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Abstract 32 
 33 

Pectins with distinct molecular design were isolated by aqueous extraction at pH 34 

2.0 or 6.0 and were examined in terms of their formation and stabilisation capacity of 35 

model n-alkane–in–water emulsions at acidic pH (pH 2.0). The properties and stability of 36 

the resulting emulsions were examined by means of droplet size distribution analysis, 37 

Lifshitz-Slyozov-Wagner modelling, bulk rheology, interfacial composition analysis, 38 

large-amplitude oscillatory surface dilatational rheology, electrokinetic analysis and 39 

fluorescence microscopy. Both pectin preparations were able to emulsify alkanes in water 40 

but exhibited distinct ageing characteristics. Emulsions prepared using pectin isolated at 41 

pH 6.0 were remarkably stable with respect to droplet growth after thirty days of ageing, 42 

while those prepared with pectin isolated at pH 2.0 destabilised rapidly. Examination of 43 

chemical composition of interfacial layers indicated multi-layered adsorption of pectins at 44 

the oil-water interface. The higher long-term stability of emulsions prepared with pectin 45 

isolated at high pH is attributed to mechanically stronger interfaces, the highly branched 46 

nature and the low hydrodynamic volume of the chains that result in effective steric 47 

stabilisation whereas acetyl and methyl contents do not contribute to the long-term 48 

stability. The present work shows that it is possible by tailoring the fine structure of 49 

pectin to engineer emulsions that operate in acidic environments. 50 

 51 
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1. Introduction 55 
 56 

Emulsions are increasingly being utilized for encapsulating and delivering 57 

bioactives at targeted locations in the gastrointestinal tract [1]. A wide variety of 58 

lipophilic bioactives, including vitamins (D, E), carotenoids, flavonoids, phytosrerols, 59 

polyunsaturated lipids or flavours have been encapsulated in colloidal systems [2-6]. 60 

Emulsions as delivery vehicles allow sustained release and protection from degradation 61 

during storage of lipophilic bioactive components that are incorporated into the 62 

hydrophobic core of the lipid droplets. Furthermore, protection of the bioactive from 63 

environmental conditions (e.g., gastric fluids) when it is loaded in the internal phase of 64 

the emulsions is another advantage that may result in more efficient delivery.  65 

Emulsions are most commonly formed using proteins or low molecular weight 66 

surfactants. The problem with such molecules when used as emulsifiers is that they have 67 

limited resistance to the gastric environment (e.g., proteases or low pH). These factors, 68 

among others, alter the surface composition and change the properties of the colloidal 69 

system [7, 8]. It is important, therefore, to control the physical stability within the 70 

stomach as a means to control the rate of release at the desired location (e.g., intestines or 71 

colon). Surface behaviour of emulsions can be tailored using surface-active 72 

polysaccharides with contrasting physical properties. Pectins from okra and sugar beet 73 

have unusual fine structures compared with other common pectin sources (e.g., citrus or 74 

apple), as they are highly acetylated and highly branched with variable amounts arabinan 75 

side chains and ferulic acid residues that ultimately control their functional properties [9-76 

11]. Using pectin to engineer the oil-water interface could be favourable, as it is resistant 77 

to enzymatic digestion in the upper gastrointestinal tract (e.g., mouth and stomach), 78 
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nonetheless, is digested in the colon by pectinases. This functional characteristic makes 79 

pectin a suitable candidate to protect acid sensitive bioactives during gastric transit [12] 80 

or as a colon drug-delivery vehicle [13]. Other polysaccharide-based systems have been 81 

also tested as delivery methods due to biocompatibility and high potential to be modified 82 

and achieve the required functionality [14, 15]. 83 

In our previous investigations, we have tuned the extraction protocols of pectin 84 

from okra pods and obtained polysaccharides with tailored structure (e.g., molecular 85 

weight, branching, methoxyl and acetyl content, etc.) [16]. In the present work, we build 86 

on our previous experimental findings with the aim to understand the behaviour of pectin 87 

at the oil-water interfaces in highly acidic environments. We have, thus, engineered and 88 

characterised pectin-stabilized oil-in-water emulsions at low pH values (pH 2.0), as a first 89 

step to understand the underlying fundamental mechanisms of emulsion coarsening at pH 90 

values in the vicinity of gastric pH.   91 

 92 

2. Materials and methods  93 

2.1 Materials 94 

Pectins were isolated from okra pods [16], labeled as OP2 and OP6 and their 95 

major physicochemical characteristics are shown in Table S1. Sodium azide, citric acid 96 

monohydrate, sodium citrate dihydrate, phenol, n-hexadecane, n-dodecane, formaldehyde 97 

(37-40%), phosphate buffer saline (PBS) (all analytical grade reagents) were obtained 98 

from Sigma-Aldrich (St Louis, MO). Anti-homogalacturonan antibody LM19 and LM4 99 

(non-pectin specific antibody) were supplied by PlantProbes (Leeds, UK). De-ionized 100 

water was used throughout the experiments.  101 
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2.2 Preparation of emulsions 102 

Preliminary experiments on the optimum concentration of pectin towards 103 

emulsion stability showed that fine emulsions are produced at pectin concentration of 104 

1.5% w/v with dispersed phase volume fraction of φ = 0.1 (n-dodecane or n-hexadecane) 105 

and under acidic conditions (pH 2.0). The aqueous phases of the emulsions were prepared 106 

by means of dissolving pectin at 1.67% w/v concentration in citric buffer (10 mM, pH 107 

2.0) at room temperature. Emulsions were fabricated at room temperature in two stages: 108 

a) pre-emulsions were obtained with a high-speed (IKA T18 basic, Ultra-Turrax, 109 

Germany) homogenizer for 2 min and, b) the coarse emulsions were further emulsified 110 

using an ultrasound device (Hielscher Ultrasonics, Model UP 100H) equipped with 7 mm 111 

diameter MS7 tip immersed (two-thirds) in the coarse emulsion and operating at 30 kHz. 112 

Ultrasonic treatment of the emulsions was performed for 40 s with pulsed ultrasound 113 

(30% per second) at 100% amplitude (corresponding to ultrasonic waves of 125 μm). The 114 

sonication conditions were chosen in accordance to the preliminary data that showed the 115 

absence of “over-processing”.  116 

2.3 Determination of droplet size distribution 117 

Droplet size distribution was measured immediately after the emulsion preparation 118 

and after 1 h followed by measurements at 1, 10 and 30 days of storage at room 119 

temperature using a Malvern Mastersizer 2000 (Malvern Instruments Ltd, 120 

Worcestershire, UK) laser diffraction particle size analyzer equipped with the small 121 

volume sample dispersion unit Hydro 2000SM (Malvern Ltd, UK). Refractive indices of 122 

n-dodecane, n-hexadecane and dispersion medium (citric buffer, 10 mM, pH 2.0) were 123 

set to 1.421, 1.434 and 1.333, respectively. Consequently, droplet size was described 124 



 6 

using the surface-weighted mean diameter (d3,2), volume-weighted mean diameter (d4,3) 125 

and span. 126 

The physical properties of n-alkanes required for the calculations of theoretical 127 

(ωth) Ostwald ripening rates in the emulsions were taken from literature [17-19]. 128 

Solubility (cr→∞) was 2.3  10-5 and 9.3  10-8 (mol m-3), diffusion coefficient (D) was 5.4 129 

and 4.6 (10-10  m2 s-1), molar volume (Vm) was 2.27 and 2.92 (10-4  m3 mol) and 130 

molecular weight (Mw) was 0.170 and 0.226 (kg mol-1) for n-dodecane and n-hexadecane, 131 

respectively. Interfacial tensions (γ) were 25.5 or 27.0 mN m-1 for n-hexadecane-water 132 

interfaces stabilized by 0.1% w/v OP6 or OP2, and 34.4 or 30.9 mN m-1 for n-dodecane-133 

water interfaces stabilized by 0.1% w/v OP6 or OP2, respectively. Interfacial tension 134 

measurements were performed as described in section 2.5.  135 

2.4 Interfacial composition analysis 136 

Interfacial composition analysis was performed by determining protein, pectin 137 

and acetyl contents at the of oil-water interface. Emulsions were ultracentrifuged at 138 

60000g for 1 h (Optima L-100K ultracentrifuge, rotor 50.2 Ti, Beckman Coulter, USA) 139 

until equilibrium phase separation conditions were achieved and serum was collected 140 

using a syringe. The interfacial composition was evaluated as the protein, pectin or acetyl 141 

concentration difference between the pectin solutions (i.e., aqueous phase before 142 

emulsification) and serum solutions. Protein was measured with Bradford analysis using 143 

Quick StartBradford Protein Assay kit. The quantification of adsorbed pectin was 144 

expressed as total carbohydrates in pectin solution and serum phase using the phenol-145 

sulphuric method [20]. The acetyl content was determined with the hydroxamic acid 146 

method in the pectin solution and serum phases [21]. Interfacial protein and pectin 147 
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concentrations (Γ, mg m-2) were calculated as protein or pectin concentration difference 148 

between the biopolymer solution and serum phase divided by the specific surface area 149 

(SSA) of the oil droplets: 150 

                                                 (1) 151 

where specific surface area (SSA), m2 mL-1 was obtained by the result analysis report of 152 

the instrument.  153 

2.5 Interfacial rheology 154 

The interfacial tension of the n-hexadecane- or n-dodecane- water interfaces 155 

stabilized by 0.1% w/v OP2 and OP6 was measured using a profile analysis tensiometer 156 

(PAT-1D, SINTERFACE Technologies, Berlin, Germany) at 20 C. The n-alkane-water 157 

interfaces were equilibrated for 2 h and subjected to large-amplitude oscillatory 158 

dilatational deformations. The amplitude sweeps were performed stepwise from 2-50 % 159 

strain at a frequency 0.1 Hz. Lissajous plots were constructed by plotting the surface 160 

pressure π = γ–γo, where γo was interfacial tension before the oscillation, versus 161 

deformation (A–Ao)/Ao, where Ao = 20 mm2 was the area at zero deformation.  162 

2.6 Pectin immunolocalization at the o/w interface 163 

Anti-homogalacturonan antibody LM19 [22] (PlantProbes, Leeds, United 164 

Kingdom) was used to localize pectin at the alkane-water interface and LM4 (non-pectin 165 

specific antibody) was used as a negative control.  166 

Pectin aqueous phases with OP2 (1.67% w/v) were prepared in 10 mM PBS, pH 167 

7.4. A drop of OP2 solution was placed on a microscopy slide and dried using Bunsen 168 

burner. Dried sample was fixed using 10% formalin solution buffered in 10 mM PBS. 169 
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Following the washing step, samples were blocked with 5% BSA in 10 mM PBS. The 170 

immunolabeling of pectic epitopes started with incubation of the samples with the 171 

primary antibody (LM19 was used as 5-fold dilution of a hybridoma supernatant) 172 

overnight at 4 C followed by a washing step in PBS (three times for 5 min). LM19 was 173 

visualized using secondary labelling with anti-rat IgG coupled to fluorescein 174 

isothiocyanate  (FITC) (Sigma-Aldrich, St. Louis, USA). The secondary antibody was 175 

diluted 1:5 in PBS and incubation was performed for 2 h at room temperature.  176 

In order to use the probes for in situ immunolocalisation of pectin at the alkane-177 

water interface, OP2-stabilized emulsions (1.5% w/v) were prepared using high-speed 178 

homogenizer (IKA T18 basic, Ultra-Turrax, Germany) for 2 min. Monoclonal antibody 179 

LM19 (100 μL, diluted 1:5) was added to 0.5 mL of coarse emulsion and left overnight at 180 

4 C.  Subsequently, the secondary antibody IgG-FITC (100 μL, diluted 1:5) was added 181 

and emulsions were incubated for 2 h at room temperature. Emulsions were then 182 

centrifuged at 14100g for 25 min (MiniSpin Plus, Eppendorf, Hamburg, Germany) in 183 

order to separate the droplets from the continuous phase. Immunostained emulsion 184 

droplets (diluted 1:10) and OP2 solutions were visualized using an Olympus IX70 185 

microscope (Olympus, Optical Co. Ltd, Tokyo, Japan) equipped with epifluorescence 186 

illumination and using 10x and 40x oil immersion objectives. FITC was excited at 490 187 

nm and emitted signal was collected between 528 and 538 nm. Image acquisition and 188 

analysis were performed with SoftWoRx software (Applied precision Inc.). The 189 

measurements were performed in duplicates in three different emulsion preparations 190 

yielding a total of six replicates for each sample.  191 



 9 

3. Results and discussion 192 

3.1 Emulsification capacity of pectin and ageing of emulsions 193 

n-Hexadecane-in-water emulsions were stabilized by either pectin isolated at pH 194 

2.0 (OP2) or pectin isolated at pH 6.0 (OP6). The change in droplet size distribution 195 

curves and the average droplet sizes were monitored for a period of 30 days (Table 1, 196 

Figures 1, 2). Both samples demonstrated good emulsification capacity producing 197 

emulsions with d3,2 in the range of 1.7 – 3.0 μm (Table 1). Emulsions fabricated with OP6 198 

demonstrated bimodal, broader droplet size distributions and were composed of droplets 199 

of larger diameters than those fabricated with OP2 pectin (Figures 1, 2, Table 1). These 200 

observations are in a good agreement with interfacial tension measurements where a 201 

faster decrease of interfacial tension was observed in for OP2 (Figure S2).  202 

Zero-shear viscosity of OP6 solutions at the concentrations used in the continuous 203 

phases was greater compared to OP2 counterparts (Figure S1). This impedes the 204 

induction of cavitation phenomena [23] during fabrication of OP6-stabilized emulsions 205 

resulting in bimodal droplet size distributions (Figure 1). Instability in bimodal colloidal 206 

dispersions is usually controlled by the higher modes resulting in the predominance of 207 

coalescence as the major destabilisation mechanism [24]. However, OP6-stabilized 208 

emulsions did not exhibit any appreciable development of coalescence–induced second 209 

peak during ageing as indicated by the droplet sizes and span of droplet distributions 210 

(Figure 1, Table 1). These observations are in a good agreement with the rheological 211 

measurements (Figure S1a) that do not show any appreciable changes in viscosity curves 212 

indicating limited microstructural reorganisation (e.g., flocculation) during the period of 213 

thirty days. Coalescence typically increase the polydispersity and accelerate the rate of 214 
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coarsening [25], as it is easily observed in OP2-stabilized emulsions. Emulsions prepared 215 

with OP2 destabilised rapidly and demonstrated a marked increase in average droplet 216 

size, with d4,3 rising from 2.4 to 10.0 μm within 1 h of storage (Figure 2). Considerable 217 

destabilisation occured after one day of storage and continued unabated for thirty days 218 

(Figure 2, Table 1). Additionally, the rheological measurements of OP2-stabilized 219 

emulsions (Figure S1b) revealed a considerable increase of zero-shear viscosity during 220 

ageing that is attributed to depletion flocculation caused by pectin desorption from the 221 

interface during coarsening.  222 

Overall, OP6-stabilized emulsions exhibited remarkable stability during ageing as 223 

opposed to the OP2-stabilized counterparts.  Contrasting stabilities of this magnitude 224 

pronounce that differences in the fine stucture and conformation at low pH of the isolated 225 

polyelecrolytes play a predominant role in the emulsification capacity. In the following 226 

sections we delve further into the molecular mechanisms of instability in an effort to shed 227 

light on the structure versus function relation of these intricate biopolymers. 228 

3.2 Examination of destabilisation mechanisms  229 

In this part of the investigation, we start by employing the Lifshitz–Slyozov–230 

Wagner (LSW) theoretical framework [26] to assess the potential role of Ostwald 231 

ripening in the evolution of droplet size. In a typical Ostwald ripening scenario, at 232 

asymptotically long times, the change in number droplet diameter cubed is a linear 233 

function of time and is given by:  234 

 (2) 235 
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where t is the time, dt is the surface mean diameter (d3,2) after time t, dt=0 is the initial 236 

surface mean diameter, γ is the interfacial tension of the oil-water interface, D is the 237 

diffusion coefficient of the oil through the aqueous (continuous) phase, is the 238 

solubility of the oil in the aqueous phase, Vm is the molar volume of the oil, R is the gas 239 

constant, T is the absolute temperature and ω is the Ostwald ripening rate. Brownian 240 

motion-induced coalescence also results in a linear correlation of droplet growth rate as a 241 

function of time [27] but is not expected to influence the destabilisation of the dispersions 242 

of the present study due to the predominance of gravity as evidenced by the droplet sizes 243 

(1.7–3.0 μm). The examination of coarsening mechanisms was performed under 244 

conditions where one type of instability dominates over the other in order to monitor its 245 

progress more accurately. Preliminary data have shown that an increase of pectin 246 

concentration beyond 1.5% w/v did not result in further reduction of droplet diameter, 247 

indicating saturation of the n-alkane-water interface. A sufficient surface coverage of 248 

droplets with emulsifier ensures that coalescence (i.e., collision-induced coalescence) 249 

does not dominate the destabilisation kinetics and enables monitoring of Ostwald 250 

ripening with minimum interference from coalescence at the early stages of the 251 

coarsening process. The change in (d3,2)
3 vs. time of n-hexadecane-in-water emulsions 252 

was monitored for 1 h with 5 min intervals and demonstrated a linear increase of (d3,2)
3 253 

with time (Figure 3). We plotted the d3,2 radius rather than the number mean radius (d1,0) 254 

as is dictated by the theory, since the surface mean diameter can be more accurately 255 

determined by laser light scattering [28]. 256 

Droplet size did not develop appreciably for OP6-stabilized emulsions throughout 257 

the observation period making it difficult to ascribe the changes to Ostwald ripening. In 258 

c
r®¥
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contrast, OP2-stabilised emulsions exhibited considerably steeper slope than their OP6 259 

counterparts indicating higher experimental rate of droplet growth (Table 2). The 260 

linearity of (d3,2)
3 vs. time plots cannot be solely utilized in the assessment of instability 261 

mechanisms in such complex colloidal systems and the possible origins of emulsion 262 

coarsening can be further established with changes in the alkane chain length [17, 29, 30]. 263 

The solubility of alkanes in water vary considerably with molecular weight thus 264 

influencing Ostwald ripening rates (Equation 2). In order to address the above, OP2 and 265 

OP6 stabilized emulsions were fabricated with n-dodecane and their d3,2, d4,3, droplet size 266 

distributions and experimental coarsening rates were compared with those prepared with 267 

n-hexadecane (insets of Figures 1, 2, Table 1, Figure 3 and Table 2). Analysis of (d3,2)
3 268 

vs. time plots and calculation of experimental growth rates (ωexp) for OP6-stabilized 269 

emulsions show modest changes in emulsion coarsening rate within 1 h (Figure 3, Table 270 

2). Conversely, emulsions fabricated with OP2 demonstrate appreciable increase in 271 

coarsening kinetics on replacing n-hexadecane with n-dodecane (Figure 2 (inset), Figure 272 

3 and Table 2) suggesting the occurrence of Ostwald ripening in the first hour of ageing 273 

for OP2 stabilized emulsions. Moreover, theoretical modeling of droplet growth rate has 274 

shown that the change in ripening rates is several orders of magnitude higher for n-275 

dodecane than n-hexadecane, something that was not reflected by the experimental 276 

growth rates (ωexp) (Table 2).  277 

Taking everything into account, it has been shown that pectin-stabilized 278 

emulsions evolve under complex destabilisation mechanisms that could be characterized 279 

by Ostwald ripening in conjunction with coalescence. Pectin fine structure controls the 280 

interplay between these two mechanisms as greater degree of branching of OP6 (HG/RG 281 
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ratio, Table S1) hinders droplet growth and provides long-term stability. Typically, high 282 

molecular weight polysaccharides are weakly adsorbing biopolymers and undergo intra- 283 

and intermolecular rearrangements at the interface during storage. As droplet size 284 

develops, conformational rearrangement at the interface results in thinning of the 285 

interfacial film and formation of thermally activated "holes" that extend across the 286 

interfacial membranes. These microstructural modifications eventually lead to the 287 

emergence of coalescence. Other schools of thought interpret the interplay between 288 

Ostwald ripening and coalescence using the molecular permeation theory [31] or focusing 289 

on the process of molecular exchange of oil molecules upon droplet collision [32]. Such 290 

destabilisation mechanisms are frequently reported for biopolymer- [30, 33] or synthetic 291 

polymer- [25] stabilised alkane emulsions where the coarsening mechanism is ascribed to 292 

Ostwald ripening-induced coalescence.  293 

It starts emerging that the structural features of these biopolymers control the 294 

remarkable variations in the temporal evolution of coarsening. Examination of the 295 

interfacial composition will further elucidate what are the key structural features 296 

responsible for these striking differences in their stability. 297 

3.3 Interfacial composition analysis 298 

The interfacial activity of pectin and ability to stabilize emulsions are attributed to 299 

the molecular weight, methoxyl and acetyl content, degree of branching, presence of 300 

ferulic groups and proteinaceous components in the biopolymer backbone [34-36]. Table 301 

3 shows the interfacial composition of OP2 and OP6-stabilized n-hexadecane-in-water 302 

emulsions revealing that comparable amount of acetyl was adsorbed at the interface in 303 

both systems. These results are also in a good agreement with the chemical composition 304 
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data that report marginal differences in the concentration of acetyl groups (Table S1). 305 

Since both biopolymers have similar amounts of acetyl adsorbed at the interface as well 306 

as absence of ferulic acids these two parameters do not seem to be responsible for the 307 

differences in emulsification capacity and emulsion stability. 308 

Protein surface coverage of OP6-stabilized emulsions was 1.6 mg m-2 a value 309 

five-times higher than that of the OP2-stabilized emulsions (0.3 mg m-2). Protein content 310 

is comparable in both samples (Table S1) and differences in protein adsorption suggest 311 

that accessibility of the protein to the interface and its amino acid composition influence 312 

the emulsification properties of the present samples. Previous studies also reported that 313 

the pectin fraction adsorbed at the interface was significantly enriched in protein and 314 

played a key role in emulsion stabilizing capacity [36-38]. However, protein surface 315 

coverage alone cannot explain the striking differences in the stability of emulsions, as it 316 

will be discussed below. The surface coverage with pectin in OP6-stabilized emulsions 317 

was 9.4 mg m-2 whereas OP2 systems had considerably lower pectin interfacial load (3.3 318 

mg m-2). Surface coverage with pectin in OP6-stabilized emulsions was higher than 319 

previously reported for sugar beet pectin [36, 38] (~ 7.5 mg m-2) at the same polymer 320 

concentration and comparable with depolymerized citrus pectin (~ 9.8 mg m-2) [38].  321 

Comparison of the amount of adsorbed protein and pectin indicates that the 322 

interfaces are dominated by the presence of pectin. This is further supported by the 323 

negative ζ-potential values at pH 2.0 for both emulsions denoting that the n-hexadecane-324 

in-water interface has similar electrical properties to that of the continuous phase (Figure 325 

S4). Low ζ-potential values for fresh OP2 and OP6 stabilized emulsions also indicate that 326 

electrostatic repulsions do not have significant effect on the overall stability of the 327 
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dispersions. As a consequence, the proteinaceous components, as an integral part of the 328 

samples, anchor pectin at the n-alkane-water interface, the polysaccharides protrude out 329 

into the continuous phase and provide an effective steric barrier [36, 37]. Multilayer 330 

adsorption has been previously reported for the naturally occurring polysaccharide–331 

protein complexes, such as arabic gum and sugar beet pectin [39]. Furthermore, the 332 

higher pectin interfacial load in OP6-stabilized emulsions and higher degree of branching 333 

of OP6 (Table S1) denote the presence of more effective steric barrier than in OP2-334 

stabilized emulsions. These results are in a good agreement with ageing data of OP6-335 

stabilized emulsions that showed negligible droplet growth with time in comparison to 336 

the OP2 counterparts (Figures 1, 2; Table 1).  337 

3.4 Interfacial rheology at the n-alkane-water interface  338 

The analysis of interfacial composition suggests that a thin biopolymer film is 339 

formed in emulsions stabilized with OP2 that could lead to mechanically weak interface. 340 

On the other hand, emulsions stabilized with OP6 demonstrated higher interfacial loads 341 

resulting in formation of thicker interfacial layers that hinder droplet growth. Therefore, 342 

n-alkane-water interfaces stabilized by OP2 or OP6 were subjected to large-amplitude 343 

oscillatory dilatational deformations in order to evaluate the mechanical rigidity of the 344 

adsorbed layers. Lissajous plots of surface pressure versus deformation were constructed 345 

in order to analyse the nonlinear dilatational behaviour (Figure 4). The Lissajous plots for 346 

both pectin stabilized n-alkane-water interfaces were asymmetric indicating that the 347 

responses of the interfaces in extension were different than in compression. At the limits 348 

of the experimental amplitudes, the surface pressure in compression was almost twice as 349 

high (~15.0  10-3 N m-1) as the surface pressure in extension (~8.0  10-3 N m-1) with 350 
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differences being more pronounced with n-dodecane. The shape of the curves indicated 351 

that upon compression the surface displays strain hardening behaviour, whereas in 352 

extension the interface displays strain softening behaviour [40]. The softening is more 353 

pronounced in the interfaces stabilized by OP2, than in those stabilized by OP6. This 354 

particular shape of the Lissajous plots indicates that the pectin molecules are not forming 355 

a highly interconnected and elastic network at the alkane-water interface, as is often 356 

observed in pure protein stabilized interfaces. The latter typically display strain-hardening 357 

behaviour both in compression and extension. This again shows that the protein matter in 358 

the system does not play a dominant role in the stability of the emulsions. The shape of 359 

our plots is more typical for weakly aggregated two-dimensional (2d) gels or 2d soft 360 

glasses. Upon compression the adsorbed protein-pectin complexes become jammed, 361 

which leads to the observed strain hardening. Upon extension the surface fraction of 362 

pectins decreases and the structure loses connectivity, resulting in the observed softening.  363 

Similar behaviour has been previously observed for protein fibrils and was also attributed 364 

to the structural rearrangements of biopolymer macrostructures at the interface due to the 365 

applied deformation [41, 42]. The dependence of Lissajous plot shape on the deformation 366 

amplitude was further examined for n-hexadecane-water interfaces stabilized by OP2 and 367 

OP6 (Figure S3). These observations indicate that interfaces stabilized by OP6 were more 368 

resistant to deformation in comparison to those stabilized with OP2. The variations in 369 

viscoelastic properties of the interfaces are attributed to the structural and conformational 370 

differences of the samples. OP6 is composed of polymer chains with higher degree of 371 

branching and occupy lower hydrodynamic volume ([η]OP6 < [η]OP2) than the OP2 372 

counterparts indicating the formation of more compact structures (Table S1). These 373 
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results combined with the interfacial composition analysis (Table 3) give strong evidence 374 

that thicker interfaces are formed with OP6, with higher values for their dilatational 375 

moduli, which impede Ostwald ripening and coalescence resulting in prevention of 376 

droplet coarsening. 377 

 378 

3.5 Pectin immunolocalisation at the alkane-water interface. 379 

In the last part of the investigation we provide tangible evidence of the presence 380 

of pectin at the droplet interfaces by fluorescence immunolocalisation. Figures 5 and 381 

Figure S5 show maximum intensity z-projected images of the morphology of OP2 382 

solutions and emulsions. Figures S5a-c correspond to the micrographs of controls that 383 

included OP2 solution, OP2 solution with anti-rat IgG coupled with FITC and OP2 384 

solution with a negative control, respectively. A weak signal was spread evenly over the 385 

polymer sample and can be attributed to the intrinsic fluorescence emission of pectin. It 386 

has been previously reported that pectin demonstrates auto-fluorescence at around 530-387 

550 nm [43]. Figure S5d shows that LM19 binds to the HG domains of OP2 as evidenced 388 

by the presence of small entities (arrows). The binding specificity of LM19 antibodies in 389 

pectin solutions was established with indirect immunostaining, a methodology that is not 390 

achievable with the dispersed systems. Therefore, direct immunostaining was used to 391 

localize pectin at alkane- water interfaces (Figure 5a, b and Figure S5h). Pectin-stabilized 392 

emulsions do not show any fluorescence emission whereas those emulsions containing 393 

fluorescent dye exhibit a weak signal due to possible aggregation of IgG-FITC (Figure 394 

S5e-g). Figure 5 a, b provides evidence that pectin adsorbs at the droplet interface 395 

providing complete coverage of the droplet interface with pectin revealing the clear 396 
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predominance of pectin over protein at the interface of the emulsions.  It should be 397 

stressed that images were z-projected and therefore, they demonstrate the network (in 398 

case of solutions) and droplet (in emulsion) in three dimensions from top to bottom of the 399 

image plane (Figures 5, Figure S5).  400 

4. Conclusions 401 

The influence of molecular architecture of pectin on emulsifying capacity has 402 

been investigated by means of an array of complimentary physical and chemical analyses. 403 

It has been shown that pectin exhibits interfacial activity and stabilises emulsions by 404 

formation of elastic protein-polysaccharide bilayers that prevent droplet growth. Protein 405 

component, which is inevitably present, is not the predominant factor responsible for 406 

emulsion formation and stabilisation.  407 

Remarkable long-term stability of emulsions was achieved only with pectin 408 

extracted at high pH values (pH 6) due to the highly branched nature and low 409 

hydrodynamic volume of its chains that contribute to effective steric stabilisation whereas 410 

acetyl and methyl contents do not contribute to the long-term stability. On the contrary 411 

emulsions stabilised with pectin extracted at low pH (pH 2) destabilise rapidly following 412 

a complex mechanism that has been identified as combination of Ostwald ripening at the 413 

initial stages followed by coalescence. The present work uncovered the link between the 414 

fundamental molecular properties of pectin with its interfacial functionality, as a first step 415 

to engineering bioresponsive emulsions that can operate at low pH environments. 416 

 417 
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Tables 544 

Table 1. Influence of pectin type and ageing on the average droplet diameters (d3,2 and 545 
d4,3) and span in n-dodecane and n-hexadecane emulsions formed with 1.5% (w/v) OP2 546 
and OP6.  547 
 548 
Sample Time d3,2 (μm) d4,3 (μm) Span 

  C12H26 C16H34 C12H26 C16H34 C12H26 C16H34 

 OP2 Fresh 1.8  0.1 1.7  0.1 2.6  0.1 2.4  0.1 2.0  0.0 1.8  0.0 

1 h 5.1  0.2 4.1  0.1 11.9  0.4 10.0  0.4 2.5  0.0 2.7  0.0 

1day 5.7  0.1 4.6  0.2 52.2  1.4 34.5  1.7 7.0  0.2 7.5  0.2 

10 days 7.0  1.3 5.5  1.1 122.538.2 107.921.2 11.0  1.6 11.4  2.6 

30 days 8.7  1.3 6.0  0.2 162.430.8 132.70.9 3.0  0.3 3.6  0.2 

        

OP6 Fresh 2.8  0.5 3.0  0.3 7.6  2.6 7.3  1.9 2.9  0.5 3.0  0.1 

1 h 3.3  0.8 3.1  0.5 11.2   2.6 7.4  1.1 2.7  0.1 2.5  0.1 

1day 5.0   0.1 3.2  0.4 11.8  0.9 7.7  0.4 2.2  0.2 2.4  0.3 

10 days 9.1  0.2 4.1  4.1 19.2  1.3 10.5  2.1 2.2  0.1 2.4  0.3 

30 days 8.9  0.2 4.5  0.4 20.7  0.9 11.4  1.2 2.2  0.1 2.4  0.1 

 549 
 550 
 551 
 552 
 553 
 554 
 555 
Table 2. Theoretical (ωth) and experimental (ωexp) rates of Ostawld ripening for various 556 
oil-in-water emulsions. 557 
 558 

Sample                        OP2                       OP6 
     n-alkane type C12H26 C16H34 C12H26 C16H34 

ωth
a
 (m

3 s-1) 10-26 9.9  0.049  11.1  0.047  

 
ωexp

b
 (m

3 s-1) 10-21 
 

 26.0 (4 10-3) 
 

21.0 (3 10-3) 
 

2.6 (6 10-3) 
 

2.5 (0.22 10-3) 

a Theoretical rate (ωth) of Ostwald ripening was calculated with Eq., 2 using the physical 559 
parameters mentioned in section 2.3 and corrected by a factor kf = 1.75 that reflects the 560 
dependence of the coarsening rate on the dispersed phase volume fraction φ = 0.1.[44]  561 
b Experimental rate calculated based from data shown in Figure 3 562 
 563 
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 564 

Table 3. Weight percentage and amount of adsorbed protein, pectin and acetyl at the oil-565 
water interface of fresh w/v n-hexadecane emulsions stabilized with OP2 or OP6 at φ = 566 
0.1, pH 2.0. 567 
 568 

Sample OP2 OP6 

Adsorbed acetyl (%) 9.7  0.4 9.1  0.6 

Adsorbed protein (mg m-2) 0.3  0.1 1.6  0.5 

Adsorbed protein (%) 17.1  6.0 49.5  15.6 

Adsorbed pectin (mg m-2) 3.3  0.2 9.4  0.2 

Adsorbed pectin (%) 14.2  1.1 16.3  5.7 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 
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Figure captions  583 

Figure 1. Droplet size distribution curve development of n-hexadecane-in-water 584 
emulsion stabilized with OP6 at 25 °C for thirty days of ageing. Inset shows droplet size 585 
distribution curves of n-dodecane-in-water emulsion stabilized with OP6 at 25 °C for 586 
thirty days of ageing.  587 
 588 
Figure 2. Droplet size distribution curve development of n-hexadecane-in-water 589 
emulsion stabilized with OP2 at 25 °C for thirty days of ageing. Inset shows droplet size 590 
distribution curves of n-dodecane-in-water emulsion stabilized with OP2 at 25 °C for 591 
thirty days of ageing.  592 
 593 
Figure 3. Dependence ((d3,2)

3 vs. time) of Ostwald ripening rates on n-hydrocarbon type 594 
in OP2 or OP6 stabilized emulsions at pH 2.0 (25 °C). 595 
 596 
Figure 4. Lissajous plots for a) n-hexadecane-, and b) n-dodecane-water interfaces 597 
stabilized by OP2 and OP6. Droplet area 20 mm2, strain amplitude 50%, frequency 0.1 598 
Hz. 599 
 600 
Figure 5. Fluorescent images of 1.5% w/v n-dodecane-in-water OP2-stabilized emulsions 601 
at pH 7.4 a) middle plane and b) z-projected images. 602 
 603 
 604 
 605 
 606 
  607 
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Figure 2.  
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Figure 3 
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