

University of Huddersfield Repository

Beake, B. D., Harris, Adrian L., Fox-Rabinovich, German, Rauh, Gerhard, Davies, M. I., Armstrong, David and Vishnyakov, Vladimir

Nanomechanical testing of thin films to 950 °C

Original Citation

Beake, B. D., Harris, Adrian L., Fox-Rabinovich, German, Rauh, Gerhard, Davies, M. I., Armstrong, David and Vishnyakov, Vladimir (2016) Nanomechanical testing of thin films to 950 °C. In: 15th International Conference on Plasma Surface Engineering PSE 2016, 12-16th September 2016, Germany. (Submitted)

This version is available at http://eprints.hud.ac.uk/id/eprint/30071/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Nanomechanical testing of thin films to 950 °C

Ben Beake¹, Adrian Harris¹, German Fox-Rabinovich², Gerhard Rauh³, Michael Davies¹, David Armstrong⁴, Vladimir Vishnyakov⁵ ¹Micro Materials Ltd, Wrexham, United Kingdom ²McMaster University, Hamilton, Canada ³LOT-QD, Darmstadt, Germany ⁴University of Oxford, Oxford, United Kingdom ⁵University of Huddersfield, Huddersfield, United Kingdom

ben@micromaterials.co.uk

Nanomechanical testing has been a revolutionary technique in improving our fundamental understanding of the basis of mechanical properties of thin film systems and the importance of the nanoscale behaviour on their performance. However, nanomechanical tests are usually performed in ambient laboratory conditions even if the coatings being developed are expected to perform at high temperature in use. It is important to measure nanomechanical and tribological properties of materials under test conditions that are closer to their operating conditions where the results are more relevant. We can then better understand the links between properties and performance and design advanced materials systems for increasingly demanding applications. However, high temperature nanomechanics is highly challenging experimentally and a high level of instrument thermal stability is critical for reliable results. To achieve this stability the NanoTest Vantage has been designed with (i) active heating of the sample and the indenter (ii) horizontal loading to avoid convection at the displacement sensor (iii) patented stage design and thermal control method. By separately and actively heating and controlling the temperatures of both the indenter and test sample there is minimal/no thermal drift during the high temperature indentation and measurements can be performed as reliably as at room temperature. Illustrative results are presented for TiAIN, TiFeN, DLC and MAX-phase coatings. Above 500 °C it is necessary to use Argon purging to limit oxidation of samples and the diamond indenter, although the efficiency of this decreases over 750 °C. To test at higher temperatures without indenter or sample oxidation an ultra-low drift high temperature vacuum nanomechanics system (NanoTest Xtreme) has been recently developed. Results with the vacuum system are presented up to 950 °C.

Keywords

high temperature nanomechanics TiAIN