4

University of Huddersfield

University of Huddersfield Repository

Troadec, Thibault, Tan, Sze-yin, Wedge, Christopher J., Rourke, Jonathan P., Unwin, Patrick R. and Chaplin, Adrian B.

One-Electron Oxidation of [$\mathrm{M}(\mathrm{PtBu} 3) 2](\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$: Isolation of Monomeric [$\mathrm{Pd}(\mathrm{PtBu} 3) 2]+$ and Redox-Promoted C-H Bond Cyclometalation

Original Citation

Troadec, Thibault, Tan, Sze-yin, Wedge, Christopher J., Rourke, Jonathan P., Unwin, Patrick R. and Chaplin, Adrian B. (2016) One-Electron Oxidation of [M(PtBu3)2] (M=Pd, Pt): Isolation of Monomeric [Pd(PtBu3)2]+and Redox-Promoted C-H Bond Cyclometalation. Angewandte Chemie International Edition, 55 (11). pp. 3754-3757. ISSN 1433-7851

This version is available at http://eprints.hud.ac.uk/id/eprint/30047/
The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

Angewandte mantion Chemie

Supporting Information

One-Electron Oxidation of $\left[\mathbf{M}\left(\mathbf{P}^{t} \mathbf{B u}_{3}\right)_{2}\right](\mathbf{M}=\mathbf{P d}, \mathbf{P t})$: Isolation of Monomeric $\left[\mathbf{P d}\left(\mathbf{P}^{t} \mathrm{Bu}_{3}\right)_{2}\right]^{+}$and Redox-Promoted $\mathbf{C}-\mathbf{H}$ Bond Cyclometalation

Thibault Troadec, Sze-yin Tan, Christopher J. Wedge, Jonathan P. Rourke, Patrick R. Unwin, and Adrian B. Chaplin*
anie_201511467_sm_miscellaneous_information.pdf

Contents

1 Synthesis of new compounds 2
1.1 General methods 2
1.2 Preparation of $\left[\operatorname{Pd}\left(P^{t} B u_{3}\right)_{2}\right]\left[P F_{6}\right]$ (2a) 3
1.3 Preparation of 2,6-bis(decyl)pyridine 4
1.4 Preparation of $\left[P t\left(\kappa^{2}{ }_{P C}-P^{t} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right)\left(P^{t} B u_{3}\right)\right]\left[P F_{6}\right](3 b)$ 4
1.5 Preparation of $\left[P t\left(\kappa^{2}{ }_{P C}-P^{t} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right)(\right.$ bipy $\left.)\right]\left[\mathrm{PF}_{6}\right]$ (6) 6
2 NMR scale reaction details 8
2.1 ${ }^{31} P$ Chemical shifts in 1,2- $C_{6} H_{4} F_{2}$ 8
2.2 General conditions 8
2.3 Reactions of $\left[\operatorname{Pd}\left(P^{t} B u_{3}\right)_{2}\right]$ (1a) 8
2.4 Reactions of $\left[P t\left(P^{t} B u_{3}\right)_{2}\right]$ (1b) 9
2.5 Reactions of $\left[P d\left(P^{t} B u_{3}\right)_{2}\right]\left[P F_{6}\right](2 a)$ 10
2.6 Reactions of $\left[P t\left(\kappa^{2}{ }_{P C}-P^{t} B u_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right)\left(P^{t} B u_{3}\right)\right]\left[P F_{6}\right](3 b)$ 10
3 Electrochemistry 11
3.1 General methods 11
3.2 $\mathrm{Fc} /[\mathrm{Fc}]^{+}$redox couple in $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2} / 0.2 \mathrm{M}\left[^{n} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ 11
3.3 Reduction of isolated $2 \boldsymbol{a}$ 12
3.4 Reduction of isolated 3 b and 6 12
3.5 Additional details 12
4 EPR Spectroscopy 14
5 Crystallography 14
6 References and notes 15

1 Synthesis of new compounds

1.1 General methods

All manipulations were performed under an atmosphere of argon, using Schlenk and glove box techniques. Glassware was oven dried at $150^{\circ} \mathrm{C}$ overnight and flamed under vacuum prior to use. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF and pentane $\left(<0.005 \% \mathrm{H}_{2} \mathrm{O}\right)$ were purchased from ACROS or Sigma-Aldrich and freeze-pump-thaw degassed three times before being placed under argon. $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was dried over CaH_{2}, vacuum distilled, and freeze-pump-thaw degassed three times before being placed under argon. 1,2-Difluorobenzene (DiFB) was stirred over neutral aluminum oxide, filtered, dried over CaH_{2}, vacuum distilled, and freeze-pump-thaw degassed three times before being placed under argon over $3 \AA$ molecular sieves. $\left[\mathrm{Pd}^{\mathrm{C}}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}\right](1 a)$, $\left[\mathrm{Pt}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}\right]$ (1b) and $[\mathrm{Fc}]\left[\mathrm{PF}_{6}\right]$ were purchased from Sigma-Aldrich and used as received. $\mathrm{Na}\left[\mathrm{BAr}_{4}{ }_{4}\right]$ was synthesised using a literature protocol. ${ }^{1}$
[Fc$]\left[\mathrm{BAr}_{4}{ }_{4}\right]$ was prepared using an adapted literature procedure. ${ }^{2}$ A suspension of $[\mathrm{Fc}]\left[\mathrm{PF}_{6}\right]$ ($120 \mathrm{mg}, 0.362$ mmol) and $\mathrm{Na}\left[\mathrm{BAr}_{4}{ }_{4}\right.$] (354 mg, 0.398 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was stirred at room temperature for 3 h . The solution was filtered and layered with pentane to afford deep blue needles that were subsequently isolated by filtration and washed with pentane ($2 \times 10 \mathrm{~mL}$). Yield $=278 \mathrm{mg}(75 \%) .{ }^{19} \mathbf{F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(282 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta-63.6\left(\mathrm{~s}, \mathrm{Ar}^{\mathrm{F}}\right)$.

All other solvents and reagents are commercial products and were used as received.

NMR spectra were recorded on Bruker DPX-400, AV-400, AV-500, AVIIIHD-500 and AVIII-600 spectrometers at 298 K unless otherwise stated. ${ }^{1} \mathrm{H}$ NMR spectra recorded in DiFB were referenced using the highest intensity peak of the highest ($\delta 6.87$) frequency fluoroarene multiplet. An internal sealed capillary of 0.25 M $\mathrm{OP}(\mathrm{OMe})_{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ was used to lock and shim samples for acquisition of NMR data, and additionally act as an internal reference for ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ data. Chemical shirts are quoted in ppm and coupling constants in Hz . EPR spectra were acquired on a Bruker EMX spectrometer using a TM_{110} cylindrical mode resonator (ER 4103TM). Samples were cooled by nitrogen gas flow through a standard quartz insert from a nitrogen evaporator with a B-VT 2000 temperature control unit. To limit the dielectric loss arising from the solvent all samples were contained in 2.2 mm i.d. quartz tubes (Wilmad 705-SQ), and the quartz insert was removed for room temperature operation. The reported g-factor is referenced to a DPPH standard ($g=$ $2.0036(3)$, ref. 3) and all EPR spectra are background subtracted unless otherwise noted. The background was recorded for a sample of $[\mathrm{Fc}]\left[\mathrm{BAr}_{4}{ }_{4}\right]$ in DiFB under identical conditions giving a featureless spectrum attributed to cavity background (see Figure S18).

ESI-HRMS analyses were recorded on Bruker Maxis Impact instrument.

Microanalyses were performed by Stephen Boyer at London Metropolitan University.

1.2 Preparation of $\left[\operatorname{Pd}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ (2a)

A suspension of $\left[\mathrm{Pd}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}\right](1 \mathrm{a}, 40 \mathrm{mg}, 0.078 \mathrm{mmol})$ and $[\mathrm{Fc}]\left[\mathrm{PF}_{6}\right](24 \mathrm{mg}, 0.078 \mathrm{mmol})$ in DiFB (3 mL) was stirred at room temperature for 2 h . The solution was filtered and the product precipitated with pentane as a Persian blue solid. Yield $=47 \mathrm{mg}$ (92\%).

EPR (15 mM in DiFB, 200 K): $\mathrm{g}_{\text {iso }}=2.316(5), \mathrm{a}\left({ }^{105} \mathrm{Pd}\right)=25 \mathrm{mT}$.
ESI-HRMS (THF, $180^{\circ} \mathrm{C}, 3 \mathrm{kV}$): positive ion: $510.2736 \mathrm{~m} / \mathrm{z},[\mathrm{M}]^{+}$(calcd. $510.2740 \mathrm{~m} / \mathrm{z}$).
UV-Vis: $(0.15 \mathrm{mM}$ in DiFB, 293 K$)$: $\lambda_{\max }(\varepsilon) 667 \mathrm{~nm}\left(4500 \pm 200 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right)$. First order decrease of this peak is observed at $293 \mathrm{~K}\left(k_{\text {obs }}=0.00039 \mathrm{~min}^{-1}\right)$. When ca. 100 equiv. of water was added an increased rate of decomposition was measured ($k_{\text {obs }}=0.00076 \mathrm{~min}^{-1}$).
Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{54} \mathrm{~F}_{6} \mathrm{P}_{3} \mathrm{Pd}\left(656.03 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right.$) : C, 43.94; H, 8.30; $\mathrm{N}, 0.00$. Found: C, 44.03; H, 8.17; $\mathrm{N}, 0.00$.

Figure S1. ESI-HRMS of 2a: observed (above) and calculated (below).

Figure S2. UV-Vis spectrum of $\mathbf{2 a}$ in $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}(293 \mathrm{~K})$.

1.3 Preparation of 2,6-bis(decyl)pyridine

To a cooled and stirred solution of lutidine ($2.0 \mathrm{~mL}, 17.3 \mathrm{mmol}$) in dry THF ($60 \mathrm{~mL},-78^{\circ} \mathrm{C}$) was added ${ }^{\mathrm{n}} \mathrm{BuLi}$ (1.6 M in hexanes, $25.6 \mathrm{~mL}, 41.0 \mathrm{mmol}$) dropwise. Upon addition, the colourless solution turned bright orange and then red. After 30 minutes stirring at $-78^{\circ} \mathrm{C}$, 1-bromononane ($7.47 \mathrm{~mL}, 39 \mathrm{mmol}$) was added and solution slowly warmed to room temperature over 16 h . The mixture was carefully quenched with water $(10 \mathrm{~mL})$ and the organic phase extracted with hexane $(3 \times 40 \mathrm{~mL})$, washed with water $(3 \times 10 \mathrm{~mL})$ and dried over MgSO_{4}. Volatiles were removed under vacuum and the residue was purified by silica column chromatography (hexane/ethyl acetate $20: 1$) to afford the product as a colourless liquid. Yield $=4.10 \mathrm{~g}$ (66\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7,1 \mathrm{H}, \mathrm{Py}\right), 6.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7,2 \mathrm{H}, \mathrm{Py}\right), 2.74(\mathrm{app} \mathrm{t}, \mathrm{J}=7.9,4 \mathrm{H}$, Py- CH_{2}), 1.62 - $1.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PyCH}_{2} \mathrm{CH}_{2}\right), 1.15-1.40\left(\mathrm{~m}, 28 \mathrm{H}, \mathrm{CH}_{2}\right), 0.87\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}}=6.6,6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl $)_{3}$: $\delta 162.0(\mathrm{Py}\{\mathrm{C}\}), 136.4(\mathrm{Py}), 119.7(\mathrm{Py}), 38.8\left(\mathrm{PyCH}_{2}\right), 32.1\left(\mathrm{PyCH}_{2} \mathrm{CH}_{2}\right), 30.4$ $\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.74\left(\mathrm{CH}_{2}\right), 29.70\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$.

ESI-HRMS $\left(\mathrm{CH}_{3} \mathrm{CN}, 180^{\circ} \mathrm{C}, 3 \mathrm{kV}\right)$: positive ion: $360.3636 \mathrm{~m} / \mathrm{z},[\mathrm{MH}]^{+}$(calcd. $360.3625 \mathrm{~m} / \mathrm{z}$).

1.4 Preparation of $\left[\operatorname{Pt}\left(\kappa^{2}{ }_{\mathrm{PC}}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ (3b)

A solution of $\left[P t\left(P^{t} \mathrm{Bu}_{3}\right)_{2}\right](\mathbf{1 b}, 75 \mathrm{mg}, 0.13 \mathrm{mmol})$ in DiFB $(2 \mathrm{~mL})$ was added dropwise to a mixture of $[F \mathrm{Fc}]\left[\mathrm{PF}_{6}\right](87 \mathrm{mg}, 0.26 \mathrm{mmol})$ and 2,6-bis(decyl)pyridine ($225 \mathrm{mg}, 0.63 \mathrm{mmol}$) in DiFB (2 mL). After 12 h stirring, the solution was filtered, the volatiles removed under vacuum, and the residue washed with pentane. The crude product was recrystallised from DiFB/pentane to afford the product as yellow crystals. Yield $=86 \mathrm{mg}$ (93\%).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 2.75\left(\mathrm{br} \mathrm{d}{ }^{\prime},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=7.8,{ }^{2} \mathrm{~J}_{\mathrm{PtH}}=110,2 \mathrm{H}, \mathrm{PtCH}_{2}\right), 1.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=13.1,6 \mathrm{H}\right.$, $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}$), $1.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=14.1,18 \mathrm{H}, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right), 1.47\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=13.1,27 \mathrm{H}, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 56.9\left(\mathrm{br} \mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=19, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right), 42.1\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=14,{ }^{3} \mathrm{~J}_{\mathrm{PC}}=2, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\{\mathrm{C}\}\right.$), $40.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{PC}}=10,{ }^{3} J_{\mathrm{PC}}=4, \mathrm{P}^{\mathrm{t}} \underline{\mathrm{Bu}_{2}} \mathrm{CMe}_{2} \mathrm{CH}_{2}\{\mathrm{C}\}\right), 32.4\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\left\{\mathrm{CH}_{3}\right\}\right), 32.1\left(\mathrm{P}^{\mathrm{t}} \underline{B u}_{3}\left\{\mathrm{CH}_{3}\right\}\right), 30.5\left(\mathrm{~s}^{\prime},{ }^{3} \mathrm{~J}_{\mathrm{PtC}}=\right.$ 81, $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}$), 10.3 (br d', ${ }^{2} J_{\mathrm{PC}}=22,{ }^{1} \mathrm{~J}_{\mathrm{PtC}}=670, \mathrm{PtCH}_{2}$). Assignments from ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HSQC}$ and HMBC experiments.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (243 MHz, CD ${ }_{2} \mathrm{Cl}_{2}$): $\delta 59.1\left(\mathrm{~d}^{\prime},{ }^{2} \mathrm{~J}_{\mathrm{PP}}=317,{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=2896,1 \mathrm{P}, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right), 25.2\left(\mathrm{~d}^{\prime},{ }^{2} \mathrm{~J}_{\mathrm{PP}}=317,{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=1916\right.$, $1 \mathrm{P}, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}$), -144.8 (sept, ${ }^{1} \mathrm{~J}_{\mathrm{PF}}=710,1 \mathrm{P}, \mathrm{PF}_{6}$). Assignments from ${ }^{1} \mathrm{H}^{31} \mathrm{P} \mathrm{HMBC}$ experiment.
${ }^{195} \mathrm{Pt}$ NMR (from ${ }^{1} \mathrm{H}-{ }^{195} \mathrm{Pt} \mathrm{HMQC}$ experiment, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 225 \mathrm{~K}$): $\delta-3816$.
ESI-HRMS ($\mathrm{CH}_{3} \mathrm{CN}, 180^{\circ} \mathrm{C}, 3 \mathrm{kV}$): positive ion: $598.3284 \mathrm{~m} / \mathrm{z},[\mathrm{M}]^{+}$(calcd. $598.3265 \mathrm{~m} / \mathrm{z}$).
Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{53} \mathrm{~F}_{6} \mathrm{P}_{3} \mathrm{Pt}\left(743.68 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right.$): C, 38.76; H, 7.18; N, 0.00. Found: C, 38.90; H, 7.33; $\mathrm{N}, 0.00$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$ - inserts not to scale.

Figure S4. $\quad{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}, 185 \mathrm{~K}\right)$.

Figure S5. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 b}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 243 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S6. Most relevant section of the ${ }^{1} \mathrm{H}-{ }^{195} \mathrm{Pt} \mathrm{HMQC}$ spectrum of $\mathbf{3 b}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 225 \mathrm{~K}\right)$.

1.5 Preparation of [$\mathrm{Pt}\left(\kappa^{2}{ }_{\mathrm{PC}}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right)($ bipy $\left.)\right]\left[\mathrm{PF}_{6}\right]$ (6)

A solution of $\left[\mathrm{Pt}\left(\kappa^{2}{ }_{\mathrm{PC}}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)\right]\left[\mathrm{PF}_{6}\right](\mathbf{3 b}, 30 \mathrm{mg}, 0.040 \mathrm{mmol})$ and $2,2^{\prime}$-bipyridine (6.2 mg , 0.040 mmol) in DiFB (2 mL) was stirred for 30 minutes. The volatiles were removed under vacuum, and the residue was washed with pentane. The crude product was recrystallized from $\mathrm{DiFB} /$ pentane to afford the product as yellow crystals. Yield $=27 \mathrm{mg}$ (97\%).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 8.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.2,1 \mathrm{H}, \mathrm{H}^{6^{\prime}}\right), 8.62\left(\mathrm{br} \mathrm{d}{ }^{\prime},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.5,3 J_{\mathrm{PtH}}=30,1 \mathrm{H}, \mathrm{H}^{6}\right), 8.34(\mathrm{app}$ $\left.\mathrm{d}, \mathrm{J}=8,2 \mathrm{H}, \mathrm{H}^{3+3^{\prime}}\right), 8.28\left(\mathrm{app} \mathrm{t}, \mathrm{J}=8,2 \mathrm{H}, \mathrm{H}^{4+4^{\prime}}\right), 7.70\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.5,1 \mathrm{H}, \mathrm{H}^{5}\right), 7.67\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.4,1 \mathrm{H}, \mathrm{H}^{5^{\prime}}\right), 1.75\left(\mathrm{~d}^{\prime}\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=8.2,{ }^{2} J_{\mathrm{PtH}}=98,2 \mathrm{H}, \mathrm{PtCH}_{2}\right), 1.61\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=13.6,18 \mathrm{H}, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right), 1.60\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=14.0,6 \mathrm{H}\right.$, $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}$). Assignments aided by NOE experiments.
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz, CD Cl_{2}): $\delta 157.1\left(\mathrm{C}^{2^{\prime}}\right), 155.5\left(\mathrm{C}^{2}\right), 153.7\left(\mathrm{C}^{6^{\prime}}\right), 148.8\left(\mathrm{C}^{6}\right), 141.4\left(\mathrm{C}^{4}\right), 140.5\left(\mathrm{C}^{4}\right), 128.9$ $\left(C^{5^{\prime}}\right), 128.2\left(C^{5}\right), 124.4\left(C^{3^{\prime}}\right), 124.1\left(C^{3}\right), 54$ (obscured, $\left.\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right), 37.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=16, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\{\mathrm{C}\}\right.$), 32.7 ($\mathrm{s}^{\prime},{ }^{3} \mathrm{~J}_{\mathrm{PtC}}=67, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}$), $32.1\left(\mathrm{P}^{\mathrm{t}} \underline{B u}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\left\{\mathrm{CH}_{3}\right\}\right.$), $3.9\left(\mathrm{~d}^{\prime},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=26,{ }^{1} \mathrm{~J}_{\mathrm{PtC}}=580, \mathrm{PtCH}_{2}\right)$. Assignments from ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC and HMBC experiments.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-19.9\left(\mathrm{~s}^{\prime},{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3105,1 \mathrm{P}, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right.$), -144.4 (sept, ${ }^{1} \mathrm{~J}_{\mathrm{PF}}=710,1 \mathrm{P}, \mathrm{PF}_{6}$).
${ }^{195} \mathrm{Pt}$ NMR (from ${ }^{1} \mathrm{H}-{ }^{195} \mathrm{Pt}$ HMQC experiment, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 225 \mathrm{~K}$): $\delta \mathbf{\delta}-3788$.
ESI-HRMS ($\mathrm{CH}_{3} \mathrm{CN}, 180^{\circ} \mathrm{C}$, 3 kV): positive ion: $552.2113 \mathrm{~m} / \mathrm{z},[\mathrm{M}]^{+}$(calcd. $552.2104 \mathrm{~m} / \mathrm{z}$).
Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{53} \mathrm{P}_{2} \mathrm{Pt}\left(697.54 \mathrm{gmol}^{-1}\right)$: C, 37.88; $\mathrm{H}, 4.91 ; \mathrm{N}, 4.02$. Found: C, 37.96; $\mathrm{H}, 4.97 ; \mathrm{N}, 3.87$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $6\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$ - inserts not to scale.

Figure S8. $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $6\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 202 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S9. Most relevant section of the ${ }^{1} \mathrm{H}-{ }^{195} \mathrm{Pt} \mathrm{HMQC}$ spectrum of $6\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 225 \mathrm{~K}\right)$.

2 NMR scale reaction details

2.1 ${ }^{31} \mathrm{P}$ Chemical shifts in $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}$

Compound	$\delta_{31 \mathrm{P}}$	Coupling constants / Hz
$\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$	62.2	
$\left[\mathrm{HP}^{\mathrm{t}} \mathrm{Bu}_{3}\right]^{+}\left[\mathrm{PF}_{6}\right]$	ca. 55	
$\left[\mathrm{Pd}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}\right](1 \mathbf{a})$	84.8	
$\left[\mathrm{Pt}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}\right](\mathbf{1 b})$	100.1	${ }^{1} J_{\text {PtP }}=4408$
$\left[\mathrm{Pt}\left(\kappa^{2} \mathrm{PC}^{-} \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)\right]^{+}\left[\mathrm{PF}_{6}\right]$ (3b)	24.3, 59.0	${ }^{1} J_{\text {PtP }}=1916,2898 ;{ }^{2} J_{\text {PP }}=317$
$\left[\mathrm{Pt}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2} \mathrm{H}\right]^{+}\left[\mathrm{PF}_{6}\right]$ (4)	86.3	${ }^{1} J_{\text {PtP }}=2621$
$\left[\mathrm{Pt}\left(\kappa^{2}{ }_{\mathrm{PC}}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right)(\text { bipy })\right]^{+}\left[\mathrm{PF}_{6}\right]$ (6)	-20.1	${ }^{1} J_{\text {PtP }}=3105$

All relative to an internal sealed capillary containing $\mathrm{OP}(\mathrm{OMe})_{3} / C_{6} D_{6}$ $\left[\delta_{31 P} 3.1, \delta_{1 H} 3.36\left({ }^{3} J_{P H}=11.0\right)\right]$

2.2 General conditions

Reactions were carried in 5 mm J. Young's valve NMR tubes using 0.015 mmol complex (i.e. 7.7 mg 1 a , 9.0 $\mathrm{mg} \mathbf{1 b}, 9.9 \mathrm{mg} \mathbf{2 a}, 11.2 \mathrm{mg} \mathbf{3 b})$ in $\operatorname{DiFB}(0.50 \mathrm{~mL})$ solvent and an internal capillary containing $60 \mu \mathrm{~L}$ of a 0.25 M solution of trimethylphosphate in $\mathrm{C}_{6} \mathrm{D}_{6}$. Reactions were monitored by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P} \mathrm{NMR}$ spectroscopy.

2.3 Reactions of $\left[\operatorname{Pd}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}\right]$ (1a)

2.3.1 1a @ 293 K

No change apparent after 24 h .
2.3.2 1a + 1 equiv. $[F c]\left[F_{6}\right] @ 293 \mathrm{~K}$

No diamagnetic species observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum after 15 min . The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of $\mathrm{Fc}\left(\delta_{1 \mathrm{H}} 4.14\right)$.
2.3.3 1a + 5 equiv. 2,6-bis(decyl)pyridine @ 293 K

No reaction apparent after 24 h .
2.3.4 1a +2 equiv. $[\mathrm{Fc}]\left[\mathrm{PF}_{6}\right]+5$ equiv. 2,6-bis(decyl)pyridine @ 293 K

Slow formation of a new organometallic species characterised by two doublets in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum in a 1:1 ratio ($\delta_{31 \mathrm{P}} 57.0,-1.3 ;{ }^{2} J_{\mathrm{PP}}=316 \mathrm{~Hz}$). After 72 h an approximate conversion of 30% was determined using the internal reference (Figure S10).

Figure S10. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (DiFB, $202 \mathrm{MHz}, 298 \mathrm{~K}$).

2.4 Reactions of $\left[\mathrm{Pt}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}\right]$ (1b)

2.4.1 1b @ 293 K

No change apparent after 24 h.
2.4.2 1b @ 353 K

No change apparent after 24 h .
2.4.3 1b + 1 equiv. $[\mathrm{Fc}]\left[\mathrm{PF}_{6}\right] @ 293 \mathrm{~K}$

1:1 mixture of $\mathbf{3 b}$ and $\mathbf{4}$ formed within 15 min by ${ }^{31} \mathrm{P}$ NMR spectroscopy. Integration against the internal standard indicates complete conversion. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of Fc ($\delta_{1 \mathrm{H}} 4.01$).
2.4.4 1b + 5 equiv. 2,6-bis(decyl)pyridine @ 293 K

No reaction apparent after 24 h .
2.4.5 1b +2 equiv. $[F c]\left[\mathrm{PF}_{6}\right]+5$ equiv. 2,6-bis(decyl)pyridine @ 293 K

Integration against the internal standard indicated complete conversion to $\mathbf{3 b}$ within 15 min . The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of $\mathrm{Fc}\left(\delta_{1 \mathrm{H}} 4.63\right)$.
2.4.6 1b +1 equiv. $[\mathrm{Fc}]\left[\mathrm{PF}_{6}\right]+1$ equiv. 2,2'-bipyridine @ 293 K

Integration against the internal standard indicated formation of a mixture comprised of $\mathbf{1 b}, \mathbf{6}, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$ and $\left[\mathrm{HP}^{\mathrm{t}} \mathrm{Bu}_{3}\right]^{+}(\sim 1: 1: 0.3: 0.7)$ by ${ }^{31} \mathrm{P}$ NMR spectroscopy after 15 min . The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of $\mathrm{Fc}\left(\delta_{1 H} 3.97\right)$.
2.4.7 1b +2 equiv. $[\mathrm{Fc}]\left[\mathrm{PF}_{6}\right]+1$ equiv. 2,2'-bipyridine @ 293 K Integration against the internal standard indicated complete conversion to a $\sim 1: 1$ mixture comprised of 6 and $\left[\mathrm{HP}^{\mathrm{t}} \mathrm{Bu}_{3}\right]^{+}$by ${ }^{31} \mathrm{P}$ NMR spectroscopy after 15 min . The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of $\mathrm{Fc}\left(\delta_{1 H} 3.97\right)$.

2.5 Reactions of $\left[\operatorname{Pd}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ (2a)

2.5.1 2a @ 293 K

No new diamagnetic species observed in either the ${ }^{1} \mathrm{H}$ or ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum after 24 h .

2.6 Reactions of $\left[\mathrm{Pt}\left(\kappa^{2}{ }_{\mathrm{PC}}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ (3b)

2.6.1 3b @ 293 K

No change apparent after 24 h .
2.6.2 $3 \mathbf{b}+\mathrm{H}_{2}(1 \mathrm{~atm}) @ 293 \mathrm{~K}$

Complete conversion to 4 after 1 h shaking apparent by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy. After freeze-pump-thaw-degassing and placing under an argon atmosphere, no additional reaction was apparent after $15 \mathrm{~min}\left(\delta_{1 H}-36.30,{ }^{2} J_{\mathrm{PH}}=8.6,{ }^{1} \mathrm{~J}_{\mathrm{PtH}}=2590 \mathrm{~Hz} ; \delta_{31 \mathrm{P}} 86.3,{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=2621 \mathrm{~Hz}\right.$; Figure S 11 and S12).

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of 4 (DiFB, $500 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S12. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 ($\mathrm{DiFB}, 202 \mathrm{MHz}, 298 \mathrm{~K}$).

To the mixture described above was added 5 equiv. of 2,6-bis(decyl)pyridine, resulting in deprotonation of $\mathbf{4}$ and formation of an equilibrium mixture of $\mathbf{1 b}$ and $\mathbf{4}$ in a 1:7 ratio (by ${ }^{31}$ P NMR
spectroscopy) after 15 min (ratio unchanged after an additional 45 min).
2.6.3 3b + 1 equiv. 2,2'-bipyridine @ 293 K

Quantitative formation of 6 with concomitant liberation of free $P^{t} B u_{3}$ was observed within 15 min by ${ }^{31}$ P NMR spectroscopy.

3 Electrochemistry

3.1 General methods

Cyclic voltammetry (CV) experiments were carried out in an inert atmosphere glovebox under argon out using a CHI 760 C potentiostat (CH Instruments, Inc.) in a typical 3-electrode set-up where a glassy carbon substrate, platinum mesh and silver wire were used as the working (WE), counter (CE) and reference electrode (RE), respectively. All potentials are calibrated to the ferrocene/ferrocenium ($\mathrm{Fc} /[\mathrm{Fc}]^{+}$) redox couple which was used as an internal standard.

The half-wave potentials, $E_{1 / 2}$ were determined from:

$$
E_{1 / 2}=\left(E_{\mathrm{p}}^{\text {red }}+E_{\mathrm{p}}{ }^{\mathrm{ox}}\right) / 2
$$

where $E_{\mathrm{p}}{ }^{\text {red }}$ and $E_{\mathrm{p}}{ }^{\text {ox }}$ are the reduction and oxidation peak potentials, respectively.

3.2 $\mathrm{Fc} /[\mathrm{Fc}]^{+}$redox couple in $\mathbf{1 , 2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2} / 0.2 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$

Figure S13 shows typical CVs for the oxidation of Fc at different scan rates. Linear dependence of the voltammogram peak current, i_{p} to square root of the potential sweep scan rate, $v^{1 / 2}$ indicates a diffusioncontrolled process.

Figure S13. (a) CVs for the oxidation of Fc in $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}\left(2 \mathrm{mM} ; 0.2 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]\right.$ electrolyte; scan rates = $10,30,50,70$ and $100 \mathrm{mV} \mathrm{s}^{-1}$); (b) Plot of i_{p} and ΔE_{p} versus $v^{1 / 2}$.

The peak-to-peak potential separation, ΔE_{p} is 108 mV at $\mathrm{v}=100 \mathrm{mV} \mathrm{s}^{-1}$ which deviates from the expected value of 60 mV (reversible) for the $\mathrm{Fc} /[\mathrm{Fc}]^{+}$redox couple. ${ }^{4}$ This is reasonably attributed to the high internal resistance of the solution arising from incomplete ionic dissociation resulting in ohmic resistance of $\sim 1 \mathrm{~K} \Omega$. Furthermore, $i_{\mathrm{p}}{ }^{\text {red }} / i_{\mathrm{p}}{ }^{\text {ox }} \sim 0.99$ is characteristic of a chemically reversible process.

3.3 Reduction of isolated 2a

Figure S14. CVs for the oxidation of $\mathbf{1 a}$ and reduction of $\mathbf{2 a}$ in $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}\left(2 \mathrm{mM}[\mathrm{Pd}] ; 0.2 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right.\right.$] electrolyte; scan rates $=10,30,50,70$ and $100 \mathrm{mV} \mathrm{s}^{-1}$).

3.4 Reduction of isolated $3 b^{5}$ and 6

Figure S15. CVs for the reduction of $\mathbf{3 b}$ and 6 in $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}\left(2 \mathrm{mM}[\mathrm{Pt}]^{+} ; 0.2 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]\right.$ electrolyte; glassy carbon working electrode, Pt counter electrode and Ag wire reference electrode; scan rates $=10,30,50,70$ and $100 \mathrm{mV} \mathrm{s}^{-1}$).

3.5 Additional details

Diffusion coefficients, D were determined using the Randle-Sevcik ${ }^{4}$ equation:

$$
i_{p}=2.69 \times 10^{5} n^{3 / 2} A C D^{1 / 2} v^{1 / 2}
$$

where n is the number of electrons transferred per redox event, A is the electrode area and C is the concentration.

Table S1. Calculated diffusion coefficients from Randle-Sevcik analysis (1,2-C ${ }_{6} \mathrm{H}_{4} \mathrm{~F}_{2}, 0.2 \mathrm{M}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right.$] electrolyte)

Compound	$R^{\mathbf{2}}$ (fit)	$D / \mathbf{1 0}^{\mathbf{- 6}} \mathrm{cm}^{\mathbf{2}} \mathbf{s}^{\mathbf{- 1}}$
Fc	0.99995	7.6
1a	0.99964	6.9
1b	0.99938	5.3
2a	0.99836	5.9
3b	0.99780	7.6
6	0.99950	5.9

Figure S16. Plots of i_{p} versus $\boldsymbol{v}^{1 / 2}$ for $\mathbf{1 a}, \mathbf{1 b}, \mathbf{2 a}, \mathbf{3} \mathbf{b}$ and $\mathbf{6}$.

4 EPR Spectroscopy

Figure S17. EPR spectra of 2a and $\left[\mathrm{Fc}^{2}\right]\left[\mathrm{BAr}_{4}{ }_{4}\right]\left(1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}\right.$ glass, 200 K , a.u. = arbitrary units) without baseline correction.

5 Crystallography

Full crystallographic details including solution, refinement and disorder modelling procedures are document in CIF format and have been deposited with the Cambridge Crystallographic Data Centre under CCDC $1440602(2 a), 1440603(3 b) 1440604(6, C 2 / c)$ and $1440605\left(6, P 2_{1} / c\right.$). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Notably two different solid-state structures for 6 were obtained. Both sets of data were collected from crystals grown from the same solvent, but the samples crystallised in different space groups. In the $P 2_{1} / c$ structure the cation and anion are extensively disordered over two sites (Figure S18, left), however, only a small degree of disorder is observed in the C_{2} / c structure (Figure S18, right). In the latter case, only disorder of the (heavy) platinum atom was modelled due to the very low occupancy of the minor component (5\%). The data presented in Figure 3 is from the C_{2} / c structure.

Figure S18. Solid-state structures of 6: $P 2_{1} / c$ (left, CCDC 1440605) and C_{2} / c (right, CCDC 1440604). Thermal ellipsoids drawn at 50\% probability level. Minor disordered components labelled in grey and bearing A as a suffix. Selected data: $P 2_{1} / c, P t 1-P t 1 A, 1.050(2) A ̊ ; C_{2} / c, P t 1-P t 1 A, 0.995(7) ~ A ̊$.

6 References and notes

[1] W. E. Buschmann, J. S. Miller, K. Bowman-James, C. N. Miller, Inorg. Synth. 2002, 33, 83-91.
[2] I. Chávez, A. Alvarez-Carena, E. Molins, A. Roig, W. Maniukiewicz, A. Arancibia, V. Arancibia, H. Brand, J. M. Manríquez, J. Organomet. Chem. 2000, 601, 126-132.
[3] J. Krzystek, A. Sienkiewicz, L. Pardi, L. C. Brunel, J. Magn. Reson., 1997, 125, 207-211.
[4] A. J. Bard, L. R. Faulkner. Electrochemical Methods: Fundamentals and Applications (2nd Ed.), John Wiley and Sons, New York, 2001.
[5] No oxidation of $\mathbf{3 b}$ is observed on scanning the potential up to +1.0 V vs $\mathrm{Fc} /[\mathrm{Fc}]^{+}$.

