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Abstract

Thermal errors can have significant effects on Computer Numerical Control (CNB)nma

tool accuracy. The errors come from thermal deformations of the machine elements caused
by heat sources within the machine structure or from ambient temperature change. The effect
of temperature can be reduced by error avoidance or numerical compenséhe
performance of a thermal error compensation system essentially depends upon the accuracy
and robustness of the thermal error model and its input measurements. This thesis first
reviews different methods of designing thermal error models, befoneentrating on
employing Artificial Intelligence (Al) methods to design different thermal prediction models.

In this research work the Adaptive Netfazzy Inference System (ANFIS) is used as the
backbone for thermal error modelling.

The choice of inputdo the thermal model is a ndnvial decision which is ultimately a
compromise between the ability to obtain data that sufficiently correlates with the thermal
distortion and the cost of implementation of the necessary feedback sensors. In this thesis,
temperature measurement was supplemented by direct distortion measurement at accessible
locations. The location of temperature measurement nalsb provide a representative
measurement of the change in temperature that will affect the machine structunemitier

of sensors and their locations are not always intuitive and the time required to identify the
optimal locations is often prohibitive, resulting in compromise and poor results. In this thesis,

a new intelligent system for reducing thermal errorsnaichine tools using data obtained

from thermography datas introduced. Different groups of key temperature points on a
machine can be identified from thermal images using a novel schema based on a Grey system
theory and FuzzyC-Means (FCM) clustering metd. This novel method simplifies the
modelling process, enhances the accuracy of the system and reduces the overall number of
inputs to the model, since otherwise a much larger number of thermal sensors would be
required to cover the entire structure.

An Adaptive NeureFuzzy Inference System with Fuz@/Means clustering (ANFFECM)

is then employed to design the thermal prediction model. In order to optimise the approach, a
parametric study is carried out by changing the number of inputs and nunNdemifership
Functions(MFs) to the ANFISFCM model, and comparing the relative robustness of the
designs.The proposed approach has been validated on three different machine tools under
different operation conditions. Thus the proposed system has been &hdenrobust to
different internal heat sources, ambient changes and is easily extensible to other CNC
machine tools.

Finally, the proposed method is shown to compare favourably against alternative approaches
such as an Artificial Neural Network (ANN) meldand different Grey models.
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Chapter lintroduction

Chapter 1: Introduction

1.1 Introduction and Overview

Manufacturing industry demands a continual improvement in the positioning accuracy of
machine tools. Increasingly, changes in the business requirements of manufacturing
industries are driving machining systems to be more accurate and more prodUactive.
produce high quality parts to high accuracy and to close tolerances, the CNC machine tools
must have greater accuracy than the tolerances of the manufacturedrlparthility to
produce parts accurately has many advantages such as improved performahadaished

product, reduced waste, reduced rework, more predictable production schedules, etc.

Machine tools with three axes have been used to fabricate a large variety of products with
relatively simple geometry to a satisfactory accuracy. Howevem#iesrrors are still one

of the main factors affecting the machine accuraldyey are caused by exogenous and
endogenous heat sources and result in-uroform expansion and deformations of the
structural elements. The interaction of the differing heatcgs,) asymmetry of the structure,
differing expansion coefficients and time constants of disparate materialgestdt. in
complex mechanical behaviotirat are difficult to predict deterministically. Thermal errors

have been reported to contribute apjmaately 70% of the total positiorgnerror of the CNC
machine tool[1], although tis differs from machingéo-machine. In addition, higher
accuracies are being required on langachine tools because of the increasing demand for
high-value, large parts, such as impeller blades, engine blocks, aerofoil, etc. The accuracy of
a gantrytype 5-axis machine tool has historically not been as good as that ofakiee
machine tools, because the numbers of errors increase inevitably by increasing the size and
WKH QXPEHU RI PDFKLQHYV D[HV )LQGLQJ DQ HIILFLHQW P

particularly timely.

Serious attention has been paid to the influence of temperature changes on the accuracy of the
CNC machine tool$2-5]. Thermal errors arise from changes in the size and shape of the
structural elements of the machine tool, and ofwloekpiece, due to vging temperature
gradients on the machine and wpiéce during the machining process. Thermal fluctuations

of the machine tool structure are caused by changes in environmental temperature and heat

sources that exist within the structure of the machinéitself. The internal heat sources
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include, drive motors, gear trains and other transmission deHmsgever, leat sources
around a machine tool can be split into two categdi¢sheat sources internal to the

machine and dmat sources external to the machine.

Internal heat sources consider all heat sources that are directly connected to the machine tool
structure.They directly conduct the heat into the machine structure and cause deformations
and thermatespose Understanding the effect of each of these sources hagheefatus of

various publication$6-8]. Theresearch has shown thgtindle system and its bearings are
considered to be one of the main sources of heat generation and resulting deformations.
Without error avoidance methods, suchaa=ooling jacket, the heat generated by the spindle
system will cause temperature gradients in the machine elements. This thesis makes extensive
use of thermalmaging for rapid assessment of the internal heat sources of the machine tool.
To illustrate theuse of thermal imaging for this purpose, examples of internal heating test

will be seerthroughthis thesis.

There are other important internal heat sources such as the cutting process itself, which
warms up the tool, todiolder, clamping device, and workpie@dthough, there is extensive
research which addresses the friction modelling of the machining pri@jeske thermal
aspects of the machining process have not been investigated adejfdf@lyThe table and

other components can also be heated up indirectly by hot chips ($wanf)the cutting
process This heat source can be reduced by using cutting fluid (coolant). Hoveenchr a
process can create additional negative heat sow@esust be used only with sufficient

consideration.

External heat sources are attributed to the environment in which the machine is located, such
as neighbouring machines, opening/closing of machine shop doors, variation of the
environmental temperaturaudng the day and night cycle and differing behaviour between
seasons., W 1 \a tvRIMiroblemto keep the machine thermal environment in homogeneous
and stable condition, due to the complexity of the surrounding working environment and the
total budgetconsideration. Even the small heat sources, such as lighting, and electrical
cabinet of the machine, could cause significant change in the machine strlicelucemplex
thermal behaviour of a machine is created by interaction between these differeoineas.
Ambient effects are arguably one of the most important, but most neglected in thermal error

compensation systemp3]. An integrated model can be used in machine tool error
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compensation, taking into account the different heat so{@¢ean example of such a model

for a CNC machine tool is given by White et ff].

Thermal errors are variabldbat can vary withtime. They change therelative tool-to-
workpiece position and orientation and can be either dependent or independent of axis
position, depending on their sour¢®sition dependent thermal errors are functions of both
temperature and axis positiofl]. Some of them may change quicKlyeat generated by
spindle) others may change slowkambient temperature change&ome of the thermal

errors may combine, and some may cancel each other out with respect to the geometry of the
machine. Thermal errors change according to the operation being carried out by the machine,
heat sources related to moving axes and fluid flow ey produce thermal errors that stem
from the machining operation's history. This complexityhef problem othermal errors has

led to the development of a wide range of approaches and strategeskice their effects

There are three primary approaches to mitigate these thermal errors which will be addressed

in the next section.

1.2 Techniquesfor Increasing Machine Tool Accuracy

High value manufacturing requires machine tools that can produce consistently high accuracy
parts. Deformations due to the changes in the temperature of the machine tool structure create
relative displacement between the tool tip and the workpiece during the machining process,
which affects the dimensional accuracy of manufactured parts. Therroes are yet more
complex since they represent a response to the interaction between environmental changes
and internally generated heat. There are three primary approaches to mitigate these thermal
errors which can be categorised as: elimination oidavae, reduction of generated heat, and
compensation strategies. Elimination or avoidance strategies try to eliminate any change in
dimensions due to temperature changes. They are best implemented during the design stage
of the machine tool. Some examplethese strategies are use of symmetry in machine
design, choice of materials and use of dirdosedloop feedback Reduction of generated

heat strategies tends directly cool the heat sources, for instance, through on machine
cooling systems. Howevgthe eneuser must also be responsible for improved environmental
temperature control, or good operating practices such as spindle warm up. Compensation
approaches tend to compensatenerically or electronicallyor any change in the size and

the shapeof the machine structure due to temperature gradients. They can be implemented
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during any stage of the machine tool design and development. Many compensation
techniques have been explored to reduce thermal errors in a direct or indirect way. More

detail wil be presented in the nestibsections

1.2.1 Elimination or Avoidance

7TKHUPDO HUURUVY FDQ EH UHGXFHG E\ DPHQGLQJ D PDFKLQ
and manufacture procedures, such as structural symmetry and separation of heat sources, etc.
Thesestrategies are besnhplemented during the design stage of the machine tetbfit

solutions are unlikely to be feasibl€he efficient numerical model dhe machine tool is

today an essential part of the design and improvement of CNC machine tmofgodsible to
designthe machine tool structure and its assemblies with regard to their material and
geometry in order to ensure the lowest sensitivity to changes in tempekdwever, this is

not always practical due to cost and tbempromise ti might cause on, for instance,
accessibility for partoading location of tool changeoyerall fooprint, etc. The numerical
modelling of machine tool should include the mutual interactions between the heat sources in
a way most faithfully identifying all theaturally occurring phenomerja?]. Finite Element
Analysis(FEA) is avery helpful tool especially during the design phase of a new machine. It
has been used to gain accurate knowledge of the influence of different factors on the thermal
behaviour of machine toolf2, 13]. This allows the arrangement of machine structure,
elements, and heat sourcés be dewed The final design usually isletermined by
optimisation in terms of size, capital, and running coBlte following list describes some

design changes that have helped significantly to reduce thermal errors:

x The geometry of the machine is criticaltire deformation behavio(it4]. Thermally
symmetric design o machine structure leado lower temperature gradients as well
as reduce distortions[15]. For examplemachine element such emns and columns
have in most cases a square section to achieve a symmetrical design and balanced
thermal behaviourMayr et al.[16] proposed different design modifications for a
prototype lathe and made comparisons by simulation studysifthdation example
illustrates that the thermal error of the prototype can be reduced to about 15% of the
original error by design modificationgurthermore, the lighiveight structure with
thin walls is recommendedfor smaller heat capacityjo reducethe thermal
deformation[17]. Neverthelessit is veryimportantfor the machine tool designer to
understando what extent the lightveightstructurecan be praacally implemented
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x Utilising materials that have a lothermal expansion coefficiernd high specific
heat capacity such as cast iron, fibeenforced plastics and polymer concrgtgl4].
In the machine tool sector, the most commonly usaterialis cast iron due to its
stability, easy casting, and economy in machining. Nevertheless, polymer concrete
has received increasing attention since it can be used in manufacturing bases requiring
material properties such as good thermal stability. Haddad Kastzhisi [18]
investigated theapplication of polymer concrete compositions on the thermal
expansion of the base and how it affected the level of precision afidhkinetool.
ANSYS software was employed in visualizing the influence dédéht compositions
of aggregates on the thermal expansion. According to their results, the optimum
compositionof the area that they investigatsdobasalt, sand and fly asiespectively,
which has the least coefficient of thermal expansion and accegtekliral strength.
Recently, some companies apply innovative silicon carbide ceramics for their new
CMM machines which gives around 50% lower thermal expansion, and 20% less
weight than standard ceramid®)].

x Ballscrews are often used in machine tools withtaryoencoder feedback on the end
of the screwThermal deformation of the balirew shaft can be a serious source of
positioning error. Duringhe normal function of baltrew system, heat generating
from the friction of balls movement on the thread prasua significant thermal
growth of the screw. Using linear scales laser scales provide direct feedback
removing the balscrew from the positioning loogdowever fitting such scales to
many machines may be mechanically difficult and cog@g]. Additionally,
convenient locations for the scales might be-i@wal from a thermgpoint of view,
so cannot be considered a complete solution topttodlem Another common
technique usd to reduce the effect of bsdlew expansion is appliwan of pre
tension to the badtrew. This technique suffers from a number of drawbacks such as
potentially incurring vibration, bEcrew buckling and bearing failure problej2ag].

X lIsolation of spindle driving system: Motor spindles are equipped with-frogler
motors, which generate a significant amount of lost [i&8t To prevent transferring
the heat produced in a spindle motor to a main spindle, the spindle is coupled with a
high-speed drive motor by using a diaphratype coupling. As a result, the spindle
system can be isolated from the hemnerated in spindle motor through the

diaphragmtype coupling17].
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The efficiency of the spindle bearings is especially important for the spindle system
perfomance. Improved bearing systems, where the change from plain to angular
contact bearings with high contact angles has resulted in increased speeds and
stiffness whilst achieving lower heat generation. Recently, ceramic bearings have also
been used to redacthe friction and hence the excessive generation of heat in the
bearingd22].

Painting and coating materials: Foretlstructural body component, the painting
material and its emissivity have significant effects on the thermal boundary condition
of the machine too]17]. As amilar topic is concerned with the coating technology

for some parts of the machine structure such as cutting[#joBor instance, enamel

is an excellent coating material to increase the heat dissipation from the surface of the
machine although it has certain difficulties in practical (i$€].

Use of slant type bed structueelarge amount of the heat generatedh®machining
process is transferred to the chisvarf) In order to achieve high machining
accuracy, immediate removal of chips from the machining work space is an important
issue. An inclined guide way is an effective metmprevent a pileof swarfon the

bed. The latest designs of turning centres haveeslebed structurgd 7). In such bed
structures, the chips are quickly removed from the machining work space by a
conveyer, and thus the heat dissipation to ritechine elements can be avoided.
Furthermore, the cutting fluid can also help to alleviate this prold&tocalised
heating tlough careshouldbetakensince it can conversely cause a cooling (negative

heating) effect

Reduction of Generated Heat

Controling workshop temperature is always a good practice for reducing thermal error

because normal daily environment temperature fluctuation is one of the main heat

disturbances in an ordinary machine shop. Much reséamsheeriocused on how to control

the hat sources and achieve temperature equilibrium faster in order to avoid the negative

effects of excessive heat during the machining process. A more effective method for

controllingthe heat can be realised by reinforcing an effective flow of temperatatelled

media around the heat sources. More specific techniques and their applications are listed

below
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X Environment temperature change is also a major cause of machine tool structural
temperature variation23]. Longstaff et al.[3] presented several Environmnel
Temperature Variation Error (ETVE) tests conducted on a wide range of machine tools
and discussed the implications for produced parts. It has been reported that external
temperature variation are attributed to the environment in which the machoeated,
such as neighbouring machines, opening/closing of machine shop doors, variation of the
environmental temperature during the day and night cycle and differing behaviour
between seasons. Temperature controlled environments and modification of theemac
shop floor are possible and can effectively reduce thermal errors on a number of machines
at once, but may be difficult and costly to achieve.

X Some machine tool designers appbolant down system to the kmdtew Xu et al.[24]
tried to contol the heat sources of the Is&itew system and achieve temperature
equilibrium quickly. They carried outa h#éd VRXUFH FRQWURO PHWKRG FDC
FRR O L @baighRpf@cision badicrew drive system. A thermal behaviour model using
the Finite ElementMethod (FEM) ad aLumpedCapacitanceMethod (CM) were used
to estimate the effectiveness of the aipblowy system.Thermal error was reduceay
66.8% at 500 rpm, and 65.9% at 1000 r@wocording to their results, the most important
finding is thatair-cooling brings temperature equilibrium faster to the ballscrew system.

x Forced oil cooling of machine toabmponents: Several specific designs incorporate oil
cooling jackets equipped with a temperature sensor around the spindle bearings. The oil is
circulated continuously through these jackets and passed through a refrigeration unit. This
method is a simplevay for reducing bearing temperature and is widely applied to the
cooling of highspeed spindle systems supported by rolling beafR§js

X Air circulation controlled at a constant temperatudd: temperature control systems
provide an alternative means for reducing ttermal error of machine tools when other
effective means are not practical. However, such air cooling system is not as effective as
a liquid cooling system to remove heat due to lower heat capacity of the mddiuza|.

Several designs tried to improve the cooling performance of air and make it a practical
alternative to cool machine tool components for new and existing machines. Donmez et
al.[25] proposed a method of cooling by using commercially available silicon tubing with
small slits and forcing a compressed air through them based on&sféext coolingAn
average of 30% improvement in spindle response was obsekeedrding to their
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results, the power requirenmtdor their method is about OK&V. In comparison, an air fan
producing high velocity air flow arourttie machine would req@rabout 4&W power.

Jiang and Mif26] investigated a thermal design method for a vertical machining centre
headstock using a dual forced cooling system, including a forced air cooling subsystem
and a forced water cooling one. The air cooling subsystem was used! theariven

motor, while the water cooling subsystem is used to remove the heat generated by the
spindle bearing. The integrated thermal model of the headstock system was developed by
aid of theFEM. Their results indicate that the thermal behaviouheftieadstock can be

improvedby 77%using tleir proposed method.

Numerous attempts have made to introduce special design and manufacture procedures, such
as the abovementioned strategies. These strategies can reduce the effect of structural
temperature admnge, but at the same time increase the cost of its manufactdrean
compromise other design targets such as size and.speeatbre advantageous way of

improving machine tool accuracy is through the use of an error compensation system.

1.2.3 CompensationStrategies

Compensation is a process where the thermal error present at a particular time and position is
FRUUHFWHG E\ DGMXVWLQJ WKH SRVLWLRQ RI D PDFKLQHT)\
position[23]. Error compensations can be more attractive than madtiggical changes to

the machine structure. Filgt error compensation is often less expensive than the design

effort, manufacturing and running costs involved in error avoidance. Secondly, error
compensation is more adaptable in that it can accommobatges in error sources, which

sometimes cannot be accommodated by structural change tecH®liques

Many compensation techniques have been explored to reduce thermal errors in a direct or
indirect way. Direct compwesation is simple yet efficient philosophy, making use of directly
measured displacements between a tool and a workmée®, using probingHowever,

direct measurement compensation has a number of disadvantages. For iitsianibe]y

that some ofhle most significant thermal problems are caused by rapid thermal changes.
Tracking and correcting these rapid movements would require frequent measurgvinemts.

a tookmounted probe is usedach measurement requires a break in machining, therefore
introducing undesirabletime delays. In addition, probing measurements can be prone to
errors caused by swarf or coolant on the surface of the workj@iecEhis can be overcome

by repeated measurements or other meartsinburs further cost in terms of hardware or
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production time. Realistically, direct thermal compensation is most applicable to fixed

tooling, such as lathd&], where a dedicated sensor can be conveniently located.

In indirect compensation the thermal error is calculated from measuremems@fosher
parametes, most commonly temperatuf23, 27-29]. Theindirectcompensation conceptts

build a compensation model by continuously monitoring the temperature changes atl selecte
points, using different type of sensoftemperature and/or straird. relationship is then
found between these sensors and the deformation of the makluomprehensive survey o

compensation techniques was giwer2009by Li et al.[30] and in 2015 by Li et a[31].

Rather than attempting to eliminate thermal errors, this research work prosgstematic
methodology for predicting thermal errors, thus improving the accuracy of CNC machine
tools by allowing accurate compensation movemenibe Artificial Intelligence (Al)
modelling will be used as a generic tool to develop a thermal predictidelmdich can be
readily transferred to other CNC machine tools. An efficient strategy of selecting significant

model inputs and their locations has been introduced.

During the manufacturing processes, the temperature/strain signals are collected imeeal t
and the errors are estimated with the artificial intelligence model. The calculated
compensation values will be used to modify the axis positions to maintain the end of the tool

at the datum position.

This thesis proposes a thermal error modelling oekthased on the Adaptive NetfFozzy
Inference System (ANFIS) in order to establish the relationship between the thermal errors
and the temperature changes. The proposed methodology has the ability to provide a simple,
transparent and robust thermal erommpensation system. It has the advantages of fuzzy
logic theory and the learning ability of the Artificial Neural Networks (ANNS) in a single
system. A thermal imaging camera was used to record temperature distributions across the
machine structure durinthe experiments. The thermal images were saved as a matrix of
temperatures with a specific spatial resolution of one pixel, each of which can be considered
as a possible temperature measurement point. Methods of optimising sensor location, using
automaticclustering of thermography data, have also been proposed. This allows efficient

modelling of new machines.

The proposed approach has been validated on three different machine tools under different
operation conditions. Thus the proposed system has besymndio be robust to different

internal heat sources, ambient changes and is easily extensible to other CNC machine tools.
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1.3 Aims

x To produceintelligent techniques farobustmodellingof machining errors caused by the
thermal distortion of CNC machine tools.

x To makethese techniquagadily applicable to any common CNC machine with minimal
effort.

1.4 Motivation

This research was motivated by the high accuracy requirements of the manufacturing
industry. Increasingly, changes in the business requirements of asturufg industries are

driving machining systems to be more accurate and more productive. As a consequence, the
research approach taken in this thesis addresses an intelligent compensation strategy which
can be implemented in a timely and cost effectivanner on existing CNC machine tools

with different configurations. A compensation strategy which effectively improves the
accuracy of a machine tool would significantly reduce wastérework, and lead tanore

predictable production schedules, etc.

1.5 Objectives

The objectives of this researalork are

x To undertake an wdepth literature review to ascertain the past, current and future
requirements of CNC machine tools, particularly in terms of their thermal error
compensation.

X To develop a systematinethodology talefinea precise selection of thermal sensors and
their positiors in order to ensure the prediction accuracy and robustness of compensation
models.

x Provide a thorough and complete description of the-diat@n modelling.

X To derive a novel thermal prediction model for a CNC machine tool, using the Atrtificial
Intelligence (Al) tools such as Adaptive NeuFazzy Inference System (ANFIS),
Artificial Neural Networks (ANNSs), Particl&warm Optimisation(PSQ and Greysystem
theay.
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x To investigate and evaluate the performance of the thermal error compensation models
for CNC machine tools and their requirements.

x To develop a general thermal prediction modeht can be readily transferred to other
machine tools in a timely and dafective manner.

x Provide a generalised, cesffective approach to thermal error compensation that can be
implemented on a wide range of machine tools with different configurations, the
following considerations should be taken into account:

0 Accurate reliable and robust

o Capable of being implemented on a wide range of CNC machine tool
configurations;

0 Quick to apply, without excessive downtime.

x Validation using disparate cycles on multiple machines.

1.6 Thesis Structure

The previous sections of thehapter lave presented a background of thermal error sources,
and an overview of primary approaches to mitightesethermal errors of CNC machine

tools. A breakdown of the work presented in the bodfisfthesis is as follows.

Chapter 2 presents review of literature relating to the modelling of thermal errors and
current developments in the field of thermal error compensation of CNC machine tools.
Subjects include the principleased models, empiricabsed models, and thermal key point
identification approachesStudies relating to application of Al techniques to various
machining processes are also reviewed. dhepter is also concluded with a discussion of

thechallenge®f the current models.

This is followed inChapter 3 bya thorough dscription of the current state of artificial
intelligence systems, including details of ANFIS model and extraction of the initial fuzzy
model. Particular focus is also given to the Grey system theory for both modelling and
selection of the most relevantetimal variablesThe chapter is concluded with a discussion

of themodel validatiorprocedure.

Chapter 4 outlineshe experimental considerations taken into account when collecting the
data to build the compensation models of the CNC machine tool. Detdil also be

provided on the equipment setup used during the various experimental tests. This is followed
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by a systematic methodology to a precise selection of thermal sensors and their positions in
order to ensure the prediction accuracy and robustiessnpensation models. The effect of
using different physical quantities (temperature and strain) will also be expldrecdffect

of hysteresis will also be investigated in this chapter.

In Chapter 5 thegproposed model will be developed for the purposeerification of the

techniques that will be developed in subsequbkapters.

In Chapter 6 anew concept will be added to ANFIS modelling for prediction of ETVE. Also,
four models will be developed fdhe purpose of validation of the proposed appioavhich

will be designed to predict the thermal error of a number of machines in different operation
conditions. The first model will be the proposed ANFIS model. The second model that will
be developed is an ANN model. The thadd fourthmodek that wil be developediretwo

Grey moded.

The deep understanding of literature review and main findnogs Chapter 2 taChapter 6
are brought together and summarise€Chapter 7, followed by an explicit statement of the

conclusions dnan from this thesis
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Chapter 2ThermatError Modelling Techniques
Chapter 2: Thermal-Error Modelling Techniques

This chapter provides the literature review of machine tool error compensation techniques
relevant to this thesis. It starts by providing an overview of different modelling approaches
that have been used for thermal error compensation. Next, a comprehengwe otthe

areas of machine tool error modelling and compensation is condddtiedfollowed by
discussion of the application of Al techniques to various machining procd&ssegaps in

the literature are identified and the objectives of this work argligiged basean the key
findings from previous research and response to the limitations of existing techrfiigaes
chapter ends with separate sections containing the challenges and summary of the literature

review.

2.1 Thermal Modelling Methods

Error compeasation has become a cedfective way to improve the accuracy of machine
tools, in which error modelling play a fundamental ri@e Robust modelling is one of the
greatest challenges in the field tdfe machinetools thermal error compensatiof82].
Generally different types of modelling approaches are used for thermal error compensation.
Thefirst oneis known as the principleased models (whilBox models). In principkbased
method the system models are derived based on heat transfer mechanisms (i.e., conduction,
convection, and radiatioff)L7, 33]. Here, the relationshfbetween thermal errors and heat
generated are described by a system oflm@ar differential equationg30]. The solution to

such differential equations can be obtained by analytical methods as well as numerical
methods. Therefore, principleased models are further divided into analytical models and
numerical modelslt is worth mentioning that the principleased model is interpretable but

not necessarilysufficiently accuratebecausethere are always uncertain factors affecting the
system An accurateprinciplebased model can hardly ever be obtaitedtause of the
interaction between multiple moving parts with multipledéfined heat inputsThe second

type is known as datdriven models émpiricatbased mods) [34, 35]. The relationships
between the system inputs and outputs are not based on phggcdentationsas for
principle-based models, but are deduced through suitable experimentaltests done by
PDNLQJ XVH RI WKH SULQFLSO Ht tefiziiiid vBrlls thé ldddse/ ™ ZKHU
and the thermal error is the effethe experimental data are dividedatwo different sets,

one usedat the trainingcalibrating stage and one used for the motksting It is worth
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mentioning that in datdriven malels the interpretation of the model is often difficuft.the

third type, known as the grdyox modeld36], the basic structure of the model is formed by
using the principldbased method and the model parameters are calibrated by using the
parameter estimi@n algorithms on the measured data of the system. This means that the
starting point is a model structure based on physical representations. Because so much
engineering knovddge and experimental work cosnm terms of verbal rules, a sound
engineering pproach is taattemptto integrate such linguistic informatiqwords) into the
modelling process. A convenient and common way of doing this is tBursy Logic (FL)
concepts in order to cast the verbal knowledge into a conventional mathematical
represetation (a model structure), which subsequently can betdined usingexpert
knowledge and/oexperimental datg37], for more detail aboUtuzzy Logic Systems(FLS),

the reader is referred to secti®re.

A fuzzy model is a computation framework based on the concepts of fuzzy sets,ifuzzy
then”rules, and fuzzy reasoninip real wotd problemsif the designer hasformation such

as human experience described by linguidtiX O Hhén?3 tules,the mechanistic modelling
approach is less important and the application of-lbaleed approaches like. models is

more appropriate-uzzy modelling allows us to deal with themplexsystem by building a
linguistic model which could become interpretabjehuman beingg38]. The flexibility of a

fuzzy model allows us to extract rules that describe the behaviour of a slystaher words,

fuzzy modelling takes advantage of engineering knowledge and experimental work that
might not be easy to be directly applied in other modeheghods A common practice is to

use such knowledge for structure identification (determination of the relevant inputs, type and
number of theMembershipFunctions(MFs) and number of the rules, and so ohhese
parameters can then easily be calibrated andtfimed by experimental data with the use of
various learning techniques such as a neural network (known asfoezyanodels). Models
based on this method are partially linguistiatements and partially empirical. Different
from blackbox mode$, neurefuzzy modes require both the knowledgef dhe process
system (represented by linguistic rules) and empirical data. The rule base of these neuro
fuzzy models is initialised by expert knowledge or clustering techniques, and the model
parameters are calibrated via similar methods that are usdwfdatadriven models. As the
neurafuzzy model can initialise and learn linguistic rules, the modelling framework can be
considered as a direct transfer of knowlef8@}. This is the powerful advantage of adaptive

fuzzy systems in comparison wiphinciple-basedandotherdatadriven models.
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This chapter will present a comprehensive review of the thermal error modelling techniques.
It will not attempt to provide a beal survey of the field of fuzzy modelling. For such a
survey, the reader is referred ttee next chapter Current challenges in the thermal error
models, reported in the literature, are also discussed. This is followed by a summary of the

literature reviewpresented in thishapter.

2.1.1 Principle-Based Models

Principlebased models, also called whilex models, describe in space differential
equations to simulate the system behaviour. These models are useatiyetableand based
on theoretical relationshép Numerical methods such as friaite Element Analysis (FEA)
[39] andFinite DifferenceElementMethod (FDEM)[2, 40] are powerful tools in simulating
the practical heat transfer, where analytical solutions to temperature fieldthemaal
responsesare discarded due to the complexity of machine tel@ments With the
development of computer technolody&A has proved to be a powerful tool to predict the
thermal error of machine tools. FEA is now being more frequently applistntdate the
thermal errof8, 39, 41].

Mian et al.[8] developed an offline technique using FEA to simulate the effects of the major
internal heat sources ofsmall Vertical Milling Centre(VMC) and the effects of ambient
temperature pockets that build up during the machine operation. Their work has shown that
consideration of air pockets is needed to improve the FEA model accuracy. The simulation
results closely matad the experimental results and revealed a maximum erroe raing

70 um reduced to less thd® um.

Creighton et al.[42] carried out analytical approaches by FEA model to study the

temperature distribution characteristics of a spindle, motor and its housing. The results from
the characterisation tests were used to develop a simple exponential model of the axial
thermal erro related to the spindle speed and running time. It was reported that the model
was successful in reducing spindle growth by up to 80% under random spindle speed.
However, the thermal error of a machine tool is a mutual coupling of many complex factors
tha are affected by many variables; therefore, their model cannot compensate the cyclic
variation due to the ambient temperature changes. It is extremely difficult to predict the

thermal error from a simple exponential equation.
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Mian et al.[39] proposed an offline environmental thermal error modelling approach based
on a finite element analysis model that reduces the machine downtime usually needed for the
environmentaltemperaturevariation error test from a fortnight to 12.5 h. Their modelling
appoach was tested and validated on a production machine tool overyaamperiod and

found to be very robust.

Postlethwaite et al[6] made a distinction between the temperature model and distortion
modelof a thermally affecting CNC machine, and used a thermal imaging camera for rapid
assessment of a machine tool thermal behaviour andineffdevelopment of the
compensation models. Their proposed technique can calculate the temperature distribution

and dstortion when the machine is subjected to widely varying operating conditions.

White et al.[7] outlined a combination of geometric and thermal error compensation systems
ZLWK D IOH[LEOH VWUXFWXUH WKDW LV 3 JHQHUDO SXUSRV|I
proposed system can use any number of temperature sensor inplitsAB model can be
progranmed in such a way that it estimates its thermal movement using data from a single
test on the machine. The program then applies error compensation to a number of outputs,
which are used by the machine controller to obtain a compensation value. The coimpensa
model can either be integrated into an open architecture CNC machine controller, or into a
standalone computer which accepts a large range of feedback signals. The compensation
model can reduce both dependent and independent thermal errors. Itehaappéed to
different types of machine tools, and has been proven to reduce thermalbatveeen the

tool and the wongiece by more than six times when applying a cooling and quick heating test

for calibration.

Freeman et a[20] established a system which minimises the number of temperature sensors
used as inputto a thermal model of the batirew. The authors used their model to predict
online the thermal eors of the balcrew. If the position measurements of the nut are
available from the encoder, it gossibleto determine the speed of the screw. Assuming
knowledge of heat transfer atacteristics and the frictipnand using the measured
temperatures of the nut and bearings, the heat generated in the nut, bearings and screw can be
calculated. The thermal model constitutes adin@ensional finite analysisf the screw. The

output of their proposed model is a temperature distribution along the screw and an estimate

of the thermal errors of the screw.
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However, building a numerical model can be a great challenge due to problems of
establishing the boundary catidns and accurately obtaining the characteristics of heat
transfer.Because the FEA models are built based @umaptions and empirical formyla
which inevitably have inaccuracies, the FEA model must be modified by experimental tests.
It is also noted that most validation only represents a similar inputput condition to the
modelling process. It is therefore difficult to estimate robustness of the model to changing

parameters.

The following paragraphs will give a discussion different kinds of datadriven models

most of which aim to predict the thermal error of machine tools.

2.1.2 Data-Driven Models

The datadriven models are behavioural models that are based on historical data to predict the
performance of a given system, in this case the distortidheofnachine Contrary to the
QXPHULFDO PRGHOV WKH\ DUH QRW EDVHG RQ H[SOLFLYV
H[SHULPHQWDO GDWDEDVH ZKLFK LV FD&veEOikpuk land HAHFW
outputs. Datalriven techniques for thermal error mdohg can be divided into two

categories: statistical techniques such as regression methods,patgnomial models, etc.,

and atificial intelligencetechniques such a8 U W L NEWr& Networks (ANNS), fuzzy

systems, etc.

2.1.2.1 Statistical Models

Linear regression is the simplest method to correlate measured temperatures with resulting
displacement. A eastSquaregqLS) approach is used to obtain the coefficients that determine
the relationship between inputs and output without using any physjoatien. Although

this method can provide reasonable results for a given machine test regime, the thermal
displacement usually changes with variation in the machining process and the environment,
which introduces an error into the modéB]. The linear regression model is also time

consuming and labour intensive to design.

Hardwick [44] established aMultiple RegressionAnalysis (MRA) model of a vertical
machining centre and a horizontal machining centre. The author highlighted the complexity
of the interrelation between the different heat sources theddifferent mechanisms of
response. Test results showed that the thermal error could be reduced to lesgrthan 7

representing an improvement in accuracy of almost 7 times.
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Chen et al.[45 usedan MRA model for thermal error compensation of a horizontal
machining centre. With their experimental results, the thermal er®redaiced from 196 to

8 um. Yan et al. [46] also used the MRA model to form an erronthesis model, which
merges both the thermal and geometric errors of a lathe. With their experimental results, the
error could be reduced 060 to 14um.

Grey model is another statistical approach that has beerfarsiy@rmal error compensation
system[47]. Grey system theory is a method introduced by Deng in early 198Pwith the
intention to study the Grey systems by using mathematical methodpeathinformation

and small datets. In Grey system theory, Gifi, N) denotes a Grey model, whdrés the

order of difference equation amdis the number of variables. Tl@&M (h, N) model can be

used to describe the relationship between the influencing sequence factors and the major
sequence factor of a system. Furthermore, weights of each factor represent their importance
to the major sequee factor of the system. Its most significant advantage is that it needs only

a small amount of experimental data for accurate prediction, and the requirement for the data
distribution is also low49]. For more detail about Grey models, the reader is referred to

section3.4.

Wang et al[47] proposed a systematic methodology for the thermal error compensation of a
machine tool. The thermdistortionwas modelled using @rey model based oBrey system
theory to predict the thermal errors with only rBohutes of measured data. Unfortunately,
their modelwas lacking in the ability of selfearnng, selfadaption, selbrganisation and
taking feedbackcorrection into consideration. Therefore, their model obtained under one

particular operating condition is still not robust under other operation conditions.

In order to overcome the drawbacksspétisticalmodels, more attention has subsequently

been gvento the artificial intelligenceéechniques such astificial neuralnetworks.

2.1.2.2 Artificial Intelligence (Al) models

SUWLL,FLDO QHXUDO QHWZR uWihveD &ppiipatR U 5 desighied linva WayG D W D
that mimics the behaviour of biological nelureetwork. A typicalartificial neural network

has an input layer, one or more hidden layers, and an output{¥}eihe neurons in the

hidden layer, which areonnectedo the neurons in the input and output layersabgptable

weights, enable th&NN to compute complex associations between the input and output
variableg/51]. The inputs of each neuron in the hidden and output layers are summed and the
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resulting summation is processed by an activation fun¢dah Training the model is the
process of determining the adjustable weights and it is similar to the process of determining
the coefficients of a regression model by least squares approach. The weights are initially
selected randomly and an optimisation algorithm is then used to find the weights that
minimise the differences between the mecktulated and the experimental outp[ig].

Across the whole modellingrocedureno physical equation is used.

To find the relationship between inputs and outmita complex thermal behaviQukNN
techniques have drawn more attention rather than statistical models, and produce results
without requiring a detailed mechanistic description of the phenomena that is governing the
system. There are differeANN architectureso building thermal model8ackPropagation

(BP) artificial neural network modellingnas proved to be a suitable nonlinear retichg
method[50, 53].

One of the major advantages of ANNs is efficient handling of highlylinear relationships
in data. In recent years, it has been shown that thermal errors can be successfully predicted by
artificial neural network§50, 54, 55].

Chen et al[56] proposed an ANN model structured with 15 nodes in the input layer, 15
nodes in the hidden layer, and six nodes in the output layer in order to drive a thermal error
compensatiomnf the spindle and leastcrews of a vertical machining centre. The ANN model
was trained with 540 training data pairs and tested with a new cutting condition, which was
not included within the training pairs. Test results showed that the thermal errtdsbeou
reduced from 40 to 5 um after applying the compensation model, but no justification for the
number of nodes or length of training data was provided, so the scalability of the method
cannot be assesseldloreover, the compensation system must be flexib extension to

other physical inputs, meaning that alternative variables can be deployed with minimal effort.

Wang[57] used a neural network trained byleerarchyGeneticAlgorithm (HGA) in order
to map the temperature variation against the therdmstiortion of the machine tool.
Experimental results indicated that the thermal error compensation model could reduce the

thermal error to less thd® um under real cutting coniibns.

Zhu et al.[58] presented a clusieg approach based on correlation coefficient to pick out
three optimal temperature variables. The outpdtlen feedback Elman neural network is
adopted to establish a model for the prediction of thermal errors on a CNC machifi@dool.

verification expeiment shows that the combination of clustering and neural network model is
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a good way for thermal error compensation. However, a small number of temperature sensors

may lead to poor prediction accuracy under different operation conditions.

ANN models maybe successfully applied in thermal error compensation systems and can
capture effectively the nelmear relationships existing between variables in nonlinear
systems such as thermadodelling However, ANN models are considered as black
models, becaesthe mathematical relations in these models are unknown to the designer and
have no physical meaninlyloreover, it is worth poimbg out that these models need proper
training to work effectivelyand that their performance is limited by their designrpatars.
Therefore, usingANN involves a moderately tedious trial and error effort for obtaining the
network structure, especially involving the hidden layer neurons, number of hidden layers,

transfer function, training algorithm and learning rate parameter

The purpose of this section was to give an overview about thermal modelling and to show the
important role ofdatadriven models in this field of thermal error compensation. It was
shown tlat ANN models are general blabkx modelling tools, which hav@any attractive
features: they are constructed without any physical laws but only a set ebutput data

for training procedureThe training data has to cover the whole expectederafghe
operation conditiondHowever, the process of obtaining swtdta can take several hours for

internal heating tests and several days or more for the environmenfd].test

An important implication obtained fromefabove mentioned modeis thatthey have been
proven for a single error source but not a lgh@omplete) machine structure. Furthermore,
most of them have usednly one approaghwhich usually cannot result in satisfactory
thermal model. Combining different Al techniques, however can join the advantages of the
different methods, can utilise diifent representations of knowledge, and can help to
understand the result obtainedeTllatteris especially importarin ANN modelling, because

ANN models cannot give explanation of the system, and without explanation, the lack of
physical meaning may rade the acceptance tife ANN models even if their result are in

good agreement with the experimental data.

2.1.3 FuzzylLogic Models

Fuzzy applications in machining procelsave become the focus of significant attention
during the last two decagleand that is why much relevant research has been conducted.
Fuzzy systentheoryhas a wide range of applications in the machining process field and new

directions are constantly given in machining process research.
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Lee et al[59] useda thermal error model wittwo temperature variablassing fuzzy logic

modelling. However the membership functions typically have torhanually adjusted by

trial and error. The fzzy model performs like a whiigox, meaning that the model designers

can explicitly understand how the model achieved its goal. However, such models that are
based only on expert knowledge may suffer from a tfsaccuracy due to engineering
assumptions[60]. Conversely, ANNs can learn from the data provided without
preconceptions and assumptions. Hd YHU WKH\ SHU{BRRP DAKDF¥OGBBRV W
there is no information regarding the method by which the goal is achieved and so the
achieved optimal solution can exhibit unrealistic physical characteristics that do not
extrapolate to other situationsurthermore, the final motés not easily understandable by

domain experts for interpretation purpofes.

In order to overcome the drawbacks of traditioardificial intelligence techniques such as
ANNSs and fuzzy logic, more attention has been focussed on hybrid modelmstaorce,
applying the ANN technigue to optimise the parameters of a fuzzy model allows the model to
learn from a given set of training samples. At the same time, the solution is mapped out into a
Fuzzy Inference System (FIS) that can be evaluated by titkelndesigner as to produce a
realistic representation of the plga system. The Adaptive Neufauzzy Inference System
(ANFIS) is such a neurtuzzy technique. It combines fuzzy logic and neural network

techniques in a single system.

Wang [62] also proposed a thermal model merging Grey systexdel GM (1, m) and an

ANFIS. A hybrid learning method, which is a combination of both steepest descent and least
squares estimator methgdwas used in the learning algorithms. Experimental results
indicated that the thermal error compensation model could reduce the thermal error to less
than10 um under real cutting condition§he authomused six inputs with three fuzzy sets per

input, pralucing a complete rule set of 72%)(3ules in order to build an ANFIS model.
&OHDUO\ :DQJYVY PRGHO LV SUDFWLFDOO\ OLPLWHG WR OR:

Eskandari et al[63] presented a method to compensate for positional, geometric, and
thermally indued errors of threaxis CNC milling machine using an offline technique.
Thermal errors were modelled by three empirical methods: MRA, ANN, and ANFIS. To
build their models, the experimiah data was collected every frinutes while the machine
was runningfor 120minutes. The experimental data was divided into training and checking

sets.Their resultsfound that ANFIS was a more accurate modelling method in comparison
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with ANN and MRA. Their test results on a free form shape show average improvement of
41% of the uncompensated errokdowever,the ANFIS model in this studis alsolimited to

low dimensional modelling.

Construction of the ANFIS model using a ddtaven approach usually requires division of

the input/output data into rule patches. This can be achieved by using a number of methods
such as grid partitioning or the subtractive clustering meftdid However, one limitation of
standard ANFIS is that the number of ruteses rapidly as the number of inputs increases
(number of input sensors). For instance, if the number of input variabhesmslM is the
partitioned fuzzy subset for each input variable, then the number of possible fuzzy rules is
M". As the number ofariables rises, so the number of fuzzy rules increases exponentially,
increasing the load on the computer processor and increasing memory requirémes)ts.
reliable and reproducible procedure to be applied in a practical manner in ordinary workshop
conditions was not proposed. It is important to note that an effective partition of the input
space can decrease the number of rules and thus increase the speed in both learning and
application phase® fuzzy rule generation technique that integrates ANFith Fuzzy C-
Means(FCM) clusteringis applied in order to minimise the number of fuzzy rules. The FCM

is used to systematically create the fuzzy MFs and fuzzy rule base for ARGiSnore

detail about this system, the reader is referred to segton

An accurate, robust thermal error prediction model is the most significant part of any thermal
compensation system. In recent years, it has been shownehaatterrors can be predicted

by empirical modelling techniques such as multiple regression andWASis types of
artificial neural networkg56], fuzzy logic[59], an adaptive neurduzzy inference system

[50, 62], Grey system theorj47] and a combination of several different modelling methods
[53, 57].

A common omission in the published reseasctiscussion or scientific rigour regarding the
selection of the number and location of thermal sensors. The following section explores the

effect of the number anddations of sensors on the thermal model output.

2.2 Temperature Sensor Placement

Appropriate selection of input variables is an important task in modelling. In fact, not all
input variables are equally important; some may have no significant effect on tam sys

being modelledScholars have shown that a precise selection of thermal sensors and their
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position is needed to ensure the prediction accuracy and robustness of compensatign models
better interpretation, and lower measurement q@&s46]. The model designers often want

to know which sources have a dominant effect and which exert less influence on thermal
response of the machine tool. Poor location and a small number of thermal sensors will lead

to poor prediction accuracy. However, a &argumber of thermal sensors may have a
QHIJDWLYH LQIOXHQFH RQ D PRGHOYV UREXVWQHVYV EHFDX!
the model as well as bringing useful information. Furthermm®jes relating to sensor

reliability are commercially sensitiy¢ghe fewer sensoiisstalledthe fewer potential failures

Choosing the right sensor location can hugely affect the outcome of compensation models.
Engineering judgment, correlation coefficient and stepwise regression have been used to

select the tempenmate sensor placement for thermal error compensation miafe[31].

7KH ILUVW PHWKRG LV HQJLQHHULQJ MXGJPHQW ZKLFK L'
experience about thermal displacement, machew sourceand thermal behavior in order

to design the model81]. It is useful to remove totally uncorrelated sensors and to choose
preliminary sensors for further study. For exde, the axial movement of the ballscrew and

the spindle physically depend on the bearing temperatures of the ballscrew and the spindle,
respectively; thus, the bearing temperatures are considered as a possible variable in the
models. However, many othegrror components, such as spindle displacement and
squareness errors, have different relationships with temperature behavior on columns or
spindle housings. It is unreliable to use a small number of temperature sensors without
precise knowledge of thermbé&havior in machine elements. It is clearly impossible to select
the optimal thermal sensofocation on the whole machine only using the engineering

judgment.

The second method is a correlation analysis, which uses the correlation coefficients between
the thermal displacements and the temperature sensors to select highly correlated
temperatures sensors as compensation model inp8tsH5, 66]. Since all the selected
sensors are strongly correlated with the thermal displacemewgver, the relationships
between them were overlookethe partial correlation between the thermal displacement and
the sensors or the correlation between the sensors has igertdied; otherwise the
technigue is only suitable for designing a model with a single s&rsoh would impact the

accuracy oftie final model
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The third method is a standard stepwise regres§i@) which is used to find the best
thermal compensation modesingthe available temperature sensors. Stepwigeession is
achieved by including the most strongly correlated serssa then adding or subtracting one
sensor at a time based on statistically significant criteria, thus evaluating the contribution of
the added or withdrawn sensor. In each epoch oétép@vise regression procedure, only one
sensor is added to or subtracted from the compensation model. The result of combining two
or more sensors at a time is not considered. Since the temperature sensors on a machine
element are interrelated, the merginf two or more sensors is significant during the
modelling procedure. The stepwise regression could end in a model with insignificant

Sensors.

Moreover, there are further sensor selection methods, such as the sensor placement scheme
based on thermal modahalysis[11, 31]. This method has a similar drawback to that of

finite element analysisran et al.[46] also proposed an MRA model combing two methods,
namely the dect criterion method and indirect grouping method; both methods are based on
synthetic Grey correlation. Using this method, the number of temperature sensors was
reduced from sixteen to four and the residual range was redhyc6€8%. Han et al[68]

proposed a correlationoefficient analysis and fuzzy-means clustering for selecting
temperature sensors both in their regression thermal error model and ANN [B&)déhe

number of thermal sensors was reduced from ttwty to five. However more efforts are

still needed in order to prove that the selected sensors are indeed correct and important to the

final model.

Sometimes, sensor selectios used in an automated manner in a blaak approach.
However, this is not always the optimal approach. In order to develop accurate models, it is
necessary to understand that sensor selection methods work under certain assumptions.
Nevertheless, whemsed appropriately, they can give useful knowledge on what sensors seem
important, what sensors seem unimportant and what sensors are of intermediate importance.
With such knowledge combined with a comprehensive understanding of the data, an accurate
apprach for sensor selection can be achieved. Theretbeeabovementioned methods

suffer from the following drawbacks: a large amount of data is needed in order to select
proper sensors; and the available data must satisfy a typical distribution sucimak (oor
Gaussian) distributiofi70]. Therefore, a systematic approach is still needed to nsaithe

number of temperature sensors and select their locations so that the downtime and resources

can be reduced while robustness is increased. It is notable that most publications deal only
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with the reduction in sensors, but not the means by which thmalriset were determined.

As a result the system is only shown for situations where the possible solutions are a subset
of all potential locations, which requires ntrivial preconditioning of the problem. This is a
situation where some aspects of thechiae spatial temperature gradients might already have
been missed and is typical when a machine model is being adapted, rather than evaluated

from a new perspective.

This thesis makes extensive use of thermal imaging camera for rapid assessment of machine
structure thermal behaviour and development of the compensation médefsermal
imaging camerawill be used to record temperature distributions a acrossnthehine
structure. Each pixel can be considered as a possible temperature measurement pant. Thi

a good practice where many aspects of the machine spatial temperature gradients might

already have beerovered.

In this proposed approach, the Grey models and fuzaeans clustering are used to
determine the major sensors influencing thermal ewbies number of CNC machine tools,
which is capable of simplifying the system prediction model. Then AN§-ISedto build a
number of thermal prediction models based on selected sensors. This combined methodology
can help to improve robustness of the gmeed model, and reduce tlkéect of sensor

uncertainty

2.3 Hysteresis in Thermal Error Modelling

The tysteresis effect is defined as a system that has memory, where the effects of the current
input to the system are experienced with a certain delay in[fitheDue to varying thermal

time constant,itermal effects on CNC machine tools have the characteristic of ns&mgo

the previous thermal status. Therefore, the errors in a machine tool are not only dependent on
the current thermastatus measured at the surfaXW DOVR LQAXHQFHG E\ W
conditions of the machine. The hysteresis behaviour will introduce in each cycle, which

in a worst case scenario can be seen in large machine tools with bigger volumes, longer
strokes and heavier cutting loadgl3]. This hysteresis phenomenon makes the
static/instantaneous modelling approach less robuke @haracterisation of structural
material which exhibgthermal hysteresis needs a special consideration. This is more evident
when the rate of temperature change is low as compared with the speed of response of

thermal displacemerdnd also where surfageounted sensors do not reflebie slower
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changing internal temperatur&herefore, most of the aboweentioned methods require a
large amount of measured data during heating/cooling cycles. Methods that require a
calibratedmodel to predict thermal errors are expected to be confoumgldéide very large
variety of working conditions that exist in a machine tool. Furthermore, atteistioften

drawn to the prohibitive downtime required to conduct the experiments in an ordinary

machine shojp3].

2.4 Fusion Measurements

Accurate and fleable measurements of key variables of the machine tool are very important.
The information from these variablesvill be used for model training/calibratiptherefore

they should contain the most relevant feedback information. In most of the thermal error
models of machine tools, temperature sensors are used as inputs to estimate thermal
deformation[47, 57, 63]. However, spindle speed, axis feedrate, machining time and other
parameters of the machine can also be taken into considerattande they are responsible

for major heat sourceg?]. In some casef36, 73] no direct temperature measurement is
taken and only the spindle speed and feedrate are used as inputs. However, this strategy is
limited, because the model obtained under one particular operation condition is not robust
under other operation conditions. érkfore, error reduction needs greater understanding of
the machine tool properties and error sources. This results in the need for a machine tool

structural monitoring system.

Fibre Bragg Grating (FBG) sensors are used forrstresasurement purpogésl]. They have
several advantages over other sensors in termnsgrditivity and qualityf74] and could be
embedded in a futer commercialised systemm literature, the common applications of FBG

are damage detectipnstructure health monitoringand strain measurement in harsh
environmentg 75, 76]. FBG can be employed to observe the change in the strain of the
structure with respect to variation in temperature to pro&idew response of the system. By
using these sensorthe modelling processan become simplermore robustand more
efficient since the number of thermal sensors can be reduced and the effects of thermal

hysteresis minimised.

Huang et al[77] used FBG to investigate tledfect oftemperature variations of a heagyity
machine toobn the shop floor. The variations of ambig¢aimperaturaveremeasurd by the

FBG sensors and the spindle thermal shift errors were monitored by laser displacement
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sensors simultaneously. Experimental results indicate that the spindle thermal errors have a
similar change trend following the ambient temperature. Based anredcdata by FBG
sensors and thermal error, the authors suggested tharmal error compensation model
could be built by using several modelling techniques such as multiple linear regressions
neural network, anather system identificatiormethods; hwever, no implementation has

been done in this regard.

This section has highlighted that many thermal error models of machine usets
temperature sensors as inputs to estimate thermal deformalibea development of a
compensation systemsingother parameters of the machine is discussed and investigated in

this research work.

2.5 A Summary of Challenges

Researctaimed at improving the accuracy miachine tools has been very fiiiol over the

last two decaded~rom the literature, every thermal coemsation model is faced with a
series of challenge3hese challenges mainly concern the accuracy and the robustness of the
thermal compensation modeéh modelling thermal errors of machine tools, the issues that

need to be considered are described dewst

X Prediction accuracythe main reason for implementing thermal error compensation is
to reduce or minimise the thermal error. Prediction accuracy is therefore a key
parameter when evaluating a systdRecently, artificial intelligenceanethods are
becoming more popular and particularly amenable to modelling complex systems,
becausethey havedemonstrated superior predictive ability compared to traditional
methodsFor more detail about Al methods, the reader is referred to s€cligh

X Robustness: théhermal error model must work properly in different operating
conditions and with different machine tool configurations. A system that would not
produce reliable results would never by deployed; CNC machine tools rely on
repeatability.

x Simplicity: in the past, the modekd tobe keptas simple as possible. For instance,
although the ANN models are more accurate than the regression mdtels
calibration of the regression models coefficients is simflésast squares approach)
see sectior?2.1.2.2 However,the use of mathematical software tool such as$ tha

existing in MATLAB facilitatesthe calibration of the model coefficients by using
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optimisation/training tools.Nevertheless, there is still a strong argument for
simplicity, where possible, to avoid oveonstraining the system and introducing
instability.

Model inputs: from the literaturesome research uses only machine parameters
(spindle speed, axifeedrate andun-time) as input. This requireso additional
hardware, but such systems cannot cope with change in perforn@mdtae other

hand, otherauthors used only temperature sensors as input variables to the developed
models(see sectior?.2). This philosophy has some merit, since it ensures that the
model is driven by changes in temperature profile irrespective of the heat source.
However, fusion of other sensor types and machine control values can also be taken
into consideration, because they are responsible for major heat sources. One such
value is tle spindle speed, although other significant factors can also be considered
(see sectio.4). For this reason, the inclusion of the primary pagtms is notirivial

when looking for longterm accuracy from the model and it can be more robust only

to include the derived values that directly affect accuracy.

Availability of data: to obtain an accurate thermal prediction model, long term
temperaturedatais required. However, # size of the inpubutput dataet is very

crucial when the generation of data is a costly affair (machine downtime). For
instance, the process of obtaining such data can take several hours for internal heating
tests andor many days or more for the environmental tgste section®.1.2.1

2.1.2.2. One way to overcome this problem, the model designer needs to berrow
valid whiteebox model to supplement the experimental data.

Flexibility: ideally the compensation system must be flexible to extension to other
physical inputs meaning that &rnative variables can be deployed with minimal
effort. This makes the system easier to deploy and adapt, increasing its usefulness
across multiple systenfsee sectio2.4).

Sensor location:;; W LV QRWDEOH WKDW PRVW SixgEsris6tDWLR Q)
SODFHPHQW™ GHDO RQO\ ZLWK WKH UHGXFWLRQ LQ VH
original set were determined. This is a situation where some aspectsnoh¢chee

spatial temperature gradients might already have been miEsedelection must be
optimal to satisfy accuracy and robustness, but not indbaseler commercial
constraintsFor more detail about sensor locations, the reader is refereed to section
2.2
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x Structure of the Amodels: from the literature, the ANN is considered one of the most
appropriate models for thermal error compensation. However, usingl metnark
involves a moderately tedious trial and error effort for obtaining the network
structure,especially involving the hidden layer neurons, number of hidden layers,
transfer function, training algorithm and learning rate paramé&tethermore, the
final model is not easily understandable by domain experts for interpretation
purposesA robust system requires their design to be more effiqiee¢ section
2.1.3.

2.6 Summary

Accurate modelling of machine tools is becomanger more important becaus# current
industrial demanddor higher productivity at increasing quality level$hermal error
modelling is still an innovative and developing area of CNC machine tool accuracy. There
are still uncertainties and room for improveméntsummary, from this undertaken literature
review, it appears that, despite a large amount of previous research underthieethnermal

error compensation area, thesea number of issues thatill remain to be addressésce

section2.5).

The main aimof this research work is tproduceintelligent techniques for modelling
machine tookrrors caused by the thermal distortion of CNC machine tdbks.goal of this
investigaton is to make the intelligent compensation system readily applicable to any

common CNC machine with minimal effort.
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Chapter 3: Artificial Intelligence Techniques and Methods

3.1 Introduction

An artificial intelligence system is a system that can make decisions which would be
considered intelligent if made by a human being. Artifi¢iatelligence(Al) is becoming
more popular and particularly amenable to modelling complex systems, because it has

demonstrated superiorgatictive ability compared to traditional methods.

In this chaptey the aim has been to present a description and analysis of tlystéins that

will be used throughouthis research workThis chapter first gives a short introduction to
fuzzy logic and fuzzy systems, and then concentrates on methods for obtaining fuzzy models
from data. These approaches are commonly referred to asfonemyotechniques since they
exploit a link between fuzzy stgms and neural networks. Within thiehapter only one
architecture of neurfuzzy techniques is considerdtie so called aadaptive neurcfuzzy
inferencesystem. This is ©llowed by an introduction to Greynodels and their usage for
thermal variablesedection.Finally, a summary givesome guidelines for the readercheck

the prediction quality of the resulting model and to assess the parameter accuracy.

The whole block diagram of the proposed system is showngiimre 3-1 where spots 1 to N
represent the virtual temperature sensor data, and the thermal respomra®ain robust

models, all the influence weighting of thermal sensors is clustered into grangsAGM.

Then, one sensor from each cluster is selected to represent the temperature sensors of the
same categonaccording to its influence coefficiemtith the thermal response. Therefore,

the ANFIS models can be built easily to predict the thermal respo
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Figure3-1: Block diagram of the proposed system.

3.2 FuzzyLlogic and FuzzySystems

The concept of Fuzzy Logi(EL) was pioneered by Zad¢i8, 79 andwasintroduced not as

a control mé&hodology, but as a way of processing data by allowing partial set membership
rather than a crisp set membership or-ne@mbership. In fuzzy logic, the membership
function is a curve that defines how each point in the input space is mapped to a degree of
membership between 0 andQlassical logic needs a deep understanding of a syfs®&act
physical equations and precise crisp valliezzy logic demonstrates an alternative way of
thinking, which allows complex modelling using a higher level of abstnaatreated
particularly from human knowledge and experience. Fuzzy logic allows formulating this
knowledge in a subjective way which is mapped into exact crisp ranges. In classic set theory,
elements either completely belong to a set or are completelydextfrom it. The procesd
expressing the mapping fromputs to an output using fuzzy logic is named Ezzy
InferenceSystem(FIS) [80].

The particular structure of the fuzzy modedn be classified intdi) Fuzzy linguistic model
(Mamdani model)81, 82 (ii) Fuzzy relationemodel [83] (iii) TakagiSugeno (IS) fuzzy
model[84]. A main distinction can be made between the Mamdani model, which has fuzzy
propositions in bth antecedents and consequents of the rules, and$heddel, where the
consequent is a crisp function of the input variables, rather than a fuzzy prop{iion
Fuzzy relational models can be regarded as a generalisation of Mamdani model, allowing one
particular antecedent proposition to be associated with several different consequent

propositions via a fuzzy relatidi33].
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In the literature, it can be clearly seen that the Mamofenaiel structure demonstrates several
advantages. It provides a natural framework to include ekpenanknowledge in the form

RI OLQJXLVimheR” INKIORHY 7KLV NQRZOHGJH FDQ EH HDVLO\
describe the relation between systeput-output[85]. Moreover, Mamdani model provisle

a flexible means to formulate knowlige, while at the santene it remains interpretable, as
long as a proper design is developddwever, although Mamdani model posssseveral
advantagest alsocomeswith some weaknesses. One of the main drawbacks is the lack of
accuracy when modelling some highmensional, complex systems. This is duethe
limitation of human cognitive ability ofodifying these complex systemsherefore during

the last few yea much of the research developed in futzgic modelling focused on
increasing the accuracy as much as possgieng little attentionto the interpretability of

the resultantmodel.Hence, he T-S fuzzy models played a pivotal role in tb@ntemporary
research.These models are relatively easy to identdpnd their structure can be readily

calibrated.

Therefore, the two main objectives to be addressed in the fuzzy model are iatglifyret
and accuracy. Generapeaking, the ideal model would be tatisfy both criteria
(interpretability andaccuracy) to a high degree, lsince they are contradary issueof the
conflicting aims for complex systemst is generally irpossible [83]. Consequently,
researchers usually focus on obtaining the best -wid&etween interpretability and

accuracy, depending on the nature of the problem to be solved.

Althoughthe measures of accuracy are walbwnby using differenstatistical indicege.g.,
root mean square errand correlation coefficieptinterpretability meagses are difficult to
statesince interpretability depends @nnumber offactors; mainly the model structure, the
number ofinputs the number of rules, the number Membership Functions (MFEsgtc.
Furthermore due tothe subjectivity of the concepthe choice of proper interpretability

measures is still an open probléag].

As discussed aboveu#zy logic is a useful modelling technique for assessing ambiguous
complex physical processes such as thermal dynamics and thus may be applicable for
modelling thermal errors in mhme tools which are affected by different heat sources.
However, its applicability needs further evaluation with experimental &seeral hybrid

methods have been introduced in the artificial intelligence field includimgurofuzzy
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technique Within this thesis only one architecture of nefmazy techniques is considered,

the so called aedaptiveneurafuzzyinferencesystem.

3.3 Adaptive Neuro-Fuzzy Inference SystemANFIS)

The Adaptive NeuraFuzzy InferenceSystem (ANFIS) was introduced by Jaf80, 86].
According to Jang, ANFIS is a neural network that is functionally the same as a-Takagi
Sugeno type inference model. ANFIS has become an attractive, powerful modelling
technique, combining well establigshkarning laws of ANNs and the linguistic transparency

of fuzzy logic theory within the framework of adaptive networks. Fuzzy inference systems
are one of the most wethown applications of fuzzy logic theory. In the fuzzy inference
systems, the membeiphfunctions typically have to be manually adjusted by trial and error.
The FIS model performs like a whiigox, meaning that the model designers can discover
how the model achieved its goal. On the other hand, artificial neural networks can learn, but
perform like a blackbox regarding how the goal is achieved. Applying the ANN technique to
develop the parameters of a fuzzy model allows us to learn from a given set of training data,
just like an ANN. At the same time, the solution mapped out into the foxmel can be
HI[SODLQHG LQ OLQJXLVWULURh®WMHUR®HW D FROOHFWLRQ RI 3

3.3.1 ANFIS Architecture

The architecture of ANFIS is shown Figure 3-2. Five layers are used to construct this
model. Each layer contains several nodes described by the node function. Adaptive nodes,
denoted by squares, represent the parameter sets that are adjustable in these nodes.
Conversely, fixed nodes, denoted by @s;lrepresent the parameter sets that are fixed in the
model.A simple exampleANFIS architecture, which uses two variabl&és dndT,) as inputs

and one outputH; Thermalresponsg will be described in this section in order to explain the
concept of théANFIS structure.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Ti

Input variables

NG =

T1 T2

Figure3-2: Basic structure of ANFIS.

Layer 1: The first layer is the fuzzy layer that converts the inputs into a fuzzy set by means
of MembershipFunctions (MFs). It contains adaptive@des with node functions described

as:

syl &6 forEL s& (3.2)

syl 4,5 1655 for EL u&s (3.2
where & and 6 are the input node and B are the linguistic labels associated with this
node, &: 6;; and a: 6;; are theMFs, There are many types of MFs that can be used. However,
a Gaussian shaped function with maximum and minimum equal to liand@allyadopted

Parameters in this layer are defined as premise parameters.

Layer2: (YHU\ QRGH LQ WKLV OD\HU LV D ILIHG QRGH PDUNHG
the node function to be multiplied by input signals to serve as output signal.

leyL Syl &6 @, 6 for EL s& (3.3
where the 1g4is the output of Layer 2. The output sigrairepresents the firing strength of

the rule.

Layer 3: Every node in this layer isonsidered a fixed node, marked by a circle and labelled
by N, with node function to normalise the firing strength by computing the ratio df'the
QRGH ILULQJ VWUHQJWK WR VXP RI DOO UXOHVTYT ILULQJ VW

éop .
s dor EL s& (3.4)

1,5L SoL

é.
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where the 1,4is the output of Layer 3. The quantit$us known as the normalised firing
strength.

Layer 4. Every node in this layer is an adjustable node, marked by a square, with node

function as following:

leyL Sp@Bafor EL sé& (3.5)

where Band Bare the fuzzyif-then”rules as follows:

Rule 1. IF 6is #sand 6;is $5, THEN B L Ls6 E M6; E N

Rule 2. IF &is #gand 65is $s THEN B L Lg6 E M6; E

where LigdMiand Nare the parameters set, referred to as the consequent parameters.

Layer5: (YHU\ QRGH LQ WKLV OD\HU LV D IL[HG QRGH PDUNHC

with node function to calculate the overall output by:

Log L AuSp @yl 22 3’0 L B¢ LOverall output (3.6)
7KH VLPSOHVW OHDUQLQJ-IXRO$SDRDVBLR O LXKEEBFNRPSXWH'
recursively from the output layer (Layer 5) backward to the input nodes (Layer 1). This
learning rule is exactly the same as the bBardpagation learng rule used in the common
feedorward neural networkgs0, 64]. Although this method can be applied to identify the
parameters in an ANFIS network, the method is generally slow and likely to become trapped

in local minima[80]. Different leaning techniques, such as a hybiedrning algorithn{87]

or genetic algorithni88], can be adopted to solve this training problem. Better performance

of ANFIS models has been shown by adopting a rdgyldrid learning method, which

integrates the grads descent method and the leagiares method to optimise parameters

[64, 89, 90]. Thus in thisthesis the hybrid learning method is used for constructing the

proposed models.

3.3.2 Extraction of the Initial Fuzzy Model

In order to start the modelling process, an initial fuzzy model has to be derived. This model is
required to select the input variables, input space partitioning or clustering, choosing the
number and type of membership functions for inputs, creating fugeyg, and their premise

and conclusion parts. For a given dataset, different ANFIS models can be constructed using

different identification methods such as grid partitioning, and fuaneans clusterinfs4).
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A. The ANFISGrid partition method is the combination of grid partition and ANFIS.
The data space divides antectangular subpaces using axjgaralleled partitions based
on a predefined number of MFs and their types in each dimer€ah The limitation of
this method is that the number of rules rises rapidly as the number of inputs (sensors)
increases. For example, if the number of input sensomsaisd the partitioned fuzzy
subset for each imp sensor isn, then the number of possible fuzzy rulesif's While the
number of variables raises, the number of fuzzy rules increases exponentially, which
requires a large computer memory. According to J&806Y grid partition is only suitable
for problems with a small number of input variables (e.g. fewer than 6).
B. The ANFISfuzzy cmeansclustering is the most common method of fuzzy clustering
[89]. Essentially, it works with the principle of minimising an objective function that
defines the distance from any given data point to a cluster centre. This distance is
weighted by the value of MFs of the data pdi&#]. In the FCM method, which is
proposed to improve ANFIS performance, the data are classified into pertinent groups
based on their degrees of MFs. In this clusteringhotktit is assumed that the number of
clusters,n., is known or at least fixed. It divides a given dataset [ « Xn} into ¢
clusters. More detail can be found in the next section.
In order to obtain a small number of fuzzy rules, a fuzzy rule genersgchnique that
integrates ANFIS with FCM clustering can be used, where the FCM is used to systematically
identify the fuzzy MFs and fuzzy rule base for ANFIS model. In thisk, to identify

premise membership functions, the two aforementioned methodsused and compared.

3.3.2.1 FuzzyC-Means(FCM) Clustering

Fuzzy C-Means (FCM) is a soft clustering method in which each data point belongs to a
cluster, with a degree specified by a membership grade. Dunn introduced this algorithm in
1973[92] and it was improved by BezdgR3]. FCM algorithm is the fuzzy mode of-K
means algorithm and it does not consider sharp boundaries between the [ddstets.

Thus, the significant advantage of FCM is the allowance of partial belongings of any object

to di jerent groups of the universal set instead of belonging to a single group totally.

FCM partitions a collection af vectos Tg@EL sa& &&8alinto fuzzy groups, and determines a
cluster centre for each group such that the objective function of dissimilarity measure is

reduced.
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ik —— 5754 (3.7)

where,

agwthe degree of membership of objgat clusteri;
m: the fuzziness index varying in the rangsg> ?and
@ . 2F K.: the Euclidean distance betwe&mnd T

Thirdly, the objective function is calculated with the following equation. The process is

stopped if it falls below a certain threshold:
0 o a
CT@R@B @y LT gLl 4 a8@a (3.8)
Va3 g6 Y@b

equation:

Al & ﬂ?’(a
Ales & v

In this thesis the FCM algorithm will be used to separate whole training data pairs into

2L (3.9)

several subsets (membership functions) with different centres. Each subset will be trained by
the ANFIS, as proposed by Parkal [96]. Furthermore, the FCM algorithm will be used to

find the optimal temperature dathusters for thermal error compensation models.
The proposed method has the following merits:

X Using fuzzy emean clustering with ANFIS can be regarded as extracting knowledge or
information from theexperimental data form to the linguistic interpretation form. This is
important in that the learning strategies can be started from a point where the risk of
geting trapped in a local minimum can be avoided compared to that if the initial

membership furitons are chosen at random (which is often the case for ANNS).
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x Unlike the Mamdani fuzzy model, where the rules of the model are built using the expert
knowledge, in ANFIS model, thiearning rules calibrate and adjuste membership

functions and rules dghe fuzzy model from the data it is modelling.

3.4 Grey Models

The Grey systentheory, established bengin [48, 97], is a methodology that focuses on
solving problems involving incomplete information or small samples. The technique can be
applied to uncertain systems with palff known information by generating, mining, and
extracting useful information from available data so that system behaviours and their hidden
laws of evolution can be accurately described. It uses a -Blaelk\White colour to describe
complex systemfo8]. GM (1, N) is the most widely used implementation in literat{9§,

which can establish a firsirder differential equation featured by comprehensive and
dynamic analysis of the relationship between system parameters.A¢temulated
GeneratingOperation (AGO) is the most important characteristic of the Grey systenytheor
and its benefit is to increase the linear characters and reduce the randomness of the samples.
Based on the existing GKL,N) model, Tien [98, 99] proposed amodel, which is an
improved Grey predictiormodel. The modelling values b&M (1,N) are corrected by

including a convolution integr&MC (1, N).

3.4.1 Accumulation Generation Operation (AGO)

Accumulation generation is a technique used to uncover a develofgndahcy existing in

the process of accumulating Grey quantities so that the features and laws of integration
hidden in the raw data can be discoveféd. The dynamic characteristic tie proposed

model results from thaccumulation generation operation (AGO). The technique transforms
the original data to first orderAGO data, which reduces the randomness of the samples, so
making it easier to design the Grey model. The output value of the model can be associated
with Inverse Accumulated Generating Operation, abbreviated as IAGO, the procedure of

AGO and IAGO is summarised as follows:
Step 1 consider the original series as:

AL TS ar% ;8 T4 :GF s;arv:Ga (3.10)
Step2: from the original series, selecting the first value as the first value of the new series,

selecting the first value plus the second one of the original series as the second value of the
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new series, selecting the sum of the first three values of thealrggries as the third value

of the new series, and so on, as follows:

D% L TS ATt A T I F sarsidsa (3.11)
By so doing, the new-AGO series: *> will obtainedof the originaldata : ‘%, which have

more regular series for the benefit of modelling instead of modelling with original data.

Step 3:1- IAGO can be applied to obtain the original series, selecting the first value as the
first value of the new series, selecting the second value minus therfesof the original

series as the second entry of the new series, selecting the third value minus the second one of
the original series as the third value of the new series, and so on. The mathematical

expressions are as the following:

4 LT>:GFT>:GFs;a (312
Where GL t&a&d aa T%:s=T%:s;

Therefore, by applying AGO transformation, the following important advantages can be
obtained: (i) removing extreme fluctuation and noise so that the er@®gs $s more stable for
modelling, (ii) the new series has a linear characteristic which makes it easier to model
instead of modelling with the originalonlinear data, (iii) and it has the characteristic of
determining realistic governing laws from theailable datd70, 100. The emphasis is to

discover the true properties of the system under the condition of small training data.

To understand this property in more deta&igure 3-3 shows an example oforiginal

(temperature changeahd converted series of data.
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Figure3-3: The original data vs AGO converted data.

3.5 Optimisation Methods

Traditionally, the Grey models have been calibrated by the least souetteod. However,

due to the nonlinearity of the problem, the least sguamdution may not provide a
satisfactoryresult In order to avoid the tedious trial and error approachPéngcle Swarm
Optimisation (PSO) algorithm will be used in order to improve the performance of the Grey
models. The PSO algorithm will be reviewiadhe next section and will then follow with the

main steps of GMC (1, N) learning algorithm using PSO.

3.5.1 The Particle Swarm Optimisation (PSO)

The Particle Swarm Optimisation (PSO) algorithm was introduced by Eberhart dtlall] as

an alternative to other evolutionary techniques. The PSO digoris inspired by the
behaviourof natural swarms, such as the formation of flocks of birds and schools of fish. The
advantages of the PSO algorithm is that it does require the objective function to be
differentiable as in the gradiediescentmethod, which makes few assumptions about the
problem to be solved. Furthermore, it has a simple structure and its optimisation method
illustrates a clear physical meaningSO consists of a population formed by individuals

called particles, where each one represents a possible solution of the problem. Each particle
tries to search the best position with time irdilhensional space (solution space). During
flight or swim,eFK SDUWLFOH DGMXVWYV LWV "10O\LQJ" RU 3VZLPPL
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DQG LWV FRPSDQLRQVY HI[SHULHQFH LQFOXGLQJ WKH FXUL

position experienced by itself and its companions.

3.6 GMC (1, N) and itsLearning Algorithm

In this section, the main steps of GMC N) modelling are illustratedand discussd The

model can reveal the lortgrm trend of data and, by driving the model by the AGO, rather

than raw data, can minimise the effect of some of the randomrencas. Therefore, the first

step for building GMQ1, N) is to carry out JAGO (first-order Accumulated Generating
Operation) to the data, so as to increase the linear characteristics and reduce the randomness
from the measuring samples. PSO algorithnmhwapability to optimise complex numerical
functions, is adopted to calibrate the GNICN) model. Finally, an IAGO laverse
Accumulated Generating Operation) is performed to predict the thermal error and generate
the final compensation valueBigure 3-4 shows a schematic diagram of R8&sed Grey

model.The modelling detail is described as follows:

Step 1: Consider the original data series as:
.4, .4, . 4. s0 4,
s LD :sENaT;":t EN& al; " :J ENEand

5P L DG s Ay & a8 AT I E L Ewhere EL t 48 4 is the period of
delay, n gives the length of original data series andlenotes the number of entries to be

predicted.

Step 2: The abovsequences of each variable are processed usik@®CLto obtain the %

order AGO sequences as follows:

.5 :5; . 5. 2 75

5 LDz :sENal”:t EN& al;”:J E NEand
. :5; 5, . 470 . - 48 477500748 41250, .
U L DFU .S,aTU t,éa aTU .J,aaTU JEI E
where: ‘5 L Af T4 F4PL SAB & EI &

Since the detail®f GMC (1, N) can be found irf98], this work only briefly mentions the

core equations of this method.

—XN-'_;;?‘%‘; E%;és;:PE N L >6:é5;:FZ E>7:}5;2P, E®E>Q:é5;ZP, EQ (313
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where PL sd& & E | &> is the development coefficientyd EL t &dd & ; the driving
coefficient, andQis the Grey control parameter. Therefore, time response sequences can be
obtained.

4% PEN L T¥ s ENAQPS B2 HAQWS HBis; EAGRAN QP i H

. (3.149)
B:i ;gE—6 HB:i;,

where B:i; L Afg x:¢> :1; EQa

To calculate the coefficientsyéyand Q the PSO can be used to calibréte equation
(3.14). Then, the Grey model is optimised until the performance is satisfactory. Finally, the
optimal corresponding coefficients are used as the Grey model coefficients to gredict

thermal errorThe calibrating process of GM@, N) can be summarised as follows:

In PSO algorithm, a particle refers te@efficientin the model that changes its position from

one move to another based on velocity updates. The mathematical description of the PSO
algorithm is as followssuppose that the search space-gdifdensional, and then the current
position and velocity of théth particle can be represented By, L > &8 &y:2 and

8L RydRz&@ zﬂ,lz respectively, whereEL s& & & and/ is the number of particles in

the swarm.

Particle i can remember the best position so far, which is known as the local best
position 2 > AELPL > A@P> A@GP4. > A@ZF? It can also obtain the best position that the
whole swarm stablish, known as the global best position

> A QLP6e A OiRe A QAR &6s A @1?. The first position and velocity oparticle i are
randomly initialised by the uniformly distributed variables. Afterwards, partialdjusts its
velocity of iterationk+1 according to the local and global best positions, as well as the

velocity and position of iteratiok, as follows:

85GEs; L N8;GE %4k2>AO®F $5GoE %4k >AQB F $5Go (3.15
where fiis the inertia factor which is used to manipulate the impact of the previous velocities
on the current velocityC; and C, are the seltonfidence factor and the swagunfidence
factor, respectivelyR is a uniformly distributed random real number that can take any values
between 0 and 1. With the updated velocity, the position of particléhe iteratiork+1 can

be obtained as follows:
$5GEs; L $3G E 8;GE s; (3.16)
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The fitness of particle is measured using a fitness function that quantifies the distance
between the particle and its optimal solution as follows:
G
B$; LI cO¥:GFT4%: GA (3.17)
P@
wheref is the fitness valuelU* : G is the target output; andl'4 : G is the predicted output

based on model parameters (particles) updating.

Step 3: Update the velocity and position of each particle baseguations(3.15) and(3.16).
Adjusting the model parameterseguation(3.14).

Step 4: If the value of the error meets the requirement of the model, ordetprenined
number of epochs are passed, then the model calibration willlendt, thenreturn to
Step3.

Step 5: Export the optimal solutidby

Step 6:1- IAGO can be applied to obtain the predicted valUd® mathematical expression
is as the following.

YPENL GPENFE :PFSEN and§ " :sEN-T sENa (319

/

—»| Grey model =/_\
Inputs

Desired Output

Error

Adjust Coefficients

PSO

Figure3-4: Schematic diagram of PSliased Grey model.

3.7 Variables Selection UsingGrey Models

A large number of thermal sensors may have a negative influence on predacatimacy

and robustness of a thermal prediction model. One of the difficult issues in thermal error
modelling is the selection of appropriate locations for the temperature sensors, which is a key
factor in the accuracy of the thermal error model. Thisysadbpts Grey system theory to

identify the proper sensor positions for thermal error modelling.
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The Grey systertheory is a methodology that focuses on studyinreyGrey systerby using
mathematial methods with a only few datets and poor informatioThe technique works

on uncertain systemthat have partial known and partial unknown informatitis. most
significant advantage is that it needs a small amount of experimental data for accurate
prediction, and the requirement for the data distributionlss bow [70]. There are many
types of Grey models; the Gr&yM (0, N), GM (1, N), GMC (1, N), and Grey Relational
Analysis (GRA) modebk will be used in this workand are described in the following

subsections

3.7.1 Grey Model GM (0, N)

The GreyModel GM(h, N) is based on the Grey system theory, whei® the order of the
difference equation and is the number of variabld402Z. The GM(h, N) model isdefined

as follows:

If in sequencesT;;":GAEL sd&#0AaT," :G, is the main factor in the system, and

sequencesTy" :Gal," 1 Gl : G &#l." : G are the influence factorsf the same system,
then the GMh, N) model is described 80, 102:

0 Sy C
. T 5.
| =U@ng LI xT.°:Ga (3.19)
lan Y@

where,

= and xare determined coefficients;

>is defined as the Grey input;

T.> : G &The major sequence;

T,” : G &The influence sequences; and

The accumulation generating operation (AGO)

5 6 7 a
T*LTS LN T4%Gd T4:.Gd T4:G&l T4:Ga& (3.20)
P@ p@ b@ b@
According b the previousdefinition of GM(h,N), the GM(0,N) is a zereorderGrey

system, which can be described as follows:

G
G LT TG LT GE>T, :GE®E>T :Ga (3.20)
vaw

57



Chapter 3Atrtificial Intelligence Techniques and Methods

Where,

VPG Lram :GFs; Eran,>:Ga

Equation(3.21) canbe written as

S\ LT it E@ BT it

15, x'5; x5; -
=@ U L ,eS5 MU E®E,,RSR5‘:u;a

daa

SN LT L E@E T o4

GL t Ak asdla

(3.22)

Dividing equation(3.22) by =in both sides, then transfer into matrix form as follows:

_) -

-

~

Assume%o L &, wherenF2, «

_) -

-

~

rai> :JFs; Eran>:3;0

ravi> s, Eravi> it p jTo
ravi> it Eravi> u; :::L ;1%5;

. . B . . KI T . .
rai>  JF s, Eravi :J;0 T

~ A
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- NT
I

ravi> s, Eravi> it; p T

:5;
T6

it

ra ot Eraviiu N T

2J;

-5;
Tc

@@ @

c

.
LA Aa

5. LK/ K1
T 'Ri - KA

(3.23)

N

SR Hende)

N, thenequation(3.23) can be simplified as follows:

The coefficients othemodelcan then be estimated from ttelowing equation:

2L :$'$;7°8' ; a
where,
e H 5L,
i ravi;7:is; Eravli;™it;
Y:% rav'lgs;:t;EréTw‘lgs;:u; :,3

- NI
ravi,> :JFs; Erar,>:3;0

® 'I"'C tin-
® T:5; u.r\”ll
® C kf (3.24)
- N
® T2:3.0°
(; )
(3.25)

@@ @

T tn -
:5; ., .. KNl . ~
Toug aLt'ja
N B
TQS':J;C) J

Therefore, the influence ranking of the major sequences (input sensors) on the influencing

sequence Kiermalresponsgcan beknown by comparing the model values a1 Es ;.

3.7.2 The GM (1, N) Model

7KH ptdé&f\VErey model, GN1,N), is a multivariable Grey model for utti-factor
forecasting. GM1, N) means a Grey model that hisvariables including one dependent
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variable and\-1 independent variables. Assume that theréNarariables, Ty EL sd & &0 ;4

and each variable hagnitial sequences as:
145 A AT s A4 . . 22 A -
Ty L Dy :s;ély:t;&a daly :J;E :EL sdda &; (3.26)

First, in order to reduce the randomness and increase the smoothness of the sequence, the
accumulative generation operation (AGO)aiso applied to convert the sequences to be
strictly monotonic increasing sequendgese sectior8.4.7). Then, theGM (1, N) model can

be expressed by the following Grey differential equaltii:

G
T UGE=V"GLI >y 'GLx%T :GE>T :GE®E>T G4 (327)
ves

In which, \\*> : G is defined as:
\VY:G Lram> :GFs; Eram,> :G GL ta&d aa
where the coefficienta and >xare called the system development parameter and the driving

parameters, respectively.

Equation(3.27) can be written as

TV, E=NY it LT it E®@ T it 4
5 6 ¢ Tc

T E= U LT u E@ > T tusd

(3.28)
aaa
L E L LT L E®x T 04
Equation(3.28) can be written in the matrix form as:
Tt N T @Te ity =
T4, K 1Ty;5.,. 5. . 5., .8 >
il U AU Teiuy ®Tet iU ®ia (3.29
T.4.‘ N T_S.‘ .5.‘ - KNI S
iL7:3;0 1:3;, T3:d; ®T¢5’:J;O ¢

The coefficients of the model cahein be obtained using the leaguars estimate method

as:

AL :$'$:75%': 4 (3.30)
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where,
- iLr it Nt Tt ®T¢5;:t;n
. > T4, ..KN ;5 ... 5. . :5;., .. NI
AL Pja v=1T U@ L% u Tu @TTiuy
S T'4.' K T-s-- 5 e NI
¢ it":3;0 3 T, ®T":J;0

Therefore, the influence ranking from thel@pendent variablde thedependent variablean

beknown by comparing the model values:gi 1, R

3.7.3 Grey Relational Analysis (GRA) Method

Grey Relational Analysis (GRA) is a method to capture the correlations between the
reference factor and other compared factors of a system with a relatively small amount of
data[98] 2Q WKH EDVLV RI 'HQ B¥ey incpéndek, D0 ePaRl G3Hoepposed

a new type of GRA model to investigate the clessnof connection between sequences

using the geometric shapes of the sequeitess GRA model can be summarised as follows:
Step 1: Assume sequences:

‘oL KTys; @yt & u;&&;J;04 LV D VHTXHQFH RI GDWD UHSUHVH

characteristics, and,
v L @y:s;ak:t;ak: u; &aly: J; Ais a sequence of relevant factor
Step 2: The initial point zeroing images are:

3L @s; argt; 8 us &t J; A

d L @ s Nt & J; A
where, }:G L TyG F Tys;aR:G L TG F T:s;aGL sa& &4
Step 3: The grey similitude degree is calculated as follows:

S 4,

YyWb————— 4 ™SIGFQOL+ kiF:Jo@P
lJYI-SIE@FQJr 1'GFQ A v 0@

The similitude degree of the GRA model is used to measure the geometrical shape similarity
between sequence,and : v The Y is called the similitude degree of,with respect to: g

According to the above equations, the similitude degfg@etween thermal error of CNC

60



Chapter 3Atrtificial Intelligence Technique and Methods

machine tool and the various temperature sensors can be calculated. Thefpthgereaer

impact on thermal errat

3.8 Model Validation

Once a model has been trained, it is necessary to check the prediction quality of the resulting
model and to assess the parameter accuracy. This will give the confidence behind the model,
and tell the designef he needs to revise the training process. Ttosqdure isalled model

validation, which consists of several steps.

3.8.1 Direct Validation

The first test is to examine whether the obtained modepredict the experimental dataset
that has been used for ttraining process. Otherwise, there is clearly something wrong in the

training procedureand it has to be modified and repeated.

In order to compare the prediction results of tinermalmodel and its deviation from the
measured datatatistical indicegan be usedOne of themost commonly usechethodss the
residual value: the model has to follow well the experimental data while smoothing off the
noise (a model that tends to remember the noise isfitteat model and will fail later on in
crossvalidaion tests) A number ofperformance criteria such afRoot MeanSquareError
(RMSE), correlation coefficient (Rand NashSutcliffe Efficiency coefficient (NSE)104]

canalsobe used for testing the model performance.

The coefficient of correlation (R) describes the degree of collinearity between predicted and
measured datayhich ranges betweenrl( 1), is an index of the degree of linear relationship
between measured and predicted d&gstems with good correlatisrhave an absolute

magnitude approaching 1.

The NashSutcliffe efficiency coefficients a normalisedtatistic that determines the relative
magnitude of the noise compared to the measured data variance, which ranges between (

1). Systems withta good efficiency have an NSE approaching 1.

The root mean square error is used to measure the differenceebetataes predicted by a
model and those measured from the experimental test. Actually, the R&SEeen the sole
tool used to evaluate the model fit in several stuph@s104]. Systems with high accuracy

have RMSE approaching 0.
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The perfemances of the models used in this study were computed using four performance
criteria: Root Mean Square Error (RMSE), NaskSutcliffe Efficiency coefficient (NSE),

correlation coefficient (R) and also residual value. The equations of first two are defined

L AR ;6
4/5' L Lj”é (3.31)
A:<F 25

where,

< The tiermalresponsg

2 The predicted thermaésponse
<&verage of the thermaésponspand

Jahe number of measured datmples

3.8.2 CrossValidation

Direct validation is an essential condition, but by no means a sufficient condition to accept a
model as being one that can predict the thermal error under different operation conditions. It
may well be that the model predicts the data that has been asédihing stage, but
performs poorly with new unseen datas€ross validation is used to examine the
performance of the model, to check its generalisation capafiligrefore, enough dataset
must beusedand divided these into two subsets, one for training stage (and afterward direct
validation), and the other for cross validation. This procedure has been applied to check the
obtained model validity, especially when complex models, such as thermal edelsyare
considered105y.

3.9 Summary

The aim of the work presented in thehapter is to provide a complete and thorough
description of the Al tools that will be used thought tiissis Fuzzy models allow one to
XWLOLVH TXDOLWDWLYH NQRZOHCHI®Ss. ByRichB/V qudli@tiveRUP R
engineering knowledge is not sufficient in order to build a fuzzy model with high accuracy.
Therefore, often measurement data is needed for fuzzy model calibratiordrdatafuzzy

models are commonly referred to as nelurzzy models.

Clustering procedures can loensideredas extracting knowledge or information from the
data forms to the linguistic interpretation form. After knowledge extraction using clustering
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or partition, fuzzy models calibrate the knowledge by usiaging processesand then their
knowledge of the modelled system can be represented. The learning performed by the fuzzy
models can be considered a process of calibrating the given knowledge, which refines it to fit

the experimental data.

The Grey systertheory is a methodology that focuses on studtregGrey systesby using
mathematial methods witranonly few dataets and poor informatiohe technique works

on uncertain systemthat have partial known and partial unknown informatitte. most
significant advantage is that it needs a small amount of experimental data for accurate
prediction, and the requirement for the data distribution is alsoltothis thesis, the Grey
models and fuzzy-means clustering will be used to determinerttagor sensors influencing
thermal errors of a CNC machine tool, which is capable of simplifying the system prediction

model.

The following chapter explores thexperimental work andhermal characterisation of

machinetools
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Chapter 4: Thermal Characterisation of Machine Tools

4.1 Introduction

It is important to understand thermal characteristics of machine tools [@tenepting to
redu@ thermal deformation ompply a thermal error compensation systefppropriate
selection of input variables is an important task in modelling. In fact, not all input variables
are equally important; some may have no significant effect on the system being maddelled.
this thesis, thermographyill be used extensively, Iilo qualitatively and quantitativelyor

selectionof the optimal sensor locations adelveloping thermal error models.

This chapter outlines the experimental considerations taken into account when collecting the
data to build the compensation modelsha €CNC machine tooDetails are also provided on

the equipment setup used during the various experimental T@sts.is followed bya
systematic methodologpr a precise selection of thermal sensors and their positions in order
to ensure the predictiaccuracy and robustness of compensation models. The effect of using

different physical quantities (temperature and strain) is also explored.

4.2 Measurementsof Thermal Deformation of Machine Tools

In order to meet the wider aims of the research, it is necessary to be able to measure the
thermal displacement of the machine, and also the tempeddaingesausing those errors.
A number of different measurement devices have been used to achievesting t

requirements.

4.2.1 Measurementof Temperature

Usually for investigation of thermal errprdiscrete temperature sensors, such as
thermocouplesor resistance thermometers (Pt100, Pt1000) are attached on the machine
surface to measure the temperafdf. Some of these sensors are so small that they can be
installed in the machine structuneery close to the heat source. Howeveng texact
temperature distribution within the machine structure oaly be measured by discrete
temperature sensoifsthey ae densely deployed, which can be impracti¢al appropriate

method to provide richnesd temperature data is the usfea thermal imagingpproach
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Thermal imaging is an important part of this research work and is used both qualitatively and
guantitativdy for developing models on wide range of machine tools with different

configurations.

4.2.1.1 Thermal Imaging Camera

A thermal imaging camera provides a visible image of otherwise invisible infrared light that
is emitted by all bodies due to their thermal stétee thermal imaging camera has become a
powerful tool for researchers and has applications in various fields such as medicine,
biometrics, computer vision, building maintenance and 4d.@riL.0q. In thisresearch work

a highspecification thermal imaging camera, namely a FLIR ThermaCAM®S65, was used to
record a sequence of thermal images of temperature distributions #oeoparts of the
machinestructure. This camera provides a sensitivity of 0@8and an absole accuracy of

+2%. Full camera specifications are providedTable 4-1. The thermal imaging camera
offers a continuous picture of the temperatustritiution in the image fieldf-view. This is
important as it provides the distribution of heat during heating and cooling cycles across the
ZKROH PDFKLQH VWUXFWXUH 7KLV DOORZV WKH PDFKLQF
online during the test. Asell as the camera providing live continuous thermal images, they
can also be recorded for further analysis. The thermal images are saved as a matrix of
temperatures with a specific resolution of one pixel (equivalent tonZn$, which equates

to over 7600 temperature measurement points for this 320 x 240 resolution camera. These
thermal images can be transferred to a personal computer for anglgsi® 4-1 shows a

general overview of the experimental setup.

Table4-1: Thermal imaging camera specification

Field of view/min focus distance UBU m Thermal imaging
Spatial resolution (IFOV) 1.5 mrad camera
Thermal sensitivity @ 50/60 Hz  0.08 U & DW&
Electronic zoom function 2, 4, 8, interpolating
Focus Automatic or manual
Digital image enhancement Normal and enhanced
Focal plane array (FPA) uncoole
Detector type ) )
microbolometer; 320 x 240 pixels
Spectral range 3.5to0 13um

In this researchwork, the data has been analysed using MATLAB. One disadvantage of

thermal imaging ighatit can havelow absolute accuracy, usually in the order ofP€2 A
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number of MATLAB functions have been developed to enhance this accuracy, including
averaging the images to reduce pixel noise, alignment of images and extraction from the

temperature data by averagigroups of pixels at a specific po[AD7].

The radiation measured by the thermal camera depends on the temperature of the machine
tool structure, but is also affected by the emissivity of tlaehime surfaces. Additionally,
radiation relects from shiny surfaces (bsdirew, test mandrel, etc.), and is directly captured

by the thermal camera and appearing as very hot areas. In order to measure the temperature
of the machine structure preciselys therefore necessary to know the emissivity accurately,

for which the application of masking tape with a known emissivity (0.95) is a common and
effective solution. The camera parameters are then set according to the measurement
conditions considerinthe emissivity of the machine tool material, the distance between the
machine and the camera, the relative humidity and the ambient temperatlostrasedin

Table4-2.

Table4-2: Thermal imaging camera parameters.

Distance 15m
Emissivity 0.95
Ambient temperature 230
Relative humidity: 30%

Figure4-1: A general overview cd typical thermographiexperimental setup.
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The alvantage®f using thermal imagingpproactare:

X

It is a remote and a nerontact temperature measuring technique that enables simultaneous
monitoring a large area of the machine structlirbas the benefits of no temperature sensor
placed on a machine surface, and that a wimoésye fieldof-view canbe characterised in a

single measurement.

Thermal imaging requires immal instrumentation The essential requirements for such
temperature measurement are a thermal imaging camera with its tripod. Nowadays, an
infrared handheld camera is also availablehwihe benefit ofbeing lightweight and
portability.

Thermal imaging enables recording of live, continuous thermal images and interpretations of
the acquired pseudo colour coded thermal images are easier to understand. The thermal
images can be transferrama personal computer for further analysis.

Thermal imaging allows simultaneous acquisitions of a great number of the picture's elements
(pixels). These elements equate to great numbers of possible temperature measurement points,
depending upon theamea specifications anfield of view.

It is worth mentioning that use dfiermographyonly shows the surface temperature which
means it is unable to obtain the temperature of the internal elements of the ntaohine
Therefore in a practical compensation system, temperature sensors will be phygiaaéy

in drilled holes to obtain a better response of inteleraberature variation

4.2.1.2 Discrete Temperature Sensors

Thermocouples are the most commonly used sensor for meagempgratureon machine

tool thermal respons&lthough these sensors have low cost and easy to fix to the machine

tool surface, their accuracy is relatively low, which is unsuitable for this type of application

because a temperature changeaocmall magntude on a machine can equate to tens of

microns of error|10g. Moreover, thermocouples require a complex wiring effort when

several sensors are being used, which is often the case in the numerical compensation (data

driven) approach.

Fletcher|10§ used digital temperature sensors from Dallas Semiconductor LTD. These
temperature sensors have a diameter 2 DQG DUH RI W\SH 3'DOODV '6 6

measuring in a range e55°C to +125°C, with an accuracy of 0% over the range of

10°C to +85°C and resolution of 0.06%. Each sensor has a uniquel@?serial code,

which allows multiple sensors to function on the sarWife bus. This feature significantly

reduces the complexity of wiring and interface effort.
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4.2.2 Measurementof Displacenent

The movement of the machine as it changes shapbecaneasured using various pieces of
metrology equipment such as thermachine probe, high accuracy displacement transducers,

laser interferometer, etc.

4.2.2.1 Non-Contact Displacement Transducers (NCDTSs)

Non-Contact Displacement Transducers (NCDTs) have been used to measure the

@.

Capacitive sensors can be used, but the ones selected for this resedkradn the eddy

displacement of a precision test bar, representing the tool, in the X, Y and

currentprinciple When an alternating current is fed through a coil embedded in the head of

the sensor, it creates an alternating magnetic field in the conductyet (seeFigure 4-2).

As a consequence, the alternating current resistance of the sensor coil change. This change of

impedance produces an electrisggnal proportional to the distance from the tardé€ty.

The noncontacting nature of the measurement allows the position of a rotasingar to be
constantly monitored during a spindle running test. The sensor can measure the distance of
any conductive target and with realibration, any other metallic target. This position
measurement device is ideal for harsh industrial envirorsaeset to its resistance to dirt, oil,

dust, moisture, interference fields, dtcirthermore, it is often less expensive than capacitive

sensors and much smaller than laser triangulation de{it®d. The sensor has the

measurement range ofldmm and a fundamental resolution of 0.P

Figure4-2: Principle of eddy current senddrl]].
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4.2.2.2 Laser Triangulation Sensor (LTS)

A LaserTriangulationSensor(LTS) is an NCDT, which can measure and detect the relative

distance to a target or surface. LTS works by firing a laser beam at the target under study. A

common arrangement of the laser triangulation sensor is shgvgure4-3| The laser beam

is projected on the surface, on which the light from a laser source scatters, and the scattered
light can berecorded by a detector. The signal from the deteis used to determine the

relative distance between the sensor and the tHryét

The main benefit of LTS is the speed with which the measurement can be taken and their
robustness for harsh environments. Furthermore, LTS has a relatively large standoff (i.e.
distance between the sensor and the target surfaceljdh the risk of damage during setup

is reduced. However, LTSs are susceptible totssdting, andare sensitive tathe ambient

property of themediumin the gap between the sensor and the tqige¢f.

Figure4-3: Laser triangulation principle.

4.2.2.3 Fiber Bragg Grating (FBG) Sensors

Fiber Bragg Grating (FBG3ensorsare gaining increasing attention in the field of +éale

temperature measurement of machine t 117. FBG sensors belong to the optical

strain gauges family, are a promising technology in thermal error compensation systems. The

working principle of these sensors is described in det as one of the most exciting
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developments in recent years. In theld of thermal error compensation, having a large
number of temperature sensors would affect normal operation of machine tool, however FBG

sensors prove to be an interesting solution for placing a large number of temperature sensors

on the machine struare 113. The great advantage of this measurement technology is

that a single FBG sensor is able to provide a set of measurements of disabrticany
positions, providing distributed measurement along the struﬁmﬁh In literature, the most

common applications of FBG sensors are structure health monitoring, damage detection and

strain measurement in harsh environm.

However, the FBG sensor itself is also affected by temperature bstaa that equates to

8.64 P PU& 2 QtHodPoflcompensating temperature is to use an unconstrained grating
to measure temperature. Nevertheless, this was unviable for this application because it would
require additional gratings to be mounted, incurring additional cost and requiring additional
mounting space, which was not readily available. Instead, thedstvtemperature sensors
used for the temperatubmsed model were used to correct for change in the grating

temperature.

4.3 TestMachines

A CNC machine tool usually has three main groups of parts: machine tool structure, drives,
and control system. The machine structure consists of stationary and retanmgnts The
stationaryelementsinclude columns, bridges, bedgear box housingstc They usually

carry moving elements such as spindles, tables, slides, gears, bearings, and carriages.
Moving mechanismgan begrouped into spindle and feed drives in machine tools. The

spindle drive provides sufficient angular speed, torque, and poveeratating spindle shatft,

which is connectedb the spindle with different configuratiof&15. The feed drives carry

the table or the carriage. Generally, the table is connected to the nut, and the nut houses a
ballscrew. The screw is connected to the drive motor either directly or via a gear system
depending on the feed spkeanertia, and torque reduction requirements. The detailed design

of machine tool structures will not be covered in this thesis.

In this thesis, He modelling methods have been applied and validatedhree different

machine toolsThe differentconfigurations of these machinae described as follows:
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4.3.1 Machine A - Vertical Milling Centre (VMC)

In this thesis, the initial experimentgere performed on a small, thraris vertical milling

centre|Figure 4-4| shows the block diagram dfhe machine, whose configuration is often

known as Gframe due to its shape. This is a very common form of machine in indlisty
Z-axis maximum tool travel i830mm, and the machine table-akis maximum travel and
Y-axis maximum travel arB0O0mm and 400mm, respectivelyThe spindle is rotated by a

DC motor mounted on the top of the spindle carrier. The spindle speed can be controlled
from 80 rpm to9000rpm. The motors for the axes are directly coupled to a ballscrew that is
supported by bearings at each emtle position feedback for each axis is from a rotary
encodemounted on the axis motor. This means that the ballscrew forms part of the feedback

device.

Figure4-4: A general overview oMachine A

4.3.2 Machine B - Vertical Milling Centre (VMC)

Figure4-5|shows the block diagram of a thraeis vertical milling machinethis machine is

similarin concepto Machine A The motors for the axes are directly coupled to a ballscrew
that is supported by bearings at each end. The spindle is rotated by a DCnowbded on

the top of the spindle carrigxevertheless, in this machine the spindle is rotated using a belt
drive which may acts as a heat source by which the heat flows into the spindle through the
contacting areasThe spindle speed can be controllednir 60rpm to 800Qpm. Unlike
Machine A, the axis feedback on Machine B is via linear scales, which means that ballscrew
expansion is directly compebsWHG E\ WKH &1&TV¥ drdeQid oiad tkeRR S
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temperature data of this machine tool, a total Dthérmal sensoraere alreadyplaced on

the machind107]. The sensors can be classified into different categories according to their

positions as illustrated [ihable4-4

Figure4-5: Location of thermal sensors on tkkachineB.

4.3.3 Machine C A 5-axis Gantry Milling Machine

Machine C isa 5axis gantry milling machine as shown|ifigure 4-6] The machine is

constructed of three linear axes X, Y, ahd two rotary axes B and. The toolcarrying

spindle is mounted on the B axis and for this configuration, all axes move th& leol.
maximum speeds along theaxis, Y-axis, and Zaxis of the machining centre are mamin,
75m/min, and 70n/min, and the travels are 215 1.2m, and 0.7m, respectively. The
spindle has a maximum rotational speed of 3200 revolutions per mirlugemachine has

linear scale feedback for the three axes and directly mounted rotary encoder for the B and C

axes.

To improve the accuracy of the proposed model, and to avoid the need for a large number of

temperature sensors, additional feedback informasicupplied by FBGs shown ifFigure

4-6|landFigure4-22| This can detect the change in length by measuring the detectable strain.

Three FBG sensors were placed on the ram structure in order to measure the distortion of
each side of the structure. Another four FBG sensors were placed on thbeaosstructure

to monitor the thermal response with change in the ambient temperat@se ©Hine
distortion measurementsill be used as input to the proposed model in order to predict the

growth of the ram
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Crossbeam

Ramr

FBG mounted on the crofgam

FBG sensor on front FBG sensors on rear

Rarmr

Cross-beam

Figure4-6: A general overview of the-&xis milling machine and location of the (FBG).

4.4 Key Thermal Measurement Points

The selection of temperature variables is a key factor to the accuracy of the thermal error
model, which will be adversely affected if there is insufficient coverage of the temperature
distribution. At the same time, the calibration/training time and the relative cost of the system
will increase if the number of input variables is large. Thereftre,location of suitable

temperature sensors should be determined before the modelling process.

In this section, experiments were performed on Machine A. The thermal imaging camera was
used to record a sequence of temperature distributions across the-spindr structure of

the machine tool. Three NCDTs were used to measure the resultant displacement of a solid
test bar, used to represent the tool. Two sensors, vertically displaced byrilQfeasure

both displacement and tilt in the-akis direction ad a third measures displacement in the Z

axis direction (s@. Distortions in the Xaxis direction were not measured during
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this study, since experience has shown that the symmetry of the machine structure renders

this effect negligible. A general oweew of the experimental setup is show(Figure4-8

The use of masking tape on the machine provides areas of known emissivity. In particular, in
some locations such as on the rotating test bar, the tape is required to provide a temperature

measurement, which would be difficult to achieve by other means.

<— Spindle

DIY top
AN

Y NCDTs

X DIY bottom

Figure4-7: Measurement of the thermal effect using a test bar and NCDTSs.

Figure4-8: A general overview of the experimental setup.

The VMC was examined by running the spindleitat highest speed of 900Pm for
120minutes to excite the thermal behaviour. The spindle was then stopggbfoximately

70 minutes for coolingThe thermal imaging camera was positioned approximately G500

from the spindle carrier to ensure thhaé tparts of the machine of interest were within the
ILHOG RI YLHZ ,PDJHV ZHUH FDSWXUHG DQG VWRUHG WR
experiment at 10 second intervals. The thermal displacement at the spindle was measured
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simultaneously and is shown [F\igure 4-9| The effects of test mandrel rout and
measurement noishould be considered (see the oscillatiothayY bottomaxis) during the

tegd when the spindle is rotating. The elimination of the effects of this error can be achieved
by use of time averaging or a lgvass filter.The maximum displacement for the Y t@xis

is 20 pum, the Y bottoraxis is 23 pm, and the-Zxis is 35 pmA changen tilt is also found

by measuring the differendeetween the Y toj@xis and Y bottonaxis after the spindle was

stopped This is likely to have been caused by namform distortions in the complex

geometry of the machine struct.

Spindlestop

Figure4-9: Thermal response of the spindle.

MATLAB functions were developed to enhance and analyse the temperaturgl@dgta

These functions include image averaging (to reduce noise from individual pixels), image
alignment and the ability to extract a discrete point precisely by averaging groups of pixels.

In addition, efficient methods of creating virtual sensors were creatddding the ability to

GUDZ 30LQHV" RI WHPSHUDWXUH VHQVRU VSRWV UHSUHVH
obtainsufficient temperature data readings across the carrier structure. A Grey model was

applied to the measured temperature data tntify the influence of each spot across the

carrier structurg¢i-igure4-10[shows thermal images with 525 discrete spots on the carrier and

Figure4-11]shows some extracted readings from these spots taken over the duration of the

whole test.
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< Motor
-z A /
é/
/
< Spindle

Figure4-10: Thermal images captured during the experiment with 525 selected spots.

Figure4-11: Thermal dat&xtracted from images using MATLAB.

The machine wagsun through a tesatycle of 120minutes heating andpproximately

70 minutes cooling. The temperature change and displacement of the spindle relative to the
table in the Zaxis was captured throughoutttest. This was used in the G, N) model to
determine which parts within the machine structure contribute most significantly to the total
thermal displacement. Further analysis then concentrated on the influence coefficient of

discrete points using tHe&CM method. The process is as follows:
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First, the GM(0, N) model of Grey system theory is calculated using the temperature changes

and displacement of spindle nose in thaxts.

Suppose that Spdt~Spot525 represents the major variables (inpus) 15, %.and the

measurement of the NCDT sensors are the target variable (oﬁsgénffhe norm values of

the influence coefficient matrix@can be obtained usineguation|(3.25)| as E 1 B,

indicating theinfluence weighting of the input data against the output data, respeciihely.
greater the influence weight, the greater the impact on the thermal error, andréhkkely

it is that the temperature variable can be regarded as a possible modelling yarialiks.

4-12shows a 3D plot of thimfluencecoefficient matrix.

Spindle side
Motor side

Figure4-12: Surface of Influence rankg of temperature data using G N).

From|Figure 4-12[ the flow of heat across the carrier can be clearly seen. Different points

have different infllence on thermal error in thedfrection; the points near the motor are the
highest factors. Dumg the cooling cycle, it can be se é?igjure4—9r that the test bar shows
some movemenwhich occurred immediately after the spindle was stopped. This movement

is probably caused by the expansion of the test bar itself; the localised heat from the motor
and spindle bearings flow into the bar and there is no cooling effect from air turbulence. This

flow of heat into the test bar is a significant contributor tordsponsen the Zdirection as

the tool continues to expand after the spindle has stopped. An investigation of the source of

this growth of the test bar was carried out by extracting tets sjuring the same heating and
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cooling test as show JRigure 4-13| The GM (0, N) model of the Grey system theomas
DSSOLHG DJDLQ RQ D VSHFLILF SHdMLirE'@ur@d—@DSVKRW' RI WK

Figure4-13. Thermal image captured during the experimental with 10 selected points.

H/_/

Snapsha

Figure4-14: Thermal data extracted from images with 10 selected points.

Figure 4-15/shows the GMO, N) model output for the selected period. It can be observed

that the temperature change of different selected spots on the carrier has different influence
on the thermal error in the-@xis direction and the spots 9 and 10 on the test bar are the most
important factors, while spot 7 is the most significant locatiorthe machine structuréhe

GM (0, N) model provides a method to analyse systems where traditional methods such as the

correlation coefficiendo not seem appropriate. It is applicable irrespective of the size of
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datasets and independent of requirement for a specific distribution. The results of this

investigationindicate that theGM (0, N) model is a good optimisation tool for finding the

proper selection of thermal sensors and their location.

Figure4-15: Influence ranking of ten temperaguspots using GM ().

The temperature sensors were clustered into a different number of groups using FCM as

described irsection3.7

starting with one cluster for group 1 up to eight clusters for group 8.

Then, one sensor from each cluster was selected according to its correlation with the thermal

responsedo repreent the temperature sensor of the same categoryi &dee4-3

. different

number of compensation models can be constructed from these represespats/ which

will be discussed in the neghapter. An example of the clustering procedure for four clusters

is shown inFigure4-16

Table4-3: The cluster results.

No. of groups

Representative spots

Group 1 (one cluster)
Group 2 (two clusters)
Group 3 (there clusters)
Group 4 (four clusters)
Group 5 (five clusters)
Group 6 (six clusters)
Group 7 (seven clusters)

Group 8 (eight clusters)

Spot50

Spot50, Spot214

Spot50, Spot84, Spot398

Spot50, Spotl07, Spo249, Spo93

Spot50, Spotl40, Spo225, Spot263, Spot283

Spot50, Spotl09, Spot200, Spot240,Spot348, Spotd07
Spot50, Spot96, Spotl36, Spot305, Spot335, Spod4d3, Spod74

Spot50, Spot70, Spotl14, Spotl34, Spotl96, Spo262, Spot320, Spot352
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Four clusters Four representative sensc

A Y%
Of Of‘%
O,
«Oo,&/é [&fé/-
2 (&2 - WS
Gao \-\“e$ ‘?0/} ) 0).‘\\(\6
6/100 ﬂo 0{ /,OB @o
Spot107
Spot50
e) p
Sensors and locations on
Spot-29 spindlecarrier structure of tt
(@) machine tool.
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Figure4-16. An example of clustering procedure for four clusters.

4.4.1 Summary of the Proposed System

In this section, a thermal imaging camera was used to record temperature distributions across
the machine structurduring the experiments. The thermal images were saved as a matrix of
temperatures with a specific resolution of one pixel, each of which can be considered as a
possible temperature measurement point. The size of a temperature sensor means that, in a
pracical compensation system, sensing could not be physically applied at that spatial
resolution. However, the locations can be centred on the optimal position and it is possible to
use localised averaging of pixels to reduce any noise across the ifEg&ey system

theory and fuzzy -tneans clustering were applied to minimise the number of temperature

points and select the most suitable ones for a given target accuracy.

Generally, the following steps would be conducted when developing intelligent thermal

model on a CNC machine tool:

X Record a sequence of thermal images using the thermal imaging camera while the

machine runs through a range of duty cycle.
X Save the thermal images as a matrix of temperatures with a specific resolution of one

pixel, each of whicltan be considered as a possible temperature measurement point.
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X Analyse the measurement points using the Grey model to determine which parts
within the machine structure contribute most significantly to the total thermal
displacement. Further analysis then concentrated on the influence coefficient of
discrete points uisg a clusteringnethod.

x Further analyse the representative temperature sensors by constructing different
models with different architectures. This is important to understand any uncertainty
that is created by variation of the model des{@hapter 5).

X Validate and test the developed model on a machine(@lhpter 6).

Most of these steps are carried outlofé. This modelling approach addresses the problems
of the previous empirical models and so offers a-effsttive approach to develop a thetma
error compensation that can be implemented on a wide range of machinét tisolgorth
reiteratingthat use of thermal imaging to help find the optimal locations for temperature
measurement when designing a thermal error mdde& practical compeation system,

discrete temperature sensors will be physically applied at these optimal locations.

The whole block diagram of the proposed systenhdsve infFigure4-17|where spots 1 to N

represent the virtual temperature sensor data captured from the thermal imaging camera, and

the thermalespons@btained from NCDTSs.

Figure4-17: Block diagram othe proposed system.
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Next, ANFIS using FCM will be used to dee a thermal prediction model.emperature
measurement pointsvill be usedas inputs and thermalesponsedatg synchronously
measured by NCDTss the output. The ANFIS with FCM uses thesalifqutput pairs to
create a fuzzy inference system whose membership funetiertsned using either tiack

propagatioror leastsquares estimator learning algorithm.

4.5 Robustnessf Grey Models

A number of Grey model€GM(0,N), GM(1,N), and GRAhave been used throughout this

research work (sectio®.4f and our publishedtudiesin |116|117). Among these models,

the GRA model provides a simple, less computationally intensive anddsivapproach to
analyse systems with the benefit of requiring less experimentalTdasais explainedby the

following example orMachineB.

As has been discussed in the previous sectidasg@ number of thermal sensors may have a
negative influence on predication accuracy and robustness of a thermal prediction model.
However, too few sensors will fail to cover the requirementafcomprehensive transfer
function.One of the difficult issues in thermal error modelling is the selection of appepriat
temperature sensor locationshich is a key factor in the accuracy of the thermal error
model. This study adopts Grey relationablgsis to identify the proper sensor positions for
thermal error modelling. The similarity degree between the thermal error and the temperature
sensors is calculated from the experimental data. All of the similarity degrees of thermal
sensorwill be clustered into their groups. Then, one sensor from each gntiuge selected
according to its similarity degree with the thermesponsgto represent the temperature
sensors of the same category. Therefore, by selecting these sensors, the ANFISandztels

built easily to predict the thermedsponse

4.5.1 Setupof Measurement System

As shown irﬁFigure4—18 in order to obtain the temperature datdhefMachineB, a total of

77 thermal measurement pointare placed on a small vertical milling machine. The

measurement pointsan be classified into different categories according to their positions as
illustrated inTable4-4
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Figure4-18: Location of thermal points and displacement sensors on the machine.

Table4-4: The location of the thermaleasurement points

Group No. Point No. Definition

1-7 Outsidethe column
Column sensors (1) 70 Ambient at top of column air

71-72 Inside the column

8-33 Strip1 Sensors (placed on the carrier)
Carrier sensors (2),(3)

34-62 Strip 2 Sensors (placed on the carrier)
Spindle bospoints(4) 63,65 Spindle boss

66,67 Y Scale air

68,69 Y bed sensor

73 Carrier air
Other parts of the machine (5) 74 Table

75 Spindle air

76 Base air

77 Tool air

Five NCDTs are usetb measure the displacement of a precision test bar, representing the

tool in the X, Y and Z axes, respectively. The configuration is shov

\Frigare 4-18

The

vertical milling machine was examined by running athighest spindle speed of 80@0n

for one hour to excite the largest thermal behaviour. The temperagasurement pointst

the selectedplaceson the machine tool and the thermal displacement of the spindle are

measured simultaneously; the thermal displacement of thealertilling machine is shown

in|Figure4-19| The maximum displacement of theaXisis 3 P W Kalisis 60 P DQG

the Zaxisis 24 P ,Q &XafripM the X-axis thermal displacement is ignored because it is
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much smaller than that of the-akis and the Zaxis due to their mechanical symmetry; only

the Y-axis and Zaxis are considered.

Figure4-19: Thermal response of the spindle.
4.5.2 Thermal Key Point Identification Using GRA Model

Supmse that the measurement of tNEDTs sensor irthe Y-direction is the reference

sequence and FTI77 represents the comparative sequences. According to the GRA method

explained irsectior|3.7.3 the algorithm is summarised as follows:

Stepl:Preprocessing the experimental data; the reference sequepcan@d | comparative
sequences:(;) are preprocessed and represented as:
4 L KT,:s;4T,:t;84 4a1,:J;0a
5 L KTg:s;él;:t;8 al;:J;0a
a
a
a

Step 2: Computing the initial images with zero initial provides:

4 L KTf:s;&rf:t;8 a1y:J;0a
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AL KTE:s a2t ;8 a2:J; 04

4
5
"

4 L KT :s;&T$ it ;&8T5 1 J;04

where, TG L T3 G F Tys;aGL sa& Aaf-tEL r&a& 4 a

Step 3: ComputeQ F Q as follows:

a?5
. S
QFQ L-I TI:GFT:G E—t STH:J; F T3 :J; 24
p@b
Step 4: Calculation of similarity degrees of sequentésl are as follow:

S
SE QF Q

Step 5: Softlusterthe similarity degrees of all the sequences. Then,paona from each

Y L (4.1)

group is selected according to its similarity degree with the theespbnsdo represent the

temperatureneasurement poimf the same category.

To facilitate processing of calculation, MATLABraphicalUser Interface GUI) functions

have been developed to aid in the processing of variables selection for modigtiniglata

into the presented GUI can have different origing, they have to be MS Excel .xlsx
formatted, specifically named and saved in the same directory as the other GUI files. Then,
the first column of the MS Excel file is presented as time, the second column as reference
factor, and the rest of the columns ampared factors of a system. By loading the file, it will
display brief information about a particular system (number of inputs, output and the number

of samples).

This allows a sequence of data, captured using NCDTs sensors and tempsgasueement
pointsto be loaded into the MATLAB GUtlirectly. The GRA method can be applied with
different lengths of data; the results can be plotted and/or expontés Excel file.

Different tests were carried out with different iyouitput dataset sizes using th&k/&
model:a sixty minutetest (350samples)30 minute test (175amples) anda oneminute test

(6 samples) respectively. The similarity giees, the grouporting and representative

temperature seoss are illustrated |fRigure4-20)| Table4-5| andTable4-6f respectively.
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Figure4-20: Similarity ranking of temperatug@ointsusing GRA model.

Table4-5: Theclustering result.

Group No Measurement pointsorder

Group 1 5>6> 3>4>7>2>70>1>72>71

Group 2 11>10>12>9>13>14>8>15>16>17>18>19>20>21>22>23>24>25>26>27>28>30>29>31>3
40>41>42>43>39>38>44>45>37>36>35>46>34>46>34>47>48>49>50>51>52>53>54>55
7>59>58>60>61>62

Group 4 65>64>63

Group 5 75>77>73>74>76>69>66>68>67

Group 3

Results inFigure 4-20, can be well explained by the physical construction and expected

thermal behaviour of the machine tool. They indicate that the temperagasurement
pointslocated close to the heat sourdeega higher similarity degree than the temperature
measurement pointecated relatively far away from the heat source. Results also indicate
that GRA is applicableriespective of the size of datts and independent of requirements

for a specific disthbution. It provides a method to analyse systems where traditional methods
such as the correlation coefficient do not seem appropriate. GRA is a useful tool to determine

the degree of similarity between the reference sequence and comparative sequences.

Accoarding to the degrees of similarity between the temperature sequences dhelrina

error sequence of the-tirection listed ifiTable4-5| the thermameasurement pointith the

biggest value in each group is selected; they are 5, 11, 40, 65, and Ybalsed-6).

Therefore, the 7/measurement points plactm academic investigation were decreased to 5.
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For practical purposes, the main representaioiatscan be useds a basis for constructing
the models, which coulsimplify the thermal prediction models. The above analysis indicates
that the GRA model is a good optimisation tool for finding the proper selection of thermal

measurement points

Table4-6: Selectedemperature sensors.

Sensor No Definition Group name
5 measuring the temperature of the column GROUP 1
11 measuring the temperature of point on line 1

: i i GROUP 2,3
40 measuring the temperature of point on line 1
65 measuring the temperature of ggndle boss GROUP 4
75 measuring the temperature of the spindle air GROUP 5

Figure 4-21)shows the influence ranking of temperature data presented in sﬂioeing

GRA model. It can dalsowell explained by the physical construction of the machine tool
the temperature spots located close to heat sources (e.g. spindle motor, bearing) give a higher
similarity degree than the temperatuneasurement pointscated relatively far away dm

the heat source (spindtarrier rear) at the beginning of the test. Therefore, this observation

confirms to the results obtained by GN N) model inthe section4.4|
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Motor side

Spindle sid

Figure4-21: Influence ranking of temperature data using GRA model.

4.6 Example of the Fusion Measuremenbn Machine C

In most previougesearchwork, temperature sensing is used as inputs to the compensation
models. This is consistent with the approach from a large number of researcleers. Th
philosophy has a merit, since it ensures that the model is drivenalnge in temperature
profile irrespective of the heat sourddowever to improve the accuracy of the predicted
model, and to minimise the effects of thermal hysteresis, additionddelednformation is

supplied byFBG sensor®n Machine C

In this example, the machine under investigation is-ax&s gantry milling machine (Machine

C). The first step was to perform an initial assessment to identify machine structural elements

and heat sources that contribute most significantly to the machine erroe:rdathmaging

camera was used to record temperature distributions across the machine structure during
SGU\" RSHUDWLRQV L H ZLWKRXW FRRODQW SUHVHQW 7K
were due to €xis rotation and Axis movement of the ram. T$etwo errors are therefore

analysed in thissork 0$7/$% SURFHVVLQJ URXWLQHV KDYH EHHQ GH
temperature sensors from the thermographic images, which were used to identify the optimal

position to install surfacenount temperatureessors on the surface of the structure (see

Figure4-22). From related work on this aspésee secti and the initial tests, a total of

twelve tenperature sensors were placed on the machine. Six sensors were located on or near
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the major heat sources: one measured the surface temperature of the ram neaxishe C
motor (T1); one (T2) measured the surface temperafutredower bearing of the batrew;

two monitored the gradient from the end of the ram (T3, and T4); and two measured the
surface temperature of theakis motor (T5, and T6). Another six temperature sensors were
placed around the machine to pick up the ambient temperature changeslase&u
displacement sensors were used to measure the displacement of a test bar (attached to the
spindle) caused by the thermal distortion of the machine: two measured displacement of the
test bar in the Yaxis and Zaxis directions (this studglso did not consider the »axis

direction due to symmetry of the machine); two measured any tilt. A general overview of the

experimental setup is shown|kigure 4-23] The diagram also indicates the sign convention

of all the machine axes.

FBG sensors on rear v

Thermal imaging camera

v %

= =

Thermal image from rear

IA general overview of the experimental sett Location of temperature/strain sensors

Figure4-22: Strategy of temperature sensor placement on ram structure.

To improve the accuracy of the proposed models, and to avoid the need for a large number of

temperature sensors, additional feedback information is supplied by FBG as s{tagurér

4-6| This can detect the change in length by measuring the detectable strain. However, the

FBG sensor itself is also affected by temperature byctrfahat equatet 8.64 P PU &

One method of compensating temperatwda use an unconstrained grating to measure
temperature. Nevertheless, this was unviable for this application because it would require
additional gratings to be mounted, incurring additional cost and requiring additional

mounting space, which was not rdgadivailable. Instead, the lowost temperature sensors
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used for the temperatubmsed model were used to correct for change in the grating
temperature. Three FBG sensors were placed on the ram structure in order to measure the
distortion of each side dhe structure. Another four FBG sensors were placed on the cross
beam structure to monitor the thermal response with change in the ambient temperature.
These odine measures were used as input to the proposed model in order to predict the

growth and distdion of the ram.

Figure4-23. Procedures for measuring the thermal errors.

4.6.1 Hysteresis Effect

Figure4-24ishows test results fromcycle oftwo hours heatingip and another two hours for

cooling down (test detail will be given in sect@. Results show that the temperature of

the machine tool (T2 Ram rear) changed with a certain delay relative to variation in the
machine displacement and FBG sensors (AB@nd FBG2).
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(/Hysteresis effect

. Cooling do
Heding up ing down

Figure4-24: Data fusion (temperature and strain).

FurthermorgFigure4-25/shows hysteresis plot of different sensors, it can be clearly seen that

the FBG sensors located on the machine ram exhibit lower hysteresis. For exampi&, (FBG
and FBG2) sensors respond an almost linear fashion, whether the machine is being heated
or cooled. It can also be observed tthat temperature at the point of measurenf@atRam

rear) possess slightly higher hysteresis behaviour relative to other séheprss a latency

of gpproximately 10minutes By using FBG sensors, the effect of thermal hysteresis could be
minimised. Therefore, the application of FBG sensors could allow for a more accurate

prediction of thermal erroséenextchapter).
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Figure4-25; Hysteresis plot from different sensors.

4.7 Summary

In this chapter, a thermal imaging camera has been used to record temperature distributions
across the spindle carrier structure during the experiments. The thermal imeagagea as a

matrix of temperatures with a specific resolution of one pixel (equivalent tax®r85 This

system equates to over 76000 possible temperature measurement points. Averaging, which is
used to decrease noise, reduces the number of tempdoatatiens to the equivalent of 525
points, depending upon the field of view. This richness of data is exploited to find the optimal

location for temperature measurement when designing a thermal error control model.

With the use of @&y modeland FCM methos| the influence rankings of recorded
temperature data has been found to be applicable to determine which parts within the
machine structure contribute most significantly to the total thermal displaceiaist.

eliminates the need for intuitive locating s#nsors and significantly reduces implementation

time. The principal advantage of this novel technique is to use thermal imaging to assess a
PDFKLQHYYV WKHUPDO EHKDYLRXU DQG WR EXLOG FRPSHQV

configurations of sensorft is worthto noticethat use of thermographyg to help findthe
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optimal model structure when designing a thermal error méaé¢his sensein a practical,
WHPSHUDWXUH VHQVRUV ZLOO EH SK\VLFDOO\ DSSOLHG DW

This section also has highlighted the use of FBG sensors for strain measurement. They have
several advantages over other sensors in terms of sensitivity and quality and could be
embedded in a future, commercialised system. Therefore, in the next chaptesatere

measurement at key locations will be supplemented by direct distortion measurement. This

fusion measurement will be used as input to the proposed models.
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Chapter 5: Artificial Intelligence Model Development

5.1 Introduction

Thermal errorsare often quoted as being the largest contributor to CNC machine tool errors,
but they can be effectively reduced using error compensation. The performance of a thermal
error compensation system depends on the accuracy and robustness of the thermal error
model and the quality of the inputs to the modslpreviously discussedhe location of
temperaturesensorsnust provide a representative measurement of the change in temperature
that will affect the machine structure. The number of sensors and their locations are not
always intuitive and the time required to identify the optimal locations is often prohibitive,

resulting in compromise and poor results.

It is likely that when a compensation systenimplemented on a machine, each part of the
structure will be modelled separately. The final compensation value will be calculated by
combining the displacement ofl #he structural elements. As a next step in this resetreh,
machine is modelled as individusiructural elements. For this reason, it was deciding to
begin the investigation by looking at applying ANFIS modelling to the spindle carrier of
Machine A ad to concentrate on predictirgrdirection deformation. Another investigation

was carried out on Machine B; the experimental tests were carried out throughout different
time durations, different ambient temperatures and different spindle rotation speedsri

to validate the robustness of the modelling metfdus is followed by an example of fusion

sensors modelling on Machine C.

5.2 Generating ANFIS Architecture

In this fction a new intelligent compensation system for reducing thermal errors offmeach

tools using data obtained from a thermal imaging camdtde introduced.In section4.4

different groups of key temperature points were identified filoamal images using a novel
approachbased on a Grey model afukzzy cmeans clustering method. Asdaptiveneurc
fuzzyinferencesystem withfuzzy cmeans clusteringill be employed to design the thermal
prediction model. In order to optimise the apmimaa parametric study was carried out by
changing the number of inputs and number of membership functions #WNRES-FCM

model, and comparing the relative robustness of the de&gig. models were developed as
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follows: representative temperature sessfromTable 4-3|were selected as input variables

and the thermalesponseén the Zdirection was considered as a ttrgariable. The same test
(120minutes heating and f@inutes cooling) was used for training and validgtihe
models: experimental data are divided into training and checking datasets. The training
dataset is used to train (or tune) a fuzzy model, while the checking dataseteddsrover

fitting model validation. The Gaussian functions are used to describe the membership degree
of these inputs, due to their advantages of being smooth andenorat each poi@.

After setting the initial parameter values in tA&IFIS-FCM models, the models were

adjusted using a hybrid learning scheme.

Extensive simulations were conducteddgelect the optimal number of MFs (clusters) and
number of iterations (epoch) for each model. The performance of the model depends on the
combination of these different parameters. Too few MFs do not allowvANES-FCM

models to bavell mapped. Howeveitoo many MFs increase the difficulty of training and

lead to oveffitting or memorising undesirable inputs such as noise. The prediction errors
were measured separately for each model using the root mean square error (RMSE) index. By
varying the simulatios, it was determined that the optimal solution was six MFs in the first
five models, and three MFs for the remaining models. Different numbers of epochs were

selected for each model because the training process only needs to be carried out until the

errorsconverge. An example of selecting MFs with four inputs is presenteabie5-1

Table5-1: Performance oANFIS-FCM models with various numbers of MFs.

Number  of Convergence RMSE of the RMSE of the testing

Models
MFs epochs validation data data

1 2 200 0.8314 3.8456
2 3 200 0.6064 2.0052
3 4 200 0.5380 2.4614
4 5 100 0.5793 2.0534
5 6 100 0.5327 1.7275
6 7 100 0.3494 4.1113
7 8 100 0.3232 4.8818
8 9 100 0.3058 5.0802

In order to examine the performance of all fdFIS-FCM models on noitraining data,
another test was carried out tre same machin@Machine A)in an operationatycle as
follows. The machine was programmed to runpahdle speed of 800m for 60minutes

and then 40ninutes with the spindle stopped. It was then run again at spindle speeds of
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4000rpm and 9000pm for 30minutes and 4@ninutes respectively. Firgl measurement
continued for another 4@inutes with the spindle stoppe®uring the experiment, the
thermal errors were measured by the NCDTs, and the predicted displacements were obtained
usingANFIS-FCM models.

In|Table 5-2| the prediction performance of eigANFIS-FCM models was compared for

training and nostraining data respectively.

Table5-2: The characteristics of tHeNFIS-FCM models.

No. No. of Training stage Testing stage
Model of MFs for  No. of
inputs -each iteratons | NSE  RMSE NSE RMSE R Residual
input
ANFIS-FCM 1 1 6 200 | 0.6780 4.4835| 0.4070 5.8847 0.7636  14.09
ANFIS-FCM 2 2 6 200 0.9838 1.0071| 0.4929 5.5618 0.8302 13.76
ANFIS-FCM 3 3 6 11 0.9941 0.6223| 0.9585 1.5183 0.9904 3.39
ANFIS-FCM 4 4 6 9 0.9939 0.6069| 0.9764 1.4139 0.9912 2.95
ANFIS-FCM 5 5 6 12 0.9941 0.6254| 0.9351 1.8981 0.9806 4.53
ANFIS-FCM 6 6 3 2 0.9881 0.8634| 0.7154 3.9754 0.9595 8.00
ANFIS-FCM 7 7 3 2 0.9880 0.8659| 0.7352 3.8346 0.9635 8.21
ANFIS-FCM 8 8 3 10 0.9847 0.9789| 0.6439 4.4463 0.9332 10.42

Figure5-1: The characteristics of the ANFIS models dutiesfing stage.

Table 5-2| and|Figure 5-1|illustrate the obtained results from all eight developed models.

From these results, it can be observed that both NSE and RMSE have promising values
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during the training stage for all the models. However, during the testing stage the models
with one and tw input variables gave low efficiency, low correlation coefficient and high
residual value due to insufficient data regarding the system behaviour. In addition, the seven
and eight inputs models did not give as good results as the other models duedanegoh

input data. TheANFIS-FCM model with four inputs gives the best estimation, taking into
account the performance indices (higher efficiency coefficient NSE=0.97 higher correlation

coefficientR=0.9912, and loweroot mean square error RMSE=1.4128)d lowest residual

value amongst others as showjrigure5-2

Figure5-2: Residual values faall eight models.

The structure of th&NFIS-FCM model with four inputs is shown |iﬁigure5—3 There are

four input neurons, correspondingas fourd in sectiovI|4.4 (seeFigure5-4). In the second

layer, six neurons are connected to each inputomefin total 24 neurons), which correspond

to six Gaussian membership functions for each input sensor as shbwgniria5-5| The next

layer contains six neurons equivalent to six fuzzsthién" rules. The result of the prediction
process is presented by six neurons in the output layer. A weighted average method is used

for the defuzzification stage in order to obtain thelfpradicted thermalesponse
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Figure5-3: The structure of associated network model.

Figure5-4: Thermal data extracted from four points.
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Figure5-5: Membership functions obtained through FCM.

Figure5-6|describes the temperature rise during the testing experiment. It can be seen that the

temperature extracted from the representative sensors fluctuated due to change of the spindle
speed, whib causes sudden change in the resultant displacement irattie direction. The
simulation realt shows that the propos@dNFIS-FCM model can predict the error accurately

and can also track the rapid changes of thermal error prem@ the maximum

residual isapproximately +2 P). Thus, a mdel with four representative temperature sensors

is therefore a powerful and precise predicbthe thermal errors of the machine tool.
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Figure5-6: Thermal data extracted from images from selected points.

Figure5-7: ANFIS-FCM model output vs thactual thermal response.

100



Chapter 5Atrtificial Intelligence Model Development

The prediction of theANFIS-FCM model with four selected key temperature poicas
significantly reduce the thermal error from an independent test under different conditions of
varying rotational spindle speeds and dwells on mh&chine tool. To emphasise the
importance of correctly finding the optimal sensor locations, one of the virtual sensors was
arbitrarily moved from the location determined by this method to another location that could
have been selected intuitively, i.e.tlwvisome engineering justificatiomhe modelwas
retrainedwith this new sensor locatioBy changing just one temperature point from the key
temperature points gives unsatisfactory prediction ability (residual e@ueP), which
implies that the proposethethods (&y modeland FCM) area valid and important

combination to build an accurate model.

In the following section, a number of experimental tests were carried out throughout different
time durations, different ambient temperatures and differendigpiotation speeds in order
to validate the robustness of the modelling method. Additionally, different types of ANFIS

model will be discussed and compared.

5.3 Robustness othe Model to Machining Parameters

The machine tool is subjected to continuouslyngiiag operation conditions. It is rarely
maintained at steady state and the heat generated internally will vary significantly as the
spindle rotation speedxis feedrate, etes changed. When this is combined with the effect of
ambient changes, the resid the complex thermal behaviour of the machine. Five NCDTs

are used to measure the displacement of a precision test bar, representing the tool, in the X, Y

and Zaxes. The configuratiomasshown inFigure4-5|(Machine B).

In this work, athermal modelwas created for Machine B using the model described in

section5.2 A variety of heating and cooling test®re thencarried out in different ambient

conditions and different spindle speeds of the VMC |(Balele 5-3). Brief appraisal of the

methodology shows the variation considered in this study. Comp&asgl and Test VI

shows that a higher spindle rotation speed causes a larger thermal err@ $amé time
duration. Whereas comparifi@st Il with Test lllandTest V with Test V] it can be seen that

the same spindle rotation speed, and the same time duration, gave rise to different thermal
error. This was due to change of the ambient conditiodshgsteresis effect. More detail of

these differences can be observed by examining a selected temperature sensor on the spindle
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carrier (T11)]Figure 5-8[shows different initial conditions of the machine gfdure 5-9

shows the different magnitude of temperature changes in different tests.

Figure5-8: Absolute temperature of the selected sensdifierent tests.

Figure5-9: Magnitude of temperature changes in different tests.
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Table5-3: The various heating and cooling tests

Spindle o Total Time Maximum error

Testdescription S— Test name
speed (hours) Y -direction

1 hour heatind. hour cooling 2h 25 P Test |

3 hours heating/2 hours cooling 5h 35 P Test Il
4000 rpm 3 hours heating/2 hours cooling 5h 40 P Test 11l

2 hours heating/1 hour cooling

) ) 8h 39 P Test IV

hours heating/3 hours cooling

1 hour heating. hour cooling 2h 64 P TestV
8000 rpm

1 hour heating. hour cooling 2h 79 P Test VI

An example of heating and cooling test is illustrated as follawe:vertical milling machine

was examined by running asihighest spindle speed of 80@dn for one hour to excite the
largest thermal behaviour. The temperature sensors at the selected points on the machine tool
and the thermal displacement of the signwere measured simultaneously; the thermal

displacement of the vertical milling machine is shownFigure 5-10f The maximum
displacement of thX-axisis3 P WKalisis 79 P DQG -WiKld22 P 7 K Hxis
thermal displacement is much smaller than that of tkexi¥ and the Zxis due to the

mechanical symmetry of the machine and therefore is not investifyateer in thiswork;

only the Y-axis and Zaxis errors are considered.

Figure5-10: Thermalrespons®f the spindle (spindle speed 8000 rpm)
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The selection of temperature variables is a key factor to the accuracy of the thermal erro
model, which will be adversely affected if there is insufficient coverage of the temperature
distribution. At the same time, the calibration/training time and the relative cost of the system
will increase if the number of input variables is large. Theeefthe location of suitable

temperature sensors should be determined before the modelling process.

By applying the Grey model on the experimental data from Test VI, the influence coefficients

can be obtained\ext, the influence weightings are clustetedive clusters by using fuzzy

c-means clustering analysis (s@amplein|Table4-5jandTable5-4). Afterward, one sensor

from each cluster is selected according sanfluence weight with the thermal displacement
to represent the temperature sensors of the same category. In this case tH@fy ald, T
T40, T65 and T75. These temperature sensors are located orcdhemn, spindle carrier
(Strip 1, and Strip @ spinde boss,and ambient near thepindle respectively.The whole
block diagram of the proposed system is sho@ where variables T1 to TN

represent the temperature data captured from dhgpdraturesensors, and the thermal

respons@btained from NCDTSs.

Table5-4: The clustering result.

Group 1 T18 T23, T33T53, T72

Group 2 T24-T32, T54T61

Group 3 T8-T17, T62, T63

Group 4 T5, T4, T68, T69, T76

Group 5 T1-T3,T6, T7, T64T67, T70, T71, T73[75

5.3.1 ANFIS Models Design

One of the main concerns with designing a thermal error compensation model using ANFIS,
or any other selfearning algorithm, is whether the training data that was measured at one
particular operating condition of the CNC machine tool would be sufficseimain the model

fully for other operational conditions. In other words, is the measured data sufficient for the

model to be applicable for all operating conditions?

Ideally, an ANFIS model is trained by a training set that includes many training pairs
collected from all likely conditionsHowever, thecost of machine downtime to capture the
training data is a significant concern, because the impact on productivity can have a high

penalty. For this reason, reducing the number of training pairs required is very attractive.
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TestlV was considered to vaklde the method of reducing the number of training cycles.
Measurements of thermal error and corresponding temperatures were recorded while the
machine was run through a range of duty cycle as follows: It was allowed to run at spindle
speed 4000pm for 120minutes, and then paused for Bthutes before running for another
120minutes; and then stopped for 1®ihutes. Hence, the data obtained from this test is
divided into three parts which were training, checking, and testing dataset. The checking
datasetvas used for oveiitting model validation, while the testing dataset was used to verify

the accuracy and the effectiveness of the trained model.

Five temperature sensors fraectior|4.5were used as input variables to the models and the

thermal displaceménin the Y-direction was chosen as a target variable. The Gaussian

functions are used to describe the membership degree of these inputs, due to their advantages

of being smooth and nexero at each poinfsee sectiofb.2). After setting the initial

parameter values in the ANFIS models, the input membership functions dyaséed using

a hybrid learning scheme.

Extensive simulations were conducted to determine the optimum structure of the FIS models
through various experiments. The optimal number of MFs was determined by assigning
different numbers of MFs for the ANFSrid model, and different values to the number of
clusters () for the ANFISFCM model, respectively. Too few MFs will not allow an ANFIS
model to be mapped well. However, too many MFs will increase the difficulty of training and
will lead to overfitting or memorising undesirable inputs such as noise. The predmtiors

were measured separately for each model using the root mean square error (RMSE) index
with the testing dataset. An example of selecting the optimum structure for the AITMS

model is presented as follows:

In this modelling method, the optimum size of the FIS model was determined, and the results

are shown ifrable 5-5| Different numbers of epochs werelected for each model because

the training process only needs to be carried out until the errors converge. As can be seen in

Table5-5] it cannot anply be stated that better results will be obtained with more clusters. It

was found that the FIS model with three.=4) clusters exhibited the lowest RMSE
value(1.7) for the testing dataset. Consequently, this FIS model with 3 rules was considered
to bethe optimal. The corresponding rules of the optimum model are proviEebeeS—G

105



Chapter 5Atrtificial Intelligence Model Development

Similarly, the optimum FIS model for ANFIGrid model was determined by arbitrarily
varying the number of MFs from 2 to 4. The FIS model with three MFs per input (243 rules)

was found to be the optimum.

Table5-5: Performance of ANFI$CM models with various numbers mf

Number of Convergence

Models RMSE of testing dataset
clusters ) epochs

Model1 2 200 2.3

Model-2 3 200 1.8

Model3 4 100 1.7

Model4 5 300 2.1

Model5 6 200 5.6

Table5-6: Linguistic rules

Linguistic rules

1. If (TO5is TO5clusterl) and (T1is T1iclusterl) and (40 is T40clusterl) and (&5 is T65clusterl) and
(T75is T75clusterl) then (outl is outlclusterl)

2. If (TO5is TO5cluster?) and (T1is T1icluster2) and (#0is T40cluster2) and (85 is T6bcluster2) and
(T75is T75cluster?) then (outl is outlcluster?)

3. If (TO5is TO5cluster3) and (T1is T1icluster3) and (#0is T40cluster3) and (&5 is T6bcluster3) and
(T75is T75cluster3) then (outl is outlcluster3)

5.3.2 Resultsand Discussion

In this section, the aim is to use the structure of the ANFIS models described in the previous
section to derive a thermal error compensation system. With the purpose of evaluating the
prediction performance of the models generated using datasdVTdst remaining datasets

Test |, Test I, Test Ill, Test V, and Test VI were used to run the models. The experimental
tests were carried out throughout different time durations, different ambient temperatures and
different spindle rotation speeds in ordev&didate the robustness of the modelling method.
The performance of the models used in this study were computedfasmgerfamance
criteria, including root measquare error (RMSE)NashiSutcliffe Efficiency coefficient

(NSE),correlation coefficientR) and also the residual value.

5.3.2.1 SameSpindle Speed under Different Operation Conditions

The prediction models established using the dataset from Test IV are used to forecast the
thermal error of Test I, Test Il, and Test lll, respectively. In all exparts) the machine was
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examined by running the spindle at a speed of 4p00 but the duration and ambient
temperature is different between each test and different from the training data, as illustrated

in|Table 5-3[ This is representative of a machine that manufactures similar parts, but in

varying factory conditionsThis is would be the case, for exampléaanodel trained in the
summer, but testeidh winter, or day vs nighfThe temperature sensors at the selected points
on the machine tool and the thermal displacement of the test bar are measured

simultaneously.

Predictive results for the three tests using ANBI®I model and ANFISSCM model are

shown inFigure5-11f|Figure5-12| andFigure5-13| Results show that these two models are

competitive. The performance of each of the two thermal prediction models is presented in

Table5-7| They both can predict the new observations and rettheéceesidual value to less

thant5 P IRU HDFK WHVW | W LRCNF@ddéd b A\sHdIey RWMSEHreSitlyale
value and highecorrelation coefficienthan the ANFISGrid model. It is also better able to
cope during the coalown phase; a time during which-amachineprobingis likely to be

taking place.

Table5-7: Performance calculation of the used models

Number of Performance indices
Test name Model _
rules R RMSE NSE  Residual
ANFIS-Grid model 243 0.96 1.53 0.92 +3 P
Test |
ANFIS-FCM model 3 0.99 1.23 0.94 2 P
ANFIS-Grid model 243 0.99 2.72 0.96 4 P
Test Il
ANFIS-FCM model 3 0.99 0.57 0.99 2 P
ANFIS-Grid model 243 0.98 2.78 0.95 +5 P
Test Il
ANFIS-FCM model 3 0.99 1.06 0.98 2 P
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Figure5-11: (a) ANFISGrid model output vs the actual thermasponse(b) ANFISFCM

model output vs the actual thermmasponse(Two hours, Test |).

Figure5-12: (a) ANFIS-Grid model output vs the actual thermasponse(b) ANFISFCM
model output vs the actual thermmasponse(Five hours, Test II).
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Figure5-13: (a) ANFIS-Grid model output vs the actual thermasponse(b) ANFISFCM

model vs the actual therin@sponse(Five hours, Test IlI).

5.3.2.2 Different Spindle Speed under Different Operation Conditions

The prediction models established using the dataset from Test IV were further tested to
represent a machine that has different manufacturing parametersp alaoying factory
conditions. The machine was run at its highgsbdie speed of 800¢m for one hour to

excite more thermal response than during the training data, and then paused for another hour

for cooling (see Test V and Test VI). Predictive resuigg the ANFISGrid model and

ANFIS-FCM model are shown rﬁigure5-14 andFigure5-15 The evaluation criteria values

are provided ifiTable 5-8| The residual error obtained using the ANFHGM model was
again better than the ANHGrid model. In addition, the ANFISCM model has a lower
RMSE and slightt higher correlation coefficierand NSEthan the ANFISGrid model. This
indicates that the ANFIECM model is a good modelling choice for predicting the thermal

error of the machine tools.

Table5-8: Performance calculation of the used models

Performance indices

Test name Model Number of rules -
R RMSE NSE Residual
ANFIS-Grid model 243 0.97 3.98 0.95 8 P
TestV
ANFIS-FCM model 3 0.99 2.78 0.97 4 P
ANFIS-Grid model 243 0.98 3.88 0.95 7 P
Test VI
ANFIS-FCM model 3 0.99 2.78 0.97 5 P
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Figure5-14: (a) ANFIS-Grid model output vs the actual thermasponse(b) ANFISFCM

model output vs the actual thermmasponse(Five hours, Test V).

Figure5-15: (a) ANFIS-Grid model output vs the actual thermasponse(b) ANFISFCM

model output vs the actual thermnasponse(Five hours, Test VI).

In this sectiona single training test was valiédtwith a variety of heating and cooling tests

under different ambient conditions and different spindle speeds of the VM gbésb-3).

According to the results in theork, the proposed ANFIS model can predict the new
observations and reduce the residual value to less thart5RU DOO WHVWV 7KLV VI
expected he spindle motor generates different amounts of heat at different speeds.
Nevertheless, monitoring the effect of different speeds using temperature sensors, rather than

using the programmed value, still yields very good results.

In this piece of work, onltemperature sensors are used as inputs to the model. This is
consistent with the approach from a large number of researchers. This philosophy has some

merit, since it ensures that the model is driven by changes in temperature profile irrespective
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of the heat source. However, applying some prior knowledge in designingdeaating
algorithms can yield improved results.this research worKusion of other sensor types and

machine control valudsere also considered

In the following section, to improvie accuracy of the predicted model, and to minimise the

effects of thermal hysteresis, additional feack information is supplied ByBG sensors.

5.4 Fusion of Temperature and Distortion Measurement

This work develops an error compensatiandel for the ganty type 5axis machine tool
(Machine C). The machine operates in a-temperature controlled environment. Changes in
temperature cause the machine to change shape and result in a loss of accuracy. In the initial
work on this machine, only temperature seaswere used as inputs to the model.

Temperature sensors described in sec@were used as input to the model, and the

thermal error in the Airection was used as a target variable. The proposed ANFIS model
was used to predict the thermal response of the machin@was ﬂ’ﬂ[ Figure5-16| Although,

the ANFIS model based on temperature measurement works well in the previous sections, the

result is not as good as danded in the case of Machine C (the maximum residual value is
approximately #30 P 7KH $1),6 PRGHO HVWDEOLVKHG E\ RQO\ WHF
residual value due to complexity of the machine thermal behaviour, as a result of bigger
volumes, and lorgr strokes, which have to be consideredwdis anticipated that further

improvement in accuracy could be achieved by including strain information as part of the

training datgFigure 5-17|shows the output result of the simulation; the maximum residual

value is approximately ) P Therefore, in the next section, temperature measurement at

key locations will be supplemented by direct distortieeasurement at accessible locations.

The modelling approach mentioned insteection is a preliminary work with a scope to be
extended in the next sections by considering a variety of modellingpdsestuch as modular

approach.
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Figure5-16: ANFIS model output vs the actual thermal responsé/temperature).

Figure5-17: ANFIS model output vs the actual thermal response (temperatureaingl st

$ QHZ SUHGLFWLRQ PRGHO 3¥ddéeN withH ®douoiGtionl kitagzaR U N
(GNNMCI(L,N ~ LV SURSRVHG ZKLFK PDNHV IXOO XVH RI WKH V
between Grey models and artificial neural netwot&sovercome the disadvantage of

applying either a Grey model or an artificial neural network individually. A particle swarm
optimisation algorithm is also employed to optimise the Grey neural network. As discussed in

section4.q different physical inputs will be applied to the proposed model. This is because
GLIITHUHQW SK\VLFDO LQSXWV WHPSHUDWXUH DQG VWUDL
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their effective and cooperative fusion is expecte@rtmluce a better prediction results. The
architecture of the GNNMQLL, N) is presented iAppendix A.

The optimal sensor locationsere selected based on wagpkesented in sectiqd.4 The

thermal compensation model is designed and simulated in the MATLAB environment. The

integrated model was designed as follows:

Step 1: A 1AGO (first-order Accumulated Generating Operalids applied to the raw data

to increase the linear characteristics and reduce the randomness from the measuring samples.

Step 2: The GNNMC(1, N) model is trained with a PSO algorithm as discusségppendix
A.

Step 3: An IAGO (Inverse Accumulated Generating Operation) is performed to calculate the

thermal error and generate the final compensation value.

To demonstrate the modelling of thermal error using GNNKICNN) model, five variables

(temperature andtran) were selected based on their influence coefficient value using the

Grey model(see sectiopt.5). The selected sensors were used as input variables for the

GNNMCI (1, N) model and the machine movemergreused as a target variable.

In thiswork, two compensation procedures were used to predict the thermal errors. The first
method was to obtain the GNNMCI, N) model at the first stage of the test regime, and then

to use this model to predict the machine movement during the remainder of the same test or
for other regimes. The other was to obtain the model parameters during a short test, and then
predict the thanal displacement for all other tests. The advantage of using a short test to
calibrate the model is that it reduces fpnductive downtime of the machine. The potential

disadvantage is the lack accuracy of the model due to low training experience.

In order to optimise the GNNMQ(1, N) parametersweights), the experimental dats
were divided into training set (and afterward direct validation), validation set (cross

validation), and testing se An example of training datat from a short test of fiveamples

is illustrated inTable 5-9| four FBG sensors and one temperature sensor are used as inputs,

andZ-axis displacement as output.
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Table5-9: The training data from first 5 readings.

Number

of FBG1 FBG2 FBG3 FBG4  Temp Displacement
sample

0 0 0 0 0 0 0

1 -0.0072 0.2091 0.0573 0.086  0.0620 -0.2282
2 -0.0217 0.3173 -0.1719 -0.344 0.1870 -0.5766
3 0.2031 0.2019 0.0143 0.0502 0.3120 -0.8127
4 0.1378 0.4903 -0.2220 0.0215 0.5000 -1.1718

In the PSO algorithm, the number of the particles is set to be 90 whilselfimnfidence
factor and the swarroonfidence factoareC;=1.5andC,=2, respectivelyThe inertia weight

Xwas taken as a decreasing linear function in iteration ikdeom 0.9 to 0.4, which were

the same athose suggested by other papgr$8(119 and these values did not depend on

the problemsAfter 100 training epochs, the total error wasatcceptable level. The Grey

neural network weights obtained using PSO algorithm are:

weights Ss55 Se5 Se6 Se7 Ses Se9 Se. Se;
Values | 0.1244 0.001 0.8787 1.5390 0.8830 0.1567 0.7005 1.7403

weights|  S;5 S7s S76 S77 S S79 S7. S7.

Values | 1.5855 1.5855 1.5855 1.5855 1.5855 1.5855 1.5855 1.5855

Training and validation errors diminish through the initial phase of training stage. The first
test was to check whether the model is able to reproduce the training dataset that has been
used for training stage (direct validation). Subsequently, crosfatialn has been applied to

check the model validity. When the validation error becomes minimum, the most appropriate
model is achieved. The prediction resuf the next six values of thermal errors derived by
these weights based on t&INMCI (1, 6) modkl are listed ifTable5-10

Table5-10: The modelling values of thermal errors based on GNN(3) model.

No. of Model inputs (AGO) GNNMCI(1,6) Thermal Residual value
Temp model error
sample FBG1 FBG2 FBG3 FBG4 - P
0& P P
5 0.4642 0.618 0.1432 0.1361 0.5620 -0.9017 -1.4144 0.5127
6 0.5512 0.8581 -0.0430 -0.0573 0.6870 -1.2606 -1.7823 0.5217
7 0.6165 0.8220 -0.2578 -0.1433 0.8120 -1.5017 -2.0300 0.5283
8 0.5802 1.0528 -0.1934 -0.3081 0.8750 -1.8693 -2.4049 0.5356
9 0.9429 1.4494 -0.0573 -0.1720 1.0000 -2.5568 -2.6566 0.0998
10 0.9211 1.1321 -0.0358 -0.2938 1.1250 -2.7040 -3.0366 0.3326
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The final GNNMCI(1, 6) model being trained and validated in this work has been tested by

new unseen dataset. The independent variables are shoiiguire 5-18| (a). Simuation

results showhat the thermal error in the drection can be signdantly reduced to less than
5 P XVLQJ WHYVW LRYydreG-DabD. \Ftitherméid Hhis result shows that the PSO

algorithm can act as an alternative training algorithmGoey neural network that can be

used for thermal error compensation.

(a) (b)

Figure5-18: (a) Temperature and strain as model inputs. (b) GNN{M @) model output vs

the actual thermaksponse

5.4.1 Resultsand Discussion

Several experiments were conductedttom Saxis milling machine The primary motivation

of these experiments was to compensate the deformation taking place in the ram of the
machine in the ZAxis direction as a result of heat induced by rotation of Hai€ and by
motion of the Zaxis. The Zaxis heating tesiC-axis heating test, and the combined (helical)

movement are considered in tkiiesis Detailed procedures and results are as follows:

5.4.1.1 Casel: Z-axis Heating Test

In this test, theram reciprocate at a speed of 76/min 10 times before dwelling for

10 seconds (to allow stable measurement) to excite the thermal behaviour in the ram. This
cyclewas UHSHDWHG IRU WKH WZR KRXUV 3KdttWniagy Jor & \FOH
subsequent two hours cooling cycle. The temperature variates measured by #h
temperature sensors and the change in the strain of the ram and crossreameasured

with FBG sensors. The data is giverHigure5-19((a). The heat sources on the ram structure
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are friction in the two support bearings of thexds ballscrew, friction in the balut and the

power loss of the Axis motor. Additionally, thee is an effect from change in ambient
temperature on the whole structure of the machine. Laser position sensors were used to
measure the growth of the ram along th@x#s direction.It can be seen that the rise in
temperature measured by the selected@sncorrelates to an erriorthe Zaxis of more than

100 P

The simulation result shows that the GNNMC)6) model can predict the error accurately

and also can track the sudden changes of thermal error precisely (the maximum residual is
approximatelyl6 P D LP SURY HRHESALY| bh,Heven with such a short

training period. Indeed, the greatest loss in model accuracy occurs over one hour after the
SKHDWLQJ" F\FOH 7KH PDMRULW\ RI WKLV WKHUPDO HUU
changes, for which the model has not been @diThis effect may not be significant in

practice since it could be argued that the machine will not be producing parts if the axes are
not being used. Nevertheless, this issue will be addressed under further work for those
situations where the machinimggime excites different parts of the structure during various

operations.

(a) (b)
Figure5-19: (a) Temperature and strain as model inputs. (b) GNN{@) model output vs

the actual thermaksponse

5.4.1.2 Case2: C-axis Heating Test

In this test the Gaxis rotate at 2500rpm ten times before dwelling for 1€keconds (for
measurement) to excite the thermal behaviour in the machine ram. This cycle is repeated for
WKH WZR KRXUV 3K ldedVfen@ih st&ioRayHor & 8uHsequent two hours cooling
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cycle. Data collected from temperature sensors and FBG sensors are sftogurerb-20

(a). The heat sources in this test are the friction in #axi€ bearings and loss from the
motor located inside the ram structure (near the location of temperature sensor T1).
Therefore, T1 is the highest temperatuisirfg by 7 U)&The maximum valuef T2 is lower

than @ U)X and the value of T3 and T4 are the lowdst)&ecause they are relatively

further from the heat source. TheaXis trermal error was greater than 3.

As with the Zaxis heating test, the model weights were obtained dirtiiestage of the test

regime. Simulation results show that ti&NNMCI (1,6) model can provide a good

prediction resulfFigure 5-20|(b), presentshe comparison between thermal displacements

from the actual measurectad and the output of the modklcan be seen that the prediction

ability of the model is excellenand thathe model shows a reduction fr@@ pum to+£8 um.

(a) (b)

Figure5-20: (a) Temperature and strain as model inputs. (b) GNN{J) model output vs

the actual thermaksponse

5.4.1.3 Case3: Combined Axis (Helical) Test

In this test the Gaxis rotatd while the Zaxis wasoscillated simultaneously (Helical test).
The purpose was to validate the compensation model for the thermal error that was trained
from the previous two cases (CdseCase?). This was to demonstrate that the thermal model

could be built up in a modulémrm and so is extensible to the remainder of the structure.

The four hours validation test was again equally divided into two stages of heating and

cooling cyclegFigure5-21{(a) describes the temperature/strain change during the test regime,

which induces thermal expansion in thexds direction of approximate§5 um. The model

117



Chaper 5:Atrtificial Intelligence Model Development

weights were obtained from the previous independeaxi€ and Zaxis testgFigure5-21)(b)

shows a reduction ierror from 95um to £9um, with theloss in performance again being
prevalent quite some time after the heating part of the cycle. This study validates the modular
approachwhich means that the combining training data can be superimposed on each other

in one model.

(a) (b)

Figure5-21: (a) Temperature and strain as model inputs. (b) GNN{@) model output vs

the actual thermaksponse

The experimental results show that the proposed model has an excellent performance in terms
of the accuracy of its predictive ability and reduction of machine downtime when compared

against traditional and other séfarning techniques.

Consequently, thisvork develops a simple, less computationally intensive andclost
approach with a high agtation rate based on Grey neural model and PSO algorithm to
predict the thermal error compensation on CNC machine tools. The results obtained from the
proposed model exhibit better performance than conventional ANN moi,nwith far

fewer training samples.

This chapter is focused mainly on the spindle unit, which is usually the major heat source, in
the nextchapter more attention will be paid émvironmental temperature variation eramd

other thermal error sources.
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5.5 Summary

The principal advantage of thisovel technique is to use thermal imaging to assess a
PDFKLQHYYV WKHUPDO EHKDYLRXU DQG WR EXLOG FRPSHQV
configurations of sensors. An adaptive nefuzzy inference system with FCMANFIS-

FCM) has been employed for thgrediction of the thermal error in machine tools. The

models are built using data obtained from short heating and cooling test, with a wide variety

of models being able to be assessed using multiple simulations.

The results on machine indicate tWdtiFIS-FCM model with four inputs and six rules has
the optimal capability to map the inpbutput data pairs; it can predict thermal displacement
under different operational conditions depending on the availability of the empirical data.
Perhaps counteantuitively, the ANFIS model is less well conditioned when additional
sensors are included. Minimal effort is then required for practical application of discrete

contact sensors that are used fodine compensation.

The metlod was further tested by caimg out anumber of experimental tests on Machine B.
Two types of ANFIS model have been discussed in wuosk: using gridpartitioning and
using fuzzy emeans clustering. Both models were constructed and testd@amneB. The
results from the two sets eflidation tests show that both ANFEased models, derived
from a single heatingndcooling cycle, can improve the accuracy of the machine tool by
over 80% for varying ambient conditions, heating durations and spindle speeds. The ANFIC
FCM produced betteresults, achieving up to 94% improvement in error with a maximum
residual error of am. This compares favourably with other compensation methods based

upon parametric or seléarning techniques

In addition to the better absolute accuracy, ANFIS-FCM has been shown to have the
advantage of requiring fewer rules, in this case requiring only three rules as opposed to the
243 found to be optimal for the ANFGrid model. This is a significant benefit, since the
latter method is significantly meraborious to constructherefore it can be concluded that

the ANFISFCM model is a valid and promising alternative for predicting thermal error of

machine tools without increasing computation overheads.

Finally, the proposed model was used further tedmt the thermal response of the
MachineC. The model established by only temperature sensors on this machine has high

residual value due to complexity of the thermal behaviour, as a result of bigger volumes, and
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longer strokes. The model was improvedfbgion of both temperature sensors and direct
strain measurement from FBG sensors. Additionally, another model was built up of two
component modules. The validation of combined thermal inputs was shown to be as effective
as when the individual elements neevalidated. This is important where changes to the
structure are possible, since it means that only that part of the model needs to be retrained. It
also means that for greater precision, other structural elements can be conveniently included

in the modé
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Chapter 6: Model Validation and Comparison

6.1 Introduction

One of the major problems for thermal error modelling is the complex way in which the
machine tool distorts due to the environmewtange combined witbuty cycle effects. It

will never reab a true thermal equilibrium condition. For these reasons it was decided to
continue the investigation by lookindg applying modelling techniggeto a machine tool
under different conditionsdifferent Environmental Temperature Variatiaaror (ETVE)

test (summer and winter), amldorecomplex duty cycle

A new concept will be added to the ANFIS modelling by combining ANFISGreg system
theory in one system.This combination helps to reap the maximum benefit from both

systems.

6.2 Modelling of ETVE

In thissection an ETVE test was performed dfachine A This test was conducted to reveal
the effects of ambient temperature changes on the machine and to predict the thermal
displacement during other performance measuretm order to olain the temperature

data of the machine tool, a total @ emperature senss were placed on the machifsee

section6.3). Four NCDTs were used to measure theplacement of a test bar (used to

represent the tool) while the spindle remained stationary. Three were used to measure
displacement of the test bar in each axis direction. A fourth directly monitored displacement

of the casting next to the spindle hretZaxis direction to differentiate expansion of the tool

from the machine. A general overview of the experimental setup is shiwiguire 6-1
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Figure6-1: A general overview of the experimental setup.

Results of an ETVE test are shownHmgure 6-2| This test was carried out over a fiday

period duringa threeday holiday, with no significant activity in the workshop, followed by
approximately three normal working days (160 hours)s Tata was sampled once every
minute. The environmental temperature conditions for machine shop change due to the day
/night cycle, where the teperature fluctuates by about3& WKURXJKRXW WKH GD\
temperatures in the morning and higher terapees in the late afternoon and evening. The
strongest response to the ambient change from the machine is vaxiedirection. There is

a clear relation between the fluctuation in the environmental temperatdréhe resulting
displacementFor exanple, the anomaly at the beginning of the test canttribited to a

short period (3@ninutes) ofthe workshop door being opendtkternally, the conditions were

snowy, which caused a drop in workshop temperature to below&1 7KH RYHUDOO PRY
causedby this phenomenon is 35P L Q \WaKidHard 25 P L Q WaKisifok an overall
tempeature swing of approximately & over the 3minutes. Two similar eventsan be

seen between 120 and 1Hd&urs The magnitude of the environmental error cacdrapared

to that from twadhours spindléheating test conducted according to 1380D-3: 2007 which

only produced 3@m of error in the Zaxis.
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Temperaturehanges

&Z axis displacement

Figure6-2: Temper&ure measurements and machine movement due to environment.

6.2.1 Grey Model

To demonstrate the modelling of ETVE using the Grey neural network approach, four
temperature sensors were selected baseal Grey modelTemperature sensors T1, T2, T5,

and T9, whichare located on the carrier, column, ambient near spindle, and ambient near the
column, were selected according to their influence coefficient value usingrédyent®del

(see secti. They were useds the input variables for til@&NNMCI (1, 5) model and the

thermalresponsén Z-direction was used as a target variable.

For this study, a GNNM((L, 5) with a structure of -1-6-1 was chosen. The detsiére:
layer A has one node, the input time selketayer B has one node; layer C has six nodes, the
input variables nodes are from two to five, respectively; T1, T2, T5, and T9 are the input
variable data. Layer D has an output variable node, which is the thespiceément in Z

axis direction. The GNNMC{1, 5) structure is showm Appendix A.

Two compensation methods can be used to predict ETVE. The first is -einepfpre
calibrated method. This means to obtain the GNNIC5H) model according to thinermal
displacement and the temperature change during a short test, and then to use this model to
predict the thermal displacement of other processes. The second method is to obtain the
GNNMCI (1, N) model at the first stage of the manufacturing procasd,then to use this

model to predict the machine movement during the rest of the process. This uses additional

measurement effort before the process begins.
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To apply the first method, artwr test was carried out for &inutes on the same machine
during a normal working day. During the experiment, the thermal errors were measured by
the NCDTs and the temperature data was measured using the same selected sensors, sampling
every ten seconds. The training samples were obtained from the first 5 readmsaftesne

minute) after the test had been started. All raw data was converted to AGO series, as

discussed isectior3.4.1

After finishing the training of the odel, there were two ways to obtain the prediction values:
directly obtaining the prediction values from the trained model; or taking out the Grey
differential equation parameters from the trained mod#igdsrey equation artien solving

the equation tmbtain the prediction values. Although both methods are similar theoretically,

a large number of experiments have found that the first method needs less computation.

Figure6-3[shows simulation results for 8finutes.

Figure6-3: Simulation results for 8Minutes.

The process was repeated to creal8NNMCI (1,5) model for the Yaxis direction.To

validate the robustness of these models on-treining data, a normal environmental

simulation was run using the temperature data preseniEdyume 6-2| The measured and

simulated profile results were plotted for theaxis and Yaxis. Compared to the measured

results, the correlations were 97% for the Z displacement préitese6-4| and 98% for the

Y displacement profilgEigure6-5| The esidual errors were less thahQt P for the Z axis

and less than £t6P IR U \akdeven when considering the rapid changes due to the

opened workshop door. Under more predictable conditions, which could be achieved by
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better management ohe environment, £fm would be achieved in eadxis. Thus, the
proposed GNNMC(1, 5) model can predict the normal daily cyclic error accurately and also

can track sudden changes of thermal error from a relatively small training sample.

Figure6-4: Correlation between the measured and simulatariZ displacemenising
GNNMCI model

Figure6-5: Correlation between the measured and simulatedi¥displacementising
GNNMCI model

6.2.2 ANFIS Model

The fast and accurate modelling of thermal errors in machining is an important aspect for the

implementationof thermal error compensatiohis section presents a novel modelling
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approach for thermal error c@@nsation on CNC machine tools. The Inoet combines the

adaptive neurofuzzy inferencesystem and Grey system theory to predict thermal errors in
machining. Instead of following a traditional approach, which utilises original data patterns to
construct the ANFIS model, this work proposes to exploit Accumulation Generation
Operation (AGO) to implify the modelling procedures. AGO, a basis of the Grey system
theory, is used to uncover a development tendency so that the features and laws of integration
KLGGHQ LQ WKH FKDRWLF UDZ GDWD FDQ EH VXI{FLHQWO\

the proposed model to design and predict.

To supplement the ANFIS model, the AGOusedto increase the linear characteristics and
reduce the randomness from the measuring sanfpéssection 3.4.?. This simple but

effective technique allows the thermal motiebe built with asmallamount oftraining data.

In short, the proposed model incorporates the AGO method into the ANFIS model to improve

its prediction acuracy and robustness with minimal efforts.

To verify the applicability of the proposed model, an example simulating thermal error

compensation in previowgection is investigated.

Ideally, an ANFIS modelwvould be directly constructed from dapatterns hat involveall
operation conditionsSimilar to the previous model the experimental samples are divided

into two separated sets: the training set and the testing set. The training set is used to
calibrate/train the model using a FCM and ANFIS algoritAng the testing set is used to
verify the accuracy and the eftereness of the trained modelhe AGO was used to
transform these samples to another domain as discussed previoushieTsemples were
chosen at the beginning of the test, four tempegagansors are used as inputs and tagiZ

displacement as output.

Hence, four temperature sensors were selected as input for the model and the thermal
responsean Z-direction was chosen as a target variabMdter setting the initial parameter

values inthe ANFIS model, the input membership functions are adjusted using a hybrid

learning scheme. |Rigure6-6| an example of MFs for one input beforedaafter learning is

presentedFigure 6-6[shows thatMFs being initialsed with FCM change slightly even after

training. It reveals the fact th#te initial MFs are quite adaptive to the characteristics of the

model and thus speed up the convergence.
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Before

After

Figure6-6: Membership functions obtained through ANFIS and FCM clustering.

Next, different ANFIS models were evaluated usiRgot Mean Squareerror (RMSE), in

order to measure the deviation between the measured and predicted values. It is observed that
after 5 epochs were used, the performance does not improve any further. Befoaéirgener

the final model, it is essential to obtain the optimum number of clusters. It was found that the

ANFIS model with3 clusters exhibited the lowest error RMSE4 for testing dataset.

After finishing the clustering and training process, the propd&&elS model can predict the
thermal error from a relatively small training sample as GNNMCI mddss (than + 10 P

for the Zaxig). The correlation coefficient is 99% and the maximum residual value is

approximately £6 P (segFigure6-7).

From these results, it can be observed that the niadgiromising values during the testing
stage. Thus, the proposed model is a powerful and precise pregfithar thermal errors of
the machine tool but requiring less training data and converging epochs.

Consequently, thisection develops a simple, less computationally intensive anecdstv
approach with a high adaptation rate based on ANFIS model and @&tynstheory to
predict the thermal error compensation on CNC machine tools. The results obtained from the
proposed model exhibit slightly better performance than GNNMCI mod#ierprevious

section.
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Figure6-7: Correlation between the measured and simulatexiZ displacement usirthe
ANFIS model.

6.2.2.1 Different Ambient Conditions

In the previous section, the machine was test®d casstudyin winter. Here the same
machineis examined in summerTo further validate the robustness of this modelling
methodology, another thratay test was carried out to observe the machine behaviour in the
summerseasonThe overall movement caused by ttestis20 P L Q WakidHandl5 P

in the Y-axis for an overall temperature swing of approximagly & R Y Hast Bétatse

of different temperature swing values between summer and winter te®N#I& model

need to be optimisedsegFigure 6-8). One solution to this problem is to recalibrate the

model using a new dataset (summer test). Wasld demonstrate that the thermal model

could be built up in a modular form and so is egible to the remainder ather operation

conditions|Figure6-9|shows simulation results for threlay summer test.
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Figure6-8: Threeday summer test (before optimisation).

Figure6-9: Threeday summer test (after optimisation).

As mentioned previouslin section6.2.1 the second method of modelling is to obtain the

model at the first stage of the manufacturing process, and then to use this model to predict the
machine movement during the rest of the process.

To demonstrate this method, another ETVE test was carriecbrothe same machine
(Machine A) for four days. During the experiment, the room temperature was changing
through as wide range as possible. This is achieved by means ofaustmgn heaterto

warmup the machinestructureand room airconditioning for cooling-down the machine
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structure gee

Figure 6-10 and

Figure 6-11).

Figure 6-12

temperature changes in one plot.

|3- 14 h \4h

shows machine movement and

Room temperaturel Heater or I Air condition on

1’7

Figure6-10: Temperature measurements due to environmental changes.

Figure6-11: Machinemovement due to environmental changes.
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Figure6-12. Machine movement and temperature changes.

The training samples were obtained from the first stage after the test had been started. After
finishing the taining of the model, the proposed ANFIS model can predict the normal daily

cyclic error accurately and also can track sudden changes of thermal error from a relatively

small training samplg<igure6-13landFigure6-14).

Figure6-13. Correlation between the measured and simulatedi¥ displacement using
ANFIS model.
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Figure6-14: Correlation between the measured and simulataxlis displacement using
ANFIS model.

As a result of the proposed model, the initial ANFIS model can be sufficiently well defined to
the point that it might only need a small number of training iterations and a small amount of
training data. Thus, the proposed ANFIS model does not requirectnsiming iterative
learning procedure or prohibitive downtime required to conduct the Testsirther validate
the robustness of this modelling methodology, a normal environmental simulation was run

using the test presented in sectliﬁn?.z The proposed model not only preserves a fast

learning characteristic but also has an excellent prediction capability. Simulation results show
that the thermal error in th& direction can be significantly reduced to less than 6 XVL QJ
testing dataset (sgagure6-15).
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Figure6-15: Five-day winter test

6.3 Robustnessf the ANFIS Model

To verify the applicability of the proposed model, an example simulating the machbirang
number of parts is investigated. The experiments were performed on a small vertical milling
centre(Machine A) and utilised a Renishaw OMPZGpindlemounted probe to monitor
distortion. It has a stated unidirectional repeatability of 170 D W mm/min with a 50nm

stylus. The test consists of simulating the machining a number of parts which dnieedac
individually at a datum point on the table. When a part is finished the table moves to the next
datum point to start machining the next part. Each part excites the X, Y and #hisueh
simulatal milling operations. This allows heat to be generditeth spindle, motors and axes

movement. A probing routine is run before the first machining operation to create a datum

baseline for the test diour corners of granite squafeegFigure6-16). Probing routines are

run after the third part and sixth part to measureréisponsef the tool in the X, Y and Z
axes. The thermalata were measured using twesty temperature sensors placed in strips

at the carrier, spindle boss, axes motors, axes ballscnemts and ambient temperature

sensors were placed around the machine to pick up the ambient temp@eglicble 6-1).

A general overview of the experimental setup is shmﬁgure&m
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Figure6-16: A general overview of the experimental setup.

Displacement and temperature data is monitored on a regular basis whilst examining the

machine in as wide a variety of ways as possible. The machine aasnexl by running the

spindle at different speeds as illustrategFigure 6-17|(except for the periods of probing),

running the axes from the test position to one extreme with different feedrates, and probably
most importantly, changing the ambient condition through as wide range as pobBséle.
latterwas achieved by means of plagithe machine in temperatucentrol room, so that the

air could be warmedp and cooledlown uniformly.

The high rotational speed brings a larger thermal displacement to the spindle carrier.
Moreover, the higher feedrate generates larger frictionaldight interface points, and the
motor temperature also increases with the higher feecka«EigureB-w at 350min). The

temperature of measurepoints riss gradually until the equilibrium state is reached. The

temperature sensors were measured simultaneously evesgcdi®ds. The maximum
responseof the X-axis is 27 P WKalisis 32 P D QG -aiKid 74 P  V|Hddure

6-18] Testl). In this work, the thermalesponseof the X-axis was investigated first as an

example for the modelling, and potential error compensation.

In this section, the aim is to use the structure ofANEIS models described in the previous
subsections to derive thermal error compensation systems. Moreover, a comparison will be
made between the estimates provided by the ANFIS, ANN, and Grey mudéisthe
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purpose of evaluating the prediction performance of the models, the remaining dataset

(testing datasg

coefficient (R) and also residual val(s=e sectigi.g).

Figure6—19r were used to run thegposed models. The performance of the
models used in this study were computed using four performance criteria, incRming
Mean Square Error (RMSE), NashsSutcliffe Efficiency coefficient (NSE),correlation

Table6-1: The location of the temperature sensors.

Sensors No Sensors Name Locations
Tovo07 B1-B7 Strip 1 Sensors (placed on the carrier)
Tog14 T1-T7 Strip 2 Sensors (placed on the carrier)
Tis Column Ambient Outside the column
T Column Bolt Bottom Z Scale
Tz Column Bolt Top Z Scale
Tig Spindle Front Bottom Spindle boss
T1o Spindle Front Top Spindle boss
Too Spindle Motor Spindle Motor surface
To1 X Ballnut X Scale
To Y Ballnut Y Scale
Tos Z Ballnut Z Scale
Toa Z Motor Z axis motor surface
Tos X Axis bearing cap X Scale
Toe Y Axis Motor bolt Y Scale
v
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Figure6-17: Running the spindle at different speeds.
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Figure6-18. The machine movementéstl).

Figure6-19: Temperature measurements and machine movemerdimeion {Testll).
6.3.1 ANN Model Development
In order to assess the abiliy the ANFIS model relative to that of a neural network model,
an ANN model was constructed using the same input variables to the ANFIS with 26 inputs.

For the conventional neural network modelling approach, the datasets were also divided into
the similarthree groups of sets for training, testing and validating. It is worihgittat the
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range of the training data must be representative of the entire operating conditions of the

machine in order to overcome the problem of extrapolation error.

Usually ANN modek have three layers: Input, hidden and output layer. Although, for

common engineering problems, one hidden layer is sufficient for model trir0g121],

two or more hidden layers may be needed for other applicdti@@ An ANN model with

three layers was used in this study: the input layer has 26 input variables and the output layer

has one neuron (the therrmesponseén the X-axis direction).

Selectionof the number of neurons in the hidden layer is important for finding a suitable
ANN model structure. Although increasing the neuron numbers in the hidden layer, may help
to improvethe neural network performance, however, the possibility of-fterg may
increase. Furthermore, a large number of hidden neurons can increase model training time. In
this work, the minimum RMSE is determined by changing the number of hidden neurons.
Therefore, after a series of experiments to find the best architecture, an ANN model with 10

neurons in the hidden layer was constructed to predict the theesminsan the X-axis

direction|Figure6-20[shows the structure of associated network model.

Figure6-20: The structure of associated network model.
6.3.2 Grey Model Development

In order tooptimise the Grey model parameters, the same training dataset was used for
calibrating the model. Twenty six temperature sensors are used as inputs-aas X

displacement as output. In the PSO algorithm, the number of the particles is set to be 90
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whilst the selfconfidence factor and the swawcunfidence factor areéC;=2 and C,=2,
UHVSHFWLYHO\ 7KH LQHUWLD ZHLJKW & ZDV WDNHQ DV DC

index k from 0.9 to 0.4. After 100 epochs, the total error was at an acceptablle leve

(RMSE=1.03)|Table 6-2| illustrates the final Grey model parameters. The optimisation

procedure was presentedsiaction3.6

Another Grey model was developed by using the traditibealstSquares(LS) method in
order to evaluate the structure parameters. In this section, five steps were involved in

developing the model. Step 1, Step 2, Step 5 and Step 6 were the same as those presented in

section3.6 The unknown variables of tleguation(3.13)(were determined by the traditional

least squares method (FEsble6-3).

The finalGrey models being optimised and validated in this section has been tested next by a

new testing dataset, not used during training and validation stage.

Table6-2: PSObased Grey model parameters

bl b2 b3 b4 b5 b6 b7 b8 b9 b10
6.66 -28.77 22.48 56.62 46.45 -72.21 62.29 -92.32 -18.84 48.78
b11 b12 b13 b14 b15 b16 b17 b18 b19 b20
53.32 -23.20 46.63 81.24 -49.10 -71.93 -53.48 -32.15 -40.09 82.83
b21 b22 b23 b24 b25 b26 b27 u
-87.03 21.23 -64.47 65.94 -63.69 -1.65 97.68 -26.32

Table6-3: LS-based Grey model parameters

bl b2 b3 b4 b5 b6 b7 b8 b9 b10
1.75 -2.93 -1.04 -26.31 6.97 -19.56 53.75 -2.37 -21.11 -31.16
b1l b12 b13 b14 b15 b16 b17 b18 b19 b20
33.61 -19.86 -13.41 6.43 40.28 -12.23 17.49 -4.63 -28.47 -6.03
b21 b22 b23 b24 b25 b26 b27 u

9.71 -8.98 -0.31 -9.23 5.09 24.64 -1.35 24.07

6.3.3 Resultsand Discussion

In this work, the use of ANFIS, ANN and Grey models, for prediction of thermal efrar

small VMC machine too{Machine A) was described and compared. The final models being
trained, validated and tested in the previous subsections have been verified further by a new
separate dataset, not used during training, validation and testges.sRredictive results

using ANFIS, ANN and Grey models are showmFigure 6-21}|Figure 6-22||Figure 6-23

andFigure6-24] respectively. The performance of each of the four thermal prediction models

is presented and comparedTiable 6-4f where the four models are trathasing the same
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training dataset and validated by the same testing dataset. According to the predictive results

and evaluation criteria values |ifable 6-4| it is very clear that the ANFIS model has a
smaller RMSE, residual value (44#m), higher efficiency coefficient NSE=0.9and higher

correlation coefficient (R) contrasting with the ANN and Grey models. The ANN model

performed slightly better thatihe Grey models for predicting thermal error irdiXection.
Nevertheless, the PSO algorithm can act as an alternative training algorithm for the Grey

model that can be used for thermal error compensation. It can be also observé@dlitem

6-4{that the models developed using the artificial intelligence techniques outperformed the

statistical model (Grey model with (LS)). However, the ANN model doascesthe residual

value to less than 6P W KH Q XrRoEdfigdralReters is high. Furthermore, it is worth
noting that these models (i.e., ANN model and both Grey models) need a proper optimisation
to predict effectively. For instance, the ANN model negdsneurons in the hidden layer,
which was difficult to optimise. The Grey model was also tooesuming when trying to

find the proper Grey final model. Therefore, the ANFIS model is a good modelling choice for

predicting the thermal error of the machtoels with the benefit of fewer rules.

Table6-4: Performance calculation of the used models.

Performance indices

Models R RMSE NSE Residual
ANFIS model 0.98 1.60 0.93 4 P
ANN model 0.94 2.42 0.86 6 P
Grey model with PSO 0.90 3.16 0.67 9 P
Grey model with LS 0.82 7.26 0.20 +16 P
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Figure6-21: ANFIS model output vs the actual thermal response.

Figure6-222 ANN model output vs the actual thermal response.
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Figure6-23. Grey model with PSO output vs the actual thermal response.

Figure6-24: Standard Grey model output vs the actual thermal response.

Similar results have been obtained feaXisdirection using the proposed ANFIS model (see

Figure6-25).
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Figure6-25. ANFIS model output vs the actual thermagponse in ¥tirection.

Next, the proposed ANFIS model can be applied to pratietthermal error in the-Z
direction as shown 1tFigure 6-26| Although, the correlation coefficient between measured
values and predicted values was close to 1 (98%), the result is not as good adé@mand

terms of accuracy, espadly in the rapid movement of-axis (the maximum redual value
is approximately +£1 P This phenomenodue to raj movement othe Z-axis makes the

proposed model less robust.
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Figure6-26. ANFIS model output vs the actual thermal response.

Sincethis effect isa highly norlinear inferentphenomenon, it is necessary to consider it in

the modelling process. By taking another number of samples from rapid movement cycle to
recalibrate the model, the robustness of the model can be improved further under different
operation conditions. Hosver, the Grey models were not able to capture this complexity,
thus more advanced nonlinear modelling techniques such as the Al models are justified to

capture this phenomena. The result shows that ANFIS model has a high capacity of

prediction compared tother modelgFigure 6-27|shows the output results of the simulation

using ANFIS model. The correlation coefficient is 99% and the maximuiuedssalue is
approximately +6 P ,Q SUDFWLFH WKH ValsbohtQine® By GabywidolR R X O G E

short heating and cooling test before the stage of a manufacturing process.
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Figure6-27: ImprovedANFIS model output vs the actual thermal response.
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6.4 Summary

Temperaturenduced effects on machine tools are a significant part of the error budget.
Changes in ambient conditions are an often overlooked effect that can be difficult to model,

especially in unpredictable environments.

In this chapter a novel thermakrror modelling method based on Greywtsyn theory and
neural networksvas developed to predict the environttanemperature variation errof a
machine tool. The proposed model has been found to be flexible, simple to design and rapid

to train.

The malel is trained using data obtained from a short test of less than ninety minutes, which
is desirable for minimising machine downtime. The accuracy of the model has not been
compromised by restricting the training data. ETVE results in Haai& directionover a
160hour test showed a reduction in error from ovep20to better than +@m considering

the normal daily cycles. When also considering unexpected phenomena, such as the rapid
change in temperature when a workshop door was opened, the mogel&iitns well, with

an improvement from 40m to less than £10m.

Similar results were achieved in theaXis direction, with this study not considering the X

axis direction due to symmetry of the machine.

To supplement the ANFIS model, the AG@s usedo increase the linear characteristics and
reduce the randomness from the measuring samples. This dmnpleffective technique
allows the thermal modelto be built with a minimum amount of temperature and
displacement data in a very short time scalais, a new concept has been added to ANFIS
modelling for prediction of thermal error this contribution, an ANFIS model and Grey
system theorywas successfully used predict thermal errors of a small vertical milling
centre with a limntled amount of dat for calibratingthe model.The proposed method is a
significant advantage over other models based on a single technique that have been used by
many previous scholars where the data used to build the models is obtained from very long
tests. The proposedadel has significantly reduced the machine downtime required for a
typical environmental testing from hours to only few minutes. According to experimental
work, little machine downtime is needed to apply this modelling approach except to re
establish the wdel if needed.
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Three types of datdriven models have been discusseddaation6.3 using ANFIS, ANN,

and Grey models, respectively. All models were constructed and tested on a CNC milling
machine. The results from the two sets of validation tests show that the ANFIS hmasdel
smaler RMSE, residual value (#fm) and highemR contrasting with the Grey model and
ANN model. Therefore, no single method can satisfy all the requirements for thermal error

compensation. One method may complement another to obtain high levelid@c

Results also indicatihat further improvement in correlation could be achieved by including
rapid change as part of the training data. Thuse thermal error compensation model using
ANFIS introduced in thighesiscan be applied to any CNC niage tool because the model

does not rely on a parametric model of the thermal error behaviour. In addition, this method
is open to extension of other different physical inputs meaning that alternative sensors can be

deployed with minimal retraining reqeul.
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Chapter 7: Summary and Conclusions

In this chapter, the summary of the thesis and the major contributions of the research
performed are given. Then, the future research that may be conducted in relation to this

research area is also givienorder @ priority.

7.1 ThesisSummary and Contributions

The aims of this research were to propose generalised intelligent techniques for robust
modelling of thermally induced errors on machine tools, and to validate the applicability of

these techniques on differenachine tools.

This research work proposes a thermal error modelling method based on the Adaptive Neuro
Fuzzy Inference System (ANFIS) in order to establish the relationship between the thermal
errors and the temperature changes. The proposed methoti@ledlye ability to provide a
simple, transparent and robust thermal error compensation system. It has the advantages of
fuzzy logic theory and the learning ability of the artificial neural network in a single system.
Methods of optimising sensor locationsing automatic clustering of thermography data,

have also been proposed. This allows efficient modelling of new machines.

The proposed approach has been validated on three different machine tools under different
operation conditions. Thus the proposedtsesgn has been shown to be robust to different
internal heat sources (axis and spindle heat@gpient changes and is easily extensible to

other CNC machine tools.

The following items are the contributiots knowledgeof this work regarding the modelling

and testing of the thermal errors of CNC machine tools.

x A comprehensive review of the empirical models for thermal error compensation of
CNC machine toolkasbeenconductedDifferent types ofArtificial Intelligence (Al)
models were investigated atitroughout the research, comparisons have been made
between the new technique and existing proposals from literature.

X The structure of ANFIS model was significantly redufexin the standard methods

for thermal error compensatiofseelTable 5-7| and|Table 6-4). Reduction of the

number of rules was one of the mechanisms responsible for achieving good level of

interpretability. Therefore this research focuses on obtaining the best ‘néide

147



Chapter 7Summary and Conclusions

between interpretability and accurady.should be noted that best tedion of all

rules of the ANFIS model was achieved by usatguzzy C-Means (FCM}echnique.

The process of reduction allowed reducing rules of the compensation model which do
not affect model accuracyhis was validated by case studiurthermore, theirial

model is easily understandable by domain experts for interpretation purposes

A thermal imaging camera was used to record temperature distributions across the
machine structure during the experiments. The thermal images were saved as a matrix
of tempeatures with a specifispatialresolution of one pixel, each of which can be
considered as a possible temperature measurement poenoptimal locations for

the temperature sensors were determined through the Grey modeFGivid
clustering. After clusténg into groups, one sensor from each group is selected
according to its influence coefficient value with the therreaponseBy this method,

the number of temperature sensogguired for a robust compensation models
reduced which significantly minimised the computational timéardwarecost and

effect of sensor uncertainty.

Unlike the existing deterministic models, the proposed method is easily extensible to
other physical variables. This means that alternative or additional sensors can be
deployedwith minimal retraining required. Furthermore, other machine or machining
parameters can be acquired directly from the controller to provide some feedforward
information. Examplas the spindle speed or axis feedrate, although other significant
factors caralso be considered. It is worth noting that changes to motor behaviour over
its lifetime will affect the thermal output at a given speed. For this reason, the
inclusion of the primary parameters is rivial when looking for longterm
accuracy from thenodel and it can be more robust only to include the derived values
that directly affect accuracy.

The compensation system usinge¢d model has een found to be flexible, quick,
efficient to implement, and has been used to reduce thermal errors from lo¢atieg

C and Z axes of a gantry machine by over 85% using a quick heating test for
calibrating the model. This dramatically reduces the amount of experimental data, and
so reduces the downtime needed for implementing the compensation model. The
Particle Swarm Optimisation PSQ algorithm is an effective technique for identifying

the parameters of the proposed model even the training dataset is corrupted by noise.

The number of sensors used in this model was minimised by fusion of both
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temperature sensors and direct strain measurement from Fibre Bragg Grating (FBG)
Sensors.

X Hence, it can be concluded that a wedined and tested ANFIS model can be used as
a viable tool to predict the thermal error of the CNC maehiool at different

operationconditions.

In conclusion, many novelties have been discovered by investigating different thermal error

modelling and compensation techniques. The design, development and testing of these

techniques have resulted in presentations at two refgoeedal paperdl1lq (123, five
refereed conference pap 117[124[125, and other papers in the final stages of

preparation.

7.2 Future Work

X To extend this proposed modelling approach in future work, several approdthes
be needed including improving the capabilities of insertingore engineering
knowledge into the main learning mechanisms of the intelligent system.

X The combination of principlpased models (hard computing) and artificial
intelligence tools (soft computing) has not begven sufficientattention in thermal

error compensation models. Such attempts have been employed in other areas of

manufacturind126. FEA mode$ can be combined with artificial intelligence tools to

obtain more accuracy and robustness.

x Datadriven models are still tieved to be promising in future study of thermal error
compensation, due to their characteristics of simplicity, flexibility, robustness and no
needfor a complex thermal behavioarodel

X Numerous studies in literature proved that direct compensationigees can be
useful for thermal error compensation but further research activity is needed to
increase their robustness and reliability for real time applications.
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7.3 Published Papers

The following list of publications has risen from this research activity:

7.3.1 Refereed Journal Papers

Ali M Abdulshahed , Andrew Peter Longstaff, Simon Fletcher: The application of ANFIS prediction
models for thermal error compensation on CNC machine. tapfdied Soft Computing 02/2015.
114.

Ali M Abdulshahed , Andrew Peter Longstaff, Simon Fletcher, Alan Myers: Thermal error modelling of
machine tools based on ANFIS with fuzzgneans clustering using a thermal imaging caméyaplied
Mathematical Modelling 04/2015. [123.

7.3.2 Refereed Conference Papers

Ali Abdulshahed , Andrew P Longstaff, Simon Fletcher: A particle swarm optimisatiofbased Grey
prediction model forthermal error compensation on CNC machine todleamdamap 11th
International Conference; 03/2015. [117).

Ali M Abdulshahed, Andrew P Longstaff, Simon Fletcher: A novel approach for ANFIS modelling based
on Grey system theory for thermal error compensa®i4 14th UK Workshop on Computational
Intelligence (UKCI), Bradford, UK; 09/2014. [125.

Ali M Abdulshahed, Andrew P Longstaff, Simon Fletcher, Alan Myers: Application of GNNMCI1, N)
to environmental thermal error modelling of CNC machine todte 3rd International Conference on
Advanced Manufacturing Engineering and Technologies, Stockholm, Sweden; 10/2013. .

Ali M Abdulshahed , Andrew P Longstaff, Simon Fletcher, Alan Myers: Comparative study of ANN and
ANFIS prediction models for thermal error compensation on CNC machine t@otslamap 10th
International Conference; 03/2013. .

Akshay Potdar, Andrew P Longstaff, Simon Fletcher, Ali M Abdulshahed : Development of modular
machine tool structural monitoring systenThe 3rd International Conference on Advanced
Manufacturing Engineering and Technologies, Stockholm, Sweden; 10/2013. |124].

Posters

Ali M Abdulshahed , Andrew P Longstaff, Simon Fletcher, Alan Myers: Optimal temperature variable
selection by GRA approactior thermal error modelling EPSRC Centre for Innovative
Manufacturing in Advanced Metrology (Grant Ref: EP/I033424/1). Mid-Term meeting;
27/03/2014.

Contribution to projects

HARCO Project (Hierarchical and Adaptive smaRt COmponents for precision productio n systems
application) funded by the European Commission Seventh Framework Programme (FP7), (NMP2-SL-

20106260051),2013.
x Design of tests, experimental setup and data analysis using MATLAB.
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x Develop an intelligent thermal -error compensation model using fusion of both temperature
sensors and direct strain measurement from Fibre Bragg Grating (FBG) sensors.

EASE-R3 Project(Integrated framework for a cost -effective and ease of Repair, Renovation and Reuse
of machine tools within modern factory ).
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Appendices

Appendix A:  GNNMCI (1, N) Architecture

The fusion model of Grey system and neural network is employed in the modelling of the
thermal error of machine tools. The model can reveal thetlemg trend of data and, by
driving the model by the AGO, rather than raw datan minimse the effect of some of the
random occurrence3herefore, the first step for building GNNMCI, N) is to carry out 1

AGO (first-order Accumulated Generating Operation) to the data, so as to inttredseear

characteristics and reduce the randomness from the measuring samples. Particle swarm

optimisation algorithm, with capability to optimize complex numerical functiqh7], is
adopted to train the GNNMCL, N) model. Finally, an IAGO lfverse Accumulated
Generating Operation) is performed to predict the thermal error and generate the final

compensation values.h& model fully takes the advantages of neural networks and Grey
models, and overcomes the disadvantages of them, achieving the goal of effective, efficient

and accurate modelling. The modelling detail is described as follows:

The Grey predictioModel withConvolution integral GMQ1, N) is:

@:
@P

where > is the development coefficienty; EL t &1& &0 ; the driving coefficient, andQis

Ex: o L  Ex ) E®Ex:S EQ (A.1)

the Grey control parameter. Therefore, time response sequences can be obtained.
P 5 s
W:GEs; L . :s;AQPEQPF s; HI \A9P? o & Bl EBIFs;74 (A2)
@
Where Q PF s;is the unit step function; and:i; L AYg S EQ N « Q

To calculate the coefficients; land Q the neural network method can be used to map
equation(A.2) to a neural network. Then, the neural network model is trained until the
performance is satisfactory. Finally, the optimal corresponding weights are usedGey

neural network weights to predict the thermal error.

Equation(A.2) can be written as

b
. o 5. S
) LQPFs; HI \A9P? >'6'ét->B:i;EB:‘|Fs;?a (A.3)
@
Equation(A.2) can be rewritten as:
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" :GEs; L @ :s;ARCPE) a (A4)
U 5

Then equationfA.4) can be converted into equatiph5) as follows:

o A?OD
W :GEs; L > :s; E)

SERTP |:sERQP;4

s
sE AQP

W :GEs; L di>:s;IsF > E) S hsEACP:
' ’ 5 > sExaprPE)SERGR™ ’

h:sE AQP: 3 (A.5)

5. .. 5. .. S
L di;™:s;FTg 'S’sEA?QDE)sEA?Q'D

Map equatior{A.5) into a neural network, and the mapping structure is sho\vigime A1l

T.° !GE s;

Figure A1: The mapping structuref GNNMCI (1, 6).

Wherek is the serial number of input parameters;

In this study, . : GE s; is chosen as a dependiemriable (network output) and;> : GE

s, T, :GE s;& dlc;5:GE s, as independent variables, (N is the number of network

inputs);
S: 585¢ 5855 s 8544 8S, 5657 ga Sy4 are the weights of the network;
Layer A, layer B, layer C, and layer D are the four layers of the network, respectively.

Where, the corresponding neural network weights can be assigned as follows:
Letus assumetha® L B:>;a @ L B> ;a&8@.5 L B:>»6;a@75 L B:Qa

S55|_ %é865|_ FT;—JS;:S;é. S66'— @é867L @% §6(}?5 L @?Gé SGQ L @?5
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