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Abstract 

Coordinate measuring machines (CMMs) are complex measuring systems that are widely used in manufacturing industry for form, size, position, 

and orientation assessment. In essence, these systems collect a set of individual data points that in practice is often a relatively small sample of an 

object. Their software then processes these points in order to produce a geometric result or to establish a local coordinate system from datum 

features. The subject of CMM evaluation is a broad and multifaceted one. This paper is concerned with the uncertainty in the coordinates of each 

point within the measuring volume of the CMM. Therefore, a novel method for measurement uncertainty evaluation using limited-size data sets is 

conceived and developed. The proposed method is based on a Bayesian regularized artificial neural network (BRANN) model consisting of three 

inputs and one output. The inputs are: the nominal coordinates; the ambient temperature; and the temperature of the workpiece. The output is the 

measured (actual) coordinates. An algorithm is developed and implemented before training the BRANN in order to map each nominal coordinate 

associated with the other inputs to the target coordinate. For validation the model is trained using a relatively small sample size of ten data sets to 

predict the variability of a larger sample size of ninety data sets. The calculated uncertainty is improved by more than 80% using the predicted 

variability compared to the uncertainty from the limited sample data set. 

 

Keywords: uncertainty of measurement, Bayesian regularized artificial neural network (BRANN), coordinate measuring machine (CMM) 

 

1. Introduction 

Coordinate measuring machines (CMMs) are used extensively 

in manufacturing industry to carry out an inspection with high 

accuracy. Even though they only measure individual points in 

space, they are extremely flexible. Their flexibility comes from 

the software that processes these points in order to produce a 

geometric result or to establish a local coordinate system from 

datum features. Every point gathered by a CMM is expressed in 

terms of its x-, y-, and z- measured coordinates. Therefore, 

estimating the uncertainty of the coordinates of each 

measured point can help determine uncertainty contributors 

associated with a particular axis of the CMM [1] and enable 

very efficient implementations of geometric element best-fit 

algorithms [2]. 

For multivariate measurands such as a set of coordinates, 

uncertainties are evaluated in terms of variance matrices that 

can frequently be derived in terms of a measurement system 

model [3]. Nevertheless, this is not straightforward in the case 

of CMM measurement due to the complexity of the 

measurement process and the CMM itself [4]. As a result, the 

scope of the model is often limited to certain environmental 

and working conditions. In many applications, when no 

satisfactory mathematical model can be derived, artificial 

neural networks (ANNs) are a good alternative predictive 

modelling approach. ANNs learn from experience rather than 

by deterministic programming and they provide highly parallel, 

adaptive models trained only by input-output data. Also, they 

are able to generalize from given training data to unseen data. 

However, ANNs cannot be seen as a simple one-answer-fits-all 

solution, and in many cases misapplication of artificial 

intelligence techniques can lead to incorrect results, especially 

where the ANN model is poorly defined and perturbations are 

outside the scope of the training sample.  

 

 

This paper is concerned with the uncertainty of measurement 

in the coordinates of each point within the CMM workzone. 

Therefore, a novel predictive model is developed for CMM 

performance evaluation using limited-size data sets. The 

proposed model is an ANN consisting of three inputs and one 

output. The ANN is trained by Bayesian regularization to 

improve network generalization. This approach, which is an 

improvement of back-propagation, uses statistical techniques 

so that the trained ANN can use the optimal number of 

parameters. Bayesian regularization provides better 

generalization performance than early stopping, especially for 

small data sets because it uses all the data; it does not require 

that a validation data set be separate from the training data set 

[5]. To attempt to realize such a model, all the inputs and the 

output are coded as vectors.  

2. The proposed method      

Consider that twenty individual data points representing the 

measured (actual) x-coordinates    ranged from 0 to 210 mm in 

this example are generated according to the model:   
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where ! 
" is the nominal x-coordinates, #$ 

 and #% 
 represent 

systematic effects associated with the ambient temperature 

and the workpiece temperature, respectively, and &  represents 

random effects. Suppose then that ten data sets including 

twenty actual x-coordinates each are generated according to 

this model with errors ranged from -10 to 12 μm (temperature 

values range from 18 to 22°C). Consequently, each data point 

in each data set is highly correlated to an ambient 

temperature, a workpiece temperature, and a random, 

uncorrelated effect.  



  

The multi-layer perceptron (MLP) network shown in Figure 1 

consists of three input units, five hidden neurons and one 

output unit. The activation functions for both the hidden and 

the output layers are tan-sigmoid (tansig) transfer functions to 

provide the nonlinear characteristic. The three inputs of the 

network are the vector of nominal coordinates, the vector of 

ambient temperature data, and the vector of workpiece 

temperature data while the output (target) is the vector of 

actual coordinates (displacement). The nominal coordinates 

are used because they help the ANN to generalize for different 

measurement tasks across the CMM. An algorithm is 

developed and implemented before training the ANN in order 

to map the nominal coordinates associated with the other 

inputs to the target coordinates. The data has been normalized 

between -1 and 1, since the Bayesian regularization training 

algorithm generally works best when the ANN inputs and 

targets are scaled within that range [5].  

 

 
Figure 1. The MLP network with five hidden neurons. 

 

By varying the simulations in MATLAB with different numbers 

of hidden neurons, four different models were developed. The 

first model consists of five hidden neurons, the second with 

ten, the third with twenty, and the fourth with forty. All the 

models were trained for a different number of epochs because 

the training process only needs to be implemented until the 

errors converge. In order to examine the performance of all the 

Bayesian regularized artificial neural network (BRANN) models 

on non-training data, another ninety data sets (testing sample) 

were generated. So, ten data sets were used for training and 

ninety data sets for testing. 

The mean squared error (MSE) performance function was 

used to measure each network’s performance. Table 1 shows 

the results obtained from all the developed models; the 

number of convergence epochs, the network’s performance 

according to the mean of squared errors, and the percentage of 

improvement in the calculated uncertainty compared to the 

original data set.  
 

Table 1. Performance of BRANN models. 

 

Models Epochs MSE/mm 

Calculated 

uncertainty 

improvement/% 

1 2374 4.65 × 10
-5 

83.0 

2 3744 8.74 × 10
-6

 66.5 

3 3487 1.68 × 10
-5

 67.5 

4 5000 3.28 × 10
-5

 66.0 

 

Based on Table 1, it can be determined that the optimal 

solution in terms of the improvement in the calculated 

uncertainty over the sample statistics method is the first 

model. Figure 2 compares the standard uncertainties [6] 

simulated in the training sample with the uncertainties from 

the testing sample and the uncertainties from the predicted 

coordinates obtained by the four models for each sampling 

point. 

 

 
 

Figure 2. Standard uncertainties for each sampling point. 

 

As can be seen from Figure 2, while sample statistics is 

misleading for small sample sizes, the proposed method is 

shown to be a good modelling approach to predict the 

variability associated with the point coordinates. In a similar 

way, the method can be applied to y- and z-coordinates.      

3. Conclusions      

The paper has been concerned with the point coordinate 

uncertainties. Therefore, an empirical method based on a 

BRANN model has been conceived and developed to predict 

the variability associated with the CMM coordinate data using 

limited-size data sets. A validation case study has shown that 

the calculated uncertainty is improved significantly using the 

predicted variability compared to the uncertainty from the 

limited sample data set. Therefore, the method can be applied 

to determine uncertainty sources associated with a particular 

axis of the CMM and increase the efficiency of geometric 

element best-fit algorithms implemented in coordinate data. 

Finally, the method could be extended beyond CMMs to 

include other measurement systems such as comparator 

gauges i.e. considering the difference between the 

temperature of the master part and the productions parts 

instead of the ambient temperature due to the principle of 

comparative measurement.  
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