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* Bearings are at the heart of almost every
rotating machine
* they have received a lot of attention in
the field of vibration analysis
* because they are common sources of
machine faults
* To keep machinery operating reliably many
methods for bearing fault detection and
diagnosis have been developed
* vibration measurement and associated
signal processing are the most widely
used approach

Introduction
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A review of signal processing Most methods are based on

methods tracking the amplitude variations
> High frequency resonance of characteristic fault frequencies
technique Only limited attention has been

> Cyclostationary spectral analysis given to utilisation of modulation
characteristics in extracting the

» Cepstrum analysis diagnostic information

> B. H q .
ispectrum analysis But the Modulation Signal

» Time-frequency analysis Bispectrum can be used to
extract fault features from

o ~envelope signals giving reliable
» Minimum entropy deconvolution hearing fault detection, diagnosis

> Empirical mode decomposition and severity assessment

Introduction

» Self-adaptive noise cancellation
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Purpose of the research

* To develop and evaluate a robust detector for bearing fault
diagnosis based on modulation signal bispectrum (MSB) analysis

The modulation signal bispectrum

e MSB analysis can be used to suppress random noise and to
decompose nonlinear modulation components in a measured

signal, eg vibration
* Advantages of the modulation signal bispectrum include:
1) Highly effective suppression of random noise

2) Revelation of the weak nonlinear characteristics of signals

Introduction
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Bearing fault frequencies outer race fault frequency:

Outer race N D
BPFO = —"F,(1-—=-cos

Inner race
C

Roller

Inner race fault frequency:

D, | D
N D
e |, BPFI =—F,(1+—coso)
- s 2 D,
Cage
Ball fault frequency:
Contact Angle ¢ )
< Ball Diameter BSF = DeFs (1- &0052 ®)
2D, © D
- . Cage fault frequency
Jitch (often called the fundamental train frequency):
Diameter
1 D
‘ FTF ==F,(1——=Ccos
o 20, %9

The MSB detector
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The bearing vibration model

It was decided to use 2 ways of evaluating the new method: via simulated data
and real data. To simulate bearing fault data, a bearing vibration model is needed.

The vibration signature x(t) of a faulty rolling element bearing The presence of

is comprised of several components, and these are modulation in the
represented in the model as follows: time data means
that there will be
Machinery induced vibration Noise | sidebands in the

l frequency domain,
\ and these are key to
X(t) = X¥ (t)X (t) Xps (t) + X (t) +N(t) bearing fault
/ '\ ‘\detection/diagnosis
Bearing-ind_uced vibration

Impulses produced AM due to the non-uniform determined by the bearing
by bearing fault load distribution structural dynamics

The MSB detector
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Conventional bispectrum (CB) Ps(f):E<x(f)x*(f)>
(a) Simulated signal
0 U E<X<f1>x
_20 071 O.r2 073 074 Tir;};S(S) O.IES Of? 078 079 1 Phase Of CB:
1 X;j_lm:_&ssd T ¢c (1, f2) = o(fy) + o(f) —o(f; + 1)
N;g 00 _‘?9%\{??’_’1’9.'2'? """" """ """" """"" T / Coherence of CB:
N e B(fi. /)
b ] P B2 2
00. ............ : 102}0 ) 3}} 40 50 s ol - i E<|X(fi)x(f2 )| >E<|X(f1 +,f2)| >
) Frequency(Hz)
* Conventional bispectrum offers: E( ) An average must be performed
: : e . o t d i
— Nonlinear identification capability & RRlEEs sl s
— Ret'ention of phase inforr.n-ation But it is limited to f, + f, = f; ..
— Noise suppression capability ...s0 it only shows the higher sideband

The MSB detector
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The modulation signal bispectrum (MSB)

The MSB is based on the CB, but is more attractive in this work
because it contains both upper and lower sideband components

Bus (fe. 1) = E (X (e + FX (e - (X" (1)X" (1))

The MSB can itself be modified to enable precise quantification of
sideband amplitudes, by removing the influence of the carrier

frequency f.. We call this the MSB sideband estimator (MSB-SE),
defined as:

The MSB detector
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Typical results of the MSB detector - B(f,) - formed from slices shown
along B(f,), show that the optimal frequency band for detecting a

bearing fault is at a specific value of f.. Symptomatic features are
labelled *.

— E(fc)
—Bifx) )

0 gogp OO0 fo(Hz)

The MSB detector
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Vibration signal

Calculate the MSB using

/ . N \

Calculate the MSB-sideband estimator using
~SF 7/ ¢ r \ BMS(fC’fX)

Calculate the compound MSB slice using

RIf \_ 1 <N pSE (§ iAf)

Calculate the robust MSB detector using
1 K
B(fx) :EZEleI?/IES ( 1:c ' fx) fx >0

TTUVY CTTUT U VUT LITUOU TUNVUODU TVIJD UL LUULUT LAaIrcuItaLtrurit

The MSB detector




3. Simulation study LU DERERTi

Four different simulation scenarios were developed
They use different levels of random noise and different amounts of aperiodic

interference, to represent the noisy in-field measurements typically encountered
in the vibration-based condition monitoring of rolling element bearings

Aperiodic impact

interference SNR value | SNR value

L ise signal with
o.w n0|se. signal without Level 1 None -15dB n/a
impact interferences

High noise signal with
'? n0|s¢? signal without Level 2 None -30dB n/a
impact interferences

Low noise signal with low Level 1 Level 1 -15dB -22dB
level impact interferences

High noise signal with high Level 1 Level 2 22dB 48dB
level impact interferences

Type 1 SNR:20Ioglo(PS / Pn) Type 2 SNR =20logyo (A / A,)

Simulation study
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The first real application: motor bearing fault detection

Supporting |  Flexible Supporting
bearing coupling bearing

Vibration
sensor

Application case studies
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Electric motor
bearing with a
small seeded
outer race fatigue
defect (defect
simulated by
EDM)

. e . Pitch Diameter 46.4mm
Specification of NSK Type 6206727 _
Ball Diameter 9.53mm
Ball Number 9
Contact Angle 0’

Application case studies

deep groove ball bearing
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The motor data reveals 2 clear resonant regions
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The second real application - planetary gearbox bearing fault detection

T gl e o DD

" ™ . p—

Helical ®! Vibration _ Planetary DC
. gearbox ' sensor 4 gearbox Generator

; Y/ Y
s - '
' Y

Application case studies
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Planetary gearbox specification
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Application case studies
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But when choosing the resonant region(s) to use in the calculation of the MSB-SE,

it is always wise to check the coherence...

Application case studies
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MSB-SE coherence for the planetary gearbox

Although resonance R4 has high MSB
amplitude, it has low coherence and

so it is excluded from the calculations
| of the MSB-SE detector

Amplitude
[
LN

R4 (around 9kHz)

R3 (around 6kHz)

R2 (around 4kHz)

fu(Hz) fe(Hz)

R1 (1kHz-2kHz)

Application case studies
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* The MSB is demonstrably effective in suppressing noise
and decomposing the nonlinear modulation components

— The MSB-SE is effective in the suppression of both stationary
white noise and aperiodic impact impulses.

* Simulated signal and real data studies shows that the
capability of the MSB-SE exceeds that of a kurtogram-
based detector.

 The application to signals from a planetary gearbox
shows that the new approach can successfully detect
bearing faults in circumstances where no other method
is able to do so.

Conclusions



