
University of Huddersfield Repository

McCluskey, T.L., Vaquero, Tiago and Vallati, Mauro

Issues in Planning Domain Model Engineering

Original Citation

McCluskey, T.L., Vaquero, Tiago and Vallati, Mauro (2016) Issues in Planning Domain Model 
Engineering. In: PlanSIG 2015/16, 18th - 19th February 2016, University of Strathclyde, Glasgow. 
(Submitted) 

This version is available at http://eprints.hud.ac.uk/id/eprint/27290/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Issues in Planning Domain Model Engineering

Thomas L. McCluskey
School of Computing and Engineering

University of Huddersfield
t.l.mccluskey@hud.ac.uk

Tiago S. Vaquero
California Institute of Technology

Massachusetts Institute of Technology
tstegunv@caltech.edu

Mauro Vallati
School of Computing and Engineering

University of Huddersfield
m.vallati@hud.ac.uk

Abstract

The paper raises some issues relating to the engineering of
domain models for automated planning. It studies the idea of
a domain model as a formal specification of a domain, and
considers properties of that specification. It proposes some
definitions, which the planning and, more generally, the ar-
tificial intelligence community needs to consider, in order to
properly deal with engineering issues in domain model cre-
ation.

1 Introduction
Knowledge Engineering in Planning and Scheduling
(KEPS) was defined in the 2003 PLANET Roadmap (Mc-
Cluskey et al. 2003), specifically for domain-independent
planners, as the collection of processes involving (i) the ac-
quisition, validation and verification, and maintenance of
planning domain models, (ii) the selection and optimisation
of appropriate planning machinery, and (iii) the integration
of (i) and (ii) to form planning and scheduling (P&S) ap-
plications. KEPS can be seen as a special case of knowl-
edge engineering, where the need for methodologies for ac-
quiring, domain modelling and managing formally captured
knowledge has long been accepted. It is also related to
the area of capturing conceptual knowledge and develop-
ing domain models for Qualitative Reasoning in the general
Modelling and Simulation area (Bredeweg et al. 2008a).
However, the peculiarities of AI P&S applications distin-
guish KEPS from general knowledge-based and simulation
systems. Firstly, KEPS is concerned with the acquisition
and representation of knowledge about actions, processes,
events, and the effect these have on a state. Secondly, this
knowledge is to be used to create a system that synthesises
plans rather than making a diagnosis or decision.

Studies on KEPS have led to the creation of several tools
and techniques to support the design of domain knowledge
structures, and the use of planners for real-world problems.
Most of these tools have been presented in specialised work-
shops such as the Knowledge Engineering for Planning &
Scheduling1 workshop and the Verification and Validation of
Planning Systems2 workshop, as well as competitions such

1http://icaps14.icaps-conference.org/workshops tutorials/keps.html
2http://icaps11.icaps-conference.org/workshops/vvps.html

as the International Competition on Knowledge Engineering
for Planning & Scheduling (ICKEPS).3 The competitions
have motivated the development of powerful KEPS systems
and advances in domain modelling techniques, languages
and analysis approaches.

This workshop paper focuses on KEPS research where it
concerns the creation of domain models. Methods, algo-
rithms, tools and representation languages to support and
organise the design of such domain models are important
(e.g. as shown by CommonKADS in the related area of
Knowledge-Based Systems), but they need to be related to
commonly agreed domain model properties and metrics for
the objects being designed. Within the process of domain
model creation and design, this paper focuses on attempt-
ing to define a set of fundamental domain model properties.
While there have been regular KEPS workshops and ICK-
EPS competitions over the last 15 years, the specific area
of domain model quality does not seem to received much
attention since our earlier work (McCluskey 2002).

2 The Domain Model in AI Planning
Domain Modelling is a phrase used perhaps with a variety
of meanings in computer science and applied mathematics.
A domain model is often described as an abstract conceptual
description of some application, and is used as an aid to the
software development process. It is formed as part of the re-
quirements analysis in order to specify objects, actors, roles,
attributes etc, independent of a software implementation. A
domain model is often represented imprecisely using dia-
grams, such as in the Unified Modelling Language (UML)
(OMG 2011), for “human consumption” - that is, for the
benefit of analysts and developers to explore requirements
and to subsequently create software in the application area
being modelled.

The meaning of domain model for representing knowl-
edge within a planning application is much more specific.
It is still an abstract conceptual description of some appli-
cation area but it is encoded for a different purpose: for the
analysis, reasoning and manipulation by a planning engine
in order to solve planning problems.

Let us assume that a requirements specification for the
planning component of some wider project is available. The

3http://icaps-conference.org/index.php/Main/Competitions



requirements may be in the minds of domain experts, be de-
scribed informally in diagrams and textual documents, or
described (at least in part) in a formal language (e.g., as in
the use of LTL (Raimondi, Pecheur, and Brat 2009)). The
requirement specification would naturally contain descrip-
tions of the kind of planning problems that the planner needs
to solve, and the kind of plans that need to be provided as
output. For example, it might be essential that resource con-
sumption is taken into consideration and so plans need to be
generated which achieve goals while minimising resource
consumption. Before a domain-independent planner can be
chosen and used, the domain information needs to be con-
ceptualised and formalised. During this process (elaborated
in the sections below) the assumptions and features that are
essential to represent a domain model are derived from the
overall requirements. Within this context we define a plan-
ning domain model as follows:

A planning domain model is a formal specification of
the application domain part of the requirements spec-
ification which represents entities invariant over ev-
ery planning problem, such as the definitions of object
classes, functions, properties, relations and actions.

This is in line with terminology from general Knowledge
Engineering, specific work on domain “theories” of physi-
cal systems (Bredeweg et al. 2008b), and is similar to what
is called the “domain file” in the most common planning
domain encoding language, PDDL (Ghallab et al. 1998)
(though invariant information may also be included in the
“problem file”). In particular, we expect the language in
which the domain model is written to have a well-defined
syntax and operational semantics: in other words, indepen-
dent of planner and domain, there is a defined process for
executing plans which correspond to sequences of actions
in the application domain. In other words, there is a sound
interpretation of the dynamics for any well-formed domain
model (McCluskey 2002), and such interpretations are em-
bedded into validator tools such as VAL (Howey, Long, and
Fox 2004).

3 Model Quality
The central part of a domain model is the representation of
the set of actions that a planner can reason about and the
elements that support the specification of actions. It forms
a potentially complex knowledge base, and its correctness
is an essential factor in the overall quality of the planning
function. Indeed, Bensalem et al (Bensalem, Havelund, and
Orlandini 2014) state that domain models present the biggest
validation and verification challenge to the P&S community.

How should domain models be formulated, debugged and
generally judged to be fit for a purpose? How should we
determine the quality of the domain model and the quality of
the language in which it is written? In particular, what are
the criteria for choosing one domain model encoding rather
than another, within that language?

For example, it has been shown that the choice of repre-
sentation within the same language of a domain –as well as
the order in which elements are listed within the domain–

have a significant bearing on the efficiency of planning (Val-
lati et al. 2015; Riddle, Holte, and Barley 2011), and the
process of domain model production may have a general
bearing on quality (Shah et al. 2013). As well as inform-
ing the planning applications community, answers to these
questions will form the underpinning of any tool sets to as-
sist in this development process.

Domain Models are often formulated into a planner in-
put language directly from a requirements specification us-
ing only basic editors (these are so-called hand-crafted do-
main models), such as PDDL-studio (Plch et al. 2012)
or the online editor PDDL editor 4. In some cases, the
requirements are encoded firstly into a more application-
oriented language such as UML in itSIMPLE (Vaquero et
al. 2011), or in AIS-DDL in the KEWI interface (Wick-
ler, Chrpa, and McCluskey 2014), and then mapped into the
target planner’s input language. The international compe-
tition on knowledge engineering for P&S in 20095 for ex-
ample was dedicated to evaluating systems that expect the
requirements to be captured in an application-oriented no-
tation, then the domain model is produced automatically or
semi-automatically. Hence, in this case, the quality of the
domain model is dependent both on the initial encoding and
the correctness of the translation process. As a variation on
this, domain models can be formulated by automated acqui-
sition tools, such as in in the LAMP system (Zhuo et al.
2010), and the LOCM system (Cresswell, McCluskey, and
West 2010).

Assessing the quality of the domain model is naturally
part of the verification and validation (V&V) processes of
the overall planning system. Though this area has not re-
ceived much attention in the research community, the impor-
tance of V&V in domain models for planning has long been
recognised in both domain independent work (McCluskey
and Porteous 1997) and more specifically in space applica-
tions (Penix, Pecheur, and Havelund 1998). Ways to assess
the quality of a domain model can be classed into two types
–dynamic and static– in a similar way to investigating pro-
gram code quality. In practice, debugging and validating the
domain model is invariably done using dynamic testing, i.e
testing the ability to execute a planner with a domain model.
This dynamic view of V&V of the domain model is taken
in the work of Bensalem et al (Bensalem, Havelund, and
Orlandini 2014). The authors focus on model checking, a
method often used to test formal specifications, that exhaus-
tively checks all reachable states, to test whether a path can
be found to a goal. Model checking is not feasible for larger
domain models, however, as the state space to be explored
can be astronomical.

Here we consider static as well as dynamic properties of
syntactically correct domain models, and through these, in-
troduce notions of quality. In the style of software quality
domain models and software metrics, we define three at-
tributes of domain models (accuracy, consistency, and com-
pleteness), one of a domain model’s encoding language (ad-
equacy), and one of a domain model-planner pairing (opera-

4http://editor.planning.domains/
5ICKEPS 2009. http://kti.mff.cuni.cz/ bartak/ICKEPS2009/



tionality). These attributes (and metrics related to them) are
intended to be used to investigate issues in the engineering
of domain models, to be embedded in knowledge engineer-
ing tools, and hence to contribute to the overall validation
and verification of the planning system.

Figure 1: domain model properties

Accuracy Accuracy is an attribute of the domain model,
related to application domain features considered as part of
the requirements specification (often just referred as “re-
quirements” below). Considering the domain model as a
logical expression,

a domain model accurately represents the requirement
specification if the interpretation given to it by mapping
its components to features (objects, relations, etc) in
that specification, makes all assertions in the domain
model true.

Checking accuracy is essentially an informal process if
the requirements are described informally. If the require-
ments are already encoded in some formal language, then a
domain model is accurate if it provides a model of the do-
main model (in the sense that the domain model is an ab-
stract algebra, and the requirements a concrete algebra).

Using the definition of domain model above, checking
that the model is accurate entails checking the veracity of
assertions in every state. If a domain model is encoded as
a domain file in PDDL, then assessing the accuracy can be
done in part by utilizing a problem file. We then need to:
(i) create all possible groundings of operator schema, using
the objects in the problem file; (ii) map the logical expres-
sion in the precondition of each grounded schema to a set P
of relations and properties in the requirements; (iii) map the
logical expression in the effects to a set E of relations and
properties in the application; and (iv) check that if P is true
in the application, then the action domain modelled could be
executed, and if executed would make E true.

A similar process would be used to assess the accuracy of
the problem file. Assessing accuracy of the problem speci-
fication is a matter of checking that the initial state and goal
maps to the problem embedded in the requirements specifi-

cation.
Although we have defined accuracy here as a binary prop-

erty, if a domain model is inaccurate, then it may be possible
to create metrics to measure the inaccuracy. For example, in
a domain model learning system such as LAMP (Zhuo et
al. 2010), there is a need to evaluate the quality of the do-
main model learned, as part of the learning tools’ evaluation.
Using a comparison with a hand-crafted domain model, the
authors judge the accuracy of the domain model by count-
ing the number of missing predicates in the learned domain
model. To relate it to our definition, the hand-crafted domain
model takes the role of part of the requirements –in this case
these requirements are themselves stated precisely in a for-
mal language– though it is a matter for future research to
discover sound ways of measuring differences when com-
paring two domain models (Shoeeb and McCluskey 2011).

Consistency Consistency of domain models is considered
here as a special case of accuracy:

A domain model is consistent if some interpretation ex-
ists that makes all its assertions true.

While accuracy is concerned with the interpretation given
by the requirements being true, consistency is checking
whether there is any interpretation that can make it true.
Consistency is independent of requirements, and therefore
can be considered simply as a property of the domain model
itself. Hence, efficient consistency checks can spot obvious
but common errors, e.g. if a domain model contains an op-
erator that adds a fact and the negation of that same fact,
then no interpretation can make it true6. Another example
is inspired by formal software specification methods: hav-
ing defined operators, and invariants for the domain, then
to check for consistency we can show that under any appli-
cation of an operator, the invariant is preserved (otherwise
it would be possible to generate an inconistent state, that is
one that makes an invariant false). This kind of consistency
check was implemented in the GIPO knowledge engineering
environment (Simpson et al. 2001).

Completeness In software engineering, the completeness
of formal specifications has been recognised as a difficult but
important topic that is best tackled in specific types of ap-
plication (e.g., Leveson deals with process control systems
using a checklist (Leveson 2000)). For automated planning,
we make the following definition:

Given a specific problem instance and a domain model,
and I their interpretation mapping to the requirements
specification, then the domain model is complete if: (i)
for any solution plan S for problem P that can be
formed from ground operators in the domain model,
I(S) is an acceptable solution for I(P ) in the require-
ments; and (ii) the converse is also true, that is, for any
acceptable solution S′ to problem I(P ) there exists a
solution plan S derivable from the domain model for

6note that this is logical consistency in that no state can be con-
istent where a proposition and it negation is asserted. In operation,
some planners may delete propositions and then add propositions,
leaving the implemented state consistent.



problem P such and I(S) = S′.
In practice, the requirements would contain a set of
problems P1..Pn requiring solution for a fixed domain
model(DM), hence each PiDM would need to be complete
in this sense. As an example, failing to include operator
schema in a domain model which are necessary to provide
solutions, cause incompleteness. Using these definitions, it
is possible to find domain models which are complete but
not accurate. This is so because, given a complete domain
model, it would be possible to add a construction (e.g., an
extra operator) that interpreted to something false in the re-
quirement specification, but which never interfered in the
solutions of required problems to be solved.

Adequacy Adequacy is a relationship between the re-
quirements and the language in which the domain model is
encoded.

A language is adequate with respect to a requirements
specification if it has the expressive power to repre-
sent the requirements within a domain model in suffi-
cient detail so that a complete domain model can be
expressed.

Adequacy is related to the level of granularity needed by the
requirements, and derives from the idea of representational
or expressive adequacy of a knowledge representation lan-
guage.

Completeness of a domain model depends on language
adequacy. A domain model could be accurate (all the fea-
tures present conform to the requirements, in the sense that
their interpretation is true), but it may be the case that some
requirements cannot be represented at all. Hence, the com-
pleteness of a domain model may be prevented because of
an inadequate language. An obvious example of inadequacy
is where we might use basic PDDL, but where the require-
ments demand that actions are durative.

Operationality In the AI Planning & Scheduling litera-
ture, the validation of a domain model is often solely based
on a test of whether it will lead to acceptable behaviour
in a P&S system (Shah et al. 2013), that is, if an accept-
able plan can be output. This is a weak form of com-
pleteness as defined above. However, there are normally
many encodings of any given domain model that would
pass this test, but some encodings lead to much more ef-
ficiently generated solutions than others. Given a com-
plete domain model exists, there will always be ways of
re-representing the domain model without compromising
completeness. These domain models may give different
results when input to a planner: for example, some may
not satisfy some real time constraints in the requirements.
More generally, it is also possible that two distinct do-
main models are complete, but one leads to a more effi-
cient implementation, or better quality plans. Hence, the
process of finding an acceptable plan in an application de-
pends not only on the strategy used by the planner, but also
the domain model. For example, if the model is not ac-
curate, then the planner will generate flawed plans or no
plans at all. Even the planner’s speed can be affected un-
der such circumstances. For instance, case studies have

shown that fixing and refining the domain model itself (e.g.,
adding additional relevant knowledge) can improve the per-
formance of planners, without modifying the planners and
their search mechanism (Vaquero, Silva, and Beck 2010).
In addition, works like (Huang, Selman, and Kautz 1999;
Bacchus and Kabanza 2000; de la Rosa and McIlraith 2011;
Doherty and Kvarnström 2001) show that adding relevant,
redundant constraints (in the form of control knowledge and
rules) in the domain model can also speed up planners.

For a given planner and requirements specification, we
define Operationality as an attribute of a domain model and
a planning engine E as follows.

A domain model is operational with respect to planning
engine E if E produces a solution S to P within accept-
able resource bounds, such that I(S) is an acceptable
solution to I(P ) according to the requirements.

Note that the definition does not demand that the planner
outputs all the acceptable solutions; this is somewhat un-
feasible computationally, hence we have a weaker definition
that is more in tune with practice.

4 Discussion
In this paper we have investigated the role and nature of the
planning domain model, and discussed its importance in the
process of creating a planning application.

Notions of the “quality” of a domain model are needed
for many reasons, not least

• to help engineers construct models,

• to underpin tools and environments that help in the pro-
cess of creating models,

• to assist in the efficiency of planning,

• to assess action learning programs,

• to compare one domain model against another.

To introduce a much-needed community discussion on the
subject, we have developed some definitions of qualities of
domain models. Our future work will attempt to fully eval-
uate these definitions, and explore how they can be used to
compare and contrast existing KEPS tools and methods.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123–191.
Bensalem, S.; Havelund, K.; and Orlandini, A. 2014.
Verification and validation meet planning and scheduling.
International Journal on Software Tools for Technology
Transfer 16(1):1–12.
Bredeweg, B.; Salles, P.; Bouwer, A.; Liem, J.; Nuttle,
T.; Cioaca, E.; Nakova, E.; Noble, R.; Caldas, A. L. R.;
Uzunov, Y.; Varadinova, E.; and Zitek, A. 2008a. To-
wards a structured approach to building qualitative rea-
soning models and simulations. Ecological Informatics
3(1):1–12.



Bredeweg, B.; Salles, P.; Bouwer, A.; Liem, J.; Nuttle,
T.; Cioaca, E.; Nakova, E.; Noble, R.; Caldas, A. L. R.;
Uzunov, Y.; Varadinova, E.; and Zitek, A. 2008b. To-
wards a structured approach to building qualitative rea-
soning models and simulations. Ecological Informatics
3(1):1–12.
Cresswell, S.; McCluskey, T.; and West, M. M. 2010. Ac-
quiring planning domain models using LOCM. In Knowl-
edge Engineering Review, 1–18. Cambridge University
Press.
de la Rosa, T., and McIlraith, S. A. 2011. Learning Domain
Control Knowledge for TLPlan and Beyond. In Proceed-
ings of the ICAPS-11 Workshop on Planning and Learning
(PAL).
Doherty, P., and Kvarnström, J. 2001. TALplanner: A
Temporal Logic-Based Planner. AI Magazine 22(3):95–
102.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL—The Planning Domain Definition Language.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
Plan Validation, Continuous Effects and Mixed Initiative
Planning Using PDDL. In ICTAI ’04: Proceedings of the
16th IEEE International Conference on Tools with Artifi-
cial Intelligence, 294–301. Washington, DC, USA: IEEE
Computer Society.
Huang, Y.-C.; Selman, B.; and Kautz, H. A. 1999. Con-
trol Knowledge in Planning: Benefits and Tradeoffs. In
Hendler, J., and Subramanian, D., eds., AAAI/IAAI, 511–
517. AAAI Press / The MIT Press.
Leveson, N. 2000. Completeness in formal specification
language design for process-control systems. In Proceed-
ings of the Third Workshop on Formal Methods in Software
Practice, FMSP ’00, 75–87. New York, NY, USA: ACM.
McCluskey, T., and Porteous, J. 1997. Engineering and
compiling planning domain models to promote validity and
efficiency. Artificial Intelligence 95(1):1–65. c© Elsevier.
McCluskey, T.; Aler, R.; Borrajo, D.; Haslum, P.; Jarvis,
P.; Refanidis, I.; and Scholz, U. 2003. Knowl-
edge Engineering for Planning Roadmap. Available at
http://scom.hud.ac.uk/planet/home/.
McCluskey, T. L. 2002. Knowledge Engineering: Is-
sues for the AI Planning Community. In Proceedings of
the AIPS-2002 Workshop on Knowledge Engineering Tools
and Techniques for AI Planning, Toulouse, France.
OMG. 2011. OMG Unified Modeling Language Specifica-
tion, Version 2.4.
Penix, J.; Pecheur, C.; and Havelund, K. 1998. Us-
ing model checking to validate ai planner domain models.
the Proceedings of the 23rd Annual Software Engineering
Workshop, NASA Goddard.
Plch, T.; Chomut, M.; Brom, C.; and Barták, R. 2012.
Inspect, edit and debug pddl documents: Simply and effi-
ciently with pddl studio. ICAPS12 System Demonstration
4.

Raimondi, F.; Pecheur, C.; and Brat, G. 2009. Pdver, a tool
to verify pddl planning domains.
Riddle, P. J.; Holte, R. C.; and Barley, M. W. 2011. Does
representation matter in the planning competition? In
Genesereth, M. R., and Revesz, P. Z., eds., SARA. AAAI.
Shah, M. M. S.; Chrpa, L.; Kitchin, D. E.; McCluskey,
T. L.; and Vallati, M. 2013. Exploring knowledge engi-
neering strategies in designing and modelling a road traffic
accident management domain. In Rossi, F., ed., IJCAI. IJ-
CAI/AAAI.
Shoeeb, S., and McCluskey, T. 2011. On comparing plan-
ning domain models. In The 29th Workshop of the UK
Planning and Scheduling Special Interest Group PlanSIG
2011, 92–94. UK PLANNING AND SCHEDULING Spe-
cial Interest Group.
Simpson, R. M.; McCluskey, T. L.; Zhao, W.; Aylett, R. S.;
and Doniat, C. 2001. GIPO: An Integrated Graphical Tool
to support Knowledge Engineering in AI Planning. In Pro-
ceedings of the 6th European Conference on Planning.
Vallati, M.; Hutter, F.; Chrpa, L.; and McCluskey, T. L.
2015. On the effective configuration of planning domain
models. In International Joint Conference on Artificial In-
telligence (IJCAI). AAAI press.
Vaquero, T. S.; Silva, J. R.; Tonidandel, F.; and Beck, J. C.
2011. itSIMPLE: Towards an Integrated Design System
for Real Planning Applications. In To appear in: The
Knowledge Engineering Review Journal, special issue on
International Competition on Knowledge Engineering for
Planning and Scheduling (ICKEPS): Cambridge Univer-
sity Press.
Vaquero, T.; Silva, J.; and Beck, J. 2010. Improving
Planning Performance Through Post-Design Analysis. In
Proceedings of the ICAPS’10 Workshop on Knowledge En-
gineering for Planning and Scheduling. Toronto, Canada,
45–52.
Wickler, G.; Chrpa, L.; and McCluskey, T. 2014. Kewi:
A knowledge engineering tool for modelling ai planning
tasks. In 6th International Conference on Knowledge En-
gineering and Ontology Development.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learn-
ing complex action models with quantifiers and logical im-
plications. Artificial Intelligence 174(18):1540–1569.


