
University of Huddersfield Repository

Tachmazidis, Ilias

Large-scale Reasoning with Nonmonotonic and Imperfect Knowledge Through Mass Parallelization

Original Citation

Tachmazidis, Ilias (2015) Large-scale Reasoning with Nonmonotonic and Imperfect Knowledge
Through Mass Parallelization. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/27005/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Large-scale Reasoning with

Nonmonotonic and Imperfect

Knowledge Through Mass

Parallelization

Ilias Tachmazidis

Thesis Supervisor: Prof. Grigoris Antoniou

Thesis Co-supervisor: Prof. Thomas Leo McCluskey

A thesis submitted to the University of Hudders�eld in partial

ful�lment of the requirements for the degree of

Doctor of Philosophy

University of Hudders�eld

School of Computing and Engineering

University of Hudders�eld, Queensgate, Hudders�eld, HD1 3DH, UK

December 2015

Abstract

Due to the recent explosion of available data coming from the Web, sensor readings,
social media, government authorities and scienti�c databases, both academia and industry
have increased their interest in utilizing this knowledge. Processing huge amounts of data
introduces several scienti�c and technological challenges, and creates new opportunities.
Existing works on large-scale reasoning through mass parallelization (namely paralleliza-
tion based on utilizing a large number of processing units) concentrated on monotonic
reasoning, which can process only consistent datasets. The question arises whether and
how mass parallelization can be applied to reasoning with huge amounts of imperfect
(e.g. inconsistent, incomplete) information. Potential scenarios involving such imperfect
data and knowledge include ontology evolution, ontology repair and smart city applica-
tions combining a variety of heterogeneous data sources. In this thesis, we overcome the
limitations of monotonic reasoning, by studying several nonmonotonic logics that have
the ability to handle imperfect knowledge, and it is shown that large-scale reasoning is
indeed achievable for such complex knowledge structures. This work is mainly focused
on adapting existing methods, thus ensuring that the proposed solutions are parallel and
scalable. Initially, preliminaries and literature review are presented in order to introduce
the reader to basic background and the state-of-the-art considering large-scale reasoning.
Subsequently, each chapter presents an approach for large-scale reasoning over a given
logic. Large-scale reasoning over defeasible logic is supported allowing con�ict resolution
by prioritizing the superiority among rules in the rule set. A solution for strati�ed se-
mantics is presented where rules may contain both positive and negative subgoals, thus
allowing reasoning over missing information in a given dataset. The approach for strati-
�ed semantics is generalized in order to fully support the well-founded semantics, where
recursion through negation is allowed. Finally, conclusion includes observations from a
preliminary investigation on a restricted form of answer set programming, a generic eval-
uation framework for large-scale reasoning, a discussion of the main �ndings of this work,
and opportunities for future work.

Acknowledgements

First of all, I would like to thank my supervisor Prof. Grigoris Antoniou, who guided

me throughout these years. It was his outstanding supervision during my Master's degree

back in Greece that convinced me to move to the UK and pursue my PhD studies at the

University of Hudders�eld. I am deeply grateful that he believed in my ideas, trusted me

on solving various challenging topics and for his support in any arising issue.

I would like to thank my co-supervisor Prof. Thomas Leo McCluskey for his talks

and advices. I would also like to thank PARK group members for all the interesting

conversations that we had.

I would like to thank Prof. Wolfgang Faber and Dr Je� Z. Pan for their participation

in the committee and for their feedback that helped to improve this thesis.

I would like to acknowledge the �nancial support of the University of Hudders�eld. I

would like to thank the sta� of the University of Hudders�eld for helping me in several

ways all these years.

Last, but not least, I would like to thank my family for their encouragement and

precious support during my studies. I would also like to thank my friends and people that

are close to me for their company and support.

Contents

1 Introduction 1

1.1 Research Questions and Contribution . 3

1.2 Thesis Structure . 4

1.3 Publications . 5

2 Background 7

2.1 Preliminaries . 7

2.1.1 RDF/S . 7

2.1.2 OWL . 8

2.1.3 Description Logics . 8

2.1.4 Datalog . 9

2.1.5 Defeasible Logic . 10

2.1.6 Strati�ed Semantics . 13

2.1.7 Strati�cation - Defeasible Logic Versus Strati�ed Semantics 14

2.1.8 Well-Founded Semantics . 15

2.1.9 Alternating Fixpoint Procedure . 17

2.1.10 Answer Set Programming . 18

2.2 Computing Models . 21

2.2.1 MapReduce Framework . 21

2.2.2 OpenMP . 23

2.2.3 MPI . 24

2.2.4 X10 . 26

3 Related Work 27

3.1 RDF/S Reasoning . 27

3.2 OWL Reasoning . 33

3.3 Description Logic Reasoning . 37

3.4 Conclusion . 41

I

4 Defeasible Logic 43

4.1 Single Variable Rule Sets . 43

4.2 Multi Variable Rule Sets . 46

4.2.1 Reasoning Overview . 47

4.2.2 Pass #1: Fired Rules Calculation . 49

4.2.3 Pass #2: Defeasible Reasoning . 52

4.2.4 Final Remarks . 54

4.3 Evaluation . 55

4.3.1 LUBM Use Case . 57

5 Strati�ed Semantics of Logic Programs 61

5.1 Algorithm Description . 61

5.1.1 Positive Goals Calculation . 63

5.1.2 Final Goal Calculation . 65

5.1.3 Special Cases . 66

5.1.4 Final Remarks . 67

5.2 Experimental Evaluation . 68

6 Well-Founded Semantics 73

6.1 Full Well-Founded Semantics . 73

6.1.1 Join and Anti-join for WFS . 73

6.1.2 Computing the Well-Founded Semantics 77

6.1.3 Experimental Results . 83

6.2 Strati�ed Versus Full Well-Founded Semantics Approach 87

6.2.1 Theoretical Analysis . 87

6.2.2 Experimental Analysis . 89

7 Conclusion and Future Work 93

7.1 Answer Set Programming . 93

7.1.1 Single Variable Programs . 93

7.1.2 Parallel Reasoning Based on Constants 94

7.1.3 Parallel Reasoning Based on Predicates 95

7.1.4 Final Remarks . 98

7.2 Evaluation Framework . 99

7.3 Discussion . 100

7.4 Future Work . 103

II

List of Figures

2.1 Graphic representation of a triple. 8

2.2 Wordcount example. 22

4.1 Single variable inference . 44

4.2 Strati�ed rule set. Predicates are assigned to ranks. 46

4.3 Non-strati�ed rule set. Predicates cannot be assigned to ranks. 46

4.4 Overall reasoning process . 48

4.5 Fired rules calculation given the generic rule r : A(X,Z), B(Z,Y) {→,⇒, } [¬]P(X,Y). 50

4.6 Defeasible reasoning . 52

4.7 Runtime in minutes for various datasets, and projected linear scalability.

Job runtimes are stacked (i.e. runtime for Job 8 includes the runtimes for

Jobs 1-7). 58

4.8 Minimum, average and maximum reduce task runtime for each job with 40

reduce tasks. 58

4.9 Minimum, average and maximum reduce task runtime for each job with 400

reduce tasks. 59

5.1 Predicates assigned to ranks. 62

5.2 Runtime in minutes for join operations as a function of dataset size, for

various numbers of nodes. 70

5.3 Runtime in minutes for anti-join operations as a function of dataset size,

for various numbers of nodes. 70

5.4 Runtime in minutes for various numbers of rules and nodes. 71

5.5 Runtime in minutes for various matched values percentages. 71

6.1 Win-not-win test for cyclic datasets. Time in minutes as a function of

dataset size, for various numbers of nodes. 85

6.2 Win-not-win test for tree-structured datasets. Time in minutes as a func-

tion of dataset size, for various numbers of nodes. 85

III

6.3 Transitive closure with negation test for chain-structured datasets. Time

in minutes as a function of number of joins in the initially formed chain

(dn/ke − 1), for dataset size (n) and number of facts per level (k), com-

paring naive and optimized WFS �xpoint calculation. 86

6.4 Transitive closure with negation test for chain-structured datasets. Time

in minutes as a function of dataset size (n) and number of facts per level

(k) (constant dn/ke − 1), comparing naive and optimized WFS �xpoint

calculation. 86

6.5 Time in minutes as a function of number of rules (ranks), comparing the

strati�ed and the full WFS method. 90

IV

List of Tables

4.1 Rule set . 56

6.1 Speedup of the strati�ed over the full WFS method. 90

V

VI

Chapter 1

Introduction

We are in the middle of the big data revolution: huge amounts of data are published

by public and private organizations, and generated by sensor networks and social media.

Apart from issues of size, this data is often dynamic and heterogeneous. In addition, data

as a resource has been identi�ed, and is increasingly utilized to generate added value; we

are heading towards a data economy.

The challenge of big data is about managing it, but even more so about making sense of

it: we want to avoid drowning in the sea of data, identify and focus on important aspects,

and uncover hidden information and value. The role of data mining in this context is

clear, but we believe reasoning has also an important role to play: for decision making,

decision support, and for uncovering hidden knowledge in data, e.g. by deriving high-level

information from low-level input data. Semantics has also an important role to play, both

for understanding the data and for facilitating the combination of data from heterogeneous

sources. The potential of semantics and reasoning in the context of big data has been well

realized and is being debated1.

Big data poses great challenges to the reasoning and semantics communities, in terms

of computational e�ciency. The semantic web community has risen to this challenge

through the use of mass parallelization (namely parallelization based on utilizing a large

number of processing units) and approximation (which includes fuzzy reasoning and in-

complete reasoning), and a lot has been achieved. Despite their importance in addressing

large-scale reasoning, these works addressed forms of reasoning such as Datalog (query

language used for deductive databases) and works on simple ontology (namely a speci�ca-

tion of a conceptualization2) and RDFS reasoning (for details see Chapter 3), which can

process only consistent datasets. In particular, all these works study monotonic forms of

reasoning (namely reasoning where adding more knowledge to our knowledge base will not

1e.g. http://lod2.eu/BlogPost/1698-eswc-2013-panel-semantic-technologies-for-big-data-

analytics-opportunities-and-challenges.html
2http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

1

http://lod2.eu/BlogPost/1698-eswc-2013-panel-semantic-technologies-for-big-data-
analytics-opportunities-and-challenges.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

2 CHAPTER 1. INTRODUCTION

reduce the set of derived conclusions), and do not handle inconsistencies. Traditionally,

the �eld of nonmonotonic reasoning (namely reasoning where adding more knowledge to

our knowledge base may result in previously derivable conclusions to be no longer valid)

addresses knowledge representation and reasoning issues related to incomplete and incon-

sistent information. Such imperfect information may naturally arise when information

from independent sources is integrated. Indicative application scenarios of this kind of

reasoning include:

• Decision making in smart environments [1].

• Rules with exceptions for decision making.

• Ontology diagnosis [2].

• Ontology evolution [3].

• Ontology repair [4].

From the practical point of view, nonmonotonic reasoning can provide the basis for

various e-commerce applications, as discussed by Antoniou et al. [5], where the system

acts as a broker, namely it matches the preferences of the buyer with the available o�ers

provided by the seller. Antoniou et al. [5] presented a concrete example for apartment

rental, where both buyer's preferences and available apartments speci�cations are encoded

into defeasible logic, thus resolving arising con�icts and yielding suggestions whenever

there is a match between demand and supply. In essence, this scenario can be extended

to other commercial activities such as car purchase/rental and holiday packages.

In addition, there has been progress in the �eld of smart environments. More speci�-

cally, Nieves et al. [6] proposed a system that supports decision making in smart environ-

ments through argumentation. The architecture of the system is based on three rational

agents, with each agent expressing its knowledge as extended logic programs. The afore-

mentioned agents handle interactions within the smart environment, support and enhance

both ongoing and predicted activities, and enhance the ability of human actors to perform

certain activities. The Well-Founded Semantics is the underlying theory for the construc-

tion of arguments. As pointed out by Nieves et al. [6], their next steps will include the

utilization of the approach for the Well-Founded Semantics, which is presented in this

work, in order to scale their system up to big data.

Nonmonotonic approaches [7] and their adaptation to semantic web problems (e.g.

Knorr et al. [8], Eiter et al. [9] and Antoniou et al. [10]) have been traditionally memory

based. But this approach cannot be maintained in the face of big data. Especially, for

the case of Linked Open Data3, with the Linked Open Data Cloud consisting of billions

of triples, one could consider applying nonmonotonic reasoning in order to extract reacher

information. This thesis aims at providing approaches that are able to overcome arising

3http://linkeddata.org/

http://linkeddata.org/

1.1. RESEARCH QUESTIONS AND CONTRIBUTION 3

challenges that are related to the problem of large-scale reasoning with complex knowledge

structures, in particular including inconsistencies and missing information.

1.1 Research Questions and Contribution

The main question of this research is: How and to what extent large-scale reasoning

with nonmonotonic and imperfect knowledge can be achieved through mass

parallelization?. The answer to this question is the main contribution of this thesis,

namely providing parallel and scalable approaches for nonmonotonic reasoning over vari-

ous logics. More speci�cally, we consider nonmonotonic logics that can handle imperfect

data by resolving con�icts (defeasible logic), handle incomplete data by performing reason-

ing over missing information (well-founded semantics), and handling both imperfect and

missing information by supporting alternative world views (answer set programming).

Can parallel defeasible reasoning be achieved for strati�ed (namely predi-

cate dependencies are not allowed to form a cycle) and non-strati�ed (namely

predicate dependencies that form a cycle are allowed) rule sets? It is evident

that parallel defeasible reasoning can be achieved for strati�ed rule sets by analyzing the

dependencies within the given rule set and introducing a well-de�ned reasoning sequence

(see Section 4.2.1). More speci�cally, the given rule set is divided into subsets where each

subset (group of rules) is assigned a rank. At each rank, parallel defeasible reasoning is

applied deriving new conclusions (see Sections 4.2.2 and 4.2.3), while reasoning is per-

formed from lower to higher ranks. Full materialization is achieved once the whole rule

set has been evaluated. On the other hand, for non-strati�ed rule sets scalable reasoning

cannot be achieved by parallelizing a highly e�cient serial algorithm introduced by Maher

et al. [11] as the amount of the generated data is excessive for Big Data (see Section 4.2.4).

We have detected the prime cause of limitation for non-strati�ed rule sets and several al-

ternatives were considered. However, none of the alternatives could serve as a parallel and

scalable approach that will retain the full semantics of the defeasible algorithm. Thus,

a parallel approach for non-strati�ed rule sets that would produce sound and complete

results is yet to be de�ned. For more details see Chapter 4.

Can well-founded semantics be calculated by parallelizing inference? Here

we face the main problem of a three-valued logic, namely we need to avoid the compu-

tation of the entire Herbrand base so that the approach remains feasible for large-scale

applications. Initially, we focused on strati�ed rule sets for which we de�ned a reasoning

sequence that computes the closure (see Section 5.1). However, here we had the challenge

of computing rules, in a parallel setting, that contained both positive and negative subgoals

(see Sections 5.1 and 6.1.1). We provided a solution based on the assumption that each

rule is safe, namely each variable in the head of the rule is also contained in a positive

subgoal. Many proposed serial algorithms for the computation of the full well-founded

semantics were based on calculating the entire Herbrand base, which was prohibiting for

4 CHAPTER 1. INTRODUCTION

Big Data. However, we managed to overcome this restriction by applying the alternating

�xpoint procedure (see Sections 2.1.9 and 6.1). Thus, we have proposed both an approach

that is tailored towards strati�ed rule sets and a generic approach for the full well-founded

semantics. Note that although the approach for the full well-founded semantics is able to

compute the closure of strati�ed rule sets as well, it is computationally more expensive

compared to the proposed approach for strati�ed rule sets (see Section 6.2). For more

details see Chapters 5 and 6.

Which subsets of answer set programming can e�ciently be parallelized in

order to speed up the computation of answer sets? We studied the applicability

of parallel computation of answer set programs where all predicates are of arity one (see

Section 7.1.1). Two di�erent approaches are suggested: the �rst is based on parallelizing

on constants (see Section 7.1.2), the second parallelizes on predicates (see Section 7.1.3). In

each case, a method is provided that makes use of mass parallelization and calls standard

ASP solvers as back-ends via an abstract API. For each method, we provided a theoretical

analysis of its computational impact. Nevertheless, the presented approach cannot be

extended as is for programs with predicates that have more than one argument. Such

programs, in general, cannot be partitioned in independent segments, therefore requiring

a more complex approach. Thus, we have provided a parallel and scalable approach for

the computation of answer sets for monadic logic programs, while indicating the arising

challenges for the general case (see Section 7.1.4). For more details see Section 7.1.

1.2 Thesis Structure

The thesis is organized as follows:

• Chapter 2 provides an introduction to various aspects of knowledge represen-

tation, basic notions of studied nonmonotonic logics, and computing models that

can facilitate mass parallelization.

• Chapter 3 presents a detailed literature review for large-scale reasoning. In

particular, scalable reasoning for RDF/S, Datalog, various OWL pro�les (such as

OWL Horst and OWL 2RL) and description logics. For each work, we provide a

description of the approach and the main results of the experimental evaluation.

• Chapter 4 presents a parallel and scalable approach for defeasible rea-

soning. Initially, a restricted approach is considered namely defeasible reasoning

for single variable rule sets. However, this approach is extended for rule sets that

contain predicates of arbitrary arity (multi variable rule sets). Multi variable rule

sets are divided into two categories, namely strati�ed and non-strati�ed rule sets.

A parallel and scalable solution is presented for strati�ed rule sets, while for non-

strati�ed rule sets we highlight the main arising challenges. This is an extended and

1.3. PUBLICATIONS 5

revised version of work that was published by Tachmazidis et al. [12, 13, 14].

• Chapter 5 describes a solution for parallel and scalable reasoning over

the strati�ed semantics of logic programs. In particular, an e�cient solution

is presented for strati�ed rule sets, which is not applicable to non-strati�ed rule

sets. However, this approach is computationally more e�cient for strati�ed rule sets

compared to the generic approach (see Chapter 6). This work has been included in

Tachmazidis et al. [15].

• Chapter 6 presents a solution for parallel and scalable reasoning over the

full well-founded semantics. More speci�cally, a generic approach, having the

ability to compute the full well-founded semantics for any given rule set, is provided.

This work has been included in Tachmazidis et al. [16, 17]. Note that in Tachmazidis

et al. [17] algorithm description and experimental evaluation is based on X10 [18].

The approach over X10 can be found in Tachmazidis et al. [17], but it is not included

in this thesis. Here, we provide both algorithm description and experiments based on

the MapReduce framework. In addition, we show the advantages of the approach for

strati�ed semantics (see Chapter 5) over the approach for full-well founded semantic

for the subset of strati�ed programs.

• Chapter 7 summarizes this work by discussing observations from a preliminary

investigation on single variable answer set programs, presenting a generic evaluation

framework for large-scale reasoning, and providing a discussion of the main �ndings

of this work and opportunities for future work.

1.3 Publications

This thesis either includes or is based on the work by Tachmazidis et al. [12, 13, 14, 15,

16, 17, 19] and Antoniou et al. [20].

• I. Tachmazidis, G. Antoniou, G. Flouris, and S. Kotoulas, �Towards parallel non-

monotonic reasoning with billions of facts,� in KR, G. Brewka, T. Eiter, and S. A.

McIlraith, Eds. AAAI Press, 2012.

• I. Tachmazidis, G. Antoniou, G. Flouris, S. Kotoulas, and L. McCluskey, �Large-

scale Parallel Strati�ed Defeasible Reasoning,� in ECAI, ser. Frontiers in Arti�cial

Intelligence and Applications, L. D. Raedt, C. Bessière, D. Dubois, P. Doherty, P.

Frasconi, F. Heintz, and P. J. F. Lucas, Eds., vol. 242. IOS Press, 2012, pp. 738-743.

• I. Tachmazidis, G. Antoniou, G. Flouris, and S. Kotoulas, �Scalable Nonmonotonic

Reasoning over RDF Data Using MapReduce,� in SSWS+HPCSW, 2012.

6 CHAPTER 1. INTRODUCTION

• G. Antoniou, J. Z. Pan, and I. Tachmazidis, �Large-scale complex reasoning with

semantics: Approaches and challenges,� in Web Information Systems Engineering -

WISE 2013 Workshops - WISE 2013 International Workshops BigWebData, MBC,

PCS, STeH, QUAT, SCEH, and STSC 2013, Nanjing, China, October 13-15, 2013,

Revised Selected Papers, ser. Lecture Notes in Computer Science, Z. Huang, C. Liu,

J. He, and G. Huang, Eds., vol. 8182. Springer, 2013, pp. 1-10. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-54370-8_1

• I. Tachmazidis and G. Antoniou, �Computing the Strati�ed Semantics of Logic Pro-

grams over Big Data through Mass Parallelization,� in RuleML, ser. Lecture Notes

in Computer Science, L. Morgenstern, P. S. Stefaneas, F. Lévy, A. Wyner, and A.

Paschke, Eds., vol. 8035. Springer, 2013, pp. 188-202.

• I. Tachmazidis, G. Antoniou, and W. Faber, �E�cient computation of the well-

founded semantics over big data,� TPLP, vol. 14, no. 4-5, pp. 445-459, 2014.

[Online]. Available: http://dx.doi.org/10.1017/S1471068414000131

• I. Tachmazidis, L. Cheng, S. Kotoulas, G. Antoniou, and T. E. Ward, �Massively

parallel reasoning under the well-founded semantics using X10,� in 26th IEEE In-

ternational Conference on Tools with Arti�cial Intelligence, ICTAI 2014, Limassol,

Cyprus, November 10-12, 2014. IEEE Computer Society, 2014, pp. 162-169. [On-

line]. Available: http://dx.doi.org/10.1109/ICTAI.2014.33

• I. Tachmazidis, G. Antoniou, and W. Faber, �Computing Answer Sets for Monadic

Logic Programs via Mapreduce,� in ASPOCP, 2014.

Chapter 2

Background

In this chapter, we provide a basic introduction to knowledge representation and describe

the basic notions of several logics. For the nonmonotonic logics that have been studied in

this work, we provide a more detailed description since certain details enable scalable and

e�cient reasoning. In addition, we present several well-known computing models that can

facilitate mass parallelization.

2.1 Preliminaries

2.1.1 RDF/S

RDF (Resource Description Framework) [5] is a data model where knowledge is represented

in subject-predicate-object triples called statements. Such statements are used in order to

represent existing entities (subject, object) and de�ne the relations between these entities

(predicate). In fact, RDF triples can be represented as a graph where subject and object

are represented as nodes, while predicate is represented as a directed edge from subject

to object. Figure 2.1 shows a graphic representation of the statement �This PhD thesis is

written by Ilias Tachmazidis�.

In addition to data representation using RDF, we can de�ne a vocabulary that would

describe the domain we are working on, specifying the meaning of each class (subject,

object) and property (predicate). Thus, one can use RDFS (RDF Schema) in order to

provide an apt description of the modeled data, increasing inter-operability across domains.

Using RDFS we can explicitly state the domain and range of property writtenBy, by setting

class Document as domain and class Student as range. Such de�nitions allow us to assert

whether �PhD thesis� is of type Document and whether �Ilias Tachmazidis� is of type

Student in order to validate our model. For more details the reader is referred to [5].

7

8 CHAPTER 2. BACKGROUND

Figure 2.1: Graphic representation of a triple.

2.1.2 OWL

OWL (Web Ontology Language) [5] is a richer and more expressive language compared to

RDF and RDFS. We can design a more descriptive domain model using OWL since we

can de�ne disjointness of classes, namely students are either graduate or undergraduate,

but not both. In addition, classes can be de�ned as the union, intersection or complement

of other classes. Using OWL, we can assert cardinality restrictions de�ning explicitly that

each PhD student is assigned to two supervisors. Moreover, we can state that a property

is transitive (e.g., a property such as before, namely if A is before B and B is before C,

then A is also before C), or inverse of another property (e.g., the property hasWritten is

inverse of property writtenBy).

There are three sublanguages of OWL, namely OWL Lite, OWL DL and OWL Full.

As stated in [5]:

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

The basic intuition here is that OWL Lite is a subset of OWL DL, while OWL DL is a

subset of OWL Full. In a nutshell, OWL Lite was designed to support classi�cation hier-

archy and simple constraints, OWL DL was designed to support maximum expressiveness

possible without losing computational completeness and decidability of reasoning process,

while OWL Full was designed to support maximum expressiveness with reasoning process

being undecidable. For more details the reader is referred to [5].

2.1.3 Description Logics

Description Logics (DLs) [21] are a family of knowledge representation languages with

expressivity between propositional logic and �rst-order logic (FOL). Description Logics

are used in order to represent formally the underlying knowledge of a given domain. In

particular, DLs model concepts (which correspond to: unary predicates in FOL and classes

in OWL), roles (which correspond to: binary predicates in FOL and properties in OWL)

2.1. PRELIMINARIES 9

and individuals (which correspond to: constants in FOL and individuals in OWL). Roles

and concepts are related with other roles and concepts through logical statements called

axioms.

A DL knowledge base consists of two parts, namely the terminological part (TBox)

and the assertional part (ABox). TBox de�nes the schema of a given DL, namely existing

properties and relations between concepts and roles. Thus, a TBox statement would model

knowledge such as �Every PhD student is a student�. On the other hand, ABox de�nes the

facts of a given DL, namely properties of existing individuals. Thus, an ABox statement

would model knowledge such as �Ilias Tachmazidis is a PhD student�. Considering the

wide range of DLs, their naming de�nes also the underlying expressivity, with well-known

medical informatics terminology bases, such as SNOMED-CT1, GALEN2 and GO3 being

expressible in EL.

2.1.4 Datalog

Datalog is a declarative database query language that has been used extensively in the

�eld of relational databases [22]. A Datalog program consists of function-free Horn rules

that are applied on existing (explicit) facts in order to deduce new (implicit) facts from

the given knowledge base. Considering the �eld of relational databases, facts can be per-

ceived as rows in a table, with rules facilitating database queries, thus further enriching

our knowledge base. Although Datalog was initially designed as a query language for de-

ductive databases, in recent years, it has been widely utilized in various applications, such

as declarative networking, program analysis, distributed social networking and security

systems.

Given a datalog program and a knowledge base, there are mainly two approached for

deriving new knowledge, namely top-down and bottom-up. A top-down approach is de-

signed to start with a given goal (or query), which is recursively reduced to subgoals, based

on the body of each applicable rule, until the given subgoal corresponds to existing facts in

our knowledge base. Thus, the formed resolution (inference) tree is built starting from the

top goal and moving down to its subgoals. As opposed to top-down, bottom-up approach

is based on the repetitive applications of the given rules on existing (explicit) and derived

(implicit) facts until no new facts can be derived. Thus, once the full materialization of

the knowledge base, based on the given rule set, is achieved then the facts that match the

given query are used in order to provide the �nal answers. In essence, top-down approach

is more query-oriented as it applies only rules that are relevant to the given query, on

the cost of slower response compared to the bottom-up approach. On the other hand,

bottom-up approach comes with a pre-computation overhead of materializing the entire

knowledge base, on the bene�t of quicker query-time responses compared to top-down as

1http://www.ihtsdo.org/snomed-ct
2http://www.opengalen.org/
3http://geneontology.org/

http://www.ihtsdo.org/snomed-ct
http://www.opengalen.org/
http://geneontology.org/

10 CHAPTER 2. BACKGROUND

all relevant (explicit and implicit) facts are part on the knowledge base.

2.1.5 Defeasible Logic

Defeasible Logic - Syntax

A defeasible theory [23, 7] (a knowledge base in defeasible logic) consists of �ve di�erent

kinds of knowledge: facts, strict rules, defeasible rules, defeaters, and a superiority relation.

Facts are literals that are treated as known knowledge (given or observed facts).

Strict rules are rules in the classical sense: whenever the premises are indisputable

(e.g., facts) then so is the conclusion. An example of a strict rule is �Emus are birds�,

which can be written formally as:

emu(X) → bird(X).

Defeasible rules are rules that can be defeated by contrary evidence. An example of

such a rule is �Birds typically �y�; written formally:

bird(X) ⇒ �ies(X).

Defeaters are rules that cannot be used to draw any conclusions. Their only use is to

prevent some conclusions. An example is �If an animal is heavy then it might not be able

to �y�. Formally:

heavy(X) ¬�ies(X).

The superiority relation among rules is used to de�ne priorities among rules, that

is, where one rule may override the conclusion of another rule. For example, given the

defeasible rules

r : bird(X) ⇒ �ies(X)

r′ : brokenWing(X) ⇒ ¬�ies(X)

which contradict one another, no conclusive decision can be made about whether a bird

with broken wings can �y. But if we introduce a superiority relation > with r′ > r, with

the intended meaning that r′ is strictly stronger than r, then we can indeed conclude that

the bird cannot �y.

It is worth noting that, in defeasible logic, priorities are local in the following sense: two

rules are considered to be competing with one another only if they have complementary

heads. Thus, since the superiority relation is used to resolve con�icts among competing

rules, it is only relevant when comparing rules with complementary heads; the information

r > r′ for rules r, r′ without complementary heads may be part of the superiority relation,

but has no e�ect on the proof theory as we will see later.

2.1. PRELIMINARIES 11

Defeasible Logic - Formal De�nition

A rule r consists (a) of its antecedent (or body) A(r) which is a �nite set of literals, (b)

an arrow, and, (c) its consequent (or head) C(r) which is a literal. Given a set R of rules,

we denote the set of all strict rules in R by Rs, and the set of strict and defeasible rules

in R by Rsd. R[q] denotes the set of rules in R with consequent q. If q is a literal, ∼q
denotes the complementary literal (if q is a positive literal p then ∼q is ¬p; and if q is

¬p, then ∼q is p)

A defeasible theory D is a triple (F,R,>) where F is a �nite set of facts, R a �nite set

of rules, and > an acyclic superiority relation upon R.

Defeasible Logic - Proof Theory

A conclusion of D is a tagged literal and can have one of the following four forms:

• +∆q, which is intended to mean that q is de�nitely provable in D.

• −∆q, which is intended to mean that we have proved that q is not de�nitely provable

in D.

• +∂q, which is intended to mean that q is defeasibly provable in D.

• −∂q, which is intended to mean that we have proved that q is not defeasibly provable
in D.

Provability is de�ned below. It is based on the concept of a derivation (or proof) in

D = (F, R, >). A derivation is a �nite sequence P = P(1), ..., P(n) of tagged literals

satisfying the following conditions. The conditions are essentially inference rules phrased

as conditions on proofs. P(1..ı) denotes the initial part of the sequence P of length ı.

+∆: We may append P(ı + 1) = +∆q if either

q ∈ F or

∃r ∈ Rs[q] ∀α ∈ A(r): +∆α ∈ P(1..ı)

This means, to prove +∆q we need to establish a proof for q using facts and strict

rules only. This is a deduction in the classical sense � no proofs for the negation of q

need to be considered (in contrast to defeasible provability below, where opposing chains

of reasoning must also be taken into account).

−∆: We may append P(ı + 1) = −∆q if

q /∈ F and

∀r ∈ Rs[q] ∃α ∈ A(r): −∆α ∈ P(1..ı)

To prove −∆q, that is, that q is not de�nitely provable, q must not be a fact. In

addition, we need to establish that every strict rule with head q is known to be inapplicable.

12 CHAPTER 2. BACKGROUND

Thus, for every such rule r there must be at least one element α of the antecedent for

which we have established that α is not de�nitely provable (−∆α).

+∂: We may append P(ı + 1) = +∂q if either

(1) +∆q ∈ P(1..ı) or

(2) (2.1) ∃r ∈ Rsd[q] ∀α ∈ A(r) : +∂α ∈ P(1..ı) and

(2.2) −∆ ∼q ∈ P(1..ı) and

(2.3) ∀s ∈ R[∼q] either
(2.3.1) ∃α ∈ A(s) : −∂α ∈ P(1..ı) or

(2.3.2) ∃t ∈ Rsd[q] such that

∀α ∈ A(t) : +∂α ∈ P(1..ı) and t > s

We can show that q is defeasibly provable, either by showing that q is de�nitely provable

(+∆q � see part 1 of the de�nition for +∂) or by using the defeasible part of D (part 2).

For the defeasible part (2) we require that there must be a strict or defeasible rule with

head q which can be applied (2.1). But now we need to consider possible attacks, that

is, reasoning chains in support of ∼q. Thus, we must show that ∼q is not de�nitely

provable (2.2). Additionally, in (2.3) we consider the set of all rules which are not known

to be inapplicable and which have head ∼q, because, essentially, each such rule s attacks

the conclusion q. For q to be provable, each such rule s must be counterattacked by

another rule t with head q with the following properties: (i) t must be applicable at this

point, and (ii) t must be stronger than s. Thus, each attack on the conclusion q must be

counterattacked by a stronger rule.

−∂: We may append P(ı + 1) = −∂q if

(1) −∆q ∈ P(1..ı) and

(2) (2.1) ∀r ∈ Rsd[q] ∃α ∈ A(r) : −∂α ∈ P(1..ı) or

(2.2) +∆ ∼q ∈ P(1..ı) or

(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀α ∈ A(s) : +∂α ∈ P(1..ı) and

(2.3.2) ∀t ∈ Rsd[q] either

∃α ∈ A(t) : −∂α ∈ P(1..ı) or t ≯ s

To prove that q is not defeasibly provable, we must �rst establish that it is not de�nitely

provable (1). Then we must establish that it cannot be proven using the defeasible part

of the theory (2). There are three possibilities to achieve this: either we have established

that none of the (strict and defeasible) rules with head q can be applied (2.1); or ∼q is

de�nitely provable (2.2); or there must be an applicable rule s with head ∼q such that no

possibly applicable rule t with head q is superior to s (2.3).

2.1. PRELIMINARIES 13

Defeasible Logic - Strati�cation

De�nition 2.1.1 A rule set is strati�ed if all of its predicates can be assigned a rank

such that

• no predicate depends on one of equal or greater rank

• no predicate is assigned a rank not equal to its complement

in any rule.

2.1.6 Strati�ed Semantics

In this work, we describe the strati�ed semantics of logic programming as they were de�ned

by Gelder et al. [24] for strati�ed programs of the well-founded semantics. We impose

several restrictions in order to achieve parallelization using the MapReduce framework.

De�nition 2.1.2 [24] A general logic program is a �nite set of general rules, which

may have both positive and negative subgoals. A general rule is written with its head, or

conclusion on the left, and its subgoal (body), if any to the right of the symbol �←�, which

may be read �if�. �

Given the following rule (see Gelder et al. [24]),

p(X) ← a(X), not b(X).

p(X) is the head, a(X) is a positive subgoal, and b(X) is a negative subgoal. This rule may

be read as �p(X) if a(X) and not b(X)�. A Horn rule is one with no negative subgoals,

and a Horn logic program is one with only Horn rules.

We use the following conventions. A logical variable starts with a capital letter while a

constant or a predicate starts with a lowercase letter. Note that functions are not allowed.

A predicate of arbitrary arity will be referred as a literal. If p is a positive literal then ¬p
is its negative literal, p and ¬p are complements of each other. Constants, variables and

literals are terms. A ground term is a term with no variables. The Herbrand universe is

the set of constants in a given program. The Herbrand base is the set of ground terms that

are produced by the substitution of variables with constants in the Herbrand universe.

De�nition 2.1.3 [24] A program is strati�ed if all of its predicates can be assigned a

rank such that

• no predicate depends positively on one of greater rank, and

• no predicate depends negatively on one of equal or greater rank

in any rule. �

14 CHAPTER 2. BACKGROUND

De�nition 2.1.4 [24] Given a program P, a partial interpretation I is a consistent set

of literals whose atoms are in the Herbrand base of P. A total interpretation is a partial

interpretation that contains every atom of the Hebrand base or its negation. We say a

ground (variable-free) literal is true in I when it is in I and say it is false in I when its

complement is in I. Similarly, we say a conjunction of ground literals is true in I if all of

the literals are true in I, and is false in I if any of its literals is false in I �

According to the strati�ed semantics literals are classi�ed as positive or negative as

follows:

1. Facts are classi�ed as positive literals.

2. All inferences for rank 0 are classi�ed as positive literals, while whose not inferred

are classi�ed as negative.

3. If all literals up to rank k−1 are classi�ed either as positive or negative, then we can

perform reasoning for rank k. All inferences for rank k are then classi�ed as positive

literals, while whose not inferred are classi�ed as negative.

De�nition 2.1.5 [24] Let a program P, its associated Herbrand base H and a partial

interpretation I be given. We say A ⊆ H is an unfounded set (of P) with respect to I

if each atom p ∈ A satis�es the following condition: For each instantiated rule R of P

whose head is p, (at least) one of the following holds:

1. Some (positive or negative) subgoal q of the body is false in I.

2. Some positive subgoal of the body occurs in A.

A literal that makes (1) or (2) above true is called a witness of unusability for rule R

(with respect to I). �

2.1.7 Strati�cation - Defeasible Logic Versus Strati�ed Semantics

Note that the notion of strati�cation, in both De�nition 2.1.1 and De�nition 2.1.3, de-

scribes a way of assigning predicates to ranks such that there is no cycle among predicates

that belong to di�erent ranks. However, each de�nition is designed based on the semantics

of the underlying logic and allows di�erent structure of predicate dependencies. Here are

the key di�erences between the two strati�cation de�nitions:

• For defeasible logic, every predicate that depends on another predicate is assigned

a higher rank (see De�nition 2.1.1). On the other hand, for strati�ed semantics,

predicates are assigned a higher rank if they depend negatively on other predicates

(see De�nition 2.1.3).

2.1. PRELIMINARIES 15

• For defeasible logic, because every predicate that depends on another predicate is

assigned a higher rank (see De�nition 2.1.1), no cycles are allowed within a given

rank. On the other hand, for strati�ed semantics, predicates that depend positively

on other predicates can be assigned an equal rank (see De�nition 2.1.3), and thus,

are allowed to form positive cycles within a given rank.

• Defeasible logic contains both a literal p and its complement ¬p, which may require

con�ict resolution. Thus, both p and ¬p must be assigned to the same rank (see Def-
inition 2.1.1). On the other hand, strati�ed semantics is based on negation as failure

and do not handle con�ict resolution using priorities over rules, and thus, do not need

to include such conditions into the strati�cation de�nition (see De�nition 2.1.3).

• Strati�ed semantics contain both positive and negative subgoals. Thus, a predi-

cate that depends negatively on another predicate must be assigned a higher rank

(see De�nition 2.1.3) in order to allow reasoning over complete knowledge at each

rank. On the other hand, defeasible logic does not de�ne negative subgoals, and

thus, do not need to include such conditions into the strati�cation de�nition (see

De�nition 2.1.1).

2.1.8 Well-Founded Semantics

In this subsection we provide the de�nition of the well-founded semantics (WFS) as they

were de�ned by Gelder et al. [24].

De�nition 2.1.6 [24] A general logic program is a �nite set of general rules, which

may have both positive and negative subgoals. A general rule is written with its head, or

conclusion on the left, and its subgoal (body), if any to the right of the symbol �←�, which

may be read �if�.

Given the following rule (see Gelder et al. [24]),

p(X) ← a(X), not b(X).

p(X) is the head, a(X) is a positive subgoal, and b(X) is a negative subgoal. This rule may

be read as �p(X) if a(X) and not b(X)�. A Horn rule is one with no negative subgoals,

and a Horn logic program is one with only Horn rules.

We use the following conventions. A logical variable starts with a capital letter while a

constant or a predicate starts with a lowercase letter. Note that functions are not allowed.

A predicate of arbitrary arity will be referred as a literal. Constants, variables and literals

are terms. A ground term is a term with no variables. The Herbrand universe is the set

of constants in a given program. The Herbrand base is the set of ground terms that are

produced by the substitution of variables with constants in the Herbrand universe. We

will refer to Horn rules also as de�nite rules, likewise Horn programs will also be referred

to as de�nite programs.

16 CHAPTER 2. BACKGROUND

De�nition 2.1.7 [24] The Herbrand instantiation of a general logic program is the set of

rules obtained by substituting terms in the Herbrand universe for variables in every possible

way. An instantiated rule is one in the Herbrand instantiation. Whereas �uninstantiated�

logic programs are assumed to be a �nite set of rules, instantiated logic programs may well

be in�nite.

Note that this de�nition is a quote from [24]. The last statement does not apply to

the setting in this work: instantiated programs are always �nite.

De�nition 2.1.8 [24] Given a program P, a partial interpretation I is a consistent set

of literals whose atoms are in the Herbrand base of P. A total interpretation is a partial

interpretation that contains every atom of the Hebrand base or its negation. We say a

ground (variable-free) literal is true in I when it is in I and say it is false in I when its

complement is in I. Similarly, we say a conjunction of ground literals is true in I if all of

the literals are true in I, and is false in I if any of its literals is false in I.

De�nition 2.1.9 [24] Let a program P, its associated Herbrand base H and a partial

interpretation I be given. We say A ⊆ H is an unfounded set (of P) with respect to I

if each atom p ∈ A satis�es the following condition: For each instantiated rule R of P

whose head is p, (at least) one of the following holds:

1. Some (positive or negative) subgoal q of the body is false in I.

2. Some positive subgoal of the body occurs in A.

A literal that makes (1) or (2) above true is called a witness of unusability for rule R (with

respect to I).

Theorem 2.1.1 [24] The data complexity of the well-founded semantics for function-free

programs is polynomial time.

In this work, we require each rule to be safe, that is, each variable in a rule must

occur (also) in a positive subgoal. Safe programs consist of safe rules only. This safety

criterion is an adaptation of range restriction [25], which guarantees the important con-

cept of domain independence, originally studied in deductive databases (see for example

Abiteboul et al. [26]). Domain independence means that the outcome of a query does not

depend on the domain. In our setting, this means that the well-founded model will stay

the same, no matter whether the Herbrand universe or any superset of it is considered.

Therefore, the computed results of a safe program are robust with respect to extensions

of the rule or fact base. Especially irrelevant additions of new constants will have no

e�ect on computed models, a property which cannot be guaranteed for unsafe programs.

Apart from this semantic property, the safety condition implicitly also enforces a certain

locality of computation, which is important for our proposed method, as we shall discuss

in subsection 6.1.2.

2.1. PRELIMINARIES 17

2.1.9 Alternating Fixpoint Procedure

In this subsection, we provide the de�nition of the alternating �xpoint procedure as it was

de�ned by Brass et al. [27].

De�nition 2.1.10 [27] For a set S of literals we de�ne the following sets:

pos(S) := {A ∈ S | A is a positive literal },

neg(S) := {A | not A ∈ S}.

De�nition 2.1.11 [27] (Extended Immediate Consequence Operator)

Let P be a normal logic program. Let I and J be sets of ground atoms. The set TP,J(I)

of immediate consequences of I w.r.t. P and J is de�ned as follows:

TP,J(I) := {A | there is A ← B ∈ ground(P) with

pos(B) ⊆ I and neg(B) ∩ J = ∅}.

If P is de�nite, the set J is not needed and we obtain the standard immediate consequence

operator TP by TP (I) = TP,∅(I).

For an operator T we de�ne T ↑ 0 := ∅ and T ↑ i := T (T ↑ i − 1), for i > 0. lfp(T)

denotes the least �xpoint of T , i.e. the smallest set S such that T (S) = S.

De�nition 2.1.12 [27] (Alternating Fixpoint Procedure)

Let P be a normal logic program. Let P+ denote the subprogram consisting of the de�nite

rules of P. Then the sequence (Ki,Ui)i≥0 with set Ki of true (known) facts and Ui of

possible (unknown) facts is de�ned by:

K0 := lfp(TP+) U0 := lfp(TP,K0
)

i > 0 : Ki := lfp(TP,Ui−1
) Ui := lfp(TP,Ki

)

The computation terminates when the sequence becomes stationary, i.e., when a �xpoint

is reached in the sense that

(Ki,Ui) =(Ki+1,Ui+1).

This computation schema is called the Alternating Fixpoint Procedure (AFP).

We rely on the de�nition of the well-founded partial model W∗p of P as given by Gelder

et al. [24].

Theorem 2.1.2 [27] (Correctness of AFP)

Let the sequence (Ki,Ui)i≥0 be de�ned as above. Then there is a j ≥ 0 such that (Kj,Uj)=(Kj+1,Uj+1).

The well-founded model W∗p of P can be directly derived from the �xpoint (Kj,Uj), i.e.,

18 CHAPTER 2. BACKGROUND

W∗p = {L | L is a positive ground literal and L ∈ Kj or

L is a negative ground literal

not A and A ∈ BASE(P) − Uj},

where BASE(P) is the Herbrand base of program P.

Lemma 2.1.1 [27] (Monotonicity)

Let the sequence (Ki,Ui)i≥0 be de�ned as above. Then the following holds for i ≥ 0 :

Ki ⊆ Ki+1, Ui ⊇ Ui+1, Ki ⊆ Ui.

2.1.10 Answer Set Programming

Here we provide the basic notions of answer set programming (ASP) as they were de�ned

by Baral [28] and Lifschitz [29].

De�nition 2.1.13 [28] The axiom alphabet (or simply the alphabet) of an answer set

framework consists of seven classes of symbols:

1. variables,

2. object constants (also referred to as constants),

3. function symbols,

4. predicate symbols,

5. connectives,

6. punctuation symbols, and

7. the special symbol ⊥;

where the connectives and punctuation symbols are �xed to the set {¬, or, ←, not, `,'}

and { `(', `)', `.' } respectively; while the other classes vary from alphabet to alphabet.

De�nition 2.1.14 [28] A term is inductively de�ned as follows:

1. A variable is a term.

2. A constant is a term.

3. If f is an n-ary function symbol and t1,...,tn are terms then f(t1,...,tn) is a term.

De�nition 2.1.15 [28] A term is said to be ground, if no variable occurs in it.

De�nition 2.1.16 [28] Herbrand Universe and Herbrand Base

• The Herbrand Universe of a language L, denoted by HUL, is the set of all ground

terms which can be formed with the functions and constants in L.

2.1. PRELIMINARIES 19

• An atom is of the form p(t1,...,tn), where p is a predicate symbol and each ti is a

term. If each of the tis is ground then the atom is said to be ground.

• The Hebrand Base of a language L, denonted by HBL, is the set of all ground atoms

that can be formed with predicates from L and terms from HUL.

• A literal is either an atom or an atom preceded by the symbol ¬. The former is

referred to as a positive literal, while the latter is referred to as a negative literal. A

literal is referred to as ground if the atom in it is ground.

• A naf-literal is either an atom or an atom preceded by the symbol not. The former

is referred to as a positive naf-literal, while the later is referred to as a negative

naf-literal.

• A gen-literal is either a literal of a literal preceded by the symbol not.

De�nition 2.1.17 [28] A rule is of the form:

L0 or ... or Lk ← Lk+1,...,Lm, not Lm+1,..., notLn

where Lis are literals or when k = 0, L0 may be the symbol ⊥, and k ≥ 0, m ≥ k, and

n ≥ m.

A rule is said to be ground if all the literals of the rule are ground.

The parts on the left and on the right of `←' are called the head (or conclusion) and

the body (or premise) of the rule, respectively.

A rule with an empty body and a single disjunct in the head (i.e., k=0) is called a fact,

and then if L0 is a ground literal we refer to it as a ground fact.

A fact can be simply written without the ← as:

L0.

When k = 0, and L0 = ⊥, we refer to the rule as a constraint.

The ⊥s in the heads of constraints are often eliminated and simply written as rules

with empty head, as in

← L1,...,Lm, not Lm+1,..., not Ln

De�nition 2.1.18 [28] Let r be a rule in a language L. The grounding of r in L, denoted
by ground(r, L), is the set of all rules obtained from r by all possible substitutions of

elements of HUL for the variables in r.

De�nition 2.1.19 [28] The answer set language given by an alphabet consists of the set

of all ground rules constructed from the symbols of the alphabet.

20 CHAPTER 2. BACKGROUND

In addition to the above de�nitions, in this work we use the following conventions. A

variable starts with a capital letter, a constant or a predicate starts with a lowercase letter,

while functions are not allowed. We focus on monadic or single-variable literals, namely

literals containing only one term. A set of literals X is said to be consistent if, for every

literal p ∈ X, its complementary literal is not contained in X.

In this work, we focus on monadic or single-variable rules, namely rules of the following

form,

pn(Y)← a1(Y), ..., ak(Y), not b1(Y), ..., not bm(Y). (2.1)

Programs containing only monadic or single-variable rules will be calledmonadic or single-

variable programs. It is evident from the de�nition above that all allowed rules are safe,

namely each variable in a rule occurs (also) in a positive subgoal. In addition all allowed

programs are safe as they consist of safe rules only.

Note that in (2.1) we used in each literal the variable Y (as opposed to traditionally

used variable X) in order to avoid any confusion with the set of literals X. However, the

name of the used variable does not a�ect the de�nition of a rule. Thus, the following two

rules

pn(Y)← a1(Y), ..., ak(Y), not b1(Y), ..., not bm(Y).

pn(Z)← a1(Z), ..., ak(Z), not b1(Z), ..., not bm(Z).

are considered equivalent.

We use the de�nition of answer sets as it was de�ned by Lifschitz [29] with minor

changes for consistency and readability purposes, taking into consideration the conventions

above.

De�nition 2.1.20 [29] The notion of an answer set is de�ned �rst for programs that do

not contain negation as failure (m = 0 in every (instantiated) rule (2.1) of the program).

Let Π be such a program, and let X be a consistent set of literals. We say that X is closed

under Π if, for every rule in Π, Head ∩ X 6= ∅ whenever Body ⊆ X. We say that X is an

answer set for Π if X is minimal among the sets closed under Π (relative to set inclusion).

For instance, the program

p; q,

¬r ← p (2.2)

has two answer sets:

{p,¬r}, {q}, (2.3)

If we add the constraint

← q (2.4)

2.2. COMPUTING MODELS 21

to (2.2), we will get a program whose only answer set is the �rst of sets (2.3). On the

other hand, if we add the rule

¬q

to (2.2), we will get a program whose only answer set is {p, ¬q, ¬r}.
To extend the de�nition of an answer set to programs with negation as failure, take an

arbitrary program Π, and let X be a consistent set of literals. The reduct ΠX of Π relative

to X is the set of rules

pn(consti)← a1(consti), ..., ak(consti).

for all (instantiated) rules (2.1) in Π such that X does not contain any of b1(consti), ... ,

bm(consti) (where consti represents every constant in the Herbrand universe). Thus ΠX

is a program without negation as failure. We say that X is an answer set for Π if X is an

answer set for ΠX .

2.2 Computing Models

2.2.1 MapReduce Framework

MapReduce is a framework for parallel processing over huge datasets [30]. Processing is

carried out in a map and a reduce phase. For each phase, a set of user-de�ned map and

reduce functions are run in parallel. The former performs a user-de�ned operation over an

arbitrary part of the input and partitions the data, while the latter performs a user-de�ned

operation on each partition.

MapReduce is designed to operate over key/value pairs. Speci�cally, eachMap function

receives a key/value pair and emits a set of key/value pairs. Subsequently, all key/value

pairs produced during the map phase are grouped by their key and passed to reduce phase.

During the reduce phase, a Reduce function is called for each unique key, processing the

corresponding set of values.

Let us illustrate the wordcount example. In this example, we take as input a large

number of documents and calculate the frequency of each word. The pseudo-code for the

Map and Reduce functions is depicted in Algorithm 1.

Consider the following documents as input:

Doc1: �Hello world.�

Doc2: �Hello MapReduce.�

Figure 2.2 depicts the whole process. During map phase, each map operation gets as

input a line of a document. Map function extracts words from each line and emits pairs of

the form <w, �1�> meaning that word w occurred once (�1�), namely the following pairs:

22 CHAPTER 2. BACKGROUND

Figure 2.2: Wordcount example.

Algorithm 1 Wordcount example

map(Long key, String value) :
// key: position in document
// value: document line
for each word w in value
EmitIntermediate(w, �1�);

reduce(String key, Iterator values) :
// key: a word
// values : list of counts
int count = 0;
for each v in values
count += ParseInt(v);

Emit(key , count);

<Hello, 1>

<world, 1>

<Hello, 1>

<MapReduce, 1>

MapReduce framework will perform grouping/sorting resulting in the following inter-

mediate pairs:

<Hello, <1,1>>

<MapReduce, 1>

<world, 1>

During the reduce phase, the Reduce function has to sum up all occurrence values for

each word emitting a pair containing the word and the frequency of the word. Thus, the

reducer with key:

Hello will emit <Hello, 2>

MapReduce will emit <MapReduce, 1>

world will emit <world, 1>

2.2. COMPUTING MODELS 23

Here is a list of MapReduce advantages:

• Can process large amounts of input/output data.

• Developer writes few routines which are following the general interface.

• Provides automated management of fault tolerance.

Here is a list of MapReduce disadvantages:

• MapReduce interface, while generic, does not necessarily �t to any given problem.

• Not well-suited for applications that require multiple iterations over data where only

a small subset is changing.

• Relies heavily on HDFS, which results in heavy I/O overheads.

2.2.2 OpenMP

OpenMP4 (Open Multi-Processing) is an Application Program Interface (API) that has

been designed in order to facilitate the usage of multi-threaded (concurrent threads within

a process) and shared memory parallelism (parallelism over a single machine where all

threads have access to a shared global memory). OpenMP supports programming in C,

C++ and Fortran, and it has been designed to operate over a variety of platforms. The

proposed API consists of mainly three components: (a) Compiler Directives, (b) Runtime

Library Routines, and (c) Environment Variables. Compiler directives can be used for

de�ning a parallel region, parallelizing blocks of code or loop iterations through the use

of threads, and synchronizing thread execution. Runtime library routines can be used for

managing various details of threads, and handling parallelism, parallel regions and locks.

Environment Variables can be used during run-time for de�ning the number of threads

and loop iterations behavior, and managing threads and the level of nested parallelism.

Algorithm 25 shows how OpenMP can be combined with C/C++ in order to facilitate

parallel execution. Here, we use a compiler directive (#pragma omp parallel private(tid))

in order to indicate that the given block of code will be executed in parallel. In addition,

runtime library routines are used in order to retrieve the id of the thread that is running

the code (omp_get_thread_num()) and output a �hello world� message, while for the

master thread we also retrieve (omp_get_num_threads()) and output the total number

of threads. An indicative output, using 4 threads, could be the following:

Hello World from thread = 0

Hello World from thread = 3

Number of threads = 4

Hello World from thread = 2

Hello World from thread = 1

4http://openmp.org/wp/
5https://computing.llnl.gov/tutorials/openMP/

http://openmp.org/wp/
https://computing.llnl.gov/tutorials/openMP/

24 CHAPTER 2. BACKGROUND

Algorithm 2 OpenMP example in C/C++

#include <omp.h>
main () {
int nthreads, tid;
/* Fork a team of threads with each thread having a private tid variable */
#pragma omp parallel private(tid)
{
/* Obtain and print thread id */
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);
/* Only master thread does this */
if (tid == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
} /* All threads join master thread and terminate */

}

Here is a list of OpenMP advantages:

• Incremental parallelism is supported, namely the programmer can parallelize grad-

ually di�erent parts of the program.

• Produced code works both in serial and parallel without further adjustments.

• Data decomposition is handled automatically.

Here is a list of OpenMP disadvantages:

• Can only utilize shared memory parallelism.

• Scalability is limited by memory architecture.

• Developer should be aware of synchronization bugs and race conditions.

2.2.3 MPI

MPI (Message Passing Interface) is a speci�cation for the developers and users of message

passing libraries6. Thus, MPI provides the speci�cations for any given library while not

being a library itself. Essentially, it describes how various processes can communicate with

each other using a prede�ned set of operations. Although MPI was initially intended for

distributed memory architectures, it gradually incorporated shared memory settings as

well, operating nowadays on either or both distributed and shared memory architectures.

6https://computing.llnl.gov/tutorials/mpi/

https://computing.llnl.gov/tutorials/mpi/

2.2. COMPUTING MODELS 25

Algorithm 3 MPI example in C/C++

#include <stdio.h>
#include <mpi.h>
main(int argc, char **argv)
{
int ierr, num_procs, my_id;
ierr = MPI_Init(&argc, &argv);
/* �nd out MY process ID, and how many processes were started. */
ierr = MPI_Comm_rank(MPI_COMM_WORLD, &my_id);
ierr = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
printf("Hello world! I'm process %i out of %i processes\n", my_id, num_procs);
ierr = MPI_Finalize();

}

Various incentives drove the community to the development of MPI. Amongst others,

MPI provided standardization, namely it could be supported easier across platforms, thus

reducing the cost of code implementation.

Algorithm 37 presents a program written in C that is using MPI. First, we need to

initialize the MPI execution environment (MPI_Init(&argc, &argv)), subsequently get the

unique id of the process (MPI_Comm_rank(MPI_COMM_WORLD, &my_id)) and the

total number of MPI processes (MPI_Comm_size(MPI_COMM_WORLD, &num_procs)),

output a �hello world� message, and �nally terminate the MPI execution environment

(MPI_Finalize()). An indicative output, using 4 processes, could be the following:

Hello world! I'm process 3 out of 4 processes.

Hello world! I'm process 0 out of 4 processes.

Hello world! I'm process 2 out of 4 processes.

Hello world! I'm process 1 out of 4 processes.

Here is a list of MPI advantages:

• Runs on distributed and shared memory platforms.

• Applies to a wide range of problems by providing a certain level of abstraction.

• Allows for (hardware) cost management.

Here is a list of MPI disadvantages:

• Serial to parallel implementation is not easy to achieve.

• Hard to debug due to the high level of parallelization.

• Communication overhead may become a bottleneck.

7http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml

http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml

26 CHAPTER 2. BACKGROUND

2.2.4 X10

X10 [18] is a new multi-paradigm programming language developed by IBM. It supports

the asynchronous partitioned global address space (APGAS) model and is speci�cally

designed to increase programmer productivity, while being amenable to programming

shared memory and distributed memory supercomputers. It uses the concepts of place

and activity as the kernel notions to exploit parallelism in the available hardware. A

place is a logical abstraction of the underlying heterogeneous processing element in the

hardware, such as cores in a multi-core architecture, GPUs, or an entire physical machine.

Activities are light-weight threads that run on places. X10 schedules activities on places

to best utilize the available parallelism. The number of places is constant through the life-

time of an X10 program and is initialized at program startup. Activities on the other hand

can be forked at program execution time. Forking an activity can be blocking, wherein

the parent returns after the forked activity completes execution, or non-blocking, wherein

the parent returns instantaneously, after forking an activity. Furthermore, these activities

can be forked locally or on a remote place.

X10 provides a data structure called distributed array (DistArray) for programming

parallel algorithms. One or more elements in the DistArray can be mapped to a single

place using the concept of points [18], and such elements can be kept in or operated on

memory through the life of the code. The following three X10 primitives are critical in

understanding the pseudocode given in the following sections:

- at(p) S: this construct executes statement S at a speci�c place p. The current

activity is blocked until S �nishes executing on p.

- async S: a child activity is forked by this construct. The current activity returns

immediately (non-blocking) after forking S.

- finish S: this construct is used to block the current activity and wait for all activ-

ities forked by S to terminate.

Here is a list of X10 advantages:

• Flexible and e�cient scheduling where tasks are separated from the underlying con-

currency model, thereby allowing one to implement an e�cient scheduling strategy.

• Can utilize both shared and distributed memory settings.

• Allows implementations that �t to various problems.

Here is a list of X10 disadvantages:

• Developer needs to handle manually operations such as data and task distribution.

• Memory capacity of the used architecture may limit scalability.

• Requires experienced developers in order to use e�ciently the provided �exibility.

Chapter 3

Related Work

In this chapter, we present the related work on large-scale reasoning. In particular, we

focus on parallel and scalable solutions that enable large-scale reasoning for various logics.

We classify related work in the following three categories: (a) RDF/S (b) OWL, and

(c) Description Logics. Although there is a clear overlap between OWL and Description

Logics, we consider them separately by classifying works based on well-known OWL rule

sets (such as OWL Horst and OWL 2RL) to OWL, and works covering an arbitrary

expressiveness of a given Description Logic (such as ALC and SHN) to Description Logics.

In addition, when a given work covers more than one logic (e.g., both RDFS and OWL

Horst), then this work is classi�ed to the most generic logic. To the best of our knowledge,

there is no existing work in the literature for large-scale nonmonotonic reasoning.

3.1 RDF/S Reasoning

Logic: RDFS. Marvin (MAssive RDF Versatile Inference Network) [31] (see alsoMar-

vin [32]) is a parallel and distributed platform for massive processing of RDF data based

on a peer-to-peer model. It implements the divide-conquer-swap strategy, which partitions

the given dataset into subsets (divide), computes the closure (conquer) and repartitions

data by exchanging triples among neighboring nodes (swap). Closure is computed by

utilizing reasoners as an external library, with eventually completeness of inference guar-

anteed, since triples that may emit new knowledge are gradually collocated on the same

node. In addition, in order to minimize memory and bandwidth overheads the system

supports duplicate detection and removal.

Marvin achieves a balance between random and deterministic approach, combining

load balancing with e�cient derivation. More speci�cally, the random approach (triples

are exchanged randomly among nodes) provides good load balancing properties, but is

highly ine�cient since triples appear on random nodes, thus postponing derivation. On

the contrary, the deterministic approach (triples are redirected to a speci�c node according

27

28 CHAPTER 3. RELATED WORK

to their key) is e�cient as triples that will lead to derivations are located on the same

node, but at the cost of highly unbalanced workloads for skewed dataset distributions.

The implemented SpeedDate algorithm swaps triples within a neighborhood of nodes,

thus popular keys are distributed over several nodes. Triples are constantly located within

a restricted subsets of nodes providing a certain degree of determinism.

Authors studied various metrics by providing simulated results. Simulations deal with

the number of nodes, number of items in the system, various data distributions, nodes

availability during the reasoning process, recall, load balancing and scalability. The sys-

tem surpasses the random approach in terms of e�ciency, showing similar load balancing

properties, and the deterministic approach in terms of scalability, with the ability to uti-

lize higher degree of parallelization. Considering scalability, the average throughput per

node follows a square route curve with respect to the number of items. In addition, au-

thors provide experiments on real RDF data. The system is shown to scale to up to 64

nodes processing datasets of up to 14.9M triples. Marvin shows sublinear speedups while

performing better when low tolerance to duplicates is allowed.

Logic: RDFS. Kotoulas et al. [33] point out the fact that Semantic Web data follows

highly skewed term distribution. Such term distributions pose a signi�cant challenge for

parallel reasoning since achieving high degree of parallelization requires balanced work-

loads coming from even data distribution among nodes. This becomes a scalability issue

for term-based partitioning, an approach where triples that share common terms are collo-

cated on the same node in order to be matched and derive new conclusions. By analyzing

several real-world datasets, it is evident that in some datasets the most popular term can

be found in up to 55% of all triples in dataset. The most popular term will be redirected

to a single node that will be responsible for handling all corresponding triples. Thus, in

case the most popular term appears in 10%-20% of triples in the given dataset then only

a speedup of 5-10x can be obtained, while adding more nodes will not provide any further

speedup.

The scalability of the term-based partitioning is limited by the frequency of the most

popular term in the dataset. On the other hand, triples can be distributed randomly, pro-

viding balanced workload and high scalability at the cost of a highly ine�cient derivation

process. Thus, an approach called speeddate is proposed, where triples are distributed

based on their terms over a neighborhood of nodes, providing both the e�ciency of term-

based partitioning and the scalability of the random distribution. Speeddate is based

on distributed clustering, where each node decides deterministically which triples to ex-

change with its neighbors. Thus, neighborhoods (regions) emerge based on the terms in

the given dataset requiring no upfront data analysis. In addition, such regions are elastic

in the sense that they are larger for popular terms, thus providing load balancing, while

no central coordination is required for handling the network.

Experimental evaluation of speeddate was performed on Marvin [31] showing the

scalability of the proposed approach. Various evaluation criteria were considered such

3.1. RDF/S REASONING 29

as joins, produced triples, transferred data and number of nodes. Data clustering was

considered, with random clustering providing the lowest join throughput (number of joins

per seconds). On the other hand, the full clustering approach that combined both local

clustering (triples with same terms are loaded from local storage for joins) and distributed

clustering (following the speeddate algorithm) provided the highest join throughput. In

addition, a variation of full clustering called compound clustering was tested, where keys

comprised of various combinations of terms, decreasing however join throughput. The

system showed good scalability properties for up to 64 nodes for inputs of up to 195M

triples. Finally, authors ensured that the system provides reasoning completeness, while

reaching load-balancing properties of an uniform random partitioning.

Logic: RDFS. Goodman et al. [34] present a parallel approach for dictionary encod-

ing, RDFS inference and SPARQL query processing on the Cray XMT supercomputer.

Cray XMT is designed based on shared-memory architecture in order to absorb mem-

ory and network latency, while providing high level of parallelization. All processes are

performed completely in-memory by utilizing the global shared-memory. In particular,

authors present an algorithm for encoding RDFS triples into a set of 64-bit integers, thus

providing a mapping between string and integer representation. It is required that RDFS

triples are represented in either N-Triples or N-Quads format. Dictionary encoding is

highly optimized for parallel processing while allowing updates to an existing dictionary.

Final representation consists of triples encoded as integer values, and the mappings from

each unique string to its corresponding integer value.

The aforementioned in-memory representation is consequently utilized for RDFS clo-

sure computation. RDFS closure is based on a previously presented algorithm [35]. How-

ever, the approach is altered in order to reduce memory usage, with the new approach

optimizing the use of hash key values in order to include information about the availability

of each slot (where all free slots are assigned a prede�ned key value). In addition, RDFS

reasoning is based on processing the entire dataset instead of using queues that contain

matching triples for each rule. However, such memory optimization resulted in increased

computation time. Subsequently, RDFS closure is transformed into a graph representation

in order to facilitate SPARQL query answering. An algorithm called Sprinkle SPARQL is

used in order to estimate the set of matching possibilities, while query answering gradu-

ally identi�es matching triples and calculates �nal results by combining all intermediate

results.

Experimental evaluation showed that the system is able to scale up to 512 processors

while handling 20 billion triples completely in-memory using the Cray XMT supercom-

puter. In particular, dictionary encoding was tested on datasets of up to 16.5 billion

triples, coming with compression ratio ranging from 3.2 to 4.4, and speedups ranging from

2.4 to 3.3. RDFS closure generated 20.1 billion unique triples, requiring 40% less memory

at the cost of 11% to 33% increase in computation time, with speedups ranging from 6

to 9, where. SPARQL queries showed speedups ranging from 4.3 to 28 for complicated

30 CHAPTER 3. RELATED WORK

queries. Nevertheless, authors point out the fact that Sprinkle SPARQL do not perform

well for simple queries as it comes with a signi�cant overhead. Thus, Sprinkle SPARQL

did not manage outperform all evaluated alternatives for simple queries. It is also shown

throughout the evaluation of each operation that for increasing number of used processors,

the required time decreases.

Logic: RDFS. Weaver et al. [36] consider parallel materialization of RDFS closure

using the Message Passing Interface (MPI). In order to justify the correctness of the

proposed parallel algorithm, authors provide a theoretical analysis of their approach. A

special subset of rules is identi�ed, namely rules that match only one assertional (instance)

triple, while all other antecedents are matched by ontological (schema) triples. Such rules

allow for e�cient data partitioning where instance triples are divided into several partitions

while schema triples are copied to each partition. Rules are applied at each partition in

parallel. In addition, new conclusions are added to the partition from which they were

derived in order to allow further derivations. The proposed reasoning process is proved

to be sound and complete since none of the RDFS rules violates the premises for the

partitioning. The algorithm for parallel RDFS inferencing is provided, showing that the

union of all derivations constitutes the �nite RDFS closure.

Data are partitioned evenly across processes requiring no preprocessing. Thus, each

process receives a subset of the given dataset while partitioning is facilitated by the input

format, namely triples follow the N-triples format (where each line contains a triple in a

�subject predicate object� representation). Blank nodes pose a challenge in a distributed

setting as they are unique only within a given graph. However, a solution is provided by

encoding already existing blank nodes into URIs, while for rules that generate blank nodes

allocated to literals, a URI is generated by encoding the literal. The implementation is

written in C where MPI is used for parallel I/O and interprocess communication (when

reading instance triples). Rule applications are performed using C libraries for in-memory

RDF storage and query processing. Thus, once triples are loaded into memory, each rule

is expressed and applied as a SPARQL query. Each partition derives its own conclusions

with no support for duplicate elimination across partitions as each process outputs its

derivations to a separate �le.

Experimental evaluation showed the performance of the system for up to 128 processes

with the ability to handle inputs of up to 345M triples. The performance of inferenc-

ing scales linearly for increasing number of triples and number of processes. However,

by taking into consideration overall runtimes, it is evident that, for small datasets, the

speedup decreases for larger numbers of processes mainly due to the initialization over-

head. The fact that no duplicate elimination across partitions is performed has an impact

on the amount of generated duplicates as larger numbers of partitions come with higher

percentages of duplicates. However, the rate of duplicate percentage increment (initially

super-linear) gradually falls as the number of partitions increases. Moreover, copying

schema triples to all partitions has an impact on the amount of duplicates since, for the

3.1. RDF/S REASONING 31

same number of processes, by doubling the size of the dataset the percentage of duplicates

seems to halve. It is also noted that duplicates can be reduces by excluding several rules

that result in trivial inferences.

Logic: ρdf. Heino et al. [37] study RDFS reasoning on top of a shared memory

architecture for a subset of RDFS called the ρdf vocabulary. More speci�cally, parallel

reasoning on top of GPUs (Graphics Processing Units) is considered using the OpenCL

programming model. The applicability of parallel reasoning over OpenCL using CPUs is

studied as well, since the same operation can be performed both on GPUs and CPUs.

Initially, the given RDFS dataset is transformed into 64-bit integers, which allows for

simpler implementation, reasoning speedup coming from fast integer comparisons, and

data compression which reduces required memory bandwidth. Data are stored and indexed

internally providing an e�cient access to the triples. A rule application sequence is de�ned,

ensuring soundness and completeness, in order to infer all possible conclusions in several

passes, where a global synchronization step is required between passes. Prior to a rule

application the number of results is unknown. However, the result bu�ers in OpenCL must

be allocated before the actual application of the rule. Thus, authors propose a solution

that is based on two passes for conclusion inferences, the �rst pass computes the number

of conclusions and the second pass materializes new triples having the required space in

the result bu�ers.

It is pointed out that an excessive number of duplicates is generated, producing over

ten times more duplicates than unique triples. Thus, two strategies are devised in order

to reduce generated duplicates, namely global and local strategy. Global strategy prevents

duplicates that may be generated by the application of di�erent rules. This is achieved

by indexing already derived conclusions. However, global strategy is not performed in

parallel on the GPU itself but serially on the host. On the other hand, local strategy

prevents duplicates that are generated during the computation of a given rule (note that

each rule is computed separately). Thus, such duplicates are detected on the GPU prior

to copying newly inferred conclusions to the host. In addition, in order to fully utilize

the available parallelization on the GPU, authors optimize memory access such that each

thread is executing the same set of instructions, namely materializes at most one triple.

Experimental evaluation showed the performance of the proposed approach over vari-

ous dataset sizes and numbers of used cores, and the e�ect of global and local duplicate

removal strategies. Authors initially compare their approach with related work on two

tests showing speedups of 2.6 and 9.5 respectively. Subsequently, scalability is tested, us-

ing CPUs, over various subsets of given datasets (scaling dataset size) and various numbers

of compute unit. The approach scales linearly up to 16 compute unit while for 32 compute

units the performance degrades. In addition, the system is evaluated over GPUs in order

to test all possible combinations of incorporating global and local duplicate removal strate-

gies. On the tested datasets, local strategy provides over 10% speedup considering closure

time and reduces the amount of generated duplicates by up to 13 times. Combining both

32 CHAPTER 3. RELATED WORK

strategies provides less speedup compared to the local strategy, but reduces further the

overall produced duplicates. Finally, on one of the two datasets, global strategy does not

provide any speedup while it leads to a decrease of duplicates of less than 1%.

Logic: RDFS. 4sr [38] (see also 4sr [39] and 4s-reasoner [40]) is a tool implemented

on top of a clustered RDF triple store called 4store [41]. Two reasoning approaches are

discussed, namely forward chaining where reasoning is performed prior to any query is

submitted to the system, and thus, the complete knowledge is stored, resulting in improved

query response time. However, the full materialization may produce an excessive amount of

data while any update to the dataset comes at the cost of recomputing the whole closure.

On the other hand, 4rs is based on backward chaining, where reasoning is performed

during query time thus keeping the knowledge base relatively small on the cost of longer

query response. In addition, hybrid approach is mentioned as well as the combinations of

forward and backward chaining. 4rs supports reasoning over theMinimal RDFS semantics

by altering the architecture of 4store and by incorporating the reasoning process into the

function that returns all matching triples.

In particular, instance triples are divided into a set of non-overlapping segments that

are distributed across storage nodes. Authors study the dependencies between theMinimal

RDFS semantics rules, forming the rule chain tree. It is noted that for the application

of each rule, at most one premise matches instance triples while all other premises match

schema triples. This observation allows to retain the main scalability attribute of the bind

(query matching) operation of 4store, namely bind operation must run on each storage

node in parallel. Thus, by replicating schema triples in each storage node, bind operation

can be performed on each node independently. In order to maintain a consistent copy of

schema closure, schema triples are stored and updated in a processing node called RDFS

Sync, which synchronizes the schema knowledge across all storage nodes. Reasoning is

incorporated into the bind operation by introducing a new binding function that returns

both explicit (existing) and implicit (entailed) knowledge during query time. The new

bind operation is supported by modifying several rules and maintaining two additional

graphs. A detailed description of the algorithm for the new bind operation is provided.

The scalability of the system is evaluated in terms of adding more nodes and increasing

the data size (from 13M to 138M triples). Preliminary work [40] reported the ability of 4rs

to handle SPARQL queries over dataset consisting of up to 500M triples. In this work, two

set-ups are used in order to evaluate the performance of the system, namely a server and

a cluster set-up. It is reported that, during data assertion, 4rs comes with no additional

overhead compared to 4store since reasoning is deferred to query time. Server set-up

shows good scalability when the number of used segments is less or equal to the number

of available cores. In addition, it is shown that the bind operation performs worse when

domain and range inference is required, while the server performs worse for the largest

tested dataset. On the other hand, cluster set-up showed better results as it manages

I/O operations more e�ciently. For the largest used datasets, cluster reached optimal

3.2. OWL REASONING 33

performance while retaining linear performance, for up to 32 segments, for queries that

required domain and range inference.

Logic: RDFS. Stream reasoning over RDF data and C-SPARQL query answering,

using Yahoo S4, is studied by Hoeksema et al. [42]. Authors �rst introduce a naive RDFS

reasoning process over S4 and point out several performance issues. Such issues include the

minimization of stored triples and join operations that do not lead to inference, incomplete-

ness of the reasoning process and duplicate elimination. Subsequently, an e�cient RDFS

reasoning is introduced providing the description of components for duplicate elimination,

for analysis and distribution of unique triples, and components that compute RDFS rules.

The process is based on eventual completeness, namely the system gradually increases its

knowledge until no new knowledge can be added. In addition, reasoning operates under

the assumption that schema data are inserted separately and do not constitute part of the

stream.

Reasoning process feeds triples to C-SPARQL query processing. C-SPARQL queries

are supported through a sequence of components that are dealing with di�erent aspects

of the given query. In particular, authors describe components that provide variable bind-

ings for matched query patterns, perform joins on variables in the query, �lter incoming

bindings and emit the �nal results in the required format. Authors also discuss the two

types of windows supported by C-SPARQL, namely a window comprises of either a �xed

number of triples or a �xed period of time during which triples are entering the stream.

The latter approach is adopted since it facilitates the synchronization across machines as

all machines run using a synchronized timer. The former approach is more challenging as

it requires precise triple counting over a distributed setting. Triples that enter the system

are assigned a timestamp and an expiration time, while triples that are derived again

after their expiration are reassigned their corresponding timestamps. Moreover, authors

describe several components that support aggregates such as SUM, AVG, COUNT, MIN

and MAX.

The system is evaluated based on two metrics, namely maximum throughput in terms of

triples per second (with maximum supported throughput of 160.000 triples per second) and

the number of processing nodes. When no reasoning is performed and the applied query

passes through any given triple (passthrough query), high throughput is achieved even

with 3 nodes showing linear performance. However, when RDFS reasoning is performed

over the passthrough query, the system is showed to scale up to 8 nodes, but it is unclear

why linear performance is not retained for 16 and 32 nodes. In addition, two queries are

considered where no RDFS reasoning is applied. For both queries linear performance is

reported for up to 8 compute nodes.

3.2 OWL Reasoning

Logic: OWL Horst. Soma et al. [43] studied how reasoning over OWL Horst knowledge

34 CHAPTER 3. RELATED WORK

bases can be parallelized resulting in balanced workload in order to store the full materi-

alization. Two parallelization techniques are explored, namely rule partitioning and data

partitioning. Rule partitioning refers to the case where, for a given rule set, each node in

the cluster is responsible for the computation of a subset of rules. Thus, the workload per

rule (and node) depends both on the structure of the rule set and the number of rules.

Therefore, for rule partitioning, balanced workload is di�cult to be achieved. For the case

of data partitioning, data are divided into subsets with each subset being assigned to a

node, allowing more balanced distribution of the computation among nodes.

Authors proposed certain metrics to facilitate the evaluation of the e�ectiveness of each

partitioning approach. Balanced partitioning is achieved when each processor is assigned

an equal amount of work, and consequently all processors �nish their work simultaneously,

thus no processor remains idle (wasting computational power). Processors are coordinated

by exchanging information, thus we should minimize communication between processors,

namely each processor needs to be as independent as possible. In addition, to achieve opti-

mal e�ciency each conclusion must be derived by exactly one processor, thus minimizing

the number of produced duplicates during the inference process. Speed and scalability

evaluate the partitioning process itself. The chosen partitioning approach should be fast

(speed) and have the potential to scale (scalability) for large datasets.

Experimental evaluation where conducted on a cluster of machines over P2P communi-

cation using Jena reasoner in order to examine both techniques. Speci�cally, OWL Horst

closure is computed, over millions of triples. For data partitioning authors evaluated graph

(dataset represented as a graph), hash based (data are assigned to nodes according to a

given hash function) and domain speci�c (data distribution of the given domain is taken

into consideration) partitioning. Results indicate that graph and domain speci�c parti-

tioning have a relatively close performance as they produce balanced partitions, while a

naive hash based partitioning performs badly due to imbalanced partitions. For rule based

partitioning, authors point out the fact that the used rule sets were small and thus only a

small number of processors could be used. Nevertheless, evaluation shows sub-linear but

monotonic speedups.

Logic: OWL Horst. Urbani et al. [44] (see also WebPIE [45, 46]) deal with dis-

tributed RDFS reasoning using the MapReduce framework. Initially, a naive approach

is presented where the application of each RDFS rule is implemented through map and

reduce functions, and �xpoint iteration is required, namely all rules are applied iteratively

until no new conclusion is derived. However, the naive approach su�ers from shortcom-

ings such as the excessive duplicate production and the overhead coming from repetitive

rule applications. Thus, several optimizations were introduced in order to speedup the

reasoning process. First, authors point out that schema triples are far less compared to

instance triples, and thus, can be loaded in memory. In addition, since reasoning using

MapReduce is based on term-based partitioning, several terms of a triple can be grouped

together in order to reduce the amount of produced duplicates. Moreover, authors deal

3.2. OWL REASONING 35

with �xpoint iteration by identifying a suitable ordering for rule applications that requires

a single application of each rule in order to compute the RDFS closure.

Subsequently, the complete reasoning process is described where RDFS reasoning is

implemented as a sequence of MapReduce jobs. Firstly, dictionary encoding is performed

where each term is replaced by a unique 8-byte identi�er, while schema triples are extracted

as well. Once the dataset is transformed into a more compact form, four MapReduce jobs

implement the entire RDFS reasoning process. The �rst job deals with rules considering

sub-properties, a detailed algorithm shows that within a single job, more that one rules

can be applied by setting appropriately the key and the value within the map function.

In addition, schema triples are loaded in memory for every job in order to optimize join

applications. The second job describes the application of rules for domain and range. The

third and the fourth job apply a duplicate elimination and rules for sub-class derivation

respectively. It should be noted that rules that do not require a join operation are not

included in the reasoning process as they can be applied at any point.

Experiments were performed using the Hadoop MapReduce framework in order to

evaluate the e�ciency of the proposed approach. Authors used several real-world datasets

in order to illustrate the behavior of the system. Distributed RDFS reasoning shows

good scalability properties for up to 64 nodes. However, it is pointed out that perfor-

mance decreases when reasoning is performed using more than 16 nodes mainly because

of the platform overhead coming from Hadoop infrastructure (each map and reduce func-

tion comes with an initialization overhead which is not compensated for small subsets of

the given dataset). For the input that combined all existing datasets, containing 865M

triples, 30B conclusions were derived reaching a throughput of 8.77 million triples/sec.

for the output and 252.000 triples/sec. for the input (when dictionary encoding overhead

is excluded). However, if the time for dictionary encoding is included as well, then the

throughput falls to 4.27 million triples/sec. for the input and 123.000 triples/sec. for

the output. It is also evident that the most expensive operation is the computation of

rules that consider sub-classes. Finally, preliminary results for OWL reasoning indicated

that further optimizations are required in order to extend the existing approach to OWL

reasoning.

Logic: OWL Horst. WebPIE [47] (see also WebPIE [45, 46]) is an inference engine

that extends a previously existing approach for distributed RDFS reasoning [44] to dis-

tributed reasoning under the OWL Horst semantics, using the MapReduce framework.

Reasoning over OWL Horst introduced several challenges such as the absence of a well-

de�ned rule application ordering, namely reasoning process is based on �xpoint iteration.

Thus, duplicate derivations are increased since di�erent rules may lead to identical con-

clusions during the iteration. In the work of Urbani et al. [44] each rule contained at most

one instance triple, which allowed for optimization by loading schema triples in memory.

However, OWL Horst rules require joins between multiple instance triples, thus introduc-

ing load balancing challenges. In addition, OWL Horst reasoning requires multiple joins

36 CHAPTER 3. RELATED WORK

for a single rule, as opposed to RDFS reasoning where each rule required at most one join.

In the light of the aforementioned challenges, a set of newly introduced optimizations

was essential in order to retain scalability. It should be noted that WebPIE [47] incorpo-

rates reasoning over RDFS as presented by Urbani et al. [44] and extends it by providing

an algorithm for the �xpoint iteration. Authors apply an e�cient algorithm for the calcu-

lation of transitivity. In essence, transitivity is computed in steps, with the used algorithm

reducing both complexity and the number of produced duplicates. In addition, the severe

load balancing problems that are caused due to owl:sameAs statements are dealt by �nd-

ing groups of synonyms, where all resources in the group are represented by their canonical

representation (group key). Subsequently, each resource in the dataset is replaced by its

corresponding group key. For rules that require multiple joins using both schema and

instance triples, authors device an optimization that is based on early �ltering. More

speci�cally, instance triples are joined with all schema triples during the map phase, thus

minimizing the number of triples that are passed to reduce phase. In addition, combining

instance and schema triples improves load balancing since partitioning can be performed

on a more general key, with each key being a combination of more than one triple terms.

Experimental evaluation showed that WebPIE has the ability to scale up to 100 billion

triples, utilizing up to 64 nodes. In particular, two real-world and one benchmark datasets

were used, with real-world datasets consisting of 1.51 billion and 0.91 billion triples re-

spectively, while the benchmark dataset was used for up to 100 billion triples. In terms of

scalability, WebPIE shows linear performance from 8 to 64 nodes, as well as from 1 to 100

billion triples on the benchmark dataset. It is noted that throughput is higher for larger

datasets as the startup overhead coming from the platform is amortized by the amount

of work. The throughput for the benchmark dataset is approximately 10 times higher

compared to the real-world datasets. This result is explained by the lower complexity of

the benchmark dataset, which requires less iterations in order to reach a �xpoint.

Logic: RDFS, OWL Horst, OWL 2RL. SAOR [48] presents various optimizations

for large-scale, rule-based reasoning, materialization approaches. More speci�cally, the so

called �partial-indexing� approach is based on the separation of TBox and ABox. Authors

focus on rule sets containing only one recursive pattern. In this way, the non-recursive part

is pre-computed, while the recursive part is handled though a triple-by-triple stream. Par-

tial indexing is based on the premise that for semantic data, TBox is relatively small and

non-recursive. Thus, TBox closure can be pre-computed and used during ABox reasoning.

In addition to TBox and ABox separation, authors propose optimizations over the

given rule set. Using existing TBox patterns of the given rule set, rules can be rewritten

with the new templated rules incorporating the TBox, and thus, no longer requiring TBox

bindings during ABox reasoning. Once templated rules are computed, they can be further

optimized by (a) merging equivalent templated rules, (b) constructing a rule index that

matches a given input triple to the corresponding rule application, (c) recognizing rule

dependencies where the application of a rule may or will lead to the application of another

3.3. DESCRIPTION LOGIC REASONING 37

rule in the new rule set, and (d) enforcing rule dependencies by always applying rules

that depend on a previously applicable rule. The aforementioned optimizations have been

shown to be applicable to rule sets such as RDFS, OWL Horst and OWL 2RL. Authorative

reasoning is included in the proposed approach as well. Authorative reasoning refers to

knowledge derivation where a given source is actually de�ning the semantics of concepts

used in the body of the applied rule.

Experimental evaluation is performed over 1.12 billion quads that included provenance

using a subset of OWL 2RL/RDFS axiomatic rules. The extraction of 1.1 million TBox

triples took 8.2 hours on a single machine, which was reduced to 1.12 hours on 8 machines.

The fastest approach proved to be the one separating TBox and ABox reasoning, while

linking and merging equivalent templated rules. In general, reasoning process showed lin-

ear performance for up to 8 machines, where input of 1.12 billion triples, using 8 machines,

led to the derivation of 1.58 billion triples in 3.35 hours.

3.3 Description Logic Reasoning

Logic: ALC. Deslog [49] is a parallel tableau-based description logic reasoner for the

description logic ALC, designed for thread-level parallelism. It is utilizing the inherent

non-determinism of description logic tableaux in order to implement parallel TBox classi-

�cation on a shared-memory setting. Such non-determinism comes from disjunctions and

quali�ed cardinality restrictions. The system consists of several components such as the

pre-processing layer that translates given OWL ontology into the internal representation,

the reasoning engine layer that performs description logic reasoning by providing ser-

vices such as consistency checking, concept satis�ability, subsumption and classi�cation,

the post-processing layer that processes results and the infrastructure layer that supports

auxiliary operations.

Authors point out the fact that naive tree structures are not well placed for a shared-

memory setting and introduce optimized data structures. Thus, a list-based structure

called stage and a queue-based structure called stage pool are used for the storage of each

non-deterministic branch and all branches in the tableau, respectively. Several optimiza-

tion techniques, such as lazy-unfolding, axiom absorption, semantic branching, dependency

directed backtracking and model merging, were studied for their suitability for a parallel

implementation and were incorporated into the system. In addition, the introduced over-

head due to thread management is minimized by using e�cient data structures. Such data

structures allow parallel reasoning while minimizing the frequency of simultaneous access

to shared data by multiple threads.

Experimental results indicate good scalability properties for TBox classi�cation based

on a multi-threading shared-memory model that is implemented in Java on a 16-core

computer. Various datasets, of relatively small size, were considered with the number of

axioms in each tested dataset ranging from 45 to 1140. It is shown that for small inputs

38 CHAPTER 3. RELATED WORK

the overhead coming from parallelization due to threads manipulation and access to shared

data a�ects signi�cantly the performance. However, for larger inputs parallelization shows

linear performance for up to 16 threads, while authors stress the fact that reasoning per-

formance remains stable for up to 32 threads, indicating that the system could potentially

utilize a larger hardware setting. Opposite to the results for the shared-memory setting,

the system did not perform well on a distributed setting as the maximum speedup was

below 3 even when 16 processors were assigned on a high-performance computing cluster.

Logic: SHN . UUPR (Ulm University Parallel Reasoner) [50] parallelized a sequential

algorithm for SHN ABoxes. It is implemented in C++ and designed for shared memory

settings. The reasoner parallelized the tableau procedure itself, by utilizing concurrent

computation of the nondeterministic choices. UUPR supports nondeterministic rules such

as the disjunction rule and the number restriction merge rule. Multiple alternatives can

be generated by such rules and thus processed in parallel. The system utilizes a work pool

design in which a prede�ned number of threads is used for processing available branches.

Classi�cation process is reduced into a unsatis�ability problem, where the process stops

either when a complete tableau is found or when every possible alternative has been

evaluated.

The need for a depth-�rst evaluation order is discussed since it favors ABoxes that

may lead faster to a complete tableau. A priority queue is used, with each application

of a nondeterministic rule creating ABoxes of higher priority. Opposite to the priority

queue, it is mentioned that queue and stack data structures would not enforce a depth-

�rst evaluation order. Concepts and expressions are represented internally as an array of

integer arrays in order to minimize required memory. In addition, various optimizations

such as naming, lazy unfolding, lexical normalization, semantic branching, simpli�cation

and caching were incorporated into the system, providing higher e�ciency.

Experimental evaluation was performed on several hardware settings showing good

speedups for systems consisting of up to 4 cores. On the other hand, results on a server

with 24 cores did not provide signi�cantly higher speedups possibly because the server was

not used exclusively for the experiments and due to the overhead coming from frequent

access to the work pool. Testing maximum cardinality restriction generated high number

of alternatives, thus revealing that the overhead coming from the synchronization of the

used work pool may constitute a bottleneck. Similar speedup patterns were observed for

the case of a realistic ontology. The evaluation of disjunction of eight concepts showed

step-wise speedups for increasing number of workers. Finally, the reasoner is reported to

perform better when all optimizations are enabled.

Logic: ALCNHR+. Liebig et al. [51] propose an approach, based on their previ-

ous work of Liebig et al. [50], for parallelizing a sequential algorithm for ALCNHR+

ABoxes, while extending it for SHIQ. It has been implemented in C++, initially de-

signed for shared memory settings but with the ability to run on a distributed setting as

well. The reasoning task is reduced to a corresponding ABox unsatis�ability problem for

3.3. DESCRIPTION LOGIC REASONING 39

which authors have implemented a tableau prover. Two main approaches for reasoning

parallelization are discussed, namely parallelization on either reasoner level or proof level.

Reasoner level refers to parallelization by running simultaneously several instances of a

given reasoner. However, it is ine�cient as such instances do not exchange information

e�ectively, leading to repetitive computations. On the other hand, parallelizing on proof

level allows to evaluate independent proof steps concurrently, thus allowing to utilize all

available processing cores while increasing the possibility of a good guess that will lead to

a solution. The system follows the proof level parallelization approach.

Three rules are reported to have inherent nondeterminism, namely disjunction rule,

number restriction merge rule and choose rule. Such rules generate alternatives that may

be evaluated in parallel. As in work of Liebig et al. [50], reasoner relies on a work pool

design, where each work unit de�nes a �xed number of work executors. Each work unit

contains a work controller that controls the work queue and communicates with the work

executors within the work unit. Each work executor performs reasoning over an alternative

in the (work) queue, generating new alternatives, if necessary, and reporting whether a

solution was found or all available alternatives have been exhausted (where no satis�able

alternative was found). The work queue is organized using a custom priority queue, namely

alternatives of priority n generate alternatives of priority n+ 1, thus promoting a depth-

�rst search in order to speed up the reasoning process. The system allows reasoning over

a distributed setting as well, with work distributor being a coordinator of several work

units that balances the work load in the cluster. Experimental evaluation was deferred to

future work.

Logic: ALCHI. MapResolve [52] studies the challenges of scalable reasoning that is

based on the MapReduce framework. The main challenge lies on the fact that in order to

compute the closure, a sequence of MapReduce jobs is required as newly derived knowledge

must be fed back to the system for further derivations, thus leading to repeated inferences.

This issue is identi�ed in existing approaches, for RDFS and OWL Horst materialization,

and EL+classi�cation, which are based on MapReduce. Authors present a distributed

resolution method for checking the satis�ability of ALCHI, while the same method can

be applied to �rst order theories as well. The provided naive approach for distributed

description logic resolution points out the problem of repeated inferences.

To overcome this challenge, authors follow a method where separate sets are maintained

for clauses that have already been evaluated and clauses that still require rule application.

At each MapReduce job, usable clauses are allocated during the map phase, while already

evaluated clauses are loaded to each reducer for resolution. The reducer also deletes

duplicate clauses and clauses that are subsumed by other clauses so as to further improve

e�ciency. At the end of the resolution process, both sets are stored for the next job.

This process is repeated until the whole closure is computed. In addition, authors deal

with load balancing by distributing the set of usable clauses evenly among reducers. The

number of usable clauses that are assigned to each reducer is adjusted after each job by

40 CHAPTER 3. RELATED WORK

taking into account the predicted and the actual runtime. No experimental evaluation

was provided, thus it is unclear whether the minimization of repeated inferences is able to

amortize the cost of storing and parsing the sets of clauses in every job.

Logic: ELH⊥,R+. Ren et al. [53] extend an existing parallel TBox reasoning for

ELHR+, to parallel ABox reasoning algorithm for ELH⊥,R+. The proposed algorithm

supports the bottom concept (⊥) in order to model disjointness and inconsistency. Several
optimizations are introduced in order to increase the e�ciency of parallel ABox reasoning.

In particular, authors study the set of completion rules and show that reasoning process

can be separated into three steps, namely reasoning over: (a) TBox completion rules, (b)

relation completion rules, and (c) type completion rules. In this way, each step provides

a pre-computed subset of conclusions to the next step, thus minimizing overheads and

allowing for highly e�cient reasoning at each step.

A parallel algorithm for saturation of axioms under the given inference rules is pre-

sented. Initially, a set of axioms is given as input, with each axiom being processed, in

parallel, thus initializing and activating the corresponding context queue, where a context

is a common concept for a given rule. Each active context is processed, in parallel, ap-

plying rules by using its corresponding axioms. The reasoning process is completed when

all active contexts have been processed. Experimental evaluation shows that the proposed

algorithm has the capacity to compute all ABox entailments for an ontology containing

1 million individuals and 9 million axioms in approximately 3 minutes.

Logic: DL-LiteR. Fokoue et al. [54] present an approach for querying over DL-LiteR

ontologies that are stored over multiple data sources, by applying distributed summariza-

tion. More speci�cally, authors point out that existing work on ABox summarization could

not be applied in a decentralized setting as it requires complete explicit information for

each individual. Thus, a distributed summarization approach is proposed, which is based

on two steps. First, the construction of each summary is performed locally, and then, the

generated local summaries are merged in a central location.

Distributed summarization is in line with how the Linked Open Data is organized.

Local sources can decide on the type of the hash function that will be applied to individuals

in the knowledge base, and thus, de�ne the number of generated buckets, which allows

them to strike a balance between the precision and the size of the summary. In addition,

a normalization mechanism is required in order to allow local summaries to be merged in

a balanced fashion. Finally, the hash value of a given individual should be assigned to the

most authorative source. The aforementioned requirements can be modeled for Linked

Open Data by handling carefully the URI of each individual.

Local summaries enabled optimizations such as query pruning, where an empty local

summary can be used in order to ensure an empty result set for the given query, and

e�cient source selection where only relevant sources are evaluated over the given query.

Distributed summarization can eliminate distributed joins if all required terms for the join

operation belong to the same source or matching terms, for a given join, are collocated on

3.4. CONCLUSION 41

the same source. Experimental evaluation shows that the summary of a given data source

can range from 0.037% to 9.2%, depending on the number of similar concepts in each

source, while the cost of generating the distributed summary is amortized by the e�cient

query execution for the majority of the tested datasets and engines.

Logic: SHOIN (OWL DL). Du et al. [2] proposed a decomposition-based approach

that allows the optimization of conjunctive query answering in Description Logic SHOIN
(also known as OWL DL). The underlying idea is based on an initial computation of

explicit answers, namely answers/facts that satisfy the given query. Moreover, candidate

answers and target ontologies are identi�ed so as to check, using existing reasoners, only

ontologies that could lead to answers to the given query (by checking whether candidate

answers are indeed answers to the given query). Authors point out that while target

ontologies do not have common ABox axioms, they may have common TBox axioms.

DecomBaR (Decomposition-BasedReasoner) implements the proposed method show-

ing advantages over existing reasoners. Speci�cally, experimental evaluation showed that

DecomBaR performs well when it does not generate any candidate answers since it can

compute answers by accessing its database through SQL queries. In addition, authors

mention the scalability advantages of DecomBaR over existing reasoners due to its design,

which is based on SQL queries when no candidate answers are generated, and on evenly

distributed ABox axioms across extracted ontologies, for queries that generate candidate

answers. Finally, DecomBaR is shown to be more scalable for increasing TBox complexity

over existing reasoners, while having been evaluated over ontologies containing millions of

ABox axioms.

3.4 Conclusion

Traditionally, the area of knowledge representation has focused on complex knowledge

structures and reasoning methods for processing these structures. The new arising chal-

lenge is to study how reasoning can process such interesting knowledge structures in con-

junction with huge data sets. To fully exploit the immense value of such datasets and

their interconnections, one should be able to reason over them using rule sets that would

allow the aggregation, visualization, understanding and exploitation of the raw data that

comprise the databases. Such reasoning is based on rules which capture the inference

semantics of the underlying knowledge representation formalism, but also rules which en-

code commonsense, practical knowledge that humans possess and would allow the system

to automatically reach useful conclusions based on the provided data and infer new and

useful knowledge based on the data.

In this work, we consider nonmonotonic rule sets [55, 56]. Such rule sets provide

additional bene�ts because they are more suitable for encoding commonsense knowledge

and reasoning. In addition, nonmonotonic rules avoid triviality of inference, which could

easily occur when low-quality raw data is fed to the system; the latter is common in

42 CHAPTER 3. RELATED WORK

this setting, given the interconnection of data from di�erent sources, over which the data

engineer has no control.

The main challenge rising in such a setting is the feasibility of reasoning over such

large volumes of data. One of the most promising methods to address this problem is by

using massively parallel reasoning processes that would handle reasoning by using several

computers in the cloud, assigning each of them a part of the parallel computation.

As discussed above, there has been signi�cant progress in parallel reasoning, scaling

reasoning up to 100 billion triples [47]. Nevertheless, current approaches have been re-

stricted to monotonic reasoning, namely RDFS and OWL horst, or have not been evaluated

for scalability [57]. However, in many application scenarios, one needs to deal with poor

quality data (e.g., involving inconsistency or incompleteness), which could easily lead to

reasoning triviality when considering rules based on monotonic formalisms; this problem

can be managed with nonmonotonic rules and nonmonotonic reasoning.

Chapter 4

Defeasible Logic

In this chapter, an approach for single variable rule sets is proposed, followed by an ex-

tension where strati�ed rule sets of arbitrary arity are considered. Finally, the challenges

of the general approach for non-strati�ed rule sets are discussed, while experimental eval-

uation shows the feasibility of the proposed approach.

4.1 Single Variable Rule Sets

Single variable rule sets refer to rule sets where each rule contains only one variable. As

a running example, let us consider the following rule set:

r1 : bird(X) → animal(X)

r2 : bird(X) ⇒ �ies(X)

r3 : brokenWing(X) ⇒ ¬�ies(X)
r3 > r2

In this simple example we try to decide whether something (X) is an animal and whether

it is �ying or not. Given the facts bird(eagle) and brokenWing(eagle), as well as the

superiority relation (r3 > r2), we conclude that animal(eagle) and ¬�ies(eagle). Note that
each rule has only one variable (X), while an additional variable (say Y) in any rule would

change the classi�cation of the rule set from single to multiple variable (see Section 4.2).

Taking into account the fact that every rule has only one variable, we can group

together facts with the same argument value (using Map) and perform reasoning for each

value separately (using Reduce). Pseudo-code for Map and Reduce functions is depicted

in Figure 4.1. Equivalently, we can view this process as performing reasoning on the rule

set:

43

44 CHAPTER 4. DEFEASIBLE LOGIC

map(Long key, String value):
// key : position in document (irrelevant)
// value: document line (a fact)
String argument = getArgument(value);
String predicate = getPredicate(value);
emit(argument, predicate);

reduce(String key, Iterator values):
// key : argument
// values: list of predicates (facts)
Set facts = ∅;
for all value ∈ values do

facts.add(value);
end for
Reasoner reasoner = Reasoner.getCopy();
reasoner.applyReasoning(facts);
emit(key, reasoner.getResults());

Figure 4.1: Single variable inference

r1 : bird → animal

r2 : bird ⇒ �ies

r3 : brokenWing ⇒ ¬�ies
r3 > r2

for each unique argument value.

As far as MapReduce is concerned,Map function reads facts of the form predicate(argument),

extracts the argument (argument = getArgument(value)) and predicate (predicate = get-

Predicate(value)) from each fact (value), and emits pairs of the form<argument, predicate>.

Given the facts: bird(eagle), bird(owl), bird(pigeon), brokenWing(eagle) and broken-

Wing(owl), Map function will emit the following pairs :

<eagle, bird>

<owl, bird>

<pigeon, bird>

<eagle, brokenWing>

<owl, brokenWing>

Then, reasoning is performed for each argument value (e.g., eagle, pigeon etc) sepa-

rately, and in isolation. Therefore, the MapReduce framework will group/sort the pairs

emitted by Map, resulting in the following pairs:

<eagle, <bird, brokenWing>>

<owl, <bird, brokenWing>>

<pigeon, <bird>>

4.1. SINGLE VARIABLE RULE SETS 45

Reasoning is then performed during the reduce phase for each argument value in iso-

lation, using the second rule set presented earlier (propositional form). For each Reduce

function, a copy of the reasoner (described later on) gets as input a list of predicates (ex-

tracted from values) and performs reasoning deriving and emitting new data. When all

reduces are completed, the whole process is completed guaranteeing that every possible

new data is inferred.

Returning to our example, the bullets below show the reasoning tasks that need to be

performed. Note that each of these reasoning tasks can be performed in parallel.

• eagle having bird and brokenWing as facts, deriving animal(eagle) and ¬�ies(eagle)

• owl having bird and brokenWing as facts, deriving animal(owl) and ¬�ies(owl)

• pigeon having bird as fact, deriving animal(pigeon) and �ies(pigeon).

For the purpose of conclusion derivation, we implemented a reasoner based on a vari-

ation of algorithm for propositional reasoning, described by Maher [58]. Prior to any

Reduce function is applied, given rule set must be parsed initializing indexes and data

structures required for reasoning. Although implementation details of the reasoner are

out of the scope of this work, we will explain all the functions used in Figure 4.1.

Each Reduce function has to perform, in parallel, reasoning on the initial state of

the reasoner. Thus, we use Reasoner.getCopy(), which provides a copy of the initialized

reasoner. Subsequently, reasoner.applyReasoning(facts) performs reasoning on each copy,

receiving as input the corresponding list of predicates (facts). Derived data are stored

internally by each copy of the reasoner. The extraction of the derived data is performed

by the reasoner.getResults().

Soundness and Completeness. The algorithm for single variable rule sets is sound

and complete since it performs reasoning using every given fact (Map). This data parti-

tioning (group/sort) does not alter resulting conclusions since facts with di�erent argument

values cannot produce con�icting literals and cannot be combined to reach new conclu-

sions. Moreover, the reasoner is designed to derive all possible conclusions (further details

can be found in the work of Maher [58]) for each unique value (Reduce). Thus, maximal

and valid data derivation is assured.

Computational complexity. Complexity analysis is based on the number of facts

given as input (say n), with the worst case being where each fact belongs to a di�erent

group, namely has a unique value for its argument. During Map each fact is transformed

into a new key/value pair, thus Map has complexity O(n). Group/sort phase is based on

quicksort algorithm, thus having a complexity ofO(n log n). Reduce is deriving conclusions

for all predicates in the given rule set (say k), with defeasible logic algorithm having linear

complexity [58], thus Reduce has complexity O(k∗n), where k is signi�cantly smaller than

n and could be considered as a constant. Overall the complexity for single variable rule

sets is O(n log n).

46 CHAPTER 4. DEFEASIBLE LOGIC

Figure 4.2: Strati�ed rule set. Predicates are assigned to ranks.

Figure 4.3: Non-strati�ed rule set. Predicates cannot be assigned to ranks.

Note that single variable rule sets are a special case of multi variable rule sets, com-

ing with a certain advantage. Since each rule has only one variable, both premises and

conclusions for a given (unique) argument value will be collocated at the same processing

node (reducer). Thus, for single variable rule sets �global� �xpoint is reached within one

MapReduce job (where �local� �xpoint refers to the derivation of every possible conclusion,

for each unique value, by a reducer).

4.2 Multi Variable Rule Sets

Rule sets containing rules with an arbitrary number of variables are called multi variable

rule sets. In this section, we �rst consider a restricted form of multi variable rule sets

namely strati�ed rule sets, for which we provide a parallel solution based on the MapReduce

framework, and then outline arising challenges for non-strati�ed rule sets.

According to the De�nition 2.1.1, for a strati�ed rule set, predicates that are not sup-

ported by any rule are assigned rank 0. Subsequently, predicates depending on predicates

of rank 0, are assigned rank 1. In general, predicates depending on predicates of rank

up to k − 1, are assigned rank k. Thus, strati�cation is achieved when all predicates are

assigned a rank, provided that complementary predicates are assigned to equal ranks. For

non-strati�ed rule sets, such strati�cation process is inapplicable.

As an example of a strati�ed rule set, consider the following:

4.2. MULTI VARIABLE RULE SETS 47

r1: R(X,Z), S(Z,Y) ⇒ Q(X,Y).

r2: T(X,Z), U(Z,Y) ⇒ ¬Q(X,Y).
r3: Q(X,Z), V(Z,Y) ⇒ W(X,Y).

r1 > r2.

Strati�ed theories are theories based on strati�ed rule sets. Strati�ed theories are

often called decisive in the literature [59]. Figure 4.2 depicts how predicates are assigned

to ranks for the above-mentioned strati�ed rule set, while Figure 4.3 depicts predicate

dependencies of a non-strati�ed rule set.

Proposition 1 [59] If D is strati�ed, then for each literal p:

(a) either D ` +∆p or D ` −∆p

(b) either D ` +∂p or D ` −∂p

Thus, there are three possible states for each literal p in a strati�ed theory: (a) +∆p

and +∂p, (b) −∆p and +∂p and (c) −∆p and −∂p.
Reasoning is based on facts. According to defeasible logic algorithm, facts are +∆ and

every literal that is +∆, is +∂ as well. Having +∆ and +∂ in our initial knowledge base,

it is convenient to store and perform reasoning only for +∆ and +∂ predicates.

This representation of knowledge allows us to reason and store provability information

regarding various facts more e�ciently. In particular, if a literal is not found as a +∆

(correspondingly, +∂) then it is −∆ (correspondingly, −∂). In addition, strati�ed defea-

sible theories have the property that if we have computed all the +∆ and +∂ conclusions

up to rank k − 1, and a rule whose head is assigned rank k and body containing literals

of rank up to k − 1 does not currently �re, then this rule will also be inapplicable in sub-

sequent passes; this provides a well-de�ned reasoning sequence, namely considering rules

from lower to higher ranks.

4.2.1 Reasoning Overview

In this subsection we provide an overview of the defeasible reasoning process for the case

of strati�ed multi variable rule sets. Pseudo-code depicting the overall reasoning process

is provided in Figure 4.4.

Defeasible reasoning process requires as input a strati�ed rule set and a set of facts

(reasoningProcess(rules, facts)). Our �rst step is to process the given rule set (applyStrat-

i�cation(rules)) in order to retract the corresponding ranks. As ranks, we refer to a struc-

ture that contains the corresponding predicates for each rank as well as the given rules for

each predicate.

During reasoning we will use the representation (<fact, (+∆,+∂)>) to store our in-

ferred facts. Thus, we begin by transforming the given facts, in a single MapReduce pass,

into (<fact, (+∆,+∂)>).

48 CHAPTER 4. DEFEASIBLE LOGIC

reasoningProcess(rules, facts):
// rules: strati�ed rule set
// facts: set of facts
ranks = applyStrati�cation(rules);
KB = initialPass(facts);
for i=1; i<=ranks.getMax(); i++ do

tmp = pass_#1(KB, ranks.get(i));
new = pass_#2(KB, tmp, ranks.get(i));
KB = KB ∪ new ;

end for

Figure 4.4: Overall reasoning process

Now let us consider for example the facts R(a,b), S(b,b), T(a,e), U(e,b) and V(b,c).

The initial pass (initialPass(facts)) on these facts will create the following output:

<R(a,b), (+∆,+∂)>

<S(b,b), (+∆,+∂)>

<T(a,e), (+∆,+∂)>

<U(e,b), (+∆,+∂)>

<V(b,c), (+∆,+∂)>

resulting in our initial knowledge base (KB).

No reasoning needs to be performed for the lowest rank (rank 0) since these predicates

(R,S,T,U,V) do not belong to the head of any rule. Considering the de�nition of +∂,

−∂, defeasible logic introduces uncertainty regarding inference, since certain facts/rules

may �block� the �ring of other rules. This can be prevented if we reason for each rank

separately, starting from rank 1 and continuing to higher ranks. Thus, for a hierarchy of

N ranks (ranks.getMax()) we have to perform N −1 times the procedure described below.

A key di�erence, compared to single variable rule sets, is that applicable rules for a

given literal (or its complement) may be computed, concurrently, by di�erent nodes in the

cluster, while derivation requires all the available information, for a given literal (and its

complement), to be collocated on the same node. Thus, in order to perform defeasible

reasoning we have to break up the process and run two passes for each rank.

The �rst pass (pass_#1(KB, ranks.get(i))) computes all applicable rules for rank i,

based on our current knowledge base (KB), and the corresponding predicates and rules for

rank i (ranks.get(i), for details see Section 4.2.2). The second pass (pass_#2(KB, tmp,

ranks.get(i))) performs the actual reasoning, based on our current knowledge base (KB),

the applicable rules for rank i (tmp), and the corresponding predicates and rules for rank

i (ranks.get(i)), computing for each literal whether it is de�nitely or defeasibly provable

(for details see Sections 4.2.3).

Let us illustrate why reasoning has to be performed for each rank separately. Consider

4.2. MULTI VARIABLE RULE SETS 49

a scenario where we perform defeasible reasoning, on the aforementioned rule set, for all

ranks simultaneously. Now, we may no longer claim that if a rule supporting W(X,Y) is

not applicable then it will not be applicable in subsequent passes. Indeed, reasoning about

W(X,Y) will �block� until a �nal conclusion on Q(X,Y) and ¬Q(X,Y) is derived. Thus,

defeasible reasoning process will be applied following an implicit strati�cation. By applying

strati�cation explicitly prior to reasoning, we minimize overheads as every possible �red

rule or derived conclusion is calculated once.

4.2.2 Pass #1: Fired Rules Calculation

During the �rst pass, we calculate all applicable rules for a given rank, based on techniques

used for basic and multi-way joins as described in the work of Afrati et al. [60]. Here we

elaborate our approach for basic joins and explain at the end of the subsection how it can

be generalized for multi-way joins.

Basic joins are performed on common argument values. Consider the following generic

rule (whose calculation follows the pseudo-code in Figure 4.5):

r : A(X,Z), B(Z,Y) {→,⇒, } [¬]P(X,Y).

Let us elaborate on the used notation in Figure 4.5. In case the variable value contains

a literal of the relation A(X,Z), then value.pred refers to the predicate A, value.X refers

to the argument X, value.Z refers to the argument Z, and value.tag refers to a subset of

{+∆,−∆,+∂,−∂} that de�nes our knowledge about the provability of the literal. For a

given rule r, r.arrow refers to the arrow of the rule (→,⇒,), which de�nes the type of the

rule (strict, defeasible, defeater). Considering the conclusion (see Reduce function), [¬]
denotes that �¬� is optional, allowing to represent and derive both positive and negative

literals.

The key observation for a basic join is that relations A and B can be joined on their

common argument Z. Based on this observation, during Map operation we emit pairs of

the form <Z,(A,X)> for predicate A and <Z,(B,Y)> for predicate B. The idea is to join

A(X,Z) and B(Z,Y) only for literals that have the same value on argument Z. During

Reduce operation we combine A(X,Z) and B(Z,Y) producing P(X,Y).

Such joining process is tailored for monotonic logics where conclusion derivation is

performed immediately. However, in order to support reasoning under defeasible logic

this approach must be extended. We must record all �red rules prior to any conclusion

inference since this information is required by the defeasible logic derivation.

During Map operation we must additionally pass the value.tag, while during Reduce

operation after going through all values (�rst for loop), we match premises (second for

loop) and emit both the consequent (P(a.X,b.Y)) and the knowledge about the �red rule.

For a strict rule (r_isStrict = true) with all premises being de�nitely provable (+∆a and

+∆b) our derived knowledge is ([¬],+∆,+∂,r), while otherwise our derived knowledge is

50 CHAPTER 4. DEFEASIBLE LOGIC

map(Long key, String value):
// key : position in document (irrelevant)
// value: document line (derived conclusion)
if value.pred == �A� then

emit(value.Z,{value.pred,value.X,value.tag});
else if value.pred == �B� then

emit(value.Z,{value.pred,value.Y,value.tag});
end if

reduce(String key, Iterator values):
// key : matching argument
// values: literals for matching
List a_List = ∅, b_List = ∅;
bool r_isStrict = (r.arrrow == �→�)? true : false;
for all value ∈ values do

if value.pred == �A� then
a_List.add({value.X,value.tag});

else if value.pred == �B� then
b_List.add({value.Y,value.tag});

end if
end for
for all a ∈ a_List do

for all b ∈ b_List do
if r_isStrict and +∆a and +∆b then

emit(�P(a.X,b.Y)�,�[¬],+∆,+∂,r�);
else

emit(�P(a.X,b.Y)�,�[¬],+∂,r�);
end if

end for
end for

Figure 4.5: Fired rules calculation given the generic rule
r : A(X,Z), B(Z,Y) {→,⇒, } [¬]P(X,Y).

4.2. MULTI VARIABLE RULE SETS 51

([¬],+∂,r). Setting [¬] in the knowledge, instead of the consequent, is a minor optimiza-

tion facilitating facts processing during step #2 (see Section 4.2.3), as derivation process

requires both p and ¬p to be sent to the same node.

Now consider again the strati�ed rule set described in the beginning of the section

along with the produced output from the initial pass. As a running example for basic

join, we will perform reasoning for rank 1, using as premises all the available information

for predicates of rank 0, and computing rules r1 and r2. The Map function will emit the

following pairs (literals with predicate V are ignored as they do not belong to a rule with

consequent of rank 1):

<b, (R,a,+∆,+∂)>

<b, (S,b,+∆,+∂)>

<e, (T,a,+∆,+∂)>

<e, (U,b,+∆,+∂)>

The MapReduce framework will perform grouping/sorting resulting in the following

intermediate pairs:

<b, <(R,a,+∆,+∂), (S,b,+∆,+∂)>>

<e, <(T,a,+∆,+∂), (U,b,+∆,+∂)>>

During the reduce phase we combine premises in order to emit the �red rule consequent

and the corresponding knowledge. Thus, the reducer with key:

b will emit <Q(a,b), (+∂,r1)>

e will emit <Q(a,b), (¬,+∂,r2)>

As we see here, Q(a,b) and ¬Q(a,b) are computed by di�erent reducers which do not

communicate with each other. According to the MapReduce framework, communica-

tion between nodes during the map and reduce phase is prohibited. Thus, none of the

two reducers have all the available information in order to perform defeasible reasoning.

Therefore, we need a second pass for the reasoning.

In case of multi-way joins, we gradually compute the �red rule by applying our approach

for basic joins multiple times. Consider the following rule:

r′ : A(X,Z), B(Z,W), C(W,Y) → ¬P(X,Y).

and conclusions for predicates A, B and C

<A(1,2), (+∆,+∂)>

<B(2,3), (+∆,+∂)>

<C(3,4), (+∂)>

As r′ is a strict rule, we must keep track of whether all premises are +∆ or not. In order

to compute ¬P(X,Y), we �rst join A(X,Z) and B(Z,W) on Z, producing a temporary

literal (say AB(X,W)) deriving <AB(1,3), (+∆,+∂,r′)>). Note that, thus far, all premises

52 CHAPTER 4. DEFEASIBLE LOGIC

map(Long key, String value):
// key : position in document (irrelevant)
// value: inferred conclusion/�red rule
String literal = getLiteral(value);
String knowledge = getKnowledge(value);
if literal.pred ∈ currentRank then

emit(literal, knowledge);
end if

reduce(String key, Iterator values):
// key : literal
// values: inferred knowledge
List knowledge = ∅;
for all value ∈ values do

knowledge.add(value);
end for
for all p in {key, ¬key} do

if +∆p ∈ knowledge then
continue;

else if ∃k ∈ knowledge such that
k.r.arrow == �→� and
k.tag == +∆ then

emit(p, �+∆,+∂�);
else if reasoning(p, knowledge) == +∂ then

emit(p, �+∂�);
end if

end for

Figure 4.6: Defeasible reasoning

(A(1,2) and B(2,3)) are +∆ and AB(X,W) is a positive literal. Subsequently, we join

AB(X,W) and C(W,Y) on W, computing the �red rule (<P(1,4), (¬,+∂,r′)>), adding
�¬� to the knowledge as ¬P(X,Y) is a negative literal, and adding only +∂ as C(3,4) is

a +∂ premise (not all premises are de�nitely provable). More optimized applications of

multi-way joins, from a computational point of view, can be found in the work of Afrati et

al. [60], although requiring the extension from monotonic to defeasible logic as discussed

above.

4.2.3 Pass #2: Defeasible Reasoning

We proceed with the second pass. Once �red rules are calculated, a second pass performs

reasoning for each literal separately. The pseudo-code for Map and Reduce functions, for

strati�ed rule sets, is depicted in Figure 4.6.

After both initial pass and �red rules calculation (pass #1), our knowledge base will

4.2. MULTI VARIABLE RULE SETS 53

consist of:

<R(a,b), (+∆,+∂)>

<S(b,b), (+∆,+∂)>

<T(a,e), (+∆,+∂)>

<U(e,b), (+∆,+∂)>

<V(b,c), (+∆,+∂)>

<Q(a,b), (+∂, r1)>

<Q(a,b), (¬,+∂, r2)>

During theMap operation we �rst extract from value the literal (getLiteral(value)) and

the knowledge about the literal (getKnowledge(value)). Subsequently, we check whether

the predicate of the extracted literal (literal.pred) belongs to the rank (currentRank) that

we currently perform reasoning for (literal.pred ∈ currentRank). Note that for each literal

p, both p and ¬p are sent to the same reducer, with �¬� in knowledge distinguishing p from
¬p. The Map function will emit the following pairs (recall that we perform reasoning for

rank 1):

<Q(a,b), (+∂, r1)>

<Q(a,b), (¬, +∂, r2)>

The MapReduce framework will perform grouping/sorting resulting in the following

intermediate pairs:

<Q(a,b), <(+∂, r1), (¬,+∂, r2)>>

During the reduce phase we traverse over values in order to update our knowledge

(knowledge.add(value)). Once knowledge contains all the available information, for the

given literal (key), we proceed with defeasible reasoning. Note that since key contains the

positive literal, we need to perform reasoning for both key and ¬key.
In case literal p is already contained in our knowledge base (+∆p ∈ knowledge), due

to the initial pass, we do not emit any output (continue) as doing so would produce

duplicates. Alternatively, we check whether there is an element k in knowledge (∃k ∈
knowledge) containing the information that a strict rule (k.r.arrow == �→�) �red with

all premises being de�nitely provable (k.tag == +∆). In this case, we emit that literal p

is de�nitely provable (emit(p, �+∆,+∂�)). Our �nal option is to establish whether literal

p is defeasibly provable, by performing defeasible reasoning (reasoning(p, knowledge) ==

+∂), and emit the corresponding conclusion (emit(p, �+∂�)). Thus, the reducer with key:

Q(a,b) will emit <Q(a,b), (+∂)>

Note that since ¬Q(a,b) is not defeasibly provable (−∂), it is not added to our knowledge

base.

54 CHAPTER 4. DEFEASIBLE LOGIC

4.2.4 Final Remarks

As we see, the approach for strati�ed multi variable rule sets turns out to be far more

di�cult, requiring multiple passes compared to the single-pass approach for single variable

rule sets. Moreover, the total number of MapReduce passes is independent of the size of

the given input, but, depends on the number of ranks, namely the structure of the given

strati�ed rule set. As mentioned in Section 4.2.1, performing reasoning for each rank

separately enforces explicitly the implicit strati�cation of the reasoning process, while

eventually, our knowledge base consists of +∆ and +∂ literals.

Soundness and Completeness. The proposed method for strati�ed multi variable

rule sets is sound and complete given that it fully complies with the defeasible logic prov-

ability. Indeed, strati�cation provides a well-de�ned reasoning sequence ensuring that

performing reasoning from lower to higher ranks, provided that the reasoning process at

each rank is sound and complete, leads to all derived conclusions being sound since rea-

soning for rank k is based on a sound and complete knowledge base for ranks up to k− 1,

and a complete derivation of all possible conclusions since we enforce explicitly the implicit

strati�cation of the reasoning process. At each rank, the �rst pass computes all applicable

rules as Map processes all required knowledge for rule application, group/sort phase redi-

rects knowledge (with no knowledge being lost), and Reduce computes all applicable rules

for each group of matching arguments. Note that multi-way joins follow the same princi-

ple. Subsequently, the second pass processes the available knowledge for all predicates of

rank k during Map, group/sort phase forms a group for each literal, while Reduce derives

any possible conclusion following the defeasible logic algorithm.

Computational complexity. Complexity analysis is based on the number of facts

given as input (say n), based on two rules (having conclusions p and ¬p) that are calculated
by applying a basic join, for a single rank, with the worst case being where all facts belong

to the same group, namely have the same value for the matching argument, but generate

di�erent conclusions, namely support di�erent literals. Note that here we provide the

intuition behind the calculation of computational analysis, while a generic formula that

could model any given rule set is out of the scope of this work. The �rst pass computes all

applicable rules as Map processes all required knowledge for rule application, thus Map

has complexity O(n). Group/sort phase is based on quicksort algorithm, thus having a

complexity of O(n log n). Reduce computes all applicable rules for each group of matching

arguments, while in the worst case applicable rules are computed over two lists of length

n/2 each, thus Reduce has complexity O(n2). Subsequently, the second pass processes

the available knowledge for each p and ¬p during Map, namely Map has complexity

O(n2). Group/sort phase is based on quicksort algorithm, thus having a complexity of

O(n2 log n2). Finally, Reduce derives any possible conclusion for any given pair p and ¬p,
where the application of the defeasible logic algorithm has linear complexity (say O(k),

with k being the number of rules for p and ¬p), thus Reduce has complexity of O(k ∗n2),

4.3. EVALUATION 55

where k is signi�cantly smaller than n, and could be considered as constant. Overall

complexity for the considered rule set is O(n2 log n2).

The situation for non-strati�ed multi variable rule sets is more complex. Reasoning

can be based on the algorithm described in the work of Maher et al. [11], performing

reasoning until no new conclusion is derived. The total number of required passes is

generally unpredictable, depending both on the given rule set and the data distribution.

However, since propositional defeasible logic has linear complexity [58], the worst case

analysis indicates that in order to derive N conclusions, O(N) MapReduce passes are

required, with each pass deriving a conclusion.

Maher et al. [11] proposed a sequential approach for in-memory defeasible reasoning.

Parallelizing this approach and handling large amounts of facts comes with certain chal-

lenges. There is a severe scalability challenge posed by −∆ and −∂ (speci�cally part 2.1)

provability. Consider the following rule:

r* : P(X,Z), Q(Z,Y) → P(X,Y).

In order to establish that P(a,b) is not de�nitely provable (−∆) we need to check every

possible instantiated rule, namely for every value of Z we need to check whether either

P(a,Z) or Q(Z,b) is −∆. For the aforementioned rule (r*), having N constants in the

given dataset we need to check N instantiated rules for every −∆ conclusion.

In general, for N constants in the given dataset and k variables, in a given rule, that

do not belong to the head of the rule (e.g., the variable Z in the aforementioned rule r*),

every −∆ conclusion will require Nk instantiated rules to be checked. By checking every

possible instantiated rule, we introduce a signi�cant overhead that can become prohibiting

even for relatively small datasets.

In addition to this scalability challenge, we need to consider how this reasoning ap-

proach a�ects parallelization. More speci�cally, an e�cient mechanism for such computa-

tion is yet to be de�ned since all the available information for each literal must be processed

by a single node (recall that nodes do not communicate with each other), causing either

main memory insu�ciency or skewed load balancing decreasing the parallelization. Paral-

lelization techniques such as OpenMP1 and Message Passing Interface (MPI) may provide

higher degree of �exibility than the MapReduce framework, thus allowing a more balanced

distribution of the workload.

4.3 Evaluation

In this Section, we are presenting the methodology, dataset and experimental results for

an implementation of our approach using Hadoop.

Methodology. Our evaluation is centered around scalability and the capacity of

our system to handle large datasets. In line with standard practice in the �eld of high-

1http://openmp.org/wp/

http://openmp.org/wp/

56 CHAPTER 4. DEFEASIBLE LOGIC

Table 4.1: Rule set

Rule ID Rule or Superiority relation

r1 FullProfessor(X) → Professor(X).

r2 AssociateProfessor(X) → Professor(X).

r3 AssistantProfessor(X) → Professor(X).

r4 publicationAuthor(P,X), publicationAuthor(P,Y)

→ commonPublication(X,Y).

r5 teacherOf(X,C), takesCourse(Y,C)

→ teaches(X,Y).

r6 teachingAssistantOf(X,C), takesCourse(Y,C)

→ teaches(X,Y).

r7 commonPublication(X,Y)

→ commonResearchInterests(X,Y).

r8 hasAdvisor(X,Z), hasAdvisor(Y,Z)

→ commonResearchInterests(X,Y).

r9 hasResearchInterest(X,Z), hasResearchInterest(Y,Z)

→ commonResearchInterests(X,Y).

r10 hasAdvisor(X,Y)

⇒ canRequestRecommendationLetter(X,Y).

r11 teaches(Y,X)

⇒ canRequestRecommendationLetter(X,Y).

r12 teaches(Y,X), PostgraduateStudent(Y)

⇒ ¬canRequestRecommendationLetter(X,Y).
r12 > r11.

r13 Professor(X), worksFor(X,D),

subOrganizationOf(D,U) ⇒ canBecomeDean(X,U).

r14 Professor(X), headOf(X,D),

subOrganizationOf(D,U) ⇒ ¬canBecomeDean(X,U).
r14 > r13.

r15 worksFor(X,D) ⇒ canBecomeHeadOf(X,D).

r16 worksFor(X,D), headOf(Z,D),

commonResearchInterests(X,Z)

⇒ ¬canBecomeHeadOf(X,D).
r16 > r15.

r17 teaches(Y,X) ⇒ suggestAdvisor(X,Y).

r18 teaches(Y,X), hasAdvisor(X,Z)

 ¬suggestAdvisor(X,Y).
r18 > r17.

4.3. EVALUATION 57

performance systems, we have de�ned scalability as the ability to process datasets of

increasing size in a proportional amount of time and the ability of our system to per-

form well as the computational resources increase. With regard to the former, we have

performed experiments using datasets of various sizes (yet similar characteristics).

With regard to scaling computational resources, it has been empirically observed that

the main inhibitor of parallel reasoning systems has been load-balancing between compute

nodes [33]. Thus, we have also focused our scalability evaluation on this aspect.

The communication model of Hadoop is not sensitive to the physical location of each

data partition. In our experiments, Map tasks only use local data (implying very low com-

munication costs) and Reduce operates using hash-partitioning to distribute data across

the cluster (resulting in very high communication costs regardless of the distribution of

data and cluster size). In this light, scalability problems do not arise by the number of

compute nodes, but by the unequal distribution of the workload in each reduce task. As

the number of compute nodes increases, this unequal distribution becomes visible and

hampers performance.

Platform. Our experiments were performed on a IBM x3850 server with 40 cores

and 750GB of RAM, connected to a XIV Storage Area Network (SAN), using a 10Gbps

storage switch. We have used IBM Hadoop Cluster v1.3, which is compatible with Hadoop

v0.20.2, along with an optimization to reduce Map task overhead, in line with the work of

Vernica et al. [61]. Although our experiments were run on a single machine, there was no

direct communication between processes and all data was transferred through persistent

storage. We have used a number of Mappers and Reducers equal to the number of cores

in the system (i.e. 40).

4.3.1 LUBM Use Case

Dataset. We have used the most popular benchmark for reasoning systems, LUBM2.

LUBM allows us to scale the size of the data to an arbitrary size while keeping the reasoning

complexity constant. For our experiments, we generated up to 8000 universities resulting

in approximately 1 billion triples.

Rule set. The logic of LUBM can be partially expressed using RDFS and OWL2-RL.

Nevertheless, neither of these logics are defeasible. Thus, to evaluate our system, we have

created the ruleset in Table 4.1. The following predicates, used in our rule set, are found

in LUBM ontology as owl classes: FullProfessor, AssociateProfessor, AssistantProfessor,

Professor and GraduateStudent (used as: PostgraduateStudent). The following predicates,

used in our rule set, are found in LUBM ontology as owl properties: publicationAuthor,

teacherOf, takesCourse, teachingAssistantOf, advisor (used as: hasAdvisor), researchIn-

terest (used as: hasResearchInterest), worksFor, subOrganizationOf and headOf. The

remaining predicates have been introduced in our rule set in order to facilitate defeasible

2http://swat.cse.lehigh.edu/projects/lubm/

http://swat.cse.lehigh.edu/projects/lubm/

58 CHAPTER 4. DEFEASIBLE LOGIC

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

Millions of facts

T
im

e
in

 m
in

ut
es

Job 1
Job 2
Job 3
Job 4
Job 5
Job 6
Job 7
Job 8
Linear

Figure 4.7: Runtime in minutes for various datasets, and projected linear scalability. Job
runtimes are stacked (i.e. runtime for Job 8 includes the runtimes for Jobs 1-7).

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

Job ID

T
im

e
in

 s
ec

on
ds

min
average
max

Figure 4.8: Minimum, average and maximum reduce task runtime for each job with 40
reduce tasks.

reasoning.

MapReduce jobs description. We need 8 jobs in order to perform reasoning on

the above rule set. The �rst job is the initial pass described in Section 4.2.1 (which we

also use to compute rules r1-r3). For the rest of the jobs, we �rst compute �red rules and

then perform reasoning for each stratum separately. The second job computes rules r4-r6.

During the third job we perform duplicate elimination, since r4-r6 are strict rules. We

compute rules r7-r14 during the fourth job while reasoning on them, is performed during

the �fth job. Jobs six and seven compute rules r15-r18. Finally, during the eighth job we

perform reasoning on r15-r18, �nishing the whole procedure.

Results. Figure 4.7 shows the runtimes of our system for varying input sizes. We make

4.3. EVALUATION 59

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Job ID

T
im

e
in

 s
ec

on
ds

min
average
max

Figure 4.9: Minimum, average and maximum reduce task runtime for each job with 400
reduce tasks.

the following observations: (a) even for a single node, our system is able to handle very

large datasets, easily scaling to 1 billion triples. (b) The scaling properties with regard

to dataset size are excellent: in fact, as the size of the input increases, the throughput of

our system increases. For example, while our system can process a dataset of 125 million

triples at a throughput of 27Ktps, for 1 billion triples, the throughput becomes 63Ktps.

This is attributed to the fact that job startup costs are amortized over the longer runtime

of the bigger datasets.

The above show that our system is indeed capable of achieving high performance and

scales very well with the size of the input. Nevertheless, to further investigate how our

system would perform when the data size precludes the use of a single machine, it is critical

to examine the load-balancing properties of our algorithm.

As previously described, in typical MapReduce applications, load-balancing problems

arise during the reduce phase. Namely, it is possible that the partitions of the data

processed in a single reduce task vary widely in terms of compute time required. This is a

potential scalability bottleneck. To test our system for such issues, we have launched an

experiment where we have increased the number of reduce tasks to 400. We can expect

that, if the load balance for 400 reduce tasks is relatively uniform, our system is able to

scale at least to that size.

Figures 4.8 and 4.9 show the load balance between di�erent reduce tasks, for 1 billion

triples and 40 (Figure 4.8) or 400 (Figure 4.9) reduce tasks. In principle, an application

performs badly when a single task dominates the runtime, since all other tasks would

need to wait for it to �nish. In our experiments, it is evident that no such task exists.

In addition, one may note that the system is actually faster with 400 reduce tasks. This

is attributed both to the fact that each core in our platform can process two threads

in parallel, and to implementation aspects of Hadoop that result in tasks, processing

60 CHAPTER 4. DEFEASIBLE LOGIC

approximately 1GB, demonstrating higher throughput than larger tasks.

Although a direct comparison is not meaningful, the throughput of our system is in

line with results obtained when doing monotonic reasoning using state of the art RDF

stores and inference engine. For example, OWLIM claims a 14.4-hour loading time for the

same dataset when doing OWL horst inference 3. WebPIE [47], which is also based on

MapReduce, presents an OWL-horst inference time of 35 minutes, albeit on 64 lower-spec

nodes and requiring an additional dictionary encoding step.

Given the signi�cant overhead of nonmonotonic reasoning, and in particular, the fact

that inferences can not be drawn directly, this result is counter-intuitive. The key to the

favorable performance of our approach is that the �depth� of the reasoning is �xed, on a

per rule set basis. The immediate consequence is that the number of MapReduce jobs,

which bear signi�cant startup costs, is also �xed. In other words, the �predictable� nature

of strati�ed logics allows us to have less complicated relationships between facts in the

system.

Finally, we should take into consideration the fact that LUBM produces fairly uniform

data. Although there is signi�cant skew in LUBM (e.g. in the frequency of terms such as

rdf:type), the rule set that we have used in the evaluation does not perform joins on such

highly skewed terms. However, our previous work [13] show that our approach can cope

with highly skewed data, which follow a zipf distribution.

3http://www.ontotext.com/owlim/benchmark-results/lubm

Chapter 5

Strati�ed Semantics of Logic

Programs

In this chapter, a restricted version of the well-founded semantics is studied, namely the

strati�ed semantics of logic programs, as it provides a more e�cient computation for

strati�ed programs.

5.1 Algorithm Description

In this subsection we present a parallel solution for strati�ed programs, address several

special cases and discuss arising challenges.

According to the De�nition 2.1.3, for a strati�ed program, literals that are given as

input (facts) are assigned rank 0. Predicates that are supported by rules containing no

negative subgoals are assigned rank 0, as well. Subsequently, literals depending negatively

only on rank 0, are assigned rank 1. In general, literals depending negatively on rank k−1,

are assigned rank k. Thus, strati�cation is �nished when all predicates are assigned a rank.

Consider the following program:

r(X,Y) ← q(X,Y), not p(X,Y).

p(X,Y) ← a(X,Z), b(Z,Y), not c(X,Z), not d(Y).

Figure 5.1 shows how predicates are assigned to ranks, which in our example is as follows:

rank 0: a, b, c, d, q

rank 1: p

rank 2: r

plain lines represent a positive dependency, while dashed lines represent a negative depen-

dency.

Once predicates have been assigned to ranks, we proceed with reasoning according to

the following algorithm:

61

62 CHAPTER 5. STRATIFIED SEMANTICS OF LOGIC PROGRAMS

Figure 5.1: Predicates assigned to ranks.

Overall reasoning process:

Set KB = facts;

for (i=0; i<=N; i++) do

do

new_KB = Perform_reasoning(i, KB);

KB += new_KB;

while (new_KB != null) \\ check if fixpoint is reached

done

Initially, we add facts to our knowledge base (KB). Subsequently, for each rank (0 to N,

where N is the highest rank for a given program) we perform reasoning as described later

in this subsection (Perform_reasoning(i, KB)), by taking into consideration the rank we

are reasoning for (i) and the current knowledge base (KB), while classifying all the inferred

literals as positive. Note that for each rank, reasoning is iterated until no new conclusion

is derived (while (new_KB != null)). Once all inferences are computed for rank i, we

continue with the next rank, until all ranks are evaluated. Finally, when reasoning is

�nished, literals that are contained in our KB are classi�ed as positive, while whose that

are not are classi�ed as negative.

Consider the following rule from the aforementioned program:

p(X,Y) ← a(X,Z), b(Z,Y), not c(X,Z), not d(Y).

here p(X,Y) is our �nal goal, a(X,Z) and b(Z,Y) are positive subgoals, and not c(X,Z)

and not d(Y) are negative subgoals. We will group all positive subgoals into a positive

goal. A positive goal consists of a new predicate (say ab) that contains as arguments all

the arguments of the �nal goal (X,Y) plus all the common arguments with the negative

subgoals (X,Z,Y), namely we need to compute ab(X,Z,Y). However, we need to ensure

that for each rule, all arguments of the �nal goal (X,Y) can be found in a positive subgoal.

In addition, we need to ensure that for each rule, the set of arguments that can be found

in all the negative subgoals (X,Z,Y) is a subset (⊆) of the arguments that can be found

in all the positive subgoals (X,Z,Y). In order to compute the �nal goal (p(X,Y)) we retain

5.1. ALGORITHM DESCRIPTION 63

all values of the positive goal (ab(X,Z,Y)) that have no equal values with any negative

subgoal (not c(X,Z) and not d(Y)) on their common arguments (X,Z and Y respectively).

As a general guideline, we perform a single join or multiple joins (see Subsection 5.1.1)

in order to calculate positive goals, and anti-joins (see Subsection 5.1.2) to calculate the

�nal goal. However, special cases may apply to certain programs (see Subsection 5.1.3).

5.1.1 Positive Goals Calculation

Consider the following program:

p(X,Y) ← a(X,Z), b(Z,Y).

and the facts for a and b

a(1,2) a(1,3) b(2,4) b(3,4)

A single join can be performed either in Map or Reduce. However, the basic idea

remains the same since in both cases we join a(X,Z) and b(Z,Y) on their common argument

Z in order to produce p(X,Y).

Single join in Reduce. We will �rst describe how joins (for the aforementioned rule)

can be performed in Reduce according to the following pseudo-code:

map(Long key, String value):

// key: position in document (irrelevant)

// value: document line (positive literal)

if (value.predicate == "a") then

emit(value.Z, {value.predicate,value.X});

else if (value.predicate == "b") then

emit(value.Z, {value.predicate,value.Y});

reduce(String key, Iterator values):

// key: matching argument

// values: positive literals for matching

for each (value in values) do

if (value.predicate == "a") then

a_List.add(value.X})

else

b_List.add(value.Y)

for each (a in a_List) do

for each (b in b_List) do

emit("p(a.X,b.Y)","");

64 CHAPTER 5. STRATIFIED SEMANTICS OF LOGIC PROGRAMS

TheMap function will emit pairs of the form <Z,(a,X)> for predicate a and <Z,(b,Y)>

for predicate b, namely the following pairs:

<2, (a,1)>

<3, (a,1)>

<2, (b,4)>

<3, (b,4)>

MapReduce framework will perform grouping/sorting resulting in the following inter-

mediate pairs:

<2, <(a,1), (b,4)>>

<3, <(a,1), (b,4)>>

During the reduce phase we match predicates a and b on their common argument

(which is the key) and use the values to emit new literals. Thus, the reducer with key:

2 will emit p(1,4)

3 will emit p(1,4)

As we see in our simple example, p(1,4) is inferred twice. We need to �lter out

duplicates as soon as possible because they will produce unnecessary duplicates as well,

a�ecting the overall performance. For brevity, we do not provide pseudo-code for duplicate

elimination as it is straightforward for readers that are familiar with the MapReduce

framework.

Single join in Map. In case of highly skewed data distribution, joins cannot be

performed during Reduce due to skewed workload, which a�ects severely parallelization.

However, such joins can be performed e�ciently during Map if at least one of the two

relations �ts in main memory. As a real-world example, Kotoulas et al. [33] and Duan et

al. [62] show that semantic web data are highly skewed following zipf distribution. Joins

can be performed in Map according to the following pseudo-code:

// Create an in memory Map from a.Z to a.X

a_HashMap = load_literals_with_predicate_a();

map(Long key, String value):

// key: position in document

// value: document line (positive literal)

if (value.predicate == "b") then

if (a_HashMap.contains(b.Z)) then

for each (X in a_HashMap.key(b.Z).iterator()) do

emit("p(X,b.Y)","");

First, we need to load in memory facts for predicate a, namely a(1,2) and a(1,3), and

create a HashMap from a.Z to a.X (load_literals_with_predicate_a()) in order to re-

assure quick lookups. DuringMap, we traverse through given data and for each literal with

5.1. ALGORITHM DESCRIPTION 65

predicate b (value.predicate == �b"), we lookup the HashMap (a_HashMap.contains(b.Z))

for matching Z values. In case the two relations can be joined on their common argument

(Z), we calculate and emit a new literal (p(X,b.Y)) for each X in the HashMap. During

the map phase the Map function with value:

b(2,4) will emit p(1,4)

b(3,4) will emit p(1,4)

For joins that are performed in Map, we can use the reduce phase for duplicate elim-

ination. Duplicates are grouped together during grouping/sorting. Thus, for each group

(Reduce function) we eliminate duplicates by emitting each literal (key) only once (in this

case values are ignored). For brevity, we do not provide pseudo-code for the Reduce as it

is straightforward for readers that are familiar with the MapReduce framework.

Multiple joins We have already described how to perform a single join. However, we

may need to perform multiple joins (multi-way join) in order to compute a positive goal.

Consider the following program:

q(X,Y) ← a(X,Z), b(Z,W), c(W,Y).

p(X,Y) ← c(W,Y), b(Z,W), a(X,Z).

In order to compute q(X,Y), we can apply our approach for single join twice, by �rst

joining a(X,Z) and b(Z,W) on Z, producing a temporary literal (say ab(X,W)), and then

join ab(X,W) and c(W,Y) on W (producing the �nal goal). However, we can optimize

multi-way join by taking into consideration the whole program instead of computing each

rule separately. Note that the body of both rules is practically identical. Both rules consist

of the same three predicates (a,b,c), which have the same common arguments (a,b have Z

and b,c have W). Thus, we may perform the required joins once and produce new literals

for both q(X,Y) and p(X,Y).

Multi-way join have been described in the work of Fische [63] and optimized by Afrati et

al. [64]. In order to achieve an e�cient implementation, optimizations in the work of Afrati

et al. [64] should be taken into consideration. However, the proposed optimizations require

better knowledge of the available data than our general assumptions on data distribution

(uniform or skewed).

5.1.2 Final Goal Calculation

Once positive goals are calculated, we need to perform anti-joins with negative subgoals

on their common arguments in order to retain as �nal goals literals whose values are found

in the positive goal, but not in any of the negative subgoals. Consider the following rule:

a(X) ← b(X), not c(X).

we need to retain values of X that are found in b, but not in c. In order to perform an

anti-join, we follow the aforementioned approach for a single join, however, emitting a �nal

goal for each value of X that is supported by the predicate b, and not by the predicate c.

66 CHAPTER 5. STRATIFIED SEMANTICS OF LOGIC PROGRAMS

5.1.3 Special Cases

Goals with no common arguments. Once we have calculated a positive goal, prior

to performing anti-joins, we need to take into consideration if the positive goal and the

negative subgoals have common arguments. Consider the following rule:

a(X) ← b(X), not c(Y).

here b(X) is the positive goal and not c(Y) is the negative subgoal. However, the positive

goal and the negative subgoal have no common arguments. Thus, every positive goal will

be included as �nal goal since there is no negative subgoal preventing conclusions. In this

case we can optimize by omitting anti-joins since they do not a�ect the �nal result.

Cartesian product. The calculation of a positive goal may depend on positive sub-

goals that have no common arguments. Such calculation results in a cartesian product.

Consider the following rule:

a(X,Y) ← b(X), c(Y), not d(X).

In order to compute the positive goal (say bc(X,Y)) we need to compute the cartesian

product of b(X) and c(Y). To the best of our knowledge there is no e�cient solution pro-

posed in the literature for cartesian product computation for the MapReduce framework.

However, if one of b(X) or c(Y) �ts in memory (say b(X)), then cartesian product can be

computed in the same fashion as a single join that is performed in Map. We load b(X) in

main memory, while a Map function is applied on each c(Y). Thus, cartesian product is

produced by matching each c(Y) with every b(X) that is found in memory.

Nested subgoals. For simplicity of presentation we focused on rules where not was

applied only on literals. However, our approach can be generalized for programs containing

rules where not applies to a conjunction of literals. Consider the following program:

p(X,Y) ← a(X,Z), b(Z,Y), not (c(X,Z), not d(Y)).

We can compute p(X,Y) by rewriting the program. We need to replace each not that

applies to a conjunction of literals with a logically equivalent expression by transform-

ing the body of the rule into Disjunctive Normal Form. Let us perform the following

transformations:

a(X,Z) ∧ b(Z,Y) ∧ not (c(X,Z) ∧ not d(Y)). ≡
a(X,Z) ∧ b(Z,Y) ∧ (not c(X,Z) ∨ d(Y)). ≡
(a(X,Z) ∧ b(Z,Y) ∧ not c(X,Z)) ∨ (a(X,Z) ∧ b(Z,Y) ∧ d(Y)).

Since we have a disjunction of conjunctive clauses, we may rewrite the program by

replacing the aforementioned rule with a set of new rules. Speci�cally, for each conjunctive

clause, we introduce a new rule, where the head of the new rule is the head of the initial

rule (p(X,Y)), while the body of the new rule is the conjunctive clause. Thus, for the

aforementioned program the initial rule will be replaced by the following rules:

5.1. ALGORITHM DESCRIPTION 67

p(X,Y) ← a(X,Z), b(Z,Y), not c(X,Z).

p(X,Y) ← a(X,Z), b(Z,Y), d(Y).

Once we have generated the new program, we may proceed with computing ranks and

then perform reasoning as described above (provided that the new program is strati�ed

and for each rule of the new program, all arguments of the �nal goal belong to a positive

subgoal, while the set of arguments of negative subgoals is a subset (⊆) of the set of

arguments of positive subgoals).

5.1.4 Final Remarks

Consider the following program:

p(X,Y) ← a(X,Z), b(Z,Y), not c(X,Z), not d(Y).

For simplicity of presentation we proposed the computation of the positive goal ab(X,Z,Y),

followed by two anti-joins, �rst with c(X,Z) and then with d(Y). However, one can follow

a more optimal approach by mixing the application of joins and anti-joins. Speci�cally, for

the aforementioned program, we can perform an anti-join on a(X,Z) and c(X,Z), producing

ac(X,Z), and an anti-join on b(Z,Y) and d(Y), producing bd(Z,Y). Subsequently, we join

ac(X,Z) and bd(Z,Y) in order to compute the �nal goal.

The second approach is more optimal since it generates less intermediate results, while

calculating the required �nal goal (p(X,Y)). However, in order to reassure correct appli-

cation of anti-joins, for each anti-join on a positive and a negative subgoal the following

condition must hold: the set of arguments of the negative subgoal (NS) is a subset of the

set of arguments of the positive subgoal (PS), while the two sets have at least one common

argument, namely NS ⊆ PS and (NS ∩ PS) 6= ∅.
Now let us point out the necessity of the imposed restrictions. It is required that

for each rule, all arguments of the �nal goal belong to a positive subgoal. Consider the

following program:

p(X,Y) ← a(X,Z), not b(Z,Y).

here for each value of X in a(X,Z), we need to compute the following subset new_Y =

H_U − Y_In_b(Z, Y), where H_U is the Herbrand universe and Y_In_b(Z, Y) is the

set of values of Y that are found in b(Z,Y) such that a(X,Z) and b(Z,Y) have common

values on Z. Such computation will introduce a signi�cant overhead for the computation

of new_Y , and will require either a cartesian product of each value of X with its cor-

responding subset new_Y (which is not applicable in general, see Subsection 5.1.3) or

storing the �nal goal (p(X,Y)) in the form p(X,new_Y) which will result in long new_Y

sequences that will eventually a�ect parallelization.

We have posed an additional restriction, namely in order to perform an anti-join, the

set of arguments of the negative subgoal must be a subset (⊆) of the set of arguments of
the positive subgoal. Consider the following program:

68 CHAPTER 5. STRATIFIED SEMANTICS OF LOGIC PROGRAMS

p(X,Y) ← a(X,Y), not b(Y,Z).

here we cannot perform an anti-join on a(X,Y) and not b(Y,Z) in order to compute the

�nal goal (p(X,Y)) since for a given value of Y we need to check whether all literals b(Y,

H_U), where H_U is the Herbrand universe, are classi�ed as positive or negative. Thus,

for given X,Y we may infer the �nal goal (p(X,Y)), if there is at least one b(Y,Z) that is

classi�ed as negative. However, for more complex rules such as:

p(X,Y) ← a(X,Z), b(Z,Y), not c(Z,W), not d(W,U).

an e�cient implementation for MapReduce is yet to be de�ned since for a given Z we

need to �nd a combination of c(Z,W) and d(W,U) that are both classi�ed as negative,

while avoiding the full materialization of negative literals. Full materialization of both

positive and negative literals (Herbrand base) may easily become prohibiting even for

small datasets, and thus, is not applicable to big data.

Finally, the approach for non-strati�ed programs is di�erent and comes with certain

challenges. An extension of our approach would be the computation of the well-founded

semantics. However, the de�nition of unfounded sets (see De�nition 2.1.9) a�ects the

scalability of the whole process. In order to conclude that p ∈ A we need to check

every instantiated rule R of P whose head is p. Such evaluation has to be conducted by

a single node (since the MapReduce framework does not allow communication between

nodes during map or reduce phase), causing either main memory insu�ciency or skewed

load balancing, decreasing the overall parallelization.

Soundness and completeness. The proposed method for strati�ed semantics of

logic programs is sound and complete since reasoning process is in line with the imposed

strati�cation. Indeed, facts are added directly to the knowledge base, while strati�cation

provides a well-de�ned reasoning sequence from lower to higher ranks, provided that the

reasoning process at each rank is sound and complete, which leads to all derived conclusions

being sound since reasoning for rank k is based on a sound and complete knowledge base

for ranks up to k − 1, and a complete derivation of all possible conclusions since rules for

rank k are applied until no new knowledge is derived. At each rank, computing the positive

goal �rst ensures that no information is lost as all possible joins are performed, while anti-

joins model negation as failure since every predicate of a negative subgoal belongs to a

lower rank (for which we have sound and complete knowledge).

5.2 Experimental Evaluation

Methodology. In order to evaluate our approach, we searched for proposed benchmarks

in the literature. Liang et al. [65] evaluate the performance of several rule engines on

data that �t in main memory. However, our approach is targeted on data that exceed the

capacity of the main memory. Thus, in order to perform evaluation, we adjusted certain

5.2. EXPERIMENTAL EVALUATION 69

parameters of the proposed methodology by Liang et al. [65]. We evaluate our approach

considering large join tests, default negation and datalog recursion, while the rest of the

proposed evaluation metrics of Liang et al. [65] are not applicable. Speci�cally, we do not

perform evaluation for indexing since the MapReduce framework does not provide such an

option. We have not yet developed a complete system that could perform reasoning based

on our approach, thus, all optimizations and cost-based analysis were performed manually.

Finally, Liang et al. [65] separate loading and inference time, focusing on inference time.

However, such a separation is di�cult for our approach since loading and inference time

may overlap.

Dataset. Liang et al. [65] based their experiments on datasets that consisted of up to

several millions facts. We aim to evaluate our approach for up to 1 billion facts. The main

goal of our approach is to evaluate performance in terms of execution time and reassure

scalability. Thus, we perform experiments for several dataset sizes for both uniform and

zipf (highly skewed) data distributions.

Large join tests. Consider the following program:

pi(X,Y) ← a(X,Z), b(Z,Y).

for 1 ≤ i ≤ N , where N is the total number of rules following the above rule pattern.

Scalability of large joins is examined over several dataset sizes, number of rules, data

distributions and number of nodes.

Default negation. Here we provide a solution for strati�ed programs. Thus, we

cannot use the well known win-not-win example presented by Gelder [24] (also used in

Liang et al. [65]), which works for locally strati�ed and non-strati�ed programs. Consider

the following program:

p(X,Y) ← a(X,Y), not b(X,Y).

Scalability of anti-joins is examined over several dataset sizes, data distributions and

number of nodes. The number of rules has the same e�ect for anti-joins as for joins (since

it a�ects only the total amount of �nal output), and thus, such an evaluation is omitted.

Datalog recursion. In order to evaluate datalog recursion, we applied a di�erent

evaluation method. Instead of generating random data and calculating the transitive

closure of a relation, we evaluated joins using the program described in large join tests

(for N = 1). We performed joins, for uniform data distribution (zipf distribution would

require more complex computation techniques, which are out of the scope of this work),

changing the percentage of the matched values for the argument Z from 0% to 100%. In

such a way, we were able to estimate the required time for each matching percentage, as

this percentage may vary signi�cantly throughout the transitive closure calculation.

Platform. We have implemented our experiments using the Hadoop MapReduce

framework1, version 1.0.4. We have performed experiments on a cluster of the University

1http://hadoop.apache.org/mapreduce/

70 CHAPTER 5. STRATIFIED SEMANTICS OF LOGIC PROGRAMS

0 200 400 600 800 1000
0

20

40

60

80

100

120

Millions of facts

T
im

e
in

 m
in

ut
es

1 Node
2 Nodes
4 Nodes
8 Nodes

(a) Join for uniform distribution.

0 200 400 600 800 1000
0

20

40

60

80

100

120

Millions of facts

T
im

e
in

 m
in

ut
es

1 Node
2 Nodes
4 Nodes
8 Nodes

(b) Join for zipf distribution.

Figure 5.2: Runtime in minutes for join operations as a function of dataset size, for various
numbers of nodes.

0 200 400 600 800 1000
0

20

40

60

80

100

120

Millions of facts

T
im

e
in

 m
in

ut
es

1 Node
2 Nodes
4 Nodes
8 Nodes

(a) Anti-join for uniform distribution.

0 200 400 600 800 1000
0

10

20

30

40

50

60

Millions of facts

T
im

e
in

 m
in

ut
es

1 Node
2 Nodes
4 Nodes
8 Nodes

(b) Anti-join for zipf distribution.

Figure 5.3: Runtime in minutes for anti-join operations as a function of dataset size, for
various numbers of nodes.

of Hudders�eld. The cluster consists of 9 nodes (one node was allocated as �master� node),

using a Gigabit Ethernet interconnect. Each node was equipped with 2 cores running at

1.86GHz, 3GB RAM and 150GB of storage space.

Results. We can identify four main factors that a�ect the performance of our ap-

proach:

1. Number of facts, a�ecting the input size.

2. Number of rules, a�ecting the output size.

3. (Anti-)Join percentage, a�ecting the output size.

4. Compression ratio, a�ecting the output size, when compression algorithm is used.

our results correspond to several combinations of the above four factors.

5.2. EXPERIMENTAL EVALUATION 71

0 50 100 150
0

50

100

150

200

Number of Rules

Ti
m

e
in

 m
in

ut
es

1 Node
2 Nodes
4 Nodes
8 Nodes

Figure 5.4: Runtime in minutes for various numbers of rules and nodes.

0 20 40 60 80 100
0

5

10

15

20

25

Join percentages

Ti
m

e
in

 m
in

ut
es

8 Nodes

Figure 5.5: Runtime in minutes for various matched values percentages.

Figure 5.2 shows the runtimes of our system for join operations with input sizes up

to 1 billion facts, while number of rules is set to 1 and compression ratio remains fairly

stable. We see that for uniform distribution our approach scales linearly, as join percent-

age remains stable at 50%. However, for zipf distribution our approach exhibits several

�uctuations as the number of facts increases, since the join percentage �uctuates as well.

Figure 5.3 presents the runtimes of our system for anti-join operations with input sizes

up to 1 billion facts. For both uniform and zipf distribution, the number of rules is set

to 1, while compression ratio and anti-join percentages remain stable. In this case we see

that our system scales linearly for both data distributions.

Figure 5.4 depicts the scaling properties of our system for 16, 32, 64 and 128 rules.

We need to point out that the system scales linearly for up to 64 rules, while for 128

rules the runtime is higher than the expected (linear). This is attributed to the fact that

compression for 128 rules is less e�ective, resulting in larger amounts of output.

Figure 5.5 illustrates the runtimes of our system for various join percentages, while

all the other factors remain stable (500 million facts, 1 rule, 8 nodes and fairly stable

compression ratio). As expected, while the join percentage increases, the runtime increases

as well since larger amounts of output are being produced. In general, for the case of

recursion, long chains of MapReduce jobs and low join percentages should be avoided

72 CHAPTER 5. STRATIFIED SEMANTICS OF LOGIC PROGRAMS

because reading and sorting/grouping the input introduces a high overhead for the whole

computation.

Chapter 6

Well-Founded Semantics

In this chapter, an approach for the full well-founded semantics (including the subset

of strati�ed programs) is presented, which however is computationally more expensive

compared to the approach for the strati�ed semantics of logic programs. In addition, we

provide an analysis comparing both methods, thus showing the computational advantages

of the strati�ed over the full well-founded semantics approach for the restricted subset of

strati�ed programs.

6.1 Full Well-Founded Semantics

6.1.1 Join and Anti-join for WFS

In this subsection we provide a description of the TP,J(I) computation, which is modeled

as a sequence of join and anti-join operations.

Computing TP,J(I)

Consider the following program:

p(X,Y) ← a(X,Z), b(Z,Y), not c(X,Z), not d(Z,Y).

here p(X,Y) is our �nal goal, a(X,Z) and b(Z,Y) are positive subgoals, while not c(X,Z)

and not d(Z,Y) are negative subgoals. In order to compute our �nal goal p(X,Y) we need

to ensure that {a(X,Z), b(Z,Y)} ⊆ I and {c(X,Z), d(Z,Y)} ∩ J = ∅, namely both a(X,Z)

and b(Z,Y) are in I while none of c(X,Z) and d(Z,Y) is found in J.

As positive subgoals depend on I we can group them into a positive goal. A positive

goal consists of a new predicate (say ab) that contains as arguments the union of two sets:

(a) all the arguments of the �nal goal (X,Y) and (b) all the common arguments between

positive and negative subgoals (X,Z,Y), namely we need to compute ab(X,Z,Y). The �nal

goal (p(X,Y)) consists of all values of the positive goal (ab(X,Z,Y)) that do not match any

73

74 CHAPTER 6. WELL-FOUNDED SEMANTICS

Algorithm 4 Single join

map(Long key, String value):
// key: position in document (irrelevant)
// value: document line (literal in I)
if (value.predicate == �a�) then
emit(value.Z, {value.predicate,value.X});

else if (value.predicate == �b�) then
emit(value.Z, {value.predicate,value.Y});

reduce(String key, Iterator values):
// key: matching argument
// values: literals in I for matching
a_List.empty();
b_List.empty();
for each (value in values) do
if (value.predicate == �a�) then
a_List.add(value.X)

else
b_List.add(value.Y)

for each (a in a_List) do
for each (b in b_List) do
emit(�ab(a.X,key.Z,b.Y)�,��);

of the negative subgoals (not c(X,Z) and not d(Z,Y)) on their common arguments (X,Z

and Z,Y respectively).

Positive Goal Calculation

Consider the following program:

p(X,Y) ← a(X,Z), b(Z,Y), not c(X,Z), not d(Z,Y).

where

I = {a(1,2), a(1,3), b(2,4), b(3,5)}

J = {c(1,2), d(2,3)}

A single join, calculating the positive goal ab(X,Z,Y), can be performed as described

in Algorithm 4. Note that we use only literals from I.

TheMap function will emit pairs of the form <Z,(a,X)> for predicate a and <Z,(b,Y)>

for predicate b, namely the following pairs:

<2, (a,1)>

<3, (a,1)>

<2, (b,4)>

<3, (b,5)>

6.1. FULL WELL-FOUNDED SEMANTICS 75

Algorithm 5 Duplicate elimination

map(Long key, String value):
// key: position in document (irrelevant)
// value: document line (inferred literal)
emit(value, ��);

reduce(String key, Iterator values):
// key: inferred literal
// values: empty values (not used)
emit(key,��);

MapReduce framework will perform grouping/sorting resulting in the following inter-

mediate pairs:

<2, <(a,1), (b,4)>>

<3, <(a,1), (b,5)>>

During the reduce phase we match predicates a and b on their common argument

(which is the key) and use the values to emit positive goals. Thus, the reducer with key:

2 will emit ab(1,2,4)

3 will emit ab(1,3,5)

Note that we need to �lter out possibly occurring duplicates as soon as possible be-

cause they will produce unnecessary duplicates as well, a�ecting the overall performance.

Pseudo-code for duplicate elimination is depicted in Algorithm 5.

Practically, the Map function emits every inferred literal as the key, with an empty

value. The MapReduce framework performs grouping/sorting resulting in one group (of

duplicates) for each unique literal. Each group of duplicates consists of the unique literal

as the key and a set of empty values (with values being eventually ignored). The actual

duplicate elimination takes place during the reduce phase since for each group of duplicates,

we emit the (unique) inferred literal once, using the key, while ignoring the values.

For rules with more than one join between positive subgoals we need to apply multi-

joins (multi-way join).

Consider the following program:

q(X,Y) ← a(X,Z), b(Z,W), c(W,Y), not d(X,W).

We can compute the positive goal (abc(X,W,Y)) by applying our approach for single join

twice. First, we need to join a(X,Z) and b(Z,W) on Z, producing a temporary literal

(say ab(X,W)), and then join ab(X,W) and c(W,Y) on W producing the positive goal

(abc(X,W,Y)). Once abc(X,W,Y) is calculated, we proceed with calculating the �nal goal

q(X,Y) by retaining all the values of abc(X,W,Y) that do not match not d(X,W) on their

common arguments (X,W).

76 CHAPTER 6. WELL-FOUNDED SEMANTICS

Algorithm 6 Anti-join

map(Long key, String value):
// key: position in document (irrelevant)
// value: document line (literal)
if (value.predicate == �ab�) then
emit({value.X,value.Z}, {value.predicate,value.Y});

else if (value.predicate == �c�) then
emit({value.X,value.Z}, value.predicate);

reduce(String key, Iterator values):
// key: matching argument
// values: literals for matching
ab_List.empty();
for each (value in values) do
if (value.predicate == �ab�) then
ab_List.add(value.Y)

else
return; // matched by predicate c

for each (ab in ab_List) do
emit(�abc(key.X,key.Z,ab.Y)�,��);

For details on single and multi-way join, readers are referred to literature. More specif-

ically, multi-way join has been described and optimized by Afrati et al. [64]. In order to

achieve an e�cient implementation, the proposed optimizations by Afrati et al. [64] should

be taken into consideration.

Final Goal Calculation

Consider the aforementioned program:

p(X,Y) ← a(X,Z), b(Z,Y), not c(X,Z), not d(Z,Y).

where

I = {a(1,2), a(1,3), b(2,4), b(3,5)}

J = {c(1,2), d(2,3)}

By calculating the positive goal ab(X,Z,Y) we obtain the following knowledge:

ab(1,2,4)

ab(1,3,5)

In order to calculate the �nal goal (p(X,Y)) we need to perform an anti-join between

ab(X,Z,Y) and each negative subgoal (not c(X,Z) and not d(Z,Y)). Note that to perform

an anti-join we use only the previously calculated positive goal (ab(X,Z,Y)) and literals

from J.

6.1. FULL WELL-FOUNDED SEMANTICS 77

We start by performing an anti-join between ab(X,Z,Y) and not c(X,Z) on their com-

mon arguments (X,Z), creating a new literal (say abc(X,Z,Y)), which contains all the

results from ab(X,Z,Y) that are not found in c(X,Z), as described in Algorithm 6.

The Map function will emit pairs of the form <(X,Z),(ab,Y)> for predicate ab and

<(X,Z),c> for predicate c (while predicate d will be taken into consideration during the

next anti-join), namely the following pairs:

<(1,2), (ab,4)>

<(1,3), (ab,5)>

<(1,2), c>

MapReduce framework will perform grouping/sorting resulting in the following inter-

mediate pairs:

<(1,2), <(ab,4), (c)>>

<(1,3), (ab,5)>

During the reduce phase we output values of the predicate ab only if it is not matched

by predicate c on their common arguments (which are contained in the key) and emit

abc(X,Z,Y). Thus, the reducer with key:

(1,2) will have no output

(1,3) will emit abc(1,3,5)

In order to calculate the �nal goal (p(X,Y)), we need to perform an additional anti-

join between abc(X,Z,Y) and d(Z,Y) on their common arguments (Z,Y). Here, abc(1,3,5)

and d(2,3) do not match on their common arguments (Z,Y) as (3,5) 6= (2,3). Thus, our

calculated �nal goal is p(1,5).

6.1.2 Computing the Well-Founded Semantics

In this subsection we describe a naive and an optimized implementation for the calculation

of the well-founded semantics, and provide a proof sketch in order to justify the correctness

of our approach.

Naive Implementation

A naive implementation of the well-founded semantics �xpoint is depicted in Algorithm 7.

The algorithm takes as input a program P and calculates the sets of literals Ki and Ui

until �xpoint is reached, namely (Ki−1,Ui−1)=(Ki,Ui) for i ≥ 1. Each set of literals (Ki

and Ui) is calculated by the naive least �xpoint of TP,J(I) depicted in Algorithm 8.

The naive least �xpoint of TP,J(I) (naive_lfp) takes as input two arguments, a program

P and a set of literals J. Practically, we calculate the least �xpoint of TP,J(I) where P

and J are given as input while I is initially set as empty (I=∅). We also use a temporary

set of inferred literals (new) in order to eliminate duplicates (new = new − I) prior to

78 CHAPTER 6. WELL-FOUNDED SEMANTICS

Algorithm 7 Naive WFS �xpoint

naive_WFS_�xpoint(P):
// input: program P,
// output: set of literals Ki, Ui

K0 = naive_lfp(P+, ∅);
U0 = naive_lfp(P, K0);
i = 0;
do
i++; // next �inference step�
Ki = naive_lfp(P, Ui−1);
Ui = naive_lfp(P, Ki);

while (Ki−1 != Ki or Ui−1 != Ui)
return Ki, Ui;

Algorithm 8 Naive least �xpoint of TP,J(I)

naive_lfp(P, J):
// input: program P, set of literals J
// output: set of literals I (least �xpoint of TP,J(∅))
I = ∅;
new = ∅;
do
I = I ∪ new;
new = T(P, I, J);
new = new - I;

while (new != ∅)
return I;

adding newly inferred literals to the set I (I = I ∪ new). Thus, we start by having I=∅
and stop when no new knowledge can be inferred (new == ∅). The function T(P, I, J) is

the computation of TP,J(I) as described above.

Let us now consider the calculation of the naive WFS �xpoint. Initially, we calculate

K0 over the positive part of the program P (P+) and set J=∅. Then, we proceed with the
calculation of U0 given the already available set K0 (J=K0). Subsequently, we increase

the counter i and calculate the least �xpoint of Ki (resp. Ui) given Ui−1 (resp. Ki) until

�xpoint is reached. WFS �xpoint is reached when Ki−1 == Ki and Ui−1 == Ui, and

�nally the sets of literals Ki and Ui are returned.

According to Theorem 2.1.2, having reached WFS �xpoint at step i, we can determine

which literals are true, unde�ned and false as follows:

• true literals, denoted by Ki.

• unde�ned literals, denoted by Ui − Ki.

6.1. FULL WELL-FOUNDED SEMANTICS 79

• false literals, denoted by BASE(P) − Ui.

A straightforward optimization of the naive WFS �xpoint algorithm is to store the

sets of literals Ki and Ui only for the current and the previous �inference step�, namely if

i = k, for k ≥ 1, then we only need to store Ki−1 and Ui−1 in our knowledge base while

calculating Ki and Ui. Since a �xpoint was not reached for i = k − 1, any Kj and Uj for

j < k − 1 becomes irrelevant as it will not be used for the remainder of the computation.

Thus, at any time of calculation (step i, for i ≥ 1) we need to store up to four sets of

literals (Ki−1, Ui−1, Ki, Ui).

Optimized Implementation

The naive implementation, as presented above, introduces unnecessary overhead to the

overall computation. A more re�ned version of both WFS �xpoint and least �xpoint of

TP,J(I) is de�ned in Algorithm 9 and Algorithm 10 respectively.

Our �rst optimization is the changed calculation of the least �xpoint of TP,J(I) (opt_lfp),

which is depicted in Algorithm 10. Instead of calculating the least �xpoint starting from

I = ∅, for a given program P and a set of literals J, as in Algorithm 8, we allow the calcu-

lation to start from a given I, provided that I ⊆ lfp(TP,J(∅)), and return only the newly

inferred literals (S) that led us to the least �xpoint. Thus, the actual set of literals that

the least �xpoint of TP,J(I) consists of is I ∪ S. In order to reassure correctness we need

to take into consideration both I and S while calculating the least �xpoint, namely new

literals are inferred by calculating TP,J(I ∪ S). However, as before, we use a temporary

set of inferred literals (new) in order to eliminate duplicates (new = new − (I ∪ S)) prior

to adding newly inferred literals to the set S (S = S ∪ new). Note that the set of literals

I remains unchanged when the optimized least �xpoint is calculated.

The optimized version of the least �xpoint is used, in Algorithm 9, for the computation

of each set of literals K and U. K0 is a special case where we start from I = ∅ and J = ∅,
and thus, unable to fully utilize the advantages of the optimized least �xpoint.

The proposed optimizations are mainly based on the monotonicity of the well-founded

semantics as given in Lemma 2.1.1. Note that in this subsection, the indices of the sets K

and U found in Lemma 2.1.1 are adjusted to the indices used in Algorithm 9 in order to

facilitate our discussion.

Since Ki ⊆ Ui, for i ≥ 0 (see Lemma 2.1.1), the computation of Ui can start from Ki,

namely I = Ki. Thus, instead of recomputing all literals of Ki while calculating Ui, we

can use them to speed up the process. Note that the actual least �xpoint of Ui is the

union of sets Ki and opt_lfp(P, Ki, Ki), as the optimized least �xpoint computes only

new literals (which are not included in given I).

Since Ki−1 ⊆ Ki, for i ≥ 1 (see Lemma 2.1.1), the computation of Ki can start from

Ki−1, namely I = Ki−1. Once opt_lfp(P, Ki−1, Ui−1) is computed, we append it to our

previously stored knowledge Ki−1, resulting in Ki.

80 CHAPTER 6. WELL-FOUNDED SEMANTICS

Algorithm 9 Optimized WFS �xpoint

opt_WFS_�xpoint(P):
// input: program P,
// output: set of literals Ki−1, Ui−1
K0 = opt_lfp(P+, ∅, ∅);
i = 0;
do
Ui = Ki ∪ opt_lfp(P, Ki, Ki);
i++; // next �inference step�
Ki = Ki−1 ∪ opt_lfp(P, Ki−1, Ui−1);

while (Ki−1.size() != Ki.size())
return Ki−1, Ui−1;

Algorithm 10 Optimized least �xpoint of TP,J(I)

opt_lfp(P, I, J):
// precondition: I ⊆ lfp(TP,J(∅))
// input: program P, set of literals I, set of literals J
// output: set of literals S (lfp(TP,J(I)) - I)
S = ∅;
new = ∅;
do
S = S ∪ new;
new = T(P, (I ∪ S), J);
new = new - (I ∪ S);

while(new != ∅)
return S;

Lemma 6.1.1 WFS �xpoint is reached at step i, for i ≥ 1, if Ki−1 = Ki.

Proof. If Ki−1 = Ki, for i ≥ 1, then

Ui−1 = Ki−1 ∪ opt_lfp(P, Ki−1, Ki−1)

= Ki ∪ opt_lfp(P, Ki, Ki)

= Ui

Thus, �xpoint is reached as (Ki−1,Ui−1) =(Ki,Ui).

Although for Ki calculation only new literals are inferred during each �inference step�,

for Ui we have to recalculate a subset of literals that can be found in Ui−1, as literals in

Ui−1 − Ki−1 are discarded prior to the computation of Ui. However, the computational

overhead coming from the calculation of opt_lfp(P, Ki, Ki) reduces over time since the

set of literals in Ui − Ki becomes smaller after each �inference step� due to Ki−1 ⊆ Ki

and Ui−1 ⊇ Ui, for i ≥ 1, (see Lemma 2.1.1).

We may further optimize our approach by minimizing the amount of stored literals. As

6.1. FULL WELL-FOUNDED SEMANTICS 81

discussed in subsection 6.1.2, the naive implementation requires the storage of up to four

overlapping sets of literals (Ki−1, Ui−1, Ki, Ui). However, as Ki ⊆ Ui, while calculating

Ui, we need to store in our knowledge base only the sets Ki and opt_lfp(P, Ki, Ki), since

Ui = Ki ∪ opt_lfp(P, Ki, Ki).

As Ki−1 ⊆ Ki, for the calculation of Ki, we need to store in our knowledge base only

three sets of literals, namely: (a) Ki−1, (b) Ui−1 − Ki−1 = opt_lfp(P, Ki−1, Ki−1) and

(c) currently calculating least �xpoint opt_lfp(P, Ki−1, Ui−1). All newly inferred literals

in opt_lfp(P, Ki−1, Ui−1), are added to Ki (replacing our prior knowledge about Ki−1),

while literals in Ui−1 - Ki−1 = opt_lfp(P, Ki−1, Ki−1) are deleted, if �xpoint is not

reached, as they cannot be used for the computation of Ui.

A WFS �xpoint is reached when Ki−1 = Ki, namely when no new literals are derived

during the calculation of Ki, which practically is the calculation of opt_lfp(P, Ki−1, Ui−1).

Since (Ki−1,Ui−1) = (Ki,Ui), we return the sets of literals Ki−1 and Ui−1, representing

our �xpoint knowledge base.

In practice, the maximum amount of stored data occurs while calculating Ki, for i ≥ 1,

where we need to store three sets of literals, namely: (a) Ki−1, (b) Ui−1 − Ki−1 and (c)

opt_lfp(P, Ki−1, Ui−1), requiring signi�cantly less storage space compared to the naive

implementation.

Approach Correctness - Soundness and Completeness

We need to ensure that our approach is in line with the de�nition of the alternating

�xpoint procedure (see De�nition 2.1.12) for both naive and optimized algorithms (see

Algorithms 7, 8, 9, 10). By justifying the correctness of our approach we also ensure

soundness and completeness, which is based on the soundness and completeness of the

alternating �xpoint procedure. Thus, we provide the following proof sketch.

Proof sketch. First, we need to ensure that we calculate TP,J(I) according to De�ni-

tion 2.1.11. Consider a given program P and given sets of literals I and J.

According to subsection 6.1.1, the positive part (pos(B)) of each rule of the instanti-

ated program P (A ← B ∈ ground(P)) is calculated using literals from I (pos(B) ⊆ I),

which agrees with De�nition 2.1.11. Single and multi-way joins that are described in this

work have been studied in the literature by Afrati et al. [64], and thus, ensure correct

computation. The auxiliary predicates used in positive goal computation do not a�ect the

�nal result as these predicates are not part of the given program. In addition, the fact

that the positive goal contains the smallest set of arguments containing arguments of both

�nal goal and negative subgoals reassures correctness, since no information is lost, while

it minimizes the computation cost, as the overhead coming from redundant arguments is

eliminated.

Since the positive goal is equivalent to the computation of the positive part of a rule, we

may proceed with the negative part. According to De�nition 2.1.11, a �nal goal of a rule is

82 CHAPTER 6. WELL-FOUNDED SEMANTICS

computed from a set of positive subgoals that belong to I (A | there is A← B ∈ ground(P)

with pos(B) ⊆ I), namely the positive goal of the rule, and a set of negative subgoals that

do not belong to J (neg(B) ∩ J = ∅). Thus, negative subgoals that could possibly match

the positive goal on their common arguments should not be found in J. This is modeled

by the anti-join as described in subsection 6.1.1.

Our next step is to investigate the equivalence of the least �xpoint calculation. Ac-

cording to the de�nition of the least �xpoint, provided in subsection 2.1.9, for a given

program P and a set of literals J we start with I = ∅ and gradually calculate applicable

rules until no new literals are inferred, namely TP,J(I) = I. This is directly modeled by

the naive least �xpoint (see Algorithm 8), since the computation starts with an empty set

(∅) and TP,J(I) is applied until no new knowledge is derived. The case of the optimized

least �xpoint (see Algorithm 10) is more complex despite the fact that for I = ∅, naive
and optimized least �xpoint calculations are equivalent.

We need to point out that the optimized least �xpoint can only be applied when the

given I is a subset (⊆) of the calculation of the least �xpoint of TP,J(∅). Indeed, if the

least �xpoint of TP,J(∅) is the set of literals W, then only subsets of W can be given

as I. If a given I is not a subset of W then it contains a literal (say p where p /∈ W)

that will be included in the least �xpoint of TP,J(I), resulting in a set of literals V where

V 6= W, and thus, leading to inconsistency. However, when the optimized least �xpoint

calculation is applied starting from a given I where I ⊆ W, then it will eventually lead

to the computation of W, while allowing a speed up of the computation process. In

Algorithm 10, given a program P and sets of literals I and J, provided that I ⊆ W, the

optimized least �xpoint calculates S = W − I, since I is already available in the knowledge

base.

We have demonstrated that the calculation of the naive and the optimized least �xpoint

is in line with the calculation of lfp(TP,J(I)) of the alternating �xpoint procedure (see

subsection 2.1.9). The correctness of Algorithm 7 and Algorithm 9 is ensured by the

carefully assigned sets of literals I and J, given a program P, for each lfp(TP,J(I)) taking

into consideration the monotonicity of the alternating �xpoint procedure as described in

subsection 6.1.2 and subsection 6.1.2.

Computational Impact of Safety

Apart from the semantic motivation of the safety requirement outlined in subsection 2.1.8,

it also has considerable impact on the computational method followed in this work. Recall

that safety requires that each variable in a rule must occur (also) in a positive subgoal.

If this safety condition is not met, an anti-join is no longer a single lookup between the

positive goal and a negative subgoal, but a comparison between a subset of the Herbrand

base and a given set of literals J. An e�cient implementation for such computation is yet

to be de�ned and problematic, as illustrated next.

6.1. FULL WELL-FOUNDED SEMANTICS 83

Consider the following program:

p(X,Y) ← a(X,Y), not b(Y,Z).

q(X,Y) ← c(X,U), not d(W,U), not e(U,Y).

For the �rst rule, each (X,Y) in a(X,Y) is included in the �nal goal (p(X,Y)) only if for a

given Y, there is a Z the in Herbrand universe such that b(Y,Z) does not belong to J. For

the second rule, for each (X,Y) that is included in the �nal goal (q(X,Y)) there should

be a literal c(X,U) that does not match neither d(W,U) on U, for any W in Herbrand

universe, nor e(U,Y) on U, for any Y in Herbrand universe. Thus, we need to perform

reasoning over a subset of the Herbrand base for b(Y,Z), d(W,U) and e(U,Y) in order to

�nd the nonmatching literals.

In this work, we follow the alternating �xpoint procedure in order to avoid full materi-

alization of or reasoning over the Herbrand base for any predicate. Storing or performing

reasoning over the entire Herbrand base may easily become prohibiting even for small

datasets, and thus, not applicable to big data.

6.1.3 Experimental Results

Methodology. In order to evaluate our approach, we surveyed available benchmarks in

the literature. Liang et al. [65] evaluate the performance of several rule engines on data

that �t in main memory. However, our approach is targeted on data that exceed the

capacity of the main memory. Thus, we follow the proposed methodology of Liang et

al. [65], while adjusting several parameters. In the work of Liang et al. [65], loading and

inference time are separated, focusing on inference time. However, for our approach such

a separation is di�cult as loading and inference time may overlap.

We evaluate our approach considering default negation by applying the win-not-win

test and merge large (anti-)join tests with datalog recursion and default negation, creating

a new test called transitive closure with negation. Other metrics of Liang et al. [65], such

as indexing, are not supported by the MapReduce framework, while all optimizations and

cost-based analysis were performed manually.

Platform. We have implemented our experiments using the Hadoop MapReduce

framework1, version 1.2.1. We have performed experiments on a cluster of the University

of Hudders�eld. The cluster consists of 8 nodes (one node was allocated as �master� node),

using a Gigabit Ethernet interconnect. Each node was equipped with 4 cores running at

2.5GHz, 8GB RAM and 250GB of storage space.

Evaluation tests. The win-not-win test, presented by Liang et al. [65], consists of a

single rule, where move is the base relation:

win(X) ← move(X,Y), not win(Y).

We test the following data distributions:

1http://hadoop.apache.org/mapreduce/

http://hadoop.apache.org/mapreduce/

84 CHAPTER 6. WELL-FOUNDED SEMANTICS

• the base facts form a cycle: {move(1,2), ..., move(i, i+1), ..., move(n-1,n), move(n,1)}.

• the data is tree-structured: {move(i, 2*i), move(i, 2*i+1) | 1 ≤ i ≤ n}.

We used four cyclic datasets and four tree-structured datasets with 125M, 250M, 500M

and 1000M facts.

The transitive closure with negation test consists of the following rule set, where b is

the base relation:

tc(X,Y) ← par(X,Y).

tc(X,Y) ← par(X,Z), tc(Z,Y).

par(X,Y) ← b(X,Y), not q(X,Y).

par(X,Y) ← b(X,Y), b(Y,Z), not q(Y,Z).

q(X,Y) ← b(Z,X), b(X,Y), not q(Z,X).

We test the following data distribution:

• the base facts are chain-structured: {b(i, i+k) | 1 ≤ i ≤ n, k < n}. Intuitively, the

i values are distributed over dn/ke levels, allowing dn/ke − 1 joins in the formed

chain.

The transitive closure with negation test allows for comparing the performance of the

naive and the optimized WFS �xpoint calculation when the computation of lfp(TP,J(I))

starts from I = ∅ and I 6= ∅ respectively. For Ui and Ki+1, for i ≥ 0, the optimized im-

plementation speeds up the process by using, as input, the previously computed transitive

closure of Ki, while the naive implementation comes with the overhead of recomputing

previously inferred literals.

We used four chain-structured datasets for increasing number of joins in the initially

formed chain (dn/ke − 1) with n = 125M, and k = 41.7M, 25M, 13.9M and 7.36M, and

four chain-structured datasets for a constant number of joins in the initially formed chain

(dn/ke − 1) with n = 62.5M, 125M, 250M and 500M, and k = 12.5M, 25M, 50M and

100M respectively.

Results. We can identify four main factors that a�ect the performance of our ap-

proach:

1. Number of facts, a�ecting the input size.

2. Number of rules, a�ecting the output size.

3. Data distribution, a�ecting the number of required MapReduce jobs.

4. Rule set structure, a�ecting the number of required MapReduce jobs.

Figure 6.1 presents the runtimes of our system for the win-not-win test over cyclic

datasets with input sizes up to 1 billion facts. In this case, our system scales linearly with

respect to both dataset size and number of nodes. This is attributed to the fact that the

6.1. FULL WELL-FOUNDED SEMANTICS 85

Ti
m

e
in

 m
in

ut
es

0

20

40

60

80

100

120

Millions of facts
0 200 400 600 800 1,000

1 node
2 nodes
4 nodes

Figure 6.1: Win-not-win test for cyclic datasets. Time in minutes as a function of dataset
size, for various numbers of nodes.

Ti
m

e
in

 m
in

ut
es

0

500

1,000

1,500

2,000

2,500

Millions of facts
0 200 400 600 800 1,000

1 node
2 nodes
4 nodes

Figure 6.2: Win-not-win test for tree-structured datasets. Time in minutes as a function
of dataset size, for various numbers of nodes.

runtime per MapReduce job scales linearly for increasing data sizes, while the number of

jobs remains constant.

Figure 6.2 shows the runtimes of our system for the win-not-win test over tree-structured

datasets with input sizes up to 1 billion facts. Our approach scales linearly for increasing

data sizes and number of nodes. It is evident that while all other factors remain stable

(rule set, number of facts and number of nodes), di�erent data distributions may result in

completely di�erent runtimes (see Figure 6.1 and Figure 6.2).

Figure 6.3 depicts the scaling properties of our system for the transitive closure with

negation test over chain-structured datasets, when run on 7 nodes. Practically, transitive

closure depends on the number of joins in the initially formed chain, which are equal

to dn/ke − 1, namely 2, 4, 8 and 16, and thus, appropriate for scalability evaluation.

The length of the chain a�ects both the size of the transitive closure and the number of

�inference steps�, leading to polynomial complexity. Note that our results are in line with

Theorem 2.1.1. Finally, the speedup of the optimized over the naive implementation is

86 CHAPTER 6. WELL-FOUNDED SEMANTICS

Ti

m
e

in
 m

in
ut

es

0
100
200
300
400
500
600
700
800

Increasing n/k - 1, where n=125M and
k=41.7M, 25M, 13.9M and 7.36M

0 2 4 6 8 10 12 14 16 18

Naive
Optimized

Figure 6.3: Transitive closure with negation test for chain-structured datasets. Time in
minutes as a function of number of joins in the initially formed chain (dn/ke − 1), for
dataset size (n) and number of facts per level (k), comparing naive and optimized WFS
�xpoint calculation.

Ti
m

e
in

 m
in

ut
es

0

100

200

300

400

500

600

Millions of facts (n), where k=12.5M,
25M, 50M and 100M (constant n/k - 1)

0 100 200 300 400 500

Naive
Optimized

Figure 6.4: Transitive closure with negation test for chain-structured datasets. Time in
minutes as a function of dataset size (n) and number of facts per level (k) (constant
dn/ke − 1), comparing naive and optimized WFS �xpoint calculation.

higher for longer chains, since the naive implementation has to recompute larger transitive

closures.

Figure 6.4 illustrates the scalability properties of our system for the transitive closure

with negation test over chain-structured datasets for constant number of joins in the ini-

tially formed chain, when run on 7 nodes. Our approach scales linearly, both for naive

and optimized implementation as the number of jobs remains constant, while the runtime

per job scales linearly for increasing number of facts.

6.2. STRATIFIED VERSUS FULL WELL-FOUNDED SEMANTICS APPROACH 87

6.2 Strati�ed Versus Full Well-Founded Semantics Ap-

proach

In order to justify our claim about the computational advantages of the presented method

for the strati�ed well-founded semantics over the method for the full well-founded seman-

tics, we provide here a theoretical and an experimental analysis comparing both methods

over strati�ed programs.

6.2.1 Theoretical Analysis

It is evident that for a strati�ed program, predicate dependencies are a key attribute a�ect-

ing the reasoning process. Indeed, for the strati�ed WFS method, the longest dependency

chain a�ects the number of ranks, which in tern de�nes the rules application sequence.

Thus, longer dependency chains result in higher numbers of ranks. On the other hand, for

the general case of the full WFS method, there is no clear reasoning sequence since both

rule set and dataset distribution a�ect the number of �inference steps�.

By examining closely several strati�ed programs over the full WFS method it becomes

evident that, for strati�ed programs, the main factor a�ecting the number of �inference

steps� is the longest dependency chain. In fact, the progress that is made during each

�inference steps�, namely more knowledge of true (known) facts (Km ⊆ Km+1, m ≥ 0) and

a better estimation of possible (unknown) facts (Um ⊇ Um+1, m ≥ 0), follows closely the

progressive reasoning process of the strati�ed WFS method. Thus, the two estimations

(the sets of literals K and U) gradually �converge�, namely part of the set remains constant,

on predicates belonging initially to lower ranks and consecutively to higher ranks.

For the strati�ed WFS method, the de�nition of ranks provides a well-de�ned reasoning

sequence with each rule being applied only once. Thus, in order to further highlight the

computational advantages of the strati�ed over the full WFS method, we will de�ne a rule

set that will allow the computation of the least �xpoint, namely the sets of literals K and

U, by computing the rules only once. In this way, we eliminate the overhead of computing

the least �xpoint by applying rules until no new knowledge is derived, which may require

several iterations over the entire rule set.

In order to highlight the performance di�erences between the two methods, we de�ne

a rule set that forms a single dependency chain, where b is the base relation and i ≥ 1:

ai(X,Y) ← b(X,Y), not ai−1(X,Y).

over the following distribution:

• the base facts are uniform: {b(j, j) | 1 ≤ j ≤ n}. Intuitively, since the dataset

contains facts only for b(X,Y), the aforementioned rule set will produce:

� true literals, for ai(X,Y), where i is an odd number.

88 CHAPTER 6. WELL-FOUNDED SEMANTICS

� no unde�ned literals, since the program is strati�ed.

� false literals, for ai(X,Y), where i is an even number. Recall that false literals

are not included in the knowledge base.

Consider the following program:

a1(X,Y) ← b(X,Y), not a0(X,Y).

and the following fact:

b(1,1)

The strati�ed WFS method requires a single application of the aforementioned rule,

since the program predicates are assigned to ranks as follows:

rank 0: a0, b

rank 1: a1

In general, for i = N , each rule needs to be applied only once, applying rules from rank 1

to rank N , requiring a total of N rule computations, which will be executed over N

MapReduce jobs. On average, the total input is N ∗ (n+ n/2), where N is the number of

ranks and n is the number of facts (note that we include n facts for b and an average of

n/2 facts for each ai). On average, the total output is N ∗ (n/2), where N is the number

of ranks and n is the number of facts.

On the other hand, the full WFS method requires several �inference steps� in order to

reach a �xpoint, with sets of literals K and U being as follows (for i = 1, namely the rule

set consists of one rule):

K0 = {b(1,1)}

U0 = {a1(1,1), b(1,1)}

K1 = {a1(1,1), b(1,1)} : +a1(1,1)

U1 = {a1(1,1), b(1,1)}

K2 = {a1(1,1), b(1,1)} = K1

where �: +a1(1,1)� denotes that K1 - K0 = {a1(1,1)}, while a �xpoint is reached at step 2

since K1 = K2.

For i = 2 (namely the rule set consists of two rules), the sets of literals K and U are

as follows:

K0 = {b(1,1)}

U0 = {a2(1,1), a1(1,1), b(1,1)}

K1 = {a1(1,1), b(1,1)} : +a1(1,1)

U1 = {a1(1,1), b(1,1)} : −a2(1,1)
K2 = {a1(1,1), b(1,1)} = K1

6.2. STRATIFIED VERSUS FULL WELL-FOUNDED SEMANTICS APPROACH 89

where �: +a1(1,1)� denotes that K1 - K0 = {a1(1,1)}, �: −a2(1,1)� denotes that U0 - U1

= {a2(1,1)}, while a �xpoint is reached at step 2 since K1 = K2.

In general, for i = N and n facts for b(X,Y), the full WFS method computes an

initial estimation during step 0, while the computation of the sets of literals K and U

gradually re�nes the estimation until �xpoint is reached. For the aforementioned rule set

and dataset:

d(N + 3)/2e steps are required, if i is an even number

d(N + 4)/2e steps are required, if i is an odd number

Note that the least �xpoint computes each set of literals K and U, thus:

(N + 3) least �xpoints are computed, if i is an even number

(N + 4) least �xpoints are computed, if i is an odd number

We need to apply all N rules in order to compute each least �xpoint. Note that no

rules need to be applied in order to compute the least �xpoint for K0 since the given rule

set contains only negative rules, thus:

(N + 2) ∗N total rule applications are required, if i is an even number

(N + 3) ∗N total rule applications are required, if i is an odd number

with N rules being applied within a single MapReduce job:

(N + 2) MapReduce jobs are required, if i is an even number

(N + 3) MapReduce jobs are required, if i is an odd number

with total input being (until �xpoint is reached):

(N + 2) ∗ (n+N ∗ (n/2)), if i is an even number

(N + 3) ∗ (n+N ∗ (n/2)), if i is an odd number

and total output being (until �xpoint is reached):

(N + 2) ∗N ∗ (n/2), if i is an even number

(N + 3) ∗N ∗ (n/2), if i is an odd number

Thus, the estimated cost of the full WFS method is higher compared to the strati�ed

WFS method, since the full WFS method requires more MapReduce jobs in order to reach

a �xpoint, while each MapReduce job has larger input and output, which in tern translates

into longer execution time. Note that for more complex rule sets, the computation of each

least �xpoint may require an iteration over the entire rule set, thus, further increasing the

cost of the full WFS method compared to the strati�ed WFS method.

6.2.2 Experimental Analysis

Methodology. As described above, we need to propose strati�ed programs that would

allow the evaluation of both the strati�ed and the full WFS method. In addition, the pro-

posed strati�ed programs should minimize the overhead of the full WFS method, namely

90 CHAPTER 6. WELL-FOUNDED SEMANTICS

Ti
m

e
in

 m
in

ut
es

0

2

4

6

8

10

12

14

16

Number of rules (ranks)
0 2 4 6 8 10

 Stratified WFS
 Full WFS

Figure 6.5: Time in minutes as a function of number of rules (ranks), comparing the
strati�ed and the full WFS method.

Table 6.1: Speedup of the strati�ed over the full WFS method.

Number of rules 1 2 3 4 5 6 7 8 9 10

Speedup 3.67 2.29 2.36 1.94 2.09 1.97 2.18 1.97 2.17 2.1

each least �xpoint should be computed within a single MapReduce job, instead of a se-

quence of jobs that apply rules until no new knowledge is derived. Moreover, a single

dependency chain is de�ned in order to allow a transparent way to evaluate the reason-

ing process. Note that our evaluation favors the full WFS method so as to show that

the strati�ed WFS method retains its performance advantages for any given strati�ed

program.

Platform. We have implemented our experiments using the Hadoop MapReduce

framework2, version 1.0.4. We have performed experiments on a PC equipped with 4 cores

running at 2.4GHz, 6GB RAM and 500GB of storage space.

Evaluation test. We de�ne the following rule set that forms a single dependency

chain, where b is the base relation and i ≥ 1:

ai(X,Y) ← b(X,Y), not ai−1(X,Y).

over the following distribution:

• the base facts are uniform: {b(j, j) | 1 ≤ j ≤ n}.

Results. Figure 6.5 presents the runtimes for both the strati�ed and the full WFS

method, over 1 million facts, ranging the number of rules from 1 to 10. It is evident that

the strati�ed WFS method clearly outperforms the full WFS method for the evaluated

2http://hadoop.apache.org/mapreduce/

http://hadoop.apache.org/mapreduce/

6.2. STRATIFIED VERSUS FULL WELL-FOUNDED SEMANTICS APPROACH 91

programs. In terms of speedup, as shown in Table 6.1 the strati�ed WFS method provides

a speedup between 1.94 and 3.67, which depends on the number of rules. It is evident that

for the majority of the tested programs the strati�ed WFS method computes the closure 2

times faster. Note that, for rule sets that require a sequence of rule applications in order

to compute each least �xpoint, the speedup is expected to be even higher.

92 CHAPTER 6. WELL-FOUNDED SEMANTICS

Chapter 7

Conclusion and Future Work

In this chapter we provide our observations from a preliminary investigation on a restricted

form of answer set programming, namely single variable answer set programs. Subse-

quently, a generic evaluation framework for large-scale reasoning is presented, followed by

a discussion of the main �ndings of this work and opportunities for future work.

7.1 Answer Set Programming

7.1.1 Single Variable Programs

In this section, we present a solution for single variable ASP programs. Consider the

following program:

male(X) ← human(X), not female(X).

female(X) ← human(X), not male(X).

and the following facts:

human(pat) human(mary) female(mary)

The name Pat may either refer to a male (Patrick) or a female (Patricia), while Mary is

a well known female name. Thus, this program has two answer sets, namely:

{human(pat), human(mary), male(pat), female(mary)}

{human(pat), human(mary), female(pat), female(mary)}

A typical ASP solver would �rst ground the given program and then compute the

aforementioned answer sets. However, this process can be improved for programs with

one variable. The key observation here is the fact that for each rule, literals in both head

and body are instantiated using the same constant (as X is the only variable). Since this

is true for every rule, we can consider the following program for each constant separately:

93

94 CHAPTER 7. CONCLUSION AND FUTURE WORK

Algorithm 11 Parallel inference based on constants

map(Long key, String value) :
// key: position in document (irrelevant)
// value: document line (a fact)
constant = getConstant(value);
predicate = getPredicate(value);
EmitIntermediate(constant, predicate);

reduce(String key, Iterator values) :
// program: propositional program stored in memory
// key: constant
// values : list of predicates (facts)
Set facts = ∅;
for each v in values
facts.add(v);

ASPSolver solver = ASPSolver.getSolver();
solver.reason(facts, program);
Emit(key , solver.getResults());

male ← human, not female.

female ← human, not male.

Thus, reasoning is performed for pat and mary separately. There are two answer sets for

pat, namely {human(pat), male(pat)} and {human(pat), female(pat)}, and one answer set

for mary, namely {human(mary), female(mary)}.

Such reasoning process reduces both reasoning complexity and space requirements for

answer sets storage. In general, we consider the following parameters:

• k, which is the number of predicates.

• m, which is the number of constants.

• n = k ∗m, which is the number of ground literals.

For the program containing the variable X, there are 2n potential answer sets, since we

need to consider every ground literal. However, by performing reasoning for each constant

separately, the number of potential answer sets is reduced to 2k ∗ m. In addition to this

complexity reduction, we can speed up the process by performing reasoning, either on each

constant or on each subset of predicates, in parallel applying the MapReduce framework.

7.1.2 Parallel Reasoning Based on Constants

In this section, we provide a solution based on the MapReduce framework. Our solution is

based on the concept of grouping given facts based on their constants and performing rea-

7.1. ANSWER SET PROGRAMMING 95

soning for each constant separately, as described in Algorithm 11. Consider the following

program:

male ← human, not female.

female ← human, not male.

The Map function reads facts of the form predicate(constant) and emits pairs of the

form <constant, predicate>. Functions getConstant(value) and getPredicate(value) ex-

tract the constant and the predicate respectively from each value (given fact).

Given the facts: human(pat), human(mary) and female(mary),Map function will emit

the following pairs :

<pat, human>

<mary, human>

<mary, female>

Note that, reasoning is performed for each constant (pat, mary) separately, and in

isolation. Therefore, the MapReduce framework will group/sort the pairs emitted by

Map, resulting in the following pairs:

<pat, human>

<mary, <human, female>>

Each Reduce function has to perform, in parallel, reasoning on an ASP solver (we

assume any available solver that can be imported as an external library). First, Reduce

function reads all the values (predicates) and adds them to facts, which is a set of pred-

icates. We use a generic API de�ning functions such as ASPSolver.getSolver(), which

provides an instance of the available solver. Subsequently, solver.reason(fact, program)

performs reasoning based on the given predicates and the in-memory propositional pro-

gram. Calculated answer sets are extracted from the solver using solver.getResults().

Thus, during the reduce phase the reducer with key:

pat, will emit <pat, <{human, male}, {human, female}>>

mary, will emit <mary, {human, female}>

Note that in case there is no answer set for at least one constant, then no answer set exists

for the given ASP program.

7.1.3 Parallel Reasoning Based on Predicates

An alternative solution for parallel reasoning, using the MapReduce framework, is based

on the idea of grouping given facts according to the set of predicates they form for each

constant and performing reasoning on each set of predicates separately. Consider the

following program:

male ← human, not female.

female ← human, not male.

96 CHAPTER 7. CONCLUSION AND FUTURE WORK

Algorithm 12 Calculating sets of predicates per constant

map(Long key, String value) :
// key: position in document (irrelevant)
// value: document line (a fact)
constant = getConstant(value);
predicate = getPredicate(value);
EmitIntermediate(constant, predicate);

reduce(String key, Iterator values) :
// key: constant
// values : list of predicates (facts)
Set facts = ∅;
for each v in values
facts.add(v);

Emit(facts, key);

Our �rst step is to calculate the sets of predicates for each constant, as depicted

in Algorithm 12. Given the facts: human(pat), human(mary) and female(mary), Map

function will emit the following pairs :

<pat, human>

<mary, human>

<mary, female>

Note that, the calculation of corresponding set of predicates for each constant (pat,

mary) is performed separately, and in isolation. Therefore, the MapReduce framework

will group/sort the pairs emitted by Map, resulting in the following pairs:

<pat, human>

<mary, <human, female>>

Each Reduce function has to calculate and emit, in parallel, the corresponding sets

of predicates. Thus, Reduce function reads all the values (predicates) and adds them

to facts, which is a set of predicates. Finally, both the set of predicates (facts) and the

constant (key) are emitted.

During the reduce phase the reducer with key:

pat, will emit <human, pat>

mary, will emit <{human, female}, mary>

Our next step is to perform reasoning for each set of predicates, as described in Al-

gorithm 13. The Map function reads input of the form <set of predicates, constant>

and emits pairs of the form <predicates, constant>. Functions getPredicates(value) and

getConstant(value) extract the set of predicates and the constant respectively from each

value (group of predicates per constant).

7.1. ANSWER SET PROGRAMMING 97

Algorithm 13 Parallel inference based on predicates

map(Long key, String value) :
// key: position in document (irrelevant)
// value: document line (a fact)
predicates = getPredicates(value);
constant = getConstant(value);
EmitIntermediate(predicates, constant);

reduce(String key, Iterator values) :
// program: propositional program stored in memory
// key: predicates
// values : list of constants
ASPSolver solver = ASPSolver.getSolver();
solver.reason(key, program);
for each v in values
Emit(v, solver.getResults());

Given as input the pairs: <human, pat> and<{human, female}, mary>,Map function

will emit the following pairs :

<human, pat>

<{human, female}, mary>

Note that, reasoning is performed for each set of predicates separately, and in isolation.

Therefore, the MapReduce framework will group/sort the pairs emitted byMap, resulting

in the following pairs:

<human, pat>

<{human, female}, mary>

Each Reduce function has to perform, in parallel, reasoning on an ASP solver (we

assume any available solver that can be imported as an external library). We use a

generic API de�ning functions such as ASPSolver.getSolver(), which provides an instance

of the available solver. Subsequently, solver.reason(fact,program) performs reasoning based

on the given set of predicates and the in-memory propositional program. Finally, Reduce

function reads all the values (constants) and emits, for each constant, the calculated answer

sets. Calculated answer sets are extracted from the solver using solver.getResults().

Thus, during the reduce phase the reducer with key:

human, will emit <pat, <{human, male}, {human, female}>>

{human, female}, will emit <mary, {human, female}>

Note that in case there is no answer set for at least one set of predicates, then no

answer set exists for the given ASP program.

98 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1.4 Final Remarks

Let us elaborate on the advantages of each parallelization technique and the challenges

coming from programs containing rules with multiple variables. Practically, the paral-

lelization technique that is more suitable in each case depends on the given program.

Recall that the number of potential answer sets is reduced to 2k ∗ m, where k is the

number of predicates and m is the number of constants.

Parallel reasoning based on predicates has the advantage that reasoning for each set

of predicates is performed only once. However, for programs containing few predicates,

parallelization may be a�ected as reasoning process can be speeded up by a factor of

2k. On the other hand, for reasoning based on constants, given that the amount of

constants is most likely to be larger that the amount of available nodes in the cluster,

parallelization comes with higher scalability. Clearly, the best approach depends on the

number of predicates and constants, and their distribution within the given program.

In future work, we intend to implement our approach and test it empirically. Cur-

rently this is somewhat hampered by a requirement of the Hadoop MapReduce framework,

namely the ASP solver to be called should be written in Java, and its source should be

available. So far, we were unable to �nd an existing solver implemented in Java with avail-

able source code. We will therefore have to defer experimental evaluation, as implementing

a serial ASP solver in Java is beyond the scope of this thesis.

For programs containing rules with more that one variable, parallelization is more

complex. It is evident that the proposed approach above cannot be directly generalized

for programs that contain more that one variable since such programs, in general, cannot

be partitioned in independent segments. Facts are most likely to be included in several

overlapping subsets, while potential answer sets may be overlapping as well, resulting

in the re-computation of certain parts of the reasoning process. Further investigation is

required is order to devise a scalable and e�cient mechanism for parallel ASP reasoning.

To sum up the above, we provide a list of key theoretical and practical results:

• For single variable ASP programs, complexity can be reduced from 2n to 2k ∗ m,

where k is the number of predicates, m is the number of constants, and n is the

number of ground literals.

• Single variable ASP programs can be parallelized either on constants or on predicates,

where the most e�cient approach depends on the given program.

• An implementation based on MapReduce requires an external ASP solver imple-

mented in Java. Given that currently there is no ASP solver implemented in Java,

one may consider applying the proposed method using a di�erent computing model,

such as OpenMP or MPI.

• The proposed method cannot be directly extended to ASP programs with multiple

variables.

7.2. EVALUATION FRAMEWORK 99

7.2 Evaluation Framework

Here we present our conclusions with respect to experimental evaluation of large-scale

parallel reasoning. Based on our experience, a key attribute is the need to reassure that

the proposed implementation is scalable. Thus, several aspects of the implementation

should be evaluated according to the following metrics.

Dataset. The proposed approach should be evaluated over suitable datasets. Two

main aspects that should be evaluated are: (a) scalability over increasing data sizes and

(b) workload distribution over several data distributions. Datasets may follow diverse dis-

tributions ranging from perfectly even distribution to highly skewed data distribution. As

described in the work of Kotoulas et al. [33] and Duan et al. [62], the fact that Semantic

Web data are highly skewed may result, if not addressed properly, in low degree of par-

allelization. In case real-world datasets are not available, one may use either benchmarks

such as LUBM1 or manually generated datasets resembling the required distribution.

Rule set. Each approach should be evaluated over several rule sets. Two main aspects

that should be evaluated are: (a) scalability over increasing number of rules and (b) system

performance over a variety of rule set structures. For the case of Semantic Web reasoning,

RDFS and OWL-Horst rule sets have been used in the literature. However, for more

general approaches such as defeasible reasoning, manually generated rule sets are required

due to the absence of available benchmarks. In each case, we need to ensure that the

mixture of the evaluated rule sets covers a wide range of domains of application.

Platform. In order to evaluate parallel reasoning, we need to consider a platform that

is able to run either on a cluster con�guration or on the cloud since the system should

be evaluated over increasing number of nodes. In addition, the selected platform should

be able to handle huge amounts of data, while o�ering scalability for up to hundreds or

thousands nodes. In this work we mainly used the Hadoop MapReduce framework2 which

can serve as a highly distributed platform since it is designed to process huge amounts of

data by coordinating up to several thousands nodes.

Evaluation Settings. In a nutshell a system can be evaluated over the following

parameters:

• Runtime, as the time required to calculate the inferential closure of the input.

• Number of nodes performing the computation in parallel.

• Dataset size, expressed in the number of facts in the input.

• Dataset distribution, describing whether dataset follows even or uneven distribu-

tion.

• Rule set size, expressed in the number of rules for a given rule set.

1http://swat.cse.lehigh.edu/projects/lubm/
2http://hadoop.apache.org/mapreduce/

http://swat.cse.lehigh.edu/projects/lubm/
http://hadoop.apache.org/mapreduce/

100 CHAPTER 7. CONCLUSION AND FUTURE WORK

• Scaled speedup, de�ned as s = runtime1node

runtimeNnodes∗N , where runtime1node is the re-

quired run time for one node, N is the number of nodes and runtimeNnodes is the

required run time for N nodes. It is a commonly used metric in parallel processing to

measure how a system scales as the number of nodes increases. A system is said to

scale sublinearly, superlinearly and linearly when s < 1, s > 1 and s ' 1 respectively.

• Compression ratio, a�ecting output size, when compression is used.

7.3 Discussion

This work is the �rst to explore the feasibility of large-scale nonmonotonic reasoning over

huge data sets. In contrast to previously existing works, we dealt with reasoning over in-

consistent or missing information, which requires computationally more complex models.

In particular, we studied the following nonmonotonic logics: defeasible logic (see Chap-

ter 4), well-founded semantics (see Chapters 5 and 6) and answer set programming (see

Section 7.1). Each logic provides a more expressive framework, compared to monotonic

reasoning, for processing available datasets.

Defeasible logic provides an approach for dealing with inconsistency as it supports

rule prioritization, where newly derived knowledge comes from con�ict resolution by apply-

ing the defeasible logic algorithm. In particular, for con�icting conclusions, defeasible logic

examines which rules are applicable (see Section 4.2.2) and determines the �nal deriva-

tions based on the provided rule priorities (see Section 4.2.3). In a sense, conclusions are

separated into con�icting teams, with the team winning the dispute also leading to new

conclusions.

We showed that full defeasible logic can be applied for rule sets that contain one variable

(see Section 4.1). In this setting, facts are grouped based on their corresponding value for

the variable with each group of predicates being fed to a defeasible reasoner for conclusion

derivation. This restricted form of rule sets is fully parallelizable using the MapReduce

framework and can handle billions of facts, providing linear scalability with respect to both

dataset size and number of nodes (for more details see Tachmazidis et al. [12]). However,

there was a clear need for a more general approach since most applications would require

rule sets containing more than one variable.

Our next step was to devise an approach for rule sets with predicates of arbitrary arity

(see Section 4.2). Here we had to consider two types of rule sets, namely strati�ed and non-

strati�ed. We presented a solution for strati�ed rule sets, where rules are grouped based on

conclusion dependencies. In contrast to monotonic reasoning, �red rules are not directly

materialized. Defeasible reasoning is based on recording �red rules (see Section 4.2.2)

and combining them with existing facts, thus dealing with arising inconsistencies (see

Section 4.2.3). The presented approach is scalable for datasets of up to 1 billion facts

coming with good scalability properties (see Section 4.3).

7.3. DISCUSSION 101

Defeasible reasoning can extend existing monotonic approaches by providing an addi-

tional layer of reasoning. In this way, monotonic reasoning is initially performed, while

defeasible reasoning subsequently enriches the knowledge base and resolves arising con-

�icts. However, a generic solution, having the ability to support defeasible reasoning over

non-strati�ed rule sets, is yet to be de�ned (see Section 4.2.4). An existing serial de-

feasible algorithm could be directly parallelized. Nonetheless, it generates an excessive

amount of information, which is prohibiting in the face of Big Data. It remains an open

question whether an approach can be devised, supporting full defeasible logic derivation

and retaining scalability by generating a manageable amount of information.

Well-Founded Semantics is a prominent form of reasoning which allows for conclu-

sion derivation over missing information (see Chapters 5 and 6). Speci�cally, the body of

each rule may contain both positive and negative subgoals (see Sections 5.1 and 6.1.1).

Thus, a conclusion is derived when part of the information is found in the knowledge base

while some information is not included or missing. However, the crucial di�erence is that

recursion through negation is allowed, meaning that the well-founded model can contain

unde�ned atoms. Thus, each literal is classi�ed as true, unde�ned or false (see Chapter 6).

This type of classi�cation, namely literals are assigned one of the three values, pose a

signi�cant scalability barrier as storing all three values would result in storing the entire

Herbrand base, which is prohibiting for Big Data. Thus, we started our investigation from

strati�ed rule sets, initially overcoming the challenge of computing, in parallel, rules that

contain both positive and negative subgoals (see Chapter 5). Note that existing approaches

allowed rules containing only positive subgoals. By restricting the set of allowed rules to

safe rules, namely rules where each variable in the head of the rule also occurs in a positive

subgoal, we managed to propose a parallel and scalable approach for strati�ed rule sets,

where reasoning follows a linear scalability for increasing number of nodes and number of

facts (see Section 5.2).

The main challenge was still present as we could not compute the full well-founded

semantics for a given dataset. The solution came by applying the alternating �xpoint

procedure (see Sections 2.1.9 and 6.1) which allowed the full materialization of the well-

founded semantics by reasoning over and storing only true and unknown literals. As

we showed this approach generates a manageable amount of data and comes with good

scalability properties for datasets of up to 1 billion facts (see Section 6.1.3). In addition,

we utilized several theoretical properties that were introduced in the literature in order to

provide an optimized implementation (see Section 6.1.2). It is evident that the optimized

approach provides better results as it minimizes the recalculation of already computed

information (see Section 6.1.3).

Answer Set Programming (ASP) was probably the most challenging approach to

tackle. Thus, we initially focused on a restricted form called monadic programs, namely

programs where all predicates are of arity one (see Section 7.1.1). Two solutions were

proposed. The �rst solution is based on parallelizing on constants (see Section 7.1.2),

102 CHAPTER 7. CONCLUSION AND FUTURE WORK

where facts are grouped based on the value of the argument for the given predicate. Thus,

each constant contains all predicates that are fed to a standard ASP solver, which is called

as an external library. The main advantage of this solution is the fact that the number of

constants is expected to be larger than the number of nodes, thus providing high degree

of parallelization.

The second solution is based on parallelizing on predicates (see Section 7.1.3). Once

facts are grouped on constants it may become evident that several constants contain the

exact same set of predicates. This leads to a repetitive computation of the exact same

answer sets for several constants. Thus, we regroup facts based on predicates. In this

way, the answer sets for each set of predicates are computed once and emitted for all

corresponding constants. We provide a theoretical analysis for each proposed solution,

while experimental evaluation was deferred due to the lack of existing ASP solver written

in Java.

By dealing with monadic programs we managed to comprehend the complexity of

the general case where alternative world views are computed, namely a given program

may have none, one or more than one answer sets. In addition, answer sets may also

be overlapping, implying that certain parts may need to be recomputed. The presented

approach cannot be directly extended to more general programs as it is based on the

hypothesis that the given program can be partitioned in independent segments. Thus, a

di�erent direction is required in order to provide a parallel and scalable solution for the

general case.

Final remarks. The aforementioned approaches have been developed and tested

mainly over the MapReduce framework. However, a closer examination reveals the fact

that the proposed methods can be implemented using other parallel and distributed meth-

ods such as OpenMP3, Message Passing Interface (MPI)4, Graphics Processing Units

(GPUs) [66], shared memory and distributed memory supercomputers. In fact, our ap-

proach for the well-founded semantics has been implemented and evaluated on top of X10

using a distributed memory setting [17].

Note that the lack of a scalable method for the full defeasible logic and a more general

case of the answer set programming is not attributed to a given parallel programming

model, such as the MapReduce framework. In order to overcome existing limitations, a

better understanding of the underlying theory is required and a more elaborate method,

from a theoretical perspective, should be devised. For the case of defeasible logic, a more

compact reasoning process is required that will eventually allow closure computation,

without the need for Herbrand base instantiation. For the case of answer set programming,

the main issue is the e�cient handling of alternative worlds, namely evaluating alternative

paths towards a solution, in parallel, may not necessarily lead to better performance due to

the excessive searching space size, with currently known e�cient approaches being mainly

3http://openmp.org/wp/
4http://www.mcs.anl.gov/research/projects/mpi/

http://openmp.org/wp/
http://www.mcs.anl.gov/research/projects/mpi/

7.4. FUTURE WORK 103

based on heuristics.

7.4 Future Work

Our study on large-scale reasoning through mass parallelization can be extended in various

dimensions, which are discussed below.

• As mentioned above, for the case of defeasible reasoning, an approach that would

support the full defeasible logic is yet to be de�ned. Such a solution should be

based on two key concepts, namely rule application and conclusion derivation should

be parallelizable, while the application of defeasible algorithm should require the

generation of manageable amount of data.

• An e-commerce application may be developed on top of defeasible logic, providing a

matching mechanism for buyer's preferences and seller's o�ers. The system may re-

solve arising con�icts and provide useful suggestions in order to facilitate the trading

process.

• Reasoning over the well-founded semantics have been studied based on forward chain-

ing, thus computing the full materialization. However, a scalable query-based ap-

proach for the well-founded semantics is another prominent research direction.

• The presented solution for the well-founded semantics may serve as a basis for the

implementation of a scalable approach for decision making in a smart environment

setting [6]. In particular, the implemented system (see Nieves et al. [6]) may bene�t

from an e�cient construction of arguments that will have the ability to operate over

big data.

• Scalable computation of answer sets remains an open question mainly due to the

complexity of the reasoning process. Thus, a di�erent approach (compared to the one

presented in this work) should be followed in order to realize this type of reasoning.

• The absence of existing and well-established benchmarks is clear from this work.

In experimental evaluation, we needed to either generate synthetic data or adapt

existing benchmarks. However, none of the existing benchmarks is designed to pro-

vide a su�cient evaluation of a nonmonotonic approach on the large-scale. Thus, a

novel benchmark should be proposed with the ability to evaluate a given approach

by testing various rule set sizes and levels of complexity, and various dataset sizes

and distributions. Ideally, a thorough examination of existing real-world datasets

would reveal the speci�cations for such novel benchmark.

• Tools and systems having the ability to handle inconsistency could be built based

on the proposed solutions for either defeasible logic or the well-founded semantics.

104 CHAPTER 7. CONCLUSION AND FUTURE WORK

As we showed for defeasible logic, the proposed approach can be used on top of

already existing reasoners, extending the derivation process and further enriching

the knowledge base.

• This work can be integrated in several use cases: (a) smart cities which generate

huge amounts of data, (b) social media which may provide data that lead to con�icts,

and (c) eHealth by dealing with medical records which are considered as sensitive

data and therefore privacy should be reassured.

Bibliography

[1] A. Bikakis and G. Antoniou, �Contextual Defeasible Logic and Its Application to

Ambient Intelligence,� IEEE Transactions on Systems, Man, and Cybernetics, Part

A, vol. 41, no. 4, pp. 705�716, 2011.

[2] J. Du, G. Qi, J. Z. Pan, and Y. Shen, �A decomposition-based approach

to OWL DL ontology diagnosis,� in IEEE 23rd International Conference on

Tools with Arti�cial Intelligence, ICTAI 2011, Boca Raton, FL, USA, November

7-9, 2011. IEEE Computer Society, 2011, pp. 659�664. [Online]. Available:

http://dx.doi.org/10.1109/ICTAI.2011.104

[3] G. Flouris, G. Konstantinidis, G. Antoniou, and V. Christophides, �Formal founda-

tions for RDF/S KB evolution,� Knowl. Inf. Syst., vol. 35, no. 1, pp. 153�191, 2013.

[4] Y. Roussakis, G. Flouris, and V. Christophides, �Declarative Repairing Policies for

Curated KBs,� in HDMS, 2011.

[5] G. Antoniou and F. van Harmelen, A semantic web primer. MIT Press, 2004.

[6] J. C. Nieves and H. Lindgren, �Deliberative argumentation for service provision in

smart environments,� in Multi-Agent Systems. Springer, 2014, pp. 388�397.

[7] G. Antoniou and M.-A. Williams, Nonmonotonic reasoning. MIT Press, 1997.

[8] M. Knorr, P. Hitzler, and F. Maier, �Reconciling OWL and Non-monotonic Rules for

the Semantic Web,� in ECAI, ser. Frontiers in Arti�cial Intelligence and Applications,

L. D. Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz, and P. J. F.

Lucas, Eds., vol. 242. IOS Press, 2012, pp. 474�479.

[9] T. Eiter, G. Ianni, T. Lukasiewicz, and R. Schindlauer, �Well-founded semantics for

description logic programs in the semantic web,� ACM Trans. Comput. Log., vol. 12,

no. 2, p. 11, 2011.

[10] G. Antoniou and A. Bikakis, �DR-Prolog: A System for Defeasible Reasoning with

Rules and Ontologies on the Semantic Web,� IEEE Trans. Knowl. Data Eng., vol. 19,

no. 2, pp. 233�245, 2007.

105

http://dx.doi.org/10.1109/ICTAI.2011.104

106 BIBLIOGRAPHY

[11] M. J. Maher, A. Rock, G. Antoniou, D. Billington, and T. Miller, �E�cient Defeasible

Reasoning Systems,� IJAIT, vol. 10, p. 2001, 2001.

[12] I. Tachmazidis, G. Antoniou, G. Flouris, and S. Kotoulas, �Towards parallel non-

monotonic reasoning with billions of facts,� in KR, G. Brewka, T. Eiter, and S. A.

McIlraith, Eds. AAAI Press, 2012.

[13] I. Tachmazidis, G. Antoniou, G. Flouris, S. Kotoulas, and L. McCluskey, �Large-scale

Parallel Strati�ed Defeasible Reasoning,� in ECAI, ser. Frontiers in Arti�cial Intelli-

gence and Applications, L. D. Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi,

F. Heintz, and P. J. F. Lucas, Eds., vol. 242. IOS Press, 2012, pp. 738�743.

[14] I. Tachmazidis, G. Antoniou, G. Flouris, and S. Kotoulas, �Scalable Nonmonotonic

Reasoning over RDF Data Using MapReduce,� in SSWS+HPCSW, 2012.

[15] I. Tachmazidis and G. Antoniou, �Computing the Strati�ed Semantics of Logic Pro-

grams over Big Data through Mass Parallelization,� in RuleML, ser. Lecture Notes

in Computer Science, L. Morgenstern, P. S. Stefaneas, F. Lévy, A. Wyner, and

A. Paschke, Eds., vol. 8035. Springer, 2013, pp. 188�202.

[16] I. Tachmazidis, G. Antoniou, and W. Faber, �E�cient computation of the

well-founded semantics over big data,� TPLP, vol. 14, no. 4-5, pp. 445�459, 2014.

[Online]. Available: http://dx.doi.org/10.1017/S1471068414000131

[17] I. Tachmazidis, L. Cheng, S. Kotoulas, G. Antoniou, and T. E. Ward, �Massively

parallel reasoning under the well-founded semantics using X10,� in 26th IEEE

International Conference on Tools with Arti�cial Intelligence, ICTAI 2014, Limassol,

Cyprus, November 10-12, 2014. IEEE Computer Society, 2014, pp. 162�169.

[Online]. Available: http://dx.doi.org/10.1109/ICTAI.2014.33

[18] P. Charles, C. Grotho�, V. A. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von

Praun, and V. Sarkar, �X10: an object-oriented approach to non-uniform cluster

computing,� in OOPSLA, 2005, pp. 519�538.

[19] I. Tachmazidis, G. Antoniou, and W. Faber, �Computing Answer Sets for Monadic

Logic Programs via Mapreduce,� in ASPOCP, 2014.

[20] G. Antoniou, J. Z. Pan, and I. Tachmazidis, �Large-scale complex reasoning with

semantics: Approaches and challenges,� in Web Information Systems Engineering -

WISE 2013 Workshops - WISE 2013 International Workshops BigWebData, MBC,

PCS, STeH, QUAT, SCEH, and STSC 2013, Nanjing, China, October 13-15, 2013,

Revised Selected Papers, ser. Lecture Notes in Computer Science, Z. Huang, C. Liu,

J. He, and G. Huang, Eds., vol. 8182. Springer, 2013, pp. 1�10. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-54370-8_1

http://dx.doi.org/10.1017/S1471068414000131
http://dx.doi.org/10.1109/ICTAI.2014.33
http://dx.doi.org/10.1007/978-3-642-54370-8_1

BIBLIOGRAPHY 107

[21] F. Baader, I. Horrocks, and U. Sattler, �Description Logics,� in Handbook of

Knowledge Representation, F. van Harmelen, V. Lifschitz, and B. Porter, Eds.

Elsevier, 2008, ch. 3, pp. 135�180. [Online]. Available: download/2007/BaHS07a.pdf

[22] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison-Wesley,

1995.

[23] D. Nute, �Defeasible logic,� in Handbook of Logic in Arti�cial Intelligence and Logic

Programming-Nonmonotonic Reasoning and Uncertain Reasoning(Volume 3), D. M.

Gabbay, C. J. Hogger, and J. A. Robinson, Eds. Oxford: Clarendon Press, 1994,

pp. 353�395.

[24] A. V. Gelder, K. A. Ross, and J. S. Schlipf, �The well-founded semantics for general

logic programs,� J. ACM, vol. 38, no. 3, pp. 620�650, 1991.

[25] J.-M. Nicolas, �Logic for improving integrity checking in relational data bases,� Acta

Informatica, vol. 18, pp. 227�253, 1982.

[26] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison-Wesley,

1995. [Online]. Available: http://www-cse.ucsd.edu/users/vianu/book.html

[27] S. Brass, J. Dix, B. Freitag, and U. Zukowski, �Transformation-based bottom-up

computation of the well-founded model,� Theory and Practice of Logic Programming,

vol. 1, no. 5, pp. 497�538, 2001.

[28] C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, 2003.

[29] V. Lifschitz, �Answer set programming and plan generation,� Artif. Intell., vol.

138, no. 1-2, pp. 39�54, 2002. [Online]. Available: http://dx.doi.org/10.1016/

S0004-3702(02)00186-8

[30] J. Dean and S. Ghemawat, �MapReduce: simpli�ed data processing on large clusters,�

in Proceedings of the 6th conference on Symposium on Opearting Systems Design &

Implementation - Volume 6. Berkeley, CA, USA: USENIX Association, 2004, pp.

10�10. [Online]. Available: http://dl.acm.org/citation.cfm?id=1251254.1251264

[31] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten Teije, and F. van Harmelen,

�Marvin: Distributed reasoning over large-scale Semantic Web data,� Web Semantics:

Science, Services and Agents on the World Wide Web, vol. 7, no. 4, pp. 305�316, 2009.

[32] ��, �MARVIN: A platform for large-scale analysis of Semantic Web data,� 2009.

[33] S. Kotoulas, E. Oren, and F. van Harmelen, �Mind the data skew: distributed

inferencing by speeddating in elastic regions,� in Proceedings of the 19th International

Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April

download/2007/BaHS07a.pdf
http://www-cse.ucsd.edu/users/vianu/book.html
http://dx.doi.org/10.1016/S0004-3702(02)00186-8
http://dx.doi.org/10.1016/S0004-3702(02)00186-8
http://dl.acm.org/citation.cfm?id=1251254.1251264

108 BIBLIOGRAPHY

26-30, 2010, M. Rappa, P. Jones, J. Freire, and S. Chakrabarti, Eds. ACM, 2010,

pp. 531�540. [Online]. Available: http://doi.acm.org/10.1145/1772690.1772745

[34] E. L. Goodman, E. Jimenez, D. Mizell, S. al Sa�ar, B. Adolf, and D. Haglin, �High-

performance Computing Applied to Semantic Databases,� in Proceedings of the 8th

Extended Semantic Web Conference on The Semanic Web: Research and Applications

- Volume Part II, ser. ESWC'11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 31�

45.

[35] E. L. Goodman and D. Mizell, �Scalable In-memory RDFS Closure on Billions of

Triples,� in The 6th International Workshop on Scalable Semantic Web Knowledge

Base Systems (SSWS2010), 2010, p. 17.

[36] J. Weaver and J. A. Hendler, �Parallel materialization of the �nite rdfs closure for hun-

dreds of millions of triples,� in International Semantic Web Conference, ser. Lecture

Notes in Computer Science, A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum,

D. Maynard, E. Motta, and K. Thirunarayan, Eds., vol. 5823. Springer, 2009, pp.

682�697.

[37] N. Heino and J. Z. Pan, �Rdfs reasoning on massively parallel hardware,� in Proceed-

ings of the 11th International Conference on The Semantic Web - Volume Part I, ser.

ISWC'12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 133�148.

[38] M. Salvadores, G. Correndo, S. Harris, N. Gibbins, and N. Shadbolt, �The design and

implementation of minimal rdfs backward reasoning in 4store,� in ESWC (2), ser.

Lecture Notes in Computer Science, G. Antoniou, M. Grobelnik, E. P. B. Simperl,

B. Parsia, D. Plexousakis, P. D. Leenheer, and J. Z. Pan, Eds., vol. 6644. Springer,

2011, pp. 139�153.

[39] ��, �4sr - Scalable Decentralized RDFS Backward Chained Reasoning,� in ISWC

Posters&Demos, 2010.

[40] M. Salvadores, G. Correndo, T. Omitola, N. Gibbins, S. Harris, and N. Shadbolt,

�4s-reasoner: Rdfs backward chained reasoning support in 4store,� in Web-scale

Knowledge Representation, Retrieval, and Reasoning (Web-KR3), September 2010,

event Dates: September 2010. [Online]. Available: http://eprints.soton.ac.uk/271255/

[41] S. Harris, N. Lamb, and N. Shadbolt, �4store: The design and implementation of a

clustered rdf store,� in 5th International Workshop on Scalable Semantic Web Knowl-

edge Base Systems (SSWS2009), 2009.

[42] J. Hoeksema and S. Kotoulas, �High-performance Distributed Stream Reasoning using

S4,� in Proccedings of the 1st International Workshop on Ordering and Reasoning,

2011.

http://doi.acm.org/10.1145/1772690.1772745
http://eprints.soton.ac.uk/271255/

BIBLIOGRAPHY 109

[43] R. Soma and V. K. Prasanna, �Parallel Inferencing for OWL Knowledge Bases,� in

Proceedings of the 2008 37th International Conference on Parallel Processing, ser.

ICPP '08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 75�82.

[44] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen, �Scalable Distributed

Reasoning Using MapReduce,� in ISWC, ser. Lecture Notes in Computer Science,

A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and

K. Thirunarayan, Eds., vol. 5823. Springer, 2009, pp. 634�649.

[45] J. Urbani, S. Kotoulas, J. Maassen, N. Drost, F. Seinstra, F. Van Harmelen, and

H. Bal, �WebPIE: a Web-scale Parallel Inference Engine.�

[46] J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, and H. E. Bal, �WebPIE: A

Web-scale Parallel Inference Engine using MapReduce,� J. Web Sem., vol. 10, pp.

59�75, 2012.

[47] ��, �OWL reasoning with WebPIE: Calculating the Closure of 100 Billion

Triples,� in The Semantic Web: Research and Applications, 7th Extended Semantic

Web Conference, ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3,

2010, Proceedings, Part I, ser. Lecture Notes in Computer Science, L. Aroyo,

G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral, and

T. Tudorache, Eds., vol. 6088. Springer, 2010, pp. 213�227. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-13486-9_15

[48] A. Hogan, J. Z. Pan, A. Polleres, and S. Decker, �SAOR: template rule optimisations

for distributed reasoning over 1 billion linked data triples,� in The Semantic Web -

ISWC 2010 - 9th International Semantic Web Conference, ISWC 2010, Shanghai,

China, November 7-11, 2010, Revised Selected Papers, Part I, ser. Lecture Notes in

Computer Science, P. F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang,

J. Z. Pan, I. Horrocks, and B. Glimm, Eds., vol. 6496. Springer, 2010, pp. 337�353.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-17746-0_22

[49] K. Wu and V. Haarslev, �A Parallel Reasoner for the Description Logic ALC,� in Pro-

ceedings of the 2012 International Workshop on Description Logics, DL-2012, Rome,

Italy, June 7-10, 2012, ser. CEUR Workshop Proceedings, vol. 846. CEUR-WS.org,

2012.

[50] T. Liebig and F. Müller, �Parallelizing tableaux-based description logic reasoning,� in

On the Move to Meaningful Internet Systems 2007: OTM 2007, ser. Lecture Notes in

Computer Science, R. Meersman, Z. Tari, and P. Herrero, Eds., vol. 4806. Springer,

2007, pp. 1135�1144.

[51] T. Liebig, A. Steigmiller, and O. Noppens, �Scalability via Parallelization of OWL

Reasoning,� in Proceedings of the 4th International Workshop on New Forms of Rea-

soning for the Semantic Web: Scalable and Dynamic (NeFoRS 2010), 2010.

http://dx.doi.org/10.1007/978-3-642-13486-9_15
http://dx.doi.org/10.1007/978-3-642-17746-0_22

110 BIBLIOGRAPHY

[52] A. Schlicht and H. Stuckenschmidt, �MapResolve,� in Web Reasoning and Rule Sys-

tems � 5th International Conference, RR 2011, Galway, Ireland, August 29-30, 2011,

ser. Lecture Notes in Computer Science, vol. 6902. Springer, 2011, pp. 294�299.

[53] Y. Ren, J. Z. Pan, and K. Lee, �Optimising parallel abox reasoning of EL ontologies,�

in Proceedings of the 2012 International Workshop on Description Logics, DL-2012,

Rome, Italy, June 7-10, 2012, ser. CEUR Workshop Proceedings, Y. Kazakov,

D. Lembo, and F. Wolter, Eds., vol. 846. CEUR-WS.org, 2012. [Online]. Available:

http://ceur-ws.org/Vol-846/paper_61.pdf

[54] A. Fokoue, F. Meneguzzi, M. Sensoy, and J. Z. Pan, �Querying linked ontological

data through distributed summarization,� in Proceedings of the Twenty-Sixth

AAAI Conference on Arti�cial Intelligence, July 22-26, 2012, Toronto, Ontario,

Canada., J. Ho�mann and B. Selman, Eds. AAAI Press, 2012. [Online]. Available:

http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5110

[55] G. Antoniou and F. van Harmelen, A Semantic Web Primer, 2nd Edition, 2nd ed.

The MIT Press, March 2008.

[56] J. Maluszynski and A. Szalas, �Living with Inconsistency and Taming Nonmonotonic-

ity,� in Datalog, 2010, pp. 384�398.

[57] R. Mutharaju, F. Maier, and P. Hitzler, �A MapReduce Algorithm for EL+,� in

Description Logics, ser. CEUR Workshop Proceedings, V. Haarslev, D. Toman, and

G. E. Weddell, Eds., vol. 573. CEUR-WS.org, 2010.

[58] M. J. Maher, �Propositional defeasible logic has linear complexity,� CoRR, vol.

cs.AI/0405090, 2004.

[59] D. Billington, �Defeasible logic is stable,� J. Log. Comput., vol. 3, no. 4, pp. 379�400,

1993.

[60] F. N. Afrati and J. D. Ullman, �Optimizing joins in a mapreduce environment,� in In

EDBT, 2010.

[61] K. B. R. Vernica, A. Balmin and V. Ercegovac, �Adaptive Mapreduce using Situation-

Aware Mappers,� in EDBT.

[62] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea, �Apples and oranges:

a comparison of RDF benchmarks and real RDF datasets,� in Proceedings

of the 2011 international conference on Management of data, ser. SIGMOD

'11. New York, NY, USA: ACM, 2011, pp. 145�156. [Online]. Available:

http://doi.acm.org/10.1145/1989323.1989340

[63] F. Fische, �Investigation & Design for Rule-based Reasoning,� LarKC, Tech. Rep.,

2010.

http://ceur-ws.org/Vol-846/paper_61.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5110
http://doi.acm.org/10.1145/1989323.1989340

BIBLIOGRAPHY 111

[64] F. N. Afrati and J. D. Ullman, �Optimizing joins in a map-reduce environment,� in

EDBT, 2010, pp. 99�110.

[65] S. Liang, P. Fodor, H. Wan, and M. Kifer, �Openrulebench: an analysis of the

performance of rule engines,� in Proceedings of the 18th international conference on

World wide web, ser. WWW '09. New York, NY, USA: ACM, 2009, pp. 601�610.

[Online]. Available: http://doi.acm.org/10.1145/1526709.1526790

[66] J. Nickolls and W. J. Dally, �The GPU computing era,� IEEE Micro, vol. 30, no. 2,

pp. 56�69, 2010. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/

MM.2010.41

[67] L. D. Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz, and P. J. F.

Lucas, Eds., ECAI 2012 - 20th European Conference on Arti�cial Intelligence. Includ-

ing Prestigious Applications of Arti�cial Intelligence (PAIS-2012) System Demon-

strations Track, Montpellier, France, August 27-31 , 2012, ser. Frontiers in Arti�cial

Intelligence and Applications, vol. 242. IOS Press, 2012.

[68] A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and

K. Thirunarayan, Eds., The Semantic Web - ISWC 2009, 8th International Semantic

Web Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings,

ser. Lecture Notes in Computer Science, vol. 5823. Springer, 2009.

http://doi.acm.org/10.1145/1526709.1526790
http://doi.ieeecomputersociety.org/10.1109/MM.2010.41
http://doi.ieeecomputersociety.org/10.1109/MM.2010.41

	Introduction
	Research Questions and Contribution
	Thesis Structure
	Publications

	Background
	Preliminaries
	RDF/S
	OWL
	Description Logics
	Datalog
	Defeasible Logic
	Stratified Semantics
	Stratification - Defeasible Logic Versus Stratified Semantics
	Well-Founded Semantics
	Alternating Fixpoint Procedure
	Answer Set Programming

	Computing Models
	MapReduce Framework
	OpenMP
	MPI
	X10

	Related Work
	RDF/S Reasoning
	OWL Reasoning
	Description Logic Reasoning
	Conclusion

	Defeasible Logic
	Single Variable Rule Sets
	Multi Variable Rule Sets
	Reasoning Overview
	Pass #1: Fired Rules Calculation
	Pass #2: Defeasible Reasoning
	Final Remarks

	Evaluation
	LUBM Use Case

	Stratified Semantics of Logic Programs
	Algorithm Description
	Positive Goals Calculation
	Final Goal Calculation
	Special Cases
	Final Remarks

	Experimental Evaluation

	Well-Founded Semantics
	Full Well-Founded Semantics
	Join and Anti-join for WFS
	Computing the Well-Founded Semantics
	Experimental Results

	Stratified Versus Full Well-Founded Semantics Approach
	Theoretical Analysis
	Experimental Analysis

	Conclusion and Future Work
	Answer Set Programming
	Single Variable Programs
	Parallel Reasoning Based on Constants
	Parallel Reasoning Based on Predicates
	Final Remarks

	Evaluation Framework
	Discussion
	Future Work

