
University of Huddersfield Repository

Abdulshahed, Ali

The Application of ANN and ANFIS Prediction Models for Thermal Error Compensation on CNC 
Machine Tools

Original Citation

Abdulshahed, Ali (2015) The Application of ANN and ANFIS Prediction Models for Thermal Error 
Compensation on CNC Machine Tools. Doctoral thesis, University of Huddersfield. 

This version is available at http://eprints.hud.ac.uk/id/eprint/27946/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



1 

 

 

THE UNIVERSITY OF HUDDERSFIELD 

 

The Application of ANN and ANFIS Prediction 

Models for Thermal Error Compensation on CNC 

Machine Tools 

 

 

 

by 

ALI MOHAMED ABDULSHAHED 

 

 

 

A thesis submitted in partial fulfilment for the 

degree of Doctor of Philosophy 

 

in the 

School of Computing and Engineering 

Centre for Precision Technologies 

 

 

November 2015

http://www.hud.ac.uk/
mailto:aa_shahed@yahoo.com


 

ii 

 

 

 

 

 

Copyright Statement 

 The author of this thesis (including any appendices and/or schedules to this thesis) owns any 

copyright in it (the “Copyright”) and s/he has given The University of Huddersfield the right 

to use such copyright for any administrative, promotional, educational and/or teaching 

purposes. 

 Copies of this thesis, either in full or in extracts, may be made only in accordance with the 

regulations of the University Library. Details of these regulations may be obtained from the 

Librarian. This page must form part of any such copies made. 

 The ownership of any patents, designs, trademarks and any and all other intellectual property 

rights except for the Copyright (the “Intellectual Property Rights”) and any reproductions of 

copyright works, for example graphs and tables (“Reproductions”), which may be described 

in this thesis, may not be owned by the author and may be owned by third parties. Such 

Intellectual Property Rights and Reproductions cannot and must not be made available for use 

without the prior written permission of the owner(s) of the relevant Intellectual Property 

Rights and/or Reproductions. 

 

 



 

iii 

 

Abstract 
 

Thermal errors can have significant effects on Computer Numerical Control (CNC) machine 

tool accuracy. The errors come from thermal deformations of the machine elements caused 

by heat sources within the machine structure or from ambient temperature change. The effect 

of temperature can be reduced by error avoidance or numerical compensation. The 

performance of a thermal error compensation system essentially depends upon the accuracy 

and robustness of the thermal error model and its input measurements. This thesis first 

reviews different methods of designing thermal error models, before concentrating on 

employing Artificial Intelligence (AI) methods to design different thermal prediction models. 

In this research work the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used as the 

backbone for thermal error modelling. 

The choice of inputs to the thermal model is a non-trivial decision which is ultimately a 

compromise between the ability to obtain data that sufficiently correlates with the thermal 

distortion and the cost of implementation of the necessary feedback sensors. In this thesis, 

temperature measurement was supplemented by direct distortion measurement at accessible 

locations. The location of temperature measurement must also provide a representative 

measurement of the change in temperature that will affect the machine structure. The number 

of sensors and their locations are not always intuitive and the time required to identify the 

optimal locations is often prohibitive, resulting in compromise and poor results. In this thesis, 

a new intelligent system for reducing thermal errors of machine tools using data obtained 

from thermography data is introduced. Different groups of key temperature points on a 

machine can be identified from thermal images using a novel schema based on a Grey system 

theory and Fuzzy C-Means (FCM) clustering method. This novel method simplifies the 

modelling process, enhances the accuracy of the system and reduces the overall number of 

inputs to the model, since otherwise a much larger number of thermal sensors would be 

required to cover the entire structure.  

An Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means clustering (ANFIS-FCM) 

is then employed to design the thermal prediction model. In order to optimise the approach, a 

parametric study is carried out by changing the number of inputs and number of Membership 

Functions (MFs) to the ANFIS-FCM model, and comparing the relative robustness of the 

designs. The proposed approach has been validated on three different machine tools under 

different operation conditions. Thus the proposed system has been shown to be robust to 

different internal heat sources, ambient changes and is easily extensible to other CNC 

machine tools. 

Finally, the proposed method is shown to compare favourably against alternative approaches 

such as an Artificial Neural Network (ANN) model and different Grey models. 
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Chapter 1:  Introduction 

1.1 Introduction and Overview 

Manufacturing industry demands a continual improvement in the positioning accuracy of 

machine tools. Increasingly, changes in the business requirements of manufacturing 

industries are driving machining systems to be more accurate and more productive. To 

produce high quality parts to high accuracy and to close tolerances, the CNC machine tools 

must have greater accuracy than the tolerances of the manufactured parts. The ability to 

produce parts accurately has many advantages such as improved performance of the finished 

product, reduced waste, reduced rework, more predictable production schedules, etc. 

Machine tools with three axes have been used to fabricate a large variety of products with 

relatively simple geometry to a satisfactory accuracy.  However, thermal errors are still one 

of the main factors affecting the machine accuracy. They are caused by exogenous and 

endogenous heat sources and result in non-uniform expansion and deformations of the 

structural elements. The interaction of the differing heat sources, asymmetry of the structure, 

differing expansion coefficients and time constants of disparate materials, etc. result in 

complex mechanical behaviour that are difficult to predict deterministically. Thermal errors 

have been reported to contribute approximately 70% of the total positioning error of the CNC 

machine tool [1], although this differs from machine-to-machine. In addition, higher 

accuracies are being required on large machine tools because of the increasing demand for 

high-value, large parts, such as impeller blades, engine blocks, aerofoil, etc. The accuracy of 

a gantry-type 5-axis machine tool has historically not been as good as that of three-axis 

machine tools, because the numbers of errors increase inevitably by increasing the size and 

the number of machine’s axes. Finding an efficient modelling solution for such machines is 

particularly timely.  

Serious attention has been paid to the influence of temperature changes on the accuracy of the 

CNC machine tools [2-5]. Thermal errors arise from changes in the size and shape of the 

structural elements of the machine tool, and of the workpiece, due to varying temperature 

gradients on the machine and workpiece during the machining process. Thermal fluctuations 

of the machine tool structure are caused by changes in environmental temperature and heat 

sources that exist within the structure of the machine tool itself. The internal heat sources 
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include, drive motors, gear trains and other transmission devices. However, heat sources 

around a machine tool can be split into two categories [6]: heat sources internal to the 

machine and heat sources external to the machine. 

Internal heat sources consider all heat sources that are directly connected to the machine tool 

structure. They directly conduct the heat into the machine structure and cause deformations 

and thermal response. Understanding the effect of each of these sources has been the focus of 

various publications [6-8]. The research has shown that spindle system and its bearings are 

considered to be one of the main sources of heat generation and resulting deformations. 

Without error avoidance methods, such as a cooling jacket, the heat generated by the spindle 

system will cause temperature gradients in the machine elements. This thesis makes extensive 

use of thermal imaging for rapid assessment of the internal heat sources of the machine tool. 

To illustrate the use of thermal imaging for this purpose, examples of internal heating test 

will be seen through this thesis. 

There are other important internal heat sources such as the cutting process itself, which 

warms up the tool, tool-holder, clamping device, and workpiece. Although, there is extensive 

research which addresses the friction modelling of the machining process [9], the thermal 

aspects of the machining process have not been investigated adequately [2, 10]. The table and 

other components can also be heated up indirectly by hot chips (swarf) from the cutting 

process. This heat source can be reduced by using cutting fluid (coolant). However, such a 

process can create additional negative heat sources so must be used only with sufficient 

consideration. 

External heat sources are attributed to the environment in which the machine is located, such 

as neighbouring machines, opening/closing of machine shop doors, variation of the 

environmental temperature during the day and night cycle and differing behaviour between 

seasons. It’s not a trivial problem to keep the machine thermal environment in homogeneous 

and stable condition, due to the complexity of the surrounding working environment and the 

total budget consideration. Even the small heat sources, such as lighting, and electrical 

cabinet of the machine, could cause significant change in the machine structure. The complex 

thermal behaviour of a machine is created by interaction between these different heat sources. 

Ambient effects are arguably one of the most important, but most neglected in thermal error 

compensation systems [3]. An integrated model can be used in machine tool error 
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compensation, taking into account the different heat sources [2]. An example of such a model 

for a CNC machine tool is given by White et al. [7]. 

Thermal errors are variables that can vary with time. They change the relative tool-to-

workpiece position and orientation, and can be either dependent or independent of axis 

position, depending on their source. Position dependent thermal errors are functions of both 

temperature and axis positions [11]. Some of them may change quickly (heat generated by 

spindle); others may change slowly (ambient temperature change). Some of the thermal 

errors may combine, and some may cancel each other out with respect to the geometry of the 

machine. Thermal errors change according to the operation being carried out by the machine, 

heat sources related to moving axes and fluid flow that may produce thermal errors that stem 

from the machining operation's history. This complexity of the problem of thermal errors has 

led to the development of a wide range of approaches and strategies to reduce their effects. 

There are three primary approaches to mitigate these thermal errors which will be addressed 

in the next section.   

1.2 Techniques for Increasing Machine Tool Accuracy 

High value manufacturing requires machine tools that can produce consistently high accuracy 

parts. Deformations due to the changes in the temperature of the machine tool structure create 

relative displacement between the tool tip and the workpiece during the machining process, 

which affects the dimensional accuracy of manufactured parts. Thermal errors are yet more 

complex since they represent a response to the interaction between environmental changes 

and internally generated heat. There are three primary approaches to mitigate these thermal 

errors which can be categorised as: elimination or avoidance, reduction of generated heat, and 

compensation strategies. Elimination or avoidance strategies try to eliminate any change in 

dimensions due to temperature changes. They are best implemented during the design stage 

of the machine tool. Some examples of these strategies are use of symmetry in machine 

design, choice of materials and use of direct closed-loop feedback. Reduction of generated 

heat strategies tends to directly cool the heat sources, for instance, through on machine 

cooling systems. However, the end-user must also be responsible for improved environmental 

temperature control, or good operating practices such as spindle warm up. Compensation 

approaches tend to compensate numerically or electronically for any change in the size and 

the shape of the machine structure due to temperature gradients. They can be implemented 



Chapter 1: Introduction 

17 

 

during any stage of the machine tool design and development. Many compensation 

techniques have been explored to reduce thermal errors in a direct or indirect way. More 

detail will be presented in the next subsections. 

1.2.1 Elimination or Avoidance 

Thermal errors can be reduced by amending a machine tool’s structure using advanced design 

and manufacture procedures, such as structural symmetry and separation of heat sources, etc. 

These strategies are best implemented during the design stage of the machine tool; retrofit 

solutions are unlikely to be feasible. The efficient numerical model of the machine tool is 

today an essential part of the design and improvement of CNC machine tools. It is possible to 

design the machine tool structure and its assemblies with regard to their material and 

geometry in order to ensure the lowest sensitivity to changes in temperature. However, this is 

not always practical due to cost and the compromise it might cause on, for instance, 

accessibility for part-loading location of tool changer, overall footprint, etc. The numerical 

modelling of machine tool should include the mutual interactions between the heat sources in 

a way most faithfully identifying all the naturally occurring phenomena [12]. Finite Element 

Analysis (FEA) is a very helpful tool especially during the design phase of a new machine. It 

has been used to gain accurate knowledge of the influence of different factors on the thermal 

behaviour of machine tools [2, 13]. This allows the arrangement of machine structure, 

elements, and heat sources to be decided. The final design usually is determined by 

optimisation in terms of size, capital, and running costs. The following list describes some 

design changes that have helped significantly to reduce thermal errors: 

 The geometry of the machine is critical in the deformation behaviour [14]. Thermally 

symmetric design of a machine structure leads to lower temperature gradients as well 

as reduced distortions [15]. For example, machine element such as rams and columns 

have in most cases a square section to achieve a symmetrical design and balanced 

thermal behaviour. Mayr et al. [16] proposed different design modifications for a 

prototype lathe and made comparisons by simulation study. The simulation example 

illustrates that the thermal error of the prototype can be reduced to about 15% of the 

original error by design modifications. Furthermore, the light-weight structure with 

thin walls is recommended (for smaller heat capacity) to reduce the thermal 

deformation [17]. Nevertheless, it is very important for the machine tool designer to 

understand to what extent the light-weight structure can be practically implemented. 
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 Utilising materials that have a low thermal expansion coefficient and high specific 

heat capacity such as cast iron, fibre-reinforced plastics and polymer concrete [1, 14]. 

In the machine tool sector, the most commonly used material is cast iron due to its 

stability, easy casting, and economy in machining. Nevertheless, polymer concrete 

has received increasing attention since it can be used in manufacturing bases requiring 

material properties such as good thermal stability. Haddad and Kobaisi [18] 

investigated the application of polymer concrete compositions on the thermal 

expansion of the base and how it affected the level of precision of the machine tool. 

ANSYS software was employed in visualizing the influence of different compositions 

of aggregates on the thermal expansion. According to their results, the optimum 

composition of the area that they investigated is basalt, sand and fly ash, respectively, 

which has the least coefficient of thermal expansion and acceptable flexural strength. 

Recently, some companies apply innovative silicon carbide ceramics for their new 

CMM machines, which gives around 50% lower thermal expansion, and 20% less 

weight than standard ceramics [19]. 

 Ballscrews are often used in machine tools with a rotary encoder feedback on the end 

of the screw. Thermal deformation of the ballscrew shaft can be a serious source of 

positioning error. During the normal function of ballscrew system, heat generating 

from the friction of balls movement on the thread produces a significant thermal 

growth of the screw. Using linear scales or laser scales provide direct feedback 

removing the ballscrew from the positioning loop. However, fitting such scales to 

many machines may be mechanically difficult and costly [20]. Additionally, 

convenient locations for the scales might be non-ideal from a thermal point of view, 

so cannot be considered a complete solution to the problem. Another common 

technique used to reduce the effect of ballscrew expansion is application of pre-

tension to the ballscrew. This technique suffers from a number of drawbacks such as 

potentially incurring vibration, ballscrew buckling and bearing failure problems [21]. 

 Isolation of spindle driving system: Motor spindles are equipped with high-power 

motors, which generate a significant amount of lost heat [22]. To prevent transferring 

the heat produced in a spindle motor to a main spindle, the spindle is coupled with a 

high-speed drive motor by using a diaphragm-type coupling. As a result, the spindle 

system can be isolated from the heat generated in spindle motor through the 

diaphragm-type coupling [17].  
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 The efficiency of the spindle bearings is especially important for the spindle system 

performance. Improved bearing systems, where the change from plain to angular 

contact bearings with high contact angles has resulted in increased speeds and 

stiffness whilst achieving lower heat generation. Recently, ceramic bearings have also 

been used to reduce the friction and hence the excessive generation of heat in the 

bearings [22].  

 Painting and coating materials: For the structural body component, the painting 

material and its emissivity have significant effects on the thermal boundary condition 

of the machine tool [17]. As similar topic is concerned with the coating technology 

for some parts of the machine structure such as cutting tools [4]. For instance, enamel 

is an excellent coating material to increase the heat dissipation from the surface of the 

machine, although it has certain difficulties in practical use [17]. 

 Use of slant type bed structure: a large amount of the heat generated by the machining 

process is transferred to the chips (swarf). In order to achieve high machining 

accuracy, immediate removal of chips from the machining work space is an important 

issue. An inclined guide way is an effective means to prevent a pile of swarf on the 

bed. The latest designs of turning centres have slanted bed structures [17]. In such bed 

structures, the chips are quickly removed from the machining work space by a 

conveyer, and thus the heat dissipation to the machine elements can be avoided. 

Furthermore, the cutting fluid can also help to alleviate this problem of localised 

heating though care should be taken since it can conversely cause a cooling (negative 

heating) effect. 

1.2.2 Reduction of Generated Heat 

Controlling workshop temperature is always a good practice for reducing thermal error 

because normal daily environment temperature fluctuation is one of the main heat 

disturbances in an ordinary machine shop. Much research has been focused on how to control 

the heat sources and achieve temperature equilibrium faster in order to avoid the negative 

effects of excessive heat during the machining process. A more effective method for 

controlling the heat can be realised by reinforcing an effective flow of temperature-controlled 

media around the heat sources. More specific techniques and their applications are listed 

below:  
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 Environment temperature change is also a major cause of machine tool structural 

temperature variation [23]. Longstaff et al. [3] presented several Environmental 

Temperature Variation Error (ETVE) tests conducted on a wide range of machine tools 

and discussed the implications for produced parts. It has been reported that external 

temperature variation are attributed to the environment in which the machine is located, 

such as neighbouring machines, opening/closing of machine shop doors, variation of the 

environmental temperature during the day and night cycle and differing behaviour 

between seasons. Temperature controlled environments and modification of the machine 

shop floor are possible and can effectively reduce thermal errors on a number of machines 

at once, but may be difficult and costly to achieve. 

 Some machine tool designers apply coolant down system to the ballscrew. Xu et al. [24] 

tried to control the heat sources of the ballscrew system and achieve temperature 

equilibrium quickly. They carried out a heat source control method called “centre hole air 

cooling” on a high precision ballscrew drive system. A thermal behaviour model using 

the Finite Element Method (FEM) and a Lumped Capacitance Method (LCM) were used 

to estimate the effectiveness of the air cooling system. Thermal error was reduced by 

66.8% at 500 rpm, and 65.9% at 1000 rpm. According to their results, the most important 

finding is that air-cooling brings temperature equilibrium faster to the ballscrew system. 

 Forced oil cooling of machine tool components: Several specific designs incorporate oil 

cooling jackets equipped with a temperature sensor around the spindle bearings. The oil is 

circulated continuously through these jackets and passed through a refrigeration unit. This 

method is a simple way for reducing bearing temperature and is widely applied to the 

cooling of high-speed spindle systems supported by rolling bearings [23]. 

 Air circulation controlled at a constant temperature: Air temperature control systems 

provide an alternative means for reducing the thermal error of machine tools when other 

effective means are not practical. However, such air cooling system is not as effective as 

a liquid cooling system to remove heat due to lower heat capacity of the medium [17, 25]. 

Several designs tried to improve the cooling performance of air and make it a practical 

alternative to cool machine tool components for new and existing machines. Donmez et 

al. [25] proposed a method of cooling by using commercially available silicon tubing with 

small slits and forcing a compressed air through them based on Coanda-effect cooling. An 

average of 30% improvement in spindle response was observed. According to their 
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results, the power requirement for their method is about 0.6 kW. In comparison, an air fan 

producing high velocity air flow around the machine would require about 40 kW power.  

Jiang and Min [26] investigated a thermal design method for a vertical machining centre 

headstock using a dual forced cooling system, including a forced air cooling subsystem 

and a forced water cooling one. The air cooling subsystem was used to cool the driven 

motor, while the water cooling subsystem is used to remove the heat generated by the 

spindle bearing. The integrated thermal model of the headstock system was developed by 

aid of the FEM. Their results indicate that the thermal behaviour of the headstock can be 

improved by 77% using their proposed method. 

Numerous attempts have made to introduce special design and manufacture procedures, such 

as the above-mentioned strategies. These strategies can reduce the effect of structural 

temperature change, but at the same time increase the cost of its manufacture and can 

compromise other design targets such as size and speed. A more advantageous way of 

improving machine tool accuracy is through the use of an error compensation system.  

1.2.3 Compensation Strategies 

Compensation is a process where the thermal error present at a particular time and position is 

corrected by adjusting the position of a machine’s axes by an amount equal to the error at that 

position [23]. Error compensations can be more attractive than making physical changes to 

the machine structure. Firstly, error compensation is often less expensive than the design 

effort, manufacturing and running costs involved in error avoidance. Secondly, error 

compensation is more adaptable in that it can accommodate changes in error sources, which 

sometimes cannot be accommodated by structural change techniques [6].  

Many compensation techniques have been explored to reduce thermal errors in a direct or 

indirect way. Direct compensation is simple yet efficient philosophy, making use of directly 

measured displacements between a tool and a workpiece, often using probing. However, 

direct measurement compensation has a number of disadvantages. For instance, it is likely 

that some of the most significant thermal problems are caused by rapid thermal changes. 

Tracking and correcting these rapid movements would require frequent measurements. When 

a tool-mounted probe is used, each measurement requires a break in machining, therefore 

introducing undesirable time delays. In addition, probing measurements can be prone to 

errors caused by swarf or coolant on the surface of the workpiece [6]. This can be overcome 

by repeated measurements or other means, but incurs further cost in terms of hardware or 
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production time. Realistically, direct thermal compensation is most applicable to fixed 

tooling, such as lathes [2], where a dedicated sensor can be conveniently located. 

In indirect compensation the thermal error is calculated from measurements of some other 

parameters, most commonly temperature [23, 27-29]. The indirect compensation concept is to 

build a compensation model by continuously monitoring the temperature changes at selected 

points, using different type of sensors (temperature and/or strain). A relationship is then 

found between these sensors and the deformation of the machine. A comprehensive survey of 

compensation techniques was given in 2009 by Li et al. [30] and in 2015 by Li et al. [31]. 

Rather than attempting to eliminate thermal errors, this research work provides a systematic 

methodology for predicting thermal errors, thus improving the accuracy of CNC machine 

tools by allowing accurate compensation movements. The Artificial Intelligence (AI) 

modelling will be used as a generic tool to develop a thermal prediction model which can be 

readily transferred to other CNC machine tools. An efficient strategy of selecting significant 

model inputs and their locations has been introduced. 

During the manufacturing processes, the temperature/strain signals are collected in real time 

and the errors are estimated with the artificial intelligence model. The calculated 

compensation values will be used to modify the axis positions to maintain the end of the tool 

at the datum position. 

This thesis proposes a thermal error modelling method based on the Adaptive Neuro-Fuzzy 

Inference System (ANFIS) in order to establish the relationship between the thermal errors 

and the temperature changes. The proposed methodology has the ability to provide a simple, 

transparent and robust thermal error compensation system. It has the advantages of fuzzy 

logic theory and the learning ability of the Artificial Neural Networks (ANNs) in a single 

system. A thermal imaging camera was used to record temperature distributions across the 

machine structure during the experiments. The thermal images were saved as a matrix of 

temperatures with a specific spatial resolution of one pixel, each of which can be considered 

as a possible temperature measurement point. Methods of optimising sensor location, using 

automatic clustering of thermography data, have also been proposed. This allows efficient 

modelling of new machines. 

The proposed approach has been validated on three different machine tools under different 

operation conditions. Thus the proposed system has been shown to be robust to different 

internal heat sources, ambient changes and is easily extensible to other CNC machine tools. 
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1.3 Aims 

 To produce intelligent techniques for robust modelling of machining errors caused by the 

thermal distortion of CNC machine tools. 

 To make these techniques readily applicable to any common CNC machine with minimal 

effort.  

1.4 Motivation 

This research was motivated by the high accuracy requirements of the manufacturing 

industry. Increasingly, changes in the business requirements of manufacturing industries are 

driving machining systems to be more accurate and more productive. As a consequence, the 

research approach taken in this thesis addresses an intelligent compensation strategy which 

can be implemented in a timely and cost effective manner on existing CNC machine tools 

with different configurations. A compensation strategy which effectively improves the 

accuracy of a machine tool would significantly reduce waste and rework, and lead to more 

predictable production schedules, etc. 

1.5 Objectives 

The objectives of this research work are: 

 To undertake an in-depth literature review to ascertain the past, current and future 

requirements of CNC machine tools, particularly in terms of their thermal error 

compensation. 

 To develop a systematic methodology to define a precise selection of thermal sensors and 

their positions in order to ensure the prediction accuracy and robustness of compensation 

models. 

 Provide a thorough and complete description of the data-driven modelling.  

 To derive a novel thermal prediction model for a CNC machine tool, using the Artificial 

Intelligence (AI) tools such as Adaptive Neuro-Fuzzy Inference System (ANFIS), 

Artificial Neural Networks (ANNs), Particle Swarm Optimisation (PSO) and Grey system 

theory. 



Chapter 1: Introduction 

24 

 

 To investigate and evaluate the performance of the thermal error compensation models 

for CNC machine tools and their requirements. 

 To develop a general thermal prediction model, that can be readily transferred to other 

machine tools in a timely and cost effective manner. 

 Provide a generalised, cost-effective approach to thermal error compensation that can be 

implemented on a wide range of machine tools with different configurations, the 

following considerations should be taken into account: 

o Accurate, reliable and robust; 

o Capable of being implemented on a wide range of CNC machine tool 

configurations; 

o Quick to apply, without excessive downtime. 

 Validation using disparate cycles on multiple machines. 

1.6 Thesis Structure 

The previous sections of this chapter have presented a background of thermal error sources, 

and an overview of primary approaches to mitigate these thermal errors of CNC machine 

tools. A breakdown of the work presented in the body of this thesis is as follows.  

Chapter 2 presents a review of literature relating to the modelling of thermal errors and 

current developments in the field of thermal error compensation of CNC machine tools. 

Subjects include the principle-based models, empirical-based models, and thermal key point 

identification approaches. Studies relating to application of AI techniques to various 

machining processes are also reviewed. The chapter is also concluded with a discussion of 

the challenges of the current models.  

This is followed in Chapter 3 by a thorough description of the current state of artificial 

intelligence systems, including details of ANFIS model and extraction of the initial fuzzy 

model. Particular focus is also given to the Grey system theory for both modelling and 

selection of the most relevant thermal variables. The chapter is concluded with a discussion 

of the model validation procedure.  

Chapter 4 outlines the experimental considerations taken into account when collecting the 

data to build the compensation models of the CNC machine tool. Details will also be 

provided on the equipment setup used during the various experimental tests. This is followed 
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by a systematic methodology to a precise selection of thermal sensors and their positions in 

order to ensure the prediction accuracy and robustness of compensation models. The effect of 

using different physical quantities (temperature and strain) will also be explored. The effect 

of hysteresis will also be investigated in this chapter. 

In Chapter 5 the proposed model will be developed for the purpose of verification of the 

techniques that will be developed in subsequent chapters.  

In Chapter 6 a new concept will be added to ANFIS modelling for prediction of ETVE. Also, 

four models will be developed for the purpose of validation of the proposed approach which 

will be designed to predict the thermal error of a number of machines in different operation 

conditions. The first model will be the proposed ANFIS model. The second model that will 

be developed is an ANN model. The third and fourth models that will be developed are two 

Grey models.  

The deep understanding of literature review and main findings from Chapter 2 to Chapter 6 

are brought together and summarised in Chapter 7, followed by an explicit statement of the 

conclusions drawn from this thesis. 
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Chapter 2:  Thermal-Error Modelling Techniques 

This chapter provides the literature review of machine tool error compensation techniques 

relevant to this thesis. It starts by providing an overview of different modelling approaches 

that have been used for thermal error compensation. Next, a comprehensive review of the 

areas of machine tool error modelling and compensation is conducted. This followed by 

discussion of the application of AI techniques to various machining processes. The gaps in 

the literature are identified and the objectives of this work are highlighted based on the key 

findings from previous research and response to the limitations of existing techniques. The 

chapter ends with separate sections containing the challenges and summary of the literature 

review.  

2.1 Thermal Modelling Methods 

Error compensation has become a cost-effective way to improve the accuracy of machine 

tools, in which error modelling play a fundamental role [6].  Robust modelling is one of the 

greatest challenges in the field of the machine tools thermal error compensation [32]. 

Generally, different types of modelling approaches are used for thermal error compensation. 

The first one is known as the principle-based models (white-box models). In principle-based 

method; the system models are derived based on heat transfer mechanisms (i.e., conduction, 

convection, and radiation) [17, 33]. Here, the relationships between thermal errors and heat 

generated are described by a system of non-linear differential equations [30]. The solution to 

such differential equations can be obtained by analytical methods as well as numerical 

methods. Therefore, principle-based models are further divided into analytical models and 

numerical models. It is worth mentioning that the principle-based model is interpretable but 

not necessarily sufficiently accurate because, there are always uncertain factors affecting the 

system. An accurate principle-based model can hardly ever be obtained because of the 

interaction between multiple moving parts with multiple ill-defined heat inputs. The second 

type is known as data-driven models (empirical-based models) [34, 35]. The relationships 

between the system inputs and outputs are not based on physical representations, as for 

principle-based models, but are deduced through suitable experimental tests. This is done by 

making use of the principle “cause and effect” where the temperature variable is the cause 

and the thermal error is the effect. The experimental data are divided into two different sets, 

one used at the training/calibrating stage and one used for the model testing. It is worth 
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mentioning that in data-driven models, the interpretation of the model is often difficult. In the 

third type, known as the grey-box models [36], the basic structure of the model is formed by 

using the principle-based method and the model parameters are calibrated by using the 

parameter estimation algorithms on the measured data of the system. This means that the 

starting point is a model structure based on physical representations. Because so much 

engineering knowledge and experimental work comes in terms of verbal rules, a sound 

engineering approach is to attempt to integrate such linguistic information (words) into the 

modelling process. A convenient and common way of doing this is to use Fuzzy Logic (FL) 

concepts in order to cast the verbal knowledge into a conventional mathematical 

representation (a model structure), which subsequently can be fine-tuned using expert 

knowledge and/or experimental data [37], for more detail about Fuzzy Logic Systems (FLS), 

the reader is referred to section 3.2. 

A fuzzy model is a computation framework based on the concepts of fuzzy sets, fuzzy “if-

then” rules, and fuzzy reasoning. In real world problems, if the designer has information such 

as human experience described by linguistic rules “if-then” rules, the mechanistic modelling 

approach is less important and the application of rule-based approaches like FL models is 

more appropriate. Fuzzy modelling allows us to deal with the complex system by building a 

linguistic model which could become interpretable by human beings [38]. The flexibility of a 

fuzzy model allows us to extract rules that describe the behaviour of a system. In other words, 

fuzzy modelling takes advantage of engineering knowledge and experimental work that 

might not be easy to be directly applied in other modelling methods. A common practice is to 

use such knowledge for structure identification (determination of the relevant inputs, type and 

number of the Membership Functions (MFs) and number of the rules, and so on). These 

parameters can then easily be calibrated and fine-tuned by experimental data with the use of 

various learning techniques such as a neural network (known as neuro-fuzzy models). Models 

based on this method are partially linguistic statements and partially empirical. Different 

from black-box models, neuro-fuzzy models require both the knowledge of the process 

system (represented by linguistic rules) and empirical data. The rule base of these neuro-

fuzzy models is initialised by expert knowledge or clustering techniques, and the model 

parameters are calibrated via similar methods that are used for the data-driven models. As the 

neuro-fuzzy model can initialise and learn linguistic rules, the modelling framework can be 

considered as a direct transfer of knowledge [33]. This is the powerful advantage of adaptive 

fuzzy systems in comparison with principle-based and other data-driven models.  
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This chapter will present a comprehensive review of the thermal error modelling techniques. 

It will not attempt to provide a broad survey of the field of fuzzy modelling. For such a 

survey, the reader is referred to the next chapter. Current challenges in the thermal error 

models, reported in the literature, are also discussed. This is followed by a summary of the 

literature review presented in this chapter. 

2.1.1 Principle-Based Models 

Principle-based models, also called white-box models, describe in space differential 

equations to simulate the system behaviour. These models are usually interpretable and based 

on theoretical relationships. Numerical methods such as the Finite Element Analysis (FEA) 

[39] and Finite Difference Element Method (FDEM) [2, 40] are powerful tools in simulating 

the practical heat transfer, where analytical solutions to temperature fields and thermal 

responses are discarded due to the complexity of machine tool elements. With the 

development of computer technology, FEA has proved to be a powerful tool to predict the 

thermal error of machine tools. FEA is now being more frequently applied to simulate the 

thermal error [8, 39, 41]. 

Mian et al. [8] developed an offline technique using FEA to simulate the effects of the major 

internal heat sources of a small Vertical Milling Centre (VMC) and the effects of ambient 

temperature pockets that build up during the machine operation. Their work has shown that 

consideration of air pockets is needed to improve the FEA model accuracy. The simulation 

results closely matched the experimental results and revealed a maximum error range of 

70 µm reduced to less than 10 µm. 

Creighton et al. [42] carried out analytical approaches by FEA model to study the 

temperature distribution characteristics of a spindle, motor and its housing. The results from 

the characterisation tests were used to develop a simple exponential model of the axial 

thermal error related to the spindle speed and running time. It was reported that the model 

was successful in reducing spindle growth by up to 80% under random spindle speed. 

However, the thermal error of a machine tool is a mutual coupling of many complex factors 

that are affected by many variables; therefore, their model cannot compensate the cyclic 

variation due to the ambient temperature changes. It is extremely difficult to predict the 

thermal error from a simple exponential equation.  
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Mian et al. [39] proposed an offline environmental thermal error modelling approach based 

on a finite element analysis model that reduces the machine downtime usually needed for the 

environmental temperature variation error test from a fortnight to 12.5 h. Their modelling 

approach was tested and validated on a production machine tool over a one-year period and 

found to be very robust.  

Postlethwaite et al. [6] made a distinction between the temperature model and distortion 

model of a thermally affecting CNC machine, and used a thermal imaging camera for rapid 

assessment of a machine tool thermal behaviour and off-line development of the 

compensation models. Their proposed technique can calculate the temperature distribution 

and distortion when the machine is subjected to widely varying operating conditions. 

White et al. [7] outlined a combination of geometric and thermal error compensation systems 

with a flexible structure that is “general purpose” in its application to any machine tool. The 

proposed system can use any number of temperature sensor inputs. MATLAB model can be 

programmed in such a way that it estimates its thermal movement using data from a single 

test on the machine. The program then applies error compensation to a number of outputs, 

which are used by the machine controller to obtain a compensation value. The compensation 

model can either be integrated into an open architecture CNC machine controller, or into a 

stand-alone computer which accepts a large range of feedback signals. The compensation 

model can reduce both dependent and independent thermal errors. It has been applied to 

different types of machine tools, and has been proven to reduce thermal errors between the 

tool and the workpiece by more than six times when applying a cooling and quick heating test 

for calibration. 

Freeman et al. [20] established a system which minimises the number of temperature sensors 

used as inputs to a thermal model of the ballscrew. The authors used their model to predict 

on-line the thermal errors of the ballscrew. If the position measurements of the nut are 

available from the encoder, it is possible to determine the speed of the screw. Assuming 

knowledge of heat transfer characteristics and the friction, and using the measured 

temperatures of the nut and bearings, the heat generated in the nut, bearings and screw can be 

calculated. The thermal model constitutes a one-dimensional finite analysis of the screw. The 

output of their proposed model is a temperature distribution along the screw and an estimate 

of the thermal errors of the screw. 
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However, building a numerical model can be a great challenge due to problems of 

establishing the boundary conditions and accurately obtaining the characteristics of heat 

transfer. Because the FEA models are built based on assumptions and empirical formula, 

which inevitably have inaccuracies, the FEA model must be modified by experimental tests. 

It is also noted that most validation only represents a similar input-output condition to the 

modelling process. It is therefore difficult to estimate robustness of the model to changing 

parameters.   

The following paragraphs will give a discussion of different kinds of data-driven models 

most of which aim to predict the thermal error of machine tools. 

2.1.2 Data-Driven Models 

The data-driven models are behavioural models that are based on historical data to predict the 

performance of a given system, in this case the distortion of the machine. Contrary to the 

numerical models, they are not based on explicit physical equation definitions but on 

experimental database which is capable of reflecting the relationship between inputs and 

outputs. Data-driven techniques for thermal error modelling can be divided into two 

categories: statistical techniques such as regression methods, linear polynomial models, etc., 

and artificial intelligence techniques such as Artificial Neural Networks (ANNs), fuzzy 

systems, etc. 

2.1.2.1 Statistical Models  

Linear regression is the simplest method to correlate measured temperatures with resulting 

displacement. A Least Squares (LS) approach is used to obtain the coefficients that determine 

the relationship between inputs and output without using any physical equation. Although 

this method can provide reasonable results for a given machine test regime, the thermal 

displacement usually changes with variation in the machining process and the environment, 

which introduces an error into the model [43]. The linear regression model is also time-

consuming and labour intensive to design. 

Hardwick [44] established a Multiple Regression Analysis (MRA) model of a vertical 

machining centre and a horizontal machining centre. The author highlighted the complexity 

of the interrelation between the different heat sources and the different mechanisms of 

response. Test results showed that the thermal error could be reduced to less than 7 µm, 

representing an improvement in accuracy of almost 7 times.   
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Chen et al. [45] used an MRA model for thermal error compensation of a horizontal 

machining centre. With their experimental results, the thermal error was reduced from 196 to 

8 µm. Yan et al.  [46] also used the MRA model to form an error synthesis model, which 

merges both the thermal and geometric errors of a lathe. With their experimental results, the 

error could be reduced from 60 to 14 µm.  

Grey model is another statistical approach that has been used for thermal error compensation 

system [47]. Grey system theory is a method introduced by Deng in early 1980s [48] with the 

intention to study the Grey systems by using mathematical methods with poor information 

and small datasets.  In Grey system theory, GM (h, N) denotes a Grey model, where h is the 

order of difference equation and N is the number of variables. The GM (h, N) model can be 

used to describe the relationship between the influencing sequence factors and the major 

sequence factor of a system. Furthermore, weights of each factor represent their importance 

to the major sequence factor of the system. Its most significant advantage is that it needs only 

a small amount of experimental data for accurate prediction, and the requirement for the data 

distribution is also low [49]. For more detail about Grey models, the reader is referred to 

section 3.4. 

Wang et al. [47] proposed a systematic methodology for the thermal error compensation of a 

machine tool. The thermal distortion was modelled using a Grey model based on Grey system 

theory to predict the thermal errors with only 30 minutes of measured data. Unfortunately, 

their model was lacking in the ability of self-learning, self-adaption, self-organisation, and 

taking feedback correction into consideration. Therefore, their model obtained under one 

particular operating condition is still not robust under other operation conditions.  

In order to overcome the drawbacks of statistical models, more attention has subsequently 

been given to the artificial intelligence techniques such as artificial neural networks. 

2.1.2.2 Artificial Intelligence (AI) models  

Artificial neural network as a form of AI is a data-driven approach. It is designed in a way 

that mimics the behaviour of biological neural network. A typical artificial neural network 

has an input layer, one or more hidden layers, and an output layer [50]. The neurons in the 

hidden layer, which are connected to the neurons in the input and output layers by adaptable 

weights, enable the ANN to compute complex associations between the input and output 

variables [51]. The inputs of each neuron in the hidden and output layers are summed and the 
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resulting summation is processed by an activation function [51]. Training the model is the 

process of determining the adjustable weights and it is similar to the process of determining 

the coefficients of a regression model by least squares approach. The weights are initially 

selected randomly and an optimisation algorithm is then used to find the weights that 

minimise the differences between the model-calculated and the experimental outputs [52]. 

Across the whole modelling procedure, no physical equation is used. 

To find the relationship between inputs and outputs of a complex thermal behaviour, ANN 

techniques have drawn more attention rather than statistical models, and produce results 

without requiring a detailed mechanistic description of the phenomena that is governing the 

system. There are different ANN architectures to building thermal models, Back-Propagation 

(BP) artificial neural network modelling has proved to be a suitable nonlinear modelling 

method [50, 53].  

One of the major advantages of ANNs is efficient handling of highly non-linear relationships 

in data. In recent years, it has been shown that thermal errors can be successfully predicted by 

artificial neural networks [50, 54, 55]. 

Chen et al. [56] proposed an ANN model structured with 15 nodes in the input layer, 15 

nodes in the hidden layer, and six nodes in the output layer in order to drive a thermal error 

compensation of the spindle and lead-screws of a vertical machining centre. The ANN model 

was trained with 540 training data pairs and tested with a new cutting condition, which was 

not included within the training pairs. Test results showed that the thermal errors could be 

reduced from 40 to 5 µm after applying the compensation model, but no justification for the 

number of nodes or length of training data was provided, so the scalability of the method 

cannot be assessed. Moreover, the compensation system must be flexible to extension to 

other physical inputs, meaning that alternative variables can be deployed with minimal effort. 

Wang [57] used a neural network trained by a Hierarchy-Genetic-Algorithm (HGA) in order 

to map the temperature variation against the thermal distortion of the machine tool. 

Experimental results indicated that the thermal error compensation model could reduce the 

thermal error to less than 10 µm under real cutting conditions. 

Zhu et al. [58] presented a clustering approach based on correlation coefficient to pick out 

three optimal temperature variables. The output-hidden feedback Elman neural network is 

adopted to establish a model for the prediction of thermal errors on a CNC machine tool. The 

verification experiment shows that the combination of clustering and neural network model is 
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a good way for thermal error compensation. However, a small number of temperature sensors 

may lead to poor prediction accuracy under different operation conditions. 

ANN models may be successfully applied in thermal error compensation systems and can 

capture effectively the non-linear relationships existing between variables in nonlinear 

systems such as thermal modelling. However, ANN models are considered as black-box 

models, because the mathematical relations in these models are unknown to the designer and 

have no physical meaning. Moreover, it is worth pointing out that these models need proper 

training to work effectively, and that their performance is limited by their design parameters. 

Therefore, using ANN involves a moderately tedious trial and error effort for obtaining the 

network structure, especially involving the hidden layer neurons, number of hidden layers, 

transfer function, training algorithm and learning rate parameter.  

The purpose of this section was to give an overview about thermal modelling and to show the 

important role of data-driven models in this field of thermal error compensation. It was 

shown that ANN models are general black-box modelling tools, which have many attractive 

features: they are constructed without any physical laws but only a set of input-output data 

for training procedure. The training data has to cover the whole expected range of the 

operation conditions. However, the process of obtaining such data can take several hours for 

internal heating tests and several days or more for the environmental test [3]. 

An important implication obtained from the above mentioned models is that they have been 

proven for a single error source but not a whole (complete) machine structure. Furthermore, 

most of them have used only one approach, which usually cannot result in satisfactory 

thermal model. Combining different AI techniques, however can join the advantages of the 

different methods, can utilise different representations of knowledge, and can help to 

understand the result obtained. The latter is especially important in ANN modelling, because 

ANN models cannot give explanation of the system, and without explanation, the lack of 

physical meaning may reduce the acceptance of the ANN models even if their result are in 

good agreement with the experimental data.  

2.1.3 Fuzzy Logic Models 

Fuzzy applications in machining process have become the focus of significant attention 

during the last two decades, and that is why much relevant research has been conducted. 

Fuzzy system theory has a wide range of applications in the machining process field and new 

directions are constantly given in machining process research. 
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Lee et al. [59] used a thermal error model with two temperature variables using fuzzy logic 

modelling. However, the membership functions typically have to be manually adjusted by 

trial and error. The fuzzy model performs like a white-box, meaning that the model designers 

can explicitly understand how the model achieved its goal. However, such models that are 

based only on expert knowledge may suffer from a loss of accuracy due to engineering 

assumptions [60]. Conversely, ANNs can learn from the data provided without 

preconceptions and assumptions. However, they perform as a “black-box,” which means that 

there is no information regarding the method by which the goal is achieved and so the 

achieved optimal solution can exhibit unrealistic physical characteristics that do not 

extrapolate to other situations. Furthermore, the final model is not easily understandable by 

domain experts for interpretation purposes [61].  

In order to overcome the drawbacks of traditional artificial intelligence techniques such as 

ANNs and fuzzy logic, more attention has been focussed on hybrid models. For instance, 

applying the ANN technique to optimise the parameters of a fuzzy model allows the model to 

learn from a given set of training samples. At the same time, the solution is mapped out into a 

Fuzzy Inference System (FIS) that can be evaluated by the model designer as to produce a 

realistic representation of the physical system. The Adaptive Neuro-Fuzzy Inference System 

(ANFIS) is such a neuro-fuzzy technique. It combines fuzzy logic and neural network 

techniques in a single system.   

Wang [62] also proposed a thermal model merging Grey system model GM (1, m) and an 

ANFIS. A hybrid learning method, which is a combination of both steepest descent and least 

squares estimator methods, was used in the learning algorithms. Experimental results 

indicated that the thermal error compensation model could reduce the thermal error to less 

than 10 µm under real cutting conditions. The author used six inputs with three fuzzy sets per 

input, producing a complete rule set of 729 (3
6
) rules in order to build an ANFIS model. 

Clearly, Wang’s model is practically limited to low dimensional modelling.  

Eskandari et al. [63] presented a method to compensate for positional, geometric, and 

thermally induced errors of three-axis CNC milling machine using an offline technique. 

Thermal errors were modelled by three empirical methods: MRA, ANN, and ANFIS. To 

build their models, the experimental data was collected every 10 minutes while the machine 

was running for 120 minutes. The experimental data was divided into training and checking 

sets. Their results found that ANFIS was a more accurate modelling method in comparison 
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with ANN and MRA. Their test results on a free form shape show average improvement of 

41% of the uncompensated errors. However, the ANFIS model in this study is also limited to 

low dimensional modelling. 

Construction of the ANFIS model using a data-driven approach usually requires division of 

the input/output data into rule patches. This can be achieved by using a number of methods 

such as grid partitioning or the subtractive clustering method [64]. However, one limitation of 

standard ANFIS is that the number of rules rises rapidly as the number of inputs increases 

(number of input sensors). For instance, if the number of input variables is n, and M is the 

partitioned fuzzy subset for each input variable, then the number of possible fuzzy rules is 

M
n
. As the number of variables rises, so the number of fuzzy rules increases exponentially, 

increasing the load on the computer processor and increasing memory requirements. Thus, a 

reliable and reproducible procedure to be applied in a practical manner in ordinary workshop 

conditions was not proposed. It is important to note that an effective partition of the input 

space can decrease the number of rules and thus increase the speed in both learning and 

application phases. A fuzzy rule generation technique that integrates ANFIS with Fuzzy C-

Means (FCM) clustering is applied in order to minimise the number of fuzzy rules. The FCM 

is used to systematically create the fuzzy MFs and fuzzy rule base for ANFIS. For more 

detail about this system, the reader is referred to section 3.3. 

An accurate, robust thermal error prediction model is the most significant part of any thermal 

compensation system. In recent years, it has been shown that thermal errors can be predicted 

by empirical modelling techniques such as multiple regression analysis [45], types of 

artificial neural networks [56], fuzzy logic [59], an adaptive neuro-fuzzy inference system 

[50, 62], Grey system theory [47] and a combination of several different modelling methods 

[53, 57].  

A common omission in the published research is discussion or scientific rigour regarding the 

selection of the number and location of thermal sensors. The following section explores the 

effect of the number and locations of sensors on the thermal model output.  

2.2 Temperature Sensor Placement 

Appropriate selection of input variables is an important task in modelling. In fact, not all 

input variables are equally important; some may have no significant effect on the system 

being modelled. Scholars have shown that a precise selection of thermal sensors and their 
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position is needed to ensure the prediction accuracy and robustness of compensation models, 

better interpretation, and lower measurement costs [32, 46]. The model designers often want 

to know which sources have a dominant effect and which exert less influence on thermal 

response of the machine tool. Poor location and a small number of thermal sensors will lead 

to poor prediction accuracy. However, a large number of thermal sensors may have a 

negative influence on a model’s robustness because each thermal sensor may bring noise to 

the model as well as bringing useful information. Furthermore, issues relating to sensor 

reliability are commercially sensitive; the fewer sensors installed the fewer potential failures. 

Choosing the right sensor location can hugely affect the outcome of compensation models. 

Engineering judgment, correlation coefficient and stepwise regression have been used to 

select the temperature sensor placement for thermal error compensation models [30, 31].  

The first method is engineering judgment, which is based on an individual’s engineering 

experience about thermal displacement, machine heat sources and thermal behavior in order 

to design the models [31]. It is useful to remove totally uncorrelated sensors and to choose 

preliminary sensors for further study. For example, the axial movement of the ballscrew and 

the spindle physically depend on the bearing temperatures of the ballscrew and the spindle, 

respectively; thus, the bearing temperatures are considered as a possible variable in the 

models. However, many other error components, such as spindle displacement and 

squareness errors, have different relationships with temperature behavior on columns or 

spindle housings. It is unreliable to use a small number of temperature sensors without 

precise knowledge of thermal behavior in machine elements. It is clearly impossible to select 

the optimal thermal sensor location on the whole machine only using the engineering 

judgment.  

The second method is a correlation analysis, which uses the correlation coefficients between 

the thermal displacements and the temperature sensors to select highly correlated 

temperatures sensors as compensation model inputs [13, 65, 66]. Since all the selected 

sensors are strongly correlated with the thermal displacement, however, the relationships 

between them were overlooked. The partial correlation between the thermal displacement and 

the sensors or the correlation between the sensors has to be identified; otherwise the 

technique is only suitable for designing a model with a single sensor which would impact the 

accuracy of the final model.  
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The third method is a standard stepwise regression [67], which is used to find the best 

thermal compensation model using the available temperature sensors. Stepwise regression is 

achieved by including the most strongly correlated sensors and then adding or subtracting one 

sensor at a time based on statistically significant criteria, thus evaluating the contribution of 

the added or withdrawn sensor. In each epoch of the stepwise regression procedure, only one 

sensor is added to or subtracted from the compensation model. The result of combining two 

or more sensors at a time is not considered. Since the temperature sensors on a machine 

element are interrelated, the merging of two or more sensors is significant during the 

modelling procedure. The stepwise regression could end in a model with insignificant 

sensors.  

Moreover, there are further sensor selection methods, such as the sensor placement scheme 

based on thermal modal analysis [11, 31]. This method has a similar drawback to that of 

finite element analysis. Yan et al. [46] also proposed an MRA model combing two methods, 

namely the direct criterion method and indirect grouping method; both methods are based on 

synthetic Grey correlation. Using this method, the number of temperature sensors was 

reduced from sixteen to four and the residual range was reduced by 69%. Han et al. [68] 

proposed a correlation coefficient analysis and fuzzy c-means clustering for selecting 

temperature sensors both in their regression thermal error model and ANN model [69]; the 

number of thermal sensors was reduced from thirty-two to five. However, more efforts are 

still needed in order to prove that the selected sensors are indeed correct and important to the 

final model.  

Sometimes, sensor selection is used in an automated manner in a black-box approach. 

However, this is not always the optimal approach. In order to develop accurate models, it is 

necessary to understand that sensor selection methods work under certain assumptions. 

Nevertheless, when used appropriately, they can give useful knowledge on what sensors seem 

important, what sensors seem unimportant and what sensors are of intermediate importance. 

With such knowledge combined with a comprehensive understanding of the data, an accurate 

approach for sensor selection can be achieved. Therefore, the above-mentioned methods 

suffer from the following drawbacks: a large amount of data is needed in order to select 

proper sensors; and the available data must satisfy a typical distribution such as normal (or 

Gaussian) distribution [70]. Therefore, a systematic approach is still needed to minimise the 

number of temperature sensors and select their locations so that the downtime and resources 

can be reduced while robustness is increased. It is notable that most publications deal only 
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with the reduction in sensors, but not the means by which the original set were determined. 

As a result the system is only shown for situations where the possible solutions are a subset 

of all potential locations, which requires non-trivial preconditioning of the problem. This is a 

situation where some aspects of the machine spatial temperature gradients might already have 

been missed and is typical when a machine model is being adapted, rather than evaluated 

from a new perspective. 

This thesis makes extensive use of thermal imaging camera for rapid assessment of machine 

structure thermal behaviour and development of the compensation models. A thermal 

imaging camera will be used to record temperature distributions a across the machine 

structure. Each pixel can be considered as a possible temperature measurement point. This is 

a good practice where many aspects of the machine spatial temperature gradients might 

already have been covered. 

In this proposed approach, the Grey models and fuzzy c-means clustering are used to 

determine the major sensors influencing thermal errors of a number of CNC machine tools, 

which is capable of simplifying the system prediction model. Then ANFIS is used to build a 

number of thermal prediction models based on selected sensors. This combined methodology 

can help to improve robustness of the proposed model, and reduce the effect of sensor 

uncertainty. 

2.3 Hysteresis in Thermal Error Modelling  

The hysteresis effect is defined as a system that has memory, where the effects of the current 

input to the system are experienced with a certain delay in time [71]. Due to varying thermal 

time constant, thermal effects on CNC machine tools have the characteristic of memorising 

the previous thermal status. Therefore, the errors in a machine tool are not only dependent on 

the current thermal status measured at the surface, but also influenced by the previous 

conditions of the machine. The hysteresis behaviour will introduce error in each cycle, which 

in a worst case scenario can be seen in large machine tools with bigger volumes, longer 

strokes and heavier cutting loads [43]. This hysteresis phenomenon makes the 

static/instantaneous modelling approach less robust. The characterisation of structural 

material which exhibits thermal hysteresis needs a special consideration. This is more evident 

when the rate of temperature change is low as compared with the speed of response of 

thermal displacement and also where surface-mounted sensors do not reflect the slower-



Chapter 2: Thermal-Error Modelling Techniques 

39 

 

changing internal temperature. Therefore, most of the above-mentioned methods require a 

large amount of measured data during heating/cooling cycles. Methods that require a 

calibrated model to predict thermal errors are expected to be confounded by the very large 

variety of working conditions that exist in a machine tool. Furthermore, attention is often 

drawn to the prohibitive downtime required to conduct the experiments in an ordinary 

machine shop [3]. 

2.4 Fusion Measurements 

Accurate and reliable measurements of key variables of the machine tool are very important. 

The information from these variables will be used for model training/calibration, therefore 

they should contain the most relevant feedback information. In most of the thermal error 

models of machine tools, temperature sensors are used as inputs to estimate thermal 

deformation [47, 57, 63]. However, spindle speed, axis feedrate, machining time and other 

parameters of the machine can also be taken into consideration because they are responsible 

for major heat sources [72]. In some cases [36, 73] no direct temperature measurement is 

taken and only the spindle speed and feedrate are used as inputs. However, this strategy is 

limited, because the model obtained under one particular operation condition is not robust 

under other operation conditions. Therefore, error reduction needs greater understanding of 

the machine tool properties and error sources. This results in the need for a machine tool 

structural monitoring system.  

Fibre Bragg Grating (FBG) sensors are used for strain measurement purposes [74]. They have 

several advantages over other sensors in terms of sensitivity and quality [74] and could be 

embedded in a future, commercialised system. In literature, the common applications of FBG 

are damage detection, structure health monitoring and strain measurement in harsh 

environments [75, 76]. FBG can be employed to observe the change in the strain of the 

structure with respect to variation in temperature to provide a new response of the system. By 

using these sensors, the modelling process can become simpler, more robust and more 

efficient since the number of thermal sensors can be reduced and the effects of thermal 

hysteresis minimised. 

Huang et al. [77] used FBG to investigate the effect of temperature variations of a heavy-duty 

machine tool on the shop floor. The variations of ambient temperature were measured by the 

FBG sensors and the spindle thermal shift errors were monitored by laser displacement 
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sensors simultaneously. Experimental results indicate that the spindle thermal errors have a 

similar change trend following the ambient temperature. Based on acquired data by FBG 

sensors and thermal error, the authors suggested that a thermal error compensation model 

could be built by using several modelling techniques such as multiple linear regressions, 

neural network, and other system identification methods; however, no implementation has 

been done in this regard. 

This section has highlighted that many thermal error models of machine tools used 

temperature sensors as inputs to estimate thermal deformations. The development of a 

compensation system using other parameters of the machine is discussed and investigated in 

this research work.  

2.5 A Summary of Challenges 

Research aimed at improving the accuracy of machine tools has been very prolific over the 

last two decades. From the literature, every thermal compensation model is faced with a 

series of challenges. These challenges mainly concern the accuracy and the robustness of the 

thermal compensation model. In modelling thermal errors of machine tools, the issues that 

need to be considered are described as follows: 

 Prediction accuracy: the main reason for implementing thermal error compensation is 

to reduce or minimise the thermal error. Prediction accuracy is therefore a key 

parameter when evaluating a system. Recently, artificial intelligence methods are 

becoming more popular and particularly amenable to modelling complex systems, 

because they have demonstrated superior predictive ability compared to traditional 

methods. For more detail about AI methods, the reader is referred to section 2.1.2. 

 Robustness: the thermal error model must work properly in different operating 

conditions and with different machine tool configurations. A system that would not 

produce reliable results would never by deployed; CNC machine tools rely on 

repeatability.  

 Simplicity: in the past, the model had to be kept as simple as possible. For instance, 

although the ANN models are more accurate than the regression models, the 

calibration of the regression models coefficients is simpler (least squares approach), 

see section 2.1.2.2. However, the use of mathematical software tool such as that 

existing in MATLAB facilitates the calibration of the model coefficients by using 
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optimisation/training tools. Nevertheless, there is still a strong argument for 

simplicity, where possible, to avoid over-constraining the system and introducing 

instability.  

 Model inputs: from the literature, some research uses only machine parameters 

(spindle speed, axis feedrate and run-time) as input. This requires no additional 

hardware, but such systems cannot cope with change in performance. On the other 

hand, other authors used only temperature sensors as input variables to the developed 

models (see section 2.2). This philosophy has some merit, since it ensures that the 

model is driven by changes in temperature profile irrespective of the heat source. 

However, fusion of other sensor types and machine control values can also be taken 

into consideration, because they are responsible for major heat sources. One such 

value is the spindle speed, although other significant factors can also be considered 

(see section 2.4). For this reason, the inclusion of the primary parameters is non-trivial 

when looking for long-term accuracy from the model and it can be more robust only 

to include the derived values that directly affect accuracy. 

 Availability of data: to obtain an accurate thermal prediction model, long term 

temperature data is required. However, the size of the input-output dataset is very 

crucial when the generation of data is a costly affair (machine downtime). For 

instance, the process of obtaining such data can take several hours for internal heating 

tests and for many days or more for the environmental tests (see sections 2.1.2.1, 

2.1.2.2). One way to overcome this problem, the model designer needs to borrow a 

valid white-box model to supplement the experimental data.  

 Flexibility: ideally the compensation system must be flexible to extension to other 

physical inputs, meaning that alternative variables can be deployed with minimal 

effort. This makes the system easier to deploy and adapt, increasing its usefulness 

across multiple systems (see section 2.4). 

 Sensor location: It is notable that most publications related to “optimising sensor 

placement” deal only with the reduction in sensors, but not the means by which the 

original set were determined. This is a situation where some aspects of the machine 

spatial temperature gradients might already have been missed. The selection must be 

optimal to satisfy accuracy and robustness, but not imposed under commercial 

constraints. For more detail about sensor locations, the reader is refereed to section 

2.2. 
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 Structure of the AI models: from the literature, the ANN is considered one of the most 

appropriate models for thermal error compensation. However, using neural network 

involves a moderately tedious trial and error effort for obtaining the network 

structure, especially involving the hidden layer neurons, number of hidden layers, 

transfer function, training algorithm and learning rate parameter. Furthermore, the 

final model is not easily understandable by domain experts for interpretation 

purposes. A robust system requires their design to be more efficient (see section 

2.1.3). 

2.6 Summary 

Accurate modelling of machine tools is becoming ever more important because of current 

industrial demands for higher productivity at increasing quality levels. Thermal error 

modelling is still an innovative and developing area of CNC machine tool accuracy. There 

are still uncertainties and room for improvement. In summary, from this undertaken literature 

review, it appears that, despite a large amount of previous research undertaken in the thermal 

error compensation area, there is a number of issues that still remain to be addressed (see 

section 2.5). 

The main aim of this research work is to produce intelligent techniques for modelling 

machine tool errors caused by the thermal distortion of CNC machine tools. The goal of this 

investigation is to make the intelligent compensation system readily applicable to any 

common CNC machine with minimal effort.  
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Chapter 3:  Artificial Intelligence Techniques and Methods  

3.1 Introduction  

An artificial intelligence system is a system that can make decisions which would be 

considered intelligent if made by a human being. Artificial Intelligence (AI) is becoming 

more popular and particularly amenable to modelling complex systems, because it has 

demonstrated superior predictive ability compared to traditional methods. 

In this chapter, the aim has been to present a description and analysis of the AI systems that 

will be used throughout this research work. This chapter first gives a short introduction to 

fuzzy logic and fuzzy systems, and then concentrates on methods for obtaining fuzzy models 

from data. These approaches are commonly referred to as neuro-fuzzy techniques since they 

exploit a link between fuzzy systems and neural networks. Within this chapter, only one 

architecture of neuro-fuzzy techniques is considered, the so called an adaptive neuro-fuzzy 

inference system. This is followed by an introduction to Grey models and their usage for 

thermal variables selection. Finally, a summary gives some guidelines for the reader to check 

the prediction quality of the resulting model and to assess the parameter accuracy.   

The whole block diagram of the proposed system is shown in Figure 3-1 where spots 1 to N 

represent the virtual temperature sensor data, and the thermal response. To obtain robust 

models, all the influence weighting of thermal sensors is clustered into groups using FCM. 

Then, one sensor from each cluster is selected to represent the temperature sensors of the 

same category according to its influence coefficient with the thermal response. Therefore, 

the ANFIS models can be built easily to predict the thermal response. 
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Figure 3-1: Block diagram of the proposed system. 

3.2 Fuzzy Logic and Fuzzy Systems 

The concept of Fuzzy Logic (FL) was pioneered by Zadeh [78, 79] and was introduced not as 

a control methodology, but as a way of processing data by allowing partial set membership 

rather than a crisp set membership or non-membership. In fuzzy logic, the membership 

function is a curve that defines how each point in the input space is mapped to a degree of 

membership between 0 and 1. Classical logic needs a deep understanding of a system’s exact 

physical equations and precise crisp values. Fuzzy logic demonstrates an alternative way of 

thinking, which allows complex modelling using a higher level of abstraction created 

particularly from human knowledge and experience. Fuzzy logic allows formulating this 

knowledge in a subjective way which is mapped into exact crisp ranges. In classic set theory, 

elements either completely belong to a set or are completely excluded from it. The process of 

expressing the mapping from inputs to an output using fuzzy logic is named the Fuzzy 

Inference System (FIS) [80]. 

The particular structure of the fuzzy model, can be classified into: (i) Fuzzy linguistic model 

(Mamdani model) [81, 82] (ii) Fuzzy relational model [83] (iii) Takagi-Sugeno (T-S) fuzzy 

model [84]. A main distinction can be made between the Mamdani model, which has fuzzy 

propositions in both antecedents and consequents of the rules, and the T-S model, where the 

consequent is a crisp function of the input variables, rather than a fuzzy proposition [85]. 

Fuzzy relational models can be regarded as a generalisation of Mamdani model, allowing one 

particular antecedent proposition to be associated with several different consequent 

propositions via a fuzzy relation [33].  
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In the literature, it can be clearly seen that the Mamdani model structure demonstrates several 

advantages. It provides a natural framework to include expert human knowledge in the form 

of linguistic fuzzy “if-then” rules. This knowledge can be easily gathered with rules that 

describe the relation between  system input-output [85]. Moreover, Mamdani model provides 

a flexible means to formulate knowledge, while at the same time it remains interpretable, as 

long as a proper design is developed. However, although Mamdani model possesses several 

advantages, it also comes with some weaknesses. One of the main drawbacks is the lack of 

accuracy when modelling some high-dimensional, complex systems. This is due to the 

limitation of human cognitive ability of codifying these complex systems. Therefore, during 

the last few years much of the research developed in fuzzy logic modelling focused on 

increasing the accuracy as much as possible, giving little attention to the interpretability of 

the resultant model. Hence, the T-S fuzzy models played a pivotal role in the contemporary 

research. These models are relatively easy to identify, and their structure can be readily 

calibrated. 

Therefore, the two main objectives to be addressed in the fuzzy model are interpretability, 

and accuracy. General speaking, the ideal model would be to satisfy both criteria 

(interpretability and accuracy) to a high degree, but since they are contradictory issues of the 

conflicting aims for complex systems, it is generally impossible [83]. Consequently, 

researchers usually focus on obtaining the best trade-off between interpretability and 

accuracy, depending on the nature of the problem to be solved.  

Although the measures of accuracy are well-known by using different statistical indices (e.g., 

root mean square error, and correlation coefficient), interpretability measures are difficult to 

state since interpretability depends on a number of factors; mainly the model structure, the 

number of inputs, the number of rules, the number of Membership Functions (MFs), etc. 

Furthermore, due to the subjectivity of the concept, the choice of proper interpretability 

measures is still an open problem [38]. 

As discussed above, fuzzy logic is a useful modelling technique for assessing ambiguous 

complex physical processes such as thermal dynamics and thus may be applicable for 

modelling thermal errors in machine tools which are affected by different heat sources. 

However, its applicability needs further evaluation with experimental data. Several hybrid 

methods have been introduced in the artificial intelligence field including a neuro-fuzzy 
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technique. Within this thesis only one architecture of neuro-fuzzy techniques is considered, 

the so called an adaptive neuro-fuzzy inference system. 

3.3 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) was introduced by Jang [80, 86]. 

According to Jang, ANFIS is a neural network that is functionally the same as a Takagi-

Sugeno type inference model. ANFIS has become an attractive, powerful modelling 

technique, combining well established learning laws of ANNs and the linguistic transparency 

of fuzzy logic theory within the framework of adaptive networks. Fuzzy inference systems 

are one of the most well-known applications of fuzzy logic theory. In the fuzzy inference 

systems, the membership functions typically have to be manually adjusted by trial and error. 

The FIS model performs like a white-box, meaning that the model designers can discover 

how the model achieved its goal. On the other hand, artificial neural networks can learn, but 

perform like a black-box regarding how the goal is achieved. Applying the ANN technique to 

develop the parameters of a fuzzy model allows us to learn from a given set of training data, 

just like an ANN. At the same time, the solution mapped out into the fuzzy model can be 

explained in linguistic terms as a collection of “if-then” rules.     

3.3.1 ANFIS Architecture 

The architecture of ANFIS is shown in Figure 3-2. Five layers are used to construct this 

model. Each layer contains several nodes described by the node function. Adaptive nodes, 

denoted by squares, represent the parameter sets that are adjustable in these nodes. 

Conversely, fixed nodes, denoted by circles, represent the parameter sets that are fixed in the 

model. A simple example ANFIS architecture, which uses two variables (T1 and T2) as inputs 

and one output (F: Thermal response), will be described in this section in order to explain the 

concept of the ANFIS structure.  
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Figure 3-2: Basic structure of ANFIS. 

Layer 1: The first layer is the fuzzy layer that converts the inputs into a fuzzy set by means 

of Membership Functions (MFs). It contains adaptive nodes with node functions described 

as: 

 𝑂1,𝑖 = 𝜇𝐴𝑖
(𝑇1),                   for 𝑖 = 1, 2   (3.1) 

 𝑂1,𝑖 = 𝜇𝐵𝑖−2
(𝑇2),                for 𝑖 = 3, 4      (3.2) 

where 𝑇1 and 𝑇2 are the input node, A and B are the linguistic labels associated with this 

node, 𝜇(𝑇1) and 𝜇(𝑇2) are the MFs, There are many types of MFs that can be used. However, 

a Gaussian shaped function with maximum and minimum equal to 1 and 0 is usually adopted. 

Parameters in this layer are defined as premise parameters. 

Layer 2: Every node in this layer is a fixed node, marked by a circle and labelled by ∏, with 

the node function to be multiplied by input signals to serve as output signal.  

 𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖
(𝑇1) ∙ 𝜇𝐵𝑖−2

(𝑇2), for  𝑖 = 1, 2    (3.3) 

where the 𝑂2,𝑖 is the output of Layer 2. The output signal 𝑤𝑖 represents the firing strength of 

the rule. 

Layer 3: Every node in this layer is considered a fixed node, marked by a circle and labelled 

by N, with node function to normalise the firing strength by computing the ratio of the i
th

 

node firing strength to sum of all rules’ firing strength.  

 𝑂3,𝑖 = �̅� =
𝑤𝑖

𝑤1+𝑤2
, for 𝑖 = 1, 2            (3.4) 
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where the 𝑂3,𝑖 is the output of Layer 3. The quantity �̅� is known as the normalised firing 

strength. 

Layer 4: Every node in this layer is an adjustable node, marked by a square, with node 

function as following: 

 𝑂4,𝑖 = �̅�𝑖 ∙ 𝑓𝑖 ,  for 𝑖 = 1, 2   (3.5) 

where 𝑓1 and 𝑓2 are the fuzzy “if-then” rules as follows: 

Rule 1. IF 𝑇1 is 𝐴1 and 𝑇2 is 𝐵1, THEN 𝑓1 = 𝑝1𝑇1 + 𝑞1𝑇2 + 𝑟1 

Rule 2. IF 𝑇1 is 𝐴2 and 𝑇2 is 𝐵2, THEN 𝑓2 = 𝑝2𝑇1 + 𝑞2𝑇2 + 𝑟2 

where 𝑝𝑖, 𝑞𝑖 and 𝑟𝑖 are the parameters set, referred to as the consequent parameters.   

Layer 5: Every node in this layer is a fixed node, marked also by a circle and labelled by ∑, 

with node function to calculate the overall output by:  

 𝑂5,𝑖 = ∑ �̅�𝑖 ∙ 𝑓𝑖𝑖 =
∑ 𝑤𝑖𝑓𝑖𝑖

𝑤𝑖
= 𝑓𝑜𝑢𝑡 =Overall output    (3.6) 

The simplest learning rule of ANFIS is “back-propagation” which computes error signals 

recursively from the output layer (Layer 5) backward to the input nodes (Layer 1). This 

learning rule is exactly the same as the back-propagation learning rule used in the common 

feedforward neural networks [50, 64]. Although this method can be applied to identify the 

parameters in an ANFIS network, the method is generally slow and likely to become trapped 

in local minima [80]. Different learning techniques, such as a hybrid-learning algorithm [87] 

or genetic algorithm [88], can be adopted to solve this training problem. Better performance 

of ANFIS models has been shown by adopting a rapid hybrid learning method, which 

integrates the gradient descent method and the least squares method to optimise parameters 

[64, 89, 90]. Thus in this thesis, the hybrid learning method is used for constructing the 

proposed models. 

3.3.2 Extraction of the Initial Fuzzy Model 

In order to start the modelling process, an initial fuzzy model has to be derived. This model is 

required to select the input variables, input space partitioning or clustering, choosing the 

number and type of membership functions for inputs, creating fuzzy rules, and their premise 

and conclusion parts. For a given dataset, different ANFIS models can be constructed using 

different identification methods such as grid partitioning, and fuzzy c-means clustering [64].  
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A. The ANFIS-Grid partition method is the combination of grid partition and ANFIS. 

The data space divides into rectangular sub-spaces using axis-paralleled partitions based 

on a pre-defined number of MFs and their types in each dimension [91]. The limitation of 

this method is that the number of rules rises rapidly as the number of inputs (sensors) 

increases. For example, if the number of input sensors is n and the partitioned fuzzy 

subset for each input sensor is m, then the number of possible fuzzy rules is m
n
. While the 

number of variables raises, the number of fuzzy rules increases exponentially, which 

requires a large computer memory. According to Jang [80], grid partition is only suitable 

for problems with a small number of input variables (e.g. fewer than 6).  

B. The ANFIS-fuzzy c-means clustering is the most common method of fuzzy clustering 

[89]. Essentially, it works with the principle of minimising an objective function that 

defines the distance from any given data point to a cluster centre. This distance is 

weighted by the value of MFs of the data point [89]. In the FCM method, which is 

proposed to improve ANFIS performance, the data are classified into pertinent groups 

based on their degrees of MFs. In this clustering method, it is assumed that the number of 

clusters, nc, is known or at least fixed. It divides a given dataset X={x1, …, xn} into c 

clusters. More detail can be found in the next section. 

In order to obtain a small number of fuzzy rules, a fuzzy rule generation technique that 

integrates ANFIS with FCM clustering can be used, where the FCM is used to systematically 

identify the fuzzy MFs and fuzzy rule base for ANFIS model. In this work, to identify 

premise membership functions, the two aforementioned methods were used and compared. 

3.3.2.1 Fuzzy C-Means (FCM) Clustering  

Fuzzy C-Means (FCM) is a soft clustering method in which each data point belongs to a 

cluster, with a degree specified by a membership grade. Dunn introduced this algorithm in 

1973 [92] and it was improved by Bezdek [93]. FCM algorithm is the fuzzy mode of K-

means algorithm and it does not consider sharp boundaries between the clusters [94, 95]. 

Thus, the significant advantage of FCM is the allowance of partial belongings of any object 

to different groups of the universal set instead of belonging to a single group totally.  

FCM partitions a collection of n vectors 𝑥𝑖 , 𝑖 = 1,2, . . . , 𝑛 into fuzzy groups, and determines a 

cluster centre for each group such that the objective function of dissimilarity measure is 

reduced. 
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𝑖 = 1,2, . . . , 𝑐 are arbitrarily selected from the n points. The steps of the FCM method are now 

briefly explained: firstly, the centres of each cluster 𝑐𝑖 , 𝑖 = 1,2, . . . , 𝑐 are randomly selected 

from the n data patterns {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛}. Secondly, the membership matrix (µ) is 

computed with the following equation: 

 
𝜇𝑖𝑗 = 

1

∑ (
𝑑𝑖𝑗

𝑑𝑘𝑗
)
2 𝑚−1⁄

𝑐
𝑘=1

, 
(3.7) 

where, 

𝜇𝑖𝑗: the degree of membership of object j in cluster i; 

m: the fuzziness index varying in the range [1,∞]; and 

𝑑𝑖𝑗 = ‖𝑐𝑖 − 𝑥𝑗‖: the Euclidean distance between 𝑐𝑖 and 𝑥𝑗. 

Thirdly, the objective function is calculated with the following equation. The process is 

stopped if it falls below a certain threshold: 

 𝐽(𝑈, 𝑐1, 𝑐2, … , 𝑐𝑐) = ∑𝐽𝑖 = ∑.∑𝜇𝑖𝑗
𝑚

𝑛

𝑗=1

𝑐

𝑖=1

𝑐

𝑖=1

𝑑𝑖𝑗
2 . (3.8) 

Finally, the new c fuzzy cluster centres 𝑐𝑖 , 𝑖 = 1,2, . . . , 𝑐 are calculated using the following 

equation: 

 𝑐𝑖 =
∑ 𝜇𝑖𝑗

𝑚𝑥𝑗
𝑛
𝑗=1

∑ 𝜇𝑖𝑗
𝑚𝑛

𝑗=1

. (3.9) 

In this thesis, the FCM algorithm will be used to separate whole training data pairs into 

several subsets (membership functions) with different centres. Each subset will be trained by 

the ANFIS, as proposed by Park et al. [96]. Furthermore, the FCM algorithm will be used to 

find the optimal temperature data clusters for thermal error compensation models. 

The proposed method has the following merits:  

 Using fuzzy c-mean clustering with ANFIS can be regarded as extracting knowledge or 

information from the experimental data form to the linguistic interpretation form. This is 

important in that the learning strategies can be started from a point where the risk of 

getting trapped in a local minimum can be avoided compared to that if the initial 

membership functions are chosen at random (which is often the case for ANNs). 
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 Unlike the Mamdani fuzzy model, where the rules of the model are built using the expert 

knowledge, in ANFIS model, the learning rules calibrate and adjust the membership 

functions and rules of the fuzzy model from the data it is modelling.  

3.4 Grey Models 

The Grey system theory, established by Deng in [48, 97], is a methodology that focuses on 

solving problems involving incomplete information or small samples. The technique can be 

applied to uncertain systems with partially known information by generating, mining, and 

extracting useful information from available data so that system behaviours and their hidden 

laws of evolution can be accurately described. It uses a Black-Grey-White colour to describe 

complex systems [98]. GM (1, N) is the most widely used implementation in literature [98], 

which can establish a first-order differential equation featured by comprehensive and 

dynamic analysis of the relationship between system parameters. The Accumulated 

Generating Operation (AGO) is the most important characteristic of the Grey system theory, 

and its benefit is to increase the linear characters and reduce the randomness of the samples. 

Based on the existing GM (1, N) model, Tien [98, 99] proposed a model, which is an 

improved Grey prediction model. The modelling values by GM (1, N) are corrected by 

including a convolution integral GMC (1, N).  

3.4.1 Accumulation Generation Operation (AGO) 

Accumulation generation is a technique used to uncover a development tendency existing in 

the process of accumulating Grey quantities so that the features and laws of integration 

hidden in the raw data can be discovered [70]. The dynamic characteristic of the proposed 

model results from the accumulation generation operation (AGO). The technique transforms 

the original data to first order 1-AGO data, which reduces the randomness of the samples, so 

making it easier to design the Grey model. The output value of the model can be associated 

with Inverse Accumulated Generating Operation, abbreviated as IAGO, the procedure of 

AGO and IAGO is summarised as follows: 

Step 1: consider the original series as: 

𝑋(0) = 𝑥(0)(1), 𝑥(0)(2), … 𝑥(0)(𝑘 − 1), 𝑥(0)(𝑘). (3.10) 

Step 2: from the original series, selecting the first value as the first value of the new series, 

selecting the first value plus the second one of the original series as the second value of the 
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new series, selecting the sum of the first three values of the original series as the third value 

of the new series, and so on, as follows: 

  𝑋(1) = 𝑥(1)(1), 𝑥(1)(2), … 𝑥(1)(𝑛 − 1), 𝑥(1)(𝑛). (3.11) 

By so doing, the new 1-AGO series 𝑋(1) will obtained of the original data 𝑋(0), which have 

more regular series for the benefit of modelling instead of modelling with original data.  

Step 3: 1- IAGO can be applied to obtain the original series, selecting the first value as the 

first value of the new series, selecting the second value minus the first one of the original 

series as the second entry of the new series, selecting the third value minus the second one of 

the original series as the third value of the new series, and so on. The mathematical 

expressions are as the following: 

𝑋(0) = 𝑥(1)(𝑘) − 𝑥(1)(𝑘 − 1),      (3.12) 

Where     𝑘 = 2,3,… , 𝑛.   𝑥(0)(1)=𝑥(1)(1)  

Therefore, by applying AGO transformation, the following important advantages can be 

obtained: (i) removing extreme fluctuation and noise so that the new series is more stable for 

modelling, (ii) the new series has a linear characteristic which makes it easier to model 

instead of modelling with the original non-linear data, (iii) and it has the characteristic of 

determining realistic governing laws from the available data [70, 100]. The emphasis is to 

discover the true properties of the system under the condition of small training data. 

To understand this property in more detail, Figure 3-3 shows an example of original 

(temperature changes) and converted series of data.  
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Figure 3-3: The original data vs AGO converted data. 

3.5 Optimisation Methods  

Traditionally, the Grey models have been calibrated by the least squares method. However, 

due to the nonlinearity of the problem, the least squares solution may not provide a 

satisfactory result. In order to avoid the tedious trial and error approach, the Particle Swarm 

Optimisation (PSO) algorithm will be used in order to improve the performance of the Grey 

models. The PSO algorithm will be reviewed in the next section and will then follow with the 

main steps of GMC (1, N) learning algorithm using PSO. 

3.5.1 The Particle Swarm Optimisation (PSO) 

The Particle Swarm Optimisation (PSO) algorithm was introduced by Eberhart et al. [101] as 

an alternative to other evolutionary techniques. The PSO algorithm is inspired by the 

behaviour of natural swarms, such as the formation of flocks of birds and schools of fish. The 

advantages of the PSO algorithm is that it does not require the objective function to be 

differentiable as in the gradient descent method, which makes few assumptions about the 

problem to be solved. Furthermore, it has a simple structure and its optimisation method 

illustrates a clear physical meaning. PSO consists of a population formed by individuals 

called particles, where each one represents a possible solution of the problem. Each particle 

tries to search the best position with time in D-dimensional space (solution space). During 

flight or swim, each particle adjusts its ”flying” or “swimming” in light of its own experience 
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and its companions’ experience, including the current position, velocity and the best previous 

position experienced by itself and its companions.  

3.6 GMC (1, N) and its Learning Algorithm 

In this section, the main steps of GMC (1, N) modelling are illustrated and discussed. The 

model can reveal the long-term trend of data and, by driving the model by the AGO, rather 

than raw data, can minimise the effect of some of the random occurrences. Therefore, the first 

step for building GMC (1, N) is to carry out 1-AGO (first-order Accumulated Generating 

Operation) to the data, so as to increase the linear characteristics and reduce the randomness 

from the measuring samples. PSO algorithm, with capability to optimise complex numerical 

functions, is adopted to calibrate the GMC (1, N) model. Finally, an IAGO (Inverse 

Accumulated Generating Operation) is performed to predict the thermal error and generate 

the final compensation values. Figure 3-4 shows a schematic diagram of PSO-based Grey 

model. The modelling detail is described as follows:  

Step 1: Consider the original data series as: 

𝑋1
(0)

= {𝑥1
(0)(1 + 𝑟),  𝑥1

(0)(2 + 𝑟), … , 𝑥1
(0)(𝑛 + 𝑟)}, and 

𝑋𝑖
(0)

= {𝑥𝑖
(0)(1), 𝑥𝑖

(0)(2), … , 𝑥𝑖
(0)(𝑛), … , 𝑥𝑖

(0)(𝑛 + 𝑚)}, where 𝑖 = 2,3, … , 𝑁, r is the period of 

delay, n gives the length of original data series and m denotes the number of entries to be 

predicted.  

Step 2: The above sequences of each variable are processed using 1-AGO to obtain the 1
st
-

order AGO sequences as follows: 

𝑋1
(1)

= {𝑥1
(1)(1 + 𝑟), 𝑥1

(1)(2 + 𝑟), … , 𝑥1
(1)(𝑛 + 𝑟)}, and 

𝑋𝑖
(1)

= {𝑥𝑖
(1)(1), 𝑥𝑖

(1)(2), … , 𝑥𝑖
(1)(𝑛), … , 𝑥𝑖

(1)(𝑛 + 𝑚)}, 

where 𝑋(1) = ∑ 𝑥(0)(𝑗),𝑡
𝑗=1   𝑡 = 1,2, … , 𝑛 + 𝑚.  

Since the details of GMC (1, N) can be found in [98], this work only briefly mentions the 

core equations of this method.  

𝑑𝑋1
(1)

(𝑡+𝑟)

𝑑𝑡
+ 𝑏1𝑋1

(1)(𝑡 + 𝑟) = 𝑏2𝑋2
(1)(𝑡) + 𝑏3𝑋3

(1)(𝑡) + ⋯+ 𝑏𝑁𝑋𝑁
(1)(𝑡) + 𝑢, (3.13) 
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where 𝑡 = 1,2, … , 𝑛 + 𝑚, 𝑏1 is the development coefficient, 𝑏𝑖 , (𝑖 = 2,3, … ,𝑁) the driving 

coefficient, and 𝑢 is the Grey control parameter. Therefore, time response sequences can be 

obtained. 

�̂�1
(1)(𝑡 + 𝑟) = 𝑥1

(0)(1 + 𝑟)𝑒−𝑏1(𝑡−1) +
1

2
× 𝑒−𝑏1(𝑡−1) × 𝑓(1) + ∑ [𝑒−𝑏1(𝑡−𝜏) ×𝑡−1

𝜏=2

𝑓(𝜏)] +
1

2
× 𝑓(𝜏),  

(3.14) 

where 𝑓(𝜏) = ∑ 𝑏𝑗𝑋𝑗
(1)(𝜏) + 𝑢𝑁

𝑗=2 .  

To calculate the coefficients 𝑏1, 𝑏𝑖 and 𝑢, the PSO can be used to calibrate the equation 

(3.14). Then, the Grey model is optimised until the performance is satisfactory. Finally, the 

optimal corresponding coefficients are used as the Grey model coefficients to predict the 

thermal error. The calibrating process of GMC (1, N) can be summarised as follows:   

In PSO algorithm, a particle refers to a coefficient in the model that changes its position from 

one move to another based on velocity updates. The mathematical description of the PSO 

algorithm is as follows: suppose that the search space is D-dimensional, and then the current 

position and velocity of the ith particle can be represented by 𝐵𝑖 = [𝑏𝑖1, 𝑏𝑖2, … , 𝑏𝑖𝐷]𝑇 and 

𝑉𝑖 = [𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐷]𝑇 respectively, where 𝑖 = 1, 2, … ,𝑀 and 𝑀 is the number of particles in 

the swarm.  

Particle i can remember the best position so far, which is known as the local best 

position 𝑃𝑏𝑒𝑠𝑡𝑖 = [𝑝𝑏𝑒𝑠𝑡1, 𝑝𝑏𝑒𝑠𝑡2, … , 𝑝𝑏𝑒𝑠𝑡𝑖𝐷]𝑇. It can also obtain the best position that the 

whole swarm establish, known as the global best position 

G𝑏𝑒𝑠𝑡𝑖 = [g𝑏𝑒𝑠𝑡1, g𝑏𝑒𝑠𝑡2, … , g𝑏𝑒𝑠𝑡𝑖𝐷]𝑇. The first position and velocity of particle i are 

randomly initialised by the uniformly distributed variables. Afterwards, particle i adjusts its 

velocity of iteration k+1 according to the local and global best positions, as well as the 

velocity and position of iteration k, as follows: 

𝑉𝑖(𝑘 + 1) = 𝜔𝑉𝑖(𝑘)+ 𝐶1𝑅(𝑃𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝐵𝑖(𝑘))+ 𝐶2𝑅(G𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝐵𝑖(𝑘))  (3.15) 

where 𝜔 is the inertia factor which is used to manipulate the impact of the previous velocities 

on the current velocity, C1 and C2 are the self-confidence factor and the swarm-confidence 

factor, respectively. R is a uniformly distributed random real number that can take any values 

between 0 and 1. With the updated velocity, the position of particle i in the iteration k+1 can 

be obtained as follows: 

 𝐵𝑖(𝑘 + 1) = 𝐵𝑖(𝑘) + 𝑉𝑖(𝑘 + 1)        (3.16) 
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The fitness of particle is measured using a fitness function that quantifies the distance 

between the particle and its optimal solution as follows: 

 𝑓(𝐵𝑖) = ∑[�̂�(0)(𝑘) − 𝑥(0)(𝑘)],2
𝑁

𝑘=1

 (3.17) 

where f is the fitness value, �̂�(0)(𝑘) is the target output; and, 𝑥(0)(𝑘) is the predicted output 

based on model parameters (particles) updating. 

Step 3: Update the velocity and position of each particle based on equations (3.15) and (3.16). 

Adjusting the model parameters in equation (3.14). 

Step 4: If the value of the error meets the requirement of the model, or a pre-determined 

number of epochs are passed, then the model calibration will end. If not, then return to 

Step 3. 

Step 5: Export the optimal solution 𝐵𝑖. 

Step 6: 1- IAGO can be applied to obtain the predicted values. The mathematical expression 

is as the following. 

�̂�1
(0)(𝑡 + 𝑟) = �̂�1

(1)(𝑡 + 𝑟) − �̂�1
(1)(𝑡 − 1 + 𝑟), and �̂�1

(0)(1 + 𝑟)=�̂�1
(1)(1 + 𝑟). (3.18) 

 

Figure 3-4: Schematic diagram of PSO-based Grey model. 

3.7 Variables Selection Using Grey Models 

A large number of thermal sensors may have a negative influence on predication accuracy 

and robustness of a thermal prediction model. One of the difficult issues in thermal error 

modelling is the selection of appropriate locations for the temperature sensors, which is a key 

factor in the accuracy of the thermal error model. This study adopts Grey system theory to 

identify the proper sensor positions for thermal error modelling. 
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The Grey system theory is a methodology that focuses on studying the Grey system by using 

mathematical methods with a only few datasets and poor information. The technique works 

on uncertain systems that have partial known and partial unknown information. Its most 

significant advantage is that it needs a small amount of experimental data for accurate 

prediction, and the requirement for the data distribution is also low [70]. There are many 

types of Grey models; the Grey GM (0, N), GM (1, N), GMC (1, N), and Grey Relational 

Analysis (GRA) models will be used in this work and are described in the following 

subsections. 

3.7.1 Grey Model GM (0, N)  

The Grey Model GM (h, N) is based on the Grey system theory, where h is the order of the 

difference equation and N is the number of variables [102]. The GM (h, N) model is defined 

as follows: 

If in sequences 𝑥𝑖
(0)

(𝑘), 𝑖 = 1,2, . . . , 𝑁. 𝑥1
(0)

(𝑘), is the main factor in the system, and 

sequences 𝑥2
(0)(𝑘), 𝑥3

(0)(𝑘), 𝑥4
(0)(𝑘), . . . 𝑥𝑁

(0)
(𝑘) are the influence factors of the same system, 

then the GM (h, N) model is  described as [70, 102]: 

 ∑𝑎𝑖

ℎ

𝑖=0

𝑑(𝑖)𝑥1
(1)

𝑑𝑡(𝑖)
= ∑𝑏𝑗

𝑁

𝑗=2

𝑥1
(1)(𝑘),      (3.19) 

where, 

𝑎1 and 𝑏𝑗 are determined coefficients; 

𝑏 is defined as the Grey input; 

𝑥1
(1)(𝑘):  The major sequence; 

𝑥𝑗
(1)(𝑘):  The influence sequences; and 

The accumulation generating operation (AGO)  

𝑥(0) = 𝑥(1) = [∑ 𝑥(0)(𝑘)

1

𝑘=1

, ∑ 𝑥(0)(𝑘)

2

𝑘=1

, ∑ 𝑥(0)(𝑘), … ∑ 𝑥(0)(𝑘)

𝑛1

𝑘=1

3

𝑘=1

]. (3.20) 

According to the previous definition of GM (h, N), the GM (0, N) is a zero-order Grey 

system, which can be described as follows: 

𝑧1
(1)(𝑘) = ∑𝑏𝑗𝑥𝑗

(1)
(𝑘)

𝑁

𝑗=2

= 𝑏2𝑥2
(1)(𝑘) + 𝑏3𝑥3

(1)(𝑘) + ⋯+ 𝑏𝑁𝑥𝑁
(1)(𝑘), (3.21) 
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Where, 

𝑧1
(1)(𝑘) = 0.5𝑥1

(1)(𝑘 − 1) + 0.5𝑥1
(1)(𝑘),           𝑘 = 2,3,4, . . . , 𝑛. 

Equation (3.21) can be written as: 

𝑎1𝑧1
(1)(2) = 𝑏2𝑥2

(1)(2) + ⋯+𝑏𝑁𝑥𝑁
(1)(2), 

𝑎1z1
(1)(3) = b2x2

(1)(3) + ⋯+ bNxN
(1)(3),      

                              ……… 

𝑎1𝑧1
(1)(𝑛) = 𝑏2𝑥2

(1)(𝑛) + ⋯+ 𝑏𝑁𝑥𝑁
(1)(n). 

(3.22) 

Dividing equation (3.22) by 𝑎1in both sides, then transfer into matrix form as follows: 

[
 
 
 
 0.5𝑥1

(1)(1) + 0.5𝑥1
(1)(2)

0.5𝑥1
(1)(2) + 0.5𝑥1

(1)(3)

⋮

0.5𝑥1
(1)(𝑛 − 1) + 0.5𝑥1

(1)(𝑛)]
 
 
 
 

=

[
 
 
 
 𝑥2

(1)(2) ⋯ 𝑥𝑁
(1)(2)

𝑥2
(1)(3) ⋯ 𝑥𝑁

(1)(3)

⋮ ⋯ ⋮

𝑥2
(1)(𝑛) ⋯ 𝑥𝑁

(1)(𝑛)]
 
 
 
 

[
 
 
 
 

𝑏2
𝑎1
𝑏3
𝑎1

⋮
𝑏𝑁
𝑎1]

 
 
 
 

.   (3.23) 

Assume 
𝑏𝑗

𝑎1
= 𝜃𝑚, where m=2, 3,…, N, then equation (3.23) can be simplified as follows: 

[
 
 
 
 0.5𝑥1

(1)(1) + 0.5𝑥1
(1)(2)

0.5𝑥1
(1)(2) + 0.5𝑥1

(1)(3)

⋮

0.5𝑥1
(1)(𝑛 − 1) + 0.5𝑥1

(1)(𝑛)]
 
 
 
 

=

[
 
 
 
 𝑥2

(1)(2) ⋯ 𝑥𝑁
(1)(2)

𝑥2
(1)(3) ⋯ 𝑥𝑁

(1)(3)

⋮ ⋯ ⋮

𝑥2
(1)(𝑛) ⋯ 𝑥𝑁

(1)(𝑛)]
 
 
 
 

[

θ2

θ3

⋮
θN

].      (3.24) 

The coefficients of the model can then be estimated from the following equation: 

𝜃 = (𝐵𝑇𝐵)−1𝐵𝑇𝑌,  (3.25) 

where, 

Y = 

[
 
 
 
 0.5𝑥1

(1)(1) + 0.5𝑥1
(1)(2)

0.5𝑥1
(1)(2) + 0.5𝑥1

(1)(3)

⋮

0.5𝑥1
(1)(𝑛 − 1) + 0.5𝑥1

(1)(𝑛)]
 
 
 
 

,          B =

[
 
 
 
 𝑥2

(1)(2) ⋯ 𝑥𝑁
(1)(2)

𝑥2
(1)(3) ⋯ 𝑥𝑁

(1)(3)

⋮ ⋯ ⋮

𝑥2
(1)(𝑛) ⋯ 𝑥𝑁

(1)(𝑛)]
 
 
 
 

,  𝜃 = [

θ2

θ3

⋮
θN

]. 

Therefore, the influence ranking of the major sequences (input sensors) on the influencing 

sequence (thermal response) can be known by comparing the model values of (θ2~θN). 

3.7.2 The GM (1, N) Model 

The first-order Grey model, GM (1, N), is a multivariable Grey model for multi-factor 

forecasting. GM (1, N) means a Grey model that has N variables including one dependent 
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variable and N-1 independent variables. Assume that there are N variables, 𝑥𝑖(𝑖 = 1,2, … ,𝑁), 

and each variable has n initial sequences as:  

𝑥𝑖
(0)

= {𝑥𝑖
(0)(1), 𝑥𝑖

(0)(2), … , 𝑥𝑖
(0)(𝑛)}   (𝑖 = 1,2, … , 𝑁) (3.26) 

First, in order to reduce the randomness and increase the smoothness of the sequence, the 

accumulative generation operation (AGO) is also applied to convert the sequences to be 

strictly monotonic increasing sequences (see section 3.4.1). Then, the GM (1, N) model can 

be expressed by the following  Grey differential equation [70]: 

𝑥1
(0)(𝑘) + 𝑎𝑧1

(1)(𝑘) = ∑𝑏𝑗𝑋𝑗
(1)(𝑘) = 𝑏2𝑥2

(1)(𝑘) + 𝑏3𝑥3
(1)(𝑘) + ⋯+ 𝑏𝑁𝑥𝑁

(1)(𝑘),

𝑁

𝑗=2

 (3.27) 

In which, 𝑧1
(1)(𝑘) is defined as: 

𝑧1
(1)(𝑘) = 0.5𝑥1

(1)(𝑘 − 1) + 0.5𝑥1
(1)(𝑘)                 𝑘 = 2,3,4,… , 𝑛. 

where the coefficients a and 𝑏𝑗 are called the system development parameter and the driving 

parameters, respectively. 

Equation (3.27) can be written as: 

𝑥1
(0)(2) + 𝑎𝑧1

(1)(2) = 𝑏2𝑥2
(1)(2) + ⋯𝑏𝑁𝑥𝑁

(1)(2), 

𝑥1
(0)(3) + 𝑎𝑧1

(1)(3) = 𝑏2𝑥2
(1)(3) + ⋯𝑏𝑁𝑥𝑁

(1)(3), 

                                  ……… 

𝑥1
(0)(𝑛) + 𝑎𝑧1

(1)(𝑛) = 𝑏2𝑥2
(1)(𝑛) + ⋯𝑏𝑁𝑥𝑁

(1)(𝑛).  

(3.28) 

Equation (3.28) can be written in the matrix form as:  

[
 
 
 
 𝑥1

(0)(2)

𝑥1
(0)(3)

⋮

𝑥1
(0)(𝑛)]

 
 
 
 

=

[
 
 
 
 𝑧1

(1)(2) 𝑥2
(1)(2) ⋯

𝑧1
(1)(3) 𝑥2

(1)(3) ⋯
⋮ ⋮ ⋮

𝑧1
(1)(𝑛) 𝑥2

(1)(𝑛) ⋯

𝑥𝑁
(1)(2)

𝑥𝑁
(1)(3)

𝑥𝑁
(1)(𝑛)]

 
 
 
 

= [

𝑎

𝑏2

⋮

𝑏𝑁

]. (3.29) 

The coefficients of the model can then be obtained using the least squares estimate method 

as: 

 𝜃 = (𝐵𝑇𝐵)−1𝐵𝑇𝑌,               (3.30) 
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where, 

𝜃 = [

𝑎
𝑏2

⋮
𝑏𝑁

],       Y = 

[
 
 
 
 𝑥1

(0)(2)

𝑥1
(0)(3)

⋮

𝑥1
(0)(𝑛)]

 
 
 
 

,          𝐵 =

[
 
 
 
 𝑧1

(1)(2) 𝑥1
(1)(2) ⋯

𝑧1
(1)(3) 𝑥1

(1)(3) ⋯
⋮ ⋮ ⋮

𝑧1
(1)(𝑛) 𝑥2

(1)(𝑛) ⋯

𝑥𝑁
(1)(2)

𝑥𝑁
(1)(3)

⋮

𝑥𝑁
(1)(𝑛)]

 
 
 
 

. 

Therefore, the influence ranking from the independent variables to the dependent variable can 

be known by comparing the model values of (b2~bN). 

3.7.3 Grey Relational Analysis (GRA) Method 

Grey Relational Analysis (GRA) is a method to capture the correlations between the 

reference factor and other compared factors of a system with a relatively small amount of 

data [98]. On the basis of Deng’s initial models of Grey incidences, Liu et al. [103] proposed 

a new type of GRA model to investigate the closeness of connection between sequences 

using the geometric shapes of the sequences. The GRA model can be summarised as follows: 

Step 1: Assume sequences: 

𝑋𝑖 = (𝑥𝑖(1), 𝑥𝑖(2), 𝑥𝑖(3), . . . 𝑥𝑖(𝑛)), is a sequence of data representing a system’s 

characteristics, and, 

𝑋𝑗 = (𝑥𝑗(1), 𝑥𝑗(2), 𝑥𝑗(3), . . . 𝑥𝑗(𝑛)), is a sequence of relevant factors. 

Step 2: The initial point zeroing images are:  

𝑋𝑖
0 = (𝑥𝑖

0(1), 𝑥𝑖
0(2), 𝑥𝑖

0(3), . . . 𝑥𝑖
0(𝑛)),    

𝑋𝑗
0 = (𝑥𝑗

0(1), 𝑥𝑗
0(2), 𝑥𝑗

0(3), . . . 𝑥𝑗
0(𝑛)),    

where, 𝑥𝑖
0(𝑘) = 𝑥𝑖(𝑘) − 𝑥𝑖(1),  𝑥𝑗

0(𝑘) = 𝑥𝑗(𝑘) − 𝑥𝑗(1), 𝑘 = 1,2, … , 𝑛.  

Step 3: The grey similitude degree is calculated as follows: 

𝜀𝑖𝑗 =
1

1 + |𝑠𝑖 − 𝑠𝑗|
, where  𝑠𝑖 − 𝑠𝑗 = ∫ (𝑋𝑖

0 − 𝑋𝑗
0)𝑑𝑡

𝑛

1

. 

The similitude degree of the GRA model is used to measure the geometrical shape similarity 

between sequence 𝑋I and 𝑋𝑗. The 𝜀𝑖𝑗 is called the similitude degree of 𝑋𝑗 with respect to 𝑋𝑖. 

According to the above equations, the similitude degree 𝜀𝑖𝑗 between thermal error of CNC 
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machine tool and the various temperature sensors can be calculated. The bigger 𝜀𝑖𝑗 the greater 

impact on thermal error. 

3.8 Model Validation 

Once a model has been trained, it is necessary to check the prediction quality of the resulting 

model and to assess the parameter accuracy. This will give the confidence behind the model, 

and tell the designer if he needs to revise the training process. This procedure is called model 

validation, which consists of several steps. 

3.8.1 Direct Validation 

The first test is to examine whether the obtained model can predict the experimental dataset 

that has been used for the training process. Otherwise, there is clearly something wrong in the 

training procedure, and it has to be modified and repeated. 

In order to compare the prediction results of the thermal model and its deviation from the 

measured data, statistical indices can be used. One of the most commonly used methods is the 

residual value: the model has to follow well the experimental data while smoothing off the 

noise (a model that tends to remember the noise is over-fitted model and will fail later on in 

cross-validation tests). A number of performance criteria such as a Root Mean Square Error 

(RMSE), correlation coefficient (R), and Nash–Sutcliffe Efficiency coefficient (NSE) [104] 

can also be used for testing the model performance.  

The coefficient of correlation (R) describes the degree of collinearity between predicted and 

measured data, which ranges between (-1, 1), is an index of the degree of linear relationship 

between measured and predicted data. Systems with good correlations have an absolute 

magnitude approaching 1.  

The Nash–Sutcliffe efficiency coefficient is a normalised statistic that determines the relative 

magnitude of the noise compared to the measured data variance, which ranges between (-∞, 

1). Systems with a good efficiency have an NSE approaching 1. 

The root mean square error is used to measure the difference between values predicted by a 

model and those measured from the experimental test. Actually, the RMSE has been the sole 

tool used to evaluate the model fit in several studies [50, 104]. Systems with high accuracy 

have RMSE approaching 0. 
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The performances of the models used in this study were computed using four performance 

criteria: Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency coefficient (NSE), 

correlation coefficient (R) and also residual value. The equations of first two are defined as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑍 − 𝑃)2𝑛

𝑘=1

𝑛
 ,  (3.31) 

𝑁𝑆𝐸 = 1 −
∑(𝑍 − 𝑃)2

∑(𝑍 − �̅�)2
 ,   (3.32) 

where, 

𝑍: The thermal response; 

𝑃: The predicted thermal response; 

�̅�: Average of the thermal response; and 

𝑛: The number of measured data samples. 

3.8.2 Cross Validation 

Direct validation is an essential condition, but by no means a sufficient condition to accept a 

model as being one that can predict the thermal error under different operation conditions. It 

may well be that the model predicts the data that has been used for training stage, but 

performs poorly with new unseen dataset. Cross validation is used to examine the 

performance of the model, to check its generalisation capability. Therefore, enough dataset 

must be used and divided these into two subsets, one for training stage (and afterward direct 

validation), and the other for cross validation. This procedure has been applied to check the 

obtained model validity, especially when complex models, such as thermal error models, are 

considered [105].  

3.9 Summary  

The aim of the work presented in this chapter is to provide a complete and thorough 

description of the AI tools that will be used thought this thesis. Fuzzy models allow one to 

utilise qualitative knowledge (words) in form of “if-then” rules. Typically, qualitative 

engineering knowledge is not sufficient in order to build a fuzzy model with high accuracy. 

Therefore, often measurement data is needed for fuzzy model calibration. Data-driven fuzzy 

models are commonly referred to as neuro-fuzzy models. 

Clustering procedures can be considered as extracting knowledge or information from the 

data forms to the linguistic interpretation form. After knowledge extraction using clustering 
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or partition, fuzzy models calibrate the knowledge by using training processes, and then their 

knowledge of the modelled system can be represented. The learning performed by the fuzzy 

models can be considered a process of calibrating the given knowledge, which refines it to fit 

the experimental data.  

The Grey system theory is a methodology that focuses on studying the Grey systems by using 

mathematical methods with an only few datasets and poor information. The technique works 

on uncertain systems that have partial known and partial unknown information. Its most 

significant advantage is that it needs a small amount of experimental data for accurate 

prediction, and the requirement for the data distribution is also low. In this thesis, the Grey 

models and fuzzy c-means clustering will be used to determine the major sensors influencing 

thermal errors of a CNC machine tool, which is capable of simplifying the system prediction 

model.  

The following chapter explores the experimental work and thermal characterisation of 

machine tools.  
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Chapter 4:  Thermal Characterisation of Machine Tools  

4.1 Introduction  

It is important to understand thermal characteristics of machine tools before attempting to 

reduce thermal deformation or apply a thermal error compensation system. Appropriate 

selection of input variables is an important task in modelling. In fact, not all input variables 

are equally important; some may have no significant effect on the system being modelled. In 

this thesis, thermography will be used extensively, both qualitatively and quantitatively, for 

selection of the optimal sensor locations and developing thermal error models.  

This chapter outlines the experimental considerations taken into account when collecting the 

data to build the compensation models of the CNC machine tool. Details are also provided on 

the equipment setup used during the various experimental tests. This is followed by a 

systematic methodology for a precise selection of thermal sensors and their positions in order 

to ensure the prediction accuracy and robustness of compensation models. The effect of using 

different physical quantities (temperature and strain) is also explored.  

4.2 Measurements of Thermal Deformation of Machine Tools  

In order to meet the wider aims of the research, it is necessary to be able to measure the 

thermal displacement of the machine, and also the temperature changes causing those errors. 

A number of different measurement devices have been used to achieve the testing 

requirements.  

4.2.1 Measurement of Temperature  

Usually for investigation of thermal error, discrete temperature sensors, such as 

thermocouples or resistance thermometers (Pt100, Pt1000) are attached on the machine 

surface to measure the temperature [31]. Some of these sensors are so small that they can be 

installed in the machine structure very close to the heat source. However, the exact 

temperature distribution within the machine structure can only be measured by discrete 

temperature sensors if they are densely deployed, which can be impractical. An appropriate 

method to provide richness of temperature data is the use of a thermal imaging approach. 
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Thermal imaging is an important part of this research work and is used both qualitatively and 

quantitatively for developing models on wide range of machine tools with different 

configurations. 

4.2.1.1 Thermal Imaging Camera 

A thermal imaging camera provides a visible image of otherwise invisible infrared light that 

is emitted by all bodies due to their thermal state. The thermal imaging camera has become a 

powerful tool for researchers and has applications in various fields such as medicine, 

biometrics, computer vision, building maintenance and so on [10, 106]. In this research work, 

a high-specification thermal imaging camera, namely a FLIR ThermaCAM®S65, was used to 

record a sequence of thermal images of temperature distributions across the parts of the 

machine structure. This camera provides a sensitivity of 0.08 °C, and an absolute accuracy of 

±2%. Full camera specifications are provided in Table 4-1. The thermal imaging camera 

offers a continuous picture of the temperature distribution in the image field-of-view. This is 

important as it provides the distribution of heat during heating and cooling cycles across the 

whole machine structure. This allows the machine’s structural elements to be measured 

online during the test. As well as the camera providing live continuous thermal images, they 

can also be recorded for further analysis. The thermal images are saved as a matrix of 

temperatures with a specific resolution of one pixel (equivalent to 2.25 mm
2
), which equates 

to over 76000 temperature measurement points for this 320 x 240 resolution camera. These 

thermal images can be transferred to a personal computer for analysis. Figure 4-1 shows a 

general overview of the experimental setup.  

Table 4-1: Thermal imaging camera specification. 

Field of view/min focus distance 24˚ x 18˚ / 0.3 m Thermal imaging 

camera        

 

Spatial resolution (IFOV) 1.5 mrad 

Thermal sensitivity @ 50/60 Hz 0.08 ˚C at 30 ˚C 

Electronic zoom function 2, 4, 8, interpolating 

Focus Automatic or manual 

Digital image enhancement  Normal and enhanced 

Detector type 
Focal plane array (FPA) uncooled 

microbolometer; 320 x 240 pixels 

Spectral range 3.5 to 13 µm 

In this research work, the data has been analysed using MATLAB. One disadvantage of 

thermal imaging is that it can have low absolute accuracy, usually in the order of ±2 ºC. A 



Chapter 4: Thermal Characterisation of Machine Tools 

66 

 

number of MATLAB functions have been developed to enhance this accuracy, including 

averaging the images to reduce pixel noise, alignment of images and extraction from the 

temperature data by averaging groups of pixels at a specific point [107].  

The radiation measured by the thermal camera depends on the temperature of the machine 

tool structure, but is also affected by the emissivity of the machine surfaces. Additionally, 

radiation reflects from shiny surfaces (ballscrew, test mandrel, etc.), and is directly captured 

by the thermal camera and appearing as very hot areas.  In order to measure the temperature 

of the machine structure precisely it is therefore necessary to know the emissivity accurately, 

for which the application of masking tape with a known emissivity (0.95) is a common and 

effective solution. The camera parameters are then set according to the measurement 

conditions considering the emissivity of the machine tool material, the distance between the 

machine and the camera, the relative humidity and the ambient temperature, as illustrated in 

Table 4-2. 

Table 4-2: Thermal imaging camera parameters. 

Distance 1.5 m 

Emissivity 0.95 

Ambient temperature 23 ˚C 

Relative humidity: 30% 

 

 

Figure 4-1: A general overview of a typical thermographic experimental setup. 
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The advantages of using thermal imaging approach are: 

 It is a remote and a non-contact temperature measuring technique that enables simultaneous 

monitoring a large area of the machine structure. It has the benefits of no temperature sensor 

placed on a machine surface, and that a whole image field-of-view can be characterised in a 

single measurement. 

 Thermal imaging requires minimal instrumentation. The essential requirements for such 

temperature measurement are a thermal imaging camera with its tripod. Nowadays, an 

infrared handheld camera is also available with the benefit of being lightweight and 

portability. 

 Thermal imaging enables recording of live, continuous thermal images and interpretations of 

the acquired pseudo colour coded thermal images are easier to understand. The thermal 

images can be transferred to a personal computer for further analysis. 

 Thermal imaging allows simultaneous acquisitions of a great number of the picture's elements 

(pixels). These elements equate to great numbers of possible temperature measurement points, 

depending upon the camera specifications and field of view. 

 It is worth mentioning that use of thermography only shows the surface temperature which 

means it is unable to obtain the temperature of the internal elements of the machine tool. 

Therefore, in a practical compensation system, temperature sensors will be physically placed 

in drilled holes to obtain a better response of internal temperature variation.   

4.2.1.2 Discrete Temperature Sensors 

Thermocouples are the most commonly used sensor for measuring temperature on machine 

tool thermal response. Although these sensors have low cost and easy to fix to the machine 

tool surface, their accuracy is relatively low, which is unsuitable for this type of application 

because a temperature change of a small magnitude on a machine can equate to tens of 

microns of error [108]. Moreover, thermocouples require a complex wiring effort when 

several sensors are being used, which is often the case in the numerical compensation (data-

driven) approach.  

Fletcher [108] used digital temperature sensors from Dallas Semiconductor LTD. These 

temperature sensors have a diameter of 1 mm and are of type “Dallas DS18S20”, capable of 

measuring in a range of -55 °C to +125 °C, with an accuracy of ±0.5 °C over the range of -

10 °C to +85 °C and resolution of 0.063 °C. Each sensor has a unique 64-bit serial code, 

which allows multiple sensors to function on the same 1-Wire bus. This feature significantly 

reduces the complexity of wiring and interface effort.  
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4.2.2 Measurement of Displacement  

The movement of the machine as it changes shape can be measured using various pieces of 

metrology equipment such as the on-machine probe, high accuracy displacement transducers, 

laser interferometer, etc.  

4.2.2.1 Non-Contact Displacement Transducers (NCDTs) 

Non-Contact Displacement Transducers (NCDTs) have been used to measure the 

displacement of a precision test bar, representing the tool, in the X, Y and Z axes [3, 39, 65]. 

Capacitive sensors can be used, but the ones selected for this research work on the eddy 

current principle. When an alternating current is fed through a coil embedded in the head of 

the sensor, it creates an alternating magnetic field in the conductive target (see Figure 4-2). 

As a consequence, the alternating current resistance of the sensor coil change. This change of 

impedance produces an electrical signal proportional to the distance from the target [109]. 

The non-contacting nature of the measurement allows the position of a rotating test bar to be 

constantly monitored during a spindle running test. The sensor can measure the distance of 

any conductive target and with re-calibration, any other metallic target. This position 

measurement device is ideal for harsh industrial environments due to its resistance to dirt, oil, 

dust, moisture, interference fields, etc. Furthermore, it is often less expensive than capacitive 

sensors and much smaller than laser triangulation devices [110]. The sensor has the 

measurement range of 0-1 mm and a fundamental resolution of 0.1 μm. 

 

Figure 4-2: Principle of eddy current sensor [111]. 
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4.2.2.2 Laser Triangulation Sensor (LTS) 

A Laser Triangulation Sensor (LTS) is an NCDT, which can measure and detect the relative 

distance to a target or surface. LTS works by firing a laser beam at the target under study. A 

common arrangement of the laser triangulation sensor is shown in Figure 4-3. The laser beam 

is projected on the surface, on which the light from a laser source scatters, and the scattered 

light can be recorded by a detector. The signal from the detector is used to determine the 

relative distance between the sensor and the target [110].  

The main benefit of LTS is the speed with which the measurement can be taken and their 

robustness for harsh environments. Furthermore, LTS has a relatively large standoff (i.e. 

distance between the sensor and the target surface), in which the risk of damage during setup 

is reduced.  However, LTSs are susceptible to self-heating, and are sensitive to the ambient 

property of the medium in the gap between the sensor and the target [110].  

 

Figure 4-3: Laser triangulation principle. 

4.2.2.3 Fiber Bragg Grating (FBG) Sensors  

Fiber Bragg Grating (FBG) sensors are gaining increasing attention in the field of real-time 

temperature measurement of machine tools [77, 112]. FBG sensors belong to the optical 

strain gauges family, are a promising technology in thermal error compensation systems. The 

working principle of these sensors is described in detail in [75], as one of the most exciting 
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developments in recent years. In the field of thermal error compensation, having a large 

number of temperature sensors would affect normal operation of machine tool, however FBG 

sensors prove to be an interesting solution for placing a large number of temperature sensors 

on the machine structure [77, 113]. The great advantage of this measurement technology is 

that a single FBG sensor is able to provide a set of measurements of distortion at many 

positions, providing distributed measurement along the structure [114]. In literature, the most 

common applications of FBG sensors are structure health monitoring, damage detection and 

strain measurement in harsh environments [75, 76].  

However, the FBG sensor itself is also affected by temperature by a factor that equates to 

8.64 μm/m/˚C. One method of compensating temperature is to use an unconstrained grating 

to measure temperature. Nevertheless, this was unviable for this application because it would 

require additional gratings to be mounted, incurring additional cost and requiring additional 

mounting space, which was not readily available. Instead, the low-cost temperature sensors 

used for the temperature-based model were used to correct for change in the grating 

temperature. 

4.3 Test Machines   

A CNC machine tool usually has three main groups of parts: machine tool structure, drives, 

and control system. The machine structure consists of stationary and moving elements. The 

stationary elements include columns, bridges, beds, gear box housings, etc. They usually 

carry moving elements, such as spindles, tables, slides, gears, bearings, and carriages. 

Moving mechanisms can be grouped into spindle and feed drives in machine tools. The 

spindle drive provides sufficient angular speed, torque, and power to a rotating spindle shaft, 

which is connected to the spindle with different configurations [115]. The feed drives carry 

the table or the carriage. Generally, the table is connected to the nut, and the nut houses a 

ballscrew. The screw is connected to the drive motor either directly or via a gear system 

depending on the feed speed, inertia, and torque reduction requirements. The detailed design 

of machine tool structures will not be covered in this thesis. 

In this thesis, the modelling methods have been applied and validated on three different 

machine tools. The different configurations of these machines are described as follows:  



Chapter 4: Thermal Characterisation of Machine Tools 

71 

 

4.3.1 Machine A - Vertical Milling Centre (VMC) 

In this thesis, the initial experiments were performed on a small, three-axis vertical milling 

centre. Figure 4-4 shows the block diagram of the machine, whose configuration is often 

known as C-frame due to its shape. This is a very common form of machine in industry. The 

Z-axis maximum tool travel is 330 mm, and the machine table X-axis maximum travel and 

Y-axis maximum travel are 500 mm and 400 mm, respectively. The spindle is rotated by a 

DC motor mounted on the top of the spindle carrier. The spindle speed can be controlled 

from 80 rpm to 9000 rpm. The motors for the axes are directly coupled to a ballscrew that is 

supported by bearings at each end. The position feedback for each axis is from a rotary 

encoder mounted on the axis motor. This means that the ballscrew forms part of the feedback 

device.  

 

Figure 4-4: A general overview of Machine A. 

4.3.2 Machine B - Vertical Milling Centre (VMC) 

Figure 4-5 shows the block diagram of a three-axis vertical milling machine, this machine is 

similar in concept to Machine A. The motors for the axes are directly coupled to a ballscrew 

that is supported by bearings at each end. The spindle is rotated by a DC motor mounted on 

the top of the spindle carrier. Nevertheless, in this machine the spindle is rotated using a belt 

drive which may acts as a heat source by which the heat flows into the spindle through the 

contacting areas. The spindle speed can be controlled from 60 rpm to 8000 rpm. Unlike 

Machine A, the axis feedback on Machine B is via linear scales, which means that ballscrew 

expansion is directly compensated by the CNC’s control loop. In order to obtain the 
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temperature data of this machine tool, a total of 77 thermal sensors were already placed on 

the machine [107]. The sensors can be classified into different categories according to their 

positions as illustrated in Table 4-4. 

 

Figure 4-5: Location of thermal sensors on the Machine B. 

4.3.3 Machine C – A 5-axis Gantry Milling Machine 

Machine C is a 5-axis gantry milling machine as shown in Figure 4-6. The machine is 

constructed of three linear axes X, Y, Z, and two rotary axes B and C. The tool-carrying 

spindle is mounted on the B axis and for this configuration, all axes move the tool. The 

maximum speeds along the X-axis, Y-axis, and Z-axis of the machining centre are 75 m/min, 

75 m/min, and 70 m/min, and the travels are 2.5 m, 1.2 m, and 0.7 m, respectively. The 

spindle has a maximum rotational speed of 3200 revolutions per minute. This machine has 

linear scale feedback for the three axes and directly mounted rotary encoder for the B and C 

axes.  

To improve the accuracy of the proposed model, and to avoid the need for a large number of 

temperature sensors, additional feedback information is supplied by FBG as shown in Figure 

4-6 and Figure 4-22. This can detect the change in length by measuring the detectable strain. 

Three FBG sensors were placed on the ram structure in order to measure the distortion of 

each side of the structure. Another four FBG sensors were placed on the cross-beam structure 

to monitor the thermal response with change in the ambient temperature. These on-line 

distortion measurements will be used as input to the proposed model in order to predict the 

growth of the ram. 



Chapter 4: Thermal Characterisation of Machine Tools 

73 

 

 

Figure 4-6: A general overview of the 5-axis milling machine and location of the (FBG). 

4.4 Key Thermal Measurement Points 

The selection of temperature variables is a key factor to the accuracy of the thermal error 

model, which will be adversely affected if there is insufficient coverage of the temperature 

distribution. At the same time, the calibration/training time and the relative cost of the system 

will increase if the number of input variables is large. Therefore, the location of suitable 

temperature sensors should be determined before the modelling process. 

In this section, experiments were performed on Machine A. The thermal imaging camera was 

used to record a sequence of temperature distributions across the spindle-carrier structure of 

the machine tool. Three NCDTs were used to measure the resultant displacement of a solid 

test bar, used to represent the tool. Two sensors, vertically displaced by 100 mm, measure 

both displacement and tilt in the Y-axis direction and a third measures displacement in the Z-

axis direction (see Figure 4-7). Distortions in the X-axis direction were not measured during 
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this study, since experience has shown that the symmetry of the machine structure renders 

this effect negligible. A general overview of the experimental setup is shown in Figure 4-8. 

The use of masking tape on the machine provides areas of known emissivity. In particular, in 

some locations such as on the rotating test bar, the tape is required to provide a temperature 

measurement, which would be difficult to achieve by other means. 

 
Figure 4-7: Measurement of the thermal effect using a test bar and NCDTs. 

 

Figure 4-8: A general overview of the experimental setup. 

The VMC was examined by running the spindle at its highest speed of 9000 rpm for 

120 minutes to excite the thermal behaviour. The spindle was then stopped for approximately 

70 minutes for cooling. The thermal imaging camera was positioned approximately 1500 mm 

from the spindle carrier to ensure that the parts of the machine of interest were within the 

field of view. Images were captured and stored to the camera’s memory card during the 

experiment at 10 second intervals. The thermal displacement at the spindle was measured 
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simultaneously and is shown in Figure 4-9. The effects of test mandrel run-out and 

measurement noise should be considered (see the oscillation in the Y bottom-axis) during the 

test when the spindle is rotating. The elimination of the effects of this error can be achieved 

by use of time averaging or a low-pass filter. The maximum displacement for the Y top-axis 

is 20 µm, the Y bottom-axis is 23 µm, and the Z-axis is 35 µm. A change in tilt is also found 

by measuring the difference between the Y top-axis and Y bottom-axis after the spindle was 

stopped. This is likely to have been caused by non-uniform distortions in the complex 

geometry of the machine structure [39]. 

 
Figure 4-9: Thermal response of the spindle. 

MATLAB functions were developed to enhance and analyse the temperature data [107]. 

These functions include image averaging (to reduce noise from individual pixels), image 

alignment and the ability to extract a discrete point precisely by averaging groups of pixels. 

In addition, efficient methods of creating virtual sensors were created, including the ability to 

draw “lines” of temperature sensor spots representing strips. This is important in order to 

obtain sufficient temperature data readings across the carrier structure. A Grey model was 

applied to the measured temperature data to quantify the influence of each spot across the 

carrier structure. Figure 4-10 shows thermal images with 525 discrete spots on the carrier and 

Figure 4-11 shows some extracted readings from these spots taken over the duration of the 

whole test. 
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Figure 4-10: Thermal images captured during the experiment with 525 selected spots. 

 
Figure 4-11: Thermal data extracted from images using MATLAB. 

The machine was run through a test-cycle of 120 minutes heating and approximately 

70 minutes cooling. The temperature change and displacement of the spindle relative to the 

table in the Z-axis was captured throughout the test. This was used in the GM (h, N) model to 

determine which parts within the machine structure contribute most significantly to the total 

thermal displacement. Further analysis then concentrated on the influence coefficient of 

discrete points using the FCM method. The process is as follows: 
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First, the GM (0, N) model of Grey system theory is calculated using the temperature changes 

and displacement of spindle nose in the Z-axis. 

Suppose that Spot-1~Spot-525 represents the major variables (inputs) x2
(0)

~x526
(0)

 and the 

measurement of the NCDT sensors are the target variable (output) x1
(0)

. The norm values of 

the influence coefficient matrix θ̂ can be obtained using equation (3.25), as |θ2|~|θ526|, 

indicating the influence weighting of the input data against the output data, respectively. The 

greater the influence weight, the greater the impact on the thermal error, and the more likely 

it is that the temperature variable can be regarded as a possible modelling variable. Figure 

4-12 shows a 3D plot of the influence coefficient matrix. 

 

Figure 4-12: Surface of Influence ranking of temperature data using GM (0, N). 

From Figure 4-12, the flow of heat across the carrier can be clearly seen. Different points 

have different influence on thermal error in the Z-direction; the points near the motor are the 

highest factors. During the cooling cycle, it can be seen (Figure 4-9) that the test bar shows 

some movement which occurred immediately after the spindle was stopped. This movement 

is probably caused by the expansion of the test bar itself; the localised heat from the motor 

and spindle bearings flow into the bar and there is no cooling effect from air turbulence. This 

flow of heat into the test bar is a significant contributor to the response in the Z-direction as 

the tool continues to expand after the spindle has stopped. An investigation of the source of 

this growth of the test bar was carried out by extracting ten spots during the same heating and 
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cooling test as show in Figure 4-13. The GM (0, N) model of the Grey system theory was 

applied again on a specific period “snapshot” of the test as shown in Figure 4-14.  

 

Figure 4-13: Thermal image captured during the experimental with 10 selected points. 

 
Figure 4-14: Thermal data extracted from images with 10 selected points. 

Figure 4-15 shows the GM (0, N) model output for the selected period. It can be observed 

that the temperature change of different selected spots on the carrier has different influence 

on the thermal error in the Z-axis direction and the spots 9 and 10 on the test bar are the most 

important factors, while spot 7 is the most significant location on the machine structure. The 

GM (0, N) model provides a method to analyse systems where traditional methods such as the 

correlation coefficient do not seem appropriate. It is applicable irrespective of the size of 
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datasets and independent of requirement for a specific distribution. The results of this 

investigation indicate that the GM (0, N) model is a good optimisation tool for finding the 

proper selection of thermal sensors and their location. 

 
Figure 4-15: Influence ranking of ten temperature spots using GM (0, N). 

The temperature sensors were clustered into a different number of groups using FCM as 

described in section 3.7, starting with one cluster for group 1 up to eight clusters for group 8. 

Then, one sensor from each cluster was selected according to its correlation with the thermal 

response to represent the temperature sensor of the same category (see Table 4-3); different 

number of compensation models can be constructed from these representative spots which 

will be discussed in the next chapter. An example of the clustering procedure for four clusters 

is shown in Figure 4-16. 

Table 4-3: The cluster results. 

No. of groups Representative spots 

Group 1 (one cluster) Spot-50 

Group 2 (two clusters) Spot-50, Spot-214 

Group 3 (there clusters) Spot-50, Spot-84, Spot-398 

Group 4 (four clusters) Spot-50, Spot-107, Spot-249, Spot-493 

Group 5 (five clusters) Spot-50, Spot-140, Spot-225, Spot-263, Spot-283 

Group 6 (six clusters) Spot-50, Spot-109, Spot-200, Spot-240, Spot-348, Spot-407 

Group 7 (seven clusters) Spot-50, Spot-96, Spot-136, Spot-305, Spot-335, Spot-443, Spot-474 

Group 8 (eight clusters) Spot-50, Spot-70, Spot-114, Spot-134, Spot-196, Spot-262, Spot-320, Spot-352 
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Figure 4-16: An example of clustering procedure for four clusters. 

4.4.1 Summary of the Proposed System  

In this section, a thermal imaging camera was used to record temperature distributions across 

the machine structure during the experiments. The thermal images were saved as a matrix of 

temperatures with a specific resolution of one pixel, each of which can be considered as a 

possible temperature measurement point. The size of a temperature sensor means that, in a 

practical compensation system, sensing could not be physically applied at that spatial 

resolution. However, the locations can be centred on the optimal position and it is possible to 

use localised averaging of pixels to reduce any noise across the image. The Grey system 

theory and fuzzy c-means clustering were applied to minimise the number of temperature 

points and select the most suitable ones for a given target accuracy.  

Generally, the following steps would be conducted when developing intelligent thermal 

model on a CNC machine tool: 

 Record a sequence of thermal images using the thermal imaging camera while the 

machine runs through a range of duty cycle. 

 Save the thermal images as a matrix of temperatures with a specific resolution of one 

pixel, each of which can be considered as a possible temperature measurement point. 
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 Analyse the measurement points using the Grey model to determine which parts 

within the machine structure contribute most significantly to the total thermal 

displacement. Further analysis then concentrated on the influence coefficient of 

discrete points using a clustering method. 

 Further analyse the representative temperature sensors by constructing different 

models with different architectures. This is important to understand any uncertainty 

that is created by variation of the model design. (Chapter 5). 

 Validate and test the developed model on a machine tool. (Chapter 6). 

Most of these steps are carried out off-line. This modelling approach addresses the problems 

of the previous empirical models and so offers a cost-effective approach to develop a thermal 

error compensation that can be implemented on a wide range of machine tools. It is worth 

reiterating that use of thermal imaging is to help find the optimal locations for temperature 

measurement when designing a thermal error model. In a practical compensation system, 

discrete temperature sensors will be physically applied at these optimal locations. 

The whole block diagram of the proposed system is shown in Figure 4-17 where spots 1 to N 

represent the virtual temperature sensor data captured from the thermal imaging camera, and 

the thermal response obtained from NCDTs. 

 

Figure 4-17: Block diagram of the proposed system. 
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Next, ANFIS using FCM will be used to derive a thermal prediction model. Temperature 

measurement points will be used as inputs and thermal response data, synchronously 

measured by NCDTs, as the output. The ANFIS with FCM uses these input/output pairs to 

create a fuzzy inference system whose membership functions are tuned using either the back-

propagation or least squares estimator learning algorithm.  

4.5 Robustness of Grey Models  

A number of Grey models (GM(0,N), GM(1,N), and GRA) have been used throughout this 

research work (section 3.4, and our published studies in [116, 117]). Among these models, 

the GRA model provides a simple, less computationally intensive and low-cost approach to 

analyse systems with the benefit of requiring less experimental data. This is explained by the 

following example on Machine B. 

As has been discussed in the previous sections, a large number of thermal sensors may have a 

negative influence on predication accuracy and robustness of a thermal prediction model. 

However, too few sensors will fail to cover the requirement for a comprehensive transfer 

function. One of the difficult issues in thermal error modelling is the selection of appropriate 

temperature sensor locations, which is a key factor in the accuracy of the thermal error 

model. This study adopts Grey relational analysis to identify the proper sensor positions for 

thermal error modelling. The similarity degree between the thermal error and the temperature 

sensors is calculated from the experimental data. All of the similarity degrees of thermal 

sensors will be clustered into their groups. Then, one sensor from each group will be selected 

according to its similarity degree with the thermal response, to represent the temperature 

sensors of the same category. Therefore, by selecting these sensors, the ANFIS models can be 

built easily to predict the thermal response. 

4.5.1 Setup of Measurement System 

As shown in Figure 4-18, in order to obtain the temperature data of the Machine B, a total of 

77 thermal measurement points are placed on a small vertical milling machine. The 

measurement points can be classified into different categories according to their positions as 

illustrated in Table 4-4: 
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Figure 4-18: Location of thermal points and displacement sensors on the machine. 

Table 4-4: The location of the thermal measurement points 

Group No. Point No. Definition 

Column sensors (1) 

1-7 Outside the column 

70 Ambient at top of column air 

71-72 Inside the column  

Carrier sensors (2),(3) 
8-33 Strip 1 Sensors (placed on the carrier) 

34-62 Strip 2 Sensors (placed on the carrier) 

Spindle boss points (4) 63,65 Spindle boss 

Other parts of the machine (5) 

66,67 Y Scale air 

68,69 Y bed sensor 

73 Carrier air 

74 Table 

75 Spindle air 

76 Base air 

77 Tool air 

Five NCDTs are used to measure the displacement of a precision test bar, representing the 

tool in the X, Y and Z axes, respectively. The configuration is shown in Figure 4-18. The 

vertical milling machine was examined by running at its highest spindle speed of 8000 rpm 

for one hour to excite the largest thermal behaviour. The temperature measurement points at 

the selected places on the machine tool and the thermal displacement of the spindle are 

measured simultaneously; the thermal displacement of the vertical milling machine is shown 

in Figure 4-19. The maximum displacement of the X-axis is 3 μm, the Y-axis is 60 μm and 

the Z-axis is 24 μm. In this example, the X-axis thermal displacement is ignored because it is 
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much smaller than that of the Y-axis and the Z-axis due to their mechanical symmetry; only 

the Y-axis and Z-axis are considered. 

 

Figure 4-19: Thermal response of the spindle. 

4.5.2 Thermal Key Point Identification Using GRA Model 

Suppose that the measurement of the NCDTs sensor in the Y-direction is the reference 

sequence and T1-T77 represents the comparative sequences. According to the GRA method 

explained in section 3.7.3, the algorithm is summarised as follows: 

Step1: Pre-processing the experimental data; the reference sequence (𝑋0) and 𝑚 comparative 

sequences (𝑋𝑚) are pre-processed and represented as: 

𝑋0 = (𝑥0(1), 𝑥0(2), … , 𝑥0(𝑛)),  

𝑋1 = (𝑥1(1), 𝑥1(2), … , 𝑥1(𝑛)),  

. 

. 

. 

  𝑋𝑚 = (𝑥𝑚(1), 𝑥𝑚1(2), . . . , 𝑥𝑚(𝑛)).  

Step 2: Computing the initial images with zero initial provides:  

𝑋0
0 = (𝑥0

0(1), 𝑥0
0(2), … , 𝑥0

0(𝑛)),  
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𝑋1
0 = (𝑥1

0(1), 𝑥1
0(2), … , 𝑥1

0(𝑛)),  

. 

. 

. 

  𝑋𝑚
0 = (𝑥𝑚

0 (1), 𝑥𝑚
0 (2), . . . , 𝑥𝑚

0  (𝑛)), 

where, 𝑥𝑖
0(𝑘) = 𝑥𝑖(𝑘) − 𝑥𝑖(1), 𝑘 = 1,2,… , 𝑛, and  𝑖 = 0,1,2, … ,𝑚.   

Step 3: Compute|𝑠0 − 𝑠𝑚| as follows: 

|𝑠0 − 𝑠𝑚| = |∑ 𝑥0
0(𝑘) − 𝑥𝑚

0 (𝑘)

𝑛−1

𝑘=2

+
1

2
[𝑥0

0(𝑛) − 𝑥𝑚
0 (𝑛)]|. 

Step 4: Calculation of similarity degrees of sequences 𝑛 × 𝑚 are as follow: 

 𝜀0𝑚 =
1

1 + |𝑠0 − 𝑠𝑚|
 (4.1) 

Step 5: Sort/cluster the similarity degrees of all the sequences. Then, one point from each 

group is selected according to its similarity degree with the thermal response to represent the 

temperature measurement point of the same category. 

To facilitate processing of calculation, MATLAB Graphical User Interface (GUI) functions 

have been developed to aid in the processing of variables selection for modelling. Input data 

into the presented GUI can have different origins, but they have to be MS Excel .xlsx 

formatted, specifically named and saved in the same directory as the other GUI files. Then, 

the first column of the MS Excel file is presented as time, the second column as reference 

factor, and the rest of the columns as compared factors of a system. By loading the file, it will 

display brief information about a particular system (number of inputs, output and the number 

of samples). 

This allows a sequence of data, captured using NCDTs sensors and temperature measurement 

points to be loaded into the MATLAB GUI directly. The GRA method can be applied with 

different lengths of data; the results can be plotted and/or exported to MS Excel file. 

Different tests were carried out with different input-output dataset sizes using the GRA 

model: a sixty minute test (350 samples); 30 minute test (175 samples) and; a one minute test 

(6 samples) respectively. The similarity degrees, the group-sorting and representative 

temperature sensors are illustrated in Figure 4-20, Table 4-5, and Table 4-6, respectively.  
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Figure 4-20: Similarity ranking of temperature points using GRA model. 

Table 4-5: The clustering result. 

Group No Measurement points order 

Group 1 5>6> 3>4>7>2>70>1>72>71 

Group 2 11>10>12>9>13>14>8>15>16>17>18>19>20>21>22>23>24>25>26>27>28>30>29>31>32>33 

Group 3 
40>41>42>43>39>38>44>45>37>36>35>46>34>46>34>47>48>49>50>51>52>53>54>55>56>5

7>59>58>60>61>62 

Group 4 65>64>63 

Group 5 75>77>73>74>76>69>66>68>67 

Results in Figure 4-20 can be well explained by the physical construction and expected 

thermal behaviour of the machine tool. They indicate that the temperature measurement 

points located close to the heat source give a higher similarity degree than the temperature 

measurement points located relatively far away from the heat source. Results also indicate 

that GRA is applicable irrespective of the size of datasets and independent of requirements 

for a specific distribution. It provides a method to analyse systems where traditional methods 

such as the correlation coefficient do not seem appropriate. GRA is a useful tool to determine 

the degree of similarity between the reference sequence and comparative sequences. 

According to the degrees of similarity between the temperature sequences and the thermal 

error sequence of the Y-direction listed in Table 4-5, the thermal measurement point with the 

biggest value in each group is selected; they are 5, 11, 40, 65, and 75 (see Table 4-6). 

Therefore, the 77 measurement points placed for academic investigation were decreased to 5. 
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For practical purposes, the main representative points can be used as a basis for constructing 

the models, which could simplify the thermal prediction models. The above analysis indicates 

that the GRA model is a good optimisation tool for finding the proper selection of thermal 

measurement points. 

Table 4-6: Selected temperature sensors. 

Sensor No. Definition Group name 

5 measuring the temperature of the column GROUP 1 

11 measuring the temperature of point on line 1 
GROUP 2,3 

40 measuring the temperature of point on line 1 

65 measuring the temperature of the spindle boss GROUP 4 

75 measuring the temperature of the spindle air GROUP 5 

Figure 4-21 shows the influence ranking of temperature data presented in section 4.4 using 

GRA model. It can be also well explained by the physical construction of the machine tool; 

the temperature spots located close to heat sources (e.g. spindle motor, bearing) give a higher 

similarity degree than the temperature measurement points located relatively far away from 

the heat source (spindle-carrier rear) at the beginning of the test. Therefore, this observation 

confirms to the results obtained by GM (h, N) model in the section 4.4. 
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Figure 4-21: Influence ranking of temperature data using GRA model. 

4.6 Example of the Fusion Measurement on Machine C 

In most previous research work, temperature sensing is used as inputs to the compensation 

models. This is consistent with the approach from a large number of researchers. The 

philosophy has a merit, since it ensures that the model is driven by changes in temperature 

profile irrespective of the heat source. However, to improve the accuracy of the predicted 

model, and to minimise the effects of thermal hysteresis, additional feedback information is 

supplied by FBG sensors on Machine C.  

In this example, the machine under investigation is a 5-axis gantry milling machine (Machine 

C). The first step was to perform an initial assessment to identify machine structural elements 

and heat sources that contribute most significantly to the machine errors. A thermal imaging 

camera was used to record temperature distributions across the machine structure during 

“dry” operations, i.e. without coolant present. The two main contributors to thermal error 

were due to C-axis rotation and Z-axis movement of the ram. These two errors are therefore 

analysed in this work. MATLAB processing routines have been devised to generate “virtual” 

temperature sensors from the thermographic images, which were used to identify the optimal 

position to install surface-mount temperature sensors on the surface of the structure (see 

Figure 4-22). From related work on this aspect (see section 4.4) and the initial tests, a total of 

twelve temperature sensors were placed on the machine. Six sensors were located on or near 
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the major heat sources: one measured the surface temperature of the ram near the C-axis 

motor (T1); one (T2) measured the surface temperature of the lower bearing of the ballscrew; 

two monitored the gradient from the end of the ram (T3, and T4); and two measured the 

surface temperature of the Z-axis motor (T5, and T6). Another six temperature sensors were 

placed around the machine to pick up the ambient temperature changes. Four laser 

displacement sensors were used to measure the displacement of a test bar (attached to the 

spindle) caused by the thermal distortion of the machine: two measured displacement of the 

test bar in the Y-axis and Z-axis directions (this study also did not consider the X-axis 

direction due to symmetry of the machine); two measured any tilt. A general overview of the 

experimental setup is shown in Figure 4-23. The diagram also indicates the sign convention 

of all the machine axes.  

 

Figure 4-22: Strategy of temperature sensor placement on ram structure. 

To improve the accuracy of the proposed models, and to avoid the need for a large number of 

temperature sensors, additional feedback information is supplied by FBG as shown in Figure 

4-6. This can detect the change in length by measuring the detectable strain. However, the 

FBG sensor itself is also affected by temperature by a factor that equates to 8.64 μm/m/˚C. 

One method of compensating temperature is to use an unconstrained grating to measure 

temperature. Nevertheless, this was unviable for this application because it would require 

additional gratings to be mounted, incurring additional cost and requiring additional 

mounting space, which was not readily available. Instead, the low-cost temperature sensors 
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used for the temperature-based model were used to correct for change in the grating 

temperature. Three FBG sensors were placed on the ram structure in order to measure the 

distortion of each side of the structure. Another four FBG sensors were placed on the cross-

beam structure to monitor the thermal response with change in the ambient temperature. 

These on-line measures were used as input to the proposed model in order to predict the 

growth and distortion of the ram. 

 

Figure 4-23: Procedures for measuring the thermal errors. 

4.6.1 Hysteresis Effect 

Figure 4-24 shows test results from a cycle of two hours heating-up and another two hours for 

cooling down (test detail will be given in section 5.4). Results show that the temperature of 

the machine tool (T2 Ram rear) changed with a certain delay relative to variation in the 

machine displacement and FBG sensors (FBG-1, and FBG-2). 
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Figure 4-24: Data fusion (temperature and strain). 

Furthermore, Figure 4-25 shows hysteresis plot of different sensors, it can be clearly seen that 

the FBG sensors located on the machine ram exhibit lower hysteresis. For example, (FBG-1, 

and FBG-2) sensors respond in an almost linear fashion, whether the machine is being heated 

or cooled. It can also be observed that the temperature at the point of measurement (T2 Ram 

rear) possess slightly higher hysteresis behaviour relative to other sensors; there is a latency 

of approximately 10 minutes. By using FBG sensors, the effect of thermal hysteresis could be 

minimised. Therefore, the application of FBG sensors could allow for a more accurate 

prediction of thermal error (see next chapter). 
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Figure 4-25: Hysteresis plot from different sensors. 

4.7 Summary  

In this chapter, a thermal imaging camera has been used to record temperature distributions 

across the spindle carrier structure during the experiments. The thermal images are saved as a 

matrix of temperatures with a specific resolution of one pixel (equivalent to 2.25 mm
2
). This 

system equates to over 76000 possible temperature measurement points. Averaging, which is 

used to decrease noise, reduces the number of temperature locations to the equivalent of 525 

points, depending upon the field of view. This richness of data is exploited to find the optimal 

location for temperature measurement when designing a thermal error control model. 

With the use of Grey model and FCM methods, the influence rankings of recorded 

temperature data has been found to be applicable to determine which parts within the 

machine structure contribute most significantly to the total thermal displacement. This 

eliminates the need for intuitive locating of sensors and significantly reduces implementation 

time. The principal advantage of this novel technique is to use thermal imaging to assess a 

machine’s thermal behaviour and to build compensation models with different numbers and 

configurations of sensors. It is worth to notice that use of thermography is to help find the 
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optimal model structure when designing a thermal error model. In this sense, in a practical, 

temperature sensors will be physically applied at the key locations on the machine’s surface. 

This section also has highlighted the use of FBG sensors for strain measurement. They have 

several advantages over other sensors in terms of sensitivity and quality and could be 

embedded in a future, commercialised system. Therefore, in the next chapter, temperature 

measurement at key locations will be supplemented by direct distortion measurement. This 

fusion measurement will be used as input to the proposed models. 
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Chapter 5:  Artificial Intelligence Model Development  

5.1 Introduction  

Thermal errors are often quoted as being the largest contributor to CNC machine tool errors, 

but they can be effectively reduced using error compensation. The performance of a thermal 

error compensation system depends on the accuracy and robustness of the thermal error 

model and the quality of the inputs to the model as previously discussed. The location of 

temperature sensors must provide a representative measurement of the change in temperature 

that will affect the machine structure. The number of sensors and their locations are not 

always intuitive and the time required to identify the optimal locations is often prohibitive, 

resulting in compromise and poor results. 

It is likely that when a compensation system is implemented on a machine, each part of the 

structure will be modelled separately. The final compensation value will be calculated by 

combining the displacement of all the structural elements.  As a next step in this research, the 

machine is modelled as individual structural elements. For this reason, it was deciding to 

begin the investigation by looking at applying ANFIS modelling to the spindle carrier of 

Machine A and to concentrate on predicting Z-direction deformation. Another investigation 

was carried out on Machine B; the experimental tests were carried out throughout different 

time durations, different ambient temperatures and different spindle rotation speeds in order 

to validate the robustness of the modelling method. This is followed by an example of fusion 

sensors modelling on Machine C.   

5.2 Generating ANFIS Architecture  

In this section, a new intelligent compensation system for reducing thermal errors of machine 

tools using data obtained from a thermal imaging camera will be introduced. In section 4.4, 

different groups of key temperature points were identified from thermal images using a novel 

approach based on a Grey model and fuzzy c-means clustering method. An adaptive neuro-

fuzzy inference system with fuzzy c-means clustering will be employed to design the thermal 

prediction model. In order to optimise the approach, a parametric study was carried out by 

changing the number of inputs and number of membership functions to the ANFIS-FCM 

model, and comparing the relative robustness of the designs. Eight models were developed as 
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follows: representative temperature sensors from Table 4-3 were selected as input variables 

and the thermal response in the Z-direction was considered as a target variable. The same test 

(120 minutes heating and 70 minutes cooling) was used for training and validating the 

models: experimental data are divided into training and checking datasets. The training 

dataset is used to train (or tune) a fuzzy model, while the checking dataset was used for over-

fitting model validation. The Gaussian functions are used to describe the membership degree 

of these inputs, due to their advantages of being smooth and non-zero at each point [50]. 

After setting the initial parameter values in the ANFIS-FCM models, the models were 

adjusted using a hybrid learning scheme.  

Extensive simulations were conducted to select the optimal number of MFs (clusters) and 

number of iterations (epoch) for each model. The performance of the model depends on the 

combination of these different parameters. Too few MFs do not allow the ANFIS-FCM 

models to be well mapped. However, too many MFs increase the difficulty of training and 

lead to over-fitting or memorising undesirable inputs such as noise. The prediction errors 

were measured separately for each model using the root mean square error (RMSE) index. By 

varying the simulations, it was determined that the optimal solution was six MFs in the first 

five models, and three MFs for the remaining models. Different numbers of epochs were 

selected for each model because the training process only needs to be carried out until the 

errors converge. An example of selecting MFs with four inputs is presented in Table 5-1. 

Table 5-1: Performance of ANFIS-FCM models with various numbers of MFs. 

Models 
Number of 

MFs 

Convergence 

epochs 

RMSE of the 

validation data 

RMSE of the testing 

data 

1 2 200 0.8314 3.8456 

2 3 200 0.6064 2.0052 

2.4614 3 4 200 0.5380 

4 5 100 0.5793 2.0534 

5 6 100 0.5327 1.7275 

6 7 100 0.3494 4.1113 

7 8 100 0.3232 4.8818 

8 9 100 0.3058 5.0802 

In order to examine the performance of all the ANFIS-FCM models on non-training data, 

another test was carried out on the same machine (Machine A) in an operational cycle as 

follows. The machine was programmed to run at spindle speed of 8000 rpm for 60 minutes 

and then 40 minutes with the spindle stopped. It was then run again at spindle speeds of 
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4000 rpm and 9000 rpm for 30 minutes and 40 minutes respectively. Finally, measurement 

continued for another 40 minutes with the spindle stopped. During the experiment, the 

thermal errors were measured by the NCDTs, and the predicted displacements were obtained 

using ANFIS-FCM models.  

In Table 5-2, the prediction performance of eight ANFIS-FCM models was compared for 

training and non-training data respectively.  

Table 5-2: The characteristics of the ANFIS-FCM models. 

Model 

No. 

of 

inputs 

No. of 

MFs for 

each 

input 

No. of 

iterations 

Training stage Testing stage 

NSE RMSE NSE RMSE R Residual 

ANFIS-FCM 1 1 6 200 0.6780 4.4835 0.4070 5.8847 0.7636 14.09 

ANFIS-FCM 2 2 6 200 0.9838 1.0071 0.4929 5.5618 0.8302 13.76 

ANFIS-FCM 3 3 6 11 0.9941 0.6223 0.9585 1.5183 0.9904 3.39 

ANFIS-FCM 4 4 6 9 0.9939 0.6069 0.9764 1.4139 0.9912 2.95 

ANFIS-FCM 5 5 6 12 0.9941 0.6254 0.9351 1.8981 0.9806 4.53 

ANFIS-FCM 6 6 3 2 0.9881 0.8634 0.7154 3.9754 0.9595 8.00 

ANFIS-FCM 7 7 3 2 0.9880 0.8659 0.7352 3.8346 0.9635 8.21 

ANFIS-FCM 8 8 3 10 0.9847 0.9789 0.6439 4.4463 0.9332 10.42 

 

Figure 5-1: The characteristics of the ANFIS models during testing stage. 

Table 5-2 and Figure 5-1 illustrate the obtained results from all eight developed models. 

From these results, it can be observed that both NSE and RMSE have promising values 
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during the training stage for all the models. However, during the testing stage the models 

with one and two input variables gave low efficiency, low correlation coefficient and high 

residual value due to insufficient data regarding the system behaviour. In addition, the seven 

and eight inputs models did not give as good results as the other models due to redundancy of 

input data. The ANFIS-FCM model with four inputs gives the best estimation, taking into 

account the performance indices (higher efficiency coefficient NSE=0.97 higher correlation 

coefficient R=0.9912, and lower root mean square error RMSE=1.4139) and lowest residual 

value amongst others as shown in Figure 5-2. 

 

Figure 5-2: Residual values for all eight models. 

The structure of the ANFIS-FCM model with four inputs is shown in Figure 5-3. There are 

four input neurons, corresponding to as found in section 4.4 (see Figure 5-4). In the second 

layer, six neurons are connected to each input neuron (in total 24 neurons), which correspond 

to six Gaussian membership functions for each input sensor as shown in Figure 5-5. The next 

layer contains six neurons equivalent to six fuzzy "if-then" rules. The result of the prediction 

process is presented by six neurons in the output layer. A weighted average method is used 

for the defuzzification stage in order to obtain the final predicted thermal response. 
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Figure 5-3: The structure of associated network model. 

 

Figure 5-4: Thermal data extracted from four points. 
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Figure 5-5: Membership functions obtained through FCM. 

Figure 5-6 describes the temperature rise during the testing experiment. It can be seen that the 

temperature extracted from the representative sensors fluctuated due to change of the spindle 

speed, which causes sudden change in the resultant displacement in the Z-axis direction. The 

simulation result shows that the proposed ANFIS-FCM model can predict the error accurately 

and can also track the rapid changes of thermal error precisely (see Figure 5-7, the maximum 

residual is approximately ±2 μm). Thus, a model with four representative temperature sensors 

is therefore a powerful and precise predictor of the thermal errors of the machine tool. 
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Figure 5-6: Thermal data extracted from images from selected points. 

 
Figure 5-7: ANFIS-FCM model output vs the actual thermal response. 
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The prediction of the ANFIS-FCM model with four selected key temperature points can 

significantly reduce the thermal error from an independent test under different conditions of 

varying rotational spindle speeds and dwells on the machine tool. To emphasise the 

importance of correctly finding the optimal sensor locations, one of the virtual sensors was 

arbitrarily moved from the location determined by this method to another location that could 

have been selected intuitively, i.e. with some engineering justification. The model was 

retrained with this new sensor location. By changing just one temperature point from the key 

temperature points gives unsatisfactory prediction ability (residual value ±9 μm), which 

implies that the proposed methods (Grey model and FCM) are a valid and important 

combination to build an accurate model. 

In the following section, a number of experimental tests were carried out throughout different 

time durations, different ambient temperatures and different spindle rotation speeds in order 

to validate the robustness of the modelling method. Additionally, different types of ANFIS 

model will be discussed and compared. 

5.3 Robustness of the Model to Machining Parameters  

The machine tool is subjected to continuously changing operation conditions. It is rarely 

maintained at steady state and the heat generated internally will vary significantly as the 

spindle rotation speed, axis feedrate, etc. is changed. When this is combined with the effect of 

ambient changes, the result is the complex thermal behaviour of the machine. Five NCDTs 

are used to measure the displacement of a precision test bar, representing the tool, in the X, Y 

and Z axes. The configuration was shown in Figure 4-5 (Machine B). 

In this work, a thermal model was created for Machine B using the model described in 

section 5.2. A variety of heating and cooling tests were then carried out in different ambient 

conditions and different spindle speeds of the VMC (see Table 5-3). Brief appraisal of the 

methodology shows the variation considered in this study. Comparing Test I and Test VI 

shows that a higher spindle rotation speed causes a larger thermal error for the same time 

duration. Whereas comparing Test II with Test III and Test V with Test VI, it can be seen that 

the same spindle rotation speed, and the same time duration, gave rise to different thermal 

error. This was due to change of the ambient conditions and hysteresis effect. More detail of 

these differences can be observed by examining a selected temperature sensor on the spindle 
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carrier (T11); Figure 5-8 shows different initial conditions of the machine and Figure 5-9 

shows the different magnitude of temperature changes in different tests.  

 

Figure 5-8: Absolute temperature of the selected sensor in different tests. 

 

Figure 5-9: Magnitude of temperature changes in different tests. 
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Table 5-3: The various heating and cooling tests 

Spindle 

speed 
Test description 

Total Time 

(hours) 

Maximum error 
Test name 

Y-direction 

4000 rpm 

1 hour heating/1 hour cooling 2 h 25 μm Test I 

3 hours heating/2 hours cooling 5 h 35 μm Test II 

3 hours heating/2 hours cooling 5 h 40 μm Test III 

2 hours heating/1 hour cooling/2 

hours heating/3 hours cooling  
8 h 39 μm Test IV 

8000 rpm 
1 hour heating/1 hour cooling 2 h 64 μm Test V 

1 hour heating/1 hour cooling 2 h 79 μm Test VI 

An example of heating and cooling test is illustrated as follows:  the vertical milling machine 

was examined by running at its highest spindle speed of 8000 rpm for one hour to excite the 

largest thermal behaviour. The temperature sensors at the selected points on the machine tool 

and the thermal displacement of the spindle were measured simultaneously; the thermal 

displacement of the vertical milling machine is shown in Figure 5-10. The maximum 

displacement of the X-axis is 3 μm, the Y-axis is 79 μm and the Z-axis is 22 μm. The X-axis 

thermal displacement is much smaller than that of the Y-axis and the Z-axis due to the 

mechanical symmetry of the machine and therefore is not investigated further in this work; 

only the Y-axis and Z-axis errors are considered.  

 

Figure 5-10: Thermal response of the spindle (spindle speed 8000 rpm) 
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The selection of temperature variables is a key factor to the accuracy of the thermal error 

model, which will be adversely affected if there is insufficient coverage of the temperature 

distribution. At the same time, the calibration/training time and the relative cost of the system 

will increase if the number of input variables is large. Therefore, the location of suitable 

temperature sensors should be determined before the modelling process. 

By applying the Grey model on the experimental data from Test VI, the influence coefficients 

can be obtained. Next, the influence weightings are clustered to five clusters by using fuzzy 

c-means clustering analysis (see examples in Table 4-5 and Table 5-4). Afterward, one sensor 

from each cluster is selected according to its influence weight with the thermal displacement 

to represent the temperature sensors of the same category. In this case they are T05, T11, 

T40, T65 and T75. These temperature sensors are located on the column, spindle carrier 

(Strip 1, and Strip 2), spindle boss, and ambient near the spindle, respectively. The whole 

block diagram of the proposed system is shown in Figure 3-1, where variables T1 to TN 

represent the temperature data captured from the temperature sensors, and the thermal 

response obtained from NCDTs. 

Table 5-4: The clustering result. 

Group 1 

Group 2 

Group 3 

Group 4 

Group 5 

 

T18- T23, T33-T53, T72 

T24-T32, T54-T61 

T8-T17, T62, T63 

T5, T4, T68, T69, T76 

T1-T3, T6, T7, T64-T67, T70, T71, T73-T75 

5.3.1 ANFIS Models Design 

One of the main concerns with designing a thermal error compensation model using ANFIS, 

or any other self-learning algorithm, is whether the training data that was measured at one 

particular operating condition of the CNC machine tool would be sufficient to train the model 

fully for other operational conditions. In other words, is the measured data sufficient for the 

model to be applicable for all operating conditions?  

Ideally, an ANFIS model is trained by a training set that includes many training pairs 

collected from all likely conditions. However, the cost of machine downtime to capture the 

training data is a significant concern, because the impact on productivity can have a high 

penalty. For this reason, reducing the number of training pairs required is very attractive. 
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Test IV was considered to validate the method of reducing the number of training cycles. 

Measurements of thermal error and corresponding temperatures were recorded while the 

machine was run through a range of duty cycle as follows: It was allowed to run at spindle 

speed 4000 rpm for 120 minutes, and then paused for 60 minutes before running for another 

120 minutes; and then stopped for 180 minutes. Hence, the data obtained from this test is 

divided into three parts which were training, checking, and testing dataset. The checking 

dataset was used for over-fitting model validation, while the testing dataset was used to verify 

the accuracy and the effectiveness of the trained model. 

Five temperature sensors from section 4.5 were used as input variables to the models and the 

thermal displacement in the Y-direction was chosen as a target variable. The Gaussian 

functions are used to describe the membership degree of these inputs, due to their advantages 

of being smooth and non-zero at each point (see section 5.2). After setting the initial 

parameter values in the ANFIS models, the input membership functions were adjusted using 

a hybrid learning scheme.  

Extensive simulations were conducted to determine the optimum structure of the FIS models 

through various experiments. The optimal number of MFs was determined by assigning 

different numbers of MFs for the ANFIS-Grid model, and different values to the number of 

clusters (nc) for the ANFIS-FCM model, respectively. Too few MFs will not allow an ANFIS 

model to be mapped well. However, too many MFs will increase the difficulty of training and 

will lead to over-fitting or memorising undesirable inputs such as noise. The prediction errors 

were measured separately for each model using the root mean square error (RMSE) index 

with the testing dataset. An example of selecting the optimum structure for the ANFIS-FCM 

model is presented as follows:  

In this modelling method, the optimum size of the FIS model was determined, and the results 

are shown in Table 5-5. Different numbers of epochs were selected for each model because 

the training process only needs to be carried out until the errors converge. As can be seen in 

Table 5-5, it cannot simply be stated that better results will be obtained with more clusters. It 

was found that the FIS model with three (nc=4) clusters exhibited the lowest RMSE 

value (1.7) for the testing dataset. Consequently, this FIS model with 3 rules was considered 

to be the optimal. The corresponding rules of the optimum model are provided in Table 5-6.  
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Similarly, the optimum FIS model for ANFIS-Grid model was determined by arbitrarily 

varying the number of MFs from 2 to 4. The FIS model with three MFs per input (243 rules) 

was found to be the optimum.  

Table 5-5: Performance of ANFIS-FCM models with various numbers of nc 

Models 
Number of 

clusters (nc) 

Convergence 

epochs 
RMSE of testing dataset 

Model-1 2 200 2.3 

Model-2 3 200 1.8 

1.7 Model-3 4 100 

Model-4 5 300 2.1 

Model-5 6 200 5.6 

Table 5-6: Linguistic rules 

Linguistic rules 

1. If (T05 is T05cluster1) and (T11 is T11cluster1) and (T40 is T40cluster1) and (T65 is T65cluster1) and 

(T75 is T75cluster1) then (out1 is out1cluster1)  

2. If (T05 is T05cluster2) and (T11 is T11cluster2) and (T40 is T40cluster2) and (T65 is T65cluster2) and 

(T75 is T75cluster2) then (out1 is out1cluster2)  

3. If (T05 is T05cluster3) and (T11 is T11cluster3) and (T40 is T40cluster3) and (T65 is T65cluster3) and 

(T75 is T75cluster3) then (out1 is out1cluster3)  

5.3.2 Results and Discussion 

In this section, the aim is to use the structure of the ANFIS models described in the previous 

section to derive a thermal error compensation system. With the purpose of evaluating the 

prediction performance of the models generated using dataset Test IV, the remaining datasets 

Test I, Test II, Test III, Test V, and Test VI were used to run the models. The experimental 

tests were carried out throughout different time durations, different ambient temperatures and 

different spindle rotation speeds in order to validate the robustness of the modelling method. 

The performance of the models used in this study were computed using four performance 

criteria, including root mean square error (RMSE), Nash–Sutcliffe Efficiency coefficient 

(NSE), correlation coefficient (R) and also the residual value.  

5.3.2.1 Same Spindle Speed under Different Operation Conditions  

The prediction models established using the dataset from Test IV are used to forecast the 

thermal error of Test I, Test II, and Test III, respectively. In all experiments, the machine was 
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examined by running the spindle at a speed of 4000 rpm, but the duration and ambient 

temperature is different between each test and different from the training data, as illustrated 

in Table 5-3. This is representative of a machine that manufactures similar parts, but in 

varying factory conditions. This is would be the case, for example, of a model trained in the 

summer, but tested in winter, or day vs night. The temperature sensors at the selected points 

on the machine tool and the thermal displacement of the test bar are measured 

simultaneously. 

Predictive results for the three tests using ANFIS-Grid model and ANFIS-FCM model are 

shown in Figure 5-11, Figure 5-12, and Figure 5-13. Results show that these two models are 

competitive. The performance of each of the two thermal prediction models is presented in 

Table 5-7. They both can predict the new observations and reduce the residual value to less 

than ±5 μm for each test. It is clear that the ANFIS-FCM model has a smaller RMSE, residual 

value and higher correlation coefficient than the ANFIS-Grid model. It is also better able to 

cope during the cool-down phase; a time during which on-machine probing is likely to be 

taking place.  

Table 5-7: Performance calculation of the used models 

Test name Model 
Number of 

rules 

Performance indices 

R RMSE NSE Residual 

Test I 
ANFIS-Grid model 243 0.96 1.53 0.92 ±3 μm 

ANFIS-FCM model 3 0.99 1.23 0.94 ±2 μm 

Test II 
ANFIS-Grid model 243 0.99 2.72 0.96 ±4 μm 

ANFIS-FCM model 3 0.99 0.57 0.99 ±2 μm 

Test III 
ANFIS-Grid model 243 0.98 2.78 0.95 ±5 μm 

ANFIS-FCM model 3 0.99 1.06 0.98 ±2 μm 
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Figure 5-11: (a) ANFIS-Grid model output vs the actual thermal response. (b) ANFIS-FCM 

model output vs the actual thermal response. (Two hours, Test I). 

 

Figure 5-12: (a) ANFIS-Grid model output vs the actual thermal response. (b) ANFIS-FCM 

model output vs the actual thermal response. (Five hours, Test II). 
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Figure 5-13: (a) ANFIS-Grid model output vs the actual thermal response. (b) ANFIS-FCM 

model vs the actual thermal response. (Five hours, Test III). 

5.3.2.2 Different Spindle Speed under Different Operation Conditions 

The prediction models established using the dataset from Test IV were further tested to 

represent a machine that has different manufacturing parameters, also in varying factory 

conditions. The machine was run at its highest spindle speed of 8000 rpm for one hour to 

excite more thermal response than during the training data, and then paused for another hour 

for cooling (see Test V and Test VI). Predictive results using the ANFIS-Grid model and 

ANFIS-FCM model are shown in Figure 5-14 and Figure 5-15. The evaluation criteria values 

are provided in Table 5-8. The residual error obtained using the ANFIS-FCM model was 

again better than the ANFIS-Grid model.  In addition, the ANFIS-FCM model has a lower 

RMSE and slightly higher correlation coefficient and NSE than the ANFIS-Grid model. This 

indicates that the ANFIS-FCM model is a good modelling choice for predicting the thermal 

error of the machine tools.  

Table 5-8: Performance calculation of the used models 

Test name Model Number of rules 
Performance indices 

R RMSE NSE Residual 

Test V 
ANFIS-Grid model 243 0.97 3.98 0.95 ±8 μm 

ANFIS-FCM model 3 0.99 2.78 0.97 ±4 μm 

Test VI 
ANFIS-Grid model 243 0.98 3.88 0.95 ±7 μm 

ANFIS-FCM model 3 0.99 2.78 0.97 ±5 μm 
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Figure 5-14: (a) ANFIS-Grid model output vs the actual thermal response. (b) ANFIS-FCM 

model output vs the actual thermal response. (Five hours, Test V). 

 

Figure 5-15:  (a) ANFIS-Grid model output vs the actual thermal response. (b) ANFIS-FCM 

model output vs the actual thermal response. (Five hours, Test VI). 

In this section, a single training test was validated with a variety of heating and cooling tests 

under different ambient conditions and different spindle speeds of the VMC (see Table 5-3). 

According to the results in the work, the proposed ANFIS model can predict the new 

observations and reduce the residual value to less than ±5 μm for all tests. This shows that as 

expected the spindle motor generates different amounts of heat at different speeds. 

Nevertheless, monitoring the effect of different speeds using temperature sensors, rather than 

using the programmed value, still yields very good results. 

In this piece of work, only temperature sensors are used as inputs to the model. This is 

consistent with the approach from a large number of researchers. This philosophy has some 

merit, since it ensures that the model is driven by changes in temperature profile irrespective 
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of the heat source. However, applying some prior knowledge in designing self-learning 

algorithms can yield improved results. In this research work, fusion of other sensor types and 

machine control values here also considered.  

In the following section, to improve the accuracy of the predicted model, and to minimise the 

effects of thermal hysteresis, additional feedback information is supplied by FBG sensors. 

5.4 Fusion of Temperature and Distortion Measurement 

This work develops an error compensation model for the gantry type 5-axis machine tool 

(Machine C). The machine operates in a non-temperature controlled environment. Changes in 

temperature cause the machine to change shape and result in a loss of accuracy. In the initial 

work on this machine, only temperature sensors were used as inputs to the model. 

Temperature sensors described in section 4.6 were used as input to the model, and the 

thermal error in the Z-direction was used as a target variable. The proposed ANFIS model 

was used to predict the thermal response of the machine as shown in Figure 5-16. Although, 

the ANFIS model based on temperature measurement works well in the previous sections, the 

result is not as good as demanded in the case of Machine C (the maximum residual value is 

approximately ±30 μm). The ANFIS model established by only temperature sensors has high 

residual value due to complexity of the machine thermal behaviour, as a result of bigger 

volumes, and longer strokes, which have to be considered. It was anticipated that further 

improvement in accuracy could be achieved by including strain information as part of the 

training data. Figure 5-17 shows the output result of the simulation; the maximum residual 

value is approximately ±10 μm. Therefore, in the next section, temperature measurement at 

key locations will be supplemented by direct distortion measurement at accessible locations. 

The modelling approach mentioned in this section is a preliminary work with a scope to be 

extended in the next sections by considering a variety of modelling methods such as modular 

approach. 
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Figure 5-16: ANFIS model output vs the actual thermal response (only temperature). 

 

Figure 5-17: ANFIS model output vs the actual thermal response (temperature and strain). 

A new prediction model “Grey Neural Network Model with Convolution Integral 

(GNNMCI (1, N))” is proposed, which makes full use of the similarities and complementarity 

between Grey models and artificial neural networks to overcome the disadvantage of 

applying either a Grey model or an artificial neural network individually. A particle swarm 

optimisation algorithm is also employed to optimise the Grey neural network. As discussed in 

section 4.6, different physical inputs will be applied to the proposed model. This is because 

different physical inputs (temperature and strain) have different correlation efficiency and 
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their effective and cooperative fusion is expected to produce a better prediction results. The 

architecture of the GNNMCI (1, N) is presented in Appendix A. 

The optimal sensor locations were selected based on work presented in section 4.4. The 

thermal compensation model is designed and simulated in the MATLAB environment. The 

integrated model was designed as follows: 

Step 1: A 1-AGO (first-order Accumulated Generating Operation) is applied to the raw data 

to increase the linear characteristics and reduce the randomness from the measuring samples. 

Step 2: The GNNMCI (1, N) model is trained with a PSO algorithm as discussed in Appendix 

A. 

Step 3: An IAGO (Inverse Accumulated Generating Operation) is performed to calculate the 

thermal error and generate the final compensation value.  

To demonstrate the modelling of thermal error using GNNMCI (1, N) model, five variables 

(temperature and strain) were selected based on their influence coefficient value using the 

Grey model (see section 4.5). The selected sensors were used as input variables for the 

GNNMCI (1, N) model and the machine movement were used as a target variable. 

In this work, two compensation procedures were used to predict the thermal errors. The first 

method was to obtain the GNNMCI (1, N) model at the first stage of the test regime, and then 

to use this model to predict the machine movement during the remainder of the same test or 

for other regimes. The other was to obtain the model parameters during a short test, and then 

predict the thermal displacement for all other tests. The advantage of using a short test to 

calibrate the model is that it reduces non-productive downtime of the machine. The potential 

disadvantage is the lack accuracy of the model due to low training experience.  

In order to optimise the GNNMCI (1, N) parameters (weights), the experimental datasets 

were divided into training set (and afterward direct validation), validation set (cross 

validation), and testing set.  An example of training dataset from a short test of five samples 

is illustrated in Table 5-9; four FBG sensors and one temperature sensor are used as inputs, 

and Z-axis displacement as output. 
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Table 5-9: The training data from first 5 readings. 

Number 

of 

sample 

FBG-1 FBG-2 FBG-3 FBG-4 Temp Displacement  

0 

1 

2 

3 

4 

0 

-0.0072 

-0.0217 

0.2031 

0.1378 

0 

0.2091 

0.3173 

0.2019 

0.4903 

0 

0.0573 

-0.1719 

0.0143 

-0.2220 

0 

0.086 

-0.344 

0.0502 

0.0215 

0 

0.0620 

0.1870 

0.3120 

0.5000 

0 

-0.2282 

-0.5766 

-0.8127 

-1.1718 

In the PSO algorithm, the number of the particles is set to be 90 whilst the self-confidence 

factor and the swarm-confidence factor are C1=1.5 and C2=2, respectively. The inertia weight 

ω was taken as a decreasing linear function in iteration index k from 0.9 to 0.4, which were 

the same as those suggested by other papers [118, 119] and these values did not depend on 

the problems. After 100 training epochs, the total error was at an acceptable level. The Grey 

neural network weights obtained using PSO algorithm are: 

weights 𝑤11 𝑤21 𝑤22 𝑤23 𝑤24 𝑤25 𝑤26 𝑤27 

Values 0.1244 0.001 0.8787 1.5390 0.8830 0.1567 0.7005 1.7403 

weights 𝑤31 𝑤31 𝑤32 𝑤33 𝑤34 𝑤35 𝑤36 𝑤37 

Values 1.5855 1.5855 1.5855 1.5855 1.5855 1.5855 1.5855 1.5855 

Training and validation errors diminish through the initial phase of training stage. The first 

test was to check whether the model is able to reproduce the training dataset that has been 

used for training stage (direct validation). Subsequently, cross validation has been applied to 

check the model validity. When the validation error becomes minimum, the most appropriate 

model is achieved. The prediction results of the next six values of thermal errors derived by 

these weights based on this GNNMCI (1, 6) model are listed in Table 5-10. 

Table 5-10: The modelling values of thermal errors based on GNNMCI (1, 6) model. 

No. of 

sample 

Model inputs (AGO) GNNMCI(1,6) 

model       

(μm) 

Thermal 

error 

(μm) 

Residual value 

(μm) FBG-1 FBG-2 FBG-3 FBG-4 
Temp 

(˚C) 

5 

6 

7 

8 

9 

10 

0.4642 

0.5512 

0.6165 

0.5802 

0.9429 

0.9211 

0.618 

0.8581 

0.8220 

1.0528 

1.4494 

1.1321 

0.1432 

-0.0430 

-0.2578 

-0.1934 

-0.0573 

-0.0358 

0.1361 

-0.0573 

-0.1433 

-0.3081 

-0.1720 

-0.2938 

0.5620 

0.6870 

0.8120 

0.8750 

1.0000 

1.1250 

-0.9017 

-1.2606 

-1.5017 

-1.8693 

-2.5568 

-2.7040 

-1.4144 

-1.7823 

-2.0300 

-2.4049 

-2.6566 

-3.0366 

0.5127 

0.5217 

0.5283 

0.5356 

0.0998 

0.3326 
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The final GNNMCI (1, 6) model being trained and validated in this work has been tested by 

new unseen dataset. The independent variables are shown in Figure 5-18 (a). Simulation 

results show that the thermal error in the Z direction can be significantly reduced to less than 

±5 μm using testing dataset (see Figure 5-18 (b)). Furthermore, this result shows that the PSO 

algorithm can act as an alternative training algorithm for Grey neural network that can be 

used for thermal error compensation.  

 

Figure 5-18: (a) Temperature and strain as model inputs. (b) GNNMCI (1, 6) model output vs 

the actual thermal response. 

5.4.1 Results and Discussion 

Several experiments were conducted on the 5-axis milling machine. The primary motivation 

of these experiments was to compensate the deformation taking place in the ram of the 

machine in the Z-axis direction as a result of heat induced by rotation of the C-axis and by 

motion of the Z-axis. The Z-axis heating test, C-axis heating test, and the combined (helical) 

movement are considered in this thesis. Detailed procedures and results are as follows: 

5.4.1.1 Case 1: Z-axis Heating Test 

In this test, the ram reciprocated at a speed of 70 m/min 10 times before dwelling for 

10 seconds (to allow stable measurement) to excite the thermal behaviour in the ram. This 

cycle was repeated for the two hours “heating” cycle. The axes remained stationary for a 

subsequent two hours cooling cycle. The temperature variation was measured by the 

temperature sensors and the change in the strain of the ram and crossbeam were measured 

with FBG sensors. The data is given in Figure 5-19 (a). The heat sources on the ram structure 
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are friction in the two support bearings of the Z-axis ballscrew, friction in the ball-nut and the 

power loss of the Z-axis motor. Additionally, there is an effect from change in ambient 

temperature on the whole structure of the machine. Laser position sensors were used to 

measure the growth of the ram along the Z-axis direction. It can be seen that the rise in 

temperature measured by the selected sensors correlates to an error in the Z-axis of more than 

100 μm. 

The simulation result shows that the GNNMCI (1, 6) model can predict the error accurately 

and also can track the sudden changes of thermal error precisely (the maximum residual is 

approximately 16 μm, a 85% improvement see Figure 5-19 (b)), even with such a short 

training period. Indeed, the greatest loss in model accuracy occurs over one hour after the 

“heating” cycle. The majority of this thermal error derives from a reaction to ambient 

changes, for which the model has not been trained. This effect may not be significant in 

practice since it could be argued that the machine will not be producing parts if the axes are 

not being used. Nevertheless, this issue will be addressed under further work for those 

situations where the machining regime excites different parts of the structure during various 

operations.  

 

Figure 5-19: (a) Temperature and strain as model inputs. (b) GNNMCI (1, 6) model output vs 

the actual thermal response. 

5.4.1.2 Case 2: C-axis Heating Test 

In this test, the C-axis rotated at 2500 rpm ten times before dwelling for 10 seconds (for 

measurement) to excite the thermal behaviour in the machine ram. This cycle is repeated for 

the two hours “heating” cycle. The axes remain stationary for a subsequent two hours cooling 
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cycle. Data collected from temperature sensors and FBG sensors are shown in Figure 5-20 

(a). The heat sources in this test are the friction in the C-axis bearings and loss from the 

motor located inside the ram structure (near the location of temperature sensor T1). 

Therefore, T1 is the highest temperature (rising by 7 ˚C). The maximum value of T2 is lower 

than (4 ˚C), and the value of T3 and T4 are the lowest (1 ˚C) because they are relatively 

further from the heat source. The Z-axis thermal error was greater than 80 µm. 

As with the Z-axis heating test, the model weights were obtained at the first stage of the test 

regime. Simulation results show that the GNNMCI (1, 6) model can provide a good 

prediction result. Figure 5-20 (b), presents the comparison between thermal displacements 

from the actual measured data and the output of the model. It can be seen that the prediction 

ability of the model is excellent, and that the model shows a reduction from 80 µm to ±8 µm. 

 

Figure 5-20: (a) Temperature and strain as model inputs. (b) GNNMCI (1, 6) model output vs 

the actual thermal response. 

5.4.1.3 Case 3: Combined Axis (Helical) Test 

In this test, the C-axis rotated while the Z-axis was oscillated simultaneously (Helical test). 

The purpose was to validate the compensation model for the thermal error that was trained 

from the previous two cases (Case 1, Case 2). This was to demonstrate that the thermal model 

could be built up in a modular form and so is extensible to the remainder of the structure.  

The four hours validation test was again equally divided into two stages of heating and 

cooling cycles. Figure 5-21 (a) describes the temperature/strain change during the test regime, 

which induces thermal expansion in the Z-axis direction of approximately 95 µm. The model 
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weights were obtained from the previous independent C-axis and Z-axis tests. Figure 5-21 (b) 

shows a reduction in error from 95 µm to ±9 µm, with the loss in performance again being 

prevalent quite some time after the heating part of the cycle. This study validates the modular 

approach, which means that the combining training data can be superimposed on each other 

in one model.  

 

Figure 5-21: (a) Temperature and strain as model inputs. (b) GNNMCI (1, 6) model output vs 

the actual thermal response. 

The experimental results show that the proposed model has an excellent performance in terms 

of the accuracy of its predictive ability and reduction of machine downtime when compared 

against traditional and other self-learning techniques.  

Consequently, this work develops a simple, less computationally intensive and low-cost 

approach with a high adaptation rate based on Grey neural model and PSO algorithm to 

predict the thermal error compensation on CNC machine tools. The results obtained from the 

proposed model exhibit better performance than conventional ANN model in [50], with far 

fewer training samples. 

This chapter is focused mainly on the spindle unit, which is usually the major heat source, in 

the next chapter more attention will be paid to environmental temperature variation error and 

other thermal error sources. 
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5.5 Summary  

The principal advantage of this novel technique is to use thermal imaging to assess a 

machine’s thermal behaviour and to build compensation models with different numbers and 

configurations of sensors. An adaptive neuro-fuzzy inference system with FCM (ANFIS-

FCM) has been employed for the prediction of the thermal error in machine tools. The 

models are built using data obtained from short heating and cooling test, with a wide variety 

of models being able to be assessed using multiple simulations. 

The results on machine indicate that ANFIS-FCM model with four inputs and six rules has 

the optimal capability to map the input–output data pairs; it can predict thermal displacement 

under different operational conditions depending on the availability of the empirical data. 

Perhaps counter-intuitively, the ANFIS model is less well conditioned when additional 

sensors are included. Minimal effort is then required for practical application of discrete 

contact sensors that are used for on-line compensation. 

The method was further tested by carrying out a number of experimental tests on Machine B.  

Two types of ANFIS model have been discussed in this work: using grid-partitioning and 

using fuzzy c-means clustering. Both models were constructed and tested on Machine B. The 

results from the two sets of validation tests show that both ANFIS-based models, derived 

from a single heating-and-cooling cycle, can improve the accuracy of the machine tool by 

over 80% for varying ambient conditions, heating durations and spindle speeds. The ANFIC-

FCM produced better results, achieving up to 94% improvement in error with a maximum 

residual error of ±4 µm. This compares favourably with other compensation methods based 

upon parametric or self-learning techniques.  

In addition to the better absolute accuracy, the ANFIS-FCM has been shown to have the 

advantage of requiring fewer rules, in this case requiring only three rules as opposed to the 

243 found to be optimal for the ANFIS-Grid model. This is a significant benefit, since the 

latter method is significantly more laborious to construct. Therefore, it can be concluded that 

the ANFIS-FCM model is a valid and promising alternative for predicting thermal error of 

machine tools without increasing computation overheads. 

Finally, the proposed model was used further to predict the thermal response of the 

Machine C. The model established by only temperature sensors on this machine has high 

residual value due to complexity of the thermal behaviour, as a result of bigger volumes, and 
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longer strokes. The model was improved by fusion of both temperature sensors and direct 

strain measurement from FBG sensors. Additionally, another model was built up of two 

component modules. The validation of combined thermal inputs was shown to be as effective 

as when the individual elements were validated. This is important where changes to the 

structure are possible, since it means that only that part of the model needs to be retrained. It 

also means that for greater precision, other structural elements can be conveniently included 

in the model. 
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Chapter 6:  Model Validation and Comparison 

6.1 Introduction  

One of the major problems for thermal error modelling is the complex way in which the 

machine tool distorts due to the environmental change combined with duty cycle effects. It 

will never reach a true thermal equilibrium condition. For these reasons it was decided to 

continue the investigation by looking at applying modelling techniques to a machine tool 

under different conditions; different Environmental Temperature Variation error (ETVE) 

tests (summer and winter), and more complex duty cycles.  

A new concept will be added to the ANFIS modelling by combining ANFIS and Grey system 

theory in one system. This combination helps to reap the maximum benefit from both 

systems.      

6.2 Modelling of ETVE   

In this section, an ETVE test was performed on Machine A. This test was conducted to reveal 

the effects of ambient temperature changes on the machine and to predict the thermal 

displacement during other performance measurements [3]. In order to obtain the temperature 

data of the machine tool, a total of 26 temperature sensors were placed on the machine (see 

section 6.3). Four NCDTs were used to measure the displacement of a test bar (used to 

represent the tool) while the spindle remained stationary. Three were used to measure 

displacement of the test bar in each axis direction. A fourth directly monitored displacement 

of the casting next to the spindle in the Z-axis direction to differentiate expansion of the tool 

from the machine. A general overview of the experimental setup is shown in Figure 6-1.  
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Figure 6-1: A general overview of the experimental setup. 

Results of an ETVE test are shown in Figure 6-2. This test was carried out over a five-day 

period during a three-day holiday, with no significant activity in the workshop, followed by 

approximately three normal working days (160 hours). This data was sampled once every 

minute. The environmental temperature  conditions for machine shop change due to the day 

/night cycle, where the temperature fluctuates by about 5 ˚C throughout the day, with lower 

temperatures in the morning and higher temperatures in the late afternoon and evening. The 

strongest response to the ambient change from the machine is in the Z-axis direction. There is 

a clear relation between the fluctuation in the environmental temperature and the resulting 

displacement. For example, the anomaly at the beginning of the test can be attributed to a 

short period (30 minutes) of the workshop door being opened. Externally, the conditions were 

snowy, which caused a drop in workshop temperature to below 11 ˚C. The overall movement 

caused by this phenomenon is 35 μm in the Z-axis and 25 μm in the Y-axis for an overall 

temperature swing of approximately 9 ˚C over the 30 minutes. Two similar events can be 

seen between 120 and 140 hours. The magnitude of the environmental error can be compared 

to that from two hours spindle-heating test conducted according to ISO 230-3: 2007 which 

only produced 30 µm of error in the Z-axis. 
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Figure 6-2: Temperature measurements and machine movement due to environment. 

6.2.1 Grey Model  

To demonstrate the modelling of ETVE using the Grey neural network approach, four 

temperature sensors were selected based on a Grey model. Temperature sensors T1, T2, T5, 

and T9, which are located on the carrier, column, ambient near spindle, and ambient near the 

column, were selected according to their influence coefficient value using the Grey model 

(see section 4.4). They were used as the input variables for the GNNMCI (1, 5) model and the 

thermal response in Z-direction was used as a target variable. 

For this study, a GNNMCI (1, 5) with a structure of 1-1-6-1 was chosen. The details are: 

layer A has one node, the input time series k; layer B has one node; layer C has six nodes, the 

input variables nodes are from two to five, respectively; T1, T2, T5, and T9 are the input 

variable data. Layer D has an output variable node, which is the thermal displacement in Z-

axis direction. The GNNMCI (1, 5) structure is shown in Appendix A. 

Two compensation methods can be used to predict ETVE. The first is an off-line, pre-

calibrated method. This means to obtain the GNNMCI (1, 5) model according to the thermal 

displacement and the temperature change during a short test, and then to use this model to 

predict the thermal displacement of other processes. The second method is to obtain the 

GNNMCI (1, N) model at the first stage of the manufacturing process, and then to use this 

model to predict the machine movement during the rest of the process. This uses additional 

measurement effort before the process begins.  
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To apply the first method, another test was carried out for 80 minutes on the same machine 

during a normal working day. During the experiment, the thermal errors were measured by 

the NCDTs and the temperature data was measured using the same selected sensors, sampling 

every ten seconds. The training samples were obtained from the first 5 readings (less than one 

minute) after the test had been started. All raw data was converted to AGO series, as 

discussed in section 3.4.1.  

After finishing the training of the model, there were two ways to obtain the prediction values: 

directly obtaining the prediction values from the trained model; or taking out the Grey 

differential equation parameters from the trained model to the Grey equation and then solving 

the equation to obtain the prediction values. Although both methods are similar theoretically, 

a large number of experiments have found that the first method needs less computation. 

Figure 6-3 shows simulation results for 80 minutes. 

 

Figure 6-3: Simulation results for 80 minutes. 

The process was repeated to create a GNNMCI (1, 5) model for the Y-axis direction. To 

validate the robustness of these models on non-training data, a normal environmental 

simulation was run using the temperature data presented in Figure 6-2. The measured and 

simulated profile results were plotted for the Z-axis and Y-axis. Compared to the measured 

results, the correlations were 97% for the Z displacement profiles Figure 6-4, and 98% for the 

Y displacement profiles Figure 6-5. The residual errors were less than ±10 μm for the Z axis 

and less than ±6 μm for the Y-axis even when considering the rapid changes due to the 

opened workshop door. Under more predictable conditions, which could be achieved by 
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better management of the environment, ±3 µm would be achieved in each axis. Thus, the 

proposed GNNMCI (1, 5) model can predict the normal daily cyclic error accurately and also 

can track sudden changes of thermal error from a relatively small training sample. 

 

Figure 6-4: Correlation between the measured and simulated Z-axis displacement using 

GNNMCI model. 

 

Figure 6-5: Correlation between the measured and simulated Y-axis displacement using 

GNNMCI model. 

6.2.2 ANFIS Model  

The fast and accurate modelling of thermal errors in machining is an important aspect for the 
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approach for thermal error compensation on CNC machine tools. The method combines the 

adaptive neuro-fuzzy inference system and Grey system theory to predict thermal errors in 

machining. Instead of following a traditional approach, which utilises original data patterns to 

construct the ANFIS model, this work proposes to exploit Accumulation Generation 

Operation (AGO) to simplify the modelling procedures. AGO, a basis of the Grey system 

theory, is used to uncover a development tendency so that the features and laws of integration 

hidden in the chaotic raw data can be sufficiently revealed. AGO properties make it easier for 

the proposed model to design and predict.  

To supplement the ANFIS model, the AGO is used to increase the linear characteristics and 

reduce the randomness from the measuring samples (see section 3.4.1). This simple but 

effective technique allows the thermal model to be built with a small amount of training data. 

In short, the proposed model incorporates the AGO method into the ANFIS model to improve 

its prediction accuracy and robustness with minimal efforts.  

To verify the applicability of the proposed model, an example simulating thermal error 

compensation in previous section is investigated. 

Ideally, an ANFIS model would be directly constructed from data patterns that involve all 

operation conditions. Similar to the previous models, the experimental samples are divided 

into two separated sets: the training set and the testing set. The training set is used to 

calibrate/train the model using a FCM and ANFIS algorithm, and the testing set is used to 

verify the accuracy and the effectiveness of the trained model. The AGO was used to 

transform these samples to another domain as discussed previously. The five samples were 

chosen at the beginning of the test, four temperature sensors are used as inputs and the Z-axis 

displacement as output. 

Hence, four temperature sensors were selected as input for the model and the thermal 

response in Z-direction was chosen as a target variable. After setting the initial parameter 

values in the ANFIS model, the input membership functions are adjusted using a hybrid 

learning scheme. In Figure 6-6, an example of MFs for one input before and after learning is 

presented. Figure 6-6 shows that MFs being initialised with FCM change slightly even after 

training. It reveals the fact that the initial MFs are quite adaptive to the characteristics of the 

model and thus speed up the convergence. 
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Figure 6-6: Membership functions obtained through ANFIS and FCM clustering. 

Next, different ANFIS models were evaluated using Root Mean Square error (RMSE), in 

order to measure the deviation between the measured and predicted values. It is observed that 

after 5 epochs were used, the performance does not improve any further. Before generating 

the final model, it is essential to obtain the optimum number of clusters. It was found that the 

ANFIS model with 3 clusters exhibited the lowest error RMSE=2.4 for testing dataset.   

After finishing the clustering and training process, the proposed ANFIS model can predict the 

thermal error from a relatively small training sample as GNNMCI model (less than ± 10 μm 

for the Z-axis). The correlation coefficient is 99% and the maximum residual value is 

approximately ±6 μm (see Figure 6-7).  

From these results, it can be observed that the model has promising values during the testing 

stage. Thus, the proposed model is a powerful and precise predictor of the thermal errors of 

the machine tool but requiring less training data and converging epochs. 

Consequently, this section develops a simple, less computationally intensive and low-cost 

approach with a high adaptation rate based on ANFIS model and Grey system theory to 

predict the thermal error compensation on CNC machine tools. The results obtained from the 

proposed model exhibit slightly better performance than GNNMCI model in the previous 

section. 
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Figure 6-7: Correlation between the measured and simulated Z-axis displacement using the 

ANFIS model. 

6.2.2.1 Different Ambient Conditions  

In the previous section, the machine was tested as a case-study in winter. Here, the same 

machine is examined in summer. To further validate the robustness of this modelling 

methodology, another three-day test was carried out to observe the machine behaviour in the 

summer season. The overall movement caused by this test is 20 μm in the Z-axis and 15 μm 

in the Y-axis for an overall temperature swing of approximately 8 ˚C over the test. Because 

of different temperature swing values between summer and winter test, the ANFIS model 

needs to be optimised (see Figure 6-8). One solution to this problem is to recalibrate the 

model using a new dataset (summer test). This would demonstrate that the thermal model 

could be built up in a modular form and so is extensible to the remainder of other operation 

conditions. Figure 6-9 shows simulation results for three-day summer test. 
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Figure 6-8: Three-day summer test (before optimisation). 

 

Figure 6-9: Three-day summer test (after optimisation). 

As mentioned previously in section 6.2.1, the second method of modelling is to obtain the 

model at the first stage of the manufacturing process, and then to use this model to predict the 

machine movement during the rest of the process.  

To demonstrate this method, another ETVE test was carried out on the same machine 

(Machine A) for four days.  During the experiment, the room temperature was changing 

through as wide range as possible. This is achieved by means of using a room heater to 

warm-up the machine structure and room air conditioning for cooling-down the machine 
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structure (see Figure 6-10 and Figure 6-11). Figure 6-12 shows machine movement and 

temperature changes in one plot. 

 

Figure 6-10: Temperature measurements due to environmental changes. 

 

Figure 6-11: Machine movement due to environmental changes. 
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Figure 6-12: Machine movement and temperature changes. 

The training samples were obtained from the first stage after the test had been started. After 

finishing the training of the model, the proposed ANFIS model can predict the normal daily 

cyclic error accurately and also can track sudden changes of thermal error from a relatively 

small training sample (Figure 6-13 and Figure 6-14). 

 

Figure 6-13:  Correlation between the measured and simulated Y-axis displacement using 

ANFIS model. 
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Figure 6-14: Correlation between the measured and simulated Z-axis displacement using 

ANFIS model. 

As a result of the proposed model, the initial ANFIS model can be sufficiently well defined to 

the point that it might only need a small number of training iterations and a small amount of 

training data. Thus, the proposed ANFIS model does not require time-consuming iterative 

learning procedure or prohibitive downtime required to conduct the tests. To further validate 

the robustness of this modelling methodology, a normal environmental simulation was run 

using the test presented in section 6.2.2. The proposed model not only preserves a fast 

learning characteristic but also has an excellent prediction capability. Simulation results show 

that the thermal error in the Z direction can be significantly reduced to less than ±6 μm using 

testing dataset (see Figure 6-15).  
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Figure 6-15: Five-day winter test 

6.3 Robustness of the ANFIS Model 

To verify the applicability of the proposed model, an example simulating the machining of a 

number of parts is investigated. The experiments were performed on a small vertical milling 

centre (Machine A) and utilised a Renishaw OMP40-2 spindle-mounted probe to monitor 

distortion. It has a stated unidirectional repeatability of 1.0 μm at 480 mm/min with a 50 mm 

stylus. The test consists of simulating the machining a number of parts which are machined 

individually at a datum point on the table. When a part is finished the table moves to the next 

datum point to start machining the next part. Each part excites the X, Y and Z axes through 

simulated milling operations. This allows heat to be generated from spindle, motors and axes 

movement. A probing routine is run before the first machining operation to create a datum 

baseline for the test on four corners of granite square (see Figure 6-16). Probing routines are 

run after the third part and sixth part to measure the response of the tool in the X, Y and Z 

axes. The thermal data were measured using twenty-six temperature sensors placed in strips 

at the carrier, spindle boss, axes motors, axes ballscrews, nut, and ambient temperature 

sensors were placed around the machine to pick up the ambient temperature (see Table 6-1). 

A general overview of the experimental setup is shown in Figure 6-16. 
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Figure 6-16: A general overview of the experimental setup. 

Displacement and temperature data is monitored on a regular basis whilst examining the 

machine in as wide a variety of ways as possible. The machine was examined by running the 

spindle at different speeds as illustrated in Figure 6-17 (except for the periods of probing), 

running the axes from the test position to one extreme with different feedrates, and probably 

most importantly, changing the ambient condition through as wide range as possible. The 

latter was achieved by means of placing the machine in temperature-control room, so that the 

air could be warmed-up and cooled-down uniformly. 

The high rotational speed brings a larger thermal displacement to the spindle carrier. 

Moreover, the higher feedrate generates larger frictional heat at the interface points, and the 

motor temperature also increases with the higher feedrate (see Figure 6-18, at 350 min). The 

temperature of measured points rises gradually until the equilibrium state is reached. The 

temperature sensors were measured simultaneously every 10 seconds. The maximum 

response of the X-axis is 27 μm, the Y-axis is 32 μm, and the Z-axis is 74 μm (see Figure 

6-18, Test-I). In this work, the thermal response of the X-axis was investigated first as an 

example for the modelling, and potential error compensation. 

In this section, the aim is to use the structure of the ANFIS models described in the previous 

subsections to derive thermal error compensation systems. Moreover, a comparison will be 

made between the estimates provided by the ANFIS, ANN, and Grey models. With the 
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purpose of evaluating the prediction performance of the models, the remaining dataset 

(testing dataset, Figure 6-19) were used to run the proposed models. The performance of the 

models used in this study were computed using four performance criteria, including Root 

Mean Square Error (RMSE), Nash–Sutcliffe Efficiency coefficient (NSE), correlation 

coefficient (R) and also residual value (see section 3.8).   

Table 6-1: The location of the temperature sensors. 

Sensors No.  Sensors Name  Locations 

T01-07 B1-B7 Strip 1 Sensors (placed on the carrier) 

T08-14 T1-T7 Strip 2 Sensors (placed on the carrier) 

T15 Column Ambient Outside the column 

T16 Column Bolt Bottom Z Scale 

T17 Column Bolt Top Z Scale 

T18 Spindle Front Bottom Spindle boss 

T19 Spindle Front Top Spindle boss 

T20 Spindle Motor Spindle Motor surface  

T21 X Ballnut X Scale 

T22 Y Ballnut Y Scale 

T23 Z Ballnut Z Scale 

T24 Z Motor Z axis motor surface 

T25 X Axis bearing cap X Scale 

T26 Y Axis Motor bolt Y Scale 

 

Figure 6-17: Running the spindle at different speeds. 
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Figure 6-18: The machine movement (Test-I). 

 

Figure 6-19: Temperature measurements and machine movement in Z-direction (Test-II). 

6.3.1 ANN Model Development  

In order to assess the ability of the ANFIS model relative to that of a neural network model, 

an ANN model was constructed using the same input variables to the ANFIS with 26 inputs. 

For the conventional neural network modelling approach, the datasets were also divided into 

the similar three groups of sets for training, testing and validating. It is worth noting that the 
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range of the training data must be representative of the entire operating conditions of the 

machine in order to overcome the problem of extrapolation error.  

Usually ANN models have three layers: Input, hidden and output layer. Although, for 

common engineering problems, one hidden layer is sufficient for model training [120, 121], 

two or more hidden layers may be needed for other applications [122]. An ANN model with 

three layers was used in this study: the input layer has 26 input variables and the output layer 

has one neuron (the thermal response in the X-axis direction).  

Selection of the number of neurons in the hidden layer is important for finding a suitable 

ANN model structure. Although increasing the neuron numbers in the hidden layer, may help 

to improve the neural network performance, however, the possibility of over-fitting may 

increase. Furthermore, a large number of hidden neurons can increase model training time. In 

this work, the minimum RMSE is determined by changing the number of hidden neurons. 

Therefore, after a series of experiments to find the best architecture, an ANN model with 10 

neurons in the hidden layer was constructed to predict the thermal response in the X-axis 

direction. Figure 6-20 shows the structure of associated network model. 

 

Figure 6-20: The structure of associated network model. 

6.3.2 Grey Model Development 

In order to optimise the Grey model parameters, the same training dataset was used for 

calibrating the model. Twenty six temperature sensors are used as inputs, and X-axis 

displacement as output. In the PSO algorithm, the number of the particles is set to be 90 
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whilst the self-confidence factor and the swarm-confidence factor are C1=2 and C2=2, 

respectively. The inertia weight ω was taken as an adaptive decreasing function in iteration 

index k from 0.9 to 0.4. After 100 epochs, the total error was at an acceptable level 

(RMSE=1.03). Table 6-2 illustrates the final Grey model parameters. The optimisation 

procedure was presented in section 3.6. 

Another Grey model was developed by using the traditional Least Squares (LS) method in 

order to evaluate the structure parameters. In this section, five steps were involved in 

developing the model. Step 1, Step 2, Step 5 and Step 6 were the same as those presented in 

section 3.6. The unknown variables of the equation (3.13) were determined by the traditional 

least squares method (see Table 6-3).  

The final Grey models being optimised and validated in this section has been tested next by a 

new testing dataset, not used during training and validation stage. 

Table 6-2: PSO-based Grey model parameters 

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 

6.66 -28.77 22.48 56.62 46.45 -72.21 62.29 -92.32 -18.84 48.78 

b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 

53.32 -23.20 46.63 81.24 -49.10 -71.93 -53.48 -32.15 -40.09 82.83 

b21 b22 b23 b24 b25 b26 b27 u   

-87.03 21.23 -64.47 65.94 -63.69 -1.65 97.68 -26.32   

Table 6-3: LS-based Grey model parameters 

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 

1.75 -2.93 -1.04 -26.31 6.97 -19.56 53.75 -2.37 -21.11 -31.16 

b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 

33.61 -19.86 -13.41 6.43 40.28 -12.23 17.49 -4.63 -28.47 -6.03 

b21 b22 b23 b24 b25 b26 b27 u   

9.71 -8.98 -0.31 -9.23 5.09 24.64 -1.35 24.07   

6.3.3 Results and Discussion  

In this work, the use of ANFIS, ANN and Grey models, for prediction of thermal error of a 

small VMC machine tool (Machine A), was described and compared. The final models being 

trained, validated and tested in the previous subsections have been verified further by a new 

separate dataset, not used during training, validation and testing stages. Predictive results 

using ANFIS, ANN and Grey models are shown in Figure 6-21, Figure 6-22, Figure 6-23, 

and Figure 6-24, respectively. The performance of each of the four thermal prediction models 

is presented and compared in Table 6-4, where the four models are trained using the same 
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training dataset and validated by the same testing dataset. According to the predictive results 

and evaluation criteria values in Table 6-4, it is very clear that the ANFIS model has a 

smaller RMSE, residual value (±4 µm), higher efficiency coefficient NSE=0.93, and higher 

correlation coefficient (R) contrasting with the ANN and Grey models. The ANN model 

performed slightly better than the Grey models for predicting thermal error in X-direction. 

Nevertheless, the PSO algorithm can act as an alternative training algorithm for the Grey 

model that can be used for thermal error compensation. It can be also observed from Table 

6-4 that the models developed using the artificial intelligence techniques outperformed the 

statistical model (Grey model with (LS)). However, the ANN model does reduce the residual 

value to less than ±6 μm, the number of model parameters is high. Furthermore, it is worth 

noting that these models (i.e., ANN model and both Grey models) need a proper optimisation 

to predict effectively. For instance, the ANN model needs 10 neurons in the hidden layer, 

which was difficult to optimise. The Grey model was also time-consuming when trying to 

find the proper Grey final model. Therefore, the ANFIS model is a good modelling choice for 

predicting the thermal error of the machine tools with the benefit of fewer rules. 

Table 6-4:  Performance calculation of the used models. 

Models 
Performance indices 

R RMSE NSE Residual 

ANFIS model 0.98 1.60 0.93 ±4 μm 

ANN model 0.94 2.42 0.86 ±6 μm 

Grey model with PSO 0.90 3.16 0.67 ±9 μm 

Grey model with LS 0.82 7.26 0.20 ±16 μm 
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Figure 6-21: ANFIS model output vs the actual thermal response. 

 

Figure 6-22: ANN model output vs the actual thermal response. 
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Figure 6-23: Grey model with PSO output vs the actual thermal response. 

 

Figure 6-24: Standard Grey model output vs the actual thermal response. 

Similar results have been obtained for Y-axis direction using the proposed ANFIS model (see 

Figure 6-25). 

0 100 200 300 400 500 600
-10

-5

0

5

10

15

20

25

30

Time (Minutes)

T
h
e
rm

a
l 
d
is

p
la

c
e
m

e
n
t 
  
( 

m

)

 

 

GMC(1,N) Output

Thermal Error

Residual value

0 100 200 300 400 500 600
-20

-15

-10

-5

0

5

10

15

20

25

30

Time (Minutes)

T
h
e
rm

a
l 
d
is

p
la

c
e
m

e
n
t 
  
( 

m

)

 

 

GMC(1,N) Output

Thermal Error

Residual value



Chapter 6: Model Validation and Comparison 

142 

 

 

Figure 6-25: ANFIS model output vs the actual thermal response in Y-direction. 

Next, the proposed ANFIS model can be applied to predict the thermal error in the Z-

direction as shown in Figure 6-26. Although, the correlation coefficient between measured 

values and predicted values was close to 1 (98%), the result is not as good as demanded in 

terms of accuracy, especially in the rapid movement of Z-axis (the maximum residual value 

is approximately ±11 μm). This phenomenon due to rapid movement of the Z-axis makes the 

proposed model less robust. 
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Figure 6-26: ANFIS model output vs the actual thermal response. 

Since this effect is a highly non-linear inherent phenomenon, it is necessary to consider it in 

the modelling process. By taking another number of samples from rapid movement cycle to 

recalibrate the model, the robustness of the model can be improved further under different 

operation conditions. However, the Grey models were not able to capture this complexity, 

thus more advanced nonlinear modelling techniques such as the AI models are justified to 

capture this phenomena. The result shows that ANFIS model has a high capacity of 

prediction compared to other models. Figure 6-27 shows the output results of the simulation 

using ANFIS model. The correlation coefficient is 99% and the maximum residual value is 

approximately ±6 μm. In practice, the training data could be also obtained by carrying out a 

short heating and cooling test before the stage of a manufacturing process. 
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Figure 6-27: Improved ANFIS model output vs the actual thermal response. 
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6.4 Summary  

Temperature-induced effects on machine tools are a significant part of the error budget. 

Changes in ambient conditions are an often overlooked effect that can be difficult to model, 

especially in unpredictable environments. 

In this chapter, a novel thermal error modelling method based on Grey system theory and 

neural networks was developed to predict the environmental temperature variation error of a 

machine tool. The proposed model has been found to be flexible, simple to design and rapid 

to train.  

The model is trained using data obtained from a short test of less than ninety minutes, which 

is desirable for minimising machine downtime. The accuracy of the model has not been 

compromised by restricting the training data. ETVE results in the Z-axis direction over a 

160 hour test showed a reduction in error from over 20 µm to better than ±3 µm considering 

the normal daily cycles. When also considering unexpected phenomena, such as the rapid 

change in temperature when a workshop door was opened, the model still performs well, with 

an improvement from 40 µm to less than ±10 µm.  

Similar results were achieved in the Y-axis direction, with this study not considering the X-

axis direction due to symmetry of the machine. 

To supplement the ANFIS model, the AGO was used to increase the linear characteristics and 

reduce the randomness from the measuring samples. This simple but effective technique 

allows the thermal model to be built with a minimum amount of temperature and 

displacement data in a very short time scale. Thus, a new concept has been added to ANFIS 

modelling for prediction of thermal errors. In this contribution, an ANFIS model and Grey 

system theory was successfully used to predict thermal errors of a small vertical milling 

centre with a limited amount of data for calibrating the model. The proposed method is a 

significant advantage over other models based on a single technique that have been used by 

many previous scholars where the data used to build the models is obtained from very long 

tests. The proposed model has significantly reduced the machine downtime required for a 

typical environmental testing from hours to only few minutes. According to experimental 

work, little machine downtime is needed to apply this modelling approach except to re-

establish the model if needed. 
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Three types of data-driven models have been discussed in section 6.3: using ANFIS, ANN, 

and Grey models, respectively. All models were constructed and tested on a CNC milling 

machine. The results from the two sets of validation tests show that the ANFIS model has a 

smaller RMSE, residual value (±6 µm) and higher R contrasting with the Grey model and 

ANN model. Therefore, no single method can satisfy all the requirements for thermal error 

compensation. One method may complement another to obtain high level of accuracy.  

Results also indicate that further improvement in correlation could be achieved by including 

rapid changes as part of the training data. Thus, the thermal error compensation model using 

ANFIS introduced in this thesis can be applied to any CNC machine tool because the model 

does not rely on a parametric model of the thermal error behaviour. In addition, this method 

is open to extension of other different physical inputs meaning that alternative sensors can be 

deployed with minimal retraining required. 
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Chapter 7:  Summary and Conclusions 

In this chapter, the summary of the thesis and the major contributions of the research 

performed are given. Then, the future research that may be conducted in relation to this 

research area is also given in order of priority. 

7.1 Thesis Summary and Contributions  

The aims of this research were to propose generalised intelligent techniques for robust 

modelling of thermally induced errors on machine tools, and to validate the applicability of 

these techniques on different machine tools.  

This research work proposes a thermal error modelling method based on the Adaptive Neuro-

Fuzzy Inference System (ANFIS) in order to establish the relationship between the thermal 

errors and the temperature changes. The proposed methodology has the ability to provide a 

simple, transparent and robust thermal error compensation system. It has the advantages of 

fuzzy logic theory and the learning ability of the artificial neural network in a single system. 

Methods of optimising sensor location, using automatic clustering of thermography data, 

have also been proposed. This allows efficient modelling of new machines. 

The proposed approach has been validated on three different machine tools under different 

operation conditions. Thus the proposed system has been shown to be robust to different 

internal heat sources (axis and spindle heating), ambient changes and is easily extensible to 

other CNC machine tools. 

The following items are the contributions to knowledge of this work regarding the modelling 

and testing of the thermal errors of CNC machine tools. 

 A comprehensive review of the empirical models for thermal error compensation of 

CNC machine tools has been conducted. Different types of Artificial Intelligence (AI) 

models were investigated and throughout the research, comparisons have been made 

between the new technique and existing proposals from literature. 

 The structure of ANFIS model was significantly reduced from the standard methods 

for thermal error compensation (see Table 5-7 and Table 6-4). Reduction of the 

number of rules was one of the mechanisms responsible for achieving good level of 

interpretability. Therefore, this research focuses on obtaining the best trade-off 
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between interpretability and accuracy. It should be noted that best reduction of all 

rules of the ANFIS model was achieved by using a Fuzzy C-Means (FCM) technique. 

The process of reduction allowed reducing rules of the compensation model which do 

not affect model accuracy. This was validated by case study. Furthermore, the final 

model is easily understandable by domain experts for interpretation purposes. 

 A thermal imaging camera was used to record temperature distributions across the 

machine structure during the experiments. The thermal images were saved as a matrix 

of temperatures with a specific spatial resolution of one pixel, each of which can be 

considered as a possible temperature measurement point. The optimal locations for 

the temperature sensors were determined through the Grey model and FCM 

clustering. After clustering into groups, one sensor from each group is selected 

according to its influence coefficient value with the thermal response. By this method, 

the number of temperature sensors required for a robust compensation model was 

reduced, which significantly minimised the computational time, hardware cost and 

effect of sensor uncertainty. 

 Unlike the existing deterministic models, the proposed method is easily extensible to 

other physical variables. This means that alternative or additional sensors can be 

deployed with minimal retraining required. Furthermore, other machine or machining 

parameters can be acquired directly from the controller to provide some feedforward 

information. Example is the spindle speed or axis feedrate, although other significant 

factors can also be considered. It is worth noting that changes to motor behaviour over 

its lifetime will affect the thermal output at a given speed. For this reason, the 

inclusion of the primary parameters is non-trivial when looking for long-term 

accuracy from the model and it can be more robust only to include the derived values 

that directly affect accuracy. 

 The compensation system using Grey model has been found to be flexible, quick, 

efficient to implement, and has been used to reduce thermal errors from heating of the 

C and Z axes of a gantry machine by over 85% using a quick heating test for 

calibrating the model. This dramatically reduces the amount of experimental data, and 

so reduces the downtime needed for implementing the compensation model. The 

Particle Swarm Optimisation (PSO) algorithm is an effective technique for identifying 

the parameters of the proposed model even the training dataset is corrupted by noise. 

The number of sensors used in this model was minimised by fusion of both 
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temperature sensors and direct strain measurement from Fibre Bragg Grating (FBG) 

sensors.   

 Hence, it can be concluded that a well-trained and tested ANFIS model can be used as 

a viable tool to predict the thermal error of the CNC machine tool at different 

operation conditions. 

In conclusion, many novelties have been discovered by investigating different thermal error 

modelling and compensation techniques. The design, development and testing of these 

techniques have resulted in presentations at two refereed journal papers [116, 123], five 

refereed conference papers [50, 53, 117, 124, 125], and other papers in the final stages of 

preparation. 

7.2 Future Work 

 To extend this proposed modelling approach in future work, several approaches will 

be needed, including improving the capabilities of inserting more engineering 

knowledge into the main learning mechanisms of the intelligent system. 

 The combination of principle-based models (hard computing) and artificial 

intelligence tools (soft computing) has not been given sufficient attention in thermal 

error compensation models. Such attempts have been employed in other areas of 

manufacturing [126]. FEA models can be combined with artificial intelligence tools to 

obtain more accuracy and robustness. 

 Data-driven models are still believed to be promising in future study of thermal error 

compensation, due to their characteristics of simplicity, flexibility, robustness and no 

need for a complex thermal behaviour model. 

 Numerous studies in literature proved that direct compensation techniques can be 

useful for thermal error compensation but further research activity is needed to 

increase their robustness and reliability for real time applications. 
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7.3 Published Papers 

The following list of publications has risen from this research activity:   

7.3.1 Refereed Journal Papers 

Ali M Abdulshahed, Andrew Peter Longstaff, Simon Fletcher: The application of ANFIS prediction 

models for thermal error compensation on CNC machine tools. Applied Soft Computing 02/2015. 

[116]. 

Ali M Abdulshahed, Andrew Peter Longstaff, Simon Fletcher, Alan Myers: Thermal error modelling of 

machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera. Applied 

Mathematical Modelling 04/2015. [123]. 

7.3.2 Refereed Conference Papers 

Ali Abdulshahed, Andrew P Longstaff, Simon Fletcher: A particle swarm optimisation-based Grey 

prediction model for thermal error compensation on CNC machine tools. Lamdamap 11th 

International Conference; 03/2015. [117]. 

Ali M Abdulshahed, Andrew P Longstaff, Simon Fletcher: A novel approach for ANFIS modelling based 

on Grey system theory for thermal error compensation. 2014 14th UK Workshop on Computational 

Intelligence (UKCI), Bradford, UK; 09/2014. [125]. 

Ali M Abdulshahed, Andrew P Longstaff, Simon Fletcher, Alan Myers: Application of GNNMCI(1, N) 

to environmental thermal error modelling of CNC machine tools. The 3rd International Conference on 

Advanced Manufacturing Engineering and Technologies, Stockholm, Sweden; 10/2013. [53]. 

Ali M Abdulshahed, Andrew P Longstaff, Simon Fletcher, Alan Myers: Comparative study of ANN and 

ANFIS prediction models for thermal error compensation on CNC machine tools. Lamdamap 10th 

International Conference; 03/2013. [50]. 

Akshay Potdar, Andrew P Longstaff, Simon Fletcher, Ali M Abdulshahed: Development of modular 

machine tool structural monitoring system. The 3rd International Conference on Advanced 

Manufacturing Engineering and Technologies, Stockholm, Sweden; 10/2013. [124]. 

Posters  

Ali M Abdulshahed, Andrew P Longstaff, Simon Fletcher, Alan Myers: Optimal temperature variable 

selection by GRA approach for thermal error modelling. EPSRC Centre for Innovative 

Manufacturing in Advanced Metrology (Grant Ref: EP/I033424/1). Mid-Term meeting; 

27/03/2014. 

Contribution to projects 

HARCO Project (Hierarchical and Adaptive smaRt COmponents for precision production systems 

application) funded by the European Commission Seventh Framework Programme (FP7), (NMP2-SL-

2010-260051), 2013. 

 Design of tests, experimental setup and data analysis using MATLAB. 
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 Develop an intelligent thermal-error compensation model using fusion of both temperature 
sensors and direct strain measurement from Fibre Bragg Grating (FBG) sensors. 

EASE-R3 Project (Integrated framework for a cost-effective and ease of Repair, Renovation and Re-use 

of machine tools within modern factory). 
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Appendix A: GNNMCI (1, N) Architecture 

The fusion model of Grey system and neural network is employed in the modelling of the 

thermal error of machine tools. The model can reveal the long-term trend of data and, by 

driving the model by the AGO, rather than raw data, can minimise the effect of some of the 

random occurrences. Therefore, the first step for building GNNMCI (1, N) is to carry out 1-

AGO (first-order Accumulated Generating Operation) to the data, so as to increase the linear 

characteristics and reduce the randomness from the measuring samples. Particle swarm 

optimisation algorithm, with capability to optimize complex numerical functions [127], is 

adopted to train the GNNMCI (1, N) model. Finally, an IAGO (Inverse Accumulated 

Generating Operation) is performed to predict the thermal error and generate the final 

compensation values. The model fully takes the advantages of neural networks and Grey 

models, and overcomes the disadvantages of them, achieving the goal of effective, efficient 

and accurate modelling. The modelling detail is described as follows:  

The Grey prediction Model with Convolution integral GMC (1, N) [98] is: 

𝑑𝑋1
(1)

𝑑𝑡
+ 𝑏1𝑋1

(1)
= 𝑏2𝑋2

(1)
+ 𝑏3𝑋3

(1)
+ ⋯+ 𝑏𝑁𝑋𝑁

(1)
+ 𝑢,  (A.1) 

where 𝑏1 is the development coefficient, 𝑏𝑖(𝑖 = 2,3, … ,𝑁) the driving coefficient, and 𝑢 is 

the Grey control parameter. Therefore, time response sequences can be obtained. 

�̂�1
(1)(𝑘 + 1) = 𝑥1

(1)(1)𝑒−𝑏1𝑘 + 𝑢(𝑡 − 1) × ∑{𝑒−𝑏1(𝑘−𝜏+
1
2).

1

2
[𝑓(𝜏) + 𝑓(𝜏 − 1)]}

𝑘

𝜏=1

, (A.2) 

Where 𝑢(𝑡 − 1) is the unit step function; and  𝑓(𝜏) = ∑ 𝑏𝑗𝑋𝑗
(1)(𝜏) + 𝑢𝑁

𝑗=2     k=1,2,…,n.    

To calculate the coefficients bi and 𝑢, the neural network method can be used to map 

equation (A.2) to a neural network. Then, the neural network model is trained until the 

performance is satisfactory. Finally, the optimal corresponding weights are used as the Grey 

neural network weights to predict the thermal error. 

Equation (A.2) can be written as; 

𝐺 = 𝑢(𝑡 − 1) × ∑{𝑒−𝑏1(𝑘−𝜏+
1
2).

1

2
[𝑓(𝜏) + 𝑓(𝜏 − 1)]} .

𝑘

𝜏=1

    (A.3) 

Equation (A.2) can be rewritten as: 
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�̂�1
(1)(𝑘 + 1) = (𝑥1

(1)(1)) 𝑒−𝑏1𝑘 + 𝐺. (A.4) 

Then equation (A.4) can be converted into equation (A.5) as follows: 

𝑥1
(1)(𝑘 + 1) = [𝑥1

(1)(1)
𝑒−𝑏1𝑘

1 + 𝑒−𝑏1𝑘
+ 𝐺

1

1 + 𝑒−𝑏1𝑘
] (1 + 𝑒−𝑏1𝑘),  

�̂�1
(1)(𝑘 + 1) = [𝑥1

(1)(1) (1 −
1

1 + 𝑒−𝑏1𝑘
) + 𝐺

1

1 + 𝑒−𝑏1𝑘
] (1 + 𝑒−𝑏1𝑘),  

= [𝑥1
(1)(1)−𝑥1

(1)(1)
1

1 + 𝑒−𝑏1𝑘
+ 𝐺

1

1 + 𝑒−𝑏1𝑘
] (1 + 𝑒−𝑏1𝑘) . (A.5) 

Map equation (A.5) into a neural network, and the mapping structure is shown in Figure A-1 

 

Figure A-1: The mapping structure of GNNMCI (1, 6). 

Where k is the serial number of input parameters; 

In this study, 𝑥1
(1)(𝑘 + 1) is chosen as a dependent variable (network output) and 𝑥2

(1)(𝑘 +

1), 𝑥3
(1)(𝑘 + 1),… , 𝑥𝑁−1

(1) (𝑘 + 1), as independent variables, (N is the number of network 

inputs); 

𝑤11, 𝑤21, 𝑤22, … , 𝑤2𝑛; 𝑤31, 𝑤32 …𝑤3𝑛 are the weights of the network; 

Layer A, layer B, layer C, and layer D are the four layers of the network, respectively. 

Where, the corresponding neural network weights can be assigned as follows: 

Let us assume that 𝑑1 = 𝑓(𝑏2),      𝑑2 = 𝑓(𝑏3), . . . , 𝑑𝑁−2 = 𝑓(𝑏𝑁−2),  𝑑𝑁−1 = 𝑓(𝑢).           

𝑤11 = 𝑏1,  𝑤21 = −𝑥1
(1)(1),   𝑤22 = 𝑑1,  𝑤23 = 𝑑2, … , 𝑤2𝑁−1 = 𝑑𝑁−2, 𝑤2𝑁 = 𝑑𝑁−1 

𝑥2
(1)(𝑘 + 1), 𝑥3

(1)(𝑘 + 1), …. 𝑥𝑁−1
(1) (𝑘 + 1) 

𝑥1

(1)(𝑘 + 1) 
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𝑤31 = 𝑤32 = 𝑤33 = ⋯ = 𝑤3𝑁 = 1 + 𝑒−𝑏1𝑘 

The bias Ө value of 𝑥1
(1)(𝑘 + 1) is: 

Ө = (−𝑥1
(1)(𝑘 + 1)) (1 + 𝑒−𝑏1𝑘) (A.6) 

The transfer function of Layer B is a sigmoid function  𝑓(𝑥) =
1

1+𝑒−𝑥  , the transfer functions 

of other layer’s neuron are adopted as a linear function 𝑓(𝑥) = 𝑥. 

A.1 GNNMCI (1, N) Learning Algorithm 

The learning algorithm of GNNMCI (1, N) can be summarised as follows:   

Step 1: For each input series, (𝑘, 𝑋𝑗
(1)(𝑘)), (𝑘 = 2,3, . . 𝑁), the output of each layer is 

calculated. 

Layer A: 𝑎 = 𝑤11𝑘; 

Layer B: 𝑏 = 𝑓(𝑤11𝑘) =
1

1+𝑒−𝑤11𝑘 ; 

Layer C: 𝑐1 = 𝑏𝑤21 ,  𝑐2 = 𝑥2(𝑘)𝑏𝑤22 ,  𝑐3 = 𝑥3(𝑘)𝑏𝑤23, … , 𝑐𝑛−1 = 𝑥𝑛(𝑘)𝑏𝑤2𝑛−1,  𝑐𝑛 =

𝑏𝑤2𝑛; and 

Layer D: 𝑑 = 𝑤31𝑐1 + 𝑤32𝑐2 + ⋯𝑤3𝑛−1𝑐𝑛−1 + 𝑤3𝑛𝑐𝑛 − 𝜃. 

Step 2: In order to avoid the entrapment in a local minimum, a PSO algorithm is adopted to 

train the GNNMCI (1, N) model. Here, a particle refers to a weight in the model that changes 

its position from one move to another based on velocity updates. The flowchart for PSO 

implementation is given in Figure A-2, and the mathematical description of PSO algorithm is 

as follows; Suppose that the search space is D-dimensional, then the current position and 

velocity of the ith particle can be represented by 𝑊𝑖 = [𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝐷]𝑇 and 𝑉𝑖 =

[𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐷]𝑇 respectively, where 𝑖 = 1, 2, … ,𝑀 and 𝑀 is the number of particles in the 

swarm.  

Particle i can remember the best position so far, which is known as the local best 

position 𝑃𝑏𝑒𝑠𝑡𝑖 = [𝑝𝑏𝑒𝑠𝑡1, 𝑝𝑏𝑒𝑠𝑡2, … , 𝑝𝑏𝑒𝑠𝑡𝑖𝐷]𝑇. It can also obtain the best position that the 

whole swarm establish, known as the global best position 

G𝑏𝑒𝑠𝑡𝑖 = [g𝑏𝑒𝑠𝑡1, g𝑏𝑒𝑠𝑡2, … , g𝑏𝑒𝑠𝑡𝑖𝐷]𝑇. The first position and velocity of Particle i are 

randomly initialised by the uniformly distributed variables. Afterwards, particle i adjusts its 
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velocity of iteration k+1 according to the local and global best positions, as well as the 

velocity and position of iteration k, as follows: 

𝑉𝑖(𝑘 + 1) = 𝜔𝑉𝑖(𝑘)+ ∁1𝑅(𝑃𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝑊𝑖(𝑘))+ ∁2𝑅(G𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝑊𝑖(𝑘)) (A.7) 

Where 𝜔 is the inertia factor which is used to manipulate the impact of the previous 

velocities on the current velocity. C1 and C2 are the self-confidence factor and the swarm-

confidence factor, respectively. R is a uniformly distributed random real numbers that can 

take any value between 0 and 1. 

With the updated velocity, the position of particle i in the iteration k+1 can be obtained as 

follows: 

𝑊𝑖(𝑘 + 1) = 𝑊𝑖(𝑘) + 𝑉𝑖(𝑘 + 1) (A.8) 

The fitness of particle is measured using a fitness function that quantifies the distance 

between the particle and its optimal solution as follows: 

𝑓(𝑊𝑖) = ∑[�̂�(0)(𝑘) − 𝑥(0)(𝑘)]
2

𝑁

𝑘=1

 (A.9) 

Where f is the fitness value, �̂�(0)(𝑘) is the target output; and,  𝑥(0)(𝑘) is the predicted output 

based on connection weight (particle) updating. 

Step 3: update the velocity and position of each particle based on equations (A.7) and (A.9). 

Adjusting the connection weights between layers: 

Adjusting the connection weights from LA to LC. 

Adjust the bias value Ө. 

Ө = (−𝑥1
(1)(𝑘 + 1)) (1 + 𝑒−𝑤11𝑘) 

Step 4: If the value of the error meets the requirement of the model, or a pre-determined 

number of epochs is passed, then the network training will end if not, then return to Step 3. 

Step 5: Export the optimal solution 𝑊𝑖. 



Appendices 

164 

 

 

Figure A-2: Flowchart for PSO implementation. 
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