

University of Huddersfield Repository

Adhikari, S., Sutradhar, D., Shepherd, S.L., Phillips, Roger M., Chandra, A.K. and Rao, K.M.

Synthesis, structural, DFT calculations and biological studies of rhodium and iridium complexes containing azine Schiff-base ligands

Original Citation

Adhikari, S., Sutradhar, D., Shepherd, S.L., Phillips, Roger M., Chandra, A.K. and Rao, K.M. (2016) Synthesis, structural, DFT calculations and biological studies of rhodium and iridium complexes containing azine Schiff-base ligands. Polyhedron, 117. pp. 404-414. ISSN 0277-5387

This version is available at http://eprints.hud.ac.uk/id/eprint/28693/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Accepted Manuscript

Synthesis, structural, DFT calculations and biological studies of rhodium and iridium complexes containing azine Schiff-base ligands

Sanjay Adhikari, Dipankar Sutradhar, Samantha L. Shepherd, Roger M. Phillips, Asit K. Chandra, K. Mohan Rao

PII:	\$0277-5387(16)30218-2
DOI:	http://dx.doi.org/10.1016/j.poly.2016.06.001
Reference:	POLY 12039
To appear in:	Polyhedron
Received Date:	4 May 2016
Accepted Date:	1 June 2016

Please cite this article as: S. Adhikari, D. Sutradhar, S.L. Shepherd, R.M. Phillips, A.K. Chandra, K. Mohan Rao, Synthesis, structural, DFT calculations and biological studies of rhodium and iridium complexes containing azine Schiff-base ligands, *Polyhedron* (2016), doi: http://dx.doi.org/10.1016/j.poly.2016.06.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Synthesis, structural, DFT calculations and biological studies of rhodium and
2	iridium complexes containing azine Schiff-base ligands
3	
4	
5	Sanjay Adhikari ^a , Dipankar Sutradhar ^a , Samantha L. Shepherd ^b , Roger M Phillips ^b ,
6	Asit K. Chandra ^a , K. Mohan Rao ^{a*}
7	6
8	
9	^a Centre for Advanced Studies in Chemistry, North-Eastern Hill University,
10	Shillong 793 022, India.
11	E-mail: mohanrao59@gmail.com
12	Telephone Number: +91 364 2722620
13	Fax Number: +91 364 2550076
14	^b Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield
15	HD1 3DH, UK
16	
	G

17 Graphical abstract

Half-sandwich Cp*Rh(III) and Cp*Ir(III) complexes have been synthesized with N-N' azine
Schiff-base ligands and characterized by spectroscopic techniques. The molecular structures of
some of the representative complexes have been confirmed by single crystal X-ray analysis.
Chemo-sensitivity activities of the complexes were evaluated against HT-29 (human colorectal
cancer) cell line and non-cancer cell line ARPE-19 (human retinal epithelial cells).

27 Abstract

The reaction of $[Cp*MCl_2]_2$ (M = Rh/Ir) with N-N' azine Schiff-base ligands (L1-L4) 28 leads to the formation of mononuclear cationic half-sandwich complexes having the general 29 formula $[Cp*M(L)Cl]^+$ (1–8), (M = Rh/Ir and L = (2-hydroxy-4-methoxybenzylidene)2-30 (2-hydroxybenzylidene)2-pyridylamidrazone (1-(2pyridylamidrazone (L1), (L2), 31 hydroxyphenyl)ethylidene)2-pyridylamidrazone (1-phenylethylidene)2-32 (L3) and pyridylamidrazone (L4). All these complexes were isolated as their hexafluorophosphate salts 33 and fully characterized by spectroscopic and analytical techniques. The molecular structure of 34 complexes (1), (3), (4), (7) and (8) have been determined by single crystal X-ray crystallographic 35 studies which displayed the coordination of the ligand to the metal in a bidentate $N \cap N$ fashion 36 through nitrogen atom of pyridine and one azine nitrogen. The chemo-sensitivity activities of the 37 complexes were evaluated against HT-29 (human colorectal cancer) cell line and non-cancer cell 38 line ARPE-19 (human retinal epithelial cells) which revealed that the complexes are moderately 39 cytotoxic to cancer cells over human cells although complex 5 was the most potent among all the 40 compounds. Theoretical studies carried out using DFT and TD-DFT at B3LYP level shows good 41 agreement with the experimental results. 42

⁴³ Keywords: Rhodium, Iridium, Azine Schiff-base ligands, Cytotoxicity

45 **1.** Introduction

The chemistry of half-sandwich organometallic complexes has evolved as a versatile 46 subject of research during the past few decades due to its wide application in biological and 47 medicinal fields [1-4]. Organometallic half-sandwich compounds of the general formula 48 [Cp*MCl(LL')] (M = Rh, Ir and LL' = N,N or N,O donor ligands) have been extensively studied 49 for their cytostatic activity, DNA binding, cellular uptake and as DNA intercelators [5-9]. 50 Rhodium and iridium complexes have also been investigated as an alternative to platinum based 51 drugs mainly because of their water solubility and lability towards ligand exchange [10, 11]. 52 Recently Therrien *et.al* reported dinuclear dithiolato bridged rhodium and iridium complexes 53 which exhibit cytotoxicity against human ovarian cancer cells lines (A2780 and A2780cisR) 54 [12]. C-H activated cyclometallated Rh(III) and Ir(III) complexes can effectively bind to DNA 55 and protein through electrostatic and hydrophobic interactions [13]. Iridium complexes of 56 dihydroxybipyridine are active catalysts for homogenous water oxidation under mild reaction 57 conditions [14]. Rh(III) and Ir(III) polypyridyl complexes exhibits strong antiproliferative 58 activity towards human cancer cell lines and are also capable of binding to DNA [15]. A number 59 of half-sandwich Ir(III) complexes have been reported by Sadler et al with chelating C, N and 60 pyridine ligands and N, N donor ligands which showed strong antiproliferative activity [16, 17]. 61

Pyridyl azines represent an important class of organic compounds with interesting properties having wide applications in various areas [18]. Open chain diazine Schiff base ligands linked by a single N-N bond are of great interest due to its rotational flexibility around the N-N bond and potential donor sites which can give rise to a rich variety of coordination compounds with different binding modes [19]. The N-N bridging ligand plays a crucial role in communicating the metal centers to form mononuclear, dinuclear or polynuclear complexes [20].

The diazine ligand has been employed into several transition metal azido and thiocyanato 68 systems namely Mn(II)-azido, Cd(II)-NCS to obtain several 1D, 2D and 3D polymers which 69 exhibit interesting magnetic properties [21, 22]. Dinuclear transition metal complexes of Cu, Zn, 70 Mn and Ni have been reported with bridging N-N diazine ligands which give rise to strong 71 ferromagnetic and antiferromagnetic coupling [23]. In the recent years our group has reported 72 many half-sandwich Ru(II), Rh(III) and Ir(III) complexes with azine ligands [24, 25]. In 73 continuation with our interest of these ligands herein we report four new azine Schiff base 74 ligands derived from 2-pyridylamidrazone and its corresponding rhodium and iridium half-75 sandwich metal complexes. The complexes were tested for their cytotoxic property to selectively 76 kill HT-29 cancer cell line against normal ARPE-19 cells. 77

NP

78 2. Experimental Section

79 2. 1. Physical methods and materials

All the reagents were purchased from commercial sources and used as received. Starting 80 materials RhCl₃.nH₂O, IrCl₃.nH₂O were purchased from Arora Matthey limited. 2-81 cyanopyridine, 2-hydroxybenzaldehyde, 2-hydroxyacetophenone, were obtained from Aldrich, 82 acetophenone and 2-hydroxy-4-methoxybenzaldehyde were obtained from Alfa-Aesar. The 83 solvents were purified and dried according to standard procedures [26]. All the reactions were 84 carried out under normal conditions. The starting precursor metal complexes $[Cp*MCl_2]_2$ (M = 85 Rh/Ir) were prepared according to the literature methods [27]. Infrared spectra were recorded on 86 a Perkin-Elmer 983 spectrophotometer by using KBr pellets in the range of 400-4000 cm⁻¹. ¹H 87 NMR spectra were recorded on a Bruker Avance II 400 MHz spectrometer using DMSO-d₆ and 88 CDCl₃ as solvents. Absorption spectra were recorded on a Perkin-Elmer Lambda 25 UV/Visible 89 spectrophotometer in the range of 200-800 nm at room temperature in acetonitrile. Elemental 90

analyses of the complexes were performed on a Perkin-Elmer 2400 CHN/S analyzer. Mass
spectra were recorded using Q-Tof APCI-MS instrument (model HAB 273). All these
mononuclear metal complexes were synthesized and characterized by using FT-IR, ¹H NMR,
UV-Vis, and Single-crystal X-ray diffraction techniques.

95 2. 2. Single-crystal X-ray structures analyses

The orange crystals of complexes (1), (3), (7) and (8) were obtained by slow diffusion of 96 hexane into acetone or DCM solution and yellow crystals of complex (4) was obtained by 97 diffusing hexane into DCM solution. Single crystal X-ray diffraction data for all the complexes 98 (1), (3) (4), (7) and (8) were collected on a Oxford Diffraction X calibur Eos Gemini 99 diffractometer at 293 K using graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The 100 strategy for the data collection was evaluated using the CrysAlisPro CCD software. Crystal data 101 were collected by standard "phi-omega scan" techniques and were scaled and reduced using 102 CrysAlisPro RED software. The structures were solved by direct methods using SHELXS-97 103 and refined by full-matrix least squares with SHELXL-97 refining on F^2 [28, 29]. The positions 104 of all the atoms were obtained by direct methods. Metal atoms in the complex were located from 105 the E-maps and non-hydrogen atoms were refined anisotropically. The hydrogen atoms bound to 106 the carbon were placed in geometrically constrained positions and refined with isotropic 107 temperature factors, generally 1.2 U_{eq} of their parent atoms. Crystallographic and structure 108 refinement details for the complexes are summarized in Table 1, and selected bond lengths and 109 bond angles are presented in Table S1. Figures 1-3 were drawn with ORTEP3 program. Figure 4 110 and Figures S3-S6 were drawn with MERCURY3.6 program [30]. 111

112 2.3. Biological studies

All complexes (1-8) were dissolved in DMSO at 100 mM and stored at -20 °C until 113 needed. The complexes were tested against cancer cell line HT-29 (human colorectal cancer), 114 and one non-cancer cell line ARPE-19 (human retinal epithelial cells). Cells were seeded into 96 115 well plates at 1 x 10^3 cells per well and incubated at 37 °C in a CO₂ enriched (5%), humidified 116 atmosphere overnight to adhere. The cells were exposed to a range of drug concentrations in the 117 range of 0-100 µM for four days before cell survival was determined using the MTT assay [31]. 118 To each well MTT (0.5 mg/ml) was added and was further incubated at 37 °C for 4 h. After this 119 the MTT was removed from each well and the formazan crystals formed were dissolved in 150 120 µM DMSO. The absorbance of the resulting solution was recorded at 550 nm using an ELISA 121 spectrophotometer. The percentage of cell inhibition was calculated by dividing the absorbance 122 of treated cell by the control value absorbance (exposed to 0.1 % DMSO). The results were 123 expressed in terms of IC₅₀ values (concentration required to kill 50 % cell) and all studies were 124 performed in triplicate. The results were also expressed in terms of a 'selectivity index' defined 125 as the IC_{50} of the non-cancer cell line ARPE divided by the IC_{50} of cancer cell lines [32]. Values 126 greater than 1 demonstrate that the compound is preferentially active against tumor cell 127 compared to normal cell lines. 128

129 2.4. Computational methodology

All the electronic structure calculations of the metal complexes (1-8) were carried out using the Gaussian 09 suite of program [33]. The geometries of the rhodium and iridium complexes were optimized in the gas phase employing the DFT-based B3LYP method with 6-31G** basis set for (H, C, N, O, Cl, F and P atoms and LANL2DZ [34, 35] for (Rh and Ir) atoms. Harmonic frequency calculations were carried out at the same level of theory to ensure that the optimized geometries were true minima on the potential energy surface (PES). Natural

Bond Orbital (NBO) analysis [36] was used to obtain the charge distribution on individual atoms and the d-orbital occupations of the metal present in the complexes. Time dependent-Density Functional Theory (TD-DFT) [37] has been employed to evaluate the absorption spectra and the electronic transitions of the metal complexes. In order to incorporate the effect of the solvent around the molecule, the Polarizable Continuum Model (PCM) [38] was used in TD-DFT calculations. The percentage contribution of molecular orbital analysis was carried out using Chemissian software package [39].

143 2.4. General procedure for preparation of ligands 1-4

144 2.4.1. The azine Schiff base ligands (L1-L4) were prepared by two step procedure.

In the first step 2-pyridylamidrazone was prepared, by following a reported procedure [40]. 2-cyanopyridine and hydrazine hydrate were dissolved and stirred in absolute ethanol overnight to give 2-pyridylamidrazone as yellow crystalline solid which was used in the next step without further purification (Scheme-1). In the second step (5 mmol) of aldehyde or ketone and 2-pyridylamidrazone (5 mmol) was refluxed in 10 ml ethanol for 5 hours (Scheme-2). The products obtained after cooling the solution were filtered off washed with cold methanol and diethyl ether and dried in vacuum.

- 152 Data for ligands (L1-L4)
- 153 2.4.2. (2-hydroxy-4-methoxybenzylidene)2-pyridylamidrazone (L1)
- 154 Color: Yellow needles; Yield: 88%; IR (KBr, cm⁻¹): 3487(s), 3380(s), 3333(m), 2964(m),
- 155 1627(s), 1587(m), 1566(m), 1394(m), 1340(s); ¹H NMR (400 MHz, CDCl₃): δ = 11.82 (s, 1H,
- 156 OH), 8.60 (s, 1H, $CH_{(imine)}$), 8.57 (d, 1H, J = 4.0 Hz, $CH_{(py)}$), 8.34 (d, 1H, J = 8.0 Hz, $CH_{(py)}$),
- 157 7.76 (t, 1H, $CH_{(py)}$), 7.35 (t, 1H, $CH_{(py)}$), 7.20 (d, 2H, J = 8.0 Hz, $CH_{(Ar)}$), 6.46-6.50 (m, 3H, NH_2 ,
- 158 CH_(Ar)), 3.80 (s, 3H, OMe); HRMS-APCI (m/z): 271.11 [M+H]⁺; UV–Vis {Acetonitrile, λ_{max} ,

- 159 nm ($\epsilon/10^{-4}$ M⁻¹ cm⁻¹)}: 218 (0.84), 314 (0.68), 342 (0.92), 355 (0.94); Anal. Calc. for C₁₄H₁₄N₄O₂
- 160 (270.29): C, 62.21; H, 5.22; N, 20.73. Found: C, 62.36; H, 5.35; N, 20.86%.
- 161 *2.4.3.* (2-hydroxybenzylidene)2-pyridylamidrazone (L2)
- 162 Color: Yellow needles; Yield: 92%; IR (KBr, cm⁻¹): 3477(s), 3363(s), 3340(s), 3043(m), 1626(s),
- 163 1576(m), 1567(m), 1473(m), 1337(m); ¹H NMR (400 MHz, CDCl₃): δ = 11.61 (s, 1H, OH), 8.59
- 164 (s, 1H, CH_(imine)), 8.54 (d, 1H, J = 4.0 Hz, CH_(py)), 8.28 (d, 1H, J = 8.0 Hz, CH_(py)), 7.74 (t, 1H,
- 165 $CH_{(py)}$), 7.33 (t, 1H, $CH_{(py)}$), 7.24-7.27 (m, 3H, NH₂, $CH_{(Ar)}$), 6.96 (d, 1H, J = 8.0 Hz, $CH_{(Ar)}$),
- 166 6.87 (t, 2H, CH_(Ar)); HRMS-APCI (m/z): 241.10 [M+H]⁺; UV–Vis {Acetonitrile, λ_{max} , nm ($\epsilon/10^{-4}$
- 167 $M^{-1} \text{ cm}^{-1}$ }: 219 (0.84), 247 (0.55), 349 (1.30), 361 (1.29); Anal. Calc. for C₁₃H₁₂N₄O (240.26):
- 168 C, 64.99; H, 5.03; N, 23.32. Found: C, 65.12; H, 5.18; N, 23.44%.
- 169 2.4.4. (1-(2-hydroxyphenyl)ethylidene)2-pyridylamidrazone (L3)
- 170 Color: Yellow crystalline solid; Yield: 95%; IR (KBr, cm⁻¹): 3482(s), 3339(s), 3056(m),
- 171 3003(m), 1615(s), 1562(m), 1507(m), 1300(m); ¹H NMR (400 MHz, CDCl₃): δ = 13.73 (s, 1H,
- 172 OH), 8.59 (d, 1H, J = 4.0 Hz, $CH_{(py)}$), 8.36 (d, 1H, J = 8.0 Hz, $CH_{(py)}$), 7.79 (t, 1H, $CH_{(py)}$), 7.58
- 173 (t, 1H, $CH_{(py)}$), 7.21-7.28 (m, 3H, NH_2 , $CH_{(Ar)}$), 6.98 (d, 2H, J = 8.0 Hz, $CH_{(Ar)}$), 6.89 (t, 1H,
- 174 CH_(Ar)), 2.62 (s, 3H, CH₃); HRMS-APCI (m/z): 255.12 [M+H]⁺; UV–Vis {Acetonitrile, λ_{max} , nm
- 175 $(\epsilon/10^{-4} \text{ M}^{-1} \text{ cm}^{-1})$: 217 (1.21), 303 (0.74), 344 (0.95); Anal. Calc. for C₁₄H₁₄N₄O (254.29): C,
- 176 66.13; H, 5.55; N, 22.03. Found: C, 66.25; H, 5.68; N, 22.21%.
- 177 2.4.5. (1-phenylethylidene)2-pyridylamidrazone (L4)
- 178 Color: Yellow crystalline solid; Yield: 92%; IR (KBr, cm⁻¹): 3450(s), 3331(s), 3056(m),
- 179 3009(m), 1604(s), 1568(m), 1445(m), 1362(m); ¹H NMR (400 MHz, CDCl₃): δ = 8.58 (d, 1H, J
- 180 = 4.0 Hz, $CH_{(py)}$), 8.23 (d, 1H, J = 8.0 Hz, $CH_{(py)}$), 7.71 (t, 1H, $CH_{(py)}$), 7.30 (t, 1H, $CH_{(py)}$), 7.21-
- 181 7.28 (m, 3H, NH₂, CH_(Ar)), 6.93 (m, 3H, CH_(Ar)), 6.89 (t, 1H, CH_(Ar)), 2.39 (s, 3H, CH₃); HRMS-

182 APCI (m/z): 239.13 [M+H]⁺; UV–Vis {Acetonitrile, λ_{max} , nm ($\epsilon/10^{-4}$ M⁻¹ cm⁻¹)}: 225 (0.21), 327

183 (0.29); Anal. Calc. for C₁₄H₁₄N₄ (238.29): C, 70.57; H, 5.92; N, 23.51. Found: C, 70.72; H, 6.03;
184 N, 23.62%.

185 2.5. General procedure for preparation of metal complexes (1-8)

A mixture of metal precursor $[Cp*MCl_2]_2$ (M = Rh/Ir) (0.1 mmol), azine Schiff-base ligands (L1-L4) (0.2 mmol) and 2.5 equivalents of NH₄PF₆ in dry methanol (10 ml) was stirred at room temperature for 8 hours (Scheme-3). The solvent was evaporated under reduced pressure, and the residue was dissolved in dichloromethane and filtered over celite to remove excess salt. The filtrate was reduced to 2 ml and diethyl ether was added to induce precipitation. The yellow colored precipitate, which formed, was filtered and washed with diethyl ether and dried in vacuum.

193 $2.5.1. [Cp*Rh(L1)Cl]PF_6(1)$

Yield: 56 mg (40%); IR (KBr, cm⁻¹): 3460(m), 3237(m), 2926(w), 1630(s), 1595(m), 1296(m), 194 846(s); ¹H NMR (400 MHz, CDCl₃): $\delta = 10.5$ (s, 1H, OH), 9.02 (s, 1H, CH(_{imine})), 8.76 (d, 1H, J 195 = 4.0 Hz, $CH_{(py)}$), 8.54 (d, 1H, J = 4.0 Hz, $CH_{(py)}$), 8.13 (t, 1H, $CH_{(py)}$), 7.76 (t, 1H, $CH_{(py)}$), 7.41 196 (d, 1H, J = 8.0 Hz, CH_(Ar)), 7.38 (s, 2H, NH₂), 6.53 (d, 1H, J = 8.0 Hz, CH_(Ar)), 6.50 (s, 1H, 197 CH_(Ar)), 3.81 (s, 3H, OMe), 1.58 (s, 15H, CH_(Cp*)); HRMS-APCI (m/z): 507.12 [M-PF₆-HCl]⁺; 198 UV–Vis {Acetonitrile, λ_{max} , nm ($\epsilon/10^{-4}$ M⁻¹ cm⁻¹)}: 233 (0.98), 277 (0.57), 352 (0.42); Anal. 199 Calc. for C₂₄H₂₉ClF₆N₄O₂PRh (688.84): C, 41.85; H, 4.24; N, 8.13. Found: C, 41.96; H, 4.16; N, 200 8.23%. 201

202 $2.5.2. [Cp*Ir(L1)Cl]PF_6(2)$

203 Yield: 70 mg (45%); IR (KBr, cm⁻¹): 3447(m), 3241(m), 2925(m), 1630(s), 1610(m), 1293(m),

204 846(s); ¹H NMR (400 MHz, CDCl₃): δ = 10.4 (s, 1H, OH), 9.02 (s, 1H, CH_(imine)), 8.77 (d, 1H, J

- 205 = 4.0 Hz, $CH_{(py)}$), 8.51 (d, 1H, J = 4.0 Hz, $CH_{(py)}$), 8.17 (t, 1H, $CH_{(py)}$), 7.78 (t, 1H, $CH_{(py)}$), 7.42
- (d, 1H, J = 8.0 Hz, $CH_{(Ar)}$), 7.39 (s, 2H, NH₂), 6.56 (d, 1H, J = 8.0 Hz, $CH_{(Ar)}$), 6.54 (s, 1H, 206
- $CH_{(Ar)}$, 3.87 (s, 3H, OMe), 1.62 (s, 15H, $CH_{(Cp^*)}$); HRMS-APCI (m/z): 597.18 [M-PF₆-HCl]⁺; 207
- UV-Vis {Acetonitrile, λ_{max} , nm ($\epsilon/10^{-4}$ M⁻¹ cm⁻¹)}: 266 (0.36), 347 (0.29); Anal. Calc. for 208
- C₂₄H₂₉ClF₆N₄O₂PIr (778.14): C, 37.04; H, 3.76; N, 7.20. Found: C, 37.19; H, 3.89; N, 7.31%. 209
- 2.5.3. $[Cp*Rh(L2)Cl]PF_6(3)$ 210
- Yield: 52 mg (39%); IR (KBr, cm⁻¹): 3422(m), 3310(w), 2923(w), 1636(s), 1603(m), 1457(m), 211
- 845(s); ¹H NMR (400 MHz, CDCl₃): δ = 10.1 (s, 1H, OH), 9.11 (s, 1H, CH_(imine)), 8.78 (d, 1H, J 212
- = 4.0 Hz, $CH_{(py)}$), 8.49 (d, 1H, J = 8.0 Hz, $CH_{(py)}$), 8.14 (t, 2H, $CH_{(py)}$), 7.78 (t, 1H, $CH_{(Ar)}$), 7.60 213
- (d, 1H, J = 8.0 Hz, CH_(Ar)), 7.38 (s, 2H, NH₂), 6.92-7.01 (m, 2H, CH_(Ar)), 1.58 (s, 15H, CH_(Cp*)); 214
- HRMS-APCI (m/z): 477.12 [M-PF₆-HCl]⁺; UV–Vis {Acetonitrile, λ_{max} , nm ($\epsilon/10^{-4}$ M⁻¹ cm⁻¹)}: 215
- 235 (1.55), 283 (0.79), 348 (1.00); Anal. Calc. for C₂₃H₂₇ClF₆N₄OPRh (658.81): C, 41.93; H, 216
- 4.13; N, 8.50. Found: C, 42.08; H, 4.25; N, 8.68%. 217
- 2.5.4. $[Cp*Ir(L2)Cl]PF_6(4)$ 218
- Yield: 52 mg (34%); IR (KBr, cm⁻¹): 3479(s), 3329(s), 2924(w), 1642(s), 1618(m), 1602(m), 219 842(s); ¹H NMR (400 MHz, CDCl₃): δ = 10.1 (s, 1H, OH), 9.13 (s, 1H, CH_(imine)), 8.80 (d, 1H, J 220 = 4.0 Hz, $CH_{(py)}$), 8.56 (d, 1H, J = 8.0 Hz, $CH_{(py)}$), 8.18 (t, 2H, $CH_{(py)}$), 7.80 (t, 1H, $CH_{(Ar)}$), 7.64 221 (d, 1H, J = 8.0 Hz, CH_(Ar)), 7.40 (s, 2H, NH₂), 6.99-7.35 (m, 2H, CH_(Ar)), 1.63 (s, 15H, CH_(Cp*));
- 222
- HRMS-APCI (m/z): 567.17 [M-PF₆-HCl]⁺; UV–Vis {Acetonitrile, λ_{max} , nm ($\epsilon/10^{-4}$ M⁻¹ cm⁻¹)}: 223
- 291 (0.62), 344 (0.78); Anal. Calc. for C₂₃H₂₇ClF₆N₄OPIr (748.12): C, 36.93; H, 3.64; N, 7.49. 224
- Found: C, 37.11; H, 3.83; N, 7.62%. 225
- 226 2.5.5. $[(Cp*Rh(L3)Cl]PF_6(5)]$

- 227 Yield: 58 mg (43%); IR (KBr, cm⁻¹): 3452(s), 3318(s), 2924(m), 1648(s), 1600(m), 1566(m),
- 228 1489(m), 842(s); ¹H NMR (400 MHz, DMSO-d₆): δ = 12.5 (s, 1H, OH), 8.96 (d, 1H, J = 4.0 Hz,
- 229 $CH_{(py)}$), 8.33-8.38 (m, 3H, $CH_{(py)}$), 7.91 (t, 1H, $CH_{(Ar)}$), 7.86 (d, 1H, J = 8.0 Hz, $CH_{(Ar)}$), 7.48 (t,
- 230 1H, J = 8.0 Hz, $CH_{(Ar)}$), 7.01-7.06 (m, 3H, NH_2 , $CH_{(Ar)}$), 2.48 (s, 3H, CH_3), 1.59 (s, 15H,
- 231 CH_(Cp*)); HRMS-APCI (m/z): 491.14 [M-PF₆-HCl]⁺; UV–Vis {Acetonitrile, λ_{max} , nm ($\epsilon/10^{-4}$ M⁻¹
- 232 cm⁻¹)}: 229 (0.95), 268 (0.59), 332 (0.32); Anal. Calc. for $C_{24}H_{29}ClF_6N_4OPRh$ (672.84): C,
- 233 42.84; H, 4.34; N, 8.33. Found: C, 42.98; H, 4.26; N, 8.48%.
- 234 2.5.6. $[Cp*Ir(L3)Cl]PF_6(6)$
- Yield: 65 mg (42%); IR (KBr, cm⁻¹): 3460(m), 3237(m), 2926(w), 1630(s), 1595(m), 1296(m), 235 846(s), 3456(m), 3369(m), 2925(m), 1649(s), 1618(m), 1598(m), 1306(m), 845(s); ¹H NMR 236 (400 MHz, DMSO-d₆): $\delta = 12.3$ (s, 1H, OH), 8.94 (d, 1H, J = 4.0 Hz, CH_(py)), 8.44 (d, 1H, J =237 238 4.0 Hz, $CH_{(pv)}$), 8.35 (t, 2H, $CH_{(pv)}$), 7.90 (t, 1H, $CH_{(Ar)}$), 7.86 (d, 1H, J = 8.0 Hz, $CH_{(Ar)}$), 7.48 (t, 1H, CH_(Ar)), 7.01-7.06 (m, 3H, NH₂, CH_(Ar)), 2.46 (s, 3H, CH₃), 1.58 (s, 15H, CH_(Cp*)); HRMS-239 APCI (m/z): 581.19 [M-PF₆-HCl]⁺; UV–Vis {Acetonitrile, λ_{max} , nm ($\epsilon/10^{-4}$ M⁻¹ cm⁻¹)}: 209 240 (1.27), 263 (0.66), 330 (0.36); Anal. Calc. for C₂₄H₂₉ClF₆N₄OPIr (762.15): C, 37.82; H, 3.84; N, 241 7.35. Found: C, 37.96; H, 3.96; N, 7.44%. 242
- 243 2.5.7. $[(Cp*Rh(L4)Cl]PF_6(7)]$
- 244 Yield: 54 mg (41%); IR (KBr, cm⁻¹): 3441(s), 3137(m), 2961(w), 1640 (s), 1593(m), 1464(m),
- 245 841(s); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.96 (d, 1H, J = 4.0 Hz, CH_(py)), 8.33-8.37 (m, 2H,
- 246 $CH_{(py)}$), 7.88 (t, 1H, $CH_{(py)}$), 7.81 (d, 1H, J = 8.0 Hz, $CH_{(Ar)}$), 7.46 (t, 1H, $CH_{(Ar)}$), 7.23-7.28 (m,
- 247 2H, $CH_{(Ar)}$), 6.97-7.02 (m, 3H, NH_2 , $CH_{(Ar)}$), 2.47 (s, 3H, CH_3), 1.59 (s, 15H, $CH_{(Cp^*)}$); HRMS-
- 248 APCI (m/z): 511.12 [M-PF₆]⁺; UV–Vis {Acetonitrile, λ_{max} , nm ($\epsilon/10^{-4}$ M⁻¹ cm⁻¹)}: 229 (1.37),

- 249 265 (0.37), 400 (0.22); Anal. Calc. for C₂₄H₂₉ClF₆N₄PRh (656.84): C, 43.89; H, 4.45; N, 8.53.
- 250 Found: C, 44.02; H, 4.39; N, 8.61%.
- 251 2.5.8. $[Cp*Ir(L4)Cl]PF_6(8)$
- 252 Yield: 65 mg (43%); IR (KBr, cm⁻¹): 3458(s), 3383(s), 2922(m), 1643(s), 1603(m), 1567(m),
- 253 1447(m), 844(s); ¹H NMR (400 MHz, DMSO-d₆): $\delta = 8.97$ (d, 1H, J = 4.0 Hz, CH_(py)), 8.31-8.34
- 254 (m, 2H, $CH_{(py)}$), 7.85 (t, 1H, $CH_{(py)}$), 7.79 (d, 1H, J = 8.0 Hz, $CH_{(Ar)}$), 7.44 (t, 1H, $CH_{(Ar)}$), 7.19-
- 255 7.23 (m, 2H, $CH_{(Ar)}$), 6.99-7.03 (m, 3H, NH_2 , $CH_{(Ar)}$), 2.46 (s, 3H, CH_3), 1.59 (s, 15H, $CH_{(Cp^*)}$);
- 256 HRMS-APCI (m/z): 601.17 [M-PF₆]⁺; UV–Vis {Acetonitrile, λ_{max} , nm ($\epsilon/10^{-4}$ M⁻¹ cm⁻¹)}: 256
- 257 (0.53), 361 (0.20); Anal. Calc. for C₂₄H₂₉ClF₆N₄PIr (746.15): C, 38.63; H, 3.92; N, 7.51. Found:

NAS

258 C, 38.74; H, 4.03; N, 7.63%.

259 **3.** Results and discussion

260 *3.1.* Synthesis of ligands and complexes

The azine Schiff-base ligands (L1-L4) were prepared by the reaction of 2-261 pyridylamidrazone and the respective aldehyde or ketone in absolute ethanol medium. The 262 complexes (1-8) were synthesized by the reaction of Rh/Ir metal precursors with the azine 263 Schiff-base ligands. The cationic complexes were isolated with PF₆ counter ion. All these metal 264 complexes were obtained in good yields and are yellow in color. They are stable in air as well as 265 in solid state, and are non-hygroscopic. These complexes are soluble in common organic 266 solvents such as dichloromethane, acetonitrile and acetone but insoluble in diethyl ether and 267 hexane. All the synthesized ligands and complexes were fully characterized by spectroscopic 268 techniques. 269

270 *3.2. Spectroscopic characterization of ligands*

The infrared spectra of the free ligand shows characteristic stretching frequencies for 271 NH₂, OH, C=N and C=C groups. The NH₂ and OH stretching frequencies for the azine ligand 272 appeared in the range of 3300-3500 cm⁻¹. The C=C and C=N stretching frequencies were 273 observed in the range of 1550-1626 cm⁻¹. The proton NMR spectra of the ligands displayed 274 signals in the range of 7.30-8.57 ppm assignable to the protons of the pyridine ring. The imine 275 protons for L1 and L2 are located at 8.60 and 8.59 ppm respectively. The methoxy proton signal 276 was observed as a singlet for L1 at 3.80 ppm. The methyl protons of L3 and L4 were observed as 277 a singlet at 2.62 and 2.39 ppm respectively. The hydroxyl proton resonance for the ligands 278 appeared in the range of 11.5-11.9 ppm. The aromatic protons of the ligand appeared as doublet, 279 triplet and multiplet in the range of 6.21-7.29 ppm. The [M+H]⁺ molecular ion peak for the 280 ligands are shown in the experimental section which are found to be in good agreement with the 281 expected range. The electronic spectra of the free ligands are shown in (Figure S1). The 282 electronic spectra of the free ligands show absorption bands in the range of 210-360 nm. The 283 band in the range of 210-250 nm can be assigned as π - π * and n- π * transition. The band around 284 300-370 nm is due to the intermolecular charge transfer transition within the whole molecule 285 [41]. 286

287 3.3. Spectroscopic characterization of complexes

The IR spectra of the complexes show sharp bands around 842-846 cm⁻¹ due to the P-F stretching frequency of the counter ion [42]. The OH and NH₂ stretching vibrations in the complexes were found around 3300-3500 cm⁻¹. The retaining of the OH and NH₂ stretching frequencies indicates that they are not involved in bonding to the metal center. The strong absorption band for $v_{C=N}$ around 1630-1650 cm⁻¹ at higher wave numbers as compared to the free

ligand around 1615-1626 cm⁻¹ suggest that the coordination to the metal occurs through the
imine and pyridine nitrogen.

The proton NMR spectra of the metal complexes show that the ligand resonance signals 295 are shifted downfield as compared to that of the free ligand. These signals are shifted downfield 296 because of the ligand coordination to the metal atom. The imine proton signal was observed in 297 the range of 9.0-9.13 ppm for complexes (1-4). The hydroxyl proton resonance for the 298 complexes appeared in the range of 10.1-12.5 ppm respectively. The appearance of the hydroxyl 299 proton signal indicates that the hydroxyl group is not involved in bonding to the metal atom. The 300 pyridine ring protons also showed downfield signals comprising of doublet and triplet in the 301 range of 7.75-8.96 ppm. The NH_2 protons were observed as a singlet for complexes (1-4) in the 302 range of 7.35-7.37 ppm respectively. The methoxy proton resonance for complexes (1 and 2) 303 appeared as a singlet at 3.81 and 3.83 ppm. The aromatic proton signals for complexes appeared 304 in the range of 6.50-7.86 ppm as doublet, triplet and multiplet. The methyl proton signal for 305 complexes (5-8) appeared as a singlet around 2.46-2.48 ppm respectively. In addition to the 306 signals for the ligand protons, a sharp singlet was observed for all the complexes between 1.58-307 1.63 ppm respectively corresponding to the methyl protons of the Cp* ring. In the mass spectra 308 of the complexes (1-6) the peaks at m/z: 507.12, m/z: 597.18, m/z: 477.12, m/z: 567.17, m/z: 309 491.13 and m/z: 581.20 can be assigned as [M-PF₆-HCl]⁺ ion peaks respectively. Whereas, the 310 mass spectra of the complex 7 and 8 displayed molecular ion peaks at m/z: 511.12 and 601.17 311 which corresponds to the $[M-PF_6]^+$ ion. 312

The electronic spectra of the complexes were recorded in acetonitrile at 10^4 M concentration at room temperature and the plot is shown in (Figure S2). The electronic spectra of complexes display two absorption band in the higher energy region around 210-330 nm. The

bands in the higher energy UV region can be assigned as ligand centered or intra ligand π - π * and n- π *transition. The Rh(III) and Ir(III) complexes provides filled d π (t_{2g}) orbitals which can interact with low lying π * orbitals (C=N) of the ligand. The band in the lower energy region around 345-405 nm can be assigned as Rh (d π) or Ir (d π) to π * ligand metal to ligand charge transfer (MLCT) transition [43].

321 *3.4. Molecular structures of complexes*

The molecular structures of some of the respective complexes have been elucidated by 322 single crystal X-ray analysis. Suitable single crystals were attached to a glass fibre and 323 transferred into the Oxford Diffraction Xcalibur Eos Gemini diffractometer. The crystallographic 324 details and structure refinement details are summarized in Table 1. The geometrical parameters 325 around the metal atom involving ring centroid are listed in Table S1. In all these complexes the 326 ligand is coordinated to the metal atom in a similar manner with $N \cap N$ binding mode. Complex 327 (1) and (8) crystallized in triclinic system with space group PT. Complex (8) crystallized with 328 one PF_6 and one chloride counter ion. Complex (3) and (4) crystallized in monoclinic system 329 with space group $P2_1/c$ whereas complex (7) crystallized in monoclinic system with space group 330 P2₁. 331

All these complexes display a typical three-legged piano stool geometry around the metal center with coordination sites occupied by one chloride group, two σ bonded nitrogen atoms from chelating azine ligand and the pentamethylcyclopentadienyl (Cp*) ring in η^5 manner. The metal atom in all these complexes is situated in a pseudo-octahedral arrangement with the azine ligand coordinating through the pyridine and azine nitrogen atoms forming a five membered metallocycle. In complexes (1), (3), (4) and (7) the M-N bond length {2.088(5), 2.099(3), 2.098(4) and 2.102(4) Å} from pyridine is comparatively shorter than the azine nitrogen-metal

distances $\{2.135(5), 2.116(3), 2.105(4) \text{ and } 2.159(4) \text{ Å}\}$, which are similar to those, reported 339 with similar complexes [24, 44]. However in complex (8) the metal-nitrogen distance from 340 pyridine $\{2.102(5) \text{ Å}\}$ is comparatively larger than azine nitrogen-metal distance, which is 341 $\{2.096(5) \text{ Å}\}$. The C=N bond length of the coordinated nitrogen in complex (1), (3), (4) and (8) 342 is longer than that of the uncoordinated C=N (Table S1) which could be due to the back bonding 343 of electron from metal $(d\pi)$ to π^* orbital of the ligand. But in complex (7), a reverse pattern has 344 been observed where the C=N bond length of the coordinated nitrogen $\{1.346(7) \text{ Å}\}$ is shorter 345 than uncoordinated C=N {1.358(7) Å} bond. The average M-C distances are {2.159 (1), 2.1534 346 (3), 2.1616 (4), 2.1528 (7) and 2.1726 (8) Å} while the distance between the metal to Cp* 347 centroid ring is in the range of 1.758–1.793 Å respectively. The M-Cl bond lengths {2.3976(15) 348 (1), 2.4172(9) (3), 2.4190(12) (4), 2.4242(16) (7) and 2.4220(17) (8) shows no significant 349 differences and is comparable to previously reported values (Table 1) [45-48]. The bite angle 350 N(1)-Rh(1)-N(2) values are 75.10(19) (1), 75.09(11) (3), and 75.44(17) (7) whereas in complex 351 (4) and (8) the bite angle values are N(1)-Ir(1)-N(2) values are 74.99(14) (4) and 75.26(18) 352 respectively which probably indicates an inward bending of the coordinated pyridyl and azine 353 group [49]. The bond angles N(1)-M-Cl(1) and N(2)-M-Cl(1) in complexes are comparable to 354 the piano stool arrangement about the metal atom and is comparable to reported values for 355 closely related systems [50-52]. Further the crystal packing in complex (1) is stabilized by weak 356 intermolecular hydrogen bonding C-H·····O (2.702 Å) between the hydrogen atom from methoxy 357 group and oxygen atom of the hydroxyl group and C-H·····Cl (2.793 Å) interaction between CH₃ 358 group of Cp* and chloride atom (Figure S3). These interactions play a significant role in the 359 formation of supramolecular motifs. 360

361 On the other hand in the crystal structure of complex (3) and (4) two types of intramolecular hydrogen bonding has been observed; the first one between the uncoordinated 362 nitrogen atom of the azine linkage with the hydrogen atom of the hydroxyl group O-H....N 363 (1.916 and 1.908 Å) and the second between the hydrogen atom from NH₂ and uncoordinated 364 azine nitrogen atom N-H·····N (2.323 and 2.328 Å) (Figure 4). The selected hydrogen bonding 365 distances and angles for complex (3) and (4) are given in (Table 2). Also the crystal packing in 366 complex (3) and (4) is further stabilized by two different C-H·····Cl interaction between the Cl 367 atom attached to metal M (where M = Rh/Ir) with hydrogen atom of pyridine ring and NH_2 368 (Figure S4). Complex (7) shows C-H····· π (2.832 and 2.937 Å) interactions between the methyl 369 hydrogen atom and Cp* moiety and between pyridine ring and hydrogen atom of Cp* group 370 respectively (Figure S5). Interestingly the crystal packing in complex (8) leads to a dimeric unit 371 via intermolecular C-H·····Cl interaction between the chloride counter ion and hydrogen atom 372 from pyridine ring, NH₂ and Cp* group (Figure S6). 373

374 *3.5. Chemosensitivity studies*

The complexes (1-8) were tested for their cytotoxicity against cancer cell line HT-29 375 (human colorectal cancer), and non-cancer cell line ARPE-19 (human retinal epithelial cells). 376 The response of the cell lines HT-29 to the test complexes and cisplatin (1-8) is presented in 377 graphical form in Figure 5 and in tabular form in Table 3. All the complexes tested were found to 378 379 be active against HT-29 cancer cell line (IC₅₀ < 30 μ M). Complex (5) was the most potent among all the complexes with (IC₅₀ value of 96.93 \pm 5.31 μ M). However all the complexes were less 380 potent than cisplatin (IC₅₀ value of $0.25 \pm 0.11 \mu$ M against HT-29). The selectivity index (SI) 381 defined as the ratio of IC₅₀ values in ARPE19 cells divided by the IC₅₀ value of cancer cell line 382 demonstrates that all the complexes are effective against cancer cell with SI values ranging from 383

1.01 to 2.11 (Table S2). Moreover although complex (5) showed more selectivity than other
complexes for HT-29 cancer cell, however its selectivity was significantly lower than cisplatin
where SI value is 25.64 (Figure 6).

387 *3.6. Optimized geometry*

The comparison of the geometric parameters (selected bond lengths and bond angles) of 388 the optimized structures and the crystal structures of the complexes (1, 3, 4, 7 and 8) are listed in 389 Table S3. All the metal complexes are found to be closed shell structures. The calculated bond 390 lengths and the bond angles of the complexes are in good agreement with the experimental data 391 indicating the reliability of the theoretical method (B3LYP/6-31G**/LanL2DZ) used in the 392 present study. It should be noted that for complexes (3, 4, 7 and 8), the M(1)-N(2) (where M = 393 Rh/Ir) bond length is slightly longer than the M(1)-N(1) bond length whereas for complex (1), a 394 reverse pattern has been observed (Table S3). 395

396 *3.7. Charge distribution*

The charges on the individual atoms for the metal complexes obtained from NBO 397 analysis are listed in Table S4. The charges on the Rh atom in the complexes (1), (3), (5) and (7) 398 are 0.136, 0.200, 0.216 and 0.214 e whereas the charges on Ir for complexes (2), (4), (6) and (8) 399 are 0.186, 0.252, 0.268 and 0.214 e respectively. These NBO charges on Rh and Ir are 400 comparatively lower than their formal charge of +3 which suggests that the ligand transfers their 401 negative charge to the respective rhodium and iridium metal on complex formation. In metal 402 complexes (1-8), the charge on Cl ranges between -0.439 e (Complex-1) to -0.394 e (Complex-403 4). In isolated ligands, the charge on N(1) ranges between -0.416 and -0.417 e whereas for N(2)404 it ranges between -0.324 e and -0.348 e. It should be noted that for isolated ligands as well as for 405 406 complexes (1-8), the negative charges on N(1) (-0.385, -0.381, -0.372, -0.373, -0.369, -0.398, -

0.368 and -0.373 e) are slightly higher than the charges on N(2) (-0.258, -0.253, -0.284, -0.283, -407 0.305, -0.297, -0.311 and -0.305 e). On complex formation, the negative charge on the N(1) and 408 N(2) reduces slightly giving an indication of the charge transfer on Rh and Ir in metal 409 complexes. The population of the 4d (4d_{xy}, 4d_{xz}, 4d_{yz}, 4d_{x²-y} and 4d_z²) orbital of Rh complexes 410 and 5d orbital of Ir complexes are shown in Table S5. The orbital occupations of each orbital 411 $(nd_{xy}, nd_{xz}, nd_{yz}, nd_{x}^{2})^{2}$ and nd_{z}^{2} for all the complexes are comparatively higher in rhodium 412 complexes than iridium complexes. In free Rh(III) and Ir(III) state, the population of nd_{xv}, nd_{xz} and 413 ndyz are 2.0, 2.0 and 2.0 e and the other two orbitals remain vacant. But on complex formation, the 414 population on nd_{xy} , nd_{xz} and nd_{yz} orbital gets reduced whereas the nd_{x2-y2} and nd_{z}^{2} orbitals gain 415 some population as indicated in Table S5. For most of the complexes, the population of 4d and 416 5d orbital containing the same ligand follow similar pattern of filling, except for the complexes 417 containing ligand L1 where the nd_{xz} orbital population is slightly lower and nd_{x-y}^{2-2} is higher as 418 compared to the other complexes. 419

420 3.8. Frontier molecular orbitals and absorption spectra

The molecular orbital representation of the complexes along with their HOMO, LUMO 421 energies and HOMO-LUMO energy gaps are shown in Figure 7. The HOMO-LUMO energy gap 422 can be used as an important parameter in analyzing the chemical reactivity and kinetic stability 423 of a molecule. This energy gap is also related to the hardness/softness of a chemical species [53]. 424 The lower HOMO-LUMO energy gap is a suitable condition where a molecule can be excited 425 easily and thereby increasing its reactivity and decreasing its kinetic stability whereas higher 426 energy gap can lead to more kinetic stability but less reactivity. The HOMO-LUMO energy gaps 427 for all the complexes (1-8) are found to be 3.20, 2.98, 3.63, 3.46, 3.61, 3.60, 3.68 and 3.59 eV 428 429 respectively. The gap is slightly lower for the iridium complexes as compared to rhodium

complexes containing the same ligand indicating the reactivity of Ir complexes over the
complexes containing Rh metal. The % contribution of molecular orbital analysis as shown in
Table S6, predicts that the most percentage of HOMO is located on the ligand itself except for
complex (2) and (8) where as it is mostly present on the Ir metal. On the other hand, LUMO is
located on the ligand for complexes (1) (about 97%), (2) (91%), (4) (89%), (6) (92%) and (8)
(69%) whereas for complexes (3) (40%), (5) (35%) and (7) (38%), it is located on the Rh metal.

The electronic absorption spectra were calculated using the TD-DFT method in 436 acetonitrile solvent employing PCM model. The calculated and the experimental absorption data, 437 HOMO-LUMO energy gaps, and the character of electronic transitions are listed in Table 4. The 438 $H \rightarrow L$ transitions for complexes (1), (4) and (6) occurring at 417, 444 and 441 nm corresponds to 439 ILCT character, for complexes (2) and (8) at 463 and 440 nm corresponds to MLCT character 440 whereas for complexes (3), (5) and (7) at 532, 519 and 518 nm corresponds to LMCT character. 441 These MLCT character can be assigned for $d\pi(M) \rightarrow \pi^*(L)$ transitions whereas the ILCT 442 character are for $\pi \rightarrow \pi \ast$ transitions. It should be noted that all LMCT transitions are occurring at 443 higher wavelength regions (i.e. > 500 nm). In good agreement with the experimental data, the 444 TD-DFT calculations shows few MLCT transitions at 358 nm complex (2), 332 nm, complex 445 (4), 334 nm complex (6) and 372, 358 nm complex (8). However, in the range between 340-400 446 nm, few LMCT, ILCT and LLCT transitions have also been observed (Table 4). 447

448

4. Conclusion

In summary, we have synthesized four new azine Schiff-base ligands and its rhodium and iridium half-sandwich complexes. All these complexes and ligands were full characterized by various spectroscopic techniques. The ligands under study preferably bind to the metal in a bidentate $N \cap N$ fashion using pyridine and one azine nitrogen atom. Our attempt to synthesize

453 dinuclear rhodium and iridium complexes with NN' and NO bonding was however unsuccessful irrespective of molar ratio of metal to ligand where as in the presence of base, it leads to 454 decomposition of the reaction. These complexes possess some important intramolecular and 455 intermolecular hydrogen bonding and also possess some weak non-covalent interactions, 456 particularly C-H·····Cl and C-H····· π interactions. Chemosensitivity activity of the complexes 457 against HT-29 cancer cell demonstrates that the complexes are active however complex (5) was 458 found to be the most potent among all other complexes. Theoretical studies reveal that the 459 HOMO-LUMO energy gap is lower for iridium complexes indicating better reactivity over the 460 rhodium complexes. TD-DFT calculations were carried out in order to evaluate the electronic 461 transitions occurring in the metal complexes, which are in good agreement with the experimental 462 results. The charge distribution analysis (using NBO analysis) of these complexes helps to 463 464 understand how the charges on nitrogen atom (which are coordinating to the metal) are delocalized on complex formation. Especially, the NBO charges, on rhodium and iridium 465 confirm that the ligands transfer their negative charge to the respective metal on complex 466 formation. The lower HOMO-LUMO energy gap leads to greater chemical reactivity but lesser 467 kinetic stability and vice versa. Furthermore, the nature of HOMO and LUMO illustrate the 468 electronic origin of the lowest energy transition and the resulting electronic reorganization. 469 Moreover, the molecular orbital analysis was helpful to understand and locate the % contribution 470 of HOMO and LUMO on different fragments of the complexes, which is otherwise not possible 471 to predict from experimental data. 472

473 Acknowledgements

474 Sanjay Adhikari and Dipankar Sutradhar thanks UGC, New Delhi, India for providing financial
475 assistance in the form of university fellowship (UGC-Non-Net). We thank DST-PURSE

476	SCXRD, NEHU-SAIF, Shillong, India for providing Single crystal X-ray analysis and other					
477	spectral studies. AKC thanks Computer centre, NEHU, for computational facilities.					
478	Supplementary material					
479	CCDC 1477976 (1), 1477977 (3), 1477978 (4), 1477979 (7) and 1477980 (8) contains					
480	the supplementary crystallographic data for this paper. These data can be obtained free of charge					
481	via <u>www.ccdc.cam.ac.uk/data_request/cif</u> , by e-mailing <u>data_request@ccdc.cam.ac.uk</u> , or by					
482	contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ,					
483	UK; Fax: +44 1223 336033.					
484						
485	References					
486	[1] G. Gasser, I. Ott, N. Metzler-Nolte, J. Med. Chem. 54 (2011) 3.					
487	[2] L. Ronconi, P.J. Sadler, Coord. Chem. Rev. 251 (2007) 1633.					
488	[3] Y.K. Yan, M. Melchart, A. Habtemariam, P.J. Sadler, Chem. Commun. (2005) 4764.					
489	[4] B. Therrien, Coord. Chem. Rev. 253 (2009) 493.					
490	[5] U. Sliwinska, F.P. Pruchnik, S. Ulaszewski, M. Latocha, D. Nawrocka-Musial,					
491	Polyhedron 29 (2010) 1653.					
492	[6] M.A. Scharwitz, I. Ott, Y. Geldmacher, R. Gust, W.S. Sheldrick, J. Organomet. Chem.					
493	693 (2008) 2299.					
494	[7] M.A. Nazif, JAmade Bangert, I. Ott, R. Gust, R. Stoll, W.S. Sheldrick, J. Biol. Inorg.					
495	Chem. 103 (2009) 1405.					
496	[8] M. Gras. B. Therrien, G. Suss-Fink, A. Casini, F. Edafe, P.J. Dyson, J. Organomet.					
497	Chem. 695 (2010) 1119.					
	23					

- 498 [9] Y. Geldmacher, M. Oleszak, W.S. Sheldrick, Inorg. Chim. Acta 393 (2012) 84.
- 499 [10] R. Bieda, I. Ott, M. Dobroschke, A. Prokop, R. Gust, W.S. Sheldrick, J. Biol. Inorg.
 500 Chem. 103 (2009) 698.
- 501 [11] Z. Liu, P.J. Sadler, Acc. Chem. Res. 47 (2014) 1174.
- 502 [12] G. Gupta, A. Garci, B.S. Murray, P.J. Dyson, G. Fabre, P. Trouillas, F. Giannini, J.
 503 Furrer, G. Suss-Fink, B. Therrien, Dalton Trans. 42 (2013) 15457.
- 504 [13] S. Mukhopadhyay, R.K. Gupta, R.P. Paitandi, N.K. Rana, G. Sharma, B. Koch, L.K.
 505 Rana, M.S. Hundal, D.S. Pandey, Organometallics 34 (2015) 4491.
- 506 [14] J. De Pasquale, I. Nieto, L.E. Reuther, C.J. H-Gervasoni, J.J. Paul, V. Mochalin. M.
- 507 Zeller, C.M. Thomas, A.W. Addison, E.T. Papish, Inorg. Chem. 52 (2013) 9175.
- 508 [15] Y. Geldmacher, K. Splith, I. Kitanovic, H. Alborzinia, S. Can, R. Rubbiani, M.A. Nazif,
- P. Wefelmeier, A. Prokop, I. Ott, S. Wolfl, I. Neundorf, W.S. Sheldrick, J. Biol. Inorg.
 Chem. 17 (2012) 631.
- 511 [16] Z. Liu, I. Romero-Canelon, A. Habtemariam, G.J. Clarkson, P.J. Sadler, Organometallics
 512 33 (2014) 5324.
- 513 [17] Z. Liu, A. Habtemariam, A.M. Pizarro, S.A. Fletcher, A. Kisova, O. Vrana, L. Salassa,
 514 P.C.A. Bruijnincx, G.J. Clarkson, V. Brabec, P.J. Sadler, J. Med. Chem. 54 (2011) 3011.
- 515 [18] J. Safari, S. Gandomi-Ravandi, RSC Adv. 4 (2014) 46224.
- 516 [19] Z. Xu, L.K. Thompson, D.O. Miller, Inorg. Chem. 36 (1997) 3985.
- 517 [20] M. Ghedini, A.M.M. Lanfredi, F. Neve, A. Tiripicchio, J. Chem. Soc. Chem. Commun.
 518 (1987) 847.
- 519 [21] E.-Q. Gao, S.-Q. Bai, Y.-F. Yue, Z.-M. Wang, C.-H. Yan, Inorg. Chem. 42 (2003) 3642.
- 520 [22] Y.-F. Yue, C.-J. Fang, E.-Q. Gao, C. He, S.-Q. Bai, S. Xu, C.-H. Yan, J. Mol. Struct. 875

- 521 (2008) 80.
- 522 [23] Z. Xu, L.K. Thompson, D.A. Black, C. Ralph, D.O. Miller, M.A. Leech, J.A.K. Howard,
 523 J. Chem. Soc., Dalton Trans. (2001) 2042.
- 524 [24] K.T. Prasad, G. Gupta, A.V. Rao, B. Das, K.M. Rao, Polyhedron 28 (2009) 2649.
- 525 [25] G. Gupta, S. Gloria, S.L. Nongbri, B. Therrien, K.M. Rao, J. Organomet. Chem. 696
 526 (2011) 2014.
- 527 [26] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, fourth ed.,
 528 Butterworths Heinemann, London, 1996.
- 529 [27] C. White, A. Yates, P.M. Maitlis, D.M. Heinekey, Inorg. Synth. 29 (2007) 228.
- 530 [28] G.M. Sheldrick, Acta Crystallogr. Sect. A 64 (2008) 112.
- 531 [29] G.M. Sheldrick Acta Crystallogr. Sect. C 71 (2015) 3.
- 532 [30] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
- 533 [31] R.M. Phillips, P.B. Hulbert, M.C. Bibby, N.R. Sleigh, J.A. Double, Br. J. Cancer.
- 53465 (1992) 359.
- [32] R.A. Kaner, S.J. Allison, A.D. Faulkner, R.M. Phillips, D.I. Roper, S.L. Shepherd, D.H.
 Simpson, N.R. Waterfield, P. Scott, Chem. Sci. 7 (2016) 951.
- 537 [33] M.J. Frisch et al., GAUSSIAN 09, Revision C.01, Gaussian Inc, Walling-ford, CT, 2009.
- 538 [34] A.D. Becke, J. Chem. Phys. 98 (7) (1993) 5648.
- 539 [35] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (2) (1988) 785.
- 540 [36] E. Cances, B. Mennucci, J. Tomasi, J. Chem. Phys. 107 (1997) 3032.
- 541 [37] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899.
- 542 [38] M.E. Casida, in: J.M. Seminario (Ed.), Recent Developments and Applications in Modern
- 543 Density Functional Theory, Theoretical and Computational Chemistry, vol. 4, Elsevier,
- 544 Amsterdam, 1996.

- 545 [39] L. Skripnikov, Chemissian v4.36, A computer program to analyse and visualise quantum546 chemical calculations, 2015.
- 547 [40] F. Weldon, L. Hammarstrom, E. Mukhtar, R. Hage, E. Gunneweg, J.G. Haasnoot, J.
- 548 Reedijk, W.R. Browne, A.L. Guckian, J.G. Vos, Inorg. Chem. 43 (2004) 4471.
- 549 [41] C.U. Dueke-Eze, T.M. Fasina, M.J. Mphahlele, Asian J. Chem. 25 (2013) 8505.
- 550 [42] S.D. Dwivedi, A.K. Singh, S.K. Singh, S. Sharma, M. Chandra, D.S. Pandey, Eur. J.
 551 Inorg. Chem. (2008) 5666.
- 552 [43] P. Govindaswamy, Y.A. Mozharivskyj, K.M. Rao, Polyhedron 24 (2005) 1710.
- 553 [44] D.L. Davies, J. Fawcett, R. Krafczyk, D.R. Russell, J. Organomet. Chem. 581 (1997)
 554 545.
- P. Chellan, K.M. Land, A. Shokar, A. Au, S.H. An, D. Taylor, P.J. Smith, T. Riedel, P.J.
 Dyson, K. Chibale, G.S. Smith, Dalton Trans. 43, (2014) 513.
- 557 [46] G. Gupta, G. Sharma, B. Koch, S. Park, S.S. Lee, J. Kim, New.J.Chem. 37 (2013) 2573.
- 558 [47] K.S. Singh, Y.A. Mozharivskyj, C. Thone, M.R. Kollipara, J. Organomet. Chem. 690
 559 (2005) 3720.
- [48] N.R. Palepu, S.L. Nongbri, J.R. Premkumar, A.K. Verma, K. Bhattacharjee, S.R. Joshi,
 S. Forbes, Y.A. Mozharivskyj, R. Thounaojam, K. Aguan, M. R. Kollipara, J. Biol. Inorg.
 Chem. 20 (2015) 619.
- 563 [49] S.K. Singh, M. Chandra, D.S. Pandey, M.C. Puerta, P. Valerga, J. Organomet. Chem. 689
 564 (2004), 3612.
- 565 [50] R. Payne, P. Govender, B. Therrien, C.M. Clavel, P.J. Dyson, G.S. Smith, J. Organomet.
 566 Chem. 729 (2013) 20.
- 567 [51] A.P. Walsh, W.W. Brennessel, W.D. Jones, Inorg. Chim. Acta 407 (2013) 131.

- 568 [52] M. Kalidasan, S.H. Forbes, Y. Mozharivskyj, M.R. Kollipara, Inorg. Chim. Acta 421
 569 (2014) 218.
- 570 [52] Y. Hanifehpour, B. Mirtamizdoust, S.W. Joo, J Inorg Organomet Polym. 22 (2012) 916.

Acception

579

Figure 1 ORTEP diagram of complex [Cp*RhCl(L1)Cl]PF₆ (1) with 50% probability thermal

Figure 2 (a) ORTEP diagram of complex [Cp*RhCl(L2)Cl]PF₆ (**3**) and (b) ORTEP diagram of complex [Cp*IrCl(L2)Cl]PF₆ (**4**) with 50% probability thermal ellipsoids. Hydrogen atoms and counter ions are omitted for clarity.

Figure 3 (a) ORTEP diagram of complex $[Cp*Rh(L4)Cl]PF_6$ (7) and (b) ORTEP diagram, of complex $[Cp*IrCl(L4)Cl]PF_6$ (8) with 50% probability thermal ellipsoids. Hydrogen atoms and counter ions are omitted for clarity.

Figure 4 Crystal structure of complexes (**3**) and (**4**) showing intramolecular hydrogen bonding.

595

Figure 5 Response of HT-29 (human colorectal cancer) to compounds (1-8) and cisplatin. Cell

- 597 were exposed to compounds (1-8) for 96 hours. Each value represents the mean \pm standard
- 598 deviation from three independent experiments.

Figure 6 Graph showing selectivity index of complex **5** and cisplatin against HT-29 cancer cell line. The selectivity index is defined as the IC_{50} of ARPE19 cell divided by the IC_{50} of tumour cell line.

604

605

Figure 7 HOMO, LUMO energies and their energy gap of complexes (1–8)

Table 1. Crystal structure data and refinement parameters of complexes. 606

Complexes	[1] PF ₆	[3] PF ₆	[4] PF ₆	[7] PF ₆	[8] PF ₆ Cl
Empirical formula	$C_{24}H_{29}ClN_4O_2F_6PRh$	C23H27ClF6N4OPRh	C ₂₃ H ₂₇ ClF ₆ N ₄ OPIr	C24H29ClF6N4PRh	$C_{24}H_{29}Cl_2F_6N_4PIr$
Formula weight	688.84	658.82	748.11	656.84	781.58
Temperature (K)	298(2)	293(2)	293(2)	293(2)	293(2)
Wavelength (A)	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	monoclinic	monoclinic	monoclinic	triclinic
Space group	РТ	$P2_{l}/c$	$P2_{l}/c$	$P2_l/c$	PT
a (Å)/α (°)	8.3893(7)/89.370(6)	10.6710(6)/90	10.7019(5)/90	38.850(5)/90	7.9976(4)/87.496
b (Å)/β (°)	10.5533(7)/86.439(6)	17.0730(8)/92.708(4).	17.0860(9)/93.062(4)	7.9488(5)/98.027(4)	12.4774(4)/82.086(4)
c (Å)/γ (°)	16.6554(11)/71.182(7)	14.5390(8)/90	14.6118(9)/90	28.562(4)/90	14.6442(6)/72.596(4)
Volume (Å ³)	1393.00(18)	2645.8(2)	2668.0(2)	1344.83(10)	1381.15(10)
Z	2	4	4	2	2
Density (calc) (Mg/m ⁻³)	1.642	1.654	1.862	1.622	1.879
Absorption coefficient (μ) (mm ⁻¹)	0.836	0.874	5.231	0.857	5.148
F(000)	696	1328	1456	664	762
Crystal size (mm ³)	0.23 x 0.21 x 0.21	0.21 x 0.19 x 0.04	0.23 x 0.23 x 0.21	0.22 x 0.20 x 0.120	0.19 x 0.12 x 0.09
Theta range for data collection	3.174 to 28.654°.	3.33 to 26.73°.	3.31 to 26.37°.	3.386 to 28.842°.	3.23 to 26.37°.
Index ranges	-11<=h<=10, -12<=k<=13, -	-13<=h<=10, -10<=k<=21, -	-13<=h<=7, -21<=k<=19, -	-9<=h<=9, -12<=k<=22, -	-8<=h<=9, -15<=k<=15, -
	22<=l<=20	12<=l<=18	16<=l<=18	14<=l<8	17<=l<18
Reflections collected	10811	9506	10081	5614	7889
Independent reflections	6286 [R(int) =0.0717]	5375 [R(int) = 0.0268]	5422 [R(int) = 0.0277]	4000 [R(int) = 0.0268]	5335 [R(int) = 0.0296]
Completeness to theta = 25.00°	99.57 %	99.5 %	99.2 %	99.2 %	94.8 %
Absorption correction	Semi-empirical from	Semi-empirical from	Semi-empirical from	Semi-empirical from	Semi-empirical from
	equivalents	equivalents	equivalents	equivalents	equivalents
Refinement method	Full-matrix least-squares on	Full-matrix least-squares on	Full-matrix least-squares on	Full-matrix least-squares on	Full-matrix least-squares on
	F^2	F ²	F^2	F^2	F^2
Data/restraints/parameters	6286/0/362	2375/0/330	5422/0/340	4000/1/340	5335/0/349
Goodness-of-fit on F ²	1.197	1.063	1.026	1.041	1.046
Final R indices [I>2sigma(I)]	R1 = 0.0703, wR2 = 0.1706	R1 = 0.0440, wR2 = 0.0895	R1 = 0.0340, wR2 = 0.0630	R1 = 0.0394, $wR2 = 0.0822$	R1 = 0.0368, wR2 = 0.0875
R indices (all data)	R1 = 0.0855, $wR2 = 0.1772$	R1 = 0.0592, wR2 = 0.0968	R1 = 0.0500, wR2 = 0.0683	R1 = 0.0462, wR2 = 0.0858	R1 = 0.0431, $wR2 = 0.0912$
Largest diff. peak and hole (e.Å ⁻³)	0.583 and -0.461	0.520 and -0.543	1.102and -1.143	0.512 and -0.478	1.828 and -1.071
CCDC No.	1477976	1477977	1477978	1477979	1477980

Structures were refined on F_0^2 : $wR_2 = [\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma w(F_0^2)^2]^{1/2}$, where $w^{-1} = [\Sigma(F_0^2) + (aP)^2 + bP]$ and $P = [\max(F_0^2, 0) + 2F_c^2]/3$. 607

Complexes	D-H·····A	H····A (Å)	D·····A (Å)	D·····H (Å)	$\angle D - H \cdots A(^{\circ})$
3	O(1)-H(1A)-N(4)	1.916	2.638	0.820	146.39
	N(3)-H(3A)-N(4)	2.323	2.624	0.860	100.76
4	O(1)-H(1A)-N(4)	1.908	2.634	0.820	146.90
	N(3)-H(3A)-N(4)	2.328	2.629	0.860	100.78

Table-2. Selected hydrogen bonding distances (Å) and angles (°) of complexes **3** and **4**.

609

Table-3 Response of HT-29 (human colorectal cancer) to complexes (1-8) and cisplatin. Each

611 value represents the mean \pm standard deviation from three independent experiments.

Complexes	IC ₅₀ (μM)	9
	HT-29	ARPE-19
1	56.95 ± 11.76	85.31 ± 14.86
2	89.42 ± 18.33	93.45 ± 11.34
3	82.32 ± 15.55	83.03 ± 14.76
4	96.93 ± 5.31	>100
5	46.17 ± 12.78	97.39 ± 4.53
6	83.74 ± 28.17	>100
7	93.16 ± 11.84	>100
8	88.09 ± 20.63	>100
Cisplatin	0.25 ± 0.11	6.41 ± 0.95

612

Table 4. The energy gap, theoretical and experimental absorption bands, electronic transitions

and dominant excitation character for various singlet states of the complexes (1-8) calculated

615 with TD-DFT method.

The most	Calculated	Energy	Oscillator	Dominant excitation	Experimental
important orbital	λ (nm)	gap E	strength	Character	λ (nm)
excitations		(eV)	(f)		
			Complex (1)		
H→L	417.16	3.20	0.2051	$L1 \rightarrow L1(ILCT)$	
H-2→L	359.64	3.53	0.0542	$Cl \rightarrow L1(LLCT)$	352.21
H→L+2	355.41	4.03	0.0120	$L1 \rightarrow L1(ILCT)$	
H-4→L+2	338.40	4.89	0.0139	$L1 \rightarrow L1(ILCT)$	
H-1→L+4	278.91	4.73	0.0248	$L1 \rightarrow L1(ILCT)$	276.0
H-6→L	282.81	4.54	0.0073	$L1 \rightarrow L1(ILCT)$	
H-6→L+2	275.41	5.37	0.0050	$L1 \rightarrow L1(ILCT)$	
H-11→L	235.62	5.08	0.0216	$Rh \rightarrow L1(MLCT)$	233.3
H-5→L+4	233.62	5.74	0.0480	$Cl \rightarrow L1(LLCT)$	

H-6→L+3	232.46	5.46	0.0105	$L1 \rightarrow L1(ILCT)$	
			Complex (2)		
H→L	462.76	2.98	0.0644	$Ir \rightarrow L1(MLCT)$	
H→L+3	358.38	4.64	0.0191	$Ir \rightarrow Cp^*(MLCT)$	347.0
H-4→L	340.55	4.01	0.0075	$L1 \rightarrow L1(ILCT)$	
H-5→L+1	273.73	5.11	0.0470	$Cp^* \rightarrow L1(LLCT)$	266.0
H-2→L+4	266.79	5.33	0.1540	$L1 \rightarrow Ir(LMCT)$	
			Complex (3)		
H→L	532.04	3.63	0.0087	$L2 \rightarrow Rh(LMCT)$	
H-2→L+1	348.95	4.11	0.0369	$L2 \rightarrow L2(ILCT)$	344.10
$H\rightarrow L+2$	345.72	3.84	0.0128	$L2 \rightarrow Rh(LMCT)$	
H-1→L+2	344.68	4.10	0.0089	$Cl+L2 \rightarrow Rh(LMCT)$	
H-3→L	336.07	4.24	0.0047	$Cl \rightarrow Rh(LMCT)$	
H→L+4	289.42	4.85	0.0063	$L2 \rightarrow L2(ILCT)$	286.1
H-6→L	285.32	5.14	0.0163	$Cl+L2 \rightarrow Rh(LMCT)$	
H-5→L+1	282.59	4.98	0.0391	$L2 \rightarrow L2(ILCT)$	
H-4→L+4	237.16	5.74	0.0422	$L2 \rightarrow L2(ILCT)$	234.30
H-5→L+3	234.58	5.74	0.0161	$L2 \rightarrow L2(ILCT)$	
			Complex (4)		
H→L	444.09	3.46	0.0355	$L2 \rightarrow L2(ILCT)$	
H-2→L	362.56	3 91	0.0077	$L_2 \rightarrow L_2(\Pi_c T)$	346 1
$H_1 \rightarrow L_{\pm 1}$	332.29	3.80	0.0076	$Rh+L_{2}\rightarrow L_{2}(MLCT/ILCT)$	5 1011
$H \rightarrow I + 3$	329.46	4 48	0.0468	$L_2 \rightarrow L_2(\Pi_c T)$	
H-4→I	324 35	4 53	0.0265	$Cl+Cn^* \rightarrow L^2(LLCT)$	
$H \rightarrow L$ $H - 4 \rightarrow I + 2$	294 35	5 47	0.0164	$C_{1+C_{n}} \rightarrow L_{2}(L_{1}C_{1})$	292 21
$H_{-1} \rightarrow L_{+2}$	291.33	4 74	0.0048	$Rh+I 2 \rightarrow Rh+I 2$	272.21
$H = 9 \longrightarrow 1 + 3$	212 19	6.47	0.0387	$I_2 \rightarrow I_2 (II CT)$	210.9
H-6→L+4	210.71	6.56	0.0399	$C \rightarrow I 2(I \downarrow CT)$	210.9
$H_2 \rightarrow I_{\pm 5}$	210.71	6.26	0.0669	$L_2 \rightarrow L_2(\Pi CT)$	
11 2 7 11 15	210.22	0.20	Complex (5)		
Н⊸І	519.01	3.61	0.0076	$I \rightarrow Rh(I MCT)$	
$H_2 \rightarrow I_2$	338.46	4 30	0.0070	$C_{1} \rightarrow I_{3}(I \downarrow CT)$	332 0
$H / \rightarrow I + 1$	326.16	4.56	0.0120	$I_3 \rightarrow Ph(I_MCT)$	552.0
$H \xrightarrow{1} I \xrightarrow{1} I$	271.36	4.50 5.01	0.0052	$L_3 \rightarrow Kii(LiviC_1)$ $L_3 \rightarrow L_3(II CT)$	268.0
$H_2 \rightarrow I_{\pm 4}$	267.30	5.01	0.205	$C_{1} \rightarrow L_{3}(LLCT)$	200.0
$H 5 \rightarrow I + 4$	232.84	5.83	0.0177	$L_3 \rightarrow L_3 (L_1 CT)$	220.0
$H_{10} \rightarrow L_{+4}$	232.84	5.85	0.0498	$P_{D+1} \xrightarrow{3} 3 \xrightarrow{3} 3$	229.0
	229.44	0.14	$\frac{0.0127}{\text{Compley (6)}}$	KII+L3→L3(WILC1/ILC1)	
НЛ	441.76	3.60		$I_{2} \rightarrow I_{2} (II CT)$	
$\Pi \rightarrow L$ $\Pi \rightarrow L$	441.70	5.00	0.0100	$L_{3} \rightarrow L_{3}(ILC_{1})$ Ir $\rightarrow L_{3}(MLC_{1})$	330.0
$H^{-2} \rightarrow L^{+1}$	334.33	4.43	0.0109	$I \rightarrow L3(INILCT)$	550.0
$\Pi - I \rightarrow L + I$	320.2 4 369 59	4.33	0.1100	$L_{3} \rightarrow L_{3}(ILC_{1})$	256.0
$\Pi^{-}/\rightarrow L$	208.38	5.42	0.0139	$I \rightarrow L3(INILCT)$	230.0
$H=0\rightarrow L$	204.04	5.25 5.17	0.0304	$U \rightarrow LS(LLUT)$	
H-I→L+4	200.30	3.17	$\frac{0.0330}{(1-1)}$	$L3 \rightarrow L3(ILC1)$	
** *	510.07	2.60	Complex (7)		
H→L	518.07	3.68	0.0071	$L4 \rightarrow Rh(LMCT)$	100.0
H-I→L	448.90	4.05	0.0132	$CI \rightarrow Rh(LMCT)$	400.0
H-l→L+l	397.25	4.09	0.0148	$CI \rightarrow Rh(LMCT)$	
H-1→L+4	269.94	5.23	0.0297	$CI \rightarrow L4(LLCT)$	265.0
H-2→L+3	262.52	5.20	0.0465	$Cl \rightarrow L4(LLCT)$	

	H→L+5	231.04	5.66	0.0547	$L4\rightarrow L4(ILCT)$	229.0
				Complex (8)	
	H→L	439.65	3.59	0.0196	$Ir \rightarrow L4(MLCT)$	
	H-1→L+2	371.55	4.79	0.0381	$Ir \rightarrow L4(MLCT)$	361.0
	H-1→L	358.22	4.0	0.0349	$Ir \rightarrow L4(MLCT)$	
	H-2→L+3	257.57	5.29	0.0359	$Cl \rightarrow Cp*(LLCT)$	256.0
	H-4→L+3	255.65	5.61	0.0142	L4→Cp*(LLCT)	
616						
			×.			
				36		