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Abstract 

The article presents a numerical model for moving boundary conjugate heat transfer in stratified two-

fluid flows with a growing deposit layer. The model is applicable to other general moving boundary 

conjugate heat transfer problem in a two-fluid flow environment with deposition occurring 

simultaneously. The level-set method is adopted to capture the fluid-fluid interface and fluid-deposit 

front. The governing equations are solved using a finite volume method. Upon verification of the 

model, the effects of inlet velocity ratio, Damköhler number and thermal conductivity ratio on the 

flow, deposition as well as heat transfer are investigated. Generally, Nusselt number on the lower wall, 

Nulx and upper wall, Nuux show distinct features with the change of these parameters. Nuux increases 

with the increase of fluid 1 inlet velocity and the thermal conductivity of deposit layer, respectively.  

While it decreases with the increase of Damkholer number. Unlike the variation trend of Nuux, Nulx 

varies differently in the upstream and downstream along the channel, respectively under these 

parameters. A high fluid 1 velocity and a high thermal conductivity of deposit layer have a high Nulx 

upstream and a low Nulx downstream. However, a high Damkholer number results in a low Nulx 

upstream and a high Nulx downstream.   
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Nomenclature 

C particle concentration (kg/m3) 

cp specific heat (J/kgK) 

D diffusion coefficient (m2/s) 

Da Damkohler number 

d distance (m) 

H height of domain (m) 

H() smoothed heaviside function 

k thermal conductivity (W/mK) 

L length of domain (m) 

Nu Nusselt number 

n̂  unit normal at the interface 

Pe Peclet number 

Pr Prandlt number 

p pressure (Pa) 

q


 deposition flux (kg/ m2s) 

Re  Reynolds number 

rd reaction rate for deposition (m/s) 

S source term  

 S  Sign function 

T temperature (oC) 

t time (s) 

u


 velocity vector (m/s) 

 

 

 

x,y Cartesian coordinate (m) 

Greek Symbols  

 height of the deposit region (m) 

   Dirac delta function 

 interface 

 dimensionless temperature 

 level set function (m)  

φ component of 
extiu ,


 
(m/s) 

 interface thickness (m)  

 

 
dynamic viscosity (kg/m·s) 

ρ density (kg/m3) 

 domain of interest 

Subscripts  

b bulk 

d deposit 
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d,ext extension velocity 

f fluid 

lx local lower wall 

ref reference value 

ux local upper wall  

w wall 

x local 

1 fluid 1 region 

2 fluid 2 region 

* dimensionless  

 

1. Introduction 

A large number of engineering pipe flows involves two immiscible fluids with suspended particles. 

The prevailing two-fluid flow pattern depends on among others fluids' properties, flow configuration 

(horizontal, inclined or vertical) and relative flowrate [1]. For example, in a horizontal flow 

configuration, upon increasing the relative flowrate, the flow pattern progressive changes from bubbly, 

plug, stratified, wavy, slug to annular flow. Driven either physically or chemically, the suspended 

particles tend to deposit onto surfaces and form a solid deposit layer. The deposit layer is generally 

impermeable to flow and introduces extra flow resistance leading to a higher pressure drop. Often in 

these flows, heat transfer occurs. Heat transfer performance deteriorates because of additional thermal 

resistance of the deposit layer. Heat is now required to be conducted from the wall across the growing 

and increasingly thicker deposit layer before transferring to the flowing fluids. Engineering examples 

include wax deposition in oil-gas [2, 3] and oil-water [4, 5] flows, asphaltene deposition in oil-water 

[6] and oil-gas (CO2) [7] flows, hydrate deposition in water-gas flow [8, 9], fouling in two-phase heat 

exchanger [10] and fouling in flow boiling [11, 12].  

From a modeling point of view, this is a moving boundary conjugate heat transfer problem. There are 

two boundaries evolving both spatially and temporally, i.e. the fluid-fluid interface and the fluid-

deposit front. At these boundaries, various transport processes involving mass, momentum and energy 

interact with each other in a fully-coupled manner. In particular, coupling of heat transfer in the fluids 
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to that in the deposit layer requires a conjugate approach. The modeling framework generally requires 

six components to capture (a) fluid-fluid interface, (b) fluid-deposit front; to model (c) fluid transport, 

(d) particle transport, (e) particle deposition and (f) energy transport. Good prediction of the 

interaction between transport processes requires accurate determination of the moving boundaries. The 

fluid-fluid interface can be handled using either a front-tracking approach [13] or a front-capturing 

approach, e.g. VOF [14] and level-set [15] methods. For fluid-deposit front, apart from VOF and 

level-set methods, it can also be treated using enthalpy–porosity [16] and total concentration [17] 

methods. To model particle deposition, i.e. the actual attachment of the particles onto the fluid-deposit 

front, a critical length coupled with a sticking probability [18, 19] or an m-th order deposition reaction 

[20, 21] can be employed. Fluid transport entails prediction of the fluids' velocity and pressure fields. 

For particle transport, the transient particle distribution is determined using either a Langrangian or 

Eulerian approach [22]. Energy transport accounts for determining the temperature field. It should be 

stressed here again that all these six components of the model are fully-coupled together. Modeling 

then becomes challenging. 

Modeling work of such moving boundary conjugate heat transfer problem is scarcely limited in the 

existing literatures. These existing modeling works will be briefly discussed. To make the problem 

more tractable, simplifications were often made in the existing modeling works. Therefore, these 

models do not necessarily have all the six components and may not follow structurally the above 

framework.  

Huang et al. [4] developed a model of wax deposition in a two-dimensional non-isothermal oil-water 

laminar stratified channel flow. The results presented highlight the importance of incorporating the 

movement of the oil-water interface for a more accurate deposition prediction, not accounted for in 

previous studies. For this flow configuration, there exists a priori good geometrical understanding of 

both the oil-water interface and oil-wax front. The deposition is assumed to be controlled by the 

particle diffusion into the deposit layer. The flow is modeled as quasi-steady and unidirectional, and 

thus allowing a simple analytical expression of the velocity field be derived. The interface is then 
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determined such that mass conservation is satisfied. Particle and energy transports are governed only 

by axial convection and transverse diffusion. The approach suggested serves well for stratified flow 

but is generally challenging to be extended to other flow configurations with more general interfacial 

geometries. 

Ramirez-Jaramillo et al. [23] proposed a numerical model to simulate asphaltene deposition in a three-

phase flow system. These three immiscible phases are oil, gas and water and form a rheological fluid. 

The flow is determined from flow-pattern specific semi-empirical correlations without tracking or 

capturing the fluid-fluid interface. Convection heat transfer is considered with empirical correlation 

used in determining the heat transfer coefficient. Dissolved asphaltene in oil is assumed driven radially 

by diffusion and precipitates on the wall surface. A thermodynamic model is then utilized to predict 

this asphaltene precipitation process. In the model, the asphaltene deposit layer formed on the wall is 

subjected to removal due to shear force. Therefore, the growth of the deposit layer is driven asphaltene 

precipitation but is retarded by shear removal. 

Apte et al. [24] developed a model to investigate paraffin deposition in multiphase flowlines and 

wellbores. The flow is assumed steady and one-dimensional. For a one-dimensional flow, tracking of 

the fluid-fluid interface and fluid-deposit front are not required. This greatly simplifies the model. 

Fluid transport is determined using multiphase mechanistic models for both flow pattern identification 

and pressure gradient prediction. Regardless of flow pattern, heat transport is modeled by assuming a 

homogeneous mixture in a steady one-dimensional configuration. The reduction in heat transfer due to 

the deposit layer is conjugated. An additional thermodynamic model is also incorporated to predict the 

formation of solid "wax" fraction, i.e. the to-be-deposited particles in the above mentioned framework. 

The thermodynamic model also provides fluid properties. For particle deposition, it is assumed that all 

the solid "wax" diffused to the pipe wall deposits. Both Brownian (concentration gradient) and 

thermophoretic (radial temperature gradient) diffusions are accounted for. 
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Nasria and Dabir [6] developed a network model for prediction of asphaltene deposition in porous 

media for two-phase flow. Deposition in porous media changes among others the permeability and 

porosity. In a network model, fluid transport is governed by capillary equilibrium between phases with 

fluid displacement of either the drainage or the imbibition type. The fluid-fluid interface is not 

captured. Asphaltene precipitation is quantified by a thermodynamic model with the asphaltene 

particles sizes estimated. In a porous media at the pore-throat scale level, asphaltene deposition occurs 

due to adsorption and mechanical trapping. 

Given the limited work on conjugate heat transfer in two-fluid flow with particle deposition, the 

present work is undertaken to complement the existing literature. Specifically, the current work 

focuses on conjugate heat transfer in stratified two-fluid flow with a growing deposit layer. Of 

particular interest in the current model over the above mentioned modeling works is having both fluid-

fluid interface and fluid-deposit front captured while simultaneously coupled in a fully manner to the 

fluid transport, particle transport, energy transport and particle deposition. Similar framework although 

without heat transfer has been implemented earlier for particle deposition in single-[25] and two-fluid 

[26] flow environment. Conjugate heat transfer in single-fluid flow environment has also been 

demonstrated [27]. The objective of the present work is to develop a conjugate heat transfer model in a 

stratified two-fluid system. The current framework is more generic in the sense that it can be applied 

to a wide range applications compared with that of conjugate heat transfer in single-fluid flow system 

[27]. With the model developed in this paper, the effects of inlet velocity ratio, Damköhler number 

and thermal conductivity ratio on the flow, deposition as well as heat transfer in terms of Nusselt 

number at lower wall and upper wall are investigated.  

2. Problem Description 

Figure 1 shows the schematic diagram of the two-dimensional channel. The domain consists of three 

regions, i.e. the fluid 1 region 1 the fluid 2 region 2 and the deposit region d . The fluid 1 and 

the fluid 2 regions are separated by the fluid-fluid interface f . The two fluids are immiscible with 
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each other. On the other hand, the fluid 1 and the deposit regions are separated by the fluid-deposit 

front d . The deposit region is impermeable to the fluids. Initially, the channel is clean without any 

deposit formed. At 0t , the two fluids, i.e. fluid 1 and fluid 2, flow into the channel both at a 

constant temperature of inT . Fluid 1 carries suspended particles. These particles gradually deposit onto 

the lower wall of the channel forming a deposit layer of thickness  , i.e. d . This deposit layer 

becomes thicker over time as more and more particles deposited. Both the upper and the lower walls 

are maintained at a temperature of wT  where inw TT  . Heat transfer mode at the upper wall and lower 

wall is different. For the upper wall, the incoming heat from the upper wall is directly absorbed by 

fluid 2 and then convected downstream. However, for the lower wall, the deposit layer presents an 

extra thermal resistance. This extra thermal resistance increases as the deposit layer grows. As a result, 

the incoming heat has to be conducted across the increasingly thicker solid deposit layer before 

transferred into fluid 1, i.e. a moving boundary conjugate heat transfer problem. Effectively, the flow 

of the two fluids, transport and deposition of the particles and conjugate transfer of heat are all coupled 

together. Modeling this is the focus of the current study. 

3. Mathematical Formulation 

3.1 Fluid-Fluid Interface 

In this article, the level-set method is adopted to capture the fluid-fluid interface f  [15]. It is 

represented by a level-set function as 
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where fd  is the shortest distance from the fluid-fluid interface. The motion of the fluid-fluid interface 

is governed by  
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 0



f

f
u

t


 
 (2) 

where u


 is the fluid velocity. Numerically, f  will drift away from being a distance function 

gradually when Eq. (2) is solved. To alleviate this problem, redistancing is required [28]. In addition, 

the local mass correction [29] is performed to alleviate the mass loss or mass gain problem in the 

level-set method. 

3.2 Fluid-Deposit Front  

The fluid-deposit front d  is represented by a level-set function defined as  
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x
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d

d
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d



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where dd  is the shortest distance from the fluid-deposit front. The motion of the fluid-deposit front is 

governed by  

 
0, 




dextd

d u
t


 

 
(4) 

where extdu ,


 is a velocity field extended from the velocity of the fluid-deposit front du


. The extension 

is constructed in such a way that extdu ,


 is constant along the curve normal to the fluid-deposit front. 

This is achieved using the approach suggested in [30] as  

 
0ˆ)( 







nS

t  
(4a)

 




















0 if

 0 if

0 if

,1

,0

,1

)(

d

d

d

S









 

(4b) 

where   is the component of du


.  
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The deposition process is modeled as a first order deposition reaction. The deposition flux is given by  

 dddd nCruq ˆ



 

(5) 

where d , dr , C  and dn̂  are the density of the deposit, the deposition reaction rate, the particle 

concentration and unit normal vector pointing into the fluid 1 region respectively. Rearrangement of 

Eq. (5) gives the velocity of the depositing front as 

 d

dd
d

nCr
u



ˆ




 

(6) 

where the unit vector  dn̂  is evaluated as 

 d

d
dn








ˆ

 

(7) 

3.3 Conservation Equations 

The conservation equations governing the transport of mass, momentum, particle and energy for the 

problem are given by 

 0 u


 (8)

 
 )()(

)( Tuupuu
t
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
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
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
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(9)

 
dddCrCDCu

t

C
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
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(10)
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TkTuc

t
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p

p




 




 
(11) 

where u


, p , C  and T  are respectively fluid velocity, pressure, particle concentration and 

temperature. The required thermo-physical properties in the conservation equations are density  , 

viscosity  , diffusion coefficient D , specific heat pc  and thermal conductivity k .  
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Both surface tension and gravity have small effect on the flow, in particular no effect in the fully-

developed region [31]. These factors are not included into the momentum equation. If desired, surface 

tension can be incorporated using the Continuum Surface Force model. The second term on the right 

hand side of Eq. (10), i.e. dddCr   )( , accounts for the amount of particles transformed into 

deposit at the fluid-deposit front. It is localized to be only non-zero around the fluid-deposit front 

using a smoothed Dirac function defined as 

 

 
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
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During the movement of the fluid-deposit front, some of the particles near the front might be trapped 

inside the deposit region. Besides, during the movement of the fluid-fluid interface, some of the 

particles near the interface may drift into the fluid 2 region. If left untreated, the amount of 

trapped/drifted particles increases with time. To alleviate this problem, these trapped/drifted particles 

will be redistributed evenly to all other CVs of the fluid 1 region following the approach suggested in 

[17].   

By introducing a smoothed Heaviside function given by 
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(13) 

The thermo-physical properties in the conservation equations can be evaluated as 
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Note that, the solid deposit is modeled as a fluid with extremely large viscosity, i.e. by setting d  to a 

large number say 3010  in Eq. (15).  

For ease of results discussion in Section 4, the following dimensionless quantities are defined: 

 Hxx /* , Hyy /*  , Htut ref /*  (18a) 

 refuuu /*
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
  (18b) 

 ref /* , ref /* , prefpp ccc /*  , refkkk /*  (18c) 
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Properties of fluid 2 are selected as the reference (ref). refu  and refT  are set respectively to the fluid 2 

inlet velocity and temperature. Substitution of Eqs. (20) into the conservation equations (Eqs. 8-11) 

gives 

 0**  u
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 (19) 
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(22) 

where the Reynolds ( Re ), Prandlt ( Pr ), Peclet ( Pe ) and Damkohler ( Da ) numbers are given 

respectively by:  

  
ref

refref Hu




Re  (23a) 

  
ref

refrefp

k

c 
Pr  (23b) 

  DHuPe ref /  (23c) 

  DHrDa d /  (23d) 

 3.4 Initial and Boundary Conditions 

The steady-state solution (velocity, pressure and temperature fields) for a stratified two-fluid flow with 

heat transfer in a clean channel (without deposit) is used as the initial condition. To obtain this steady-

state solution, the following boundary conditions are enforced with the exception of those for C  

(which is not solved). Then only at 0t , fluid 1 starts to carry particles of concentration oC  into the 
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channel initializing the deposition process. This mimics the real practical situation where deposition 

starts from a clean channel.  

The following boundary conditions apply:          

At the inlet ( 0x ) 
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At the outlet ( Lx  ) 
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At the wall ( 0y and Hy  ) 
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3.5 Numerical Method 

The conservation equations (Eqs. 8-11) can be recast into a general equation of the form,  
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

 ~~
~ 




   
(25) 

where ~ , 
~

, and S are the “appropriate” density, diffusion coefficient and source term, respectively. 

This general equation is solved using a Finite Volume Method. The velocity-pressure coupling is 

handled with the SIMPLER algorithm [32]. A 2nd order upwind scheme with superbee limiter [33] is 

used for the convective term and a fully implicit scheme is used for time integration. 

The level-set (Eqs. 2 and 4) is spatially discretized with WENO5 [34]. This higher order scheme 

allows portions of the front with large curvature to be captured more accurately. TVD-RK2 (Total-

Variational-Diminishing 2nd order Runge-Kutta scheme) [35] is employed to ensure numerical 
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stability in the temporal integration of the level-set function. To reduce the computational effort, the 

level-set method is implemented in a narrow-band procedure [36] where the level-set function is 

solved only within a band of certain thickness from the interface. 

3.6 Solution Algorithm  

The solution procedure can be summarized as follows: 

(1) Specify the initial conditions (i.e. 0t ) of  f , d , u


, p , C and T .  

(2) Advance the time step to tt  . 

(3) Solve Eqs. (2) for 
tt

f


  and (4) for 

tt

d


 . 

(4) Solve Eqs. (8) and (9) for 
tt

u


 and 
tt

p


. 

(5) Solve Eq. (10) for 
tt

C


. 

(6) Solve Eq. (11) for 
tt

T


. 

(7) Repeat steps (3) to (6) until the solution converges. 

(8) Perform local mass correction for 
tt

f


  [29]. 

(9) Perform particle redistribution [17]. 

(10) Repeat steps (2) to (9) for all time steps. 

3.7 Verifications   

Verification of the current numerical framework for particle deposition in single-fluid [17] and two-

fluid [26] flow environments have been conducted. Besides, verifications for multi-fluid flow were 

also performed [37]. These will not be repeated here. Only verification of the heat transfer aspect of 
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the framework will be presented here. Since heat transfer in two-fluid flow with a growing deposit 

layer is not possible at the moment due to the unavailability of similar work, verification will then be 

based on known solutions of two limiting heat transfer cases for: (1) stratified single-fluid channel 

flow and (2) single-fluid channel flow with a growing deposit layer.  

In the first verification exercise, heat transfer for a stratified two-fluid flow in a clean channel is 

considered. The length to height ratio of the channel is set to 1:3: HL . Two immiscible fluids flow 

into the channel with the same inlet velocity and temperature. No slip boundary condition is enforced 

at the upper and lower walls. These two walls are maintained at constant temperature. Fully-developed 

condition is assumed at the outlet. The physical properties of the two fluids are then purposely chosen 

to be identical. With identical properties, the problem reduces to heat transfer in a single-fluid channel 

flow, i.e. the Graetz problem. The exact Nusselt number at the fully-developed region can obtained 

analytically as 7.54 and is independent of Re . Given the symmetry of the problem, the local Nusselt 

number xNu  at both the upper and the lower wall are identical. Therefore, only the xNu  at the lower 

wall is calculated from the present numerical solutions as 

 0
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H
Nu
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where the bulk temperature bT  is determined using 
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(26b) 

Plotted in Fig. 2 is xNu  along the channel for two different Reynolds numbers of 5Re  and 10Re . 

xNu  for both Re  converge to the value of  7.55 at the fully-developed flow region. This is in very 

close agreement with the exact value of 7.54.  

In the second verification exercise, again the properties of the two fluids are set to be identical. With 

this, the solution should reduce to that of heat transfer for a single-fluid channel flow with a growing 
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deposit layer internally. Figure 3 shows sequentially the deposit profile, the Nusselt number at the 

lower ( lxNu ) and the upper ( uxNu ) walls. Note that lxNu  and uxNu  are defined respectively as 
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where dT  and bT  are respectively the temperature at the fluid-deposit front and the bulk temperature. 

The bulk temperature is given by 
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(27c) 

The effect of the growing deposit layer has been accounted for in the calculation of  lxNu  and uxNu  

via Eqs. (27). Basically, the characteristic length is set to H , i.e. the local height of the channel not 

covered by the deposit and available for fluid flow. These definitions of Nusselt number will be used 

in all subsequent sections. From Figs. 3, the deposit profile, lxNu  and uxNu  are exactly identical to the 

expected results of a heat transfer problem in a single-fluid channel flow with a growing deposit layer 

[1]. This further verifies the implemented numerical framework.  

4. Results and Discussion  

4.1 Base Case  

With the framework verified, the solution of a base case is first established to illustrate some of the 

heat transfer physics involved in a stratified two-fluid channel flow with a growing deposit layer. The 

domain employed is similar to that shown in Fig. 1. The length and height of the channel are 

respectively 2 and 1. The physical properties are chosen to have the ratios of 5:4:5:: 21 d , 

 :1:2:: 21 d ,  2:1:2:: 21 pdpp ccc  and 4:1:2:: 21 dkkk . The thickness of the two fluid 



17 

 

layers at the inlet is identical, i.e. 1:1: 21 hh . The inlet velocity of the fluids is set to a ratio of 

1:2: 21 uu . The dimensionless concentration at the inlet is 1.0* oC . With these, the relevant 

dimensionless numbers become 4.8Re , 6.96Pr , 9Pe  and 10Da . Computations are carried 

out using three different meshes: 4080  control volumes (CVs) with -3104t , 80160 CVs with 

-3102t , and 160320 CVs with -3101t . The differences in lxNu  at the fully-developed 

flow between these consecutively refined meshes are 2.8% and 0.7%, respectively. Therefore, a mesh 

size of 80160 CVs with -3102t  is sufficient and will be employed in all following cases. 

Figure 4 shows the transient velocity and dimensionless temperature ( ) fields with the interface and 

front superimposed. As mentioned above, the simulation starts from the steady-state velocity and 

temperature fields for a two-fluid clean channel flow shown in Fig. 4(a). The fluid 1 layer is 

progressively thicker along the flow direction due to its higher viscosity compared with that of fluid 2. 

Then at 0t , fluid 1 starts carrying suspended particles into the channel. These particles deposit onto 

the lower wall of the channel gradually, forming a deposit layer. The growing deposit layer, which is 

impermeable and has different properties, changes the flow and temperature fields in a fully coupled 

manner. Generally, the deposit layer is thicker near the inlet due to a higher particle concentration and 

becomes thinner downstream as shown in Fig. 5(a). With more particles deposited on the wall along 

the flow direction, the amount of suspended particles in fluid 1 decreases. Therefore, fewer particles 

are deposited on the wall downstream, leading to a thinner deposit layer. As the deposit layer grows, 

fluid 1 and fluid-fluid interface are pushed upward. The less viscous fluid 2 layer is then squeezed into 

a much thinner layer in comparison with the fluid 1 layer.  

Within the deposit layer near the inlet, heat is conducted both in the transverse and upstream 

directions. This component of upstream heat conduction is driven by the lower fluid temperature at the 

inlet.  Also noted at any given axial location, the transverse temperature gradient is the smallest in the 

deposit layer; follow by that of fluid 1 and fluid 2. This is expected as the deposit has the highest 

thermal conductivity. The presence of the deposit layer has two opposite effects on heat transfer 
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performance. The deposit layer introduces an additional thermal resistance for the heat to be 

transferred from the wall to the fluid, directly lowering heat transfer performance. Of course, this 

additional thermal resistance increases with thicker deposit layer. However, the deposit layer also 

simultaneously reduces flow area, resulting in a higher local fluid velocity that augments convective 

heat transfer. Therefore, the overall heat transfer performance depends on the relative strength of these 

effects. 

The effects of the deposit layer on lxNu  and uxNu  are plotted in Fig. 5. Figure 5(b) shows the 

variation of lxNu  along the channel compared against to that of a clean channel, i.e. at time 0*t . 

For a clean channel, along the flow direction, convective heat transfer decreases gradually as the fluid 

bulk temperature increases, therefore, both lxNu  and uxNu  decrease along the flow direction. 

Temporally, at the early stage prior to 5.7*t , lxNu  does not change much near the inlet (around 

5.0*x  where the deposit thickness grows from zero to a maximum thickness). However, at 

25.11*t , lxNu  in this region becomes even lower than that of a clean channel, suggestive of a more 

dominating effect of increased thermal resistance due to a locally thicker deposit layer. However, it is 

interesting to note that lxNu  downstream is larger than that in a clean channel. This is attributed to 

increased local fluid velocity in the presence of the deposit layer. Fluctuations in lxNu  are observed at 

5.7*t  and 25.11*t . Such kind of fluctuation in the Nusselt number is also observed in [38]. It is 

attributed to the increase/decrease of the temperature at the fluid-deposit front along the flow direction 

as the deposit layer grows. For example, a rise in the temperature at the fluid-deposit front increases 

bd TT   in Eq. (27a), in turn, decreases lxNu . Unlike lxNu , uxNu is consistently lower compared to 

that of a clean channel for all time. Note that the thickness of fluid 2 layer does not change much 

during the deposition process. With a smaller characteristic length of H  as the deposit layer 

grows, uxNu along the channel decreases with time. For example, at 25.11*t  under fully developed 

flow, the flow area decreases about 30%, blocked by the deposit layer. However, the convection heat 
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transfer coefficient increases only around 20% given the accelerated velocity in a smaller area. 

Therefore, the uxNu decreases around 10% in the deposit channel compared with that of clean channel.    

4.2 Effect of Inlet Velocity Ratio  

The effect of the inlet velocity ratio is studied in this section. Four different inlet velocity ratios are 

considered, i.e. 1:1: 21 uu , 1:5.1: 21 uu , 1:2: 21 uu  and 1:5.2: 21 uu . The other dimensionless 

parameters are identical to those of the base case. Figure 6 shows the evolutions of the interface and 

deposit front for these inlet velocity ratios. Computationally, different velocity ratios are achieved by 

increasing 1u  with 2u  held fixed.  

With a higher fluid 1 inlet velocity and therefore flowrate, at a given time although more particles are 

carried into the channel, these particles are driven more rapidly downstream. This reduces the 

likelihood of these particles deposited near the inlet. Instead of near the inlet region, more particles 

now deposit downstream. This results in a thinner deposit layer near the inlet and a thicker deposit 

layer downstream. As the deposit layer grows, the higher fluid 1 flowrate squeezes the fluid 2 layer to 

be thinner (Fig. 6a). The fluid-fluid interface is pushed upward to maintain continuity of shear stress at 

the interface. This can also be observed at the early stage in Fig. 6b where the deposit thickness for the 

four inlet velocity ratios is not significantly different.  

The effect of inlet velocity ratio on heat transfer at the lower wall is shown in Fig. 7. With a higher 

inlet velocity ratio, lxNu  is higher near the inlet but lower downstream. This variation in lxNu  is 

intimately linked to the deposit thickness. Near the inlet, the thinner deposit layer which hinders heat 

transfer from hot wall to the fluid (for the case of a higher inlet velocity ratio) leads to a smaller 

thermal resistance. Coupled with higher convective heat transfer due to a higher 1u , lxNu  increases. 

However, a thicker deposit layer downstream (for higher inlet velocity ratio) introduces a much higher 

thermal resistance, even offsetting the effect of increased convective heat transfer due to a higher 1u . 

As a result, lxNu  decreases. For heat transfer at the upper wall, uxNu  increases consistently with 
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higher inlet velocity ratio. The increase in fluid 1 flowrate squeezes fluid 2 into a thinner layer of a 

higher average velocity, leading to enhanced convective heat transfer performance. 

4.3 Effect of Da Number  

Damköhler number, i.e. Da , is an important parameter governing the deposition process. The 

variation of Da  is attained by changing the deposition reaction rate dr  in Eq. (5). In this article, four 

different increasingly larger Da  are studied, i.e. 1Da , 5Da , 10Da  (base case) and 15Da . 

The other dimensionless parameters are identical to those of the base case. Figure 9 shows the 

temporal evolution of the interface and the deposit front for these cases. The fluid-fluid interface for 

the clean channel without deposit at t* = 0 is plotted in Fig. 9a serving as reference. Generally, a larger 

Da  implies a faster deposition, as the deposition reaction rate dr  is larger. Therefore at a given time, 

a thicker deposit is formed for larger Da . This is particularly obvious at 5.7*t  and 25.11 . For lower 

Da , a lot of the particles in contact with the fluid-deposit front are not deposit given the smaller 

deposition reaction rate. These particles will eventually be carried downstream. It is interesting to note 

that the deposit thickness downstream for 10Da  and 15Da  is close to each other. For these cases, 

most of the particles are already deposited upstream and therefore the amount of particles downstream 

is similarly low, leading to a similar deposit layer profile.  

The effect of Da  on lxNu  is plotted in Fig. 10. Note that the deposit attains a maximum thickness 

slightly downstream of 5.0*x  (Fig. 9d), demarcating region of different heat transfer characteristics. 

For higher Da , the thicker deposit layer near the entrance ( 5.0*x ) introduces larger thermal 

resistance. The larger thermal resistance overcomes the effect of increase convective heat transfer due 

to a higher average fluid velocity. As a result, lxNu  becomes lower. Downstream of 5.0*x , 

interestingly the opposite occurs, i.e. lxNu  is higher for higher Da . This is attributed to increase in 

convective heat transfer due to a higher average fluid velocity (smaller flow area). Figure 11 shows the 
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plot of uxNu  for different Da . uxNu  is less affected by Da  in region very near the inlet ( 2.0*x ). 

For 2.0*x , uxNu  decreases with higher Da .  

4.4 Effect of Thermal Conductivity Ratio     

In this section, the effect of thermal conductivity ratio dkkk :: 21  on heat transfer performance is 

studied. The other dimensionless parameters are identical to that of section 4.2 except now that the 

deposit thermal conductivity is varied. Note that flow and deposition are decoupled from energy 

transport. Therefore, the velocity field and the thickness of the deposit layer is identical to that of the 

base case in Figs. 4 and 5a, respectively. Four scenarios with increasingly higher deposit thermal 

conductivity are considered, i.e. 1:1:2:: 21 dkkk , 2:1:2:: 21 dkkk , 4:1:2:: 21 dkkk  and 

6:1:2:: 21 dkkk . lxNu  for these cases are plotted sequentially in Fig. 12. The increase of the 

deposit thermal conductivity reduces the thermal resistance for conduction heat transfer in the deposit 

layer from the lower hot wall, leading to a higher temperature at the fluid-deposit front. It is 

favourable for heat transfer as more heat could be taken away by the fluid through convective heat 

transfer between fluid 1 and the fluid-deposit front. This can be seen from Fig. 12a at 2.0*t . lxNu  

for higher deposit thermal conductivity is slightly higher. However, it is not the case as time 

progresses. With more heat absorbs by fluid 1 for the case of higher deposit thermal conductivity over 

time, the fluid temperature increases significantly. This results in a smaller temperature difference 

between fluid 1 and fluid-deposit front downstream. Therefore, the potential for fluid 1 to convect heat 

reduces, leading to a lower lxNu  downstream of 5.0*x  (Figs. 12b, 12c and 12d). Figure 13 shows 

the variation of uxNu  for different thermal conductivity ratio. uxNu  increases consistently with the 

increase of deposit thermal conductivity. The increase of the thermal conductivity of the deposit layer 

reduces the thermal resistance which is favorable for heat transfer. 
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5. Conclusions 

A numerical model is developed for moving boundary conjugate heat transfer in stratified two-fluid 

flows with a growing deposit layer. The model is applicable to other general moving boundary 

conjugate heat transfer problem in a two-fluid flow environment with deposition occuring 

simultaneously. Upon verification of the procedure, a base case is first studied to establish an 

understandings of the physical aspects of conjugate heat transfer in stratified two-fluid flows with a 

growing deposit layer. Then, the effects of inlet velocity ratio, Damköhler number and thermal 

conducitivty ratio on fluid flow characteristics and heat transfer performance are investigated. Some 

conclusions can be drawn:- 

(1) Generally, the growth of the deposit layer pushes the fluid-fluid interface upwards. The deposit 

layer introduces additional thermal resistance (retards heat transfer) and reduces flow area (enhances 

convective heat transfer). The overall heat transfer performance depends on the relative strength of 

these two effects. 

(2) The increase of fluid 1 inlet velocity increases Nuux consistently. However, the increase of fluid 1 

inlet velocity increases Nulx upstream but decreases Nulx downstream due to the different deposit layer 

at upstream and downstream. 

(3) Nuux decreases with the increase of Da number. A high Da number leads to low Nulx upstream and 

a high Nulx downstream.   

(4) The increase of thermal conductivity of deposit layer increases Nuux along the flow channel. 

However, the increase of thermal conductivity of deposit layer only increases Nulx upstream. Nulx 

downstream decreases with the increase of the thermal conductivity of the deposit layer.  
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Figure Caption 

Fig. 1 Domain of interest with two flowing fluids and a growing deposit layer. 

Fig. 2 Verification against one-fluid flow. 

Fig. 3 Verification against one-fluid flow with deposition (a) thickness of the deposit layer * , (b) 

lxNu , and (c) uxNu at different times.  

Fig. 4 Transient velocity and temperature fields for base case at (a) 0*t , (b) 75.3*t , (c) 5.7*t , 

and (d) 25.11*t .  

Fig. 5 Variation of (a) the thickness of the deposit layer * , (b) lxNu , and (c) uxNu at different times 

for base case. 

Fig. 6 The fluid-fluid interface and the fluid-deposit front for cases with different inlet velocity ratios 

at (a) 0*t , (b) 75.3*t , (c) 5.7*t , and (d) 25.11*t .   

Fig. 7 Variation of lxNu  for cases with different inlet velocity ratios at (a) 75.3*t , (b) 5.7*t , and 

(c) 25.11*t . 

Fig. 8 Variation of uxNu  for cases with different inlet velocity ratios at (a) 75.3*t , (b) 5.7*t , and 

(c) 25.11*t . 

Fig. 9 The fluid-fluid interface and the fluid-deposit front for cases with different Da  at (a) 0*t , (b) 

75.3*t , (c) 5.7*t , and (d) 25.11*t .    

Fig. 10 Variation of lxNu  for cases with different Da  at (a) 75.3*t , (b) 5.7*t , and (c) 25.11*t . 

Fig. 11 Variation of uxNu  for cases with different Da  at (a) 75.3*t , (b) 5.7*t , and (c) 25.11*t . 

Fig. 12 Variation of lxNu  for cases with different thermal conductivity ratio at (a) 375.0*t , (b) 

75.3*t , (c) 5.7*t , and (d) 25.11*t . 

Fig. 13 Variation of uxNu  for cases with different thermal conductivity ratio at (a) 375.0*t , (b) 

75.3*t , (c) 5.7*t , and (d) 25.11*t . 
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Fig. 1 Domain of interest with two flowing fluids and a growing deposit layer. 
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Fig. 2 Verification against one-fluid flow. 
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     (a)  

 
   (b) 

 
   (c) 

Fig. 3 Verification against one-fluid flow with deposition (a) thickness of the deposit layer * , (b) 

lxNu , and (c) uxNu at different times.  
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Fig. 4 Transient velocity and temperature fields for base case at (a) 0*t , (b) 75.3*t , (c) 5.7*t , 

and (d) 25.11*t .  
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   (b)  

 
   (c)  

Fig. 5 Variation of (a) the thickness of the deposit layer * , (b) lxNu , and (c) uxNu at different times 

for base case. 
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          (c)        (d)  

Fig. 6 The fluid-fluid interface and the fluid-deposit front for cases with different inlet velocity ratios 

at (a) 0*t , (b) 75.3*t , (c) 5.7*t , and (d) 25.11*t .   
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   (b)  

 
   (c)  

Fig. 7 Variation of lxNu  for cases with different inlet velocity ratios at (a) 75.3*t , (b) 5.7*t , and 

(c) 25.11*t . 
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   (b)  

 
  (c)  

Fig. 8 Variation of uxNu  for cases with different inlet velocity ratios at (a) 75.3*t , (b) 5.7*t , and 

(c) 25.11*t . 
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        (c)    (d)  

Fig. 9 The fluid-fluid interface and the fluid-deposit front for cases with different Da  at (a) 0*t , (b) 

75.3*t , (c) 5.7*t , and (d) 25.11*t .    
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   (c)  

Fig. 10 Variation of lxNu  for cases with different Da  at (a) 75.3*t , (b) 5.7*t , and (c) 25.11*t . 
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    (c) 

Fig. 11 Variation of uxNu  for cases with different Da  at (a) 75.3*t , (b) 5.7*t , and (c) 25.11*t . 
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             (c)      (d)  

Fig. 12 Variation of lxNu  for cases with different thermal conductivity ratio at (a) 375.0*t , (b) 

75.3*t , (c) 5.7*t , and (d) 25.11*t . 
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             (c)      (d)  

Fig. 13 Variation of uxNu  for cases with different thermal conductivity ratio at (a) 375.0*t , (b) 

75.3*t , (c) 5.7*t , and (d) 25.11*t . 

 


