0.02, 

multivariate partial squared = 1.00. 

Table 5-3 

Means and SD of the AMS measures in each of the four orders 

 Mean Std. Deviation N 

Invecc1 34.50 5.26 4 

Invecc2 19.75 9.29 4 

Invecc3 27.50 8.02 4 

Invecc4 35.25 13.30 4 

Eveecc1 37.00 6.83 4 

Eveecc2 20.25 8.26 4 

Eveecc3 29.75 6.02 4 

Eveecc4 29.25 4.57 4 
Note Inv- = inversion; Eve = eversion; ecc = eccentric;  
Test orders:1 PFDF ecc  PFDF con   inv eve ecc inv eve con 
2: PFDF con  PFDF ecc   inv eve con inv eve ecc 
3: inv eve ecc inv eve con  PFDF ecc  PFDF con 
4: inv eve con inv eve ecc  PFDF con  PFDF ecc 
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These results suggest that test order has no effect on eccentric inv but does have an effect on 

eccentric eve. 

Non-parametric tests 

Table 5-4 

The results of the Friedmans test analysing the variance in AMS with test order. 

 PFcon DFcon DFecc Invcon Evecon 

N 4 4 4 4 4 

Chi-Square 6.60 5.31 6.69 2.92 4.89 

df 3 3 3 3 3 

Asymp. Sig. 0.09 0.15 0.08 0.40 0.18 
Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; 

ecc = eccentric. 

 

The results of the Friedmans analysis (Table 5-4) indicate there is no effect on AMS production 

with changing test order. 

5.7.4 Discussion  

5.7.4.1 Comparison to existing reference values 

The mean values shown in Table 5-2 have large SD values associated with them. This 

indicates there are a large range of measured values. Some, but not all, of the values are 

reduced when the results are split by gender. This suggests that some, but not all, of the AMS 

measures are influenced by gender. Other factors, not controlled for here, such as height, 

mass, age and shoe size are also likely to affect the AMS values as previously discussed and 

as such these could explain the size of the SD. Use of a stepwise linear regression analysis 

would take these variables into account; however, this is not appropriate here due to the low 

numbers tested. 

 

The concentric PF and DF values presented here are lower than the reference values 

published by Danneskiold-Samsøe et al. (2009); however, the speed at which they tested was 

also lower (45°/s compared to 60°/s here). As previously discussed, increasing the speed of 

the contraction results in a lower peak torque, thus, results from this pilot study would be 

expected to be lower. The values for PF con and DF con shown in Table 5-2 are also lower 

than Harbo et al. (2011) who tested at the same speed. As discussed in section 2.3.1, there is 

evidence to suggest peak torque readings can differ between machines and as such the 

differences here could be the result of using Biodex System 3 isokinetic dynamometer rather 

than the Cybex Norm. van Cingel et al. (2009) tested inv and eve at the same speed as this 
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pilot study also using the Cybex Norm. They found their results to be higher than the results 

presented here particularly in the females (21.39Nm inv and 22.46Nm eve compared to 

17.42Nm inv and 15.42Nm eve presented here). However, there were a number of 

differences in protocol between the papers. There was a difference in average age between 

the populations tested (28.6 years compared to 41.2 years presented here) which may 

account for the differences. van Cingel et al. (2009) also tested inv and eve with the leg in full 

extension necessitating the use of a separate bench rather than the in-line Cybex chair. All of 

these factors could have contributed to the differences in inv and eve values. It can be 

concluded that variation between the data presented here and that of the published 

reference values is due to differences between the data collection methods, populations and 

equipment used. This supports the assertion that that reference values for the Cybex Norm, 

produced using a standardised protocol are worthy of investigation. 

5.7.4.2 Coefficients of variance 

The results indicated that 154 out of 160 movements achieved a COV of less than 0.2. This 

suggests that there was a high level of consistency across the three results. Based on these 

results it can be concluded the 0.2 threshold level recommended by Whimpenny (2000) are 

achievable in all eight measures of AMS. 

5.7.4.3 Test order 

The data presented in section 5.7.3.2 suggests that the order in which the tests are taken has 

an effect on eccentric Eve only. Thus, it is recommended that the order in which the tests are 

taken in the main experiment are randomised. 

5.7.5 Conclusions drawn from pilot study 

Based on the results and conclusions drawn from pilot study the following observations and 

recommendations were made: 

1.The inclusion and exclusion criteria were generally sufficient to include eligible individuals 

whilst protecting potentially vulnerable individuals. Two exceptions were noted: 

a. One participant reported they could have produced greater torque had they 

not been running the previous evening. To control this variable a sentence will 

be added to the information document ‘no strenuous physical activity 24 

hours prior to testing’ to avoid post exercise fatigue affecting results. 

b. Question 6 of section 1 should be changed to ‘Do you currently have any back 

pain or are you suffering from a lower back injury that affects every day 
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movement?’ thus allowing individuals with historical back pain but no current 

symptoms to participate. 

2.Each of the participants was asked if their muscles felt fatigued after each movement type 

performed. None of the participants indicated that they were fatigued; however, the 

statistical analysis indicated varying test order altered the amount of AMS produced. To 

avoid any order bias which may occur, the order in which the tests are taken will be 

randomised across the experiment using the following sequences: 

a. Eccentric PF and DF / concentric PF and DF / eccentric inv and eve / 

concentric inv and eve 

b. Concentric PF and DF /  eccentric PF and DF / concentric inv and eve / 

eccentric inv and eve 

c. Eccentric inv and eve / concentric inv and eve / eccentric PF and DF / 

concentric PF and DF 

d. Concentric inv and eve / eccentric inv and eve / concentric PF and DF /  

eccentric PF and DF 

The first participant will follow sequence a; the second participant sequence b etc. 

The order in which a particular participant took the tests will be recorded on a 

randomisation chart (Appendix 9). 

 

3.The majority of the participants achieved a COV of less than 0.2 for all of the movement 

types, so this is accepted as an achievable level. Where participants are not able to score 

below the 0.2 threshold the data from that particular measure will be discarded. 

4.The test takes approximately 30 minutes per participant. This could be reduced with 

familiarity with the testing process. This is an acceptable amount of time to allow the 

principle researcher to test sufficient numbers for the statistical analysis (111 participants 

as described in section 4.3) over a 2 year period. 

5.Several other minor alterations were identified from the pilot study. These were: 

a. The questionnaire should be included with the recruitment e-mail as this will 

reduce the number of e-mails that need to be sent. 

b. The questionnaire should include participant number on each sheet to help 

ensure the anonymity of the participants 
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c. Participant number should be used instead of name to identify individuals 

within the Cybex Norm software to further ensure the anonymity of the 

participants. 

 

5.8 Standardised Protocol 

The following is a summary of the protocol based on the papers found in Chapter 3 and 

modified based on the results and experience of the pilot study. 

 

• The dominant ankle should be tested unshod in a supine position with the 

knee flexed between 80° and 110°  

• The following test order should be randomised to avoid order bias. 

• Familiarisation: five sub-maximal, reciprocal, concentric inv and eve 

repetitions at 120°/s.  

• Three sets of three repetitions maximal reciprocal concentric inv and eve at 

120°/s should be performed with 30 seconds rest between sets. 

• Sixty seconds rest should be allowed between concentric and eccentric testing. 

• Familiarisation: five sub-maximal, reciprocal, eccentric inv and eve repetitions 

at 120°/s.  

• Three sets of three repetitions maximal reciprocal eccentric inv and eve at 

120°/s should be performed with 30 seconds rest between sets. 

• Five minutes rest between inv and eve testing and PF and DF testing should 

be allowed. 

• Familiarisation: five sub-maximal, reciprocal, eccentric PF and DF repetitions 

at 60°/s  

• Three sets of three repetitions maximal reciprocal concentric PF and DF at 

60°/s should be performed with 30 seconds rest between sets. 

• Sixty seconds rest between concentric and eccentric testing should be allowed 

• Familiarisation: five sub-maximal, reciprocal, eccentric PF and DF repetitions 

at 60°/s  

• Three sets of three repetitions maximal reciprocal eccentric PF and DF at 

60°/s should be performed with 30 seconds rest between sets. 
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Chapter 6 
 
 

The effect of knee angle on AMS 
production  
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6. An experiment examining the effect of knee angle on AMS peak 
torque production 
 

6.1 Introduction 

Research has shown that altering the angle at which the knee is fixed will alter the amount 

of torque produced at the ankle. Wakahara et al. (2009) demonstrated a significant increase 

in eccentric PF force when changing the knee angle from 0° to 90° flexion using the CON-

TREX dynamometer. Lentell (1988) found that changing the knee angle from 10° to 70° 

resulted in a significant increase in concentric inv and eve using a Cybex II dynamometer. A 

search of the literature indicated that similar experiments had not been performed for 

eccentric inv or eve, or for concentric or eccentric DF or concentric PF. Appendix 3 indicates 

that testing ankle strength with the knee held at 80-110° is common clinical practice for 

testing inv and eve strength. Analysis of the papers which have tested PF and DF strength 

using the Cybex Norm have suggests holding the knee in a fully extended position or between 

80° and 110° is also common clinical practice. As discussed in section 3.2.2, a fully extended 

knee may artificially inflate eccentric PF whilst preventing the full ROM. Therefore, the aim 

of this experiment is to determine the effect of altering the knee angle between 10° and 80°-

110° on concentric and eccentric PF, DF, inv and eve using the Cybex Norm isokinetic 

dynamometer. 

 

6.2 Method 

The participant recruitment method used and ethical considerations are outlined in sections 

5.2 and 5.3 respectively. Participants were asked to attend the laboratory on one occasion 

for approximately 1 hour. A participant questionnaire was completed (see section 5.4), full 

instruction on the use of the Cybex Norm was given and the participants were asked to 

complete a familiarisation protocol (see section 5.5.1). The participants were then tested 

using the protocol detailed in section 5.8, with the following modifications: 

 

• The right ankle was tested unshod in a supine position with the knee flexed 

either between 80° and 110° or 10°. The initial testing angle alternated 

between participants with the other angle being tested straight afterwards. 

 

The order of the AMS testing was randomised according to Table 6-1. 
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Table 6-1  

Randomisation table showing the order in which AMS was tested. 

Movement type Participant number 

PFDF ecc PFDF con  inv eve ecc inv eve con 1 9 

inv eve ecc inv eve con PFDF ecc PFDF con 2 10 

PFDF ecc PFDF con inv eve con inv eve ecc 3 - 

inv eve con  inv eve ecc PFDF ecc PFDF con 4 - 

PFDF con PFDF ecc inv eve ecc inv eve con 5 - 

 inv eve ecc inv eve con PFDF con PFDF ecc 6 - 

PFDF con PFDF ecc inv eve con inv eve ecc 7 - 

inv eve con inv eve ecc PFDF con PFDF ecc 8 - 

Note PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion; con = concentric; 
ecc = eccentric. 
 
Statistical analysis was performed using statistical software SPSS (version 20). Where data was 

normally distributed, a paired samples t-test assessed the differences between the eight AMS peak 

torque values produced in the first and second tests. Where the data is not normally distributed 

a Wilcoxon Signed Ranks test was performed to assess any differences.. P < 0.05 was 

considered statistically significant. The Cohen’s d value indicates the size effect of the 

difference between the measured torque values where there is a significant difference. < 0.2 

indicates no effect, 0.2 - 0.4 indicates small effect; 0.5 - 0.8 indicates an intermediate effect; 

> 0.8 indicates a large effect.  

6.3 Results 

Ten participants were tested, five males and five females. The participant demographics are 

described in Table 6-2. 

Table 6-2 

Demographics of the experimental population 

 Minimum Maximum Mean Std. Deviation 

height 153.00 177.00 164.60 8.38 

mass 56.00 111.70 78.08 16.54 

age 34 54 45.30 6.73 

Note Height is measured in cm, mass in kg and age in years. 
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6.3.1 Normality of the Data 

A Shipiro-Wilk test for normality was performed on the data.  

Table 6-3 

The results of a Shapiro-Wilk test of normality on both sets of data 

 Shapiro-Wilk 

Statistic df Sig. 

PFcon80 0.83 10 0.04 

PFcon10 0.85 10 0.06 

DFcon80 0.87 10 0.10 

DFcon10 0.91 10 0.25 

PFecc80 0.93 10 0.44 

PFecc10 0.97 10 0.84 

DFecc80 0.88 10 0.12 

DFecc10 0.80 10 0.01 

Invcon80 0.98 10 0.98 

Invcon10 0.88 10 0.13 

Evecon80 0.89 10 0.16 

Evecon10 0.96 10 0.76 

Invecc80 0.81 10 0.02 

Invecc10 0.97 10 0.85 

Eveecc80 0.83 10 0.04 

Eveecc10 0.96 10 0.81 

Note PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion; con = 
concentric; ecc = eccentric. 80 =80°-110°; 10=10°. Peak torque is measured in Nm. 
Normality of distribution assumed if P > 0.05 
 

The results indicated that the data was normally distributed in all measures apart from concentric 

PF (P = 0.04), eccentric inv (P = 0.02) and eve (P = 0.04) with the knee flexed at 80°-110° and 

eccentric DF (P = 0.01) with the knee flexed to 10°. See Table 6-3 for detail of the analysis. The 

normally distributed data and the data that was not normally distributed was analysed 

separately. 

6.3.2 Non-parametric data 

The non-parametric data with means and medians are displayed in Table 6-4. The results of 

the Wilcoxon signed rank test are displayed in Table 6-5. These indicate that there is an 
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decrease in concentric PF between knee flexion at 10° (median 48Nm) and knee flexion at 

80°-110° (median 44Nm); (z = -2.55, P = 0.01) and the effect size was large (R = -0.81). The 

table also indicates a significant increase in eccentric eve between knee flexion at 10° 

(median 22.5Nm) and knee flexion at 80°-110° (median 23Nm); (z = 2.14, P = 0.03) and but 

the effect size was intermediate (R = 0.68). 

 

Table 6-4 

The mean and median results from the non-parametric data. 

 

 N Mean Std. 

Deviation 

Minimum Maximum Percentiles 

25th 50th 

(Median) 

75th 

PFcon80 10 48.20 16.84 27.00 81.00 37.75 44.00 54.00 

PFcon10 10 55.60 19.41 31.00 95.00 45.00 48.00 67.25 

DFecc80 10 33.50 15.36 16.00 67.00 23.50 26.50 45.50 

DFecc10 10 33.00 13.33 22.00 66.00 22.75 29.00 38.25 

Invecc80 10 22.20 8.19 15.00 41.00 16.00 19.50 27.75 

Invecc10 10 19.90 6.01 11.00 31.00 15.50 19.00 24.75 

Eveecc80 10 26.00 8.98 15.00 42.00 21.25 23.00 32.75 

Eveecc10 10 21.30 6.65 8.00 33.00 17.50 22.50 24.50 

Note PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion; con = concentric; ecc = 
eccentric. 80 =80°-110°; 10=10°. Peak torque is measured in Nm. 

 

Table 6-5 

The results of the Wilcoxon test to determine the effect of knee angle on AMS 

 PFcon10 - 

PFcon80 

DFecc10 - 

DFecc80 

Invecc10 - 

Invecc80 

Eveecc10 - 

Eveecc80 

Z -2.55 -0.06 -1.54 2.14 

Asymp. Sig. 

(2-tailed) 
0.01 0.95 0.12 0.03 

R -0.81 -0.02 -0.49 0.68 
Note PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion; con = concentric; ecc = 
eccentric. 80 =80°-110°; 10=10°. Peak torque is measured in Nm. 
 

To provide a correlation analysis for the non-parametric data a Spearman’s rho test was 

used. The results of this analysis are displayed in Table 6-6. 
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Table 6-6 

The results of a Spearman’s rho correlation test examining differences in AMS with knee angle 

  PFcon80 DFecc80 Invecc80 Eveecc80 

PFcon10 Correlation Coefficient 0.52 - - - 

 Sig. (2-tailed) 0.13 - - - 

DFecc10 Correlation Coefficient - 0.95 - - 

 Sig. (2-tailed) - 0.00 - - 

Invecc10 Correlation Coefficient - - 0.85 - 

 Sig. (2-tailed) - - 0.00 - 

Eveecc10 Correlation Coefficient - - - 0.65 

 Sig. (2-tailed) - - - 0.04 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = 
concentric; ecc = eccentric; 10 = knee flexed to 10°; 80 = knee flexed between 80° and 110° 
 

The results displayed in Table 6-6 indicate that there was a significant correlation between 

eccentric inv, eve and DF AMS measures with the knee flexed at 10° and between 80° and 

110°. There was no correlation between concentric PF measures. This data is represented 

graphically in Figure 6-1 through to Figure 6-4. 
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Figure 6-1 A scatterplot representing the relationship between concentric PF measures when 
the knee is flexed to 10° and between 80° and 110°. PF = plantar flexion; con = concentric; 
80 = knee flexed between 80° and 110°; 10  knee flexed to 10°. 

 

 
Figure 6-2 A scatterplot representing the relationship between eccentric DF measures when 
the knee is flexed to 10° and between 80° and 110°. DF = dorsiflexion; ecc = eccentric; 80 = 
knee flexed between 80° and 110°; 10  knee flexed to 10°. 
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Figure 6-3 A scatterplot representing the relationship between eccentric inversion measures 
when the knee is flexed to 10° and between 80° and 110°. Inv = inversion; ecc = eccentric; 
80 = knee flexed between 80° and 110°; 10  knee flexed to 10°. 

 
 

Figure 6-4 A scatterplot representing the relationship between eccentric eversion measures 
when the knee is flexed to 10° and between 80° and 110°. Eve = eversion; ecc = eccentric; 80 
= knee flexed between 80° and 110°; 10  knee flexed to 10°. 
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6.3.2 Parametric data 

The mean average peak torque for each of the eight measured AMS movements in both knee 

angle conditions are shown in Table 6-7 and are represented in Figure 6-5 and Figure 6-6.  
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Table 6-7  

The mean average results and t-test statistics for the peak torque achieved in both knee angle conditions in each of the normally distributed AMS 
measures.  

 Min Max Mean Std. 

Deviation 

95% Confidence Interval 

of the Difference 

t df Sig. (2-

tailed) 

Cohen’s d 

Lower Upper 

DFcon80 8 27 14.60 6.62 
-0.98 1.98 0.76 9 0.46 - 

DFcon10 7 28 14.10 6.67 

PFecc80 35 104 72.60 23.87 
-39.98 -1.02 -2.38 9 0.04 0.77 

PFecc10 47 151 93.10 29.09 

Invcon80 9 28 17.70 5.44 
0.64 5.36 2.88 9 0.02 0.66 

Invcon10 11 22 14.70 3.50 

Evecon80 11 26 16.60 5.04 
0.60 5.20 2.85 9 0.02 0.67 

Evecon10 8 19 13.70 3.47 

Note PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion; con = concentric; ecc = eccentric. 80 =80°-110°; 10=10°. Peak torque is 
measured in Nm. 
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The results of the paired samples t-test displayed in Table 6-7 are also shown in Figure 6-5 

and Figure 6-6. These indicate that concentric and eccentric PF is significantly less (P < 0.05) 

when the knee is fixed between 80° and 110° compared to fixing the knee at 10°. Changing 

the angle of the knee had no effect on the amount of concentric DF peak torque produced. 

When the knee was fixed between 80° and 110° there was significantly greater (P < 0.05) 

concentric inv. The Cohen’s d values shown in Table 6-7 indicate that the effect size of the 

statistically significant differences was intermediate. 
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Figure 6-5 A graph comparing concentric and eccentric peak torque produced in each of the knee angle conditions. PF = plantar flexion; DF = 
dorsiflexion; Inv = inversion; Eve = eversion; con = concentric; ecc = eccentric. 80 = knee flexed between 80°-110°; 10 = knee flexed to 10° 
a=significantly greater than the 80°-110° condition. Error bars represent the 95% CI. 
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Figure 6-6 A graph comparing concentric and eccentric peak torque produced in each of the knee angle conditions. Inv = Inversion; Eve = 
eversion; con = concentric; ecc = eccentric; 80 = knee flexed between 80°-110°; 10 = knee flexed to 10°. a = significantly less than the 80°-
110° condition. Error bars represent 95% CI. 
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Table 6-8 shows the results of a Pearson’s correlation test comparing the peak torque produced at 

the two different knee angles.  

 

Table 6-8 

Results of a Pearson’s correlation test between knee angle conditions. 

 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = 
concentric; ecc = eccentric. 80 = knee flexed between 80° and 110°; 10 = knee flexed to 10° 

 

There was a significant correlation between peak torque produced at each knee angle concentric 

DF, inv and eve. There was no significant correlation between eccentric PF taken with the knee 

fixed at 10° and at 80°-110°. These data are represented graphically in Figure 6-7 through 

to Figure 6-10. 

 

 

 

 

 Correlation Sig. 

PFecc80 & PFecc10 0.49 0.16 

DFcon80 & DFcon10 0.95 0.00 

Invcon80 & Invcon10 0.81 0.00 

Evecon80 & Evecon10 0.78 0.01 
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Figure 6-7 A scatterplot representing the relationship between eccentric PF measures when 
the knee is flexed to 10° and between 80° and 110°. PF = plantar flexion; ecc = eccentric; 80 
= knee flexed between 80° and 110°; 10 = knee flexed to 10°. 

 
Figure 6-8 A scatterplot representing the relationship between concentric DF measures 
when the knee is flexed to 10° and between 80° and 110°. DF = dorsiflexion; con = concentric; 
80 = knee flexed between 80° and 110°; 10 = knee flexed to 10°. 
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Figure 6-9 A scatterplot representing the relationship between concentric inv measures 
when the knee is flexed to 10° and between 80° and 110°. Inv = inversion; con = concentric; 
80 = knee flexed between 80° and 110°; 10 = knee flexed to 10°. 

 
Figure 6-10 A scatterplot representing the relationship between concentric eve measures 
when the knee is flexed to 10° and between 80° and 110°. Eve = eversion; con = concentric; 
80 = knee flexed between 80° and 110°; 10 = knee flexed to 10°. 
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6.4 Discussion 

The results described here indicate that there is a significantly less inv and eve peak torque 

generated with the leg fixed at 10° compared to when the leg is fixed between 80° and 110°. 

These results are in agreement with the conclusions of Lentell (1988). However, the Cohen’s 

d and R values bring into question the clinical significance of the differences. A large effect 

size would indicate that the differences between the torque values are clinically relevant; 

however, as the effect size is only intermediate this may not be the case. Furthermore, it is 

not possible to calculate the effect size from the data presented by Lentell (1988) and so it is 

not possible to comment on the relevance of the differences they described. From observing 

the experimental procedure it was concluded that use of a bench to raise the participant to 

sufficient height for testing added possible variation in terms of participant movement 

during the test. This movement was not apparent when using the Cybex Norm chair due to 

the use of the purpose built supports and restraints. This may detract from the reliability of 

the results; furthermore, movement of the participant from the Cybex Norm chair to the 

bench and back significantly increased the amount of time needed for the testing.  

 

The PF measurements presented here also showed a significant increase in peak torque 

produced with the leg fixed at 10° compared to fixing the leg at between 80° and 110°. Both 

the R value for concentric PF (R = 0.81) the effect size for eccentric PF (d = 0.77) suggests a 

large effect size meaning that this result may have greater clinical relevance. After observing 

the participants during the testing procedure it was suggested that the increase in peak 

torque produced with the leg fixed at 10° maybe a result of the transfer of force through the 

knee and hip to the chair back. This conclusion would explain why there was no difference 

between knee angle conditions when testing DF strength. As the DF movement pulls the foot 

towards the chair back there is no transfer of force towards the chair, thus, no difference in 

the results. It Is also possible that the increase in concentric PF peak torque when the knee 

is flexed to 10° compare to 80°-110° may also be due to ‘active insufficiency’ of the 

gastrocnemius whereby the motor neurone activation is reduced when the knee is flexed to 

80°-110° due to the shortened fascicle length (Kennedy & Cresswell, 2001). The reduced 

input from gastrocnemius as a result of knee flexion is an acknowledged limitation of the 

protocol used here, however, due to the time constraints of the PhD process the 

measurement of peak torque with the leg fixed between 80° and 110° is recommended. This 
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is more efficient in terms of time spent testing for the participants and is the only realistic 

option in terms of measuring inv and eve using the Cybex Norm. 

 

6.5 Conclusion 

Based on the results of this experiment as well as the observations made in its undertaking, 

it is recommended that PF, DF, inv and eve testing should be performed with the knee fixed 

between 80° and 110°. It is acknowledged that this may allow for recruitment of other 

muscle groups resulting in elevated inv and eve torque results. However, the question of the 

clinical relevance of these elevated results coupled with the added time needed to participate 

in the experiment outweigh potential errors. Furthermore, the evidence suggests that testing 

PF with the knee at 10° produces higher results, in part due to the inhibition of the 

gastrocnemius in knee flexion. If these factors are understood and acknowledged then the 

angle at which the knee is flexed is not an issue providing the angle is clearly stated in the 

protocol and any comparative measures use the same protocol. As testing both PF and DF, 

and inv and eve with the knee fixed at the same angle would further reduce the time needed 

to perform the experiment then both PF and DF, and inv and eve should be tested with the 

knee fixed between 80° and 110°. 
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7. Reliability of the protocol 
 

7.1 Introduction 

In order to produce valid reference range equations it is necessary to use a reliable protocol. 

To ascertain the reliability of the protocol described in Chapter 5 a test-retest experiment 

was carried out 

7.2 Method 

Eighteen healthy participants were recruited via e-mail from a convenience sample of 

University staff and students. They attended the laboratory on two different occasions 

ranging from two to six days between visits. On the first visit a medical questionnaire was 

completed and written informed consent was obtained from all subjects (see Appendix 7 and 

Appendix 8). Exclusion criteria included a history of ankle problems or any known 

neurological or musculoskeletal problems which may affect AMS. The participants were 

asked to avoid strenuous exercise for 24 hours prior to each visit. Ethical approval was 

obtained from the University’s Research Ethics Committee on 11th November 2010. 

 

On each visit the participants undertook the AMS testing according to the protocol described 

in Chapter 5. The order in which the test were taken were randomised across the 

participants; however, each participant performed the test in the same order on the first and 

second visit to avoid test order bias. Statistical analysis was performed using statistical 

software SPSS (version 20). As the Shapiro-Wilk test was used to determine the normaility 

of the distribution of the data. Significance levels were set at P = 0.05.  

 

The ICC used by van Cingel et al. (2009), Laughlin et al. (2009) and Taskiran, Özdogan, Sepici, 

and Meray (2013) indicated the percentage of the observed score variance attributable to 

true score variance (based on between subject variance) and error variance (biological 

variance, equipment variance, tester and participant error). The ICC here was calculated 

using a two-way mixed effects model with type consistency to demonstrate the reliability of 

the data. The SEM used by van Cingel et al. (2009) and Laughlin et al. (2009) gave an 

indication of expected measurement ‘noise’ (this figure has the same units as the 

measurement and gives an indication of the expected variation from the mean from trial to 

trial (Weir, 2005)). The calculation used was as follows: SEM = SD x √ ( 1 – ICC ); (Weir, 

2005). 
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7.3 Results 

Six males and eleven females were recruited for the experiment. See Table 7-1 for the 

participant demographics. 

 

Table 7-1 

Participant demographics 

 

 Minimum Maximum Mean Std. Deviation 

Height 155.00 179.00 166.77 7.66 

Weight 44.30 87.00 65.32 12.06 

Age 20.00 66.00 40.65 14.75 

Note Height is measured in cm, mass in kg and age in years. 

 

A Shapiro-Wilk test of normality was performed to test the normality of the distribution of 

results (see Table 7-2). 
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Table 7-2 
The results from a Shapiro-Wilk test of normality. 

 

 Shapiro-Wilk 

Statistic df Sig. 

PFcon1 0.96 17 0.57 

PFcon2 0.97 17 0.87 

DFcon1 0.93 17 0.20 

DFcon2 0.93 17 0.25 

PFecc1 0.93 17 0.20 

PFecc2 0.92 17 0.14 

DFecc1 0.94 17 0.33 

DFecc2 0.93 17 0.19 

Invcon1 0.97 17 0.83 

Invcon2 0.96 17 0.68 

Evecon1 0.98 17 0.92 

Evecon2 0.91 17 0.12 

Invecc1 0.96 17 0.69 

Invecc2 0.96 17 0.55 

Eveecc1 0.89 17 0.05 

Eveecc2 0.97 17 0.84 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = 
concentric; ecc = eccentric. 1 = first test; 2 = second test. 
Normality of distribution assumed if P > 0.05 
 

The Shapiro-Wilk test, described in Table 7-2, indicated that all of the data was normally 

distributed, thus, a paired samples t-test was used to analyse the data. 
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Table 7-3 

The results of a paired samples t-test comparing AMS peat torque between visits. 

 

 Paired Differences 

t df 
Sig. (2-

tailed) Mean 
Std. 

Deviation 

Std. Error 

Mean 

95% Confidence Interval 

of the Difference 

Lower Upper 

PFcon1 - PFcon2 3.31 6.76 1.69 -0.29 6.91 1.96 15 0.07 

DFcon1 - DFcon2 -0.31 4.70 1.18 -2.82 2.19 -0.27 15 0.79 

PFecc1 - PFecc2 6.69 19.91 4.98 -3.92 17.29 1.34 15 0.20 

DFecc1 - DFecc2 1.19 8.57 2.14 -3.38 5.76 0.55 15 0.59 

Invcon1 - Invcon2 0.75 2.86 0.72 -0.78 2.28 1.05 15 0.31 

Evecon1 - Evecon2 -0.25 3.87 0.97 -2.31 1.81 -0.26 15 0.80 

Invecc1 - Invecc2 2.00 4.07 1.02 -0.17 4.17 1.97 15 0.07 

Eveecc1 - Eveecc2 0.00 6.86 1.72 -3.66 3.66 0.00 15 1.00 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion.  
All torque values measured in Nm
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Table 7-4 

The mean peak torque values for the first and second AMS tests with corresponding t-test significance values and intraclass correlation 
coefficient values.  
 

 
Test 1 Test 2 t-test 

P 
value 

ICC 
value 

SEM  
value  
(Nm) 

SEM 
% Minimum 

 
Maximum mean SD 

Minimum 
 

Maximum mean SD 

PF concentric 19.00 125.00 51.93 25.44 18.00 113.00 48.63 23.20 0.07 0.98 3.45 6.65 

 eccentric 31.00 142.00 76.56 37.56 22.00 184.00 69.88 44.32 0.20 0.94 9.21 12.02 

DF concentric 8.00 28.00 15.44 5.21 8.00 35.00 15.75 6.75 0.79 0.82 2.21 14.33 

 eccentric 18.00 57.00 32.44 12.11 16.00 57.00 31.25 10.95 0.59 0.84 4.84 14.94 

inv concentric 7.00 41.00 18.75 8.17 7.00 33.00 18.00 7.37 0.31 0.97 1.42 7.57 

 eccentric 8.00 45.00 24.31 10.91 11.00 45.00 22.31 9.17 0.07 0.96 2.18 8.97 

eve concentric 7.00 45.00 17.25 8.71 8.00 37.00 17.50 7.93 0.80 0.94 2.13 12.35 

 eccentric 12.00 69.00 24.06 14.16 8.00 64.00 24.06 13.70 1.00 0.94 3.48 14.43 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion. ICC = intraclass correlation coefficient; SEM = standard error 
of the mean. 
All torque values measured in Nm
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7.4 Discussion 

The results of the paired samples t-test and the calculated ICC (Table 7-3 and Table 7-4) 

suggest that both the protocol presented here and the Cybex Norm isokinetic dynamometer 

are reliable tools for measuring AMS. The SEM measures indicates a range of measurement 

noise, consequences of which will be discussed here. 

 

The paired samples t-test results shown in Table 7-3 indicated no significant difference 

between the first and second AMS measures (P > 0.05 in all cases). This is consistent with 

the data presented by Laughlin et al. (2009) who examined consistency of concentric and 

eccentric PF and DF measurements over three tests. Their protocol placed the participant in 

a prone position with the leg fully extended. However, Taskiran et al. (2013) reported that 

the participants found this position to be uncomfortable. If both positions produce reliable 

results it could be concluded that a supine seated position is preferable for reasons of 

participant comfort. 

 

The ICC values for each of the AMS measurements showed high levels of reliability in all AMS 

measures (Table 7-4) which, combined with the t-test results suggest this protocol is a 

reliable when measuring AMS using the Cybex Norm. The AMS ICC results are similar to the 

results of Laughlin et al (2009) (see Appendix 10 for details of this comparison), apart from 

concentric DF which they found to be ICC = 0.67 compared to ICC = 0.82 found here. They 

concluded that the measurement of concentric DF was not reliable due to the low ICC score 

despite an ANOVA suggesting no significant difference between the three tests performed. It 

could be argued that the measurement was reliable as there was no significant difference 

between tests. The low variability in their test population may have led to low ICC scores 

whereas high variability could lead to high ICC scores irrespective of the test to test variation 

(Weir, 2005). Higher between-subject variability is likely here as a mixed gender population 

was used compared to an all-male population used by Laughlin et al. (2009) which may 

explain the higher ICC values presented here. This comparison of results also suggests the 

data presented here has greater external validity than that of Laughlin et al. (2009). 

 

The concentric and eccentric AMS PF and DF SEM data presented here are higher than those 

of Laughlin et al. (2009) (Appendix 10). They performed a full familiarisation session a week 

prior to the actual testing. Furthermore they performed 5 submaximal and 3 maximal 
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familiarisation tests at each visit. It could be argued that these extra familiarisation tests 

resulted in a greater understanding of the procedure which, in turn, would result in lower 

SEM scores. Adding an initial familiarisation visit may increase the SEM scores but the time 

constraints of this thesis meant this was not possible. However, as the t-test performed here 

showed no significant differences between the first and second tests and the ICC reliability 

scores were high the protocol here was deemed to be reliable.  

 

The reproducibility of concentric inv and eve AMS was measured by van Cingel et al. (2009) 

was presented in terms of ICC. They found lower ICC values compared to those presented 

here which they suggested meant the protocol was reproducible (Appendix 10). However, 

no paired samples t-test or normality data was presented. One of the main differences 

between the two protocols is the use of a height adjustable treatment bench to achieve knee 

flexion of 10° during testing by van Cingel et al. (2009). Altering the angle of knee flexion can 

affect PF and DF strength (Möller, Lind, Styf, & Karlsson, 2005); adding a treatment bench to 

the equipment adds another variable which may reduce the reliability of the data and, hence 

the lower ICC scores. A paired samples t-test would be useful in supporting their claim of 

reliability of the test due to the lower ICC scores. The inv and eve AMS SEM scores calculated 

from the data presented by van Cingel et al. (2009) were higher than the data presented here 

(Table 7-4 and Appendix 10). This is a reflection of the SEM scores being a function of 1-ICC 

scores which were lower.  

 

7.5 Summary 

For any experiment, the use of a reliable protocol is essential for the robustness of the 

results. This chapter presented a protocol for the measurement of AMS derived from the 

discussion of the key variables described in Chapter 3. This protocol was modified as a result 

of the conclusions drawn from a pilot study and was then used on the Cybex Norm in a test-

retest reliability experiment. The results and discussion presented in this chapter 

demonstrated the reliability of the protocol and Cybex Norm in measuring AMS in concentric 

and eccentric PF, DF, inv and eve. The protocol described in Chapter 5 was, therefore, used 

to test the main experimental population, the results and analysis of which will be presented 

in the next chapter. 
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8. Determining AMS reference range equations 
 

8.1 Introduction 

A frame of reference is necessary in order to fully understand the implications of a 

measurement. A common method of achieving this frame of reference is the use of reference 

values, also referred to as normal or normative values. These values represent the expected 

score or measurement for a given set of circumstances. Chapter 4 presented a reliable 

protocol for the production of AMS peak torque values, based on an analysis of the methods 

used in the literature and the results of a pilot study. This chapter will describe the results of 

using that protocol to test a healthy population. The results of the AMS peak torque tests and 

subsequent statistical analysis of the data will also be described. The analysis will consider 

the individual relationships between the measured anthropometric variables and AMS. This 

will indicate how these relationships affect the average AMS measurement in a general 

population. This chapter will then describe a stepwise linear regression analysis which will 

include the anthropometric variables in producing a predictive model for each of the eight 

AMS measures: concentric and eccentric PF, DF, inv and eve. 

 

8.2 Method 

The general method for collection of AMS data was followed as described in Chapter 5. The 

following are additions to this method which are specific to this experiment: 

8.2.1 Participants 

The number of participants required was determined by the number of independent 

variables being considered in accordance with the calculation of Tabachnick and Fidell 

(2007): N>50+8m where N is the number of participants and m is the number of 

independent variables. Five independent variables were studied (gender, age, height, mass 

and shoe size), thus, a minimum of ninety participants were required. 

8.2.2 Statistical analysis 

The aim of this experiment is to produce equations that will predict AMS reference ranges. 

111 participants were tested and randomly divided into a reference group (n=100) and a 

validation group (n=11) by the SPSS software. Initially reference values were produced by 

taking the average of each of the eight AMS values measured in the reference group. The 
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reference range was taken as between the upper and lower 95% CI. This range represents 

the values of AMS which can be considered normal. There are various ways of calculating the 

range, for example Danneskiold-Samsøe et al. (2009) produced mean values and expressed 

them ±SD. This can give a wide range of values which may not be clinically useful. Using the 

95% CI produces a reference range which would be applicable to a clinical setting. This 

reference value and range was then validated by comparing it to the AMS values measured 

in the validation group. Reference values and ranges were considered valid if the AMS values 

measured in the validation group fell within the reference ranges.  

 

The results of the validation process described above will be presented in Chapter 5. These 

results will indicate that only three of the eight AMS reference ranges were validated. It was 

concluded that this was due to differences in anthropometric measures between the 

reference and validation groups. For a full description and analysis of these results see 

section 5.4. To further explore the relationship between AMS and the anthropometric 

measures a Pearson’s correlation test was used. The Pearson’s correlation test was used to 

identify a relationship between the gathered AMS data and the individual anthropometric 

measures of gender, age, height, mass and shoe size used as independent variables. For each 

correlation test the significance was set at P < 0.05 and the strength of the correlation 

relationship was considered either small (r = 0.10 to 0.29), medium (r = 0.30 to 0.49) or large 

(r = 0.50 to 1.0); (Cohen, 1988).  

 

As the literature suggests that variations in anthropometric variables can affect AMS, to 

determine which independent variables were significant in each of the eight AMS measures 

a stepwise linear regression analysis was performed. A stepwise linear regression analysis 

is a statistical tool which demonstrates how well a set of independent variables, in this case 

gender, mass, height, age and shoe size, are able to predict an outcome measure, AMS peak 

torque (Boduszek, 2015). The analysis process adds each of the independent variables in 

turn and assesses whether the resultant model gives a better prediction of the dependent 

variable, in this case AMS peak torque. From this analysis it is also possible to determine the 

relative extent to which each of the independent variables contribute to the variation in the 

outcome measure and how much of the variation can be predicted by linear regression 

model as a whole.  
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8.2.3 Assessing normality, collinearity and homoscedasticity of the data 

Prior to the stepwise linear regression analysis a preliminary analysis was undertaken to 

ensure there was no violation of the assumptions of normality, collinearity and 

homoscedasticity. These tests are performed to ensure the robustness of the data (Boduszek, 

2015). Assessing the normality of the data identifies any outlier which would reduce the 

predictive value of the equation. Normality of the distribution of the residual differences 

between predicted and obtained values of AMS were assessed by scatter plot. Any residuals 

greater than 3.3 or less than -3.3 were considered outliers were removed (Tabachnick & 

Fidell, 2007). Collinearity of the data assess the independent contribution to variation in the 

dependent variable of each of the independent variables. For example height and mass are 

related, taller people are generally heavier, and both affect AMS; this is termed collinearity. 

If both height and mass affect AMS it is necessary to separate the individual and combined 

effects. The collinearity tests were performed to determine the individual effects of each of 

the independent variables. If the results of the tests indicated possible collinearity then one 

or more of the independent variables were removed as the test showed they were not 

contributing to the model. Collinearity of the data was checked in three ways: if the Pearson’s 

r value was greater than 0.9, the tolerance was less than 0.10 or the variance inflation factor 

(VIF) was greater than 10 then collinearity was indicated and as such the variable should be 

removed (Boduszek, 2015). Homoscedasticity refers to the consistency of variation of the 

predicted value from the measured value. The homoscedasticity of the data was assessed by 

using a normal P-P probability plot of the regression standardised residual. If the residuals 

plotted a diagonal line consistent with the predicted values then the data was accepted 

(Boduszek, 2015). 

 

A stepwise linear regression analysis was performed for each of the eight AMS measures 

(concentric and eccentric PF, DF, inv and eve) to determine the level of influence of five 

predictive values (independent variables: height, mass, age, gender and shoe size) on AMS 

(the dependent variable). A predictive equation for each of the eight AMS measures was 

produced using the unstandardised co-efficients generated in the regression analysis. The 

analysis software produces an unstandardised coefficient for each of the independent 

variables. These are then multiplied by the independent variable (for example by height in 

cm or age in years). The resulting values are added to the constant generated in the 

regression analysis giving a predicted value for the individual aspect of AMS. A reference 
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range would have greater clinical use. This range was defined as the mean of the predicted 

values ± the SD of the residuals (RSD) (Harbo et al., 2011). The strength of these equations 

was tested using and ANOVA test. This compares the variance in the predicted relationships 

and the actual relationships between AMS and the anthropometric variables. A significant 

result indicates little variation between the two. The adjusted R squared values for each of 

the equations were examined to determine the amount of AMS variance predicted by the 

equations in a wider population. The R squared value represents the extent to which the 

combined variation of the independent variables predicts the variation in the dependent 

variable i.e. AMS. The higher the value the greater the amount of variation predicted.  

8.2.4 Validation of the equations 

The resulting eight equations generated from the reference population were used to predict 

the eight measures of AMS in the validation population. The reference ranges used were the 

predicted measures of each of the eight AMS movements ± RSD (Harbo et al., 2011). The AMS 

reference ranges were considered valid if the validation set mean AMS fell within the 

reference range. To further validate the reference values a paired samples t-test was used to 

determine if there was a statistically significant difference between predicted and measured 

values. 

8.2.5 Validity of Testing  

The experimental design had internal validity in terms of the muscles being used as the body 

positioning and strapping on the equipment isolated the PF, DF, inv and eve movements and 

so the torque produced was a result of specific muscle contractions. This isolation is achieved 

by the use of Velcro® straps over the foot, a thigh support tube to fix the knee and a seatbelt 

which restrict the movement of the participant. The questionnaire removed anyone who had 

any skeletal or neuromuscular problems so the results would, in theory, be an accurate 

reflection of healthy muscle working. Other factors which could affect torque production 

such as foot size, mass, age, height and gender were all ascertained and the results were 

analysed in terms of these variables, thus controlling them. To ensure consistency of testing 

the same researcher performed all of the tests using the standardised protocol described 

here. As previously discussed the dynamometer was calibrated and serviced in accordance 

with the manufacturer’s recommendations to ensure consistent measurement. 
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The experimental design had external validity as a large number of people were tested with 

a diverse range of anthropometric measures and as such the results can be applied to the 

population as a whole. 

 

8.3 Results 

AMS was tested in 111 participants (forty-nine males, sixty-two females). The participant 

demographics are shown in Table 8-1. 

Table 8-1  

Participant demographics 

 Minimum Maximum Mean Std. Deviation 

Height 155.00 190.00 170.14 8.10 

Mass 44.10 127.90 73.48 16.34 

Age 19.00 59.00 37.08 11.40 

Footsize 3.00 12.00 7.27 2.09 

Note Height is measured in cm, mass in kg, age in years and shoe size is UK standard. 

 

8.3.1 Integrity of the data 

8.3.1.1 Coefficients of variance  

Each participant produced three sets of three maximal reps for each of the eight movement 

types. The peak torque produced was accepted for a set if the COV was less than 0.2 or 20%; 

111 participants were tested. Table 8-2 shows the number of scores registered per 

movement type. 
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Table 8-2  

Number of scores registered per movement type.  

Movement type Scores registered  

PF  concentric 110 

eccentric 101 

DF  concentric 111 

eccentric 111 

Inv  concentric 111 

eccentric 111 

Eve  concentric 111 

eccentric 110 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion eve = eversion. Total number 
of tests = 111 
 
The data in Table 8-2 demonstrates that the majority of the participants were able to 

demonstrate a high level of consistency over the three repetitions within each set. Ten 

participants were not able to achieve the required level of consistency on eccentric PF, one 

participant was not consistent in concentric PF and one in eccentric eve.  

8.3.2 Mean average reference value 

SPSS software was used to randomly split the data set of 111 into two groups: a reference 

set (n=100) and a validation set (n=11). The mean average of each of the eight measures of 

AMS taken from the reference set (fifty-five males, forty-five females) as described in Table 

8-3, were used as reference values with the upper and lower 95% CI indicating the reference 

range. These values are shown in Table 8-4. 

 

Table 8-3  

Anthropometric descriptors of the reference set 

 Minimum Maximum Mean Std. Deviation 

Height 155.00 188.00 170.43 7.83 

Mass 44.10 127.90 73.93 16.49 

Age 19.00 59.00 37.15 11.51 

Footsize 3.50 12.00 7.35 2.04 
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Note Height is measured in cm, mass in kg, age in years and foot size is UK standard 
N = 100 
Table 8-4  

Mean average and confidence intervals for eight AMS measures taken from the reference set  

 Mean average  Lower CI  Upper CI  

PF Concentric 52.32 48.50 56.14 

 Eccentric 85.51 78.26 92.76 

DF Concentric 18.05 16.84 19.26 

 Eccentric 37.82 35.50 40.14 

Inv Concentric 19.09 17.77 20.41 

 Eccentric 25.75 23.97 27.53 

Eve Concentric 18.36 17.21 19.51 

 Eccentric 29.49 26.84 32.15 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion eve = eversion.  
All torque measurements are in Nm. 
n=100 

To validate these reference values a comparison was made with the mean average of each of 

the eight AMS measures taken from the validation set (seven females and four males) 

described in Table 8-5. 

  

Table 8-5  

Anthropometric descriptors of the validation set 

 Minimum Maximum Mean Std. Deviation 

Height 155.00 190.00 167.50 10.32 

Mass 52.00 100.00 69.38 14.97 

Age 20.00 48.00 36.45 10.80 

Footsize 3.00 11.00 6.55 2.50 

Note Height is measured in cm, mass in kg, age in years and foot size is UK standard 
N = 11 
 

The average AMS values for the validation group are shown in Table 8-6. 
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Table 8-6  

Mean average of AMS values for the validation set  

 Minimum Maximum Mean Std. Deviation Within normal range y/n 

PFcon 22.00 91.00 56.60 22.92 N 

DFcon 9.00 30.00 15.64 5.55 N 

PFecc 27.00 138.00 94.13 40.58 N 

DFecc 12.00 71.00 34.00 15.12 N 

Invcon 8.00 30.00 19.18 7.00 Y 

Evecon 9.00 26.00 17.27 5.62 Y 

Invecc 9.00 41.00 24.18 10.18 Y 

Eveecc 8.00 45.00 25.00 10.96 N 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion eve = eversion. 
All torque measurements are in Nm. 
 
 

Table 8-6 indicates three of the eight AMS measures from the validation group are within the 

reference range provided by the lower and upper CI described in Table 8-4. These were 

concentric and eccentric inv and eccentric eve. The remaining five measures of AMS, 

concentric and eccentric PF and DF and eccentric eve, were all outside of the reference range. 

8.3.3 Relationship between anthropometric measures and muscle strength 

This section will further analyse the relationship between the individual anthropometric 

variables and AMS to determine to what extent changes in these variables affect reference 

values. To maximise the statistical power of the tests data from 111 participants was used in 

the following analysis. 

8.3.3.1 Gender 

An independent samples t-test, described in Appendix 11, was performed to determine the 

relationship between gender and AMS. This analysis indicated a significant difference in 

strength between the genders (P < 0.01 and d > 0.8 in all cases apart from eccentric eve 

where P = 0.03 and d = 0.43); (Figure 8-1).  
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Figure 8-1 A graph comparing mean peak torque between genders for each of the eight measures of AMS. PF = plantar flexion; DF = 
dorsiflexion; Inv = inversion; Eve = eversion; con = concentric; ecc = eccentric. Error bars represent 95% CI. 
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8.3.3.2 Age  

A Pearson’s correlation test was performed to indicate if there was a possible relationship 

between age and AMS (Appendix 12). The results suggested no significant correlation (P > 

0.05) between age and any of the eight measures of AMS. However, there was not an equal 

distribution of males and females across age groups (Appendix 13) which may skew the data 

as discussed previously. Further Pearson’s correlation tests were performed on male and 

female groups; the results of which are shown in Table 8-7. 

 

Table 8-7  

Results of a Pearson’s correlation test examining the gender specific relationship between age 
and AMS.  

Gender PFcon DFcon PFecc DFecc Invcon Evecon Invecc Eveecc 
Male Pearson 

correlation 
-0.11 -0.09 0.10 -0.02 -0.10 -0.21 -0.00 -0.16 

Significance 
(2-tailed) 

 

0.46 0.56 0.52 0.90 0.50 0.15 0.98 0.27 

Female Pearson 
correlation 

-0.26 -0.27 -0.14 -0.03 -0.15 -0.27 -0.05 -0.16 

Significance 
(2-tailed) 

0.05 0.03 0.32 0.83 0.24 0.04 0.73 0.22 

Note: PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion; con = 

concentric; ecc = eccentric. 

 

The data displayed in Table 8-7 indicates there is no significant correlation between age and 

AMS in any of the eight measures in the male population. There was a significant correlation 

in the female population between age and concentric PF, concentric DF and concentric eve 

(P < 0.05). 

 

 

  



132 
 

 

 

Figure 8-2 Scatterplots demonstrating the relationship in males between age and concentric 
PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar flexion; DF = 
dorsiflexion; con = concentric 
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Figure 8-3 Scatterplots demonstrating the relationship in males between age and eccentric 
PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar flexion; DF = 
dorsiflexion; ecc = eccentric. 
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Figure 8-4 Scatterplots demonstrating the relationship in males between age and concentric 
inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = inversion; eve = 
eversion; con = concentric 
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Figure 8-5 Scatterplots demonstrating the relationship in males between age and eccentric 
inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = inversion; eve = 
eversion; ecc = eccentric. 
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Figure 8-6 Scatterplots demonstrating the relationship in females between age and 
concentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric 
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Figure 8-7 Scatterplots demonstrating the relationship in females between age and eccentric 
PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar flexion; DF = 
dorsiflexion; ecc = eccentric. 
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Figure 8-8 Scatterplots demonstrating the relationship in females between age and 
concentric inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion; con = concentric 

 



139 
 

 

 
Figure 8-9 Scatterplots demonstrating the relationship in females between age and eccentric 
inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = inversion; eve = 
eversion; ecc = eccentric 
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8.3.3.3 Mass  

With the male and female AMS data taken together there was a significant correlation 

between mass and strength in all eight measures of AMS. (P < 0.05 in all cases see Appendix 

14). The data presented in Appendix 11 indicated a significant difference in strength 

between the genders (P < 0.01 and d > 0.8 in all cases apart from eccentric eve where P = 

0.03 and d = 0.43) and an independent samples t-test indicated that males were significantly 

heavier than females (t(109) = -5.99, P < 0.01, d = -0.62. (See Appendix 15). Any correlation 

between strength and mass may be due to the strength and gender interaction, thus, male 

and female data were analysed separately. In the female data there were significant 

correlations between mass and strength in concentric DF (P = 0.04), eccentric DF (P < 0.01) 

and concentric inv (P = 0.02) with a tendency towards significance in concentric PF (P = 0.06) 

and eccentric PF (P = 0.07). In the male data there were significant correlations between 

mass and strength in concentric DF (P < 0.01), eccentric DF (P < 0.01) and eccentric eve (P = 

0.02). These data and the Pearson’s r statistics are summarised in Table 8-8.  

 

Table 8-8  

The results of a Pearson’s correlation analysis between AMS and mass in males and females  

Gender PFcon DFcon PFecc DFecc Invcon Evecon Invecc Eveecc 

Male Pearson 

correlation 

0.22 0.68 0.09 0.66 0.14 0.04 0.27 0.34 

Significance 

(2-tailed) 

0.13 0.00 0.56 0.00 0.34 0.79 0.06 0.02 

    

Female 

Pearson 

correlation 

0.24 0.27 0.25 0.38 0.29 0.16 0.14 0.01 

Significance 

(2-tailed) 

0.06 0.04 0.07 0.00 0.02 0.22 0.28 0.93 

Note PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion; con = concentric; 
ecc = eccentric.  

The correlations described in Table 8-8 are shown graphically in Figure 8-10 through to 

Figure 8-17. 
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Figure 8-10 Scatterplots demonstrating the relationship in males between mass and 
concentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 
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Figure 8-11 Scatterplots demonstrating the relationship in males between mass and 
eccentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; ecc = eccentric. 
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Figure 8-12 Scatterplots demonstrating the relationship in males between mass and 
concentric inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion; con = concentric. 
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Figure 8-13 Scatterplots demonstrating the relationship in males between mass and 
eccentric inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = inversion; 
eve = eversion; ecc = eccentric. 
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Figure 8-14 Scatterplots demonstrating the relationship in females between mass and 
concentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 
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Figure 8-15 Scatterplots demonstrating the relationship in females between mass and 
eccentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; ecc = eccentric. 
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Figure 8-16 Scatterplots demonstrating the relationship in females between mass and 
concentric inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion; con = concentric. 
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Figure 8-17 Scatterplots demonstrating the relationship in females between mass and 
eccentric inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = inversion; 
eve = eversion; ecc = eccentric. 
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Comparing AMS between genders controlling for mass 

To ascertain the effect of mass on differences in AMS between genders, independent samples 

t-tests comparing males and females in the same mass ranges (60-79.9kg (female n = 34, 

male n = 24) and 80-99.9kg (female n = 7, male n = 17)) were performed (Appendix 16 and 

Appendix 17). These indicated that in the 60-79.9kg range there was a significant difference 

between males and females in concentric and eccentric PF and DF (P < 0.01, d > 0.8) and in 

concentric inv (t(56) = -2.61, P = 0.01, d = -0.71) and eve (t(56) = -5.48, P <0.01, d = -1.47) 

and eccentric inv (t(56) = -2.39, P = 0.02, d = 0.63). There was no significant difference in 

eccentric eve (P = 0.83) see Figure 8-18. In the 80-99.9kg mass range there was a significant 

difference between genders in concentric DF (t(22) = -4.56, P < 0.01, d = -2.33) and eccentric 

DF (t(22) = -2.44, P < 0.01, d = -1.83) as well as eccentric inv (t(22) = -2.08, P = 0.05, d  = -

0.92) and eccentric eve (t(22) = -2.62, P = 0.02, d = -1.20). There was a tendency towards a 

significant difference in concentric PF (t(21) = -1.84, P = 0.08, d = -0.91) and concentric eve 

(t(22) = -1.92, P = 0.07, d = -0.95); (Figure 8-19). 

 

A paired samples t-test also indicated that there was a significant difference between male 

and female mass within the 60-79.9 kg mass group (t(56) = -2.38, P = 0.02). The magnitude 

of the difference between the means (mean difference = -3.56, 95% CI: -6.55 to – 0.57) was 

intermediate (d = -0.62). There was no significant difference between male and female mass 

in the 80-99.9kg mass category (P = 0.34). 
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Figure 8-18 A graph showing the relationship in AMS between males and females in the 60-79.9kg mass group. PF = plantar flexion; DF = 
dorsiflexion; con = concentric; ecc = eccentric; Inv=inversion; Eve=eversion; con = concentric; ecc = eccentric. a=significantly different to 
female peak torque. 
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Figure 8-19 A graph showing the relationship in AMS between males and females in the 80-99.9kg mass group.  PF = plantar flexion; DF = 
dorsiflexion; con = concentric; ecc = eccentric; Inv=inversion; Eve=eversion; con = concentric; ecc = eccentric. a=significantly different to 
female peak torque  
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8.3.3.4 Height 

In the sample population a Pearson’s correlation test indicated a relationship between height 

and AMS (P < 0.01 in all cases, see Appendix 18 for r values), however, an independent 

samples t-test indicated there was a significant difference in height between males and 

females (t(109) = -8.73, P < 0.01, d = -1.67); (Appendix 19). As discussed previously mean 

AMS is greater in males than in females, thus, a correlation would exist between height and 

AMS due to differences between genders. It is therefore necessary to analyse the interaction 

between height and strength in single gender groups. When the Pearson’s correlation test 

was repeated for the single gender groups, for the males there was significant correlation 

between height and concentric and eccentric DF (P<0.01) and for the females there was a 

significant correlation between concentric and eccentric PD and DF (P<0.05). See Table 8-9 

for significance and r values. 

 

Table 8-9  

Results of a Pearson’s correlation analysis between height and the eight measures of AMS.  

Gender PFcon DFcon PFecc DFecc Invcon Evecon Invecc Eveecc 

Male Pearson 

correlation 

0.27 0.50 0.17 0.50 0.04 0.03 0.04 0.12 

Significance 

(2-tailed) 

0.07 0.00 0.24 0.00 0.80 0.85 0.81 0.41 

Female Pearson 

correlation 

0.28 0.32 0.33 0.46 0.05 -0.02 0.14 0.17 

Significance 

(2-tailed) 

0.03 0.01 0.01 0.00 0.68 0.86 0.26 0.19 

Note PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion; con = concentric; ecc = 
eccentric. 
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Figure 8-20 Scatterplots demonstrating the relationship in males between height and 
concentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 
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Figure 8-21 Scatterplots demonstrating the relationship in males between height and 
eccentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 
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Figure 8-22 Scatterplots demonstrating the relationship in males between height and 
concentric inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion. 
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Figure 8-23 Scatterplots demonstrating the relationship in males between height and 
eccentric inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = inversion; 
eve = eversion. 
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Figure 8-24 Scatterplots demonstrating the relationship in females between height and 
concentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 
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Figure 8-25 Scatterplots demonstrating the relationship in females between height and 
eccentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 
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Figure 8-26 Scatterplots demonstrating the relationship in females between height and 
concentric inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = 
inversion; eve = eversion. 
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Figure 8-27 Scatterplots demonstrating the relationship in females between height and 
eccentric inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = inversion; 
eve = eversion. 
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Comparing AMS between genders controlling for height 

To ascertain the contribution of height towards variation in AMS between genders an 

independent samples t-test was performed examining the relationship between males and 

females in the same height categories: 165-169.9cm, 170-174.9cm and 175-179.9cm. 

Independent samples t-test showed no significant difference in height between males and 

females in the 165-169.9cm height group (Appendix 20), however, as the graph in Figure 

8-28 shows there was significant difference between males and females in terms of eccentric 

DF (t(17) = -3.51, P < 0.01, d = -1.59) and concentric eve (t(17) = -1.84, P = 0.01, d = -1.36); 

(Appendix 21).  



162 
 

 
Figure 8-28 A graph comparing AMS between genders in the 165.0-169.9cm height group. PF=plantar flexion; DF=dorsiflexion; 
con=concentric; ecc=eccentric; a= significantly different to female average peak torque. 
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In the 170-174.9cm group there was a tendency towards significant difference between the 

genders in terms of height (t(21) = -1.9, P = 0.07, d = -0.79); (Appendix 22). Figure 8-29 

indicates there was a significant difference between genders in terms of concentric PF (t(21) 

= -3.49, P = 0.02, d = -1.45) and concentric DF (t(21) = -4.11, P < 0.01, d = -1.69), eccentric DF 

(t(11.19) = -2.64, P = 0.02, d =-1.12), concentric eve (t(21) = -2.41, P = 0.03, d = -1.00) and 

eccentric inv (t(21) = -2.40, P = 0.03, d = -0.99); (Appendix 23).  
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Figure 8-29 A graph comparing AMS between genders in the 170-174.9cm height group. PF=plantar flexion; DF=dorsiflexion; con=concentric; 
ecc=eccentric; a= significantly different to female average peak torque 
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There was no significant difference between genders in terms of height (P = 0.12) in the 175-

179.9cm group (Appendix 24), however, as Figure 8-30 shows, in this group there was a 

significant difference between genders in terms of concentric DF (t(21) = -3.23, P < 0.01, d = 

-1.76), eccentric DF (t(21) = -3.43, P < 0.01, d = -1.83) and concentric inv (t(21) = 13.06, P < 

0.01, d = -1.71)  and concentric eve (t(21) = -4.21, P < 0.001, d = -2.25); (Appendix 25). 
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Figure 8-30 A graph comparing AMS between genders in the 175.0-179.9cm height group. PF=plantar flexion; DF=dorsiflexion; 
con=concentric; ecc=eccentric; a= significantly different to female average peak torque 
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8.3.3.5 Shoe size 

A Pearson’s correlation test indicated there was a significant correlation between shoe size 

and AMS (P < 0.01 in all cases apart from eccentric eve where P = 0.02); (Appendix 26). There 

was also a correlation between gender and shoe size (r = 0.81, n = 100, P < 0.01), therefore, 

it could be this interaction that is causing the correlation between shoe size and AMS. When 

the genders were split there were some significant correlations in measures of PF and DF 

strength in the female group and a tendency towards significant interactions in the male 

group. This data is summarised in Table 8-10. 

 

Table 8-10  

A table summarising the results of a Pearson’s correlation analysis between shoe size and AMS 
in males and females.  

Gender PFcon DFcon PFecc DFecc Invcon Evecon Invecc Eveecc 

Male Pearson 

correlation 

0.26 0.24 0.15 0.24 0.06 0.11 0.11 0.14 

Significance 

(2-tailed) 

0.07 0.09 0.32 0.09 0.71 0.47 0.46 0.35 

Female Pearson 

correlation 

0.25 0.28 0.26 0.40 0.05 0.02 0.09 0.09 

Significance 

(2-tailed) 

0.06 0.03 0.06 0.00 0.72 0.90 0.50 0.48 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = 
concentric; ecc = eccentric 
 
The results described in Table 8-10 are displayed graphically in Figure 8-31through to 

Figure 8-38 
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Figure 8-31 Scatterplots demonstrating the relationship in females between shoe size and 
concentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 
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Figure 8-32 Scatterplots demonstrating the relationship in females between shoe size and 
eccentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; ecc = eccentric 
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Figure 8-33 Scatterplots demonstrating the relationship in females between shoe size and 
concentric inv and eve. The lines represent a linear line of best fit and 95% Inv = inversion, 
eve = eversion; con = concentric;  
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Figure 8-34 Scatterplots demonstrating the relationship in females between shoe size and 
eccentric inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = inversion; 
eve = eversion; ecc = eccentric 
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Figure 8-35 Scatterplots demonstrating the relationship in males between shoe size and 
concentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; con = concentric. 
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Figure 8-36 Scatterplots demonstrating the relationship in males between shoe size and 
eccentric PF and DF. The lines represent a linear line of best fit and 95% CI. PF = plantar 
flexion; DF = dorsiflexion; ecc = eccentric 
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Figure 8-37 Scatterplots demonstrating the relationship in males between shoe size and 
concentric inv and eve. The lines represent a linear line of best fit and 95% Inv = inversion, 
eve = eversion; con = concentric;  
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Figure 8-38 Scatterplots demonstrating the relationship in males between shoe size and 
eccentric inv and eve. The lines represent a linear line of best fit and 95% CI. Inv = inversion; 
eve = eversion; ecc = eccentric 
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8.3.4 Linear regression analysis 

The results from the previous section demonstrate that the independent variables of gender, 

age, mass, height and shoe size interact with each other and with one or more measures of 

AMS. These relationships will be investigated in here using further statistical analysis. 

8.3.4.1 Normality, collinearity and homoscedasticity 

As part of the stepwise linear regression analysis the collected data was tested for 

robustness by examining the normality, collinearity and homoscedasticity of the data as 

explained in section 4.5.2. The normality of the data was tested using scatter plots that 

plotted obtained against predicted values. Data points greater than 3.3 or less than -3.3 were 

considered outliers. The scatter plots shown in Appendix 27 indicate that no outliers were 

found in Eccentric PF, concentric and eccentric DF and concentric inv. One outlier was found 

in concentric PF (participant number 154), one outlier was found in eccentric eve 

(participant number 80). Two outliers were found in concentric eve (participant numbers 

113 and 154) and four outliers were found in eccentric eve (participant numbers 20, 80, 113 

and 154). Where outliers were removed the analysis was repeated and further scatter plots 

were generated and if further outliers were detected these were removed and the analysis 

was repeated again. The results of the repeated analyses are shown in Appendix 27.  

 

A collinearity test was performed on the collected data. Where outlying participants were 

removed it was necessary to perform separate collinearity tests. All of the relevant 

independent variables (gender, age, height, mass and shoe size) were within acceptable 

limits in terms of the Pearson’s r value, tolerance value and VIF. Thus, it was accepted that 

each of the variables contributed to the variation in AMS independently. See Appendix 28 for 

a description of the actual values for each of the eight movements. 

 

The homoscedasticity of the data was assessed by using a normal P-P probability plot of the 

regression standardised residual, the results of this are shown in Appendix 29. As all of the 

plots follow and approximate diagonal line through the centre of the graph homoscedasticity 

was accepted for all of the measures of AMS.  

8.3.4.2 Linear regression analysis  

A stepwise linear regression analysis, as described in Chapter 4, was performed on the 

reference data set (n=100) for each of the eight AMS measures: concentric and eccentric PF, 
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DF, inv and eve. This analysis determined the level of influence of five independent variables 

(height, mass, age, gender and shoe size) on the dependent variable AMS. The significant 

predictors of AMS and their weighting, produced using the unstandardised co-efficients 

resulting from the stepwise linear regression analysis, are shown in Table 8-11 and Table 

8-12. The R2 change and fit statistics for alternate models and the excluded variables are 

described in Appendix 31. 
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Table 8-11 

A summary of the un-standardised and standardised co-efficients used in the AMS reference equations 

Model Unstandardized 

Coefficients 

95.0% Confidence Interval 

for B 

Standardized 

Coefficients 

95.0% Confidence Interval 

for Beta 

  

B Std. 

Error 

Lower 

Bound 

Upper Bound Beta Lower 

Bound 

Upper 

Bound 

t Sig. 

PFcon (Constant) -70.39 39.99 -149.77 8.98    -1.76 0.08 

 Gender 14.12 3.74 6.70 21.53 0.39 0.21 0.59 3.78 0.00 

 Height 0.68 0.24 0.20 1.16 0.29 0.06 0.46 2.82 0.01 

DFcon (Constant) 6.74 2.20 2.37 11.10    3.06 0.00 

 Gender 6.06 0.88 4.30 7.81 0.50 0.35 0.64 6.85 0.00 

 Mass 0.15 0.03 0.10 0.21 0.42 0.28 0.57 5.75 0.00 

 Age -0.08 0.03 -0.14 -0.01 -0.14 -0.26 -0.01 -2.26 0.03 

PFecc (Constant) -153.21 88.44 -328.90 22.49    -1.73 0.09 

 Height 1.35 0.53 0.29 2.41 0.30 0.07 0.56 2.53 0.01 

 Gender 19.29 8.34 2.72 35.85 0.27 0.03 0.50 2.31 0.02 

DFecc (Constant) -34.44 17.88 -69.94 1.06    -1.93 0.06 

 Gender 9.42 1.68 6.09 12.75 0.40 0.24 0.52 5.61 0.00 

 Mass 0.30 0.05 0.21 0.39 0.42 0.28 0.54 6.31 0.00 

 Height 0.27 0.11 0.04 0.50 0.18 0.03 0.34 2.37 0.02 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric 
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Table 8-12 

A summary of the un-standardised and standardised co-efficients used in the AMS reference equations 

Model Unstandardized 

Coefficients 

95.0% Confidence 

Interval for B 

Standardized 

Coefficients 

95.0% Confidence 

Interval for Beta 

t Sig. 

B Std. Error Lower 

Bound 

Upper 

Bound 

Beta Lower 

Bound 

Upper 

Bound 

Invcon (Constant) 9.41 2.91 3.64 15.17      3.24 0.00 

Mass 0.11 0.04 0.03 0.19 0.27 0.07 0.49 2.61 0.01 

Gender 3.51 1.39 0.76 6.26 0.26 0.04 0.46 2.53 0.01 

Evecon (Constant) 18.33 1.45 15.45 21.21    12.65 0.00 

Gender 5.21 0.84 3.55 6.88 0.54 0.36 0.64 6.21 0.00 

Age -0.07 0.04 -0.15 0.00 -0.17 -0.28 0.00 -2.01 0.05 

Invecc (Constant) 12.24 3.66 4.98 19.50    3.35 0.00 

Gender 5.34 1.75 1.86 8.82 0.31 0.11 0.49 3.05 0.00 

Mass 0.15 0.05 0.04 0.25 0.28 0.08 0.46 2.76 0.01 

Eveecc (Constant) 10.16 4.21 1.81 18.51    2.42 0.02 

Mass 0.24 0.06 0.13 0.35 0.40 0.16 0.43 4.26 0.00 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric 
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Using concentric PF as an example only two of the independent variables were found to be 

significant: gender and height. Thus, the predictive equation for concentric PF is: 

 

Predicted concentric PF = c  + (B1 x gender) + (B4 x height) 

= -70.35 + (14.12 x gender) + (0.68 x height) 

 

Where gender male=1 and female=0 and height is in cm. 

 

The following are predictive equations for each of the eight measures of AMS: 

Concentric PF = -70.35 + (14.12 x gender) + (0.68 x height) 

Eccentric PF = -153.21 + (19.29 x Gender) + (1.35 x Height) 

Concentric DF = 6.74 + (6.06 x Gender) + (-0.08 x Age) + (0.15 x Mass) 

Eccentric DF = -34.44 + (9.42 x Gender) + (0.30 x Mass) + (0.27 x Height) 

Concentric inv = 9.41 + (3.51 x Gender) + (0.11 x Mass) 

Eccentric inv = 12.24 + (5.34 x Gender) + (0.15 x Mass) 

Concentric eve = 18.33 + (5.21 x Gender) + (-0.07 x Age) 

Eccentric eve = 10.16 + (0.24 x Mass) 

 

Gender: Male=1, female =0; Age is measured in years; Mass is measured in kilograms; 

Height is measured in centimetres; Shoe size is UK standard. 

8.3.4.2 Strength of the models 

Once the relevant independent variables had been identified and predictive model produced 

an ANOVA test was performed on each of the eight models to ascertain the model’s strength. 

See Appendix 30 for the full ANOVA table for each of the measures. The significance of the 

models for predicting AMS was P < 0.001 for all eight models suggesting they are all strong 

models for predicting AMS. 

8.3.4.3 Models predictive value 

The R Square value produced by the linear regression analysis indicates the amount of 

variation in the dependent variable explained by the independent variables. The adjusted R 

Square value indicates the predictive value of the independent variables in the general 

population. These adjusted R squared values for each of the models are shown in Table 8-13. 
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Table 8-13  

The adjusted R square values for each of the eight AMS prediction models. 

  Adjusted R squared value 

PF Concentric 0.39 

 Eccentric 0.27 

DF Concentric 0.63 

 Eccentric 0.73 

Inv Concentric 0.22 

 Eccentric 0.26 

Eve Concentric 0.30 

 Eccentric 0.16 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion 

8.3.5 Testing the prediction equation. 

The eight prediction equations detailed in section 8.3.4.2 were applied to the data from the 

reference group (n=100). The predicted range was calculated as ± RSD after Harbo et al. 

(2011). These ranges were compared to the average AMS values from the validation group 

(n=11). The results shown in  

Table 8-14 indicates that all eight measured values were within the predicted range. 

 

Table 8-14  

The predicted values and predicted range for AMS, generated using the reference population 
compared to the actual AMS values generated from the validation population. 

 Predicted  Predicted range 
minimum 

Predicted range 
maximum 

Actual  

PF Concentric 48.46 37.26 59.66 56.60 

Eccentric 79.86 61.46 98.26 94.13 

DF Concentric 16.87 12.07 21.67 15.63 

Eccentric 34.75 24.75 44.75 34.00 

Inv Concentric 18.30 15.20 21.40 19.18 

Eccentric 24.63 20.43 28.83 24.18 

Eve Concentric 17.51 14.81 20.21 17.27 

Eccentric 26.53 22.63 30.43 25.00 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion 
All torque measurements are in Nm 
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A paired samples t-test test was performed comparing the predicted and actual AMS values 

in the validation set population. The results of this are shown in Table 8-15. 

 
Table 8-15  

Results of a paired samples t-test comparing predicted and actual AMS values in the validation 
set population. 

 PFcon DFcon PFecc DFecc Invcon Evecon Invecc Eveecc 

Mean 

difference 
7.24 -1.25 11.61 -0.76 0.87 -0.25 -0.09 -1.53 

Significance 

(2-tailed) 
0.20 0.25 0.31 0.81 0.64 0.82 0.97 0.66 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = 
eccentric 
 

The data shown in Table 8-15 indicates that there is no significant difference between the 

predicted and measured AMS values in concentric and eccentric PF, DF, inv and eve. 
 

8.4 Discussion 

8.4.1 AMS and population demographics 

8.4.1.1 Gender 

It has been established that average male AMS is greater than average female AMS in terms 

of concentric PF and DF (Danneskiold-Samsøe et al., 2009; Harbo et al., 2011) and concentric 

inv and eve (van Cingel et al., 2009). Analysis of the strength and gender data presented in 

the previous chapter supports this assertion and adds evidence indicating this is also true 

for eccentric PF and DF, and, inv and eve which, to the author’s knowledge as of August 2015, 

is absent from current literature. However, it is not being male that makes an individual 

physically stronger but the attributes of a typical male. For example larger muscle mass or 

longer limbs associated with the average male may increase the amount of torque produced 

around the ankle. The effect of mass and height as well as age will be discussed further here. 

8.4.1.2 Age 

The Pearson’s correlation test described in Appendix 12 indicates no correlation between 

age and strength in any of the eight AMS measures. As previous research analysed their data 

in single gender groups (Danneskiold-Samsøe et al., 2009; Harbo et al., 2011; Lategan, 2011) 
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the data here was also split into single gender groups and analysed again. Table 8-7 indicates 

that there was no significant relationship between age and AMS in males but there was a 

weak correlation between age and concentric PF and DF and concentric eve in females. 

Comparison of this finding to the published literature is difficult. For example the ankle 

specific data presented by Harbo et al. (2011) is not clear in relation to age. Their results do 

seem to suggest that concentric PF and DF AMS in males and females are consistent up to the 

50-59 year age group after which strength falls, however, it is not stated whether this decline 

is significant or not. Danneskiold-Samsøe et al. (2009) concluded that overall male strength 

declined from the age of 20 and female strength from the age of 40. However, if just the ankle 

is considered their data suggests that concentric PF declined from the age of 60-69 in both 

males and females and concentric DF declined from age 50-59 in males and 70-79 in females. 

This conclusion is derived from a multivariate regression model which differs from the 

between groups independent samples t-test performed here. Furthermore, these higher age 

ranges are beyond the scope of the research presented here; however, the age matched data 

presented by Danneskiold-Samsøe et al. (2009) is consistent with the data presented here. 

Danneskiold-Samsøe et al. (2009) and Harbo et al. (2011) present age related AMS data, 

however, they did not perform the statistical analysis to indicate whether or not the fall in 

AMS with age is significant.  

 

To the author’s knowledge, as of August 2015, the relationship between age and eccentric 

PF, DF, and concentric and eccentric inv and eve had not been published previously. This 

information could allow clinicians to tailor training and rehabilitation programmes; 

however, it should be considered alongside other factors such as mass, height and shoe size. 

8.4.1.3 Mass 

The results of a Pearson’s correlation indicated a significant correlation between concentric 

and eccentric DF in both males and females and an increase in mass. Ass mass increased, so 

did concentric and eccentric DF strength. This demonstrates that the interaction of the 

anthropometric measures and AMS varies between movements as well as with mass.  

 

The relationship between AMS and mass may also linked to age. In the data presented by 

Danneskiold-Samsøe et al. (2009) the average mass of the female participants increased 

from 62.8kg (20-29 years) to 69.6kg (50-59years). There was no decrease in AMS between 

these two groups despite the increase in age. It could be argued that any decline in strength 
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with age is offset by the need for extra strength to support extra mass. Thus, if mass reduces 

with increasing age, strength is reduced but if mass does not decrease with age then strength 

will not decrease. This theory is supported by research from Janssen et al. (2000) and 

Newman et al. (2003). Janssen et al. (2000) found a significant correlation between age and 

muscle mass in males and females. They demonstrated that skeletal muscle mass was not 

related to age in either males or females below the age of 44yrs, however, in the 45+yrs 

group skeletal muscle mass significantly declined with age in both males and females. In both 

males and females the greater decline with age was in the lower body. In an examination of 

data from 2623 males and females Newman et al. (2003) concluded lower strength in older 

age was a result of loss of muscle mass. Thus, if mass loss is related to loss of muscle mass 

which in turn is related to age, then strength will decline with age as long as muscle mass, 

and so mass, also declines.  

 

Evidence highlighted here suggests changes in mass can be a contributing factor to changes 

in some measures of AMS peak torque. However, as this is not demonstrated in all eight 

measures of ankle peak torque it can be concluded that factors other than mass also 

contribute to the difference between genders in some of the ankle movements. This was 

highlighted when comparing peak torque between genders in the same mass category. AMS 

of males and females in the 60-79.9kg were compared and the results showed a significant 

difference between genders in seven of the eight measures (all apart from eccentric eve). In 

the 80-99.9kg range there was a significant difference between genders in four of the eight 

AMS measures (concentric and eccentric DF and eccentric inv and eve). One explanation for 

the discrepancy in differences between genders between mass categories may be the 

differences in muscle to fat ratio. In the 60-79.9kg mass range it is logical to assume a larger 

proportion of the males’ bodies are made up of muscle compared to the 80-99.9kg mass 

category whereas in the 60-79.9kg mass range females naturally have increased fat 

compared to males. As previously discussed larger muscle mass correlates with greater peak 

torque, thus, in the 60-79.9kg mass range males are stronger than females. 

 

In the 80-99.9kg mass category the extra mass in the males may be due to fat, thus, the fat to 

muscle ratio would be closer to that of the females. The difference in AMS between genders 

due to mass varies from movement to movement. Where there was a smaller difference in 

AMS in the lighter mass category, for example in con PF, increasing the body mass reduces 
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the difference to non-significant levels. Where there is a greater difference in AMS the effect 

size of a mass increase is not sufficient to make the differences between genders non-

significant. This conclusion is supported by the results of the regression analysis described 

later in the chapter. These results indicate that mass is only a significant predictor of 

concentric and eccentric DF and eccentric inv and eve, the same measurements which were 

significantly different between genders in both mass categories.  

 

Based on the results here and evidence from the literature it can be concluded that mass 

does contribute to some aspects of AMS. Determining the muscle to fat ratio of the 

participants would give insight into the cause of this relationship. 

8.4.1.4 Height 

Height may affect generated peak torque as longer limb length means there is a greater 

amount of muscle and a longer lever arm. If limb length were to affect AMS due to changes 

in the lever arm at the ankle then this would be demonstrated in concentric and eccentric PF 

and DF. Due to the axis of motion when inverting and everting, the lever arm would be 

increased by making the foot significantly wider which is not necessarily related to height. 

The data presented here indicates that there is a significant relationship between concentric 

and eccentric DF and height in males and concentric and eccentric PF and DF in females.  

 

When differences in AMS between genders were analysed controlling for height the results 

were varied. Gender differences in AMS were compared in the 165.0-169.9cm, 170.0-

174.9cm and 175.0-179.9cm groups. Differences between genders were demonstrated in 

eccentric DF and concentric eve (165.0-169.9cm group), concentric PF and DF, eccentric DF 

and inv, and concentric eve (170.0-179.9 cm group) and concentric and eccentric DF and 

concentric inv and eve (175.0-179.9cm group). This suggests that height contributes to the 

differences in AMS between genders in certain movements but not in others. 

 

The data presented here suggests there is some relationship between height and AMS, 

however, research in the literature is not conclusive. Both Danneskiold-Samsøe et al. (2009) 

and Harbo et al. (2011) measured ankle strength and height, however, neither performed a 

direct analysis to determine if there was a significant relationship between the two and 

Danneskiold-Samsøe et al. (2009) concluded that there was no relationship between height 

and strength whereas Harbo et al. (2011) concluded that there was. Harbo et al. (2011) 
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measured eighteen different muscle actions in a group of males and a group of females 

generating thirty-six models of muscle strength. They found that in thirteen of these thirty-

six models there was a significant relationship between height and strength with strength 

increasing with increased height in each model. They did not, however, state which thirteen 

models had a significant relationship so it was not possible to determine if they found a 

relationship between ankle strength and height. Similarly, Danneskiold-Samsøe et al. (2009) 

did not state their findings regarding the relationship between AMS and height, however, 

they did state that there was no correlation between ‘lower limb strength’ and height. This 

measure of strength was a composite of hip, knee and ankle strength so it is not possible to 

determine the specific relationship between AMS and height based on the data they 

published. 

 

Biomechanically greater height will give a longer lever arm and larger muscles and so in 

theory greater PF and DF strength. This is, to a certain extent, supported by the findings 

presented here, however, other factors that also influence AMS may mask the lever arm 

effect. 

8.4.1.5 Shoe size 

Shoe size was measured to determine if the changes in AMS related to height were because 

of foot size alone or if other factors were involved. The Pearson’s correlation results indicate 

that in the male group there is no significant correlation between any of the measures of AMS 

and shoe size. However, there was a tendency towards a significant correlation in concentric 

PF (P = 0.07) and DF (P = 0.09) as well as eccentric DF (P = 0.09). The female data showed a 

significant correlation between concentric and eccentric DF and shoe size, there was also a 

tendency towards a significant correlation between concentric PF (P = 0.06) and eccentric 

(P = 0.06) PF and shoe size. The range of values for the measures of AMS is large, particularly 

in terms of eccentric PF, suggesting other factors may have a greater influence on the amount 

of torque produced.  

 

As with the height data, no correlation was indicated between any of the inv or eve 

measurements and shoe size in either the male or female groups. This is consistent with the 

argument put forward previously that biomechanically there is no reason that increasing the 

length of the foot would alter the amount of torque produced about the axis of motion of an 

inv and eve movement. 
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These results give some support to the theory that increasing foot size would increase the 

amount of torque that can be produced as the lever arm around the PF/DF axis of movement 

ankle is being increased. The results of the analysis of the relationship between height and 

AMS showed several statistically significant correlations in terms of certain measures of 

AMS. The results of the analysis of the shoe size AMS relationship produced fewer 

statistically significant results suggesting that there is a different relationship between 

height and AMS compared to shoe size and AMS. Therefore, it must be concluded that while 

the size of foot contributes to the relationship between height and concentric and eccentric 

PF and DF AMS there must be another factor involved as well. 

8.5.1 Mean average reference value 

Comparison of the results presented here to those published in the literature support the 

assertion that variation in both equipment and population demographics affect peak torque 

outcome measures.  

 

Table 8-16  

A comparison of the mean average peak torque scores for AMS. 

  Data from 

this thesis 

Lategan 

(2011) 

Harbo et al. 

(2011) 

van Cingel et 

al. (2009) 

PF Con 52.3Nm 130.0Nm 94.1Nm - 

 Ecc 85.5Nm - - - 

DF Con 18.1Nm 36.2Nm 27.2Nm - 

 Ecc 37.8Nm - - - 

Inv Con 19.1Nm - - 24.2Nm 

 Ecc 25.8Nm - - - 

Eve Con 18.4Nm - - 20.8Nm 

 Ecc 29.5Nm - - - 

 

Table 8-16 demonstrates the differences between published figures for AMS peak torque and 

the figures described in this thesis. It is likely that the difference in these results is due to the 

different protocols used in the experiments. For example Lategan (2011) found PF and DF 

peak torque to be considerable higher, however, they used a speed of 30°/s compared to 

60°/s used here. Isokinetic movement at slower speeds will produce greater maximal peak 
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torque as previously discussed. Harbo et al. (2011) also tested concentric PF and DF at 60°/s, 

however, they were testing on a Biodex System 3 PRO rather than a Cybex Norm isokinetic 

dynamometer. It has been established that peat torque results produced vary between 

dynamometers as discussed in Chapter 1. This conclusion supports the notion that reference 

values should be machine specific. There was greater comparability between the data 

produced by van Cingel et al. (2009) and the data produced here, possibly due to both 

experiments use of the Cybex Norm dynamometer and testing at 120°/s. The slightly higher 

results produced by van Cingel et al. (2009) may be due to variations between the 

populations being tested. For example the population used by van Cingel et al. (2009) had 

fewer females, a lower average age and a greater average height. All of these variables may 

affect AMS and will be discussed in detail later in this chapter.  From the results presented 

here it is clear that the previous research is supported in concluding that variations in the 

protocol for measuring AMS will alter the outcome measures. 

 

Table 8-16 also demonstrates the current lack of reference values for AMS as Lategan (2011), 

Harbo et al. (2011) and Danneskiold-Samsøe et al. (2009) each only measured two of the 

eight measures of AMS. Furthermore, the reference values produced by Lategan (2011) were 

produced by measuring concentric PF and DF in males aged 19±1.86 years, as such they are 

only relevant to those two movements in similar populations and can make no comment on 

eccentric, inv or eve or any movement in older people or females. A search of the literature 

suggested that nine papers have cited Lategan (2011), however, none have used the 

reference values. The reference values presented by Danneskiold-Samsøe et al. (2009) are 

also limited to concentric PF and DF, however, the data presented in their paper did account 

for age and gender. The paper also included a link to a website (www.parkerinst.dk), where 

text files pertaining to reference data for muscle strength that also accounted for height and 

mass could be downloaded, unfortunately these data sets are no longer available.  

8.5.2 Validating reference values 

The data presented here supports the conclusion that mean average reference values may 

not be appropriate. Comparison of Table 8-4 and Table 8-6 indicated that five of the eight 

AMS reference values, each produced by a mean average of 100 individuals in the reference 

group, could not be validated by comparing to average AMS values from a further eleven 

individuals in the validation group. One reason for the inability to validate these reference 

values could be the difference in anthropometric demographics between the population the 

http://www.parkerinst.dk/
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reference values were derived from, and the population used to validate the reference 

values. 45% of the reference group were males compared to 36% of the validation group; if 

males are stronger than females then it would be expected that a population with a larger 

proportion of males in would be stronger. This imbalance is reflected in the other 

anthropometric measures in the height, mass and shoe size were also greater in the 

reference set. The test-retest reliability experiment described in Chapter 4 indicated that the 

protocol used here was reliable for all eight measures of AMS, this suggests that problem 

with validating the reference values lies with the differences in the population rather than a 

problem with the measurement. 

 

Table 8-4 and Table 8-6 indicate that the validation group AMS in concentric and eccentric 

DF as well as eccentric eve was indeed lower than the reference value. It could be concluded 

that this was due to the discrepancy in numbers of males and females between the two 

groups. However, both concentric and eccentric PF were greater in the validation group 

suggesting gender is not the only determinant of AMS. The following sections will discuss 

the results in terms of each of the measured anthropometric variables. Understanding the 

nature of the relationship between these variables and AMS will indicate their 

appropriateness for inclusion when producing reference values. 

8.5.3 Predictive equations 

To overcome the problems associated with the interactions of the anthropometric variables 

discussed in the previous sections and their effect on AMS, a linear regression analysis was 

performed using gender, age, mass, height, and shoe size as independent variables. By using 

this method of statistical analysis the individual effects of each of the independent variables 

on the dependent variable (i.e. AMS) can be assessed and those variables considered 

significant predictors can be identified. 

8.5.3.1 Robustness of the data 

Prior to the linear regression analysis the robustness of the data was assessed. As discussed 

in the previous sections, correlations were demonstrated between certain independent 

variables, for example between height and shoe size. In this example it is possible that the 

only reason shoe size apparently affects AMS is because shoe size is related to height which 

affects AMS. However, the collinearity analysis (Appendix 28) indicated that each of the 

independent variables contributed to the variability of AMS independently. Analysis of the 



190 
 

normality plots (Appendix 27) ndicated that there were a number of outliers in some of the 

movements. Once these had been removed the obtained and predicted scores for AMS were 

normally distributed. The homoscedasticity analysis (Appendix 29) indicated that any 

variation in the relationships between the dependent and independent variables were the 

same across all measurements. It is not possible to compare the robustness of the data here 

to that of Harbo et al. (2011) who also performed a linear regression analysis, as they did not 

state the results of any collinearity, normality or homoscedasticity analysis. This is also the 

case with the data produced by Danneskiold-Samsøe et al. (2009). Whilst they did not 

perform a regression analysis, the reference values put forward would have greater 

credibility if the normality of their data set were discussed. 

8.5.3.2 Linear regression analysis 

The stepwise linear regression analysis produced eight equations with which it is possible 

to predict AMS based on the significant independent variables. Six of these eight models 

produced here are novel. Whilst Harbo et al. (2011) also produced gender specific predictive 

equations for concentric PF and DF based on age, height and body mass, without the 

collinearity, normality or homoscedasticity data it is not possible to comment on the 

robustness of the predictions made by their equations. Furthermore, their paper does not 

present any validation of the predictions so the validity is unknown. It is, however, possible 

to state that the predictions made by the equations described in the previous chapter are 

both valid and robust based on the evidence presented here. Harbo et al. (2011) did not use 

the stepwise linear regression analysis used here which identifies the best model for the 

equation based on the statistical analysis. They used a ‘normal’ linear regression analysis 

which uses all of the independent variables whether they are statistically significant or not. 

However, they did state that not all of the independent variables were statistically significant 

in the prediction of each muscle strength models (see Appendix 31 for the variables which 

were not relevant to each of the specific models produced here). They found that muscle 

strength was significantly related to age in twenty-four out of the thirty-six models; in the 

data presented here age was a significant predictor of concentric DF but not PF. It could be 

that this data agrees with Harbo et al. (2011), however, as they did not state which 

independent variables were significant predictors for which models it is not possible to tell.  

 

Danneskiold-Samsøe et al. (2009) stated that they had produced a mathematical model 

based on the data they collected. They indicated the model that was used was found on a 
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website (www.parkerinst.dk), however, the model is no longer available. Furthermore there 

was no discussion as to the robustness of their data used to generate the equation. Thus, it 

is not possible to comment on the relative robustness and validity of their models compared 

to the eight equations presented here. 

8.5.3.3 Strength of the models 

The strength of the models presented here were measured by an ANOVA test. Each one 

showed that the model as a whole was significant i.e. a good predictor of AMS (Appendix 30). 

It is not possible to compare this to the literature as the significance data for the models 

produced by Harbo et al. (2011) were not discussed. 

8.5.3.4 Models predictive value 

The predictive values of the models are shown by the r squared values produced in the 

statistical analysis (Table 8-13). This figure represents the amount of variation accounted 

for by the independent variables used in the model. The r squared values described by Harbo 

et al. (2011) were 0.25 and 0.29 for male and female PF respectively and 0.12 and 0.35 for 

male and female DF respectively. This compares to 0.39 (PF) and 0.63 (DF) presented here. 

This comparison suggests that the equations presented here for concentric PF and DF 

account for a larger proportion of the variation of AMS and as such any prediction using these 

equations would have greater accuracy than those presented by Harbo et al. (2011). Other 

papers that have produced ankle reference values (Danneskiold-Samsøe et al., 2009; 

Lategan, 2011) have done so by testing specific population groups and thus, the r squared 

value is not relevant to them. Because of this it is not possible to compare the remaining six 

r squared values as these relate to novel AMS predictive models which do not exist in the 

current literature. 

8.5.3.5 Testing the prediction equations 

The prediction equations were validated by using them to predict AMS in a small validation 

population based on their mean gender, age, height, mass and shoe size. All of the eight AMS 

peak torque measurements were within the predicted range and a paired samples t-test 

indicated that there was no significant differences between the mean predicted and 

measured values. This demonstrates that the eight AMS peak torque models developed in 

this thesis are valid tools for predicting normal AMS and as such can be used to produce 

reference values. 

 

http://www.parkerinst.dk/
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The discussed limitations regarding the r squared values indicate these equations are not 

yet suitable for predicting AMS for an individual or for detecting small changes in AMS peak 

torque. Increasing the number of significant predictive factors would enable this to be 

possible. However, as demonstrated, the prediction equation can be used to predict average 

AMS torque measurements in a group. These measurements can then be analysed using an 

independent samples t-test to compare actual and predicted AMS for the group.  

 

8.5.3.6 Improving the models 

Whilst all of the models presented here are based on robust data, are statistically strong and 

have been validated, the r squared values indicate that there is still some room to improve 

the accuracy. Higher r squared values indicate a larger proportion of the variance in AMS is 

accounted for. To improve these scores further relevant independent variables could be 

added. A major physiological determinant of muscle strength is muscle size as demonstrated 

by Edwards et al. (2013). They used peripheral quantitative computed tomography to 

calculate forearm muscular cross sectional area in 313 men and 318 women. They found that 

this had a positive correlation with grip strength. This position supports conclusions from a 

review by Jones, Bishop, Woods, and Green (2008), however, they also emphasized that the 

relationship between muscle size and torque production is complex. The discrepancies in 

the results of the papers that they reviewed suggest that while there is a relationship 

between cross sectional area muscle strength, other factors also play a role. They suggested 

age and gender, dealt with in this thesis, influence torque production as well as training 

status. The argument put forward is that untrained individuals are likely to see an initial 

increase in force production without an increase in muscle size due to neural adaptations. 

These adaptations increase the frequency of the action potentials created which will lead to 

a greater stimulus to the muscle and an increase in the number of motor units recruited. 

Whilst it is probable that the inclusion of muscle size would improve the accuracy of a 

predictive equation, the term muscle size needs to be qualified. Jones et al. (2008) examined 

muscle size in terms of cross sectional area, however, Fukunaga et al. (2001) argued that 

cross sectional area can be either anatomical or physiological. The anatomical measurement 

does not take into account the pennation of the muscle fibres which would alter the force to 

anatomical cross sectional area ratio. In a population of 259 college students they 

demonstrated a stronger correlation between muscle volume and elbow extension torque (r 

=0.935, P < 0.001) and anatomical cross sectional area (r = 0.705, P < 0.05).  
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Another factor which could influence AMS torque production is the type of shoe an individual 

wears. This was demonstrated by Ottaviani, Ashton-Miller, Kothari, and Wojtys (1995) who 

found that the height of basketball shoes affected the amount of resistance to inv movement 

in moderate PF. High top shoes effectively increased the resistive strength of the ankle, thus 

reducing the need for the muscles surrounding the ankle to stabilise the joints. It could be 

argued that reducing muscle usage would reduce muscle strength. Ramanathan, Wallace, et 

al. (2011) found the EMG amplitude of peroneus longus to be greater in response to 

unanticipated inv of the foot shod in standard sole, flared sole and boot style footwear than 

barefoot. This increase in EMG amplitude suggests the muscle is working harder when shod 

compared to barefoot, thus, in the long term would become stronger. Ramanathan, Parish, 

et al. (2011) found that thicker soles on shoes increased eversion response of the peroneus 

longus following sudden foot inv. They concluded that this increase was due to the thicker 

insoles effectively increasing the lever arm length of the subtalor joint. This would in turn 

increase the torque moment which would require greater muscle activity to stabilise the 

ankle and muscles which work harder will become stronger. This suggests thicker soles are 

likely to increase the risk of lateral ligament injury as well increasing AMS. However, there 

is no evidence to support or refute the suggestion that regularly wearing thick soled shoes 

would elicit a compensatory increase in inv muscle strength.  

 

Munro et al (2009) concluded that closed back shoes with hard soles were safest for older 

people in terms of falls as the ankle had to work harder to keep open back shoes on. This 

could, however, mean open back shoes would increase the strength of the ankle due to 

increased use. They also concluded that research in this area was lacking. ‘Unstable’ shoes 

such as ‘MBT shoes’ or ‘Sketchers shape ups’ increase muscle activity intentionally to make 

the ankle muscles stronger and so increase joint stability (Landry, Nigg, & Tecante, 2010; 

Romkes, Rudmann, & Brunner, 2006). A review by Tortora and Derrickson (2008) concluded 

that wearing unstable shoes increased muscle activity, particularly of tibialis anterior and as 

a result increased strength. Y. Kim, Lim, and Yoon (2013) investigated the effect of high heels 

on ankle function and found that individuals that habitually wear high heels have 

significantly higher concentric eve AMS. Adding information on the length of time different 

types of shoe are worn and how much time the individual spends on their feet could increase 

the accuracy of the predictive equations. 
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It has also been suggested that the level of physical activity an individual undertakes would 

influence AMS. As with any muscle group, increased use results in greater strength, 

conversely muscle atrophy will occur in muscles that are not used. Harbo et al. (2011) found 

a relationship between physical activity level and muscle strength in four of the thirty-six 

models, however, these models all related to knee strength in females. No relationship was 

found between activity level and ankle strength. Harbo et al. (2011) used a 24 hour 

questionnaire to determine the activity level of the participants on an average week day. Not 

only did this questionnaire not take into account participants who were particularly active 

on the weekend, a validation study found the questionnaire to have poor correlation with 

accelerometer data (Aadahl & Jørgensen, 2003) which casts doubt on the conclusions of 

Harbo et al. (2011). Furthermore, any participants who demonstrate ‘extensive physical 

activity’ were excluded meaning any training effect of a large amount of physical activity may 

have on AMS may be missed. Danneskiold-Samsøe et al. (2009) included a physical activity 

scale in their participant questionnaire, however, this data was not compared to muscle 

strength. The lack of robust literature concerning the relationship between physical activity 

and AMS suggests further research is needed in this area. 

 

Harbo et al. (2011) also suggested genetic factors as well as analysing muscle mass rather 

than mass would increase the accuracy of predictive equations. Although this may increase 

the accuracy it would make the resultant equation less accessible as accurate muscle mass 

analysis and gene analysis are not as readily available as gender, height, mass, age and shoe 

size. 

 

8.6 Conclusion 

The analysis presented here indicates that the data produced from testing was robust in 

terms of normality, collinearity and homoscedasticity. These data were used to construct 

eight predictive equations for different aspects of AMS which were shown to be statistically 

strong models. The eight equations were tested using a validation set and were shown to be 

a valid predictor of AMS. The eight predictive equations produced here represent a more 

comprehensive set of equations compared to those available in the wider literature, thus, the 

equations produced here have greater potential for application.  
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8.6.1 Significance of reference equations for AMS 

The reference equations presented in this thesis could provide a valuable tool in research 

and rehabilitation. Whilst the decision was made to use the Cybex Norm isokinetic 

dynamometer, providing the same protocol is used for testing and particular attention is 

paid to the position of the participant on the machine, the reference equations produced here 

should be relevant to people using other dynamometers. The first chapter of this thesis 

articulated a number of arguments pertaining to the importance of ankle muscle strength 

and the usefulness of reference values. For example ankle strength measures have been used 

in predicting injury, sporting and elderly populations and rehabilitation. An equation which 

can be used to determine an ideal AMS range would be of great use in all of these areas. For 

example, reference value equations for AMS could be an alternative to the use of control 

groups in experiments where these are not practical. This was the case in the research of 

Alta et al. (2012) who was examining strength in older patients with a reverse shoulder 

prosthesis. It was not possible to test an age matched healthy control group as there is a large 

number of unrecognised rotator cuff tears in that population. Equally it was not possible to 

test the contralateral shoulder due to the prevalence of rotator cuff problems in both 

shoulders. Thus, the research used the reference values generated by Harbo et al. (2011) to 

assess the effectiveness of the operation. In terms of AMS this principle would apply when 

examining AMS and susceptibility to ankle injury. If both ankles are weak then it would not 

be valid to compare to the contralateral ankle. It may also be difficult to ascertain if a control 

group had weak ankles or not. It would be possible to screen for history of falls but it is 

perfectly possible that not everyone with reduced ankle strength has history of falls. 

 

Eitzen et al. (2010) used the reference values produced by Danneskiold-Samsøe et al (2009) 

whilst demonstrating the efficacy of a five week post-surgery exercise programme on knee 

strength. They argued that the patients in their study had regained adequate muscle strength 

as their post-exercise programme torque measurements were similar to the reference values 

supplied by Danneskiold-Samsøe et al. (2009). They also compared their results to the 

reference values produced by Kannus (1994). These values were obtained using a different 

protocol on a different piece of equipment in a different age group. Based on the arguments 

put forward in this thesis it could be suggested that the results were equivalent by 

coincidence. The reference equations presented in this thesis acknowledge strength 
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variations with height, mass, age, gender, and shoe size and so provide a valid comparison 

for a range of populations tested using the Cybex Norm. 

 

Use of predictive equations for muscle strength have been demonstrated previously in the 

work of Severinsen et al. (2011) who used the equations generated by Harbo et al. (2011) to 

‘normalise’ the strength data they measured in hemiparetic stroke patients. They found that 

the normalised data correlated with results from a 10m walk test, a 6m walk test and the 

Scandinavian Stoke Scale, whereas the absolute values only correlated with the 10m walk 

test. Severinsen et al. (2011) concluded that the critical amount of strength required to 

generate power during the gait cycle varied between subjects depending on gender, age, 

height and mass. Hence, the data normalised using reference values showed a stronger 

correlation with performance compared to the absolute strength data.  
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A comparison of AMS between 
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9. A comparison of AMS between athletes and non-athletes 

This thesis describes the production and accuracy of reference equations for eight different 

measures of AMS. To improve on the accuracy of the predictive equations it was postulated 

that level of physical activity would increase ankle strength. To investigate this further active 

and inactive, age and gender matched populations were compared in terms of ankle strength. 

This chapter will discuss this experiment in detail. 

 

9.1 Introduction 

The information presented in Chapter 1 examined the importance of AMS in, amongst other 

areas, sport. The arguments put forward in Chapter 1, based on the analysis of papers 

discussed by Sekir et al. (2007), suggest that lack of muscle strength at the ankle predisposes 

an individual to injury. This information maybe of relevance to ankle injuries in sport and in 

particular football. Research by Woods et al (2003) found that 2033 matches were missed in 

the English FA over two seasons because of ankle injuries. Thus, any information on ankle 

strength related to football players would be of value in terms of injury prevention. The data 

considered by Sekir et al. (2007) was not collected from elite athletes. It is logical to assume 

that the high level of physical activity undertaken by elite athletes would affect muscle 

strength. To the author’s knowledge, as of August 2015, no research has indicated whether 

ankle strength in an elite athlete population is greater than that of a ‘normal’ or inactive 

population. It is, therefore, not clear how published reference values would relate to elite 

athletes and as such how useful these reference values would be in predicting injury in this 

population. For example, Danneskiold-Samsøe et al. (2009) produced reference values based 

on a ‘normal’ population in which they also measured activity levels. However, in the analysis 

the activity level data and strength data were not compared, so, from their results it is not 

clear if the level of physical activity had an effect on strength generally and specifically on 

AMS. Because of this lack of clarity in the literature there are two clear aims of this 

experiment, firstly to determine if footballers are significantly stronger in terms of the eight 

measures of AMS compared to an inactive population, and secondly to determine if the 

reference equations generated in this thesis predict AMS accurately in these two groups.  

 

9.2 Method 

This procedure was approved by the ethics committee of the University of Huddersfield 11th 

November 2010. To ensure the safety of the participants a health screening questionnaire 
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was completed (Appendix 7) and a risk assessment for the procedure was completed 

(Appendix 5). All participant data was anonymised and stored on a password protected PC. 

9.2.1 Population 

Forty-two males were tested; twenty-one elite athletes (professional footballers in full time 

training) and twenty-one age and gender matched inactive individuals recruited from the 

student population at the University of Huddersfield. Inactivity was defined as self-reported 

failure to meet the public health recommendations for weekly healthy lifestyle activity 

targets over the last two months (Bull, 2010). 

9.2.2 Procedure 

Participants attended a single session in the musculoskeletal laboratory at the University of 

Huddersfield where the experimental procedure was explained. Eight measures of AMS were 

taken concentrically and eccentrically in PF and DF, inv and eve using a Cybex Norm 

isokinetic dynamometer following the protocol set out in section 5.8.  

9.2.3 Analysis 

The collected data was analysed using SPSS version 22 (IBM statistics). An independent 

samples t-test was used to identify any differences in anthropometric variable between the 

active and inactive groups. A Shapiro-Wilk test was used to assess the normality of the 

distribution of the data a significance of < 0.05 indicates the data is not normally distributed.. 

Based on the results of this test, either an independent samples t-test or a Mann Whitney U 

test was used to identify any difference in peak torque measurements between groups. P ≤ 

0.05 was considered statistically significant. Cohen’s d values were calculated using the 

mean and the SD (parametric data) or the z and n values (non-parametric data). The 

magnitude of the differences between the means was considered either insignificant (d =0 

to 0.19), small (d = 0.2 to 0.49), intermediate (d = 0.5 to 0.79) or large (d = 0.8 to ≥ 1). 

 

The predictive equations developed in this protocol were used to predict AMS of the two 

groups: 

Concentric PF = -70.35 + (14.12 x gender) + (0.68 x height) 

Eccentric PF = -153.21 + (19.29 x Gender) + (1.35 x Height) 

Concentric DF = 6.74 + (6.06 x Gender) + (-0.08 x Age) + (0.15 x Mass) 

Eccentric DF = -34.44 + (9.42 x Gender) + (0.30 x Mass) + (0.27 x Height) 
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Concentric inv = 9.41 + (3.51 x Gender) + (0.11 x Mass) 

Eccentric inv = 12.24 + (5.34 x Gender) + (0.15 x Mass) 

Concentric eve = 18.33 + (5.21 x Gender) + (-0.07 x Age) 

Eccentric eve = 10.16 + (0.24 x Mass) 

 

The predicted value ± RSD was calculated using these equations and this range was 

compared to the eight measured values of AMS. 

 

9.3 Results 

There were no significant differences in age and shoe size between the inactive and athlete 

populations. The athlete population was significantly taller than the inactive population 

(t(40) = 2.64, P = 0.01, d = 0.81) with a tendency towards significantly greater mass (t(40) = 

1.70, P = 0.09, d = 0.53) Table 9-1 shows the anthropometric parameters of the test 

population. 

 

Table 9-1  

Anthropometric characteristics of the test population.  

 Minimum Maximum Mean Std. Deviation 

inactive Height 166.50 186.00 175.56 5.65 

 Weight 59.00 107.00 73.07 11.89 

 Age 19.00 31.00 22.24 2.64 

 Footsize 6.00 11.00 8.48 1.17 

active Height 165.50 188.50 180.27* 5.89 

 Weight 62.70 91.90 78.40 8.03 

 Age 18.00 32.00 22.05 3.41 

 Footsize 7.00 10.50 8.88 0.86 

Note: Height is measured in cm, mass in kg, age in years and shoe size is UK standard. 

*denotes significantly greater than the inactive population (P < 0.05) 

 

9.3.1 Normality of the data 

A Shapiro-Wilk test was performed to assess the normality of the distribution of the data 

(Table 9-2). The results indicated that not all of the data was normally distributed and 

therefore both parametric and non-parametric tests were used to analyse the data.  
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Table 9-2 

Normality results for the active and inactive participant data. 

 

 Active  Inactive 
 Shapiro-Wilk Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

PFcon 0.89 21 0.02 0.99 20 1.00 

DFcon 0.90 21 0.03 0.98 21 0.94 

PFecc 0.93 21 0.14 0.96 17 0.59 

DFecc 0.98 21 0.84 0.95 20 0.30 

Invcon 0.90 21 0.04 0.96 18 0.66 

Evecon 0.82 21 0.00 0.84 21 0.00 

Invecc 0.98 21 0.90 0.95 19 0.42 

Eveecc 0.93 21 0.11 0.90 21 0.04 

Note PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion; con = 
concentric; ecc = eccentric. 
Normality of distribution assumed if P > 0.05 
  
 

9.3.2 Athletic vs non athletic population 

9.3.2.1 Non Parametric tests. 

Table 9-2 indicated that concentric PF, DF, inv and eve as well as eccentric eve were not 

normally distributed. Therefore, the most appropriate test to assess differences between 

athletic and non-athletic populations was a Mann-Whitney U test.  
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Table 9-3 

The descriptive statistics from the Mann-Whitney U test. 

 

 N Mean SD Min Max Percentiles 

25th 50th (Median) 75th 

PFcon IA 20 63.00 24.52 19.00 114.00 45.00 62.50 81.50 

PFcon A 21 68.71 20.37 43.00 127.00 53.00 64.00 78.50 

DFcon IA 21 22.95 7.01 11.00 37.00 18.00 22.00 27.50 

DFcon A 21 23.62 5.31 16.00 34.00 19.50 22.00 28.00 

Invcon IA 18 21.00 6.24 9.00 31.00 16.00 22.50 26.00 

Invcon A 21 25.10 6.93 16.00 42.00 19.50 23.00 28.00 

Evecon IA 21 20.62 6.66 11.00 43.00 16.00 20.00 23.00 

Evecon A 21 26.90 8.50 19.00 52.00 20.00 24.00 32.00 

Eveecc IA 21 28.67 14.57 9.00 64.00 18.00 27.00 33.00 

Eveecc A 21 40.14 14.95 18.00 79.00 29.00 38.00 47.50 

Note PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion; con = 
concentric; ecc = eccentric. A = active; IA = inactive 

 

 

Table 9-4 

The results of a Mann-Whitney U test to assess the differences in AMS between an athletic and 

non-athletic population. 

 PFcon DFcon Invcon Evecon Eveecc 

Mann-Whitney U 189.00 204.00 139.00 104.50 115.50 

Z -0.55 -0.42 -1.41 -2.94 -2.65 

Asymp. Sig. (2-tailed) 0.58 0.68 0.16 0.00 0.01 

R -0.09 -0.06 -0.23 -0.45 -0.41 

Note PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion; con = 
concentric; ecc = eccentric.  
 
The results displayed in Table 9-3 and Table 9-4 indicate that there is a significant increase 

in concentric eve (median concentric athletic = 24Nm, median concentric non-athletic = 

20Nm). 
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9.3.2.2 Parametric tests 

The results described in Table 9-2 indicate that eccentric PF, DF and inv were normally 

distributed, therefore an independent samples t-test was the most appropriate statistical 

test. Error! Reference source not found. describes the mean and SD of the of the tested 

MS measures. 

 

Table 9-5 

The descriptive statistics from the independent samples t-test. 

  N Mean minimum maximum Std. 

Deviation 

Std. 

Error 

Mean 

PFecc Non -

athletic 
21 122.43 11.00 157.00 36.88 8.05 

athletic 17 84.41 18.00 190.00 43.53 10.56 

DFecc Non-

athletic 
21 49.29 12.00 80.00 11.02 2.40 

Athletic 20 44.75 24.00 72.00 15.26 3.41 

Invecc Non-

athletic 
21 31.14 11.00 45.00 8.98 1.96 

Athletic 19 24.89 11.00 50.00 9.95 2.28 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion, ecc = eccentric. 
All torque measurements are in Nm. 
 

The athlete population was significantly stronger in eccentric inv (t(38) = 2.09, P = 0.04, d = 

0.66). The athlete population were also significantly stronger in eccentric PF (t(36) = 2.95, P 

< 0.01, d = 0.94).Table 9-5, Table 9-6 and Figure 9-1 shows the comparison of AMS between 

athlete and inactive groups. These results are found in Table 9-6 
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Table 9-6 

Results of a paired samples t-test comparing athletic and non-athletic populations. 

 
 

Levene's Test 

for Equality of 

Variances 

t-test for Equality of Means 

Cohen’s d 

F Sig. t df 
Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

PFecc Equal 

variances 

assumed 

1.22 0.28 2.92 36.00 0.01 38.02 13.04 11.57 64.46 0.94 

Equal 

variances not 

assumed 

  2.86 31.49 0.01 38.02 13.27 10.96 65.07 - 

DFecc Equal 

variances 

assumed 

0.95 0.34 1.10 39.00 0.28 4.54 4.14 -3.84 12.91 - 

Equal 

variances not 

assumed 

  1.09 34.48 0.29 4.54 4.17 -3.94 13.01 - 

Invecc Equal 

variances 

assumed 

0.90 0.35 2.09 38.00 0.04 6.25 2.99 0.19 12.31 0.66 

Equal 

variances not 

assumed 

  2.08 36.47 0.05 6.25 3.01 0.15 12.35 - 

Note PF = plantar flexion, DF = dorsiflexion, inv = inversion, ecc = eccentric
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Figure 9-1. A graph comparing the AMS peak torque between athlete and inactive groups. a= significantly greater than inactive population. 
PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric 
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9.3.3 Predicted vs actual AMS 

The equations generated in this thesis were used to predict the AMS range for both the 

inactive and athlete groups. Table 9-7 indicates that six of the eight measures of AMS taken 

from the athlete group were within the predicted range. Both concentric and eccentric eve 

were higher than the predicted range. Table 9-8 indicates that all eight of the AMS measures 

taken for the inactive group were within the predicted range. 

 

Table 9-7  

A comparison of predicted and actual AMS scores for the athlete groups.  

 
Predicted 

(Nm) 

Predicted range 

minimum 

Predicted range 

maximum 

Actual 

(Nm) 

PF Concentric 66.17 50.95 81.38 68.71 

Eccentric 109.45 84.27 134.62 122.4 

DF Concentric 23.21 16.71 29.71 23.62 

Eccentric 46.91 33.31 60.51 49.28 

Inv Concentric 21.54 17.88 25.20 25.10 

Eccentric 28.99 23.77 34.21 31.14 

Eve Concentric 21.91 18.62 25.20 26.90* 

Eccentric 28.66 24.36 32.96 40.14* 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion;  
*above the predicted range. 
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Table 9-8  

A comparison of predicted and actual AMS peak torque values for the inactive group. 

 Predicted 
Predicted range 

minimum 
Predicted range 

maximum 
Actual 

PF Concentric 62.79 48.49 77.45 63.00 

Eccentric 103.09 79.38 126.80 84.41 

DF Concentric 22.38 16.11 28.64 22.95 

Eccentric 44.05 31.28 56.82 44.75 

Inv Concentric 20.95 17.39 24.51 21.00 

Eccentric 28.21 23.13 33.29 24.89 

Eve Concentric 21.90 18.61 25.18 20.62 

Eccentric 27.40 23.29 31.51 28.67 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = 
eccentric. 
All torque measurements are in Nm 
 

A Shapiro-Wilk test indicated that not all of the predicted data was normally distributed. (See  

Table 9-9). 
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Table 9-9 

The results of a Shapiro-Wilk test examining the normality of the predicted data 

 Shapiro-Wilk 

Statistic df Sig. 

inactive predPFcon 0.95 21 0.30 

predDFcon 0.91 21 0.06 

predPFecc 0.95 21 0.30 

predDFecc 0.90 21 0.04 

predinvcon 0.90 21 0.04 

predevecon 0.77 21 0.00 

predinvecc 0.90 21 0.04 

predeveecc 0.90 21 0.04 

active predPFcon 0.95 21 0.40 

predDFcon 0.98 21 0.87 

predPFecc 0.95 21 0.41 

predDFecc 0.97 21 0.68 

predinvcon 0.97 21 0.65 

predevecon 0.89 21 0.03 

predinvecc 0.97 21 0.65 

predeveecc 0.97 21 0.66 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = 
concentric; ecc = eccentric; pred = predicted.  
Normality of distribution assumed if P > 0.05 
All torque measurements are in Nm 
 

To further analyse the predicted AMS values, based on the results of the Shapiro-Wilk 

normality test, either a paired samples t-test or Mann-Whitney U test was used to compare 

predicted values to measured values.  

 

9.3.3.1 Parametric tests 

Con ecc PF (inactive). ecc PFDF inv eve (active) Table 9-10 shows that there was no 

significant difference between any of the predicted values and measured values of AMS in 

the inactive group. There were, however, significant differences between predicted and 

measured AMS in eccentric eve (t(20) = 3.68, P < 0.01) in the athlete population. 
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Table 9-10  

Data comparing predicted and measured mean AMS values in the active and inactive groups. 

 Paired Differences 

t df 
Sig. (2-

tailed) Mean 
Std. 

Deviation 

Std. Error 

Mean 

95% Confidence Interval of the Difference 

Lower Upper 

active PFecc - predPFecc 12.99 39.04 8.52 -4.79 30.76 1.52 20 0.14 

DFecc - predDFecc 2.38 9.76 2.13 -2.06 6.82 1.12 20 0.28 

Invecc - predinvecc 2.15 8.61 1.88 -1.76 6.07 1.15 20 0.27 

Eveecc - predeveecc 11.48 14.29 3.12 4.98 17.99 3.68 20 0.00 

inactive PFcon - predPFcon -0.28 23.70 5.30 -11.37 10.81 -0.05 19 0.96 

PFecc - predPFecc -19.45 45.24 10.97 -42.71 3.81 -1.77 16 0.10 

Note: PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric 
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9.3.3.2 Non-parametric tests 

Analysis of Table 9-2 and Table 9-9  indicate that in the inactive population, concentric and 

eccentric DF, inv and eve are not normally distributed. This is also the case with concentric 

PF, DF, inv and eve in the active population. Therefore to compare predicted and actual 

measures a Mann-Whitney U test was used. 

 

Table 9-11 

Results of a Mann-Whitney test exploring the relationship between AMS measures in an Active 

population. 

 PFcon DFcon invcon evecon 

Mann-Whitney U 210.00 178.00 145.00 168.00 

Z -0.26 -1.07 -1.90 -1.33 

Asymp. Sig. (2-tailed) 0.79 0.29 0.06 0.19 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric;  

 

 

Table 9-12 

Results of a Mann-Whitney test exploring the relationship between AMS measures in an 

Inactive population. 

 DFcon DFecc invcon evecon invecc eveecc 

Mann-Whitney U 215.00 169.00 178.00 162.00 148.00 216.00 

Z -0.14 -1.07 -0.31 -1.48 -1.40 -0.11 

Asymp. Sig. (2-tailed) 0.89 0.29 0.76 0.14 0.16 0.91 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric;  

 

 

9.4 Discussion 

The aim of this experiment was to answer two questions. Firstly are elite athletes 

significantly stronger than an inactive population and secondly to determine if the reference 

equations generated in this thesis accurately predict AMS in elite athletes. The hypothesis 

that athletes have significantly greater ankle strength than inactive people is partially 

supported by the data presented in Figure 9-1. Four of the eight measures of AMS, concentric 

and eccentric eve, eccentric inv and eccentric PF, are significantly greater in the athlete 
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population compared to the inactive population and there was a tendency towards 

significantly greater concentric inv in the athlete population. In answer to the second 

question, in the athlete group both concentric and eccentric eve were higher than the 

predicted range and the remaining six measures of AMS were within the predicted range. 

 

Comparison of the predicted and measured concentric and eccentric eve AMS using a paired 

samples t-test found them to be significantly different to each other in the athlete group. It 

could be concluded that this indicates increased levels of physical activity cause an increase 

in eve AMS. However, the type of physical activity is an important factor in determining how 

AMS varies. The athletes in this study were professional footballers and as such will regularly 

perform cutting manoeuvres as they rapidly change direction. This would put added strain 

on the concentric and eccentric ankle evertors which would train them to be stronger hence 

the increased eve strength seen here. This may not, however, be the case for generally active 

people. Runners for example have a linear running style with fewer rapid changes of 

direction compared to a footballer. If long distance runners were compared to an inactive 

population it maybe that there would be no difference in eve strength as neither group 

regularly performs rapid changes in direction. 

  

Figure 9-1 indicates a significant difference between the athlete and inactive groups in 

eccentric PF. However, the comparative anthropometric data presented in Table 9-1 

indicates that there is also a significant difference in height between the athlete and inactive 

groups. The model which predicts eccentric PF uses gender and height as independent 

variables indicating height has an effect on eccentric PF. This difference in height may cause 

the difference in eccentric PF torque between groups, furthermore this difference is 

considered in the predictive equation and hence, there is no significant difference between 

predicted and actual eccentric PF values. Thus, from this data it is not possible to conclude 

that eccentric PF torque increases with increased level of physical activity. 

 

In terms of concentric and eccentric inv the differences between athlete and inactive groups 

is not clear. In terms of concentric inv the measured value was within the predicted range. 

However, the paired samples t-test suggested there was a significant difference between the 

predicted and measured values in the active group. The statistics also indicated a tendency 

towards a significant difference in concentric inv (P = 0.06) between the athlete and inactive 
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groups. In terms of eccentric inv the data showed a significant difference between the active 

and inactive groups, however, the measured value was within the predicted range and the 

paired samples t-test indicated that there was no significant difference between measured 

and predicted values. It could be argued that a footballer striking the ball would do so with 

the medial aspect of the foot and so utilise the invertor muscles to a greater extent than non-

footballers in the inactive group. Therefore, a higher inversion strength in the athlete group 

may be expected. Furthermore, the predictive models for concentric and eccentric inv are 

based on gender and mass, and analysis of the anthropometric variables indicated a 

tendency towards a significant difference in mass between the athlete and inactive groups 

(P = 0.09). This this may also contribute to the ambiguity of the difference in peak torque 

between athlete and inactive groups and the accuracy of the predicted values for both 

groups. The athlete group are professional footballers. If they had a higher percentage 

muscle mass compared to the inactive group they would be able to achieve a higher torque 

per unit mass. Thus, from the data presented here, the relationship between concentric and 

eccentric inv, and physical activity level cannot be determined.  

 

In the inactive group, each of the eight measurements of AMS were within the reference 

range and the paired samples t-test indicated that there was no significant difference 

between measured and predicted values. One reason for this lack of difference could be the 

definition of inactive used here. A self-reported level of activity below the levels 

recommended by the public health guidelines (Bull, 2010) was considered inactive. In the 

literature it had been demonstrated that a lack of physical activity decreases muscle 

strength. For example Valderrabano et al. (2006) examined  PF and DF joint torque in 

osteoarthritis patients. They demonstrated not only a difference between the affected ankle 

and the control group but also between the non-affected ankle and the control group. It could 

be argued that this difference is due to the lower levels of activity seen in the patients. A 

theory supported by the reduced shank circumference they measured in both legs of the 

patients compared to the control group as muscles will reduce in size of not used. 

Furthermore, the equations used for the reference values developed in this thesis were 

based on a university population. Although the participants in the inactive population were 

different to those described in Chapter 5 who were tested to produce reference values, they 

were selected from the same university population. As such it is likely that a portion of the 

reference value population were inactive. Equally, it is unlikely that a significant number of 
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elite athletes were in the reference value population. It is, therefore, further validation of the 

predictive equations that all of the measures of AMS peak torque in the inactive group were 

within the predicted range.  

 

9.5 Conclusion 

The data presented here indicates that the athlete group tested were significantly stronger 

in concentric and eccentric eve compared to an inactive population. The results comparing 

concentric and eccentric inv between athlete and inactive groups were inconclusive and 

there was no difference between the athlete and inactive groups in terms of PF and DF 

strength when predictive variables were controlled for. Therefore it can be concluded that 

the equations predicting concentric and eccentric PF and DF, developed in this thesis, are 

suitable for predicting AMS in elite football players. Furthermore it can be concluded that 

training (specific to football players) will influence the level of eversion strength and as such 

should be considered when predicting ankle strength. 
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10. General discussion and conclusions 
 

10.1 Limitations of the study 

Although the AMS reference range equations produced here are robust in terms of validity 

and reliability, there are limitations in terms of the protocol used. Due to the nature of 

isokinetic testing there are a number of variables (described in detail in Chapter 4) which 

need to be fixed when testing. Altering the variables would lead to changes in the outcome 

measures, thus the reference range equations are only relevant to experiments which have 

used the same protocol. 

 

Active insufficiency, whereby contraction of the gastrocnemius muscle is inhibited when the 

knee is flexed, means that the PF reference ranges may not include maximal gastrocnemius 

contraction strength. This would be an issue if using the reference values to plot the recovery 

of a gastrocnemius specific injury for example. 

 

The accuracy of the equations in terms of the r2 values has scope for improvement. Because 

the reference range is relatively broad the equations could not validated for individuals. 

Further work is needed to reduce the predicted range, thus allowing the prediction of a 

reference range for an individual. 

 

10.2 Strengths of the study 

The systematic review provided a robust and repeatable search of the literature ensuring all 

of the papers that have used the Cybex Norm to measure AMS were identified and available 

for analysis. 

 

The test – retest reliability study, detailed in Chapter 7, demonstrated that the fully justified 

protocol developed from the analysis of the sixty papers that have measured AMS using the 

Cybex Norm is a reliable protocol. Because the protocol gives detail regarding all of the key 

variables needed for isokinetic testing it is repeatable and can be used on any isokinetic 

dynamometer. 

 

In producing the reference value equations 100 individuals were tested. As the equation 

from Tabachnick and Fidell (2007) recommends at least ninety participants for a linear 
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regression analysis, using a reliable protocol to test 100 participants resulted in a robust set 

of predictive equations. Furthermore the equations were validated by using them to predict 

the mean AMS of a group of eleven participants. 

 

Six of the eight AMS equations are not available in the literature and so are a novel 

contribution. The two similar equations which are available in the literature are not as 

robust as the equivalent equations produced here, as described in Chapter 8. 

 
10.3 Summary and main findings 

The main aims of this thesis were as follows: 

a. As there are a number of variables which need to be defined when measuring AMS, 

once the systematic review was complete, the first aim of this thesis was to develop a 

protocol for measuring AMS with each variable justified (Chapter 4). This included 

determining the effect of altering the angle at which the knee is fixed on AMS (Chapter 

6). 

 

b. As this protocol was to be used to take measurements of AMS from which reference 

values would be generated, the second objective was to ensure the protocol and the 

Cybex Norm were robust using a test re-test experimental design. (Chapter 7). 

 

c. Using the justified and reliable protocol, the main aim of this thesis was to determine 

reference ranges for AMS collecting data and using a linear regression analysis to 

produce reference range equations (Chapter 8). 

 

d. Previous research has indicated that there is variation in strength with variation in 

different anthropometric measurements, for example height, weight, age and gender. 

In the production of reference values knowledge of the factors which affect AMS are 

crucial. Thus, the data collected was also used to explore a fourth aim, the effect of 

variations in anthropometric measurements on AMS (Chapter 8). 

 

e. Validated reference equations for AMS could have a range of clinical, rehabilitation 

and sporting applications. The fifth aim of this thesis was to demonstrate an 

application of the validated reference equations. (Chapter 9). 
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The relevance of AMS and importance of reference values were investigated and the findings 

set out in Chapter 2. It was established that the measurement of AMS has an important role 

in predicting injury, assessing functional movement and plotting the progression of certain 

diseases as well as monitoring the efficacy of rehabilitation programmes. It was also 

established that the Cybex Norm was a popular and reliable piece of equipment with which 

to measure AMS. 

 

Prior to the production of reference range equations it was necessary to perform a 

systematic review of the literature to identify all of the papers that have used the Cybex Norm 

dynamometer to measure AMS. The method and results of this review were presented in 

Chapter 3. The review identified sixty papers which used the Cybex Norm to measure AMS, 

however, analysis of these papers revealed none had set out to produce reference values. In 

theory it would be possible to combine the results of the individual papers in a meta-analysis 

to produce reference values. Analysis of the methods of data collection indicated varied 

methods which would alter the outcome measures of AMS and as such, a meta-analysis was 

not possible. 

 

Analysis of the sixty papers identified in Chapter 3 identified eight variables common to the 

protocols of each of the papers. The effect of changing these variables on AMS measures were 

discussed and conclusions drawn which informed the production of a standardised protocol 

with which to measure AMS. A novel AMS testing protocol was described in Chapter 5 which 

partially answered the first aim of the thesis in suggesting a novel protocol for measuring 

AMS.  

 

In order to ensure all of the key variables were understood an experiment was performed to 

understand the effect of altering the angle at which the knee is fixed on AMS production. This 

experiment was described in Chapter 6 and demonstrated that altering the knee angle from 

10° to between 80° and 110° decreased the amount of torque that could be produced in 

concentric and eccentric PF, whereas concentric and eccentric eve and concentric inv 

reduced. This clearly indicated the need to define the angle at which the knee is flexed in any 

protocol and further answers the first aim of the thesis. 
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Chapter 7 describes test-retest experiment which was performed to investigate the 

reliability of the novel protocol in measuring eight AMS movements. The experiment 

concluded that the novel protocol was reliable when used to test all eight AMS measures, 

answering the second aim of the thesis. 

 

The fourth research aim, addressed in Chapter 8, was to explore the relationship between 

the anthropometric measurements and AMS. The results presented suggested that the 

anthropometric measures taken affected the ability to produce torque at the ankle. It was 

clear that the effect of these variables was not the same for each of the eight measures of 

AMS and the effects varied between genders. It suggests that multiple factors in terms of 

changes in anthropometric measures will affect different measures of AMS in different ways. 

The results presented here and the limited results in the literature demonstrated the need 

to consider anthropometric variables when measuring AMS and address the fourth research 

aim. 

 

The main aim of this thesis was to produce equations which can predict a reference range 

for AMS. Chapter 8 also described the data collection and subsequent statistical analysis 

which used a stepwise linear regression analysis on data from 100 participants. The 

interactions between the measures of AMS and gender, height, mass, age and shoe size were 

explored and these variables were used in the linear regression analysis to produce the novel 

equations. Each of the eight equations was validated by successfully predicting a mean AMS 

range for a further 11 individuals, thus, fulfilling the main research aim of this thesis. A 

review of the literature indicated that these equations do not exist and as such the eight 

validated equations presented here represent a novel contribution. 

 

This thesis has demonstrated the importance of AMS and potential uses for reference values 

for AMS. It has also been demonstrated that no reference values for AMS, measured using 

the Cybex Norm, exist. This thesis has investigated and produced a reliable method for 

measuring AMS and statistical analysis of the collected data has produced eight equations 

which give reference values for AMS. These reference values have been validated and are 

recommended here for use in clinical, sporting and research environments.  
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10.4 Future Directions 

Establishing reference equations which can predict AMS could facilitate research in a 

number of areas. The following are some research ideas which could extend the relevance of 

the reference values to a wider population and utilise the AMS reference equations. 

 

 Once reference values have been established it would be clinically useful to 

investigate the production of a scale, based on AMS, to define the risk of injury, for 

example in patients with diabetic neuropathy. It would first be necessary to establish 

if a greater reduction in strength correlates with an increased risk of ankle injury. If 

this relationship does exist then it would be possible to determine a graded scale with 

which to assign an injury risk factor. 

 

 Use of barefoot running techniques to reduce injury and improve performance have 

recently gained significant attention in scientific literature. A review by Tam, Wilson, 

Noakes, and Tucker (2014) suggested that the research surrounding barefoot 

running and the possible benefits is largely inconclusive. They further suggest that 

time consuming longitudinal studies are necessary to identify the long term effects of 

barefoot running. Longitudinal studies would not be necessary if the reference 

equations were used to identify differences in AMS between habitual barefoot 

runners and a normal population. The same principal could be applied to habitual 

wearers of other shoe types, for example football boots, high heels or army boots. 

 

 The act of running up and down hills gives fell runners a unique AMS profile. The 

reference equations could be used to compare AMS in fell runners with reference 

values. It may also be possible to determine if there is a correlation between markers 

of running efficiency (oxygen consumption at specific speeds up hills, blood lactate 

levels, blood creatine kinase and interleukin-6 levels) and above normal AMS. 

 

 Engsberg et al. (2006) found that an increase in ankle strength improved function and 

gait speed in children with Cerebral Palsy. Use of reference equations could assess 

the effect of exercise interventions on patients with cerebral palsy. While absolute 

improvements could be measured, improvements relative to a reference value may 

be more relevant. 
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 Expanding the reference range age group would allow ankle strength deficits in an 

older population to be explored. It has been demonstrated that AMS deficits can 

contribute to falls in older populations (Rubenstein & Josephson, 2006) and is an 

important factor in stair ascent (Reeves et al., 2009) and descent (Reeves et al., 2008). 

Thus, knowledge of normal ankle strength may help prevent falls and maintain 

quality of life in this population. 
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12. Appendices 
 

Appendix 1 

Inversion and eversion papers based on Sekir et al (2007) 

Authors Test Speed Subject Group Results Strength values 

Lentell et 

al.(1990) 

0°/s and 30°/s 

Cybex II+ 

Unilateral CAI and 

uninjured 

opposite ankles 

 

No difference in concentric 

evertor strength between ankles 

Isometric involved 

16.9(4.8) uninvolved 

16.4(4.9) 

Lentell et 

al.(1995) 

30°/s, 90°/s ,150°/s and 

210°/s 

Cybex II+ 

Unilateral FAI and 

uninjured 

opposite ankles 

 

No difference in eversion strength 

between ankles 

 

Kaminski et al. 

(1999) 

30°/s, 60°/s, 90°/s, 

120°/s, 150°/s and 

180°/s  

Kin Com 125AP 

 

Subjects with CAI and 

healthy control group 

No difference in concentric and 

eccentric evertor strength 

between groups 

 

Bernier et al. 

(1997) 

90°/s 

Kin Com II 

Unilateral FAI and healthy 

control group and 

contralateral limb 

No difference in eccentric invertor 

and evertor strength between 

groups or limbs 
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Authors Test Speed Subject Group Results Strength values 

(Heitman et al., 

1997) 

30°/s and 60°/s 

Equipment not stated 

Unilateral FAI and 

uninjured opposite ankles 

No difference in eccentric evertor 

strength between ankles 

 

 

(Munn et al., 

2003) 

60°/s and 90°/s  

Biodex 

Unilateral FAI and 

uninjured opposite ankles 

No difference in eccentric or 

concentric evertor strength 

between ankles 

 

 

(Hartsell & 

Spaulding, 

1999) 

60°, 120°, 180° and 240° 

per second 

Cybex (model not stated) 

Subjects with FAI and a 

healthy control group 

Significant difference in eccentric 

and concentric evertor and 

invertor strength between groups 

 

 

(Willems et al., 

2002) 

30° and 120° per second 

Biodex 2 

Subjects with CAI and a 

healthy control group 

Significant difference between 

groups in concentric and eccentric 

evertor strength at 30° sec 

 

 

(Y. Yildiz et al., 

2003) 

120° per second 

Cybex Norm 

Subjects with CAI and a 

healthy control group 

Significant difference in eccentric 

evertor strength between groups 
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Authors Test Speed Subject Group Results Strength values 

(Ryan, 1994) 30° per second 

Cybex II 

Unilateral CAI and 

Uninjured opposite ankles 

No difference in concentric 

evertor 

strength, significant difference in 

concentric invertor strength 

between ankles 

 

(Wilkerson et 

al., 1997) 

30° and 120° per second 

Biodex 2 

Unilateral CAI and 

uninjured opposite ankles 

No difference in evertor strength, 

significant difference in invertor 

strength between ankles 
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Appendix 2 

Comparison of experimental and control populations in papers which used the Cybex Norm to 

measure isokinetic AMS. Based on Fish et al. (2014) 

Reference Experimental population Control Population 

 

Oliveira, Oliveira, Jones, 

and Natour (2015) 

2 male 28 female Rheumatoid 

arthritis patients aged 50±1.8 

years 

 

2 male and 28 female healthy 

participants aged 51±2.1 years 

Rosso et al. (2015) 52 patients with unilateral 

Achilles tendon rupture aged 

48.6 (SD 8.7) 

 

Uninjured contra lateral limb  

Brown et al. (2014) 20 diabetic patients with 

peripheral neuropathy, 33 

diabetic patients without 

peripheral neuropathy. Gender 

not stated 

 

27 healthy participants aged 

51 (SD 19) Gender not stated 

Keles et al. (2014) Training group – 12 males aged 

21.9±3.1 years 

 

12 males aged 24.3±3.1 years 

Buckley et al. (2013) 10 males 5 females aged 75±3 

years 

10 males 7 females aged 

25±4years 

 

N/A – older vs younger 

population 

David, Halimi, Mora, 

Doutrellot, and 

Petitjean (2013) 

 12 CAI patients: 8 male aged 

21.3±18 years, 4 female aged 

23.5±4.4 years 

 

12 health participants: 6 males 

aged 22.5±2.4 years, 6 females 

aged 24.0±3.0  

Tallent, Goodall, 

Hortobágyi, St Clair 

Gibson, and Howatson 

(2013) 

 

10 resistance trained males 

aged 22±2 years 

9 untrained males aged 26±3 

years 

Taskiran et al. (2013) 2 males, 11 females aged 

34.3±9.2 years 

N/A test – retest reliability 

study 
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Reference Experimental population Control Population 

 

Alfieri et al. (2012) 1 male, 22 females aged 

70.18±4.8 years 

N/A – strength training vs 

multisensory training 

experiment. 

 

S. S. M. Fong and Tsang 

(2012) 

13 males, 7 females aged 15±1.2 

years 

N/A – correlation study 

between hours of taekwondo 

training and muscle strength 

 

Noguchi, Demura, and 

Nagasawa (2012) 

10 males football players aged 

20±0.8 years 

10 males athletes aged 

21.1±0.57 years 

 

Strejcová, Šimková, and 

Baláš (2012) 

8 males 1 female aged 25.0±0.9 

years (slackline walkers) 

8 males 1 female aged 

22.9±0.8 years (non-slackline 

walkers) 

 

Tan, Li, and Wang 

(2012) 

13 male and 12 female Diabetes 

patients aged 65.9±4.2 years 

 

No healthy control 

X. Wang (2012) “elite skaters” no other detail 

given 

 

N/A 

Zhang and Xia (2012) 6 males aged 25.8±3.87 years 

12 males aged 22.3±2.56 years 

 

N/A – comparison of national 

and international skaters 

Behrens et al (2010) 7 short track speed skaters aged 

17.1±1.3 years (gender not 

stated) 

 

N/A – test-retest design 

Collado et al (2010) 6 males, 3 females aged 

25.1±2.57 (eccentric training); 4 

males, 5 females aged 23.3±2.8 

(concentric training)  

 

2 males, 8 females aged 

24.4±3.06 

Gopalakrishnan et al 

(2010) 

4 males aged 49.5±4.7 years 

 

N/A – strength measured pre 

and post space flight 

Latour et al (2010) 10 males, age not stated 

(training on sand) 

 

10 males, aged not stated 
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Reference Experimental population Control Population 

 

Patterson & Ferguson  

(2010) 

8 females aged 23±3 years 

8 females aged 22±3 years 

N/A – training method 

comparison between blood 

restriction and no restriction 

and 25%1RM and 50%1RM 

reps 

 

Urguden et al (2010) 15 males, 5 females aged 20.6 

years (range 16 – 32 years) with 

chronic ankle instability 

 

‘20 patients with same 

demographic characteristics’ 

Vismara et al. (2010) 11 adults aged 33±4.3 years 

with Prader-Willi Syndrome 

 

20 healthy adults aged 28±7.8 

years 

van Cingel et al (2009) 15 males aged 34.2±9.32 years; 

15 females aged 28.6±8.64 

years 

 

N/A – reproducibility study 

Giagazoglou et al. 

(2009) 

10 blind females aged 33.5±7.9 

years 

 

10 healthy females aged 

33.5±8.3 years 

Guo and Song (2009) 10 males aged 22.4±2.6 years 

(elite speed skaters) 

 

14 males aged 19.4±0.8 years 

Koutsioras et al (2009) 7 males aged 16.3±1.2 years 7 

females aged 16.1±1.2  

 

N/A – examination of muscle 

strength and long jump 

performance 

Li, Xu, & Hong (2009) 13 males 12 females 64.9±3.2 

years (healthy performed Tai 

Chi) 

 

12 males 13 females 65.6±3.5 

years (healthy did not perform 

Tai Chi) 

Reeves, et al (2009) 5 males 10 females aged 

74.8±2.8 years 

10 males 7 females aged 

24.6±4.1 years 

 

N/A Comparison of older vs 

younger stair ascent 

Sanioglu et al. (2009) 9 males, 7 females aged 24.3 

±4.12 years 

 

Strength with ankle taped vs 

not taped 
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Reference Experimental population Control Population 

 

Eyigor et al. (2008) 8 males 25 females aged 

55.79±12.4 years with 

Rheumatoid arthritis 

 

7 males 26 females aged 

60.27±10.7  

Özçaldiran & Durmaz 

(2008) 

14 males median age 18(6) 

(elite swimmers) 

8 males median age 20(5) (elite 

runners) 

N/A comparison between 

swimmers and runners. 

Reeves et al (2008) 15 “older adults” aged 74±2.8 

years 

17 “young adults” aged 24.6±4.1 

years gender not stated 

 

N/A – comparison of older and 

younger biomechanics of stair 

descent 

Sekir et al. (2008) 24 males aged 21.1±1.8 with 

functional ankle instability 

 

N/A – reliability study 

Dehail et al. (2007) 6 males aged 75.6±5.4 years, 18 

females aged 73.2±6.7 years  

 

N/A analysis of strength and 

sit to walk movement 

Eyigor et al. (2007) 20 participants aged 70.3±6.5 

years gender not stated 

 

N/A – test-retest design 

Frasson et al. (2007) 36 females, age not stated Ballet dancers versus 

volleyball players 

Geremia, Galvão, and 

Diefenthaeler (2007) 

5 individuals (no population 

data given) 

 

Contra lateral ankle 

Muller et al (2007) 10 males, 33 females aged 

86.0±5 years. Hospitalised 

patients 

 

6 males, 22 females aged 

75.4±6.2 years 

Sekir et al. (2007) 24 males aged 21±2 years with 

unilateral functional ankle 

instability 

 

Contra lateral ankle 

Thom et al (2007) 9 males aged 74.7±4.0 years 

15 males aged 25.3±4.5 years 

 

N/A – comparison between 

older and younger males 

Ferri, et al (2006) 9 males aged 71.8±4.3 years 

 

N/A – test-retest design  
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Reference Experimental population Control Population 

 

Gerodimos et al (2006) 30 males in each group: aged 

12.3±0.1 years 

Aged 13.4±0.2 years 

Aged 14.5±0.3 years 

Aged 15.2±0.1 years 

Aged 16.5±0.3 years 

Aged 17.4±0.2 years 

N/A – analysis of strength in 

basketball players 

Greene et al (2006) 20 females aged 15.9±1.6 years 

(middle distance runners) 20 

males aged 16.8±00.6 years 

(middle distance runners 

 

20 females aged 16±1.8 years, 

20 males aged 16.4±0.7 years 

Mahieu et al (2006) 69 males aged 18.41±1.29 years N/A – cohort study examining 

risk factors for Achilles over 

use injury 

 

Neto et al (2006) 8 males between 20 and 23 

years 

 

N/A – test-retest design 

Sammarco, Bagwe, 

Sammarco, and Magur 

(2006) 

16 males mean age 53.4 range 

18-74 and 24 female mean age 

55 range 15-74 

 

Contra lateral ankle control 

Xu et al (2006) 13 males, 8 females aged 

66.2±5.1 years (Tai Chi 

practitioners) 11 males, 7 

females aged 65.2±3.0 years 

(joggers) 

 

12 males, 10 females aged 

64.9±3.2 years 

Greene et al.(2005) 20 females aged 16±1.7 years 

(middle distance runners) 

 

20 females aged 16±1.8 years 

Demonty et al (2004) 10 males mean age 52.8 with 

occlusive arterial disease 

 

10 males mean age 53.9 years 

McCarthy, et al (2004) 47 females  aged 64.51±3.08 

years 

N/A – comparison of sit to 

stand movement and hip, knee 

and ankle strength 

 

Ferri et al (2003) 16 males aged 67.9±0.9 years 

 

N/A – test-retest protocol 
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Reference Experimental population Control Population 

 

Høiness et al (2003) 9 males aged 26.2±4.4 years 

(using normal bike pedal); 10 

males aged 24.5±3.9 years 

(using bi-directional bike pedal) 

Contra lateral ankle 

Reeves and Narici 

(2003) 

4 males, 4 females aged 

25.1±2.6 years 

N/A – examination of muscle 

fascicles during dynamic 

movement 

 

Yildiz et al (2003) 8 males aged 26.2±2 years with 

chronic ankle instability 

 

9 males aged 25±2 years 

Schulze et al (2002) 8 males 27.1±3.0, 8 males 

29.5±2.9 years (underwent 

unilateral lower limb 

suspension for 21 days) 

 

8 males 31.4±2.9 years, 8 

males 32.5±3.9 years 

Tsiokanos, et al (2002) 29 males aged 22.1±2.2 years N/A – comparison of leg 

strength and jumping 

performance 

 

Ademoglu et al. (2001) 3 males, 1 female between 24 

and 47 years (average 35) 

(wound complications after 

Achilles tendon rupture) 

 

Contra lateral ankle 

Bourdel-Marchasson et 

al (2001) 

4 males, 7 females aged 

87.1±5.7 years (malnourished) 

 

4 males, 9 females aged 

83.4±6.1 years 

Mouraux et al (2000) 4 males, 6 females aged 

24.7±3.2 years 

 

N/A – test-retest design 

Wilcox, Bohay, and 

Anderson (2000) 

8 males, 12 females mean age 

61 range 28 – 80 

 

Contra lateral ankle control 
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Appendix 3 

A description of the protocols used by the sixty papers that have used the Cybex Norm to measure AMS. Based on Fish et al. (2014). 

 
Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Oliveira et al. 

(2015) 

Supine 30° 5 min cycling at 

60rpm 

30, 60 

concentric PF, 

DF, inv, eve 

5 reps at each 

speed, 

30seconds 

between 

speeds 

 

Both Not stated 

Rosso et al. 

(2015) 

Seated ‘full 

extension’ 

10mins cycling, 3 

reps 

familiarisation 

 

30, Concentric 

PF,  

3 reciprocal 

reps 

Injured limb 

– dominance 

not stated 

Not stated 

Brown et al. 

(2014) 

Prone 180° Not stated 60, 120, 180, 

240 concentric, 

eccentric PF 

 

Not stated Not stated Not stated 

Keles et al. 

(2014) 

Supine 80°-110° eve 

30°-40° DF 

10 min warm up 

‘general ROM’, 2 

sets of stretching 

exercises. 

 

Concentric 

eccentric DF, 

eve 

5 reps of each 

movement 

dominant Verbal 

Buckley et al. 

(2013) 

Not stated Not stated Not stated 60, 120, 180, 

240 eccentric 

PF 

3reps at each 

speed 

Not stated Not stated 
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Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

David et al. 

(2013) 

Supine 90° Familiarisation, 

5mins cycling, 

‘several’ reps at 

50% max 

60,120 

Concentric Inv, 

eve. 30, 60, 90 

ccentric inv, eve 

8 reps at each 

speed, 1 min 

rest between 

concentric and 

eccentric 

 

Non-

dominant 

Verbal and visual 

feedback given 

Taskiran et al. 

(2013) 

Prone ‘full 

extension’ 

4 submax reps 30, 120  PF DF 

concentric  

5 reps at 30° 

per sec 

10mins rest 20 

reps at 

120°per sec 

 

dominant Not stated 

Tallent et al. 

(2013) 

Supine 120° Not stated 15  DF 

concentric and 

eccentric  

 

3 reps dominant Not stated 

Alfieri et al 

(2012) 

Supine 80° 3 reps at free 

angular speed 

30 PF, DF, inv, 

eve 

5 reps Not stated Verbal 

encouragement 

given 

 

S. S. M. Fong and 

Tsang (2012) 

Prone 0° 3 trials 60, 240 

PF DF 

concentric 

3 trials, 10 

seconds 

between trials 

(reps per trial 

not stated) 

 

Dominant 

(self 

reported) 

Not stated 
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Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Noguchi et al. 

(2012) 

Not stated Not stated 1 ‘practice run’ 30 PF DF  ‘2 tests in 

between I 

minute 

intervals’ 

 

Not stated Not stated 

Strejcová et al. 

(2012) 

Supine 90° Not stated 30, 120 PF DF 5 reps 30°,15 

reps 120° 

 

dominant Not stated 

Tan et al. 

(2012) 

Supine Not stated ‘familiarisation 

and a warm up’ no 

detail given 

30,  60 PF DF 2sets of 3 reps 

1 minute rest 

between 

 

dominant Not stated 

Wang (2012) Not stated Not stated Not stated 60, 120, 180, 

240, 300, 360, 

420, 480 

concentric; 

60,120, 180, 

240, 300 

eccentric DF 

 

8 reps at each 

concentric 

speed and 5 

reps at each 

eccentric 

speed 

both Not stated 

Zhang and Xia 

(2012) 

Not stated Not stated 10 mins ‘warm up’ 

and 3 reps at 60° 

per sec 

60, 120, 180, 

240, 300, 360, 

420, 480 

concentric PF 

DF 

 

3 reps at each 

speed, 20secs 

between reps 

both Not stated 
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Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Behrens et al 

(2010) 

 

Supine Between 

100° - 110° 

10 mins bike at 

100W 5 submax 

concentric reps at 

240° per sec 

 

240  inv eve 

Concentric  

3 max reps right No visual feedback, 

verbal 

encouragement 

was given 

Collado et al 

(2010) 

Supine 90° 3 practice trials 30 inv eve 

concentric 

eccentric 

3 reps Both (one 

had suffered 

lateral ankle 

sprain) 

 

Not stated 

Gopalakrishnan 

et al (2010) 

Prone 0° 5mins bike 25-

50W 60-80rpm. 5 

sub max reps, 2-3 

max reps 2mins 

rest 

 

30 PF DF 

concentric  

eccentric 

5 reps ecc 

5 reps con 

right Not stated 

Latour et al 

(2010) 

Supine (based on 

photo, not stated 

in text) 

Flexed 

(based on 

photo, not 

stated in 

text) 

Not stated 30, 120, inv eve 

concentric 

eccentric 

 

Not stated Not stated Not stated 

Patterson & 

Ferguson  

(2010) 

Prone 0° 5 contractions at 

each speed 

30, 60, 120 PF 

concentric 

3 reps at each 

speed. 1 

minute 

between reps 

 

both Verbal 

encouragement 

given 
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Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Urguden et al 

(2010) 

Supine 80 – 110° Not stated 

although 

proprioception 

test performed on 

the Cybex prior to 

isokinetic tests 

 

60, 150 inv eve 5 reps 60° sec. 

10 reps 150° 

sec 

Both (1 

injured 1 

uninjured) 

Not stated 

Vismara et al. 

(2010) 

Prone 180° Not stated 60, 120 PF DF  5 reps at each 

speed, 1min 

rest between 

reps 

 

 

 

both Not stated 

van Cingel et al 

(2009) 

Supine 10° 5min bike 75w 70 

– 80rpm, 3 

submax inv eve 2 

max inv eve 

 

30, 120 inv eve 

 

3 sets of 3 reps 

at each speed 

both No visual feedback 

or verbal 

encouragement 

given 

Giagazoglou et 

al. (2009) 

Supine ‘fully 

extended’ 

3 submax 

contractions 

30, 60, 120  PF 

DF concentric 

eccentric  

3 reps of each 

movement at 

each speed 

with 2mins 

between each 

rep 

Dominant Consistent, 

identical verbal 

encouragement 

provided, no visual 

feedback given 
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Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Guo and Song 

(2009) 

Not stated Not stated 10 mins 

preparatory 

activities and 2 

sets 3 reps at 60° 

per sec 

 

60, 120, 180, 

240, 300  PF 

concentric  

3 reps at each 

speed 20 

seconds 

between each 

rep 

right Not stated 

Koutsioras et al 

(2009) 

Prone 0° 3 sub max reps 60, 120 

concentric and 

eccentric PF 

3 max reps at 

each speed for 

each 

movement 

 

right Not stated 

Li, Xu, & Hong 

(2009) 

Not stated Not stated Not stated 30 PF DF 

concentric. 

 

3 reps no info 

on rest 

dominant Not stated 

Reeves, et al 

(2009) 

Prone 0° Not stated 60, 120, 180, 

240 concentric 

PF 

 

Not stated left Not stated 

Sanioglu et al. 

(2009) 

Supine Not stated 5mins cycling, 6-

10 submax PF DF 

contractions, 2-3 

max PF DF 

contractions then 

2mins rest 

 

60, 180  PF DF 

Concentric  

5reps at 60° 

per sec 15 

reps at 180° 

per sec 

both Not stated 
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Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Eyigor et al. 

(2008) 

Supine 90° 10 min walk 2 sub 

max reps 180° per 

sec 

 

60, 120, 180 PF  

DF 

6 reps at each 

speed 20s 

between 

speeds 

 

Not stated Verbal 

encouragement 

given 

Özçaldiran & 

Durmaz (2008) 

Supine 0° 5 min warm up 

plus 4 sub max 

reps 

30, 120 PF DF  5 reps at 30° 

per sec 15 

reps at 120° 

per sec with 

30 sec rest 

between sets 

 

Both Verbal 

encouragement 

given 

Reeves et al 

(2008) 

Prone 0° Not stated 60, 120, 180, 

240 eccentric 

PF 

3 reps at each 

speed 2-3 

minute rest 

between 

 

left Not stated 

Sekir et al. 

(2008) 

Supine 80° - 110° 10minute ‘general 

ROM and 

stretching’ 3 

submax 

contractions 

 

120  inv eve 

concentric 

eccentric  

5 maximal 

contractions 

2mins 

between inv 

and eve tests 

14 dominant 

10 non 

dominant 

(only injured 

ankle tested) 

Verbal 

encouragement 

given 
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Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Dehail et al. 

(2007) 

Supine 0° 3 training reps 

before each set 

30, 60 

Concentric PF 

2 x 5 reps at 

30°per sec 

1 x 5reps at 

60°per sec 

2mins 

between sets 

 

dominant Verbal 

encouragement 

given 

Eyigor et al. 

(2007) 

Supine 90° 10 min walk then 

2 sub max PF/DF 

reps at 180° per 

sec 

60, 120, 180 PF 

DF 

 

6 reps at each 

speed. 20s 

between reps 

both Verbal 

encouragement 

given 

Frasson et al. 

(2007) 

prone 180° A ‘series’ of 

submax 

contractions at 

different speeds 

60, 120, 180, 

240, 300, 360, 

420  PF DF 

concentric  

 

3 reps at each 

speed, 2mins 

rest between 

reps 

right Not stated 

Geremia et al. 

(2007) 

Not stated Not stated Not stated 60, 120, 180, 

240, 300  PF DF 

concentric  

3 reps per 

speed, 90sec 

rest between 

speeds 

 

Both (non-

dominant 

was 

sprained) 

Not stated 
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Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Sekir et al. 

(2007) 

Supine 80° - 110° 10minute ‘general 

ROM and 

stretching’ 3 

submax 

contractions 

120  inv eve 

Concentric 

eccentric  

5 maximal 

contractions 

2mins 

between inv 

and eve tests 

 

 

 

14 dominant 

10 non 

dominant 

injured both 

tested 

Verbal 

encouragement 

given 

Thom et al 

(2007) 

Prone 0° Familiarisation 

session and 5 

isometric MVCs 

50, 100, 150, 

200, 250 

Concentric PF 

4 reps at each 

speed, 1 min 

between reps, 

5mins 

between 

speeds. 

 

left Verbal 

encouragement 

given 

Ferri, et al 

(2006) 

Prone 0° ‘several’ warm up 

contractions 

60, 120 

concentric 60 

eccentric PF DF 

3 reps at each 

speed, 1 min 

between reps 

 

Left (non 

dominant in 

all subjects) 

Verbal 

encouragement 

given 

Gerodimos et al 

(2006) 

Supine  0° 15 minutes 

cycling and 

stretching 3 

submax reps and 

1 max rep at 30° 

and 90° per sec 

 

30, 90 

Concentric 

eccentric PF DF  

5 reps of each 

movement at 

each speed. 5 

min rest 

between speed 

1 randomly 

determined 

leg 

Visual feedback, no 

verbal feedback 
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Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Greene et al 

(2006) 

‘Standard 

positioning used’ 

 

Not stated Not stated 60 PF DF 5 reps dominant Not stated 

Mahieu et al 

(2006) 

Supine 0° 10 sub-max reps 

at 90° per sec 

30, 120 

Concentric PF 

DF 

3 reps at 30° 

per sec and 5 

reps at 120° 

per sec. 1 

minute rest 

between tests 

 

 

 

both Verbal 

encouragement 

given 

Neto et al 

(2006) 

Not stated Not stated Not stated 30, 60, 120, 

Concentric 60, 

eccentric PF  

3 reps of each 

apart from 5 

reps of 120° 

All subjects 

were right leg 

dominant, 

not clear 

which leg 

was tested. 

 

Not stated 

 

 Sammarco et al. 

(2006) 

Supine Knee ‘flexed’ Not stated ‘standardised 

protocol’  PF 

 

5 reps Both Not stated 

Xu et al (2006) Supine Not stated 5mins bike 50-

60w 3 submax 

reps 

 

30 concentric 

PF DF 

3 reps dominant Not stated 



251 
 

Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Greene et al 

(2005) 

‘Standard 

positioning used’ 

‘Standard 

positioning' 

 

Not stated 60 PF DF 5 reps dominant Not stated 

Demonty et al 

(2004) 

Supine ‘straight’ 10 mins bike 40w 

60rpm 3 submax 

reps 

120, 30 

concentric PF 

DF 

5 reps 120° 3 

reps 30° 30s 

rest between 

sets 

 

both Not stated 

McCarthy et al 

(2004) 

Not stated Not stated 3 submax reps at 

60° per sec 

60 PF DF  5 reps right PF 

DF, 5mins rest, 

5 reps left PF 

DF 

 

both Not stated 

Ferri et al 

(2003) 

Prone 180° Several sub max 

reps 

30, 60, 90, 120,  

PF  

3 reps at each 

speed 

dominant Verbal 

encouragement 

given 

 

Høiness et al 

(2003) 

Supine 80° - 110° No warm up  60, 180 eve 5 reps 15min 

rest 5 reps (to 

ensure 

reliability) 

 

Both (1 

injured 1 

uninjured) 

Verbal 

encouragement 

given 
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Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Reeves and 

Narici (2003) 

Supine 90° Warm up not 

stated 

50, 100, 150, 

200, 250, 

concentric 

eccentric DF  

5 reps each 

movement 

each speed 

180s rest 

between 

contraction 

sets 

 

right Not stated 

Yildiz et al 

(2003) 

Supine 80° - 110° 10 minute warm 

up – general rom 

and stretching. 3 

submax trials 

 

120 concentric 

inv, eccentric 

eve 

5 reps inv, 

2mins rest, 5 

reps eve 

Not stated Verbal 

encouragement 

given 

Schulze et al 

(2002) 

Supine 160° 4 sub max 

contractions at 

50% peak torque 

at each speed 

30, 60, 120, 

180, 240, 300 

concentric 

eccentric  PF 

4 maximal 

contractions at 

each speed 

90s rest 

between 

speeds. 

 

left Not stated 

Tsiokanos, et al 

(2002) 

 

Prone 0° 3 submax reps at 

each speed 

60, 120, 180 

Concentric PF  

3 reps at each 

speed, 30s 

between reps, 

5 mins 

between 

speeds 

 

Not stated Not stated 
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Reference 

 

Prone/Supine/ 

weight bearing  

Degree of 

Knee 

Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-

dominant 

foot 

Encouragement 

given 

Ademoglu et al. 

(2001) 

Supine 10°  2 submax and 1 

max rep 

30, 120 PF DF 3 reps, 30 

seconds 

between 

speeds 

 

Both Not stated 

Bourdel-

Marchasson et 

al (2001) 

Supine 0°  3 training 

exercises (reps) 

for each set 

30,  60 PF  2 sets 5 reps at 

30° per sec, 1 

set of 5 reps at 

60° per sec 

 

Right (or the 

healthy side) 

Not stated 

Mouraux et al 

(2000) 

Supine 90° 10 minutes bike 

and 

familiarisation 

with the 

equipment 

30, 60, 90  PF 

Concentric 

eccentric  

3 max reps at 

each speed. 90 

seconds 

between 

speeds. 

 

Both pre and 

post training 

Not stated 

Wilcox et al. 

(2000) 

Prone Knee fully 

extended 

3 trial reps at each 

speed 

30, 120 PF DF 

concentric 

inferred but not 

stated 

5 reps at 30° 

per sec, 10 

reps at 120° 

per sec 

Both Not stated 
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Appendix 4 

Calculation of significance based on inv and eve data from van Cingel et al (2009) 

     Speed (°/sec)   Mean peak torque  SD SE CI 

men inv 30 d 36.73 11.68 3.02 5.91 

      nd 33.80 7.66 1.98 3.88 

    120 d 27.26 9.61 2.48 4.86 

      nd 26.53 9.80 2.53 4.96 

  eve 30 d 30.00 8.40 2.17 4.25 

      nd 27.86 7.84 2.02 3.97 

    120 d 22.40 8.36 2.16 4.23 

      nd 21.33 8.30 2.14 4.20 

women inv 30 d 29.93 11.20 2.89 5.67 

      nd 31.00 11.30 2.92 5.72 

    120 d 21.20 9.17 2.37 4.64 

      nd 20.20 7.36 1.90 3.72 

  eve 30 d 27.13 13.58 3.51 6.87 

      nd 26.13 13.05 3.37 6.60 

    120 d 19.20 10.49 2.71 5.31 

      nd 18.46 10.41 2.69 5.27 

Note:=dominant, nd=non-dominant, SD=standard deviation, SE=standard error calculated 

as SD/root n, CI = confidence interval calculated as 1.96 x SD.  

 

If the mean peak torque + the CI of the dominant ankle overlaps the mean of the non-

dominant ankle then it can be inferred that there is no significant difference between them.  
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Appendix 5 

Risk assessment for lab work 

UNIVERSITY OF HUDDERSFIELD 

 

HEALTH & SAFETY RISK ANALYSIS & MANAGEMENT (RISK ASSESSMENT) 

 

 

ACTIVITY: USING THE  Cybex Isokinetic Dynamometer  ASSESSMENT BY: Michael Fish 

LOCATION:  RG/03 ASSESSMENT DATE: 19 Oct 2010 

 

HAZARD IDENTIFIED: Risk of injury whilst using the Cybex Isokinetic Dynamometer  

RISKS TO HEALTH 

AND SAFETY 

PEOPLE AT 

RISK 
EXISTING RISK MANAGEMENT MEASURES 

ADEQUATE? 

YES NO 

musculoskeletal 

injury due to misuse 

of the Cybex 

Isokinetic machine  

Students, staff 

and external 

visitors 

Full training given to staff and students on all 

aspects of using the equipment.  

An emergency cut off switch for the user for all 

tests.  

1. Students who are carrying out 
studies on the machine and are 
using the machine should always 
be supervised and the machine 
should be checked for correct 
operation. 

2. When the machine is in use with 
a patient or user the patient 
should not under any 
circumstances be left alone in the 
room. 

3. The patient should hold the 
emergency cut out button whilst 
carrying out exercises and testing 
on the cybex. 

4. Senior staff who supervise 
students in their studies should 
attend clinical days at regular 
intervals for training. 

 

x  

ACTIONS REQUIRED: 

ADDITIONAL RISK MANAGEMENT MEASURES BY WHO? BY WHEN? COMPLETED 
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HAZARD IDENTIFIED: Storage of personal belongings 

RISKS TO HEALTH 

AND SAFETY 

PEOPLE AT 

RISK 
EXISTING RISK MANAGEMENT MEASURES 

ADEQUATE? 

YES NO 

Trips, slips and falls 

due to personal 

belongings in the lab. 

 

Blocking access and 

egress in case of 

emergency 

Students, staff 

and external 

visitors 

All students have access to a locker in the changing 

rooms in which to store personal clothing and 

belongings. Smaller valuable items may be brought 

into the lab and placed on the desks or in a safe 

corner of the room.   

  

ACTIONS REQUIRED: 

ADDITIONAL RISK MANAGEMENT MEASURES BY WHO? BY WHEN? COMPLETED 

 

HAZARD IDENTIFIED: Equipment Cables 

RISKS TO HEALTH 

AND SAFETY 

PEOPLE AT 

RISK 
EXISTING RISK MANAGEMENT MEASURES 

ADEQUATE? 

YES NO 

Trips, slips and falls 

due to trailing cables 

Students, staff 

and external 

visitors 

Where available all cables are safely housed in 

appropriate cable bindings. Where this is not 

possible, all cables are situated as close to the wall 

as possible and all participants are made aware of 

the trailing cables to ensure that access and egress 

in the lab is still available. 

  

ACTIONS REQUIRED: 

ADDITIONAL RISK MANAGEMENT MEASURES BY WHO? BY WHEN? COMPLETED 

 

HAZARD IDENTIFIED: Water Spillage 

RISKS TO HEALTH 

AND SAFETY 

PEOPLE AT 

RISK 
EXISTING RISK MANAGEMENT MEASURES 

ADEQUATE? 

YES NO 

Slips, trips or falls 

due to water spillage 

around the sinks 

Staff, students 

and visitors 

Any water spillages must be wiped up immediately 

and there are rolls of paper towels above both 

basins that are checked regularly and stocked up.  

  

ACTIONS REQUIRED: 

ADDITIONAL RISK MANAGEMENT MEASURES BY WHO? BY WHEN? COMPLETED 

 

 

 

RISK ASSESSMENT REVIEW 

TO BE CARRIED OUT ON: Annually 

TO BE CARRIED OUT BY:  

 

K:\PhD\The Real Thing2\Post viva\28-07-16 The real thing2 post viva.docx  
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Appendix 6 

E-mail and poster requesting participants 

Thank you to those of you who have already taken part in this research! 

 

 I am now in a position to carry on testing so if anyone is in the Huddersfield area and can 

spare 30mins to have their ankle strength tested I would very much appreciate it. 

 

I have attached further details and a questionnaire, if you are interested get in touch via e-

mail or phone. 

 

Thank you very much 

Michael 

 

 

 

_____________________________________________ 

From: Michael Fish  

Sent: 23 May 2012 16:04 

To: HP1003 - BSc Podiatry; HP1203 - BSc Physiotherapy; H403 - BSc(Hons) Exercise, Physical Activity & 

Health FT 

Subject: Isokinetics research 

Hello, 

As part of my PhD I am investigating muscle strength at the ankle using the Cybex Norm and 

I need volunteers to have their ankle strength tested. The test will take approximately 30 

minutes. I appreciate it is a busy time with exams but if anyone is available between now and 

the 1st of June I would really appreciate your help. 

 

If you are available please get back to me in RG18 or by e-mail and I will send you further 

details. 

Thanks 

Michael 
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Michael Fish B.Sc M.Sc FHEA 

 

Chief Clinical Technician 

Human and Health Sciences 

RG18 Ramsden Building 

University of Huddersfield 

 

m.fish@hud.ac.uk 

 

 

 

  

mailto:m.fish@hud.ac.uk
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Appendix 7 

Participant Questionnaire 

Questionnaire 

Participant number: 

Gender:    Height:    Dominant side: L / R 

Weight:    Age:     Shoe Size: 

Section 1 Personal History 

1. Do you currently have any ankle pain or an ankle injury? Yes / No 

2. Have you ever consulted a healthcare professional regarding an ankle injury? Yes / 

No 

3. Do you have any ankle pain, injury or other impairment that affects everyday function 

eg walking up or down stairs or crouching down? Yes/No 

4. Do you or have you ever been diagnosed with diabetes? Yes / No 

5. Do you or have you ever been diagnosed with a disease that affects the muscles eg 

Guillain-Barré syndrome? Yes / No 

6. Do you or have you ever been diagnosed with a disease of the nervous system eg 

Parkinsons disease, Multiple Sclerosis, chronic fatigue syndrome? Yes / No 

7. Do you have or have you ever been diagnosed with conditions of the bone or joint eg 

shin splints, osteoarthritis, Still’s disease, rheumatoid arthritis, osteoporosis, Perthes 

disease? Yes/No 

8. Do you suffer or have you suffered from low-back pain and/or sciatica? Yes/No 

9. Do you know of any other reason why you cannot take part in this experiment? 

“I have read, completed and understood this section of the questionnaire. Any questions that 

I had were answered to my full satisfaction” 

 

Signed (participant) ………………………………………………… Date………………….. 

 

Print ……………………………………………….. 

 

Signed (principal researcher)……………………………………. Date……………………  
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Appendix 8 

Informed Consent Form 

UNIVERSITY OF HUDDERSFIELD 

Testing Ankle Strength 

Michael Fish 

Consent form 

I have been fully informed of the nature and aims of this research and consent to taking part in it. 

I understand that I have the right to withdraw from the experiment at any time without giving any 

reason, and a right to withdraw my data if I wish. 

I understand that the data will be kept in secure conditions at the University of Huddersfield.  

I understand that no person other than the principal researcher will have access to the data. 

I understand that my identity will be protected by the use of participant number in the research 

report and that no information that could lead to my being identified will be included in any report or  

publication resulting from this research. 

 

Name of participant 

 

Signature  

 

Date 

 

Name of researcher 

 

Signature 

 

Date 

 

 

Two copies of this consent from should be completed: One copy to be retained by the participant and one copy to be 

retained by the researcher 
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Appendix 9 

Randomisation table to determine the testing order.  

PFDF ecc PFDF con inv eve ecc inv eve con 1 9 17 25 33 41 49 57 65 73 81 89 97 

 inv eve ecc inv eve con PFDF ecc PFDF con 2 10 18 26 34 42 50 58 66 74 82 90 98 

PFDF ecc PFDF con inv eve con  inv eve ecc 3 11 19 27 35 43 51 59 67 75 83 91 99 

inv eve con  inv eve ecc PFDF ecc PFDF con 4 12 20 28 36 44 52 60 68 76 84 92 100 

PFDF con PFDF ecc inv eve ecc inv eve con 5 13 21 29 37 45 53 61 69 77 85 93 101 

 inv eve ecc inv eve con PFDF con PFDF ecc 6 14 22 30 38 46 54 62 70 78 86 94 102 

PFDF con PFDF ecc inv eve con  inv eve ecc 7 15 23 31 39 47 55 63 71 79 87 95 103 

inv eve con  inv eve ecc PFDF con PFDF ecc 8 16 24 32 40 48 56 64 72 80 88 96 104 

                                  

                 

PFDF ecc PFDF con inv eve ecc inv eve con 105 113 121 129 137 145 153 161 169 177 185 193 201 

 inv eve ecc inv eve con PFDF ecc PFDF con 106 114 122 130 138 146 154 162 170 178 186 194 202 

PFDF ecc PFDF con inv eve con  inv eve ecc 107 115 123 131 139 147 155 163 171 179 187 195 203 

inv eve con  inv eve ecc PFDF ecc PFDF con 108 116 124 132 140 148 156 164 172 180 188 196 204 

PFDF con PFDF ecc inv eve ecc inv eve con 109 117 125 133 141 149 157 165 173 181 189 197 205 

 inv eve ecc inv eve con PFDF con PFDF ecc 110 118 126 134 142 150 158 166 174 182 190 198 206 

PFDF con PFDF ecc inv eve con  inv eve ecc 111 119 127 135 143 151 159 167 175 183 191 199 207 

inv eve con  inv eve ecc PFDF con PFDF ecc 112 120 128 136 144 152 160 168 176 184 192 200 208 

                                  
 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric   
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Appendix 10 

A comparison of the test-retest reliability data of studies which used the Cybex Norm to measure AMS.  

Study Variables  
P 
value 

SEM% 
SEM 
(Nm) 

ICC Position Contraction 
type  

Speed Gender 

van Cingel et al. 
(2009) 

Supine, seated, knee at 10° 
flexion 

Concentric inv 30°/s M - 15.63 5.69 0.74 
F - 11.00 3.20 0.93 

120°/s M - 17.04 4.52 0.78 
F - 19.22 4.05 0.80 

Concentric eve 30°/s M - 12.99 3.89 0.77 
F - 10.05 2.67 0.96 

120°/s M - 13.21 2.94 0.82 
F - 14.48 2.99 0.91 

 
Laughlin et al. 
(2009) 

Prone, knee at full extension Concentric PF 30°/s 
 

M 
 

0.124 4.3 5.2 0.93 
Concentric DF 0.429 9.2 2.8 0.67 
Eccentric PF 0.079 4.7 7.1 0.93 
Eccentric DF 0.083 2.6 1.2 0.96 

 
(Taskiran et al. 
(2013)) 

Prone, knee at full extension Concentric PF 30°/s 11F / 2M mixed 
group 

- - - 0.92 
120°/s - - - 0.86 

Concentric DF 30°/s - - - 0.91 

120°/s - - - 0.85 

Note SEM = standard error of the mean; ICC = intraclass correlation coefficient. PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve 
= eversion. P value refers to the significance of a paired samples t-test result.
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Appendix 11 

The results of an independent samples t-test to determine the difference in AMS between males and females.  

 Levene's Test for Equality of 
Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower Upper 

PFcon Equal variances 

assumed 

3.62 0.06 7.67 108.00 0.00 23.23 3.03 17.22 29.24 

Equal variances not 

assumed 

  7.38 82.64 0.00 23.23 3.15 16.97 29.49 

DFcon Equal variances 

assumed 

12.55 0.00 9.96 109.00 0.00 8.41 0.84 6.74 10.09 

Equal variances not 

assumed 

  9.38 72.33 0.00 8.41 0.90 6.63 10.20 

PFecc Equal variances 

assumed 

6.45 0.01 5.57 99.00 0.00 34.59 6.21 22.26 46.92 

Equal variances not 

assumed 

  5.44 81.35 0.00 34.59 6.36 21.94 47.24 

DFecc Equal variances 

assumed 

10.71 0.00 10.86 109.00 0.00 17.41 1.60 14.23 20.58 

Equal variances not 

assumed 

  10.33 77.40 0.00 17.41 1.69 14.05 20.76 
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 Levene's Test for Equality of 
Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower upper 

Invcon Equal variances 

assumed 

0.04 0.84 4.98 109.00 0.00 5.74 1.15 3.46 8.03 

Equal variances not 

assumed 

  4.96 101.52 0.00 5.74 1.16 3.44 8.04 

Evecon Equal variances 

assumed 

0.04 0.84 5.98 109.00 0.00 5.72 0.96 3.83 7.62 

Equal variances not 

assumed 

  5.92 98.57 0.00 5.72 0.97 3.80 7.64 

Invecc Equal variances 

assumed 

2.87 0.09 5.20 109.00 0.00 8.11 1.56 5.01 11.20 

Equal variances not 

assumed 

  5.09 93.84 0.00 8.11 1.59 4.95 11.27 

Eveecc Equal variances 

assumed 

0.56 0.46 2.22 108.00 0.03 5.48 2.47 0.58 10.37 

Equal variances not 

assumed 

  2.29 107.50 0.02 5.48 2.40 0.73 10.22 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric; df = degrees of freedom 
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Appendix 12  

The results of a Pearsons correlation test to determine a possible relationship between age and 

AMS.  

 

 PFcon DFcon PFecc DFecc Invcon Evecon Invecc Eveecc 

 Pearson 

Correlation 

-0.10 -0.06 0.05 0.06 -0.08 -0.17 0.02 -0.02 

Sig. (2-

tailed) 

0.32 0.56 0.64 0.53 0.41 0.08 0.88 0.88 

N 110 111 101 111 111 111 111 110 
Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = 
eccentric 
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Appendix 13 

A graph comparing the number of each gender per age group 
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Appendix 14 

The results of a Pearsons correlation test to determine the relationship between mass and AMS.  

 

 PFcon DFcon PFecc DFecc Invcon Evecon Invecc Eveecc 

Pearson 

Correlation 

0.46 0.67 0.36 0.69 0.38 0.32 0.38 0.23 

Sig. (2-tailed) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

N 110 111 101 111 111 111 111 110 
Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = 
eccentric 
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Appendix 15 

An independent samples t-test comparing mass between genders 

 Levene's Test for Equality of 
Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower Upper 

Equal variances 

assumed 
3.73 0.06 -5.99 109.0 0.00 -16.30 2.72 -21.69 -10.91 

Equal variances not 

assumed 
    -5.82 89.31 0.00 -16.30 2.80 -21.86 -10.74 
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Appendix 16 

An independent samples t-test comparing AMS between genders in a 60-79.9kg body mass group.  

 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% CI of the 
Difference 

Lower Upper 

PFcon Equal variances 

assumed 

0.47 0.50 -5.56 56.00 0.00 -20.52 3.69 -27.91 -13.13 

Equal variances 

not assumed 

    -5.41 44.45 0.00 -20.52 3.79 -28.16 -12.87 

DFcon Equal variances 

assumed 

0.38 0.54 -5.52 56.00 0.00 -5.16 0.94 -7.04 -3.29 

Equal variances 

not assumed 

    -5.52 49.55 0.00 -5.16 0.94 -7.04 -3.28 

PFecc Equal variances 

assumed 

7.35 0.01 -3.56 52.00 0.00 -32.03 9.01 -50.11 -13.95 

Equal variances 

not assumed 

    -3.28 32.62 0.00 -32.03 9.76 -51.90 -12.16 

DFecc Equal variances 

assumed 

4.35 0.04 -5.79 56.00 0.00 -10.29 1.78 -13.85 -6.73 

Equal variances 

not assumed 

    -5.44 38.11 0.00 -10.29 1.89 -14.12 -6.46 
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 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower Upper 

Invcon Equal variances 

assumed 

1.19 0.28 -2.61 56.00 0.01 -4.38 1.68 -7.75 -1.02 

Equal variances 

not assumed 

    -2.72 55.05 0.01 -4.38 1.61 -7.62 -1.15 

Evecon Equal variances 

assumed 

0.07 0.80 -5.48 56.00 0.00 -5.41 0.99 -7.39 -3.43 

Equal variances 

not assumed 

    -5.55 52.01 0.00 -5.41 0.97 -7.37 -3.46 

Invecc Equal variances 

assumed 

1.87 0.18 -2.39 56.00 0.02 -5.32 2.23 -9.79 -0.85 

Equal variances 

not assumed 

    -2.32 44.70 0.03 -5.32 2.29 -9.94 -0.71 

Eveecc Equal variances 

assumed 

0.13 0.72 -0.22 55.00 0.83 -0.70 3.16 -7.04 5.64 

Equal variances 

not assumed 

    -0.24 54.32 0.81 -0.70 2.96 -6.64 5.23 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric 
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Appendix 17 

An independent samples t-test comparing AMS between genders in a 80-99.9kg body mass group.  

 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% CI of the 
Difference 

Lower Upper 

PFcon Equal variances 

assumed 

0.00 0.99 -1.84 21.00 0.08 -18.31 9.95 -39.01 2.38 

Equal variances 

not assumed 

    -2.01 10.51 0.07 -18.31 9.10 -38.45 1.82 

DFcon Equal variances 

assumed 

3.31 0.08 -4.56 22.00 0.00 -8.45 1.85 -12.29 -4.60 

Equal variances 

not assumed 

    -6.10 21.60 0.00 -8.45 1.39 -11.32 -5.57 

PFecc Equal variances 

assumed 

0.26 0.62 -1.03 20.00 0.32 -19.28 18.73 -58.36 19.79 

Equal variances 

not assumed 

    -1.14 7.77 0.29 -19.28 16.88 -58.42 19.85 

DFecc Equal variances 

assumed 

0.67 0.42 -4.44 22.00 0.00 -16.66 3.75 -24.43 -8.88 

Equal variances 

not assumed 

    -3.81 8.49 0.01 -16.66 4.38 -26.65 -6.66 
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 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower Upper 

Invcon Equal variances 

assumed 

0.02 0.90 -1.43 22.00 0.17 -4.56 3.19 -11.17 2.05 

Equal variances 

not assumed 

    -1.43 11.28 0.18 -4.56 3.18 -11.55 2.42 

Evecon Equal variances 

assumed 

0.58 0.46 -1.92 22.00 0.07 -5.55 2.89 -11.53 0.44 

Equal variances 

not assumed 

    -2.35 18.38 0.03 -5.55 2.36 -10.49 -0.60 

Invecc Equal variances 

assumed 

0.01 0.95 -2.08 22.00 0.05 -8.04 3.87 -16.06 -0.03 

Equal variances 

not assumed 

    -2.03 10.72 0.07 -8.04 3.96 -16.78 0.69 

Eveecc Equal variances 

assumed 

0.00 0.97 -2.62 22.00 0.02 -14.08 5.38 -25.24 -2.93 

Equal variances 

not assumed 

    -2.74 12.44 0.02 -14.08 5.14 -25.23 -2.94 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric  
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Appendix 18 

A Pearsons correlation test examining the relationship between height and AMS 

 

 PFcon DFcon PFecc DFecc Invcon Evecon Invecc Eveecc 

Pearson 

Correlation 

0.55 0.67 0.48 0.71 0.31 0.32 0.35 0.25 

Sig. (2-

tailed) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

N 110 111 101 111 111 111 111 110 
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Appendix 19 

An independent samples t-test showing the relationship in height between genders 

  

 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower Upper 

Height Equal variances 

assumed 
0.47 0.50 -8.73 109.00 0.00 -10.42 1.19 -12.78 -8.05 

Equal variances 

not assumed 
    -8.76 104.61 0.00 -10.42 1.19 -12.77 -8.06 
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Appendix 20 

An independent samples t-test examining the relationship in height between genders in the 165-169.9 height group. 

 

 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower Upper 

Height Equal variances 

assumed 
0.10 0.76 -1.74 17.00 0.10 -1.32 0.76 -2.92 0.28 

Equal variances 

not assumed 
    -1.68 9.03 0.13 -1.32 0.78 -3.09 0.45 
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Appendix 21 

An independent samples t-test examining the relationship in AMS between genders in the 165-169.9 height group.  

 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% CI of the 
Difference 

Lower Upper 

PFcon Equal variances 

assumed 

1.58 0.23 -1.51 17.00 0.15 -10.55 7.01 -25.33 4.23 

Equal variances 

not assumed 

    -1.28 6.99 0.24 -10.55 8.26 -30.08 8.98 

DFcon Equal variances 

assumed 

0.00 0.96 -1.28 17.00 0.22 -2.46 1.92 -6.51 1.59 

Equal variances 

not assumed 

    -1.36 11.42 0.20 -2.46 1.81 -6.42 1.50 

PFecc Equal variances 

assumed 

4.62 0.05 -1.25 14.00 0.23 -19.33 15.45 -52.46 13.80 

Equal variances 

not assumed 

    -1.03 5.32 0.35 -19.33 18.85 -66.94 28.28 

DFecc Equal variances 

assumed 

1.13 0.30 -3.51 17.00 0.00 -10.77 3.07 -17.25 -4.29 

Equal variances 

not assumed 

    -3.01 7.12 0.02 -10.77 3.58 -19.21 -2.33 
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 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower Upper 

Invcon Equal variances 

assumed 

0.08 0.78 -1.33 17.00 0.20 -4.55 3.42 -11.77 2.67 

Equal variances 

not assumed 

    -1.30 9.25 0.23 -4.55 3.51 -12.46 3.36 

Evecon Equal variances 

assumed 

0.27 0.61 -2.84 17.00 0.01 -6.42 2.26 -11.19 -1.66 

Equal variances 

not assumed 

    -2.69 8.62 0.03 -6.42 2.39 -11.87 -0.98 

Invecc Equal variances 

assumed 

0.04 0.85 -1.18 17.00 0.25 -5.44 4.60 -15.14 4.27 

Equal variances 

not assumed 

    -1.35 13.73 0.20 -5.44 4.03 -14.09 3.22 

Eveecc Equal variances 

assumed 

0.32 0.58 -0.14 17.00 0.89 -1.22 8.82 -19.82 17.39 

Equal variances 

not assumed 

    -0.18 16.88 0.86 -1.22 6.90 -15.78 13.34 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric 
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Appendix 22 

An independent samples t-test exploring the height relationship between genders in the 170-174.9cm group. 

 

 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower Upper 

Height Equal variances 

assumed 
0.53 0.48 -1.90 21.00 0.07 -0.98 0.51 -2.05 0.09 

Equal variances 

not assumed 
    -1.88 19.53 0.08 -0.98 0.52 -2.06 0.11 
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Appendix 23 

An independent t-test exploring the AMS relationship between genders in the 170-174.9cm group.  

 

 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% CI of the 
Difference 

Lower Upper 

PFcon Equal variances 

assumed 

0.27 0.61 -3.49 21.00 0.00 -22.00 6.30 -35.11 -8.89 

Equal variances 

not assumed 

    -3.45 18.95 0.00 -22.00 6.37 -35.34 -8.66 

DFcon Equal variances 

assumed 

5.78 0.03 -4.12 21.00 0.00 -6.61 1.61 -9.95 -3.27 

Equal variances 

not assumed 

    -3.98 12.88 0.00 -6.61 1.66 -10.20 -3.02 

PFecc Equal variances 

assumed 

1.03 0.32 -1.14 19.00 0.27 -18.08 15.92 -51.39 15.23 

Equal variances 

not assumed 

    -1.12 16.89 0.28 -18.08 16.12 -52.11 15.95 

DFecc Equal variances 

assumed 

12.30 0.00 -2.74 21.00 0.01 -9.32 3.40 -16.38 -2.25 

Equal variances 

not assumed 

    -2.64 11.19 0.02 -9.32 3.54 -17.08 -1.55 
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 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower Upper 

Invcon Equal variances 

assumed 

0.37 0.55 -1.42 21.00 0.17 -3.55 2.50 -8.74 1.64 

Equal variances 

not assumed 

    -1.43 20.69 0.17 -3.55 2.47 -8.69 1.60 

Evecon Equal variances 

assumed 

0.14 0.72 -2.41 21.00 0.03 -3.04 1.26 -5.66 -0.42 

Equal variances 

not assumed 

    -2.42 20.99 0.03 -3.04 1.26 -5.65 -0.42 

Invecc Equal variances 

assumed 

4.26 0.05 -2.40 21.00 0.03 -8.90 3.72 -16.63 -1.17 

Equal variances 

not assumed 

    -2.36 17.45 0.03 -8.90 3.78 -16.86 -0.94 

Eveecc Equal variances 

assumed 

0.67 0.42 -0.84 20.00 0.41 -3.18 3.79 -11.10 4.73 

Equal variances 

not assumed 

    -0.84 18.49 0.41 -3.18 3.79 -11.14 4.77 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric 
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Appendix 24 

An independent samples t-test examining the relationship in height between genders in the 175-179.9cm height group. 

 

 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower Upper 

Height Equal variances 

assumed 
0.50 0.49 -1.62 21.00 0.12 -1.14 0.70 -2.61 0.32 

Equal variances 

not assumed 
    -1.78 10.54 0.10 -1.14 0.64 -2.56 0.28 
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Appendix 25 

An independent samples t-test examining the relationship in AMS between genders in the 175-179.9cm height group.  

 

 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% CI of the 
Difference 

Lower Upper 

PFcon Equal variances 

assumed 

0.12 0.74 -1.70 21.00 0.11 -14.96 8.82 -33.31 3.38 

Equal variances 

not assumed 

    -1.63 8.22 0.14 -14.96 9.19 -36.06 6.13 

DFcon Equal variances 

assumed 

2.00 0.17 -3.23 21.00 0.00 -7.98 2.47 -13.12 -2.84 

Equal variances 

not assumed 

    -4.42 18.28 0.00 -7.98 1.81 -11.77 -4.19 

PFecc Equal variances 

assumed 

0.07 0.79 -1.11 21.00 0.28 -18.28 16.45 -52.49 15.92 

Equal variances 

not assumed 

    -1.14 9.21 0.28 -18.28 16.06 -54.49 17.92 

DFecc Equal variances 

assumed 

1.54 0.23 -3.43 21.00 0.00 -14.65 4.27 -23.54 -5.76 

Equal variances 

not assumed 

    -4.19 13.68 0.00 -14.65 3.50 -22.17 -7.12 
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 Levene's Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

Lower Upper 

Invcon Equal variances 

assumed 

5.53 0.03 -3.06 21.00 0.01 -7.89 2.58 -13.25 -2.54 

Equal variances 

not assumed 

    -4.46 20.46 0.00 -7.89 1.77 -11.58 -4.21 

Evecon Equal variances 

assumed 

1.32 0.26 -4.21 21.00 0.00 -7.56 1.80 -11.29 -3.82 

Equal variances 

not assumed 

    -5.46 15.96 0.00 -7.56 1.39 -10.50 -4.62 

Invecc Equal variances 

assumed 

1.49 0.24 -1.42 21.00 0.17 -5.59 3.94 -13.78 2.60 

Equal variances 

not assumed 

    -1.84 15.97 0.08 -5.59 3.04 -12.03 0.85 

Eveecc Equal variances 

assumed 

3.27 0.09 -0.66 21.00 0.52 -3.14 4.76 -13.03 6.76 

Equal variances 

not assumed 

    -0.85 15.76 0.41 -3.14 3.69 -10.96 4.69 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric 
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Appendix 26 

A Pearson’s correlation test showing the relationship between shoe size and AMS 

 PFcon DFcon PFecc DFecc Invcon Evecon Invecc Eveecc 

Footsize Pearson 

Correlation 
0.60 0.66 0.50 0.71 0.38 0.43 0.41 0.23 

Sig. (2-tailed) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

N 110 111 101 111 111 111 111 110 

 
Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = concentric; ecc = eccentric 
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Appendix 27 

Scatter plots indicating the distribution of the residual variation in predictions of AMS  

 
 
After outlier removed: 
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After outliers were removed: 
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After outliers were removed: 
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After outliers were removed: 
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After further outliers were removed: 

 
After further outliers were removed: 
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Appendix 28 

Collinearity analysis results 

Movement Variable Pearson’s r value. Collinearity Statistics 

Tolerance VIF 
 Concentric PF Gender 0.58 0.58 1.71 

Height 0.57 0.58 1.71 

Concentric DF Gender 0.58 0.74 1.35 

Mass 0.46 0.75 1.34 

Age -0.12 0.99 1.01 

 Eccentric PF Gender 0.58 0.58 1.73 

Height 0.57 0.58 1.73 

 Eccentric DF Gender 0.58 0.55 1.81 

Height 0.57 0.64 1.57 

Mass 0.46 0.49 2.03 

 Concentric inv Gender 0.58 0.75 1.34 

Mass 0.46 0.75 1.34 

 Concentric eve Gender 0.58 0.99 1.01 

Age -0.12 0.99 1.01 

 Eccentric inv Gender 0.58 0.74 1.34 

Mass 0.46 0.74 1.34 

Eccentric eve Mass 0.46 1.00 1.00 

Note PF = plantar flexion; DF = dorsiflexion; inv = inversion; eve = eversion; con = 
concentric; ecc = eccentric 
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Appendix 29 

Normal P-P plots of the regression standardised residual 
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Appendix 30 

ANOVA tables describing the strength of the AMS prediction models 

 

Model Sum of Squares df Mean Square F Sig. 

 Regression 12276.35 2 6138.17 30.83 0.00b 

Residual 19113.68 96 199.10   

Total 31390.02 98       

Note a. Dependent Variable: PFcon 

b. Predictors: (Constant), Gender, Height 

 
 

Model Sum of Squares df Mean Square F Sig. 

 Regression 2322.74 3 774.25 53.94 0.00b 

Residual 1378.01 96 14.35   

Total 3700.75 99       

Note a. Dependent Variable: DFcon 

b. Predictors: (Constant), Gender, Mass, Age 

 
 

Model Sum of Squares df Mean Square F Sig. 

 Regression 31018.18 2 15509.09 16.82 0.00b 

Residual 82993.07 90 922.15   

Total 114011.25 92       

Note a. Dependent Variable: PFecc 

b. Predictors: (Constant), Height, Gender 

 
 

Model Sum of Squares df Mean Square F Sig. 

 Regression 9832.76 3 3277.59 85.13 0.00b 

Residual 3696.00 96 38.50   

Total 13528.76 99       

Note a. Dependent Variable: DFecc 

b. Predictors: (Constant), Gender, Mass, Height 
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Model Sum of Squares df Mean Square F Sig. 

 Regression 944.59 2 472.30 13.33 0.00b 

Residual 3437.60 97 35.44   

Total 4382.19 99       

Note a. Dependent Variable: Invcon 

b. Predictors: (Constant), Mass, Gender 
 
 

Model Sum of Squares df Mean Square F Sig. 

 Regression 688.04 2 344.02 20.33 0.00b 

Residual 1607.30 95 16.92   

Total 2295.35 97       

Note a. Dependent Variable: Evecon 

b. Predictors: (Constant), Gender, Age 
 
 

Model Sum of Squares df Mean Square F Sig. 

 Regression 1917.71 2 958.85 17.08 0.00b 

Residual 5389.02 96 56.14   

Total 7306.73 98       

Note a. Dependent Variable: Invecc 

b. Predictors: (Constant), Gender, Mass 
 
 

Model Sum of Squares df Mean Square F Sig. 

 Regression 1421.51 1 1421.51 18.16 0.00b 

Residual 7280.03 93 78.28   

Total 8701.54 94       

Note a. Dependent Variable: Eveecc 

b. Predictors: (Constant), Mass 
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Appendix 31 

R2 change and fit statistics for alternate prediction models and excluded variables. 

 

PFcon 

Model 

R R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 0.60 0.35 0.35 15.56 

2 0.62 0.38 0.37 15.30 

1. Predictors: (Constant), Footsize 

2. Predictors: (Constant), Footsize, Gender 

 

 

PFcon Model 
Beta 

In 
t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

Predictors in the 

Model: 

(Constant), 

Footsize 

Gender 0.28 2.10 0.04 0.21 0.35 

Height 0.23 1.56 0.12 0.16 0.30 

Weight 0.17 1.74 0.09 0.17 0.66 

Age -0.13 -1.55 0.12 -0.16 1.00 

Predictors in the 

Model: 

(Constant), 

Footsize, Gender 

Height 0.25 1.74 0.09 0.17 0.30 

Weight 0.16 1.63 0.11 0.16 0.65 

Age -0.15 -1.85 0.07 -0.19 0.99 
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Appendix 32 cont. 

R2 change and fit statistics for alternate prediction models and excluded variables. 

 

Model 

PFecc 

R R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 0.48 0.23 0.22 31.08 

2 0.52 0.27 0.26 30.39 

1. Predictors: (Constant), Height 

2. Predictors: (Constant), Height, Gender 

 

 

Model PFecc 
Beta 

In 
t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 Predictors in 

the Model: 

(Constant), 

Height 

Gender 0.27 2.29 0.03 0.23 0.57 

Weight 0.15 1.37 0.17 0.14 0.69 

Age 0.04 0.48 0.63 0.05 1.00 

Footsize 0.24 1.43 0.16 0.15 0.31 

2 Predictors in 

the Model: 

(Constant), 

Height, 

Gender 

Weight 0.10 0.91 0.37 0.10 0.66 

Age 0.02 0.17 0.87 0.02 0.98 

Footsize 
0.01 0.03 0.97 0.00 0.19 
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Appendix 32 cont. 

R2 change and fit statistics for alternate prediction models and excluded variables. 

 

Model DFcon R R Square Adjusted R Square 
Std. Error of the 

Estimate 

1 0.69 0.48 0.48 4.43 

2 0.78 0.61 0.60 3.87 

3 0.79 0.63 0.62 3.79 

1. Predictors: (Constant), Gender 

2. Predictors: (Constant), Gender, Weight 

3. Predictors: (Constant), Gender, Weight, Age 

 

 

Model DFcon 
Beta 

In 
t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 Predictors in 

the Model: 

(Constant), 

Gender 

Height 0.33 3.60 0.00 0.34 0.58 

Weight 0.41 5.62 0.00 0.50 0.75 

Age -0.14 -1.92 0.06 -0.19 0.99 

Footsize 0.25 2.09 0.04 0.21 0.35 

2 Predictors in 

the Model: 

(Constant), 

Gender, 

Weight 

Height 0.17 1.92 0.06 0.19 0.49 

Age -0.14 -2.26 0.03 -0.23 0.99 

Footsize 0.05 0.40 0.69 0.04 0.31 

3 Predictors in 

the Model: 

(Constant), 

Gender, 

Weight, Age 

Height 0.15 1.75 0.08 0.18 0.49 

Footsize 0.02 0.20 0.85 0.02 0.30 
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Appendix 32 cont. 

R2 change and fit statistics for alternate prediction models and excluded variables. 

 

 

Model 

DFecc 

R R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 0.73 0.54 0.53 7.99 

2 0.84 0.71 0.71 6.35 

3 0.85 0.73 0.72 6.20 

1. Predictors: (Constant), Gender 

2. Predictors: (Constant), Gender, Weight 

3. Predictors: (Constant), Gender, Weight, Height 

 
 

Model DFecc 
Beta 

In 
t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

Predictors in the 

Model: (Constant), 

Gender 

Height 0.36 4.38 0.00 0.41 0.58 

Weight 0.48 7.63 0.00 0.61 0.75 

Age -0.05 -0.65 0.52 -0.07 0.99 

Footsize 0.30 2.63 0.01 0.26 0.35 

Predictors in the 

Model: (Constant), 

Gender, Weight 

Height 0.18 2.37 0.02 0.24 0.49 

Age -0.05 -0.90 0.37 -0.09 0.99 

Footsize 0.06 0.56 0.58 0.06 0.31 

Predictors in the 

Model: (Constant), 

Gender, Weight, 

Height 

Age -0.04 -0.70 0.49 -0.07 0.99 

Footsize -0.16 -1.24 0.22 -0.13 0.18 
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Appendix 32 cont. 

R2 change and fit statistics for alternate prediction models and excluded variables. 

 

Model Inv 

con 

R R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 0.41 0.16 0.16 6.12 

2 0.46 0.22 0.20 5.95 

1. Predictors: (Constant), Weight 

2. Predictors: (Constant), Weight, Gender 

 

 

Model Invcon 
Beta 

In 
t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

Predictors in 

the Model: 

(Constant), 

Weight 

Gender 0.26 2.53 0.01 0.25 0.75 

Height 0.11 0.96 0.34 0.10 0.67 

Age -0.12 -1.35 0.18 -0.14 1.00 

Footsize 0.17 1.51 0.13 0.15 0.66 

Predictors in 

the Model: 

(Constant), 

Weight, Gender 

Height -0.05 -0.35 0.73 -0.04 0.49 

Age -0.14 -1.56 0.12 -0.16 0.99 

Footsize -0.07 -0.44 0.66 -0.05 0.31 
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Appendix 32 cont. 

R2 change and fit statistics for alternate prediction models and excluded variables. 

 

Model 

Invecc 

R R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 0.42 0.17 0.17 8.22 

2 0.47 0.22 0.21 8.01 

1. Predictors: (Constant), Weight 

2. Predictors: (Constant), Weight, Gender 

 

 

Model Invecc 
Beta 

In 
t Sig. 

Partial 
Correlation 

Collinearity 
Statistics 
Tolerance 

Predictors in the 

Model: (Constant), 

Weight 

Gender 0.26 2.50 0.01 0.25 0.75 

Height 0.18 1.59 0.12 0.16 0.67 

Age -0.06 -0.60 0.55 -0.06 1.00 

Footsize 0.22 1.92 0.06 0.19 0.66 

Predictors in the 

Model: (Constant), 

Weight, Gender 

Height 0.05 0.41 0.69 0.04 0.49 

Age -0.07 -0.78 0.44 -0.08 0.99 

Footsize 0.03 0.18 0.86 0.02 0.31 
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Appendix 32 cont. 

R2 change and fit statistics for alternate prediction models and excluded variables. 

 

Model 

Evecon 

R R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 0.45 0.21 0.20 5.17 

2 0.51 0.26 0.25 5.01 

1. Predictors: (Constant), Gender 

2. Predictors: (Constant), Gender, Age 

 
 

Model Evecon 
Beta 

In 
t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

Predictors in 

the Model: 

(Constant), 

Gender 

Height 0.01 0.11 0.92 0.01 0.58 

Weight 0.13 1.23 0.22 0.12 0.75 

Age -0.24 -2.71 0.01 -0.27 0.99 

Footsize 0.07 0.48 0.63 0.05 0.35 

Predictors in 

the Model: 

(Constant), 

Gender, Age 

Height -0.01 -0.11 0.91 -0.01 0.57 

Weight 0.13 1.29 0.20 0.13 0.75 

Footsize 0.04 0.26 0.80 0.03 0.35 
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Appendix 32 cont. 

R2 change and fit statistics for alternate prediction models and excluded variables. 

 

Model 

Eveecc 

R R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 0.24 0.06 0.05 12.98 

1. Predictors: (Constant), Height 

 

 
 

Model Eveecc 
Beta 

In 
t Sig. 

Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

Predictors in 

the Model: 

(Constant), 

Height 

Gender 0.03 0.22 0.82 0.02 0.57 

Weight 0.14 1.18 0.24 0.12 0.67 

Age -0.05 -0.46 0.65 -0.05 1.00 

Footsize 0.01 0.07 0.95 0.01 0.30 

 

  



309 
 

Publications from this thesis 

FISH, M., MILLIGAN, J. & KILLEY, J. 2014. Is it possible to establish reference values 

for ankle muscle isokinetic strength? A meta-analytical study. Isokinetics and 

Exercise Science, 22, 85-97. 
 

Is it possible to establish reference values for ankle muscle 

isokinetic strength? A meta-analytical study. 

Michael Fish. B.Sc M.Sc FHEA (corresponding author) 

Human and Health Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 

3DH. m.fish@hud.ac.uk. 01484 471362 

Dr James Milligan BSc MSc PhD FHEA MCSP 

Faculty of Health and Social Sciences, Leeds Metropolitan University, Calverley Street, 

Leeds, LS1 3HE 

Dr Jenny Killey BSc MA PhD FHEA 

Human and Health Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 

3DH. 

Abstract 

BACKGROUND: The importance of measuring ankle muscle strength (AMS) has been 

demonstrated in a variety of clinical areas. Much data has been accumulated using the 

Cybex Norm isokinetic dynamometer but a uniform framework does not exist.  

OBJECTIVE: To identify pertinent studies which have used the Cybex Norm to measure 

AMS in order to establish reference values.  

METHODS: A narrative review of the literature was used to identify papers that have 

used the Cybex Norm to measure isokinetic concentric and eccentric AMS. 
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RESULTS: Fifty five research papers were identified but each study used a different 

isokinetic protocol. 

CONCLUSIONS: It is not possible to produce AMS reference values due to the wide 

variation in data collection methods. This is therefore an area of research that needs 

further exploration. 

1. Introduction 

The importance of measuring muscle strength across the ankle has been demonstrated in 

a variety of research and clinical areas. These include investigations indicating 

relationships between AMS and both ankle stability (Fox et al., 2008) and with falling 

episodes and functional movement in the elderly (Dehail et al., 2007; Rubenstein & 

Josephson, 2006). Measurement of AMS has been established as a performance indicator 

and a predictor of injury in athletic populations (Tsiokanos et al., 2002; Witchalls et al., 

2011) as well as an indicator of the effectiveness of rehabilitation (Sekir et al., 2007) and 

intervention strategies (Li et al., 2009). Reference values for AMS (sometimes also 

referred to as normal or normative values) represent a normal range of strength and are 

commonly used as a frame of reference in scientific literature. Reference values have 

been produced using various isokinetic dynamometers (Danneskiold-Samsøe et al., 2009; 

Harbo et al., 2011; Lategan, 2011). Harbo et al., (2011) used the Biodex System 3 to 

produce reference values for the shoulder, elbow, wrist, hip, knee and ankle. These values 

have subsequently been used in several studies. Examples are a baseline for assessing the 

severity of muscle function impairment in chronic hemiparetic stroke patients (Severinsen 

et al., 2011) and a comparison to joint torque in patients with a reverse shoulder prosthesis 

(Alta et al., 2012). However, the reference values produced by Harbo et al., (2011) are 

only relevant to studies which have used the Biodex System 3 to measure muscle torque. 
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They cannot be applied to studies using other dynamometers such as the Cybex Norm as 

the reference values produced are largely considered machine specific (Bardis et al., 

2004; English et al., 2011).  

Isokinetic dynamometry using the Cybex Norm is a safe, reliable and popular way to 

AMS (Laughlin et al., 2009; van Cingel et al., 2009; Whimpenny, 2011). It has been used 

in a variety of studies for example as an indicator of the effectiveness of rehabilitation 

(Sekir et al., 2007) and intervention strategies (Li et al., 2009). Sekir et al (2007) used the 

Cybex Norm in an experimental test re-test design study to examine the effect of a six 

week exercise intervention programme in twenty four recreational athletes using the 

contralateral ankle as a control measure. They found that the intervention did improve 

strength but also stated that there was no significant difference in strength between injured 

and uninjured ankles in three of the four ankle strength tests performed. It could be argued 

that there was no difference in the three strength measurements as both ankles were 

weaker than average thus susceptible to ankle injury. It may be equally likely that the 

uninvolved ankle could be injured in the future, however, the availability of reference 

values could to a certain extent highlight muscle weakness and as such become a factor 

in predicting injury. In the absence of reference values for AMS using the Cybex Norm 

Li et al (2009) used a controlled test re-test experimental design for the measurement of 

AMS in forty individuals. They found a sixteen week Tai Chi intervention programme 

did not significantly improve plantar flexion or dorsiflexion strength as measured using 

the this system. Li et al (2009) observed that the participants could not effectively manage 

ankle joint movement throughout the study and suggested this was a reason for the lack 

of improvement in ankle strength. Without relevant reference values it is not clear if the 

participants had an ankle strength deficiency to start with leading to this inability to 

manage the movement. 
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However, in spite of the relatively large number of studies making use of the Cybex Norm 

for assessing AMS, a brief review of the literature has revealed that no such reference 

values existed. Thus an in depth narrative review was necessary to determine this more 

definitely.  

2. Method 

2.1 Eligibility criteria 

The objective of the narrative review was to identify those studies which have measured 

AMS in terms of peak torque (PT) using the Cybex Norm. Paper inclusion criteria 

consisted of a defined dynamometer (Cybex Norm) for the assessment of strength using 

concentric or eccentric active isokinetic plantar flexion, dorsiflexion, inversion or 

eversion. The search was not restricted to one experimental type as the outcome measures 

listed above could come from multiple experimental designs. 

2.2 Scope of the search 

In order to access the maximum number of papers six electronic databases were searched 

and three academic search engines used. Four of these six databases could be searched 

through the National Library for Health website (NICE, 2011) thus allowing the 

automatic elimination of duplicate results from these databases. These were MEDLINE, 

EMBASE (Excerpta Medical Database), CINAHL (Cumulative Index of National Allied 

Health Literature) and AMED (Allied and Complimentary Medicine). The span of the 

search was January 1995 (when the Cybex Norm Isokinetic Dynamometer was first 

introduced) to March 2013. The remaining two of the six databases, namely the Science 

Direct database (ScienceDirect, 2011) and Pubmed (PubMed, 2011) were searched 

outside of the National Library for Health website. Three academic search engines were 

also used; Summon (Summon, 2011), a search engine used in some higher education 

institutions which provides access to scholarly material; The Web of Science 
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(WebofScience, 2011) and Google Scholar. Manual removal of duplicate results was 

necessary from these five resources. 

2.3 Search Terms 

To identify studies likely to meet the eligibility criteria the terms ‘Cybex’, ‘norm’, 

‘isokinetic’ and ‘ankle’ were used to search the databases and in the search engines. There 

are a number of different isokinetic dynamometers such as Kin-Com, Biodex and Lido so 

the term ‘Cybex’ was used to limit the search to the relevant machine. There is a large 

amount of physiological testing equipment under the Cybex brand and a number of older 

versions of the isokinetic dynamometer (CSMi, 2005c). To isolate the specific piece of 

equipment the term ‘norm’ was also used. The National Library for Health website 

(NICE, 2011) and Google Scholar allows quotation marks to enable searching for exact 

phrases. “Cybex Norm” was used to determine only papers which contain this phrase. As 

well, to discount unrelated research concerning the shoulder, elbow, wrist, hip and knee 

as well as isometric and isotonic tests the Boolean phrase AND was used to include the 

search terms ‘ankle’ and ‘isokinetic’.  

3. Analysis 

Figure 1 shows the number of papers identified at each stage of the search process. The 

initial search produced 613 papers which matched the search terms. The title and abstract 

of each of these papers was analysed and if eligibility could not be determined the whole 

paper was read. 542 papers were rejected as the eligibility criteria were not met. Any 

duplicate papers were removed which left 55 papers that met the eligibility criteria.  

Of the 55 papers found in this search there was no single paper which set out to produce 

reference values for AMS using this dynamometer. However, many of the papers have 

compared their findings to measurements derived from a control group. A control group 

may provide a basis for comparison but the collected data cannot be considered reference 
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due to low external validity resulting from the small numbers used and the specific sample 

demographics. On the other hand, however, it may be theoretically possible to combine 

the results of control groups from separate studies in a meta-analysis to produce valid 

reference values which could be used in a general clinical setting (Deeks et al., 2011), 

subject to very strict factors including gender, age, activity level and test protocol . Table 

1 lists the papers in terms of the experimental and control groups that have been used. 

Reference values for a healthy population by their definition should be produced by a 

healthy population, however, analysis of the data presented in table 1 shows two of the 

papers have not tested a healthy population or used one as a control meaning only 53 of 

the papers are potentially eligible to contribute to a meta-analysis. Additionally, it has 

been demonstrated that age and gender affect the amount of torque produced 

(Danneskiold-Samsøe et al., 2009; Harbo et al., 2011) and as such any reference value 

produced would have to be specific to age and gender. This means that the populations 

described in table 1 would have to be matched for age and gender before a meta-analysis 

can be performed. 

The graph in figure 2 shows the breakdown of populations described in table 1 in terms 

of age and gender. For reference values to have sufficient external validity a large amount 

of data should be considered. Significant numbers were only tested in the 18 – 29 years 

and 60 – 69 years age ranges and as such reference values could only potentially be 

produced for these groups. 

The papers within these age and gender specific groups were analysed and differences in 

the data collection methods were found. Examination of all 55 papers produced 7 

common methodological variables, these are: the position of the body on the Cybex 

Norm; degree of knee flexion; use of a warm up; speed of contraction and contraction 

type; the number of sets and reps used; whether the dominant or non-dominant foot was 
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used; use of verbal or visual encouragement. Details of these variables are given in table 

2. If altering these variables affects the outcome measures then it is not possible to 

combine the data in a meta-analysis. The effects of altering these seven variables are 

discussed here. 

3.1 Position 

Seymour and Bacharach (1990) showed that when using a Cybex II+ to measure ankle 

plantar flexion, altering from a supine to a prone position significantly reduced the 

amount of torque produced at 0° per second and 30° per second. As they used the Cybex 

II+ and not the Cybex Norm it is difficult to draw an exact comparison. However due to 

the lack of empirical evidence using the latter, it is necessary to infer the effect of an 

alteration in body position from a closely related protocol.  

3.2 The degree of knee flexion. 

Extension of the knee stretches the plantar flexors thus reducing range of movement as 

the dorsiflexion displacement angle is reduced (Souza et al., 2009). Plantar flexion PT 

occurs at near full dorsiflexion (Billot et al., 2011) so fully extending the knee may 

prevent development of PT during a concentric contraction. However, during an eccentric 

contraction the increased tension in the plantar flexors as a result of extending the knee 

produces higher PT compared to a flexed knee (Wakahara et al., 2009). As such angle of 

knee extension should be considered when producing a reference value.  

3.3 Warm up. 

One or combinations of three types of warm up were used in the papers described in table 

2; these were cardiovascular, stretching and familiarisation. The rationale for a 

cardiovascular warm up is exercise would increase the muscle temperature and so 

improve the neuromuscular function (McArdle et al., 2007). However, in an experiment 

to determine the effect of warming up and stretching on Achilles tendon reflex activity 
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Rosenbaum and Hennig (1995) demonstrated that a 10 minute warm up on a treadmill 

did not affect torque production of the plantar flexors in fifty healthy males. A review on 

stretching and its effect on performance by McHugh and Cosgrave (2010) stated there is 

an acute loss of strength after relaxed muscle has been stretched. This conclusion supports 

the ankle specific research by Rosenbaum and Hennig (1995) and Fowles and Sale (1997) 

both of whom demonstrated that static stretching prior to testing significantly reduced 

plantar flexion PT production. From this it can be concluded that any papers to be 

included in a meta-analysis should have a standardised warm-up and familiarisation 

procedure. 

3.4 The speed and type of contraction. 

Decreases in PT associated with increased angular velocity are well established (2002). 

Equally, an eccentric contraction produces greater torque than a concentric contraction 

(2007; Sekir et al., 2008). Hence, if results are to be combined in a meta-analysis, both 

the speed any type of contraction should be constant. 

3.5 The number of sets and repetitions used. 

If participants were given just one attempt at achieving PT it is unlikely the results would 

be reliable as without practice the movement can be unfamiliar. Equally fatigue has been 

shown to alter muscle strength (Forestier et al., 2002) so multiple attempts at achieving 

PT at one speed or movement type could reduce the accuracy of subsequent tests. van 

Cingel et al. (2009) compared reproducibility of inversion eversion strength between one 

set of three reps and three sets of three reps and found that the standard error of 

measurement and intraclass correlation coefficient between the two was noticeably 

different. As such, papers included in a meta-analysis should use the same number of sets 

and reps, and that protocol should be reproducible.  

3.6 Effect of foot dominance. 
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There is conflicting evidence regarding the effect of limb dominance on the level of 

plantar-dorsiflexion PT produced at the ankle. Some evidence suggests that there is no 

difference due to dominance in terms of the above (Ersoz et al., 2009; Konradsen et al., 

1998; Leslie et al., 1990 ; So et al., 1994). Özçaldiran and Durmaz (2008) did show a 

significant difference between left and right dorsiflexion at 30°/s in runners. However, no 

such difference was found in plantar flexion at 30°/s or in plantar flexion or dorsiflexion 

at 120°/s in runners, or in any ankle movement or speed in swimmers. Theoharopoulos 

and Tsitskaris (2000) found a significant difference between dominant and non-dominant 

plantar flexion PT at 60°/s in basketball players. Both Özçaldiran and Durmaz (2008) and 

Theoharopoulos and Tsitskaris (2000) found, in instances where there was significant 

difference between left and right, that the non-dominant side was significantly stronger. 

Lin et al (2009) concluded there were no differences in inversion / eversion PT between 

dominant and non-dominant ankles when testing concentric strength at 30° and 120°/s 

using a Biodex 3 dynamometer. Konradsen et al. (1998) demonstrated no difference in 

isometric eversion strength between left and right ankles six weeks post unilateral ankle 

injury. They assumed that the PT in the contralateral ankle was the same as the involved 

ankle pre injury based on unpublished data cited in the paper.  

3.7 Encouragement or feedback  

Campenella, Mattacola, and Kimura (2000) showed that visual feedback or a combination 

of visual and verbal feedback increased the amount of PT produced in the hamstrings, 

however verbal feedback alone did not. Jung and Hallbeck (2004) found similar results 

in terms of visual feedback when investigating handgrip strength but found that verbal 

encouragement did increase torque production. Although the specific relationship 

between encouragement and AMS has not been studied, these conclusions suggest that 



318 
 

standardising verbal feedback could be problematic as participants may respond 

differently verbal encouragement. 

Thus alteration of any of the variables describes above would alter the PT produced. As 

such the lack of standardisation in the papers which have used the Cybex Norm to 

measure ankle muscle strength means it is not possible to combine the results and produce 

reference values by meta-analysis. 

4. Conclusion 

To date no paper has published reference values for AMS using the Cybex Norm. The 

differences in the variables presented in the references rendered a unified picture not 

possible. As such reference values for AMS using this dynamometer cannot be 

determined from the current literature. The apparent non-standardisation of data 

collection methods for AMS seen across these papers suggests the need for a consensus 

method. Once a consensus method is produced reference values can be determined for 

future use both in clinical rehabilitation and research.  
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Reference Experimental 

population 

Control Population 

Buckley et al. (2013) 10 males 5 females aged 

75±3 years 

10 males 7 females aged 

25±4years 

N/A – older vs younger 

population 

Alfieri et al. (2012) 1 male, 22 females aged 

70.18±4.8 years 

N/A – strength training vs 

multisensory training 

experiment. 

(S. S. M. Fong & Tsang, 

2012) 

13 males, 7 females aged 

15±1.2 years 

N/A – correlation study 

between hours of 

taekwondo training and 

muscle strength 

Noguchi et al. (2012) 10 males football players 

aged 20±0.8 years 

10 males athletes aged 

21.1±0.57 years 

Strejcová et al. (2012) 8 males 1 female aged 

25.0±0.9 years (slackline 

walkers) 

8 males 1 female aged 

22.9±0.8 years (non-

slackline walkers) 

(Tan et al., 2012)  13 male and 12 female 

Diabetes patients aged 

65.9±4.2 years 

No healthy control 

X. Wang (2012) “elite skaters” no other 

detail given 

 

Zhang and Xia (2012) 6 males aged 25.8±3.87 

years 

12 males aged 22.3±2.56 

years 

N/A – comparison of 

national and international 

skaters 

Patterson & Ferguson  (2010) 8 females aged 23±3 years 

8 females aged 22±3 years 

N/A – training method 

comparison between blood 

restriction and no restriction 

and 25%1RM and 

50%1RM reps 
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Gopalakrishnan et al (2010) 4 males aged 49.5±4.7 

years 

N/A – strength measured 

pre and post space flight 

Reeves, et al (2009) 5 males 10 females aged 

74.8±2.8 years 

10 males 7 females aged 

24.6±4.1 years 

Li, Xu, & Hong (2009) 13 males 12 females 

64.9±3.2 years (healthy 

performed Tai Chi) 

12 males 13 females 

65.6±3.5 years (healthy did 

not perform Tai Chi) 

Koutsioras et al (2009) 7 males aged 16.3±1.2 

years 7 females aged 

16.1±1.2  

N/A – examination of 

muscle strength and long 

jump performance 

Eyigor et al. (2008) 8 males 25 females aged 

55.79±12.4 years with 

Rheumatoid arthritis 

7 males 26 females aged 

60.27±10.7  

Reeves et al (2008) 15 “older adults” aged 

74±2.8 years 

17 “young adults” aged 

24.6±4.1 years gender not 

stated 

N/A – comparison of older 

and younger biomechanics 

of stair descent 

Özçaldiran & Durmaz (2008) 14 males median age 

18(6) (elite swimmers) 

8 males median age 20(5) 

(elite runners) 

N/A comparison between 

swimmers and runners. 

Thom et al (2007) 9 males aged 74.7±4.0 

years 

15 males aged 25.3±4.5 

years 

N/A – comparison between 

older and younger males 

 

Muller et al (2007) 

 

10 males, 33 females aged 

86.0±5 years. 

Hospitalised patients 

 

6 males, 22 females aged 

75.4±6.2 years 

Eyigor et al. (2007) 20 participants aged 

70.3±6.5 years gender not 

stated 

N/A - test retest design 
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Dehail et al. (2007) 6 males aged 75.6±5.4 

years, 18 females aged 

73.2±6.7 years  

N/A analysis of strength and 

sit to walk movement 

Xu et al (2006) 13 males, 8 females aged 

66.2±5.1 years (Tai Chi 

practitioners) 11 males, 7 

females aged 65.2±3.0 

years (joggers) 

12 males, 10 females aged 

64.9±3.2 years 

Neto et al (2006) 8 males between 20 and 

23 years 

N/A – test retest design 

Mahieu et al (2006) 69 males aged 18.41±1.29 

years 

N/A – cohort study 

examining risk factors for 

Achilles over use injury 

Greene et al (2006) 20 females aged 15.9±1.6 

years (middle distance 

runners) 20 males aged 

16.8±00.6 years (middle 

distance runners 

20 females aged 16±1.8 

years, 20 males aged 

16.4±0.7 years 

Gerodimos et al (2006) 30 males in each group: 

aged 12.3±0.1 years 

Aged 13.4±0.2 years 

Aged 14.5±0.3 years 

Aged 15.2±0.1 years 

Aged 16.5±0.3 years 

Aged 17.4±0.2 years 

N/A – analysis of strength 

in basketball players 

Ferri, et al (2006) 9 males aged 71.8±4.3 

years 

N/A – test retest design  

Greene et al.(2005) 20 females aged 16±1.7 

years (middle distance 

runners) 

20 females aged 16±1.8 

years 

McCarthy, et al (2004) 47 females  aged 

64.51±3.08 years 

N/A – comparison of sit to 

stand movement and hip, 

knee and ankle strength 
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Demonty et al (2004) 10 males mean age 52.8 

with occlusive arterial 

disease 

10 males mean age 53.9 

years 

Reeves and Narici (2003) 4 males, 4 females aged 

25.1±2.6 years 

N/A – examination of 

muscle fascicles during 

dynamic movement 

Ferri et al (2003) 16 males aged 67.9±0.9 

years 

N/A – test retest protocol 

Tsiokanos, et al (2002) 29 males aged 22.1±2.2 

years 

N/A – comparison of leg 

strength and jumping 

performance 

Schulze et al (2002) 8 males 27.1±3.0, 8 males 

29.5±2.9 years 

(underwent unilateral 

lower limb suspension for 

21 days) 

8 males 31.4±2.9 years, 8 

males 32.5±3.9 years 

Bourdel-Marchasson et al 

(2001) 

4 males, 7 females aged 

87.1±5.7 years 

(malnourished) 

4 males, 9 females aged 

83.4±6.1 years 

Ademoglu et al. (2001) 3 males, 1 female between 

24 and 47 years (average 

35) (wound complications 

after Achilles tendon 

rupture) 

Contralateral ankle 

Mouraux et al (2000) 4 males, 6 females aged 

24.7±3.2 years 

N/A – test retest design 

Guo and Song (Guo & Song, 

2009) 

10 males aged 22.4±2.6 

years (elite speed skaters) 

14 males aged 19.4±0.8 

years 

Behrens et al (2010) 7 short track speed skaters 

aged 17.1±1.3 years 

(gender not stated) 

N/A – test retest design 

Collado et al (2010) 6 males, 3 females aged 

25.1±2.57 (eccentric 

2 males, 8 females aged 

24.4±3.06 
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training); 4 males, 5 

females aged 23.3±2.8 

(concentric training)  

Latour et al (2010) 10 males, age not stated 

(training on sand) 

10 males, aged not stated 

Urguden et al (2010) 15 males, 5 females aged 

20.6 years (range 16 – 32 

years) with chronic ankle 

instability 

‘20 patients with same 

demographic 

characteristics’ 

van Cingel et al (2009) 15 males aged 34.2±9.32 

years; 15 females aged 

28.6±8.64 years 

N/A – reproducibility study 

Sekir et al. (2008) 24 males aged 21.1±1.8 

with functional ankle 

instability 

N/A – reliability study 

Sekir et al. (2007) 24 males aged 21±2 years 

with unilateral functional 

ankle instability 

Contralateral ankle 

Høiness et al (2003) 9 males aged 26.2±4.4 

years (using normal bike 

pedal); 10 males aged 

24.5±3.9 years (using bi-

directional bike pedal) 

Contralateral ankle 

Yildiz et al (2003) 8 males aged 26.2±2 years 

with chronic ankle 

instability 

9 males aged 25±2 years 

Sanioglu et al. (2009) 9 males, 7 females aged 

24.3 ±4.12 years 

Strength with ankle taped vs 

not taped 

Vismara et al. (2010) 11 adults aged 33±4.3 

years with Prader-Willi 

Syndrome 

20 healthy adults aged 

28±7.8 years 

Giagazoglou et al. (2009) 10 blind females aged 

33.5±7.9 years 

10 healthy females aged 

33.5±8.3 years 
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Taskiran et al. (2013) 2 males, 11 females aged 

34.3±9.2 years 

N/A test – retest reliability 

study 

Geremia et al. (2007) 5 individuals (no 

population data given) 

Contralateral ankle 

Tallent et al. (2013) 10 resistance trained 

males aged 22±2 years 

9 untrained males aged 

26±3 years 

Frasson et al. (2007) 36 females, age not stated Ballet dancers versus 

volleyball players 

Wilcox et al. (2000) 8 males, 12 females mean 

age 61 range 28 - 80 

Contralateral ankle control 

Sammarco et al. (2006) 16 males mean age 53.4 

range 18-74 and 24 

female mean age 55 range 

15-74 

Contralateral ankle control 

Table 1. Papers which used the Cybex Norm to measure isokinetic AMS displayed 

in terms of age and gender of participants
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Reference Prone/Supine/ 

weight bearing  

Degree of 

Knee Flexion 

Warm up  Speed / 

contraction 

type, in °/s 

Sets and 

Repetitions 

Dominant or 

non-dominant 

foot 

Encourageme

nt given 

Buckley et al. 

(2013) 

Not stated Not stated Not stated 60, 120, 180, 

240 eccentric 

PF 

3reps at each 

speed 

Not stated Not stated 

Alfieri et al. 

(2012) 

Supine 80° 3 reps at free 

angular speed 

30 PF DF INV 

EVE 

5 reps Not stated Verbal 

encouragement 

given 

S. S. M. Fong 

and Tsang 

(2012) 

Prone 0° 3 trials 60, 240 

PF DF 

concentric 

3 trials, 10 

seconds 

between trials 

(reps per trial 

not stated) 

Dominant (self 

reported) 

Not stated 

Noguchi et al. 

(2012) 

Not stated Not stated 1 ‘practice run’ 30 ‘2 tests in 

between I 

minute 

intervals’ 

Not stated Not stated 
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Strejcová et al. 

(2012) 

Supine 90° Not stated 30, 120 PF DF 5 reps 30°,15 

reps 120° 

dominant Not stated 

Tan et al. 

(2012) 

Supine Not stated ‘familiarisation 

and a warm up’ 

no detail given 

30,  60 PF DF 2sets of 3 reps 1 

minute rest 

between 

dominant Not stated 

X. Wang 

(2012) 

Not stated Not stated Not stated 60, 120, 180, 

240, 300, 360, 

420, 480 

concentric; 60, 

120, 180, 240, 

300 eccentric 

8 reps at each 

concentric 

speed and 5 

reps at each 

eccentric speed 

both Not stated 

Janssen et al. 

(2000) 

Not stated Not stated 10 mins ‘warm 

up’ and 3 reps 

at 60° per sec 

60, 120, 180, 

240, 300, 360, 

420, 480 

concentric 

3 reps at each 

speed, 20secs 

between reps 

both Not stated 

Patterson & 

Ferguson  

(2010) 

Prone 0° 5 contractions 

at each speed 

30, 60, 120 PF 

concentric 

3 reps at each 

speed. 1 minute 

between reps 

both Verbal 

encouragement 

given 
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Gopalakrishnan 

et al (2010) 

Prone 0° 5mins bike 25-

50W 60-80rpm. 

5 sub max reps, 

2-3 max reps 

2mins rest 

30 PF DF 

concentric  

eccentric 

5 reps ecc 

5 reps con 

right Not stated 

Reeves, et al 

(2009) 

Prone 0° Not stated 60, 120, 180, 

240 concentric 

PF 

Not stated left Not stated 

Li, Xu, & Hong 

(2009) 

Not stated Not stated Not stated 30 PF DF 

concentric. 

 

3 reps no info 

on rest 

dominant Not stated 

Koutsioras et al 

(2009) 

Prone 0° 3 sub max reps 60, 120 

concentric and 

eccentric PF 

3 max reps at 

each speed for 

each movement 

right Not stated 

Eyigor et al. 

(2008) 

Supine 90° 10 min walk 2 

sub max reps 

180° per sec 

60, 120, 180 PF  

DF 

6 reps at each 

speed 20s 

between speeds 

Not stated Verbal 

encouragement 

given 

Reeves et al 

(2008) 

Prone 0° Not stated 60, 120, 180, 

240 eccentric 

PF 

3 reps at each 

speed 2-3 

left Not stated 
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minute rest 

between 

Özçaldiran & 

Durmaz (2008) 

Supine 0° 5 min warm up 

plus 4 sub max 

reps 

30, 120 PF DF  5 reps at 30° per 

sec 15 reps at 

120° per sec 

with 30 sec rest 

between sets 

Both Verbal 

encouragement 

given 

Thom et al 

(2007) 

Prone 0° Familiarisation 

session and 5 

isometric 

MVCs 

50, 100, 150, 

200, 250 

Concentric PF 

4 reps at each 

speed, 1 min 

between reps, 

5mins between 

speeds. 

left Verbal 

encouragement 

given 

Muller et al 

(2007) 

Supine 30° 5 sub max reps 30, 60 PF 

concentric 

2 sets 5 reps 

30°sec 

1 set 5 reps 60° 

per sec 

right Not stated 

Eyigor et al. 

(2007) 

Supine 90° 10 min walk 

then 2 sub max 

PF/DF reps at 

180° per sec 

60, 120, 180 PF 

DF 

 

6 reps at each 

speed. 20s 

between reps 

both Verbal 

encouragement 

given 
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Dehail et al. 

(2007) 

Supine 0° 3 training reps 

before each set 

30, 60 

Concentric PF 

2 x 5 reps at 

30°per sec 

1 x 5reps at 

60°per sec 

2mins between 

sets 

dominant Verbal 

encouragement 

given 

Xu et al (2006) Supine Not stated 5mins bike 50-

60w 3 submax 

reps 

30 concentric 

PF DF 

3 reps dominant Not stated 

Neto et al 

(2006) 

Not stated Not stated Not stated 30, 60, 120, 

Concentric 60, 

eccentric PF  

3 reps of each 

apart from 5 

reps of 120° 

All subjects 

were right leg 

dominant, not 

clear which leg 

was tested. 

Not stated 

 

Mahieu et al 

(2006) 

Supine 0° 10 sub-max 

reps at 90° per 

sec 

30, 120 

Concentric PF 

DF 

3 reps at 30° per 

sec and 5 reps at 

120° per sec. 1 

minute rest 

between tests 

both Verbal 

encouragement 

given 
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Greene et al 

(2006) 

‘Standard 

positioning 

used’ 

Not stated Not stated 60 PF DF 5 reps dominant Not stated 

Gerodimos et al 

(2006) 

Supine  0° 15 minutes 

cycling and 

stretching 3 

submax reps 

and 1 max rep 

at 30° and 90° 

per sec 

30, 90 

Concentric 

eccentric PF 

DF  

5 reps of each 

movement at 

each speed. 5 

min rest 

between speed 

1 randomly 

determined leg 

Visual 

feedback, no 

verbal feedback 

Ferri, et al 

(2006) 

Prone 0° ‘several’ warm 

up contractions 

60, 120 

concentric 60 

eccentric PF 

DF 

3 reps at each 

speed, 1 min 

between reps 

Left (non 

dominant in all 

subjects) 

Verbal 

encouragement 

given 

Greene et al 

(2005) 

‘Standard 

positioning 

used’ 

 Not stated 60 PF DF 5 reps dominant Not stated 

McCarthy et al 

(2004) 

Not stated Not stated 3 submax reps 

at 60° per sec 

60 PF DF  5 reps right PF 

DF, 5mins rest, 

both Not stated 
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5 reps left PF 

DF 

Demonty et al 

(2004) 

Supine ‘straight’ 10 mins bike 

40w 60rpm 3 

submax reps 

120, 30 

concentric PF 

DF 

5 reps 120° 3 

reps 30° 30s 

rest between 

sets 

both Not stated 

Reeves and 

Narici (2003) 

Supine 90° Warm up not 

stated 

50, 100, 150, 

200, 250, 

concentric 

eccentric DF  

5 reps each 

movement each 

speed 180s rest 

between 

contraction sets 

right Not stated 

Ferri et al 

(2003) 

Prone 180° Several sub 

max reps 

30, 60, 90, 120,  

PF  

3 reps at each 

speed 

dominant Verbal 

encouragement 

given 

Tsiokanos, et al 

(2002) 

 

Prone 0° 3 submax reps 

at each speed 

60, 120, 180 

Concentric PF  

3 reps at each 

speed, 30s 

between reps, 5 

mins between 

speeds 

Not stated Not stated 



332 
 

Schulze et al 

(2002) 

Supine 160° 4 sub max 

contractions at 

50% peak 

torque at each 

speed 

30, 60, 120, 

180, 240, 300 

concentric 

eccentric  PF 

4 maximal 

contractions at 

each speed 90s 

rest between 

speeds. 

left Not stated 

Bourdel-

Marchasson et 

al (2001) 

Supine 0°  3 training 

exercises (reps) 

for each set 

30,  60 PF  2 sets 5 reps at 

30° per sec, 1 

set of 5 reps at 

60° per sec 

Right (or the 

healthy side) 

Not stated 

Ademoglu et al. 

(2001) 

Supine 10°  2 submax and 1 

max rep 

30, 120 PF DF 3 reps, 30 

seconds 

between speeds 

Both Not stated 

Mouraux et al 

(2000) 

Supine 90° 10 minutes bike 

and 

familiarisation 

with the 

equipment 

30, 60, 90  PF 

Concentric 

eccentric  

3 max reps at 

each speed. 90 

seconds 

between 

speeds. 

Both pre and 

post training 

Not stated 

Guo and Song 

(2009) 

Not stated Not stated 10 mins 

preparatory 

activities and 2 

60, 120, 180, 

240, 300  PF 

concentric  

3 reps at each 

speed 20 

seconds 

right Not stated 
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sets 3 reps at 

60° per sec 

between each 

rep 

Behrens et al 

(2010) 

 

Supine Between 100° - 

110° 

10 mins bike at 

100W 5 

submax 

concentric reps 

at 240° per sec 

240  inv eve 

Concentric  

3 max reps right No visual 

feedback, 

verbal 

encouragement 

was given 

Collado et al 

(2010) 

Supine 90° 3 practice trials 30 concentric 

eccentric 

3 reps Both (one had 

suffered lateral 

ankle sprain) 

Not stated 

Latour et al 

(2010) 

Supine (based 

on photo, not 

stated in text) 

Bent (based on 

photo, not 

stated in text) 

Not stated 30, 120, inv eve 

concentric 

eccentric 

Not stated Not stated Not stated 

Urguden et al 

(2010) 

Supine 80 – 110° Not stated 

although 

proprioception 

test performed 

on the Cybex 

prior to 

isokinetic tests 

60, 150 inv eve 5 reps 60° sec. 

10 reps 150° 

sec 

Both (1 injured 

1 uninjured) 

Not stated 
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van Cingel et al 

(2009) 

Supine 10° 5min bike 75w 

70 – 80rpm, 3 

submax inv eve 

2 max inv eve 

30, 120 inv eve 

 

3 sets of 3 reps 

at each speed 

both No visual 

feedback or 

verbal 

encouragement 

given 

Sekir et al. 

(2008) 

Supine 80° - 110° 10minute 

‘general ROM 

and stretching’ 

3 submax 

contractions 

120  inv eve 

concentric 

eccentric  

5 maximal 

contractions 

2mins between 

inv and eve 

tests 

14 dominant 10 

non dominant 

(only injured 

ankle tested) 

Verbal 

encouragement 

given 

Sekir et al. 

(2007) 

Supine 80° - 110° 10minute 

‘general ROM 

and stretching’ 

3 submax 

contractions 

120  inv eve 

Concentric 

eccentric  

5 maximal 

contractions 

2mins between 

inv and eve 

tests 

14 dominant 10 

non dominant 

injured both 

tested 

Verbal 

encouragement 

given 

Høiness et al 

(2003) 

Supine 80° - 110° No warm up  60, 180 eve 5 reps 15min 

rest 5 reps (to 

ensure 

reliability) 

Both (1 injured 

1 uninjured) 

Verbal 

encouragement 

given 
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Sanioglu et al. 

(2009) 

Supine Not stated 5mins cycling, 

6-10 submax 

PF DF 

contractions, 2-

3 max PF DF 

contractions 

then 2mins rest 

60, 180  PF DF 

Concentric  

5reps at 60° per 

sec 15 reps at 

180° per sec 

both Not stated 

Vismara et al. 

(2010) 

Prone 180° Not stated 60, 120 PF DF  5 reps at each 

speed, 1min 

rest between 

reps 

both Not stated 

Giagazoglou et 

al. (2009) 

Supine ‘fully extended’ 3 submax 

contractions 

30, 60, 120  PF 

DF concentric 

eccentric  

3 reps of each 

movement at 

each speed with 

2mins between 

each rep 

Dominant Consistent, 

identical verbal 

encouragement 

provided, no 

visual feedback 

given 

Taskiran et al. 

(2013) 

Prone ‘full extension’ 4 submax reps 30, 120  PF DF 

concentric  

5 reps at 30° per 

sec 10mins rest 

dominant Not stated 
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20 reps at 

120°per sec 

Geremia et al. 

(2007) 

Not stated Not stated Not stated 60, 120, 180, 

240, 300  PF 

DF concentric  

3 reps per 

speed, 90sec 

rest between 

speeds 

Both (non-

dominant was 

sprained) 

Not stated 

Tallent et al. 

(2013) 

Supine 120° Not stated 15  DF 

concentric and 

eccentric  

3 reps dominant Not stated 

Frasson et al. 

(2007) 

prone 180° A ‘series’ of 

submax 

contractions at 

different speeds 

60, 120, 180, 

240, 300, 360, 

420  PF DF 

concentric  

3 reps at each 

speed, 2mins 

rest between 

reps 

right Not stated 

Wilcox et al. 

(2000) 

Prone Knee fully 

extended 

3 trial reps at 

each speed 

30, 120 PF DF 

concentric 

inferred but not 

stated 

5 reps at 30° per 

sec, 10 reps at 

120° per sec 

Both Not stated 

Sammarco et al. 

(2006) 

Supine Knee ‘flexed’ Not stated ‘standardised 

protocol’  

5 reps Both Not stated 
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Table 2 Details of the methodological variables found in papers using the Cybex Norm to measure isokinetic AMS. PF = plantar flexion; DF = 

dorsiflexion; Inv = inversion; Eve = eversion 

 

 

  

Yildiz et al 

(2003) 

Supine 80° - 110° 10 minute 

warm up – 

general rom 

and stretching. 

3 submax trials 

120 concentric 

inv, eccentric 

eve 

5 reps inv, 

2mins rest, 5 

reps eve 

Not stated Verbal 

encouragement 

given 
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Figure 1. A chart showing the results at each stage of the search process.  

Initial search of 6 databases and 3 

academic search engines: 

613 papers 

 71 papers met eligibility criteria 

542 papers rejected as they did 

not meet the eligibility criteria 

16 papers rejected as duplicates 

55 papers put forward for 

analysis 
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Figure 2. A graph showing the breakdown of the numbers of males and females tested in different 

age groups  
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