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Introduction

 The liquid fuel is injected at high velocity into a combustion chamber

 It atomizes into small droplets

 The atomized fuel vaporizes and mixes with high-temperature air

 Combustion occurs after vaporized fuel mixes with air

 Mixing and evaporation occurs at microscopic  scales

 Initial stage of spray formation influences combustion process

 There is a need to study spray at macroscopic levels

Objectives

 To study morphology of fuel droplets during the injection process 

at microscopic scales in near nozzle region to aid model correlation
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Evaporative test conditions

 Rapid Compression Machine (RCM) is:

A single cylinder Ricardo Proteus two-stroke test engine

• Bore: 135 mm

• Stroke: 150 mm

• Displacement: 2.2 l

• RPM: 500

• Quiescent air motion at TDC

• Pinj: 30-200 MPa

• ICP: up to 12 MPa

• TDC temperatures 540-850 K
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Evaporative test conditions (cont.)

O2

In-cylinder 

Temp, K

In-cylinder

Density,

kg/m3

ICP, bar Inj. Pressure, bar Fuel Inj. Duration

Based on trigger, 

ms

21% 700 22.8 48 500, 1000, 1500 n-dodecane 1.5

Description Value

Type Bosh solenoid-actuated, generation 2.4

Nominal nozzle outlet diameter 0.090 mm

Nozzle K factor* 1.5

Nozzle shaping Hydro-erosion

Mini-sac volume 0.2 mm3

Number of holes 1 (single hole)

Orifice orientation Axial (0° full included angle)

Specifications for the injector (IFPEN 201.02 ECN spray A)

Target operating conditions
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High-speed video and microscopy

A A

A A
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High-speed video and microscopy system

CAVILUX Smart 640 nm 
pulsed diode laser light source

Phantom V710 high-speed camera

80-200 mm Nikon AF Nikkor

Long-distance microscope
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Start of injection (HSV)

Raw images Time, µs

 Dashed line is standard deviation

 IFPEN injector 201.02 at 900K 22.8 kg/m3

 Good correspondence with liquid 

and vapour IFPEN data

Processed

Motored @ ICP 4.5 MPa
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Start of injection (Microscopy)

Liquid-vapour mixture exiting the nozzle hole for 0.295 ms ASOI 

Pinj = 150 MPa, ICP 4.8 MPa

1.025 X 0.906 mm ≈180 µm 

Fuel jet eventually pierces through this vapour cap

1.025 X 0.906 mm

1.025 X 0.906 mm 1.025 X 0.906 mm

Zoomed 2
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Start of injection (Microscopy)

The vapour pre-jet can be caused by:

 Expansion of cavitation pockets after previous injection

 Ingestion of in-cylinder gases after previous injection 

 Heating and evaporation of fuel inside orifice 

 Can be ignited (if it is fuel vapour)

 Modelling may need to account for in-nozzle fluid properties

Vapour pre-jet was also reported for other injectors  e.g.

Delphi 1.3 7-hole, 135μm VCO and fuel (ULSD)
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Steady-state (1.0-3.0 ms) 
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End of injection (3.0-3.6 ms) 

50 MPa 100 MPa 150 MPa
Start of trigger
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End of injection in ECN injector

Pinj =100 MPa, 3.7 ms ASOI

1.025 x 0.486 mm

d=30 µm

Vx=5, Vy=0 m/s

Droplets from ‘main end of injection’

Micro-injection events after EOI
Pinj = 150 MPa for 3.6 ms ASOI

1.025 x 0.779 mm

Start of micro-injection event

Secondary micro-injection events in the ECN injector could be caused by:

The needle bouncing from the seat or by expansion of the fluid in the sac

 Large ‘slow’ droplets

 Micro-injection events

 Random droplet trajectory

 Spherical droplets
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End of injection (cont.)

 Large ligaments as well as highly deformed 

droplets are observed for low Pinj

 Hard to process in order to extract statistics

Pinj = 50 MPa, 3.3 ms ASOI

Long structures (~420 µm)

Non-spherical droplets

3D shape reconstruction, is needed in order to 
estimate the droplet surface area and volume

 Long irregular ligaments present significant

modelling challenges for

a) initialisation of emerging fluid

b) modelling of subsequent evaporation 

and transport
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End of injection (cont.)
Pinj=50 MPa 3.3 ms ASOI

m/s

Frame 1 Frame 2
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Conclusions

 Long injection process (compared to trigger duration) due to single-hole design

 Vapour pre-jet for a range of pressures of circa constant length was observed

 Secondary injection even due to possible needle bouncing or fuel expansion in sac

 Large droplets and long ligaments with low velocity for low injection pressures

 Quantitative velocity field of droplets or gas phase can be obtained
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