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Abstract 
Gesture enabled devices have become so ubiquitous in recent years that commands 

such as ‘pinch to zoom-in on an image’ are part of most people’s gestural vocabulary.  

Despite this, gestural interfaces have been used sparingly within the audio industry. 

The aim of this research project is to evaluate the effectiveness of a gestural interface 

for the control of audio processing. In particular, the ability of a gestural system to 

streamline workflow and rationalise the number of control parameters, thus reducing 

the complexity of Human Computer Interaction (HCI). A literature review of gestural 

technology explores the ways in which it can improve HCI, before focussing on areas 

of implementation in audio systems. Case studies of previous research projects were 

conducted to evaluate the benefits and pitfalls of gestural control over audio. The 

findings from these studies concluded that the scope of this project should be limited 

to two-dimensional gestural control. An elicitation of gestural preferences was 

performed to identify expert-user’s gestural associations. This data was used to 

compile a taxonomy of gestures and their most widely-intuitive parameter mappings. 

A novel interface was then produced using a popular tablet-computer. This facilitated 

the control of equalisation, compression and gating. Objective testing determined the 

performance of the gestural interface in comparison to traditional WIMP (Windows, 

Icons, Menus, Pointer) techniques, thus producing a benchmark for the system under 

test. Further testing is carried out to observe the effects of graphic user interfaces 

(GUIs) in a gestural system, in particular the suitability of skeuomorphic (knobs and 

faders) designs in modern DAWs (Digital Audio Workstations). A novel visualisation 

method, deemed more suitable for gestural interaction, is proposed and tested. 

Semantic descriptors are explored as a means of further improving the speed and 

usability of gestural interfaces, through the simultaneous control of multiple 

parameters. This rationalisation of control moves towards the implementation of 

gestural shortcuts and ‘continuous pre-sets’.  

 

 

 

 

 

 



 4 

Table of Contents 
Copyright Statement.................................................................................................................   2 

Abstract..........................................................................................................................................   3 

List of Figures..............................................................................................................................   7 

List of Tables................................................................................................................................   9 

1 Introduction................................................................................................................... 11 

1.1   The Historical Development and Popularity of Gestural Control.... 11 

1.1.1 Two-Dimensional............................................................................. 12 

1.1.2 Three-Dimensional........................................................................... 12 

1.2   Motivation for the Research Area.............................................................. 13 

1.3  Project Methodology...................................................................................... 15 

1.4   Structure of Thesis.......................................................................................... 17 

2 Traditional Audio Processor Interfaces............................................................. 17 

2.1  Skeuomorphic Design & The legacy of Potentiometers..................... 17 

2.2 Plug-in GUI Controls..................................................................................... 19 

2.3    Plug-in GUI Visualisation............................................................................ 21 

2.4 Semantically Motivated Processor Control............................................. 23 

3 The Use of 2D Gestures in Human - Computer Interaction (HCI) ....... 24 

3.1  2D Gesture Principals.................................................................................... 24 

3.2  Pitfalls of Gestural Interfaces...................................................................... 25 

3.3  Touch Screen Operation............................................................................... 26 

3.4  Examples of two-dimensional Gestural Control in HCI..................... 27 

3.5 Two-Dimensional Gestural Interface Design.........................................    28 

4 The Gestural Control of Audio Systems............................................................ 30 

4.1  Touch-Screen Control.................................................................................... 30 

4.2 Case Studies: Gestural Control of Processing and Mixing................. 33 

 4.2.1   Navigational and Transport Control............................................ 33 

4.2.2   Spatial Control (Panorama and Amplitude) ............................. 34 

4.2.3   Mixing with the Stage Metaphor.................................................. 38  

 4.2.4   Processing and Effects Control..................................................... 39 

4.2.5   Interfaces for Musical Expression................................................ 42 

5 Preliminary Test 1 - Engineer Workflow Observations............................. 43 

5.1  Test Methodology........................................................................................... 43 



 5 

5.2  Emerging Workflow Patterns...................................................................... 43 

 5.2.1 Corrective EQ.................................................................................... 43 

 5.2.2   Creative EQ........................................................................................ 44 

 5.2.3   Compression...................................................................................... 45 

 5.2.4    Gating.................................................................................................. 45 

6 Preliminary Test 2 - User Defined Gesture Elicitation............................... 46 

6.1  Proposed System Structure.......................................................................... 46 

6.2  Test Methodology........................................................................................... 46 

6.3  Results................................................................................................................ 48 

6.3.1   Process Selection.............................................................................. 48 

6.3.2   Compression Control....................................................................... 49 

6.3.3    Gating Control................................................................................... 50 

6.3.4 Equalisation Control........................................................................ 52 

7 Description of the Prototype Gestural Interface............................................ 54 

7.1  Justification and Analysis of the Chosen Development Platform.... 54 

7.2 Prototype Specification................................................................................. 54 

7.3 Hardware........................................................................................................... 55 

7.4       Development Software.................................................................................. 57 

7.5 Limitations of the Development Platform............................................... 58 

7.6 Hardware Specification................................................................................. 59 

7.7 System Structure & Navigation.................................................................. 61 

7.8 An Overview of Gesture Recognition Algorithms............................... 62 

7.9  Gesture Sets...................................................................................................... 63 

 7.9.1    Process Selection.............................................................................. 63 

 7.9.2    EQ Control......................................................................................... 64 

 7.9.3 Compression Control...................................................................... 65 

 7.9.4 Gating Control.................................................................................. 66 

7.10 Implementation............................................................................................... 67 

8 Description of Testing.............................................................................................. 67 

8.1  Equalisation Control..................................................................................... 67 

8.1.1 Test Methodology........................................................................... 68 

8.2 Dynamics Processor Control..................................................................... 70 

 8.2.1 Test Methodology............................................................................ 71 

8.3 Influence of a GUI in the Dynamics Processor Interface................... 72 



 6 

 8.3.1 Description of the Proposed Visualisation............................... 73 

 8.3.2 Test Methodology............................................................................ 76 

8.4    Semantically Motivated Combination of Compression Controls.... 78 

 8.4.1 Parameter Elicitation Process....................................................... 79 

 8.4.2 Test Methodology............................................................................ 83 

9 Results.............................................................................................................................. 86 

9.1  Equalisation Control...................................................................................... 86 

 9.1.1 Target Matching Times.................................................................. 87 

 9.1.2 Participant Preferences and Ratings............................................ 89 

9.2  Dynamics Processor Control....................................................................... 91 

 9.2.1 Adjustments to the Prototype........................................................ 92 

9.3 Influence of a GUI in the Dynamics Processor Interface.................... 93 

 9.3.1 Reference Matching Times - Gating........................................... 94 

 9.3.2 Reference Matching Times - Compression............................... 96 

 9.3.3 Accuracy Measurements................................................................. 98 

9.4 Semantically Motivated Combination of Compression Controls..... 105 

 9.4.1 Comparison of Reference Matching Times.............................. 106 

 9.4.2 Comparison of Interfacing Methods........................................... 107 

10 Discussions and Conclusions..................................................................................  111 

10.1  Evaluation of the Proposed Gesture Set................................................... 111 

10.2 Gestural Interfaces for the Control of EQ................................................ 112 

10.3 Gestural Interfaces for the Control of Dynamics Processing............. 113 

 10.3.1 Suitability of Visualisation............................................................. 114 

 10.3.2 Combination of Controls into ‘Continuous Presets’             

 for Compression................................................................................ 114 

10.4  Possible Applications..................................................................................... 115 

11 Further Work............................................................................................................... 115 

11.1  Gestural Control in More Typical Mix Scenarios................................ 115 

11.2  Enhanced Visualisation................................................................................ 115 

11.3 Exploring the Global Benefits of Non-Locational Controls............. 117 

References..................................................................................................................................... 118 

Appendix A: Touch Screen Operation............................................................................. 127 

Appendix B: Proposed System Structure........................................................................ 133 

Appendix C: Engineer Workflow Observation Hand-Out....................................... 134 



 7 

Appendix D: Gesture Recognition Algorithm Example............................................. 135 

Appendix E: EQ Control Test Hand-Outs....................................................................... 136 

Appendix F: Dynamics Control Test Hand-Outs.......................................................... 139 

Appendix G: SAFE Rationalised Control Questionnaire ......................................... 144 

 

Thesis Body Word Count - 24422 

List of Figures 
Figure 2-1: Skeuomorphism in OSX.......................................................................................  18 

Figure 2-2: Waves API Plug-in................................................................................................. 19 

Figure 2-3: Logic X EQ Plug-in............................................................................................... 20 

Figure 2-4: Pro Tools 10 EQ Plug-in...................................................................................... 20 

Figure 2-5: Melda EQ Plug-in with Sonogram (Melda Production, 2014) ................ 22 

Figure 2-6: SAFE EQ Plug-in................................................................................................... 23 

Figure 3-1: Virtual Book Application Example.................................................................. 24 

Figure 3-2: Vertical vs. Horizontal Touch-Screen Mounting.........................................  26 

Figure 3-3: Examples of Gesture Elicitation Tasks (Hinckley, 2011) ........................ 29 

Figure 4-1: The Slate Raven MTX Mixing Console  

                   (Slate Media Technology, 2014) ...................................................................... 31 

Figure 4-2: Line6 StageScape M20D (Line6, 2014) ......................................................... 32 

Figure 4-3: StageScape ‘Quick Tweak’ Bass EQ Control (Line6, 2014) ................... 32 

Figure 4-4: DAW Control Gesture Set (Balin and Loviscach, 2011) .......................... 34 

Figure 4-5: ‘Motion Mix’ Gesture Recognition System (Ratcliffe, 2014) ................. 36 

Figure 4-6: Gain vs. Panorama (Drossos et al, 2013) ....................................................... 37 

Figure 4-7: Nodal Manipulation on a Soundstage (Carrascal & Jordá, 2011) .......... 38 

Figure 4-8: IIR iPad Visualisation (Madden et al, 2011) ................................................ 39 

Figure 4-9: IIR Xoom Visualisation (Madden et al, 2011) ............................................. 39 

Figure 5-1: Removing Resonance, workflow and control................................................ 44 

Figure 6-1: Most Popular Process Selection Gestures.......................................................  48 

Figure 6-2: Suggested Compression Control Gestures...................................................... 50 

Figure 6-3: Suggested Gate Control Gestures...................................................................... 51 

Figure 6-4: Orientation of Release Control in logic 9....................................................... 51 

Figure 6-5: Suggested EQ Control Gestures........................................................................ 53 



 8 

Figure 7-1: Smartphone Response Time (Dilger, 2013) ................................................. 56 

Figure 7-2: Tablet Response Time (Dilger, 2013) ............................................................. 57 

Figure 7-3: Gesture Direction Detection, sensitivity vs. accuracy................................. 58 

Figure 7-4: iPad Dimensions (based on: Apple 2014a) .................................................... 60 

Figure 7-5: System Navigation................................................................................................. 61 

Figure 7-6: Location of the Shift Button............................................................................... 62 

Figure 7-7: Process Selection Layer plus Alternative Operation................................... 64 

Figure 7-8: Compression Control Gestures........................................................................... 65 

Figure 7-9: Gate Control Gestures and Envelope Explanation........................................ 66 

Figure 8-1: Target EQ Setting 1................................................................................................ 69 

Figure 8-2: Target EQ Setting 2................................................................................................ 70 

Figure 8-3: Compression Target Setting 1............................................................................. 71 

Figure 8-4: Compression Target Setting 2............................................................................. 71 

Figure 8-5: Gating Target Setting 1.......................................................................................... 72 

Figure 8-6: Gating Target Setting 2.......................................................................................... 72 

Figure 8-7: Gate Visualisation Operation............................................................................... 73 

Figure 8-8: Gating Control Visualisation............................................................................... 74 

Figure 8-9: Compression Visualisation Operation............................................................... 75 

Figure 8-10: Compression Control Visualisation................................................................. 76 

Figure 8-11: Hard and Soft Presets of the SAFE Compressor Plug-in.......................... 80 

Figure 8-12: SAFE Preset Interpolation (Ratio vs. Threshold) ....................................... 81 

Figure 8-13: SAFE Preset Interpolation with Extremes..................................................... 82 

Figure 8-14: Reference 1 Compression Setting.................................................................... 84 

Figure 8-15: Reference 2 Compression Setting.................................................................... 84 

Figure 8-16: Reference 3 Compression Setting.................................................................... 84 

Figure 9-1: Mean NTMTs for each Interface and Target.................................................. 87 

Figure 9-2: Negatively Skewed Distribution of WIT-2..................................................... 87 

Figure 9-3: Results of Friedman Test for Statistical Significance of EQ NTMTs.... 88 

Figure 9-4: Frequency of Reasons for the Preference of Gestural Control................. 89 

Figure 9-5: Accuracy Scores for the Gestural EQ Interface............................................. 90 

Figure 9-6: Sensitivity Scores for the Gestural EQ Interface........................................... 90 

Figure 9-7: Revised Rotational Range of Attack and Release Gesture Mapping....... 93 

Figure 9-8: Boxplot to Confirm the Absence of Outliers for Gating NRMTs............. 95 

Figure 9-9: Boxplot to Confirm the Absence of Outlier for Compression NRMTs.. 97 



 9 

Figure 9-10: Compression Accuracy Boxplots..................................................................... 101 

Figure 9-11: Gating Accuracy Boxplots................................................................................. 102 

Figure 9-12: Friedman Test Results for Compression Accuracy.................................... 102 

Figure 9-13: Friedman Test Results for Gating Accuracy................................................ 103 

Figure 9-14: Visualisation Preference Frequencies for Interface Speed and  

                     Accuracy.................................................................................................................. 103 

Figure 9-15: Questionnaire Envelope Shape......................................................................... 104 

Figure 9-16: Bar Graph Illustration of NRMTs for Every Interface Method.............. 109 

Figure 9-17: Accuracy Rating for Each Interface Type - Boxplot................................. 111 

Figure 11-1: Proposed Circular Compression Visualisation............................................ 116 

Figure A-1: Resistive Screen Operation (Finn, 2010) ....................................................... 126 

Figure A-2: Finding X and Y on a Resistive Screen.......................................................... 127 

Figure A-3: The Body’s Influence on a Capacitive Screen (Fujitsu, 2014) ............... 128 

Figure A-4: Capacitive Sensing with Multi-Pads (3M, 2013) ........................................ 129 

Figure A-5: Capacitive Sensing with Rows and Columns (3M, 2013) ........................ 129 

Figure A-6: Ghost Points (Barrett and Omote, 2010) ........................................................ 130 

Figure A-7: Interference Between X and Y Crossing Points (Narasimhan, 2014) ... 130 

List of Tables 
Table 4-1: Motion Mix Times (Ratcliffe, 2014) ................................................................. 37 

Table 9-1: Normalised Target Matching Times (NTMTs) for EQ................................ 86 

Table 9-2: Gating NTMTs.......................................................................................................... 91 

Table 9-3: Compression NTMTs.............................................................................................. 92 

Table 9-4: Gating Visualisation NRMTs............................................................................... 94 

Table 9-5: Gating NRMT Z-values.......................................................................................... 95 

Table 9-6: Compression Visualisation NRMTs................................................................... 96 

Table 9-7: Compression NRMT Z-values............................................................................. 97 

Table 9-8: Compression Accuracy Results........................................................................... 99 

Table 9-9: Gating Accuracy Results........................................................................................ 100 

Table 9-10: NRMTs for ‘Continuous Preset’........................................................................ 106 

Table 9-11: NRMTs of all Interfacing Methods................................................................... 107 

Table 9-12: Accuracy of all Interfacing Methods................................................................ 109 

 



 10 

Dedication. 

 

This Thesis is dedicated to the memory of Ronald Kershaw. With who’s final advice 

to “Keep your nose to the grindstone” was a constant inspiration for the continuing 

pursuit of this research project.  

 

Acknowledgements. 

 

I’d like to thank Steve Fenton for his supervision and guidance throughout the year. 

His repeated encouragement and tuition furthered the horizons of this project and my 

academic career, especially in convincing me to publish AES papers as additional 

work. Berlin 2014 will not soon be forgotten.   

 

Thanks to the Music Technology Students & Staff of Huddersfield University and 

Blackpool Sixth Form for volunteering to take part in numerous interface tests. I 

couldn’t have done it without you all.  

 

And finally, thanks to my parents & family, for supporting and understanding my 

desire to ‘stay in school’.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

1 - Introduction 
A gesture can be broadly defined as a communication through movement (Nielson et 

el, 2008). The human endeavour to communicate fluently using gestures has produced 

incredibly elaborate sign languages that facilitate the non-verbal articulation of 

endless emotions, observations and ideas. Conversation between people that are 

experienced in sign language can seem as effortless as it is instantaneous. They 

display a level of fluidity and complexity that current methods of Human Computer 

Interaction (HCI) are, as yet, unable to achieve. Notably, A start-up company called 

‘Motionsavvy’ hope to change this by developing a Leap-Motion based translator 

between sign language and speech (Steinmetz, 2014). The technological challenge 

lies in developing a system that can interpret and process the intricacies of complex 

hand gestures. If a gesture recognition system could capture and process all the subtle 

nuances of a hand gesture, then interaction with software could be vastly improved. 

Workflow would be streamlined and usability heightened. The ultimate goal of HCI 

development is to remove as many boundaries between the user and the computer as 

possible, making communication with a digital system fluent and intuitive. The 

intrinsic characteristics of gestural control, such as the ability to execute them without 

a GUI (Graphical User Interface), can offer improvements over ‘soft buttons’ 

(Bragdon et al, 2011). This project evaluates the suitability of a gestural interface for 

the control of real-time audio processing, with the intent of removing some of the 

boundaries between the mix engineer and the audio data stream. Thus enabling a 

more immersive mixing experience. The project aims to conclude whether a gestural 

approach could rationalise the mix environment by reducing the complexity often 

present in WIMP (Windows, Icons, Menus, Pointer) (Hinckley & Wigdor, 2011) 

GUIs.  

1.1 - The Historical Development and Popularity of Gestural Control 
Technological advances have allowed the proliferation of gestural HCI platforms. 

There are two main branches of gestural control, two-dimensional and three-

dimensional. These have primarily remained separated by differing gesture 

recognition techniques, touchscreen and freeform (Dan Saffer, 2009). 
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1.1.1 - Two-Dimensional 
Two-dimensional gesture recognition systems typically employ a touch surface to 

gather x-y coordinate information about the user’s movements. The development of 

multi-touch sensitive screens provided a platform to implement numerous two-

dimensional gestures. Bob Boie produced some of the earliest of these systems at Bell 

Labs in the early 80s (Dan Saffer, 2009). This innovation opened the doors to more 

intricate gestural control, where users were no longer confined to the WIMP ‘point 

and click’ environment or single touch ‘pen gestures’ (Long et al, 2000). Bill Buxton, 

a computer science professor at the University of Toronto, was a pioneer of the 

developing technology and began working with multi-touch surfaces in 1984 (Buxton, 

2014a). Buxton was also a music enthusiast and advocates the use of gestural 

interfaces for the control of audio, praising early products such as the Roland CF-10 

‘digital fader’ touch-sensitive MIDI interface for offering more fit-for-purpose 

methods of sound manipulation (Buxton, 2014b). 

 

Interest in multi-touch was significantly popularised by Jeff Hann, demonstrating his 

work producing cheap, scalable touch surfaces at a TED convention in 2006 (Heller, 

2011). His design also included pressure sensitivity, which is a feature that remains 

unimplemented in modern touch screen devices (Park and Nieto, 2013). This 

technology exhibited a practical ‘third dimension’ of gestural data that could be 

detected on a platform formerly limited to two dimensions. Mainstream exposure of 

multi-touch was achieved when Apple were granted a patent for a method which 

determined touch-commands by applying heuristics in 2009 (Apple Inc, 2009). 

 

At present, Multi-touch gestural recognition is incorporated into the vast-majority of 

modern touchscreen devices such as smartphones and tablets (Yap, 2010). This 

increased popularity has made the ‘pinch to zoom’, ‘rotate to pan’ and ‘swipe to turn 

page’ a common feature of most peoples gestural vocabulary. The technology is now 

so ubiquitous that it could be argued modern-day users have a tacit and instinctive 

understanding of touch-screen interaction.  

1.1.2 - Three-Dimensional (Freeform) 
One of the first appearances of three-dimensional (or freeform) gestural control was 

the invention of the Theremin in 1928. The Theremin is a device that enables a user to 
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control the pitch and volume of a synthesizer with the movement of their hands in 

relation to two antennas (Hammond, 2000).  

 

The gaming industry has proved to be an area that has proliferated gestural control. 

Devices such as the X-box kinect and Nintendo Wii have proved very popular in 

consumer markets (BBC, 2011). They employ a combination of accelerometers and 

infrared (IR) sensors to detect the movement and relative position of a user, with the 

hope of giving them a more immersive game-playing experience. Freeform gestures 

have received criticism in the past for the lack of haptic feedback or tactile controls 

making the interface feel unnatural, but advances in technology are starting to make it 

more practical in areas other than gaming (Elgan, 2014). In particular, the Leap 

Motion, a compact infrared gesture recognition system designed for use with a laptop, 

has been used in medical applications. Primarily because its touch-less operation 

inhibits the spreading of germs, but its accuracy and intuitiveness have also been 

hailed as a contributing factor (Gupta, 2014).  

 

1.2 - Motivation for the Research Area  
It seems that gestural control has been incorporated sparingly in pro-audio systems. 

This is in contrast to positive trends in consumer markets (Matthews, 2013). Which is 

particularly surprising when audio mixing and processing has moved further into the 

digital domain, thus simplifying the development of novel control methods. One of 

the hurdles has been the tendency for engineers to prefer familiar, tactile interfaces. 

This is made clear by the popularity of digital control surfaces in an age where the 

majority of processing is available “in the box” (Korff, 2014). Engineers prefer to 

have a ‘hands on approach’ to mixing as it can contribute towards a more efficient 

workflow (Sound on Sound, 2012). However, most control surfaces are confined to 

using pots and faders. This limitation is paralleled by DAW (Digital Audio 

Workstation) GUIs, where skeuomorphic (based on real-world objects) designs are 

often chosen to offer familiarity over enhanced usability. The ‘banks of faders’ 

paradigm is one of the most prevalent examples of skeuomorphic design within 

DAWs. It is hypothesised that gestural control could allow a mix engineer to feel 

more ‘connected’ to the audio and provide a more immersive mixing environment. 

Additionally, it is believed that gestures could help to rationalise and simplify 
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engineer workflow, where current methods could be described being inefficient and 

heavily regimented (Diamante, 2007). 

 

One of the inherent benefits of a gestural interface is the ability of users to learn the 

associated movements through muscle memory, much like playing a musical 

instrument (Bates, 1994). Will engineers experience any benefits from learning a 

gesture set in order to remove the ‘visual barrier’? This research project aims to 

answer this question while evaluating the suitability and design of a gestural interface 

for the control of audio processing.  

 

In order to focus the scope of the project, testing was limited to three of the most 

common audio processes: equalisation, compression and gating. Reverb was 

considered an equally popular effect, which has been omitted due to time constraints. 

Furthermore, Madden et al (2011) have previously conducted a comprehensive study 

on the gestural control of reverb. Following audio interface design guidelines laid out 

by Dewey and Wakefield (2014), the intended user and purpose of the interface were 

clearly defined at an early stage in the project so that relevant existing products and 

research could be evaluated accordingly. It was concluded that the interface should be 

suitable for any potential DAW user, from beginners to frequent experts. The project 

was also limited to single channel processing, with navigational elements such as 

track changes and transport-operations being excluded from testing.  

 

It was decided through the analysis of existing products and previous studies that two-

dimensional gestures would be used. This decision was also based on assessments of 

the purpose and context of a DAW interface. Firstly, the ideal interface should offer a 

high degree of accuracy and precision. It was clear from the literature study that this 

was less attainable on current three dimensional gesture recognition technologies 

(Lech and Kostek, 2013)(Selfridge and Reiss, 2011). Secondly, touch screens are a 

more familiar platform to the target-user, which helps to reduce interface-

familiarisation times during tests. This report continues to discuss three-dimensional 

systems where they have been used for relevant audio processing tasks. The author 

concedes that audio is intrinsically three-dimensional.  In other words it can be 

logically represented in three domains: frequency, time and amplitude. However, this 
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project aims to optimise the interface through simplification of controls, thus the 

mapping of parameters to two-dimensional movements is considered more suitable.   

1.3 - Project Methodology 
Following initial planning, the first stage of the project was a literature review. This 

looked extensively at the use of gestural technology in existing products and how 

academic studies have explored its possible implementation in audio applications. 

Some investigation into general HCI concepts and interface design was required to 

provide a knowledge base for the project, but most literature covered was audio-

specific.  

 

Preliminary testing was carried out to understand the way in which engineers interact 

with DAW software using traditional interfaces. By observing the workflow of 

engineers using a traditional WIMP interface, the more cumbersome control-

processes were identified. This helped contextualise the steps taken in a typical mix 

scenario, which could consequently be rationalised for the proposed gestural 

interface.  

 

After observing engineer workflow, the elicitation of a user-defined gesture set was 

achieved through surveys and testing with audio engineers. At this stage, no 

constraints were placed on participants, therefore encouraging their creativity and 

avoiding the generation of an ‘over-determined’ taxonomy of gestures (Hydencorn et 

al, 2010). The priority was to obtain a wide range of gesture-parameter associations 

and provide an average model for the first prototypes. The gesture elicitation tests 

adhered to the ‘conscious, top-down’ methodology (Nielson et al, 2003), which will 

be discussed further in Chapter 6. 

 

Following the elicitation of user-defined gestures, the first prototype could be 

developed. A significant amount of objective-C programming research was required 

to implement the technology included in the prototype. This has been omitted from 

the report.  
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Prototype Testing was split into two sections: equalisation (EQ) and dynamics 

processing. This was in order to break-up test times so that participants did not 

become fatigued, as well as helping to distinguish between the two mixing concepts.  

 

Initial prototype testing prompted the exploration of appropriate GUIs as a method of 

improving the interface. A novel visualisation method was produced, the testing of 

which evaluates whether a more representative GUI can improve the effectiveness of 

a gestural control system.  

 

Further improvements to the interface are suggested through the combination of 

parameters into a higher-level rationalised control. This is referred to as a ‘gestural 

shortcut’ or ‘continuous preset’ that was created through the analysis of research into 

semantic audio descriptors. Testing was carried out to investigate whether a higher-

level semantically motivated control could offer suitable accuracy to mix engineers. 

 

Adjustments to the prototype were made between testing stages, but not between test 

subjects. For example, if it was discovered during EQ testing that the interface was 

too sensitive, informed changes would be made to the compression and gating 

controllers. Any significant alterations to the prototype have been detailed and 

justified in this report.  

 

Statistical analysis of test results was performed using the IBM software package 

SPSS to assess whether results were statistically significant. Data from test results are 

presented graphically so that some conclusions can be drawn through inspection. 

Immediate observations of the test results are explored after their presentation. 

However, any factors that influence the project as a whole are reserved for the 

discussions and conclusions section of the report.  

 

The discussions section will evaluate the significance of the test results. The aim of 

this section is to propose an ideal model for a gestural audio-processing interface. The 

final sections of the report will consider the possible implications on the audio 

industry, any ongoing work and where further work could be directed.  
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1.4 - Structure of Thesis 

Chapter 1 introduces the project. 

Chapters 2 to 4 make up the literature review. 

Chapters 5 and 6 discuss the methodology and present results from the preliminary 

tests. These are presented earlier on in the report in order to identify the influence of 

their results on the design of the prototype and subsequent tests.  

Chapter 7 describes the first Gestural Interface Prototype. 

Chapter 8 discusses the test methodologies. 

Chapter 9 presents the test results. 

Chapters 10 and 11 discuss the conclusions of the project and any future work. 

2 - Traditional Audio Processor Interfaces 
This chapter will examine a range of processor interfaces and aims to evaluate their 

usability. Close attention will be paid to the mapping of control parameters and their 

orientation. For example, why should the clockwise rotation of a virtual potentiometer 

increase volume? If the control were labeled “attenuation” it would effectively serve 

the same purpose, with reversed operation. An engineers association with orientation 

and the directionality of controls has particular relevance to the mapping of gestures. 

It determines whether the most intuitive direction of motion (advancing or retreating) 

is equivalent to the corresponding parameter change (increasing or decreasing). 

2.1 - Skeuomorphic Design & The Legacy of Hardware  

Skeuomorphism is the act of basing a software GUI design on an existing real-world 

product (Judah, 2013). Its use is widespread throughout most operating systems as a 

design technique that helps the user feel more comfortable and familiar in a digital 

environment. For example, the ‘Outlook’ e-mail logo in Windows operating systems 

mimics a real-world enveloped letter and OSX still uses a ‘trash can’ logo for the area 

in which items are deleted from the hard-drive. Many designers are trying to move 
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away from skeuomorphism; Jonathan Ive (of Apple Inc) argues that customers no 

longer require it for a sense of familiarity because modern users are so comfortable 

interfacing with digital devices (Worstall, 2013). Figure 2-1 displays a typical set of 

skeuomorphic designs from the Apple OSX dashboard. 

 

Figure 2-1 Skeuomorphism in OSX 

The same could be said from an audio-engineering perspective, the next generation of 

engineers will be more experienced mixing “in the box” than on the original 

hardware. Some of these engineers may never have seen the hardware that plug-in 

packages so famously emulate.  

 

In digital audio interfaces, skeuomorphism relates specifically to the emulation of 

hardware and the mapping of audio parameters to familiar controls in the GUI. This is 

often for aesthetic reasons, particularly when a plug-in has been developed with an 

algorithm that sonically replicates a piece of hardware, it would seem logical to base 

the GUI on the original unit. Figure 2-2 displays one such plug-in from Waves with a 

design that emulates an API compressor, both sonically and graphically (Waves, 

2014). 
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Figure 2-2 Waves API plug-in  

The influence of the GUI on the outcome of a mix is a widely debated topic. Some 

argue that increased reliance on visual cues has the potential to distract an engineer 

from the sonic output of a mix, resulting in a popular mix-technique whereby an 

engineer turns off their screens to help improve the accuracy of listening sessions 

(Porter, 2011). An investigation by Mycroft et al (2013) appeared to show that the 

GUI had no statistically significant influence on the listening skills of the engineer. 

However, this study did not take into consideration the control methods, only the 

complexity of the visualisation. It could be the case that retrofitting analogue controls 

into digital systems is a decision that compromises the performance of the interface in 

favour of familiarity. Some designers see gestures as a fast and effective control 

technique that can be impeded by the skeuomorphic GUI paradigm (Pratas, 2013). It 

is concluded through investigation by Bragdon et al (2011) that gestural control offers 

numerous benefits over ‘soft-button’ navigation. Including, but not limited to: 

simplifying the GUI, reducing ‘attentional load’ and increasing interaction 

performance when multi-tasking.  

2.2 - Plug-in GUI Controls 
As discussed in the previous section, the GUIs of some plug-ins are deliberately 

modelled on existing hardware. However, this design is often adopted by other 

systems in order to maintain familiarity and consistency across the software package. 

It could be argued that hardware emulation is not the most appropriate representation 

for the interface. In the case of DAWs, one of the most common plug-in interfacing 

techniques is WIMP (Windows Icons Menus and Pointer), mouse and keyboard, 

operation. One downside to this environment is the inability to easily adjust controls 
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simultaneously (hence pointer and not pointers). For example, an engineer using a 

rack-mounted hardware compressor has the advantage of being able to use both hands 

and change the ratio and threshold settings at the same time. This is not immediately 

possible with WIMP interfacing methods. Ultimately this has led to software plug-ins 

that emulate hardware as far as aesthetics, where it is impossible to offer the same 

amount of control as the physical device. One solution to this problem is through the 

use of hardware control surfaces, where tactile controls such as knobs and faders are 

mapped to the plug-in parameters and controlled via MIDI. However, the varying 

idiosyncrasies and vast range of plug-in GUI styles can make this an impractical 

method of control. Therefore, some existing plug-ins address the problem by making 

their GUIs more suitable for ‘in-the-box’ operation.  

 

Most engineers will be familiar with the X-Y orientated equalization interface, where 

parameters are mapped as Frequency (x) against Gain (y). Figures 2-3 and 2-4 display 

the EQ plug-ins included in Pro-Tools 10 and Logic X. 

 

Figure 2-3 Logic X EQ plug-in 
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Figure 2-4 Pro Tools 10 EQ plug-in 

Both of the above GUIs employ an x-y interface where the EQ response can be 

changed through the manipulation of ‘nodes’. Both plug-ins allow the user to adjust 

the gain, center frequency and Q-factor by clicking and dragging the nodes in some 

way. Notably, the latest iteration of Logic’s EQ has been criticised for altering the 

way that Q-factor is changed (Michael, 2014). To change Q-factor, the user now has 

to release the node and select a separate ‘vertical boundary’ rather than holding a 

keyboard shortcut and using the same node, as shown in figure 2-3. This has been 

described as inefficient because it adds another step to the workflow. Users seem to 

prefer increased controller complexity, or the addition of mode-indicators (such as 

keyboard shortcuts), in place of moving between locations on a GUI. A gestural 

system would require minimal changes in location or ‘active areas’. It is clear that the 

logic X plug-in has made more of a defined movement away from traditional controls. 

Whereas Pro-tools designers have chosen to include both an ‘x-y’ and a conventional 

‘rotary potentiometer’ based control system. Having two sets of controls for the same 

parameter doesn’t seem like the best solution to optimise space on a GUI. There is a 

compromise that results in the inclusion of more than one control for a single 

parameter. This can be troublesome in a GUI, as they have limited on-screen space 

and can become too ‘busy’ in their design (Mycroft et al, 2013). A range of gestural 

controls could help to free-up space in the GUI (Bragdon et al, 2011). More detail on 

the preference of control types is presented during the Workflow Observations in 

Chapter 5.  
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2.3 - Plug-in GUI Visualisation 
Although this project focuses on the control of plug-ins, a number of solutions offer 

direct interaction with visualisations as a method of manipulating the audio (as with 

the manipulation of the EQ curve in the Logic X plug-in). Visualisations are 

commonplace in plug-in GUIs as a way of assisting engineers with the mix process. 

For example, many modern EQ plug-ins include a spectrogram function, where a 

graphic representation of frequency domain information is presented to help engineers 

identify the frequency content of the audio. The Melda suite of EQ plug-ins advances 

this idea by including time-domain information in the form of a scrolling sonogram, 

as shown in figure 2-5 (Melda Production, 2014). 

 

 

Figure 2-5 Melda EQ plug-in with Sonogram (Melda Production, 2014) 

This is an example of visualisation that exceeds the skills of an engineer, and assists 

them accordingly. An engineer might find it easy to identify frequency content of a 

mix, but to remember this information at snapshots in time as a track changes is a lot 

more challenging (certainly this could be considered impossible at the resolution that 

a sonogram offers). In this case the visualisation directly influences the control 

method.  

 

A number of pitfalls can arise when engineers begin to rely on visualisation over (or 

in conjunction with) auditory information. The ventriloquism effect (or image 
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proximity effect) describes a perceptual phenomenon whereby a listener’s localization 

of a sound source can be distorted by visual stimulus (Lech and Kostek, 2013). This is 

famously observed in the illusion of ventriloquist performances, where the audience is 

misdirected into localising the audio source as the ventriloquist’s doll. Schutz and 

Lipscomb (2007) conducted a more musical investigation into this phenomenon, 

where test participants were asked to rate the length of a number of notes played on a 

marimba with and without viewing different performances of the note. They found 

that showing performances of sustained notes with the audio from short notes made 

the perceived note length longer and vice-versa. An example of the implications of 

this effect in the context of a Plug-in visualiser could be the graphical latency of a 

Loudness meter (or VU meter) making a transient audio source seem to have a longer 

sustain.   

 

A further, potentially misleading, area of the GUI is the presence of parameter values. 

Cochrane (2013) argues that parameter values are a good guideline to the starting 

point of a mix, but pre-conceptions about ‘suitable settings’ (or any visual aspect of a 

DAW) shouldn’t influence mix decisions. A gestural interface has the potential to 

bypass these problems by enabling the imageless control of audio processers through 

memorised gestures. Allowing mixing to continue once the screen has been turned 

off.  

2.4 - Semantically Motivated Processor Control 
The Semantic Audio Feature Extraction (SAFE) project aims to understand the 

linguistic associations with parameter settings (Stables et al, 2014). For example, if an 

engineer describes a compression setting as “Punchy”, how would they map to the 

controls? The project works by offering free downloads of the plug-in suite so that 

engineers can contribute their settings for each semantic descriptor, an average of 

these contributions is then taken and offered as a ‘ideal setting’ for the corresponding 

descriptor. Figure 2-6 illustrates the suggested EQ response for a ‘warm’ sound. 
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Figure 2-6 SAFE EQ plug-in 

An issue to consider with this elicitation process is that the settings are source-

dependent and engineers will be using a range of varying sources. However, a large 

enough average would represent an ‘ideal’ setting, furthermore the study includes 

more specific presets such as ‘warm vocal compression’ and ‘rock kick drum 

compression’ that would help make the parameters more contextually accurate. By 

offering ‘semantically motivated presets’ the SAFE project aims to improve workflow 

for less experienced engineers. These presets can represent a good ‘starting point’ for 

plug-in parameters and offer a semantic shortcut that has the potential to speed up the 

mixing process for both novices and experts.  

3 - The use of 2D Gestures in Human-Computer Interaction 
This chapter will explore the general application of gestures as a way of interfacing 

with computers. It will aim to evaluate the effectiveness of gestures in other 

applications so that design decisions can be made on the control of audio processes. 

3.1 - 2D Gesture Principals  
Gestural controllers have been successfully implemented in a wide range of 

applications and are subsequently commercially available in multiple incarnations. 

Types of gesture systems range from simple, single touch screens (Amazon, 2014) to 

sophisticated multi-point, three-dimensional interfaces (Leap Motion Inc, 2014). This 

broad availability can be attributed to the numerous contexts where gestural control 
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has been deemed as an advantageous form of HCI. The initial design of a gesture 

system should evaluate the appropriate User Input for the Purpose of Communication 

to determine the required level of gestural complexity. Generally the purpose will 

either be communicative or manipulative (Westerman and Elias, 2001). Take, for 

example, the skeuomorphic ‘virtual book’ application demonstrated in figure 3-1, 

where the user can use the touch-sensitive screen to turn a page with a gesture. 

 

Figure 3-1 Virtual Book Application Example 

An appropriate and sufficient level of input would be a single touch, where the 

purpose is to simulate the turning (manipulation) of a page. Further analysis can be 

done to identify the type of gesture that is being used. Gestures can be fundamentally 

defined by three classifications (Nielson et al, 2008): 

• Static - motionless gestures such as taps. Note that these taps could be multi-

point and reiterative. 

• Dynamic - Moving gestures. 

• Spatiotemporal - A type of dynamic gesture that requires analysis over time. 

The most common implementation of this is the drawing of shapes or letters.  

Additionally, most gestures can be classified by whether they represent real-world 

actions or just arbitrary control allocations (Westerman and Elias, 2001): 

• Mimetic - movements that imitate an action. These are most commonly 

continuous. 

• Semaphoric - “Gestures from a dictionary of abstract symbols” (Balin and 

Loviscach, 2011). Derived from semaphores (signaling with flags). 

• Deictic - acts of pointing. These are most commonly static. 

The virtual book example is a single-touch, manipulative dynamic-gesture, which is 

also mimetic (imitating the real-world interaction with a book). If the application 
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interface required a user to tap on the page to navigate through a book, this would be 

a single-touch, manipulative static gesture, which does not emulate a real world action 

and is therefore deictic.  

3.2 - Pitfalls of Gestural Interfaces 
One of the most widely discussed challenges when designing a gesture-system is in 

overcoming the ‘Midas Touch’ problem (Nielson et al, 2008). ‘Midas’ refers to ‘King 

Midas’, a character from Greek mythology whose touch turned objects into gold. 

Initially a blessing, this power transpired to be troublesome, turning everything he 

touched, including his daughter, into gold. The metaphor relates to the consideration 

of whether a gesture is being performed in a gestural recognition system. A system 

that was too sensitive might unintentionally interpret a user’s movements as a gesture, 

or “turn every movement into a gesture”. This can make the interface unstable and 

unnatural by restricting the user’s ‘idle movements’.  

 

An issue with touch screens that has been highlighted by numerous sources is their 

prolonged use becoming uncomfortable to the user. Apple famously decided not to 

follow suit with other manufacturers in adding touch screen technology to their 

laptops. Apple designers claimed that product testing found that it was “awkward and 

uncomfortable” to repeatedly reach forward and touch the laptop screen (Tibken, 

2014). Balin and Loviscasch (2011) experienced issues with touch screen orientation, 

they discovered that users find it easier to read from a screen that is mounted 

vertically, but it was more uncomfortable to use than a horizontal surface. This 

orientation compromise has been illustrated in figure 3-2. 
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Figure 3-2 Vertical vs. Horizontal Touch Screen Mounting 

Another, more fundamental, issue with touch screens is that repeated use can result in 

a build up of dirt and grease on the screen, which can impair smooth interaction with 

the device (Sullivan, 2012). 

3.3 - Touch Screen Operation 
A detailed explanation of touch screen technology is presented in Appendix A ‘A 

Technological Overview of Touch Screens’. An understanding of touch screen 

operation is not essential for the comprehension of this report, although it is important 

to take note of the high touch-resolution of modern capacitive touch screens and the 

resulting gestural-recognition accuracy that this enables.   

3.4 - Examples of Two-Dimensional Gestural Control in HCI 
Two Dimensional Gestural Control has become ubiquitous in a wide variety of 

applications. The popularity of multi-touch enabled surfaces has allowed software 

engineers to incorporate gestures as controllers and shortcuts in their programs. One 

of the first incarnations of this open-platform development relationship was the 

addition of multi-touch ‘Trackpads’ to Apple Macbooks. Large software companies 

such as Adobe offer gestural integration with their applications. For example, while 
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using Adobe Photoshop, the rotate gesture will rotate the canvas, while the pinch 

gesture can be used to zoom in and out (Osbourne, 2011). 

 

A number of third party applications allow users to change the default gesture-set 

provided within the Apple operating system. Programs such as ‘BetterTouchTool’, 

‘Magic Prefs’ and ‘JiTouch’ facilitate the mapping of customised gestures to a range 

of functions, keyboard shortcuts and macros (Appleyard, 2010). The popularity of 

these apps signifies the idiosyncratic nature of gestural control, with a high population 

of users disagreeing with the default gesture settings and opting instead for a unique, 

tailored gesture set.  These tools are commonly used as a method of speeding up 

workflow with gestural shortcuts (Guinness, 2014).  

 

Gestural control has begun to be implemented successfully in industries outside of 

audio. The automotive industry is exploring the use of gestures to control in-car-

entertainment as it allows drivers to keep their eyes on the road. The car manufacturer 

Ford recently patented a number of 3D gestural controls that are used to adjust in-car 

entertainment and comfort settings, such as temperature and airflow (Ford Global 

Technologies, 2013). The concern with a design like this is the prevalence of Midas 

Touch errors. If a driver is aware that the gesture system is constantly monitoring 

their movements, they might begin to feel constrained. Other companies offer touch 

screens as a viable platform for gestural control (Krenn, 2014). A review of one such 

system praises the ability to control in-car features while keeping eyes on the road, 

but criticises the need to learn a large number of gestures (Lunderschmidt, 2014). 

However, other apps have proven the desirability and usability of gesture controlled 

app interfaces, such as ‘carTunes’ an app that incorporates gestures so that users can 

control their music library without looking at their iOS device (Virgil, 2012). 

 

The gaming industry has been instrumental in the popularisation of gestural control. 

One of the earliest examples in mainstream gaming, as identified by Payne et al 

(2006), is in the 2001 PC game ‘Black and White’, by Lionhead Studios. To simplify 

the interface of this complex game, single-touch spatiotemporal gestures were used to 

replace menus and icons, thus ‘increasing the user’s immersion’ in the gameplay. The 

same space-saving techniques are routinely incorporated into applications on the 

smartphone gaming platform. This can be particularly beneficial in large-scale games 
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where multi-touch recognition allows navigation buttons to be replaced by gestures. 

For example, the smartphone game ‘SimCity - BuildIt’ supports pinch and rotate 

gestures that allow users to seamlessly “explore [their] 3D city with 360-degree 

controls” (Lilly, 2014). Previous single-touch incarnations of the game required a 

cumbersome navigation panel.  

3.5 - Two-Dimensional Gestural Interface Design 
A number of guidelines exist that detail the considerations that should be made when 

designing a gestural interface. 

 

Hinckley (2011) highlights the importance of understanding the input technologies 

involved in an interface. He identifies four main considerations for initial interface 

design. 

1. The physical sensor.  

2. The Feedback Presented to the User. 

3. The Ergonomic and Industrial Design of the Input Device. 

4. The interplay between all of the interaction techniques supported by the 

system. (Including the interaction between multiple devices) 

 

Hinckley suggests that evaluating the system ‘from a distance’ ensures that the 

interface is designed without too much focus on one task that might ignore the context 

of the application. For example, if this research project was concerned with overall 

control of a DAW, it could be argued that by optimising the interface for the control 

of processors, overall system usability is compromised. Point 4 is particularly 

important in a gesture system due to the limited number of unique gestures.  

 

Heydekorn et al (2010) describe a difficulty that arises when eliciting user-defined 

gestures. If test participants are asked to pick from a pre-defined set of gestures, the 

results can be too ‘over-determined’. They should, therefore, be given the creative 

freedom to choose any gesture for the control of a suggested parameter. However, the 

participants are often unaware of the importance of point 4, so any elicited gestures 

from a survey should be reviewed by an ‘expert’. It is concluded that an ideal gesture-

elicitation exercise should combine the ‘creative freedom’ of the average user, with 

contextual system awareness of an expert. Hinckley (2011) further criticises ‘creative 
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freedom’ within gesture elicitation with relation to actions that are non-mimetic 

creating too much variation within a gesture elicitation survey. Hickley (2011) 

demonstrates this with the following scenario: Figure 3-3 gives three examples of 

gesture tasks presented to a test participant. 

 

 

Figure 3-3 Examples of Gesture Elicitation Tasks (Hinckley, 2011) 

In each example the participant is asked to perform a gesture on a touch screen that 

would produce the ‘after’ object from the ‘before’ object. In example 1, the consensus 

would most likely be a movement from bottom left to top right of the screen. In 

example 2, a range of swipes might be suggested. Example 3, however, is more 

abstract and likely to return a wide range of arbitrary, unrepresentative gestures. It is 

important to identify the ambiguity that can arise in the user-defined elicitation of 

non-mimetic gestures. 

 

The gestural interface design guidelines proposed by Nielson et al (2003) further 

emphasize the desirability of gestures that are representative of their corresponding 

function or control.  They summarize the ideal features of a gesture in an interface by 

specifying that they should be: 

 

1. Easy to perform and remember. 

2. Intuitive. 

3. Metaphorically and iconically logical towards functionality. 

4. Ergonomic (not physically stressing when used often). 

 

Adhering to these design principals will ensure that usability is optimised. Nielson et 

al (2003) define the usability of a gestural interface with five main features. 
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1. Learnability - The time and effort required to become familiar with the 

interface. 

2. Efficiency - The effective performance of the interface when used by an 

expert. 

3. Memorability - The ease at which an intermittent user can return to using the 

interface. 

4. Errors - The frequency of errors encountered during operation, including 

misinterpretation of gestures. 

5. Coverage Rate - The number of successfully performed gestures to the total 

number of gestures (Bragdon et al, 2009). 

 

A high level of usability will result in an interface that quickly and effectively carries 

out the intentions of the user. Subsequently, workflow will be streamlined. 

4 - The Gestural Control of Audio Systems 
A specification for a prototype gestural interface can be proposed through the 

evaluation of existing products and previous studies. Particular attention will be paid 

to the mapping of gestures to audio parameters and any attempts to streamline 

workflow. 

4.1 - Touch-Screen Control  
A number of commercial products already take advantage of gestures to control 

audio. There has been an increase in the number of mixing consoles that replace some 

of the traditional pots and faders with large touch screens (Avid Technology, 

2014)(Calrec Audio, 2014)(Yamaha Corporation, 2014). Interestingly, the resulting 

touch-screen GUIs include digitally emulated pots and faders. This seems like a 

contradictory design decision, for the same reasons discussed in section 2.1 with 

regard to plug-in GUI designs. Some examples of gestural control can be found on 

mixing desks, such as the ability to adjust Q-factor with a pinch gesture (Avid 

Technology 2014)(Calrec Audio, 2014). A more comprehensive use of gestures can 

be found in the ‘Slate Raven’ MTX, as shown in figure 4-1. The ‘Slate Raven’ is a 

multi-touch enabled DAW interface. It’s design claims to put the DAW “right at [the 
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engineer’s] fingertips” and likens operating plug-ins on it’s high resolution 46” screen 

to “tweaking 19” rack gear” (Slate Media Technology, 2014). 

 

 

Figure 4-1 The Slate Raven MTX Mixing Console (Slate Media Technology, 2014) 

The slate raven begins to explore the use of gestures as navigational shortcuts 

(Robjohns, 2013). Scrub/Shuttle, waveform zoom, track zoom and track banking are 

all assigned to gestures, in an attempt to streamline user workflow. It could be 

suggested that a downside to this design is that it conforms to the traditional  ‘row of 

faders’ format in a skeuomorphic fashion. However, this is a limitation within the 

DAW software itself and may have been a conscious decision so that experienced 

engineers did not have to learn a completely new interface in order to operate the 

desk.  

 

One product that attempts to shift the ‘bank of faders’ paradigm is the Line-6 stage-

scape. The stage-scape uses a touch screen GUI that emulates the layout of a typical 

live-performance stage. Figure 4-2 displays the hardware and an example of the on-

screen controls.  
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Figure 4-2 Line 6 StageScape M20D (Line6, 2014) 

The touchscreen control has been rationalised through the mapping of semantic audio 

descriptors to x-y controls. Figure 4-3 shows the ‘quick tweak’ screen for Bass Guitar  

‘Tone’ settings. 

 

Figure 4-3 StageScape ‘Quick Tweak’ Bass EQ Control (Line6, 2014) 

The terms ‘Boom’, ‘Snap’, ‘Scoop’ and ‘Smack’ are offered as ‘tone’ presets for a 

bass guitar. The presets are mapped to each corner of an x-y pad, allowing for 

interpolated settings between each of the descriptors. The stagescape has sought to 

make the mixing GUI more suitable for touchscreen control, rather than adhering to 

skeuomorphism. The system has been praised for its novel interface, with numerous 

reports of its suitability for inexperienced engineers who are less concerned with 

parameter values. For example, Sound on Sound magazine described the device as “a 

fully featured digitally mixer… that musicians with less mixing experience than a 
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dedicated FOH engineer could still [use to] achieve good results” (White, 2012). As 

such, the Stagescape has proved to be popular amongst smaller bands that are 

required to provide their own PA system. The addition of gesture controls and 

shortcuts to a system such as this could greatly improve intuitiveness and resulting 

workflow for the user.    

 

A large number of tablet computer apps that operate as control surfaces for DAWs are 

commercially available. V-control, Mackie Control, DAW remote and DAW control 

are proving to be a popular alternative to small control surfaces (Sasso, 2014). As 

with the other products described in this section, they regularly emulate rotary 

controls and rarely implement gestures.  

4.2 - Case Studies: Gestural Control of Processing and Mixing 
The systems described previously in this chapter implemented solutions to mixing on 

a touch screen with the aim of improving usability and streamlining engineer 

workflow. However, they were often confined to using traditional, skeuomorphic 

GUIs. Gestural controls or shortcuts remained relatively unexplored, often leaving the 

interface mimicking the original that was intended for WIMP interaction. A number 

of research projects have sought to evaluate the suitability of gestures in a mixing 

environment. The majority of these projects map controllers to spatial characteristics 

of audio sources.   

4.2.1 - Navigational and Transport Control  
Balin and Loviscach (2011) propose a system that allows engineers to navigate 

around a DAW using gestures. As such, there is little in the way of associations to 

audio processing parameters. They conducted a web-based survey asking participants 

to choose from 30 predefined gestures and match them with 22 DAW commands. 

Their investigation only provided two continuous controls: increase value and 

decrease value. Predictably, a single touch, upward swipe was chosen to increase 

value and a single touch downward swipe to decrease value. Figure 4-4 displays the 

30 gestures offered as part of the survey. Touch locations are presented as red-dots, 

where gesture 1 is a single tap and gesture 2 is a double-tap, and directional 

movements are presented as black arrows. 
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Figure 4-4 DAW Control Gesture Set (Balin and Loviscach, 2011) 

A large number of the gestures are spatiotemporal; they require analysis over time to 

determine the type of gesture. For example, gesture number 4 (as identified in figure 

4-4) requires the 90-degree ‘corner’ to be recognised in order to distinguish it from 

gesture number 3 (a straight line). Implementing similar gestures in the same system 

can cause disruptions to user workflow. Firstly, recognition time is increased due to 

similarities between spatiotemporal gestures. Secondly, the chance of a gesture being 

misinterpreted is increased (as both a result of system and user error). An ideal 

gesture system should find a good balance between the uniqueness and simplicity of 

the gesture set. Thus avoiding ‘clashes’, or similarities, while remaining intuitive. 

Balin and Loviscach limited their study to one and two point gestures in order to 

reduce the number of possible combinations. However, it is the author’s belief that 

additional touches could be integral to the streamlining of workflow, and continuous 

gestures should be chosen in favour of spatiotemporal gestures wherever possible to 

minimise gesture-recognition latency. 

4.2.2 - Spatial Control (panorama and amplitude) 

Gestural control is intrinsically well suited to placing sound sources in a stereo (or 

multi-channel) image (Selfridge and Reiss, 2011). The implementation of deictic 

(pointing) gestures can rationalise the process and prove to be more intuitive for both 
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novice and expert users. As such, a number of novel interfaces have aimed to provide 

functionality where the engineer ‘points’ or ‘gestures towards’ the place in the stereo 

field where they want the sound source to be panned. 

 

Selfridge and Reiss (2011) produced one such system that used a wii-mote as a 

gestural control device. The horizontal movement of the wii-mote was translated into 

a MIDI control value before being used to place a sound source in the stereo field. 

The relationship between engineer-position and sound source panorama could be fine-

tuned so that the engineer felt that they were ‘pointing at the sound source’. It was 

concluded that, although other parameters experienced difficulties, users could 

demonstrate accurate control over pan. An important addition to the design was to 

enable the participating engineer to tell the system when to expect a gesture by 

pressing a button on the wii-mote. This helped to reduce the number of misinterpreted 

gestures and the prevalence of the Midas Touch effect.  

 

The ‘Motion-Mix’ system by Ratcliffe (2014) advocates the ‘stage metaphor’ design 

as a viable alternative to spatial mixing. The proposed system uses two pieces of 

gesture recognition hardware to offer a larger number of possible control mappings. 

The primary controller is the ‘Leap Motion’. The additional auxiliary piece of 

hardware is a tablet running the software ‘touch OSC’. The majority of the gestures 

take place using the Leap Motion, whereas the touch-screen tablet is used for 

navigational purposes such as changing track. The stage metaphor was interpreted on 

the Leap Motion by mapping pan to the x-plane and volume to the z-plane, this setup 

is illustrated in figure 4-5. 
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Figure 4-5 ‘Motion Mix’ Gesture Recognition System (Ratcliffe, 2014) 

Notably, a system that is capable of three-dimensional gesture recognition is only 

being used to measure two-dimensions of movement (x-plane and z-plane). The 

corresponding GUI represents each sound source with a coloured sphere. The sphere 

moves left and right on the ‘stage’ as it is panned and grows larger/smaller in 

diameter as it is increased/decreased in volume. The intent of the changing sizes is to 

make the quieter source-spheres seem as if they are further back on the ‘stage’ and 

vice-versa. Ratcliffe carried out a pilot-study on a population of 9 participants to 

establish the performance of the ‘motion mix’ in comparison to traditional interfaces. 

The participants were asked to mix the same sources in the same way using three 

different interfaces methods: 

1. Motion Mix without ‘stage’ visualisation. 

2. Motion Mix with ‘stage’ visualisation. 

3. Ableton DAW, traditional interface.  

The resulting times appeared to show that workflow and interaction were most 

efficient when using the MotionMix with stage visualisation. These results are 

presented in table 4-1. 
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Participant	
   DAW	
   Motion	
  
Without	
  Visual	
  

Motion	
  with	
  
Visual	
  

1	
   05:53	
   08:04	
   05:07	
  
2	
   06:14	
   11:40	
   05:12	
  
3	
   04:46	
   02:59	
   03:36	
  
4	
   01:36	
   02:05	
   02:35	
  
5	
   03:33	
   06:47	
   05:49	
  
6	
   04:06	
   04:10	
   04:07	
  
7	
   04:05	
   03:51	
   03:10	
  
8	
   06:05	
   10:47	
   05:00	
  
9	
   02:09	
   02:06	
   02:44	
  

MEAN	
   04:16	
   05:50	
   04:09	
  
SD	
   01:40	
   03:40	
   01:11	
  

Table 4-1 Motion Mix Times (Ratcliffe, 2014)  

Ratcliffe concludes that the ‘Motion Mix’, when used in conjunction with a stage-

metaphor visualizer, does not slow down engineer workflow. However, a number of 

participants commented that the visualisation was prompting them to ‘mix with their 

eyes’ and ‘distracted them from focusing on listening’. Testing of mix accuracy, 

either subjectively or objectively would be required to assess the influence of the 

GUI. 

 

In similar work to Radcliffe, Drossos et all (2013) employ two dimensional gestural 

recognition in a three dimensional space. Figure 4-6 displays their interpretation of a 

‘stage metaphor’ mix environment, where the left hand controls volume in the y-axis 

and the right controls panorama in the x-axis. 

 

Figure 4-6 Gain vs. Panorama (Drossos et al, 2013) 
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Drossos et al’s approach differs to Ratcliffe’s in that Volume control has been 

mapped to the y-axis. This was a conscious decision to more closely replicate the 

actions of an orchestral conductor. A series of preference tests concluded that users 

preferred the ‘artistic expression’ of the interface and that it allowed them to move 

more freely and intuitively than a traditional interface.  

4.2.3 - Mixing with the Stage Metaphor 

A number of solutions that aim to make interfaces more suitable for gestural control 

have looked towards the ‘Stage Metaphor’ design, in a similar approach to the Line6 

stage-scape. One such design was proposed and tested by Carrascal and Jordá (2011). 

They were trying to optimise the touch screen for mixing multiple sources spatially, 

while avoiding the ‘channel strip’ approach. The chosen platform was the ReacTable, 

a system that operates using tactile blocks called ‘tangibles’ as controllers (ReacTable 

Systems, 2014). Their design was based around the manipulation of circular ‘nodes’ 

that could be altered in size as well as their position on the ‘stage’. Each node 

represented a channel of audio, as shown in figure 4-7.  

 

Figure 4-7 Nodal Manipulation on a Soundstage (Carrascal and Jordá, 2011) 

A listening point has been included, signified by the yellow ‘LP’ dot, so that the 

interface can be used for surround-sound mixing. They concluded, through the testing 

of a small six-person sample, that achieving a satisfactory mix with their nodal GUI 

was faster than a traditional ‘bank of faders’ interface (Carrascal and Jorda, 2011). 

Perhaps a similar technique could have been included in the Line6 product to remove 

more of the sub-menus and auxiliary controls.  
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Gelineck et al (2013) produced a similar system to Carrascal and Jordá (2013). They 

emphasized the importance of ‘passive haptic feedback’ in the form of tangible 

objects. Their system incorporated a ‘double tap’ gesture for muting and soloing of 

audio sources.  

 

4.2.4 - Processing and Effects Control  

Madden et al (2011) explore the use of a multi-touch tablet as a controller for Reverb 

in a system they call ‘Interactive Room Response’ (IRR). Their GUI concept is based 

on placing a ‘listener in a virtual room’ to help represent the changes in reverb 

parameters. Two prototypes were developed, a 2-D GUI on an Apple iPad (Figure 4-

8) and a simulated 3-D GUI on a Motorola Xoom (Figure 4-9). 

 

Figure 4-8 IIR iPad Visualisation (Madden et al, 2011) 

 

 

Figure 4-9 IIR Xoom Visualisation (Madden et al, 2011) 
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The Xoom interface was described as a more successful system because the gestures 

were directly mapped to the on-screen visualisation, which was more representative 

of the Reverb effect. This symbiotic relationship between controls and visualisation 

provides an intuitive interface, as mapping touches to visuals is a lot more familiar to 

users than mapping touches to changes in audio.  

In 2013, a study by Lech and Kostec (2013) investigated the use of gestures to control 

a DAW (digital audio workstation). They identified that a larger number of engineers 

are working in small project studios where mixing desks are impractical and 

expensive. Therefore, they are often limited to using traditional WIMP interfaces. An 

inferior interface that impedes on ergonomic operation is said to be detrimental to the 

quality of the final mix. Lech and Kostek’s proposed interface identified gestures in 

3D space using a camera system. They predominantly focused on navigational 

elements of DAW interaction such as transport operations (play/stop/record etc) and 

track settings (solo/ mute), with the intention of helping engineers to rely less on 

visual indicators. 

Lech and Kostec hypothesised that “Visualization of audio signal parameters 

adversely affects the aesthetic value of the mixes.” and “Mixing by hand gestures 

leads to mixes of a higher aesthetic value than mixing with a mouse and keyboard.” 

They were not as concerned with optimizing workflow, more so the intuitiveness and 

aesthetics of the interface. It could be argued that their system had a more convoluted 

workflow because of the number of ‘parameter selection’ gestures required.  

In their camera based gesture system, compression requires a parameter selection 

layer, for example a ‘T’ is drawn to select threshold. ‘T’ is described as a 

“semantically associated gesture”. However, it could be argued that this is an arbitrary 

symbol, derived from the name of the parameter rather than the audio process. In the 

author’s opinion it should, therefore, not be considered a mimetic gesture, but rather a 

semaphoric gesture (A selection from dictionary of symbols). A truly mimetic gesture 

should be universally understandable, regardless of language. After threshold has 

been selected, a simple ‘up to increase’, ‘down to decrease’ control method is 

implemented. Their testing took 10 participants and asked them to mix the same audio 

sources with five varying types of interface:  
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1. Gestural Mixing without visualisation. 

2. Gestural Mixing with visualisation. 

3. Mouse & keyboard interface without visualisation. 

4. Mouse & keyboard interface with visualisation. 

5. Mouse, keyboard & MIDI controller interface in standard DAW environment 

(control) 

By comparing the speed and subjective quality of the mixes, they concluded, “Better 

ergonomics do not necessarily mean better aesthetic results”. Furthermore, the 

feedback from participants was that, overall, they found the interface ‘inconvenient’. 

Lech and Kostec put this down to two main factors: 

1. Engineer Fatigue - The inherent nature of the ‘un-obstructed’ gesture system 

means that engineers are unable to rest their arms. Most gestures involved a 

‘waving’ or ‘reaching’ element. 

2. Gesture Recognition Time - The average time it took the system to recognize a 

gesture was 1.5s, which most users found inconvenient. Certainly a delay of 

this amount would severely impede the workflow of an engineer.  

The time-delay, along with prevalence of the ‘midas touch’, was also blamed for a 

reported lack of precision during parameter editing. In conclusion, they noted that 

dynamic (moving) gestures were better suited to their system than static gestures, with 

users reporting a much higher efficacy than static gestures.  

Selfridge and Reiss (2011) experienced similar difficulties when experimenting with 

the ‘Wii mote’ to control EQ. Whereas gain and pan were successfully implemented, 

participants reported difficulty ‘drawing’ with a freeform controller. Their original 

prototype operated like a 31-band graphical EQ, where the user ‘traced’ the shape of 

their desired EQ response. X-axis movements were mapped to frequency, while y-

axis movements adjusted the gain of the selected frequency. The problem that 

occurred within the system was down to time-delay, it took between 0.5 and 1 

second(s) to recognize the shape and draw it’s representation on the 31-band graphic. 

As with Lech and Kostek (2013), the time taken to recognize gestures and alter 

corresponding parameters has proven to be fundamentally detrimental to the success 
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of the novel interface. Reiss and Selfridge improved their system by basing control on 

a parametric, rather than a graphic, EQ.  

4.2.5 - Interfaces for Musical Expression 

Though this project focuses on the control of processor parameters, it is still necessary 

to look at some of the gestural interfacing principals found in compositional systems. 

Whereas engineering tools (such as DAW controllers) often focus on functionality, 

interfaces for sonification endeavor to make the system immersive so that it feels 

more like a real-world instrument. In other words, the interface’s priority is to 

alleviate the users awareness of low-level controls so that the conscious mind is free 

to work on higher-level goals, such as composition or mixing (Herman and Hunt, 

2005). Thusly, some compositional interfaces have features that could be incorporated 

into a mixing interface to help the engineer ‘feel closer to the audio’. Couturier (2005) 

emphasizes the importance of identifying features of the action-perception loop when 

designing an interface for musical expression, as the user must receive sufficient 

feedback for it to feel like ‘playing an instrument’. With acoustic instruments this 

feedback is in the form of Auditory, Tactile and Visual stimulus as a result of playing. 

An equivalent level of feedback can be difficult to achieve with digital instruments. In 

particular, the emulation of haptic feedback is often limited by technology.   

 

An example of a gestural physical modeling music synthesis interface that offers 

haptic feedback is the ‘Cymatic’, created by Howard and Murphy (2007). They 

identify that even the smallest gestural movements can influence to sonic output of an 

acoustic instrument, whereas this is not the case for classic synthesizers. The Cymatic 

system used a force-feedback mouse and joystick, intended for gaming, to provide 

haptic feedback to the user while composing. The resulting playing experience is 

described as both ‘immersive and tactile’. The addition of similar feedback techniques 

in a DAW interface could produce a more ‘immersive mixing environment’. 

5 - Preliminary Test 1 - Engineer Workflow Observations  
Before starting to consider gesture mappings, testing was done to determine the 

workflow that exists with traditional WIMP interfaces. Testing began with 

observations and analysis of current engineer workflow patterns when operating a 
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DAW. The evaluation of these observations will help to rationalise the workflow for 

the first gestural mixing prototype.  

 

5.1 - Test Methodology 
A test was devised to analyse workflow patterns associated with audio processing 

tasks within a DAW mixing environment. Participants were asked to perform 

common processing tasks as their actions were recorded using video screen capture 

software and automation recording. Twenty-two engineers took part in the testing, all 

with varying mixing experience raging from 1 to 20 years. All participants either past 

or present music technology undergraduate students and were therefore deemed to 

have a sufficient understanding of the three processes involved in the test, which were 

equalisation, compression and gating. Each participant’s experience level and 

familiarity with the software was determined as part of an informal interview at the 

start of the test (for more details See Appendix C: Engineer Workflow Observation 

Handout). Default ProTools version 10 plug-ins were used throughout the test 

process.  

The test comprised of four separate tasks:  

• Corrective EQ - the participant is asked to match a reference snare sample by 

removing resonant frequencies from the source sample.  

• Creative EQ - the participant is asked to match a reference guitar sample by 

adjust source sample tonality through the use of EQ. 

• Compression - the participant is asked to reduce the dynamic range of a 

repeated kick sample in reference to a premixed version of the same sample..  

• Gating - the participant is asked to remove guitar spill from a recording of a 

kick drum in a live performance context. Again, a reference sample is 

provided.   

Participants were not given a time limit. This was to ensure that they interacted with 

the plug-in in the most natural way possible and reveal any idiosyncrasies in their 

mixing style. The reference sound source was included in order to reduce variance. 
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The aim of the test was to identify recurring workflow patterns that are associated 

with specific objectives. Two separate EQ tests were included, allowing for a 

distinction to be made between corrective and creative mixing styles.  

5.2 - Emerging Workflow Patterns 

5.2.1 - Corrective EQ 
The corrective EQ workflow observations highlighted a common practice when 

removing resonant frequencies. 

 

Figure 5-1 Removing Resonance, Workflow and Control 

Figure 5-1 demonstrates how three separate controls were used to complete a four-

step process. The graphic ‘X-Y’ control refers to the area of the plug-in that allows 

simultaneous adjustment of gain and frequency by clicking and dragging ‘nodes’. 

This is an example of workflow improvement brought by the adaptability of digital 

GUIs. 

The graphic ‘X-Y’ control of a Pro Tools EQ plug-in offers all of the functionality 

required to notch a resonant frequency. However, 82% of participants preferred the 

use of rotary controls because of their discrete mapping and therefore independent 

control of either frequency or gain. This resulted in a more convoluted workflow but 

possible improved accuracy. Could gestures offer accuracy without compromising the 

workflow?  

5.2.2 - Creative EQ 

The mixing styles of engineers in the creative EQ task were much more varied. The 

majority of participants spent a significantly larger amount of time using the graphic 

interface on this task in comparison to the ‘corrective EQ’ test. The tendency to 

choose the graphic interface over the more accurate rotary controls suggests a 
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preference for time saving techniques and possible reliance on visual cues. One 

noteworthy disruption to the workflow was the need to move away from the x-y panel 

to adjust ‘Q - factor’. Surprisingly, 100% of participants were unaware that Q could 

be adjusted using the x-y interface by clicking and dragging in the coloured area 

between the node and the 0dB line. The relevance of this in relation to gestural 

control is the importance of learning techniques to improve engineer workflow. 

5.2.3 - Compression 

In a similar way to the creative EQ task, the workflow patterns during the 

compression task were very much dependent on the participant’s mixing style. The 

order of the parameter changes were varied and, in many ways, irrelevant with 

respect to the final outcome. However, a characteristic of compression that effected 

workflow was the need to constantly switch between controls. The nature of 

compression control means that three parameters directly influence each other; 

threshold, ratio and make-up gain. As a result, time and efficiency is lost with the 

need to cross-reference and switch controls on the plug-ins GUI (graphic user 

interface). Could gestural control improve efficiency? One potential solution would 

be to offer simultaneous control over two or more parameters.  

5.2.4 - Gating 

The predominant workflow pattern when using a gate was the participants’ tendency 

to establish a balance between threshold and ratio before adjusting the envelope 

(attack, hold and release) settings. This does not prove one parameter’s importance 

over another, but it does indicate a workflow priority when faced with a mixing task. 

6 - Preliminary Test 2 - User Defined Gesture Elicitation  
The user defined gesture elicitation tests aimed to find the most commonly associated 

gestures for standard controls of the three processors under investigation. These tests 

would establish gesture to audio-process mappings, and therefore help to identify 

ergonomic and intuitive control methods.  
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6.1 - Proposed System Structure  
A preliminary system structure was specified so that the gesture elicitation test could 

be designed effectively. Defining a control hierarchy at this stage ensured that the 

derived gesture set would be suitable for use globally within the system.  

 

Please refer to Appendix B for a graphic representation of the proposed gestural 

control system structure. Each box in the structure diagram should be allocated a 

gesture, with each branch of the system requiring a set of unique gestures (This has 

been illustrated with the use of colour, where boxes of the same colour must not 

contain the same gesture). This arrangement would allow the top ‘selection layer’ to 

be accessible at any point in the system.  

 

It is important to note that the proposed structure demonstrates the maximum number 

of unique gestures required. It was a primary goal of this project to reduce the number 

of gestures and subsequent steps in the workflow. It was predicted that a parameter 

selection layer would only be required for EQ, because of the large number of 

controls present in a standard multi-band EQ. It would be preferable to bypass the 

‘parameter selection layer’ for the remaining processes.  

 

6.2 - Test Methodology 
The tests will be carried out using the ‘paper prototyping’ technique described by 

Heydekorn et al (2010). The methodology aims to formulate a gesture set through 

conscious top-down design and investigation (Nielson et al, 2003). Participants are 

asked to suggest a gesture locally, they are not confined by an awareness of global 

system structure. In particular this is relevant to inter-process control, for example, a 

user shouldn’t feel like they can’t suggest an inward pinch to increase the ratio of a 

compressor because they want to reserve it for adjusting the Q-factor of an EQ filter.  

 

The tests took part in an isolated room to keep the test procedure and results hidden 

from other participants. Each participant was asked to mimic his or her proposed 

gesture on a tablet computer. As well as helping the participant to understand the 

context of the interface, this tactile execution gave an early indication of the 

ergonomic considerations of touch-screen interaction. The author then recorded their 
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gestures; this was instrumental in maintaining a standardised set of symbols for the 

representation of touches, taps and movements.  

 

The gesture elicitation procedure was split into four separate tests: 

1. Process Selection Tests  

2. Compression Control 

3. Gating Control 

4. Equalisation Control 

 

Twenty-four participants took part in each test. The majority of these were 

Huddersfield Music Technology Students, with the remaining participants being 

lecturers and post-graduate students from the same department.  

In the ‘process selection’ tests participants were asked to suggest gestures that they 

would associate with EQ, compression and gating. They were each given the 

following scenario: “You are in the mix window of a DAW and you want to add a 

plug-in to the selected track. Which gesture would you use to open EQ, compression 

and gating?”  

The ‘processor control’ tests did not require as much contextualization as the ‘process 

selection’ tests, as all participants were of a suitable experience level to be familiar 

with the typical operation of plug-ins.  

In the Compression Control tests, participants were asked to suggest gestures that best 

represent the following processes: 

1. Decreasing Threshold 

2. Increasing Ratio 

3. Faster Attack 

4. Slower Release 

5. Increasing Make-Up Gain 

6. Increasing ‘Overall Compression’  

In the Gating Control Tests: 
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1. Decreasing Threshold 

2. Faster Attack 

3. Longer Hold 

4. Slower Release 

5. Increasing Gain Reduction 

In the EQ Control Tests: 

1. Boost Bass 

2. Cut Treble 

3. Increase Q - Factor 

4. Set HPF (high pass filter) 

5. Notch a resonant frequency  

6.3 - Results 

6.3.1 - Process Selection  

Figure 6-1 displays the most common gesture choices.  

 

Figure 6-1 Most Popular Process Selection Gestures  

The results for compression were conclusive with 83% of participants choosing the 

same gesture. EQ and Gating were less so, with 38% and 33% of choices respectively. 

The gesture choice for EQ is representative of an EQ curve from a standard graphic 

plug-in, a decision perhaps based on existing interfaces. Interestingly, the other two 

choices are symbolic of the audio process. Where the gesture for compression 

signifies a ‘squashing’ of the audio, and the gesture for gating is an interpretation of 

the amplitude envelope. It should be noted that there was some variance in the 

number of touches used to implement the gestures. For example a two-touch pinch 
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has been included as a ‘three-touch pinch’ result. Additionally a ‘sine-wave shape’ or 

‘gate shape’ gesture performed with two touches rather than one has also been 

categorised under the same gesture. There are two reasons for this: 

1. There is very little user discretion between single and double touch 

spatiotemporal gestures. Users reported that they felt just as comfortable using 

one or two fingers to draw a shape.  

2. A number of participants commented that a “single touch shape doesn’t feel 

like a ‘gesture’”. The author believes that they are imagining their suggested 

gesture as part of a larger system, which is an understandable consideration, 

but it shouldn’t influence the outcome of this test. 

6.3.2 - Compression Control 

Participant preferences were broadly varied, however, some common results still 

emerged:  

• Horizontal (x-axis) gestures were used when making time-domain 

adjustments. This was observed when 73% of participants suggested controls 

for attack and release time. In most cases a movement left (decreasing x-

value) represented faster attack or release time.  

• 32% of participants suggested splitting the touch-screen into two or more 

active areas so that the gestures could be simplified while maintaining full 

functionality. For example, an upward swipe on the left side of the screen 

could increase threshold, while a swipe on the right side of the screen adjusts 

make-up gain.  

• The most popular gesture selected for ‘increasing overall compression’ was 

the same inward pinch as chosen in the selection layer survey.  

• A common suggestion for increasing ratio was a gesture that simulated the 

clockwise rotation of a potentiometer, perhaps emulating existing technology.  

Figure 6-2 displays a possible gesture set that has been derived from the most 

common suggestions in the control layer gesture elicitation.  
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Figure 6-2 Suggested Compression Control Gestures 

An observed point of contention was with the participant’s interpretation of gestures 

as value changes rather than direct interactions with the audio. In particular, increase 

ratio was most commonly allocated an outward pinch, with 18% of participants 

choosing it. However, increased ratio is essentially increasing overall compression 

and therefore, one could assume increased compression should be associated with an 

inward pinch, thus ‘squeezing’ the audio using a mimetic gesture. 

Further testing would be required to determine whether engineers are comfortable 

disassociating value changes from a representation of the audio process. A similar 

argument is made when reversing the scrolling of an Apple ‘track-pad’; where the 

default scrolling is based on dragging the page, rather than pointing in the direction of 

movement (Brownlee, 2014).  

6.3.3 - Gating Control 
As with the compression tests, it was observed that x-axis motions were preferred for 

time-domain manipulations. 64% of participants attributed x-axis controls for attack 

and release, with 68% for hold. 23% of participants chose to split the screen into 

active areas (as apposed to 32% in the compression tests). In addition to these 

previously observed gestures, some new solutions arose that related specifically to 

gating: 

• 36% of users imagined drawing the envelope shape to manipulate the attack, 

hold and release settings of the gate. The majority of these suggestions defined 

the attack and release times by the angle of the gesture from the x-axis of the 
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touchscreen, whereas others preferred to use the length of the gesture. E.g. 

drawing a longer line from the bottom left corner would increase the attack 

time. A defining feature of these gestures is that they’re both absolute (they 

reference a position on the screen.)   

• In cases where a ‘pivot’ or rotational gesture has been suggested for a time-

domain adjustment, clockwise has indicated an increase in time and vice-

versa.  

Figure 6-3 displays a possible set of gestures that have been based on some of the 

most common suggestions from the gating control layer surveys. 

 

Figure 6-3 Suggested Gate Control Gestures 

The attack, hold and release suggestions are examples of gestures that relate directly 

to the audio process rather than the manipulation of a control parameter on an existing 

plug-in. This is particularly relevant for the release setting, which translates a 

clockwise motion to a faster release time. Ordinarily, engineers are used to 

associating the clockwise motion of a rotary control with increased release time, as 

shown in figure 6-4. 

 

Figure 6-4 Orientation of Release Control in Logic 9 
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It is reassuring that participants are starting to associate gestures with processes (in 

this case the amplitude envelope) rather than control values. Even if these suggestions 

are still x-y dependant. The gating survey differed from the compression survey in the 

way that envelope settings were grouped together sequentially. This, along with the 

addition of a hold setting, may have prompted the user to think more carefully about 

the envelope operation of the gating plug-in. It is important to realise the effect that 

subtle changes in the survey had on the user suggestions. A further example of this 

was in the phrasing of ‘Increase Gain Reduction’. This was deliberately chosen to 

observe the number of participants who opted for an upward gesture to ‘increase the 

gain reduction’, without considering that this is essentially a ‘lowering of the noise-

floor’, or range, of a gate. 23% of participants chose an upward, or increasing gesture. 

6.3.4 - Equalisation Control  
The results were more consistent than the broad range of suggestions for compression 

and gating. Most noticeably was the ‘two-touch inward pinch’ choice for increased Q-

factor, which 91% of participants selected (the remaining 9% opted for a three-touch 

pinch). This gesture translates so popularly to Q-factor manipulation that it seems to 

be unequivocally the most intuitive. Similarly, it was 82% of participants that 

associated and controlled ‘frequency vs. gain’ with an ‘x vs. y’ gesture. The 

remaining 18% were methods that used multiple touches; for example, a one-touch 

gesture would control bass and a four-touch gesture would control treble. Figure 6-5 

demonstrates the elicited gesture set. Again, as with Q-factor, the suggestions of the 

frequency and gain controls are so consistent that they point very firmly towards the 

most intuitive solution for a gestural interface. Although, it should be noted that ‘most 

intuitive’ does not necessarily mean best control method. 
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Figure 6-5 Suggested EQ Control Gestures 

The issue with mapping controls in EQ units is the large number of parameters, 

particularly in multi-band parametric software versions. For example, an equalizer 

with just four filters, where each has selectable Q, cut-off frequency and gain, will 

have twelve low-level controls. This would simply be too many controls for unique 

gestures and introduce a level of complexity that would impair the memorability and 

learnability of the interface (Nielson et al, 2003). Therefore, a parameter selection 

layer must be included in the system (as discussed in section 6.1). The solution for 

this is shown in figure 6-5, where a double tap in a fixed x-axis position selects the 

corresponding filter. This conforms to the survey’s results for frequency distribution 

and allocation across the x-axis. Regrettably, this method requires the system to 

determine the location of a user’s actions in relation to the position on the screen, 

making the gestures absolute rather than relative (as preferred). Some of these 

‘expert’ design decisions have to be made in order to maintain system stability 

(Heydekorn et al, 2010). 

7 - Description of the Prototype Gestural Interface 
This chapter will discuss the First Prototype, as derived from the literature review and 

preliminary testing. Any changes made to the prototype as a result of testing will be 

detailed and explained in subsequent sections. 
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7.1 - Justification and Analysis of the Chosen Development Platform 
The proposed gestural interface will aim to offer an improvement over WIMP control 

in small project studios, as with the study by Lech and Kostek (2013). It has been 

repeatedly reported that an inexpensive solution to improving workflow when mixing 

‘in-the-box’ is desirable, especially when engineers lack the space or funds for a large 

control surface (Gilder, 2014).   

7.2 - Prototype Specification  
The findings presented in the literature review were used as a guideline for the 

specification of a prototype interface. This included both the hardware and software 

platforms. The author made some decisions based on previous development 

experience and the availability of certain technologies.  

 

The chosen platform should provide adequate accuracy. Ratcliffe (2014) identified 

that, in order to be considered a success, his ‘Motion Mix’ system must have an 

accuracy that users feel is comparable or superior to traditional interfaces. Accuracy 

can be described as the systems ability to correctly interpret a gesture. It is the 

author’s belief that identifying a gesture incorrectly is one of the most workflow-

disrupting occurrences in a gestural interface.  

 

The chosen platform should be adequately responsive, with a suitably high level of 

sensitivity. Excessive gesture recognition time proved to be the stumbling point of 

Lech and Kostec’s (2013) otherwise successful gesture system. They found that the 

speed of interaction with an interface is a pivotal design consideration. A gesture 

recognition time of 1.5 seconds was deemed to be too slow. Additionally, Selfridge 

and Reiss (2011) found that a delay of just 0.5secs when setting EQ curves caused too 

much disruption to the user workflow. As well as a fast reaction time, the system 

should be sensitive enough to detect subtle changes in gestures. Sensitivity is 

essentially a measurement of temporal accuracy. In other words, how quickly the 

system recognises movements by a suitable degree of accuracy.  

 

An impression of the accuracy and sensitivity of a touch screen can be found by 

looking at two device specifications: 
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1. Touch Resolution - The number of ‘touch active’ points over the full distance 

of the recognition axis. For example, a touch screen with 64 x 128 touch 

points would be able to detect 64 points in the x-axis and 128 points in the y-

axis. The size of the touch active area would then determine the resolution. If 

the example screen was 10cm x 20cm it would have a resolution of 6.4 points 

per cm. Resolution directly influences the ‘pointing precision’ of a gesture 

system (Bhalla and Bhalla, 2010).  

2. Touch Latency - The time it takes for a system to check for a touch position 

and update the co-ordinates within the software. This value will directly 

influence the ‘response time’ and ‘following speed’ of the interface (ref: 

Bhalla and Bhalla, 2010).  

 

High sensitivity and accuracy will allow the successful implementation of a larger 

gesture set, without relying too heavily on spatiotemporal gestures.  

The chosen platform shouldn’t be unfamiliar to the user. Familiarity is a keystone 

component of an intuitive interface (Gough et al, 2006). A user can easily be 

discouraged by an interface if they are uncomfortable using it, or if it’s too difficult to 

learn. Balin and Loviscach (2011) were determined to keep their gesture set as small 

and simple as possible in order to rationalise their system. In addition to improving 

intuitiveness, a familiar interface will also speed up testing. ‘Interface Familiarisation 

time’ is a consistent feature of most case studies, a shorter test time will allow 

participants to feel more comfortable during testing. 

 

The prototype should minimise the reliance on GUIs and visual feedback (Mycroft et 

al, 2013). The gestural interface should maximize the engineer’s ability to mix with 

their eyes closed in order to facilitate the ‘blind mixing technique’  (Porter, 2011).  

7.3 - Hardware 
The literature study suggested that a number of hardware options did not provide 

sufficient ergonomics for sound mixing purposes (Selfridge and Reiss, 2011) 

(Karjalainen et al, 2006) (Lech and Kostek, 2013). This list of interfaces includes 

infrared sensors, accelerometers, camera systems and joystick-style devices.   
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In order to satisfy the specification in the previous section, the chosen Hardware 

platform must be capable of accurate gesture recognition with a high level of 

sensitivity. It should also be a platform that is familiar to users. 

From the case studies discussed in the literature review, it can be concluded that two-

dimensional gestures recognition systems are more stable and offer faster, more 

usable HCI. The most familiar platform for two-dimensional gestures is a touch-

screen. Furthermore, touch screens do not incur user-fatigue, as found in free-moving 

gesture systems, such as Lech and Kostec’s (2013). It remains to determine which 

touch-screen platform is most suitable. Mounted touch screens have an ergonomic 

trade-off, as identified by Balin and Loviscach (2011). Therefore, a handheld device 

will offer a more universally comfortable interface. Which would be a particularly 

important characteristic for professional mix-engineer who might be using the 

interface for extended periods of time.  

A comparison of touch screen devices by Agawi TouchMark determines the touch 

latency of a range of popular consumer products (Dilger, 2013). This benchmarking 

process measures the time it took for the software to respond to a touch event, 

referred to as Minimum App Response Times (MART). This was measured in 

milliseconds. Figures 7-1 and 7-2 demonstrate their results for smartphones and tablet 

PCs. 

 

Figure 7-1 Smartphone Response Times (Dilger, 2013) 
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Figure 7-2 Tablet Response Times (Dilger, 2013) 

Both tests conclude that Apple devices have faster average response times. However, 

it is by Agawi’s own admission that this could be down to software factors rather than 

touch-screen capability (Clover, 2013). Research by Microsoft finds that a response 

time over 100ms can be seriously detrimental to the user-experience (Wrenn, 2012). 

They reported that latency doesn’t go unnoticed until it is as low as 1ms. Current 

consumer technology cannot reach those speeds; so minimizing latency is an 

important design consideration.  

The Apple iPad offers a competitively responsive platform. It is also an extremely 

ubiquitous device, one that has been the top-selling piece of tablet hardware for over 5 

years (although Android is now the best-selling operating system) (Whitney, 2014).  

7.4 - Development Software 
A new piece of software will be developed in order to fully customise the gesture set. 

Default gesture recognizers such as pinch, rotate and multi-tap will not offer sufficient 

command variations for this system.  

 

The development options for the chosen hardware platform are, aside from using third 

party applications such as TouchOSC, limited to Apple’s Xcode. Xcode uses a 

programming language Objective-C. Objective-C is an object-oriented superset of C 

(Apple Inc, 2014a).  
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7.5 - Limitations of the Development Platform 
To increase system stability, some minor changes were made from the gestures 

specified in Chapter 6. Firstly, the decision was made to ‘distance’ gestures from each 

other as much as possible to avoid gestural over-laps and misinterpretation. Most 

commonly, this manifested itself in the addition or removal of touches, an alteration 

that has already been established as unimportant to gestural associations. For 

example, test-participants chose a two-touch vertical swipe to control the threshold of 

a gate. But this inherently clashes with the two-touch horizontal swipes to set hold. 

Figure 7-3 demonstrates this issue with continuous gesture direction recognition and 

introduces the Response vs Accuracy trade-off. 

 
 

The Direction Dependent Gesture Recognition Process (where number of touches are 

equal in multiple gestures) follows the listed procedure: 

 

Figure 7-3 Gesture Direction Detection, Sensitivity vs. Accuracy 
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1. Determine how many touches have started the gesture. 

2. When a movement is detected, store the start location. 

3. Check the location of the touches after a time delay* (typically around 

100ms). 

4. Calculate the probability of the gesture either being vertical or horizontal type 

by measuring the distance between the start point and current point.  

5. If the probability is sufficiently high, report the gesture as either vertical or 

horizontal and begin mapping movement to corresponding parameter changes. 

If probability is not sufficient, repeat steps 3 and 4.  

 

* The time delay can be changed to adjust the sensitivity of the gesture recogniser. Faster times =  

more sensitive, but more likely to misinterpret a gesture 

 

The longer that the system waits to determine a gesture, the more likely it is to have 

correctly deduced it’s purpose. However, this introduces latency to the system. There 

is a sensitivity (responsiveness) vs accuracy trade-off. This can be overcome by using 

unique numbers of touches for each gesture. Therefore, a single touch gesture to 

control the threshold of a gate would produce a more responsive, stable and optimised 

system. Regrettably, this requires the user to remember more gestures and touch 

combinations. 

 

Inevitably, there were going to be some gestures that ended up clashing in the system. 

For example, setting compressor gain with a three-touch vertical swipe and 

compressor attack/release with a three-touch horizontal swipe. In these cases an 

algorithm was implemented that analysed the very first movements of a gesture to 

determine whether it was horizontal or vertical, as described in figure 7-3. This 

proved to be a stable solution, but it increased ‘gesture recognition time’ and reduced 

responsiveness.  

7.6 - Hardware Specification  
All details from (Apple, 2014a), unless otherwise stated.  

 

Model:   Apple iPad Mini, non-cellular (2012 - first generation) 

External Dimensions:  200 x 134.7 x 7.2mm (Height x Width x Depth) 
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Weight:   308g 

Screen Size:   200mm (diagonal) 

Screen Resolution:  1024x768 at 163ppi (pixels per inch) 

 

Figure 7-4 iPad Dimensions (based on: Apple, 2014a) 

 

Touch Resolution: 1024 x 768 (estimated)  

Processor: Apple A5r2 (S5L8942) 

Bit Depth:  32bit  

Speed:   1Ghz 

Core:  ARM Cortex-A9 (dual) (Shimpi et al, 2011) 

 

Screen Treatment: Fingerprint-resistant Oleophobic (oil repellant) Coating 

Operating System: iOS 8 

 

The use of an iPad mini has influenced the ergonomics of the gestural interface. This 

has particular relevance to the orientation of the device. Test participants found it 

comfortable to hold in one hand and operate with the other hand. This may not be the 

case with a full-sized iPad.  
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7.7 - System Structure and Navigation 
The system structure remained similar to the one specified in the User Suggested 

Gesture Tests in chapter 6 and presented in Appendix B. Figure 7-5 displays a 

navigational map of the interface. 

 

 

Figure 7-5 System Navigation 

 

The simple page layout allowed movement between processing functions from any 

system location (excluding the ‘system settings’ page) through the use of ‘process 

selection gestures’. Due to numerous overlaps between gestures for selection and 

control it was necessary to include a ‘shift’ button that allows users to move between 

processors or return to the home screen. The shift button was positioned in such a way 

that it could be classified as an additional, two-handed gesture. Figure 7-6 displays the 

operation of this two-handed gesture. 
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Figure 7-6 Location of the Shift Button  

The ideal location for the shift button is highlighted above. In order to consider the 

‘shift button’ a gestural technique, the system should allow its position to be moved. 

Users would then be able to customise the gestures to a grip that was comfortable; this 

is particularly relevant if a user naturally performs gestures with their left hand. 

Wigdor et al (2011) describe the use of the non-dominant hand as a mode-indicator in 

gestural systems, bringing more functionality to the gesture-performing hand. It is 

likened to using a keyboard shortcut in combination with a mouse movement, with 

the conclusion that they allow a system to use more gestures without any on-screen 

affordances or “reducing the expressiveness of the language”. The disadvantage of 

including a non-dominant hand mode-indicator is that additional limitations are 

placed upon the user. The user might want to lay the iPad on a surface and use one 

hand, rather than holding it on one while gesturing with another. For the purposes of 

testing, users are asked to use both hands when using the interface. It can still be 

orientated both ways and held in either hand.  

7.8 - An Overview of Gesture Recognition Algorithms 
The gesture recognition algorithm operates by interrupting the main code when the 

user touches the screen (For a more detailed explanation of a simplified code 

example, see Appendix D). These are described as ‘Touch Events’. There are four 

main touch events within the system (Apple Inc, 2014b): 
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1. Touches Began - called when the system first detects a new touch. 

Including the addition of subsequent touches, such as a second touch 

during the execution of a single touch gesture. 

2. Touches Moved - called when a touch is moved. 

3. Touches Ended - called when a touch leaves the screen. As in ‘touches 

began’ this is also called as subsequent touches end.  

4. Touches Cancelled - called when a system event (such as a low-battery 

warning) interrupts a touch.  

 

Continuous gestures could sometimes be successfully detected using only the touches 

moved method. However, using the other touch events during gestural control 

significantly increased performance of the system. One such scenario that required 

attention was when a user performed a two-touch gesture, where one touch became 

static for a short period of time. This resulted in the touches moved method only 

reading a single touch. A series of latches and ‘touch tracking’ algorithms were 

implemented to ensure the system remained stable.  

 

Spatiotemporal gestures required the use of timers to measure the speed of a gesture. 

The touch co-ordinates could then be analysed as the gesture progressed to determine 

which gesture was being performed. A series of probability algorithms monitored the 

changing co-ordinates to calculate the likelihood of a particular gesture being 

performed. This gesture detection process was made as flexible as possible. A good 

example of this can be found in the EQ selection layer gesture, where the ‘amplitude’ 

and ‘frequency’ of the wave-shape do not stop the gesture from being detected. 

However, the phase of the ‘wave shape’ has to be the same. 

7.9 - Gesture Sets 

7.9.1 - Process Selection 

The process selection gestures allow the user to switch between compression, EQ and 

gating. The gesture set has been based on the findings of the gesture elicitation, as 

discussed in chapter 6.  
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Figure 7-7 Process Selection Layer plus Alternative Operation 

Figure 7-7 illustrates the features of the chosen gestures. They remain similar to the 

specified gestures from the survey. With the exception of the number of touches used 

to execute each gesture. It was found during pilot testing of the prototype at the 136th 

AES convention that some users struggled to perform the three-finger compression 

gesture. Often this was a result of ergonomics or the difficultly of simultaneously 

starting and finishing a gesture with three touches. For this reason a two-touch pinch 

was implemented in addition to the three-touch pinch. The resulting response time 

was faster and more reliable. Another recurring scenario that transpired at the AES 

convention was that first-time users would forget whether to execute gestures with 

one or two touches, even though they had remembered the correct shape. For this 

reason the prototype was adapted so that either single or double touch gestures would 

select the relevant process. An added benefit of making number of touches arbitrary 

in the selection layer was that users only have to remember the shape of the gesture, 

not the number of gestures. Furthermore, ergonomics and usability was improved for 

a wider number of people.  

7.9.2 - EQ Control  

The EQ control gestures remained unchanged from the survey-result specification (as 

detailed in chapter 6). However, functionality was added so that gestures could be 

simultaneously controlled. This was achieved by allowing the two-touch ‘pinch’ 

gesture to be move in an x-y direction to adjust the gain and frequency setting of the 

selected filter at the same time as setting the Q. A ‘sensitivity latch’ meant that Q 
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could be changed on its own if no significant movement in the x or y directions was 

made.  

7.9.3 - Compression Control  

Figure 7-8 illustrates the compression control gestures implemented in the first 

prototype. 

 

 

Figure 7-8 Compression Control Gestures 

As a consideration of system stability, threshold control has been reduced from two 

touches to a single touch. A two-touch threshold gesture was more likely to be 

misinterpreted as an attack or release gesture, this technological consideration is 

detailed in section 7.5. 

 

The most significant design consideration of the compression control layer is the 

orientation of the pinch gesture to control ratio. Of the six participants that allocated a 

pinch gesture for the control of ratio, only two of them chose an inward pinch. 

However, it is the author’s belief that mimetic gestures will be better suited to an 

audio gestural control system. Firstly, this will help the user to remember the gesture-

set during operation through semantic association, for example a ‘squashing of the 

audio’ is associated with a ‘squashing’ mimetic gesture. Furthermore, it is 

hypothesised that users will be less reliant on the value of parameters in a gestural 

system. Evidence of this has already been observed in the results for EQ control layer 

survey. Where 100% of participants chose an inward pinch (either 2 or 3 touch) to 

increase Q-factor. This is therefore an example of the user favouring mimetic gestures 
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over direct parameter manipulation. It could be argued that this a result of engineers 

being more used to looking at graphical representations of EQ curves.  

7.9.4 - Gating Control 

Gating controls remained similar to the suggested gestures, with the exception of a 

single touch for threshold and adaptation of the envelope settings. Refinement and 

rationalisation of the attack and release gestures was required for improved usability 

and system stability. The suggested gestures used the extremities of the touchpad, in 

particular the corners of the pad were proposed as a reference point for drawing the 

envelope. It is the author’s belief that this would be constraining for the user, and the 

reference point should be able to be found without looking at the touch-screen. 

Therefore, a solution that used the angle between two touches to set attack and release 

times was developed.  

 

Figure 7-9 Gate Control Gestures & Envelope Explanation 
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The above figure demonstrates how the attack and release gestures are designed to 

mimic the amplitude envelope of the gate. Attack and Release are controlled 

separately, and are selected by the two-touch gesture start position (as illustrated in 

figure 7-9). The angle between two touches is then mapped to the envelope 

parameters in a way that is representative of the envelope shape. This design has been 

adopted in an attempt to move user’s perception of control closer to the audio process, 

rather than preconceived ideas of parameter values.  

 

One notable difference between the ‘angle control’ gestures and other control gestures 

is that they are absolute (relative to their orientation on the screen), whereas most 

gestures within the system are relative to the touch start position. This can cause 

problems when users are trying to make small adjustments to the their settings, as the 

setting will be ‘forgot’ by the system and reset when a new gesture is performed.    

7.10 - Implementation  
The system transmits Open Sound Control (OSC) messages over a wi-fi network 

using User Datagram Protocol (UDP). The code was adapted from open-source 

library files included in Oscpack1.1.0 by Ross Bencina (Bencina, 2013). The OSC 

messages are then received by an OSC to MIDI bridging application called OSCulator 

(Wildora, 2014). OSCulator allows OSC data packets to be mapped to MIDI 

messages, which subsequently allows them to be detected and processed by a DAW. 

In this instance Logic Pro 9 was used.  

8 - Description of Testing 
Each control layer will be tested separately to determine the suitability of different 

audio processes to gestural control and the effectiveness of the interfacing techniques. 

Equalisation was the first process to undergo testing.  

8.1 - Equalisation Control  
The intention of this test was to evaluate the objective performance of the interface in 

comparison to traditional methods. It was crucial to assess whether a gestural 

controller could improve workflow with a task as simple as matching target EQ 

settings before any subjective elements, such as audio processing, are introduced. 
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It was hypothesized that the interface for EQ would be easier for users to operate 

because of its conceptual similarity to existing plug-in interfaces. For that reason, a 

slightly less-experienced population of participants was chosen. 

 

Testing took place in the Music Technology department at Blackpool Sixth Form 

College. A meeting with the Head of Music was arranged prior to testing to assess the 

experience level of the students. It was concluded that second-year students would 

understand equalization to an adequate level; they had been frequently using EQ plug-

ins in their classes for over a year. Their course consists of numerous modules that 

require intensive use of equalization, including a recording module and a sound for 

film module. They can be classified as moderate-advanced frequent users (Dewey and 

Wakefield, 2014).  

8.1.1 - Test Methodology 
Twenty-Two music technology students were selected for the test process. Each test 

was intended to take no more than thirty minutes to complete, though there were no 

limitations introduced to the participants. The test took part in an isolated room to 

reduce influence on participants and keep the purpose of the test hidden from other 

students.  

 

Two interfaces were being compared, the novel gestural interface and a traditional 

WIMP interface that comprised of a standard, wired Apple mouse. Two handouts 

were produced for the purpose of testing (See Appendix E: EQ Control Test 

Handouts); one that detailed interface operation instructions and another that 

illustrated the target settings for the test. Figures 8-1 and 8-2 show the two target EQ 

settings.  
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Figure 8-1 Target EQ Setting 1 

 

Figure 8-2 Target EQ Setting 2 

It should be noted that the target settings, presented in the above figures, are of a 

similar complexity. They each have three filter settings to match. However, ‘Target 

EQ Setting 1’, has a High Pass Filter (HPF) in place of another parametric filter. 

Throughout the test, the dB/octave setting of the HPF was at a fixed value 

(participants were made aware of this). Therefore, It could be argued that Target EQ 

Setting 1 is an ‘easier target’ because fewer parameters need to be adjusted to reach it.  

 

Before each timed test began, the EQ plug-in was returned to its default, flat, position. 

The test process was as follows: 

 

1. Introduction - The participant was handed the iPad and asked which 

orientation they preferred. They were told that the interface worked in both 

portrait and landscape. Additionally they were then asked to try using the 

mouse to make sure it felt comfortable and that the sensitivity was correct.  
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2. Familiarisation Period - The participant was asked to refer to the ‘Operation 

Instructions’ sheet and practice mixing an audio source until they felt 

comfortable using the interface. The average familiarisation time was around 5 

minutes.  

3. Explanation of Test Process - The participants were introduced to the test 

process. The level of required accuracy when matching the target settings was 

described as within 10% and an example was given. They were also reminded 

that there were no time limitations. 

4. First Target EQ Setting - Participant was asked to match the settings using the 

Gestural Interface. Timer begins when the target setting is revealed to the 

participant. Timer stopped when the participant states that they have finished. 

5. First Target EQ Setting - Participant asked to match the settings using the 

WIMP Interface. Timed accordingly. 

6. Second Target EQ Setting - Participant asked to match the settings using the 

WIMP Interface. (Note that interface order has been changed for the second 

target to reduce the influence of target EQ familiarity). Timed accordingly. 

7. Second Target EQ Setting - Participant asked to match the settings using the 

Gestural Interface. Timed accordingly. 

8. Questionnaire - A questionnaire was handed to the participant for them to fill 

out in their own time and return to their lecturer by the end of the lab session. 

This was an attempt to reduce any of the authors influence on the students’ 

answers (A summary of answers are presented in Chapter 9.1.2).  

 

The test has three variables: Interface Type, participant and Test Completion Time 

(TCT). TCT was measured using a stopwatch. Originally, screen capture software 

was used, but the running of this introduced a small amount of latency to the system, 

which was deemed significant enough to compromise the performance of the 

interface.  

8.2 - Dynamics Processor Control 
Compression and gating tests took place at Huddersfield University with 

undergraduate and postgraduate students. It was a deliberate decision to have a 

variation in participant-experience levels as it would help to determine whether the 
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interface was suitable for both novice and experienced mix engineers, as specified in 

the introductory chapter. 

8.2.1 - Test Methodology 

Dynamics Control Testing followed an identical methodology to the EQ control 

testing (See Appendix F for dynamics control testing hand-outs and questionnaire). 

Both gating and compression were under test in the same session. The participants 

were given the opportunity to take a small break between tests. 

 

The Compression and Gating Target settings are presented in figures 8-3, 8-4, 8-5 & 

8-6. 

 

 

Figure 8-3 Compression Target Setting 1 

 

Figure 8-4 Compression Target Setting 2 

Note that, even though the ‘knee’ value is shown as different in both settings, this 

parameter was not under investigation and did not influence this test.  
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Figure 8-5 Gating Target Setting 1 

 

 

Figure 8-6 Gating Target Setting 2 

8.3 - Influence of a GUI in the Dynamics Processor Interface 
After discouraging results from the first dynamics processor control tests (presented 

in Chapter 9.2), it was concluded that further investigation of the gestural control of 

dynamics processing would be required to determine any potential benefits over 

traditional WIMP methods. Therefore, it was necessary to better understand the 

relationship between a mix engineer and the mix environment. A test was devised to 

observe the influence of a GUI when using a gestural interface to mix to an audio 

reference. This differed from previous tests, as an audio target reference is used, 

rather than a graphical target setting. The test aims to establish how much an engineer 

relies on visual stimulus during mixing, and whether a gestural interface might be 

better suited to a less-traditional GUI.   
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8.3.1 - Description of the Proposed Visualisation 
In order to test the suitability of traditional GUIs in a gesture-controlled system, an 

alternative visualisation method was produced and displayed on the touch pad. An 

inherent benefit of this design was that the visuals were located in the same place as 

the controls, which meant that the user could interact directly with the GUI.  

The proposed gating visualisation was based on an amplitude envelope (Time vs 

Amplitude) design. Figure 8-7 illustrates the visualisation of two different gate 

settings to demonstrate the operation of the GUI.  

 

Figure 8-7 Gate Visualisation Operation 

As shown in the figure above, a typical envelope representation is adapted to display 

gating settings. The resulting GUI illustrates the operation of the gate by combining a 

time domain display (the envelope) with an impression of the effects of threshold and 

gain reduction. Figure 8-8 shows how the visualisation looks within the gesture 

control application: 
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Figure 8-8 Gating Control Visualisation 

The compression GUI employed a similar technique, as shown in figure 8-9. This was 

a design decision that helped maintain consistency, and therefore familiarity, within 

the application.  
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Figure 8-9 Compression Visualisation Operation 

The two example settings given in the above figure display the difference between a 

low-threshold, low-ratio setting (setting1) and a high-ratio, high threshold setting 

(setting2). The ‘line-thickness’ method of visualisation intends to communicate the 

metaphor of ‘brickwall compression’, where an extremely high ratio prevents the 

audio signal passing the threshold level. It is hoped that this perspective will help to 

justify mapping inward pinch to increased ratio (squashing the audio with a pinch). 

Figure 8-10 shows how the visualisation fits into the gesture control application: 
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Figure 8-10 Compression Control Visualisation 

8.3.2 - Test Methodology 
22 expert-frequent participants were chosen, the majority of which were University of 

Huddersfield Music Technology students and lecturers. The tests took place in a semi-

anechoic chamber with a pair of Genelec 8040A reference monitors. A standard, 

wired apple mouse was used for the WIMP interface tests. Logic 9 and its suite of 

stock plug-ins were used for all testing.  

Reference tracks were created from kick drum audio samples. The sample used for 

gating tests was a kick from a live recording that had a significant amount of guitar 

spill present; the mix task was to remove the guitar spill as much as possible (with 

reference to a preprocessed version). The sample used for compression was a kick 

drum from the Logic Sample library, the sample was processed so that there were four 

hits, each with accumulatively less on-velocity. The mix task was to compress the 

sample so that each hit was more consistent, with reference to a preprocessed version. 

The test-participant was told that they could check the reference sample at any point 

during the tests (A set of navigation buttons, as shown in figure 8-10, were added to 
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the gestural interface which allowed the reference to be soloed, this way the mouse 

didn’t have to be used at any point in the gestural tests). 

The tests were timed using a stopwatch. The timing was stopped when the participant 

announced that they were satisfied with their processor settings.  

Each participant carried out Gating and Compression tests in the same session; both 

tests followed an identical methodology. They were given the opportunity to take a 

short break between the gating and compression stages tests.  

1. Prior to testing, the iPad was cleaned to reduce the amount of grease and dirt 

on the touch-surface. This was for both hygienic and interface-performance 

reasons, as a build up of fingerprints can impair the fluidity of executing 

gestures. 

2. Introduction - The participant was handed the iPad and asked which 

orientation they preferred. They were told that the interface worked in both 

portrait and landscape. They were then asked to try using the mouse to make 

sure it felt comfortable and that the sensitivity was correct.  

3. Familiarisation Period - Participants were told that they could have up to ten 

minutes to practice using the gestural interface. They were also introduced to 

the custom visualiser. A practice track was provided for the participant to 

experiment with the gestural interface, this contained a different audio sample 

to the one in the test.  

4. WIMP Interface Test - The participant was asked to match the reference 

sample using a traditional WIMP interface. Note: plug-in was returned to 

default position after each stage of the test. 

5. Gestural Interface with Plug-In GUI - The participant was asked to match the 

reference sample using the gestural interface, with the touch-screen 

visualisation turned off.      

 Note: The order of steps 4 and 5 was randomized between tests to        

 reduce the influence of familiarization with repeated settings on the 

 overall results. 

6. Gestural Interface with Touch-Screen Visualisation - The participant was 

asked to match the reference sample using the gestural interface, with the 

touch-screen visualisation turned on and the plug-in GUI hidden. 
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7. Gestural Interface, Blind - The participant was asked to match the reference 

sample using the gestural interface without any visualisation.  

 

8.4 - Semantically Motivated Combination of Compression Controls  
Throughout this project, the gestural control of compression has proved the most 

troublesome to test participants. This has been the topic of discussion in a number of 

investigation projects, including Giannoulis et al (2013), who attribute the difficulty 

of working with a compressor to its non-linear, time dependent operation. They 

suggest that automating the parameters, through the analysis of the input signal, will 

reduce the required amount of user interaction and the number of control parameters, 

thus simplifying and improving the interface. Similarly, Cartwright et al (2014) 

propose the combination of parameters into a single control. Their ‘Mixploration’ 

interface is operated by moving a ball in a two-dimensional plane, where movements 

are mapped to changes in spatial characteristics of the mix.  

It is hypothesised, through observations made in this study, that the difficulty in 

controlling compression with a gestural interface was down to two main reasons: 

1. Inter-parameter influence and dependence - Within a compression processor, 

similar sonic outputs can be achieved with vastly different parameter settings. 

This was apparent during the accuracy analysis, where plug-in settings were 

distant from the reference settings, but the cross-correlation accuracy result 

remained close to the reference. For example, a setting with high threshold, 

high ratio can be perceived as sonically similar to a setting with low ratio, low 

threshold. This can cause confusion to a mix engineer, especially when mixing 

to a reference, as it creates an element of uncertainty when experimenting with 

combinations of settings. Make-up gain is also a contributor to the 

interdependence of parameter values. 

2. Difficulty perceiving envelope changes (source dependence) - When an 

engineer is making adjustments to the envelope of a compressor, the changes 

are not immediately noticeable as they are dependent on transients within the 

source. For example, the release of a compressor might be adjusted before the 

audio source has crossed the threshold, which would have no audible effect. 

The author believes that this is the main reason why participants struggled 
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with compression in the Blind Gestural Mixing Tests. If the source was not at 

a transient part of the audio, they could not perceive changes in the 

parameters. This is why visualisation might be essential for a compression 

processor. 

A method of further improving the gestural interface with regard to Compression 

might be to rationalise the parameter changes and offer ‘gestural - shortcuts’ to the 

engineer. Ultimately, this could be mapped to the ‘overall compression gesture’ 

specified in chapter 6 (gesture elicitation). 

One of the disadvantages of fixed parameter presets is their inability to adapt to 

changing sources. For this reason, a certain level of engineer interaction is required to 

evaluate the subjective features of a mix. However, a ‘gestural shortcut’ could offer 

continuous control over a ‘preset ratio’. For example, threshold and ratio could be 

controlled simultaneously through a ratio that moves between hard and soft 

compression presets. Effectively this would produce a ‘continuous preset’. 

8.4.1 - Parameter Elicitation Process  

We can elicit a relationship between threshold and ratio by interpolating between two 

compression presets, hard and soft compression. This will provide a control that can 

be mapped to ‘overall compression’. The parameter examples for hard and soft 

compression will be taken from the SAFE (semantic audio feature extraction) audio 

plug-in suite. As introduced in Chapter 2.4, The SAFE semantic audio project is an 

investigation that aims to find an average audio-processor preset for a given semantic 

descriptor. The project operates by offering a free plug-in suite that, in return, asks 

engineers to contribute by uploading settings that they deem to fit under certain 

descriptors. Two such descriptors are ‘hard’ and ‘soft’ compression. Figure 8-11 

displays the parameter settings for hard and soft compression.  



 81 

 

Figure 8-11 Hard and Soft Presets of the SAFE Compressor Plug-in 

The parameter values from both soft and hard SAFE presets are listed below: 

Soft Compression  Hard Compression 

Threshold:  -28.9dB   -33.5dB 

Ratio:   3.4:1    5.1:1 

Attack:  8.9ms    10.3ms 

Release: 218.5ms   1291.3ms 

Gain:  6.2    8.1 

By interpolating between the parameter values, it is possible to provide overall 

compression control. This will rationalise the control process and could be 

implemented as a gestural shortcut.  

Plotting ratio against threshold value produces a linear gradient between the two 

settings. The reader should note that, although the threshold is logarithmically scales 

(measured in dB), it is still deemed adequate to determine a relationship between 

threshold and ratio on a linear scale. Figure 8-12 displays this graphically.  
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Figure 8-12 SAFE Preset Interpolation (Ratio vs. Threshold)  

The relationship between ratio and threshold is given by the equation: 

y = -2.7059x - 19.7, where x = ratio and y = threshold. 

One detrimental outcome of this rationalization is that the extreme compressor 

settings cannot be reached. The equation can be scaled to allow for ‘extreme’ settings. 

A setting is classified as extreme when its values lie outside the boundaries of the 

hard and soft SAFE pre-sets.  

Cartwright et al (2014) described this parameter combination process as ‘hill-

climbing’. They experienced the same scaling issue during the development of their 

Mixploration system, where the ‘local maximum is less than the global maximum’. In 

the SAFE example, this occurs as the ratio reaches 1:1, thus limiting the threshold to a 

maximum of -22.5dB.  

Figure 8-13 shows one scaling solution that allows the full range of thresholds to be 

selected. 
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Figure 8-13 SAFE Preset Interpolation with Extremes 

However, this approach would distort the relationship of parameters within the SAFE 

gradient. For the purposes of this test, a linear response was deemed adequate.  

By repeating the elicitation process (in reference to threshold changes) with the 

remaining compression parameters, an ‘overall compression’ control value that ramps 

between hard and soft compression can be produced. This value can then be mapped 

to a gesture for rationalised control, which could be referred to as a ‘continuous 

preset’ or ‘gestural shortcut’.   

Gain(x)  

y = -2.4211x - 13.8895  

Attack(x) 

y = -3.2857x + 0.3429 

Release(x) 

y = -0.0043x - 27.9628 
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This relationship can be given in a single expression by: 

t = -2.7059r - 19.7 = -2.4211g -13.8895 = - 3.2857a + 0.3429 = - 0.0043R - 27.9628 

where: t=threshold, r=ratio, g=gain, a=attack, R=release. 

8.4.2 - Test Methodology 
A test was designed to evaluate the effectiveness and usability of the rationalised 

controller. The test aims to determine whether engineers can suitably match a 

reference track when the parameters are ‘locked’ into interpolated values between 

SAFE presets. For the purposes of this test, a simple one-touch gesture will be 

implemented, as we are more focused on the performance of the preset parameters 

than the gestures themselves. For example, at a later date, the SAFE control could be 

mapped to an ‘overall compression’ gesture. Effectively this would produce a high-

level ‘gestural shortcut’. 

Participants, reference samples (a kick drum) and all equipment were kept consistent 

from the previous compression tests. This allows the comparison of interface 

performance during analysis of results. A total of three reference samples were 

produced, as shown in figures 8-14, 8-15 and 8-16. The compression settings for each 

reference were chosen to evaluate the accuracy capabilities of the ‘SAFE continuous 

preset’.  Reference one was the same audio sample used in the previous compression 

test, the compression values used to set create this sample could not be matched using 

the SAFE continuous preset. Reference two had a compression setting that could be 

replicated exactly by the continuous preset. Reference three was chosen to represent a 

setting that was far from the boundaries of the continuous preset.  
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Figure 8-14 Reference 1 Compression Settings  

 

Figure 8-15 Reference 2 Compression Settings 

 

Figure 8-16 Reference 3 Compression Settings 



 86 

No parameter values are presented to the participant, thus encouraging them to ‘trust 

their ears’ (Cartwright et al, 2014).  

1. Familiarisation Period - Participants were handed the interface and give a 

‘practice track’ to get used to the operation and responsiveness of the control. 

2. Interface used to match Reference 1. 

3. Interface used to match Reference 2. 

4. Interface used to match Reference 3. 

5. Participant asked to complete a short preference questionnaire (see Appendix 

G).  

*** The order of steps three, four and five were randomised (using a random 

number generator) for each participant. This helped to alleviate the influence 

of both interface and test familiarity on the average results.   

9 - RESULTS 

9.1 - Equalisation Control  

9.1.1 - Target Matching Times 
The test completion times presented in table 9-1 have been normalised so that the 

results can be compared independently of participant performance, where 1.0 

represents the longest time taken per subject and the remaining values are calculated 

proportionally. This is necessary because some test participants were much quicker at 

matching target settings and this should not reflect on the effectiveness of the 

interface, generally this was due to level of experience with EQ plug-ins.  
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Table 9-1 Normalised Target Matching Times (NTMTs) for EQ  

 

By inspecting Table 9-1, it can be observed that the longest average time was taken 

with the traditional WIMP interface for the second target setting, by contrast the 

fastest average time was the gestural interface for the second target setting. The 

categories will hereby be referred to as Gestural Interface Time - Target 1 (GIT-1), 

Gestural Interface Time - Target 2 (GIT-2), WIMP Interface Time - Target 1 (WIT-

1), WIMP Interface Time - Target 2 (WIT-2). Figure 9-1 provides a graphical 

representation of the data. 

 

	
  
Normalised	
  Target	
  Matching	
  Time	
  (NTMT)	
  

	
  
Target	
  Setting	
  1	
  	
   Target	
  Setting	
  2	
  

Interface	
  Type	
   Gestural	
   Traditional	
   Traditional	
   Gestural	
  
Participant	
  1	
   0.43	
   0.80	
   1.00	
   0.37	
  
Participant	
  2	
   0.84	
   0.92	
   1.00	
   0.46	
  
Participant	
  3	
   0.58	
   0.78	
   1.00	
   0.49	
  
Participant	
  4	
   0.43	
   1.00	
   0.53	
   0.50	
  
Participant	
  5	
   1.00	
   0.54	
   0.87	
   0.51	
  
Participant	
  6	
   0.60	
   0.40	
   1.00	
   0.76	
  
Participant	
  7	
   0.61	
   0.86	
   1.00	
   0.48	
  
Participant	
  8	
   0.60	
   0.59	
   0.76	
   1.00	
  
Participant	
  9	
   0.90	
   0.66	
   1.00	
   0.66	
  
Participant	
  10	
   0.64	
   1.00	
   0.89	
   0.44	
  
Participant	
  11	
   1.00	
   0.96	
   0.63	
   0.65	
  
Participant	
  12	
   0.66	
   0.56	
   1.00	
   0.91	
  
Participant	
  13	
   0.39	
   0.28	
   1.00	
   0.57	
  
Participant	
  14	
   0.57	
   0.81	
   1.00	
   0.46	
  
Participant	
  15	
   0.40	
   0.42	
   1.00	
   0.42	
  
Participant	
  16	
   0.70	
   0.71	
   1.00	
   0.92	
  
Participant	
  17	
   0.50	
   0.64	
   1.00	
   0.59	
  
Participant	
  18	
   0.30	
   0.71	
   1.00	
   0.26	
  
Participant	
  19	
   0.96	
   0.92	
   1.00	
   0.92	
  
Participant	
  20	
   0.52	
   0.67	
   1.00	
   0.64	
  
Participant	
  21	
   0.75	
   0.58	
   1.00	
   0.93	
  
Participant	
  22	
   0.56	
   0.88	
   1.00	
   0.66	
  
MEAN	
   0.63	
   0.71	
   0.94	
   0.62	
  
Standard	
  Dev	
   0.20	
   0.20	
   0.13	
   0.21	
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Figure 9-1 Mean NTMTs for Each Interface & Target 

In order to test the data for statistical significance, it should first be determined 

whether the task completion times are normally distributed. The times presented in 

table 9-1 are normally distributed data sets, as assessed by the Shapiro-Wilk test (p > 

.05) (Lund Research, 2014), with the exception of WIT-2, which returned a value of 

(p < .05).  

 

 

Figure 9-2 Negatively Skewed Distribution of WIT-2 
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The histogram in Figure 9-2 displays the results of the normality test for the WIT-2 

dataset. Visual inspection confirms that the results are not normally distributed, due to 

significant negative skewness of the data. In other words, most people were slowest 

with the WIT-2 test, therefore the results are unevenly distributed. Resultantly, the 

non-parametric Friedman test was used to evaluate the statistical significance of the 

data.  

 

The time taken with each interface is statistically significantly different, as reported 

by The Friedman Test, with a returned value of X2(3) = 26.530, (p<0.0005). Where 

X2 is the distribution type, (3) is the degrees of freedom, 26.530 is the Friedman Test 

Result and (p<0.0005) is the significance level. Figure 9-3 displays the graphical 

results of the Friedman test.  

 

 

Figure 9-3 Results of Friedman Test for Statistical Significance of EQ NTMTs 

The Friedman test concludes that Interface Target Matching Times were significantly 

different. Therefore we can reject the null hypothesis that “there is no difference 

between NTMTs for each interface”. Further post-hoc analysis identified the 

significance of pair-wise comparisons with Bonferroni adjustments for multiple 

corrections (Lund Research, 2014). It was found that there was statistically significant 

difference in NTMTs between GIT-2 and WIT-2 (p < .0005), GIT-T1 and WIT-T2 (p 

< .0005), as well as WIT-T1 and WIT-T2 (p = 0.005).  
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9.1.2 - Participant Preferences & Ratings 

Of the 22 participants, three did not return their questionnaire and therefore have been 

omitted from preference and ratings analysis. Of the remaining 19 participants, 100% 

reported that they preferred using the gestural interface. In addition, they were asked 

to report reasons for their preference. This was an open question and did not limit the 

number of answers that could be given. The responses were categorised according to 

the nearest connotation. Figure 9-4 illustrates the most frequent suggestions for 

preference of the gestural interface. 
 

 

Figure 9-4 Frequency of Reasons for the Preference of Gestural Control 

The modal answer was that the gestural interface was ‘easier to use’ than the WIMP 

interface.  

To help assess the performance of the interface, participants were asked to give the 

gestural interface a score between 1 and 10 for the accuracy of control. Where 1 is not 

accurate and 10 is extremely accurate. 
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Figure 9-5 Accuracy Scores for the Gestural EQ Interface 

Inspection of Figure 9-5 suggests a positive response to the accuracy rating question. 

With a mean score of 6.84/10. 

 

The same was asked of Sensitivity. This time the ideal rating is 5. Where 1 is not 

sensitive enough, 5 is the correct amount of sensitivity and 10 is too sensitive. 

 

 

Figure 9-6 Sensitivity Scores for the Gestural EQ Interface 

By inspection of figure 9-6, it can be concluded that the response from sensitivity 

ratings was positive, with a mean score of 4.97/10 (where 5 is ideal). 

 
A final part of the questionnaire asked the participants if they preferred using the 
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tablet in portrait or landscape orientation. 63% preferred portrait orientation. This 

figure is close to 50%, and supports the idea that a universally ergonomic tablet-based 

interface should be usable in both orientations. 

9.2 - Dynamics Processor Control  
Tables 9-2 and 9-3 present the results for gating and compression, respectively. The 

results have been normalised independently. 

	
  

GATING	
  -­‐	
  Normalised	
  Target	
  Matching	
  Time	
  

	
  

Target	
  Setting	
  1	
   Target	
  Setting	
  2	
  

Participant	
  #	
   Gestural	
   WIMP	
   WIMP	
   Gestural	
  

Participant	
  1	
   1.00	
   0.65	
   0.52	
   0.55	
  

Participant	
  2	
   0.95	
   0.64	
   0.94	
   1.00	
  

Participant	
  3	
   0.87	
   0.84	
   0.92	
   1.00	
  

Participant	
  4	
   1.00	
   0.59	
   0.66	
   0.93	
  

Participant	
  5	
   0.87	
   0.67	
   1.00	
   0.81	
  

Participant	
  6	
   0.99	
   0.76	
   0.79	
   1.00	
  

Participant	
  7	
   0.83	
   0.70	
   0.65	
   1.00	
  

Participant	
  8	
   0.88	
   0.51	
   0.68	
   1.00	
  

Participant	
  9	
   0.92	
   0.49	
   0.58	
   1.00	
  

MEAN	
   0.92	
   0.65	
   0.75	
   0.92	
  

STANDARD	
  DEV	
   0.06	
   0.11	
   0.17	
   0.15	
  

Table 9-2 Gating NTMTs 
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   COMPRESSION	
  -­‐	
  Target	
  Matching	
  Time	
  

	
  	
   Target	
  Setting	
  1	
   Target	
  Setting	
  2	
  

Participant	
  #	
   Gestural	
   WIMP	
   WIMP	
   Gestural	
  

Participant	
  1	
   0.73	
   0.52	
   0.64	
   1.00	
  

Participant	
  2	
   0.94	
   0.56	
   0.78	
   1.00	
  

Participant	
  3	
   0.96	
   0.74	
   0.62	
   1.00	
  

Participant	
  4	
   1.00	
   0.62	
   0.97	
   0.78	
  

Participant	
  5	
   1.00	
   0.94	
   0.76	
   0.85	
  

Participant	
  6	
   1.00	
   0.81	
   0.70	
   0.85	
  

Participant	
  7	
   1.00	
   0.96	
   0.95	
   1.00	
  

Participant	
  8	
   1.00	
   0.38	
   0.52	
   0.70	
  

Participant	
  9	
   0.89	
   0.66	
   0.55	
   1.00	
  

MEAN	
   0.95	
   0.69	
   0.72	
   0.91	
  

STANDARD	
  DEV	
   0.09	
   0.20	
   0.16	
   0.12	
  

Table 9-3 Compression NTMTs 

As can be observed in the above tables, the number of participants has reduced from 

the previous tests. The decision was made to abort testing after 9 participants because 

of the impaired performance of the gestural interface. It was clear that differences 

between the EQ and Dynamics controllers were causing a distinct variation in Target 

Matching Times. Furthermore, participants were regularly reporting difficulties 

during testing, including inability to perform desired gestures through issues with 

memorability and errors (misinterpretation of gestures by the system). 

In addition to the Gestural Interface returning slower target matching times, the 

questionnaires revealed that only 56% of participants preferred using the tablet 

prototype. Although still a majority, it is markedly less that the 100% preference 

reported in the EQ tests.  

9.2.1 - Adjustments to the Prototype 
A recurring comment during gate control testing was that the gestures for attack and 

release were uncomfortable to perform because of the 180º rotational range. For this 

reason the minimum and maximum range was reduced so that: 

• At 25º, Attack Time = Slowest. 
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• At 90º, Attack Time = Fastest. 

• At 155º, Release Time = Slowest. 

• At 90º, Release Time = Fastest. 

The resulting range of rotation was 130º, as illustrated in Figure 9-7. 

 

Figure 9-7 Revised Rotational Range of Attack and Release Gesture Mapping 

9.3 - Influence of a GUI in the Dynamics Processor Interface 
The results for gating and compression will be presented and analysed separately in 

order to limit variance between plug-in familiarity. For example, one user might be 

more comfortable using a compressor than a gate because of their mixing-style or 

experience level. All results have been normalised, as in previous analysis. Test 

results will hereby be referred to as Normalised Reference Matching Times (NRMT) 

for each given GUI method.  
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9.3.1 - Reference Matching Times - Gating 
Table 9-4 presents the results for each visualization method and the WIMP control.  

	
  

GATING	
  -­‐	
  Normalised	
  Reference	
  Matching	
  Time	
  

Participant	
  #	
   WIMP	
  

Gestural	
   -­‐	
  

Plug-­‐In	
  GUI	
  

Gestural	
   -­‐	
  

Visualisation	
  

Gestural	
   -­‐	
  No	
  

Visualisation	
  

Participant	
  1	
   0.75	
   0.76	
   1.00	
   0.54	
  

Participant	
  2	
   0.90	
   0.47	
   0.18	
   1.00	
  

Participant	
  3	
   0.43	
   0.70	
   0.32	
   1.00	
  

Participant	
  4	
   0.42	
   0.99	
   0.50	
   1.00	
  

Participant	
  5	
   1.00	
   0.92	
   0.47	
   0.59	
  

Participant	
  6	
   1.00	
   0.49	
   0.86	
   0.81	
  

Participant	
  7	
   0.21	
   0.28	
   0.20	
   1.00	
  

Participant	
  8	
   0.11	
   0.22	
   0.26	
   1.00	
  

Participant	
  9	
   0.60	
   0.28	
   0.38	
   1.00	
  

Participant	
  10	
   0.84	
   1.00	
   0.53	
   0.72	
  

Participant	
  11	
   0.83	
   0.66	
   0.45	
   1.00	
  

Participant	
  12	
   0.25	
   0.22	
   0.11	
   1.00	
  

Participant	
  13	
   1.00	
   0.79	
   0.72	
   0.66	
  

Participant	
  14	
   1.00	
   0.41	
   0.41	
   0.36	
  

Participant	
  15	
   0.94	
   0.55	
   0.48	
   1.00	
  

Participant	
  16	
   1.00	
   0.26	
   0.27	
   0.13	
  

Participant	
  17	
   0.95	
   0.69	
   0.91	
   1.00	
  

Participant	
  18	
   1.00	
   0.55	
   0.49	
   0.73	
  

Participant	
  19	
   1.00	
   0.89	
   0.79	
   0.64	
  

Participant	
  20	
   1.00	
   0.23	
   0.23	
   0.45	
  

Participant	
  21	
   0.46	
   1.00	
   0.68	
   0.43	
  

Participant	
  22	
   0.98	
   1.00	
   0.50	
   0.92	
  

MEAN	
   0.76	
   0.61	
   0.49	
   0.77	
  

STANDARD	
  DEV	
   0.30	
   0.29	
   0.25	
   0.26	
  

Table 9-4 Gating Visualisation NRMTs  

Calculating z-values for Skewness and Kurtosis assessed the normality of distribution. 

It was concluded that all sets of data had normal distribution, with skewness and 

kurtosis z-values between ±2.58 (which accepts results with a statistical significance 
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level of .01). Table 9-5 Displays the calculated z-values for Normalised Reference 

Matching Times (NRMT). 

	
  

GATING	
  Z-­‐Values	
  

	
  

WIMP	
  

Gestural	
   -­‐	
  

Plug-­‐In	
  GUI	
  

Gestural	
   -­‐	
  

Visualisation	
  

Gestural	
   -­‐	
  No	
  

Visualisation	
  

Z-­‐Score	
  (Skewness)	
   -­‐2.02	
   0.037	
   1.071	
   -­‐1.778	
  

Z-­‐Score	
  (Kurtosis)	
   -­‐0.528	
   -­‐1.51	
   -­‐0.537	
   -­‐0.179	
  

Table 9-5 Gating NRMT Z-values 

Because the data is reported to have normal distribution, a one-way repeated measures 

ANOVA test was conducted to determine statistical significance (Lund Research, 

2014). Further evidence of normality can be seen by inspection of the boxplots in 

figure 9-8 which confirm the absence of outliers.  

 

Figure 9-8 Boxplot to Confirm the Absence of Outliers for Gating NRMTs 

Mauchly’s test of sphericity reported that the assumption of sphericity has not been 

violated, with a value of X2(2) = 10.433, p=0.064. Therefore, a repeated measures 

ANOVA will return a reliable result. 

The repeated measures ANOVA test concluded that Normalised Reference Matching 

Times (NRMTs) have statistically significant differences,  



 97 

with a value of F(3, 63) = 5.752 p<0.05.  

9.3.2 - Reference Matching Times - Compression 

Table 9-6 presents the normalised reference matching times for each visualisation 

method. 

	
  	
   COMPRESSION	
  -­‐	
  Normalised	
  Reference	
  Matching	
  Time	
  

Participant	
  #	
   WIMP	
  

Gestural	
   -­‐	
  

Plug-­‐In	
  GUI	
  

Gestural	
   -­‐	
  

Visualisation	
  

Gestural	
   -­‐	
   No	
  

Visualisation	
  

Participant	
  1	
   0.51	
   1.00	
   0.51	
   0.73	
  

Participant	
  2	
   1.00	
   0.66	
   0.67	
   0.36	
  

Participant	
  3	
   1.00	
   0.60	
   0.68	
   0.51	
  

Participant	
  4	
   0.72	
   0.98	
   0.71	
   1.00	
  

Participant	
  5	
   0.50	
   1.00	
   0.93	
   0.84	
  

Participant	
  6	
   0.86	
   0.57	
   0.51	
   1.00	
  

Participant	
  7	
   0.60	
   0.58	
   0.47	
   1.00	
  

Participant	
  8	
   1.00	
   0.44	
   0.48	
   0.59	
  

Participant	
  9	
   0.48	
   0.36	
   0.94	
   1.00	
  

Participant	
  10	
   1.00	
   0.77	
   0.61	
   0.33	
  

Participant	
  11	
   0.73	
   0.62	
   1.00	
   0.84	
  

Participant	
  12	
   0.70	
   1.00	
   0.47	
   0.62	
  

Participant	
  13	
   0.67	
   1.00	
   0.37	
   0.58	
  

Participant	
  14	
   1.00	
   0.77	
   0.66	
   0.78	
  

Participant	
  15	
   0.79	
   1.00	
   0.57	
   0.95	
  

Participant	
  16	
   1.00	
   0.67	
   0.56	
   0.35	
  

Participant	
  17	
   1.00	
   0.78	
   0.65	
   0.93	
  

Participant	
  18	
   1.00	
   0.62	
   0.38	
   0.53	
  

Participant	
  19	
   0.63	
   0.59	
   0.82	
   1.00	
  

Participant	
  20	
   0.40	
   0.47	
   1.00	
   0.53	
  

Participant	
  21	
   0.38	
   0.35	
   0.33	
   1.00	
  

Participant	
  22	
   0.72	
   0.24	
   0.68	
   1.00	
  

MEAN	
   0.76	
   0.69	
   0.64	
   0.75	
  

STANDARD	
  DEV	
   0.22	
   0.24	
   0.20	
   0.24	
  

Table 9-6 Compression Visualisation NRMTs 
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Normality of distribution was calculated through analysis of skewness and kurtosis in 

the same way as the gating NRMTs. Table 9-7 displays the resulting z-values. 

	
  

COMPRESSION	
  Z-­‐Values	
  

	
  

WIMP	
  

Gestural	
   -­‐	
  

Plug-­‐In	
  GUI	
  

Gestural	
   -­‐	
  

Visualisation	
  

Gestural	
   -­‐	
  No	
  

Visualisation	
  

Z-­‐Score	
  (Skewness)	
   -­‐0.487	
   -­‐0.0428	
   0.0009	
   -­‐0.845	
  

Z-­‐Score	
  (Kurtosis)	
   -­‐1.373	
   -­‐0.988	
   -­‐0.626	
   -­‐1.386	
  

Table 9-7 Compression Visualisation NRMT Z-values 

The boxplot in Figure 9-9 illustrates the distribution of data and confirms the absence 

of outliers. 

 

Figure 9-9 Boxplots to Confirm the absence of Outliers for Compression NRMTs 

As with gating results, the compression data has returned z-values that imply 

relatively normal distribution. Therefore a repeated ANOVA is a suitable test to 

determine the statistical significance of the data.  

Mauchly’s test of sphericity reported that the assumption of sphericity has not been 

violated, with a value of X2(2) = 3.744, p=0.587. Therefore, a repeated measures 

ANOVA will return a reliable result. 
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P values were returned > 0.05, therefore statistical significance CANNOT be 

deduced. This is a result of the mean values being closer. However, it can be 

suggested (through inspection of the box-plots) that further improvements to the 

interface would reach the same conclusions for compression as were discovered for 

gating.  

9.3.3 - Accuracy Measurements 

As compression NRMTs lacked statistical significance, the accuracies of user-settings 

were calculated. 

The accuracy of participant’s gate and comp setting were assessed using the xCorr 

cross-correlation function in MATLAB to compare the reference and the user’s 

setting (Mathworks, 2014). This returned a value between 0 and 1 that represented the 

similarity between two waveforms (where 1 is identical and 0 is no similarities). 

Tables 9-8 and 9-9 display the results for compression and gating, respectively. 
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Compression	
  -­‐	
  Reference	
  Matching	
  ACCURACY	
  

Participant	
  #	
   WIMP	
  

Gestural	
   -­‐	
  

TRAD	
  GUI	
  

Gestural	
   -­‐	
  

Visualisation	
  

Gestural	
   -­‐	
  

Blind	
  

Participant	
  1	
   0.9992	
   0.9948	
   0.9638	
   0.9844	
  

Participant	
  2	
   0.9906	
   0.9975	
   0.9770	
   0.9977	
  

Participant	
  3	
   0.9895	
   0.9961	
   0.9956	
   0.9854	
  

Participant	
  4	
   0.9879	
   0.9765	
   0.9986	
   0.9950	
  

Participant	
  5	
   0.9700	
   0.9760	
   0.9529	
   0.9645	
  

Participant	
  6	
   0.9433	
   0.9905	
   0.9926	
   0.9734	
  

Participant	
  7	
   0.9971	
   0.9962	
   0.9956	
   0.9839	
  

Participant	
  8	
   0.9819	
   0.9649	
   0.9473	
   0.9792	
  

Participant	
  9	
   0.9711	
   0.9711	
   0.9882	
   0.9588	
  

Participant	
  10	
   0.9912	
   0.9934	
   0.9944	
   0.9967	
  

Participant	
  11	
   0.9738	
   0.9608	
   0.9737	
   0.9415	
  

Participant	
  12	
   0.9892	
   0.9877	
   0.9531	
   0.9779	
  

Participant	
  13	
   0.9839	
   0.9814	
   0.9930	
   0.9634	
  

Participant	
  14	
   0.9928	
   0.9966	
   0.9965	
   0.9953	
  

Participant	
  15	
   0.9863	
   0.9776	
   0.9935	
   0.9673	
  

Participant	
  16	
   0.9685	
   0.9668	
   0.9695	
   0.9541	
  

Participant	
  17	
   0.9953	
   0.9993	
   0.9969	
   0.9408	
  

Participant	
  18	
   0.9722	
   0.9762	
   0.9698	
   0.9399	
  

Participant	
  19	
   0.9944	
   0.9985	
   0.9974	
   0.9961	
  

Participant	
  20	
   0.9859	
   0.9752	
   0.9633	
   0.9970	
  

Participant	
  21	
   0.9892	
   0.9810	
   0.9672	
   0.9435	
  

Participant	
  22	
   0.9898	
   0.9936	
   0.9959	
   0.9944	
  

MEAN	
   0.9838	
   0.9842	
   0.9807	
   0.9741	
  

STANDARD	
  DEV	
   0.0128	
   0.0122	
   0.0172	
   0.0206	
  

Table 9-8 Compression Accuracy Results 
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GATING	
  -­‐	
  Reference	
  Matching	
  ACCURACY	
  

Participant	
  #	
   WIMP	
  

Gestural	
   -­‐	
  

TRAD	
  GUI	
  

Gestural	
   -­‐	
  

Visualisation	
  

Gestural	
   -­‐	
  

Blind	
  

Participant	
  1	
   0.9984	
   0.9983	
   0.9987	
   0.9988	
  

Participant	
  2	
   0.9632	
   0.9746	
   0.9993	
   0.9979	
  

Participant	
  3	
   0.9975	
   0.9973	
   0.9980	
   0.9965	
  

Participant	
  4	
   0.9613	
   0.9957	
   0.9729	
   0.9996	
  

Participant	
  5	
   0.9874	
   0.9558	
   0.9867	
   0.9974	
  

Participant	
  6	
   0.9988	
   0.9907	
   0.9058	
   0.9989	
  

Participant	
  7	
   0.9994	
   0.9997	
   0.9989	
   0.9984	
  

Participant	
  8	
   0.9974	
   0.9796	
   0.9961	
   0.2028	
  

Participant	
  9	
   0.9987	
   0.9840	
   0.9822	
   0.9237	
  

Participant	
  10	
   0.9961	
   0.9996	
   0.9998	
   0.9992	
  

Participant	
  11	
   0.9729	
   0.9848	
   0.8955	
   0.9944	
  

Participant	
  12	
   0.9925	
   0.9489	
   0.9461	
   0.9979	
  

Participant	
  13	
   0.9918	
   0.9602	
   0.8168	
   0.8841	
  

Participant	
  14	
   0.9987	
   0.9902	
   0.9650	
   0.9964	
  

Participant	
  15	
   0.9922	
   0.9872	
   0.9992	
   0.9945	
  

Participant	
  16	
   0.9771	
   0.9275	
   0.9248	
   0.9103	
  

Participant	
  17	
   0.9756	
   0.9870	
   0.8935	
   0.9983	
  

Participant	
  18	
   0.9956	
   0.9996	
   0.9960	
   0.9938	
  

Participant	
  19	
   0.9845	
   0.9995	
   0.9975	
   0.9973	
  

Participant	
  20	
   0.9819	
   0.9991	
   0.9973	
   0.9966	
  

Participant	
  21	
   0.9576	
   0.8761	
   0.9821	
   0.9863	
  

Participant	
  22	
   0.9970	
   0.9990	
   0.9961	
   0.9967	
  

MEAN	
   0.9866	
   0.9788	
   0.9644	
   0.9837	
  

STANDARD	
  DEV	
   0.0136	
   0.0308	
   0.0490	
   0.1696	
  

Table 9-9 Gating Accuracy Results 

Note that participant 8 has been removed from the gating accuracy results because of 

a significant outlier for the blind test. After checking the original audio samples, it 

was concluded that the outlier was produced due to a gate setting with a high 
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threshold and extremely fast attack and release times. The resulting waveform was 

very dissimilar to the reference and caused the outlier when the cross-correlation 

algorithm was run. The participant in question was a professional live-sound engineer 

and may have been gating with a ‘trigger source’ in mind, rather than matching the 

reference. The averages and standard deviations in table 9-9 have been calculated 

with participant 8 omitted. Participant 8 will be removed from any further gating 

analysis.  

The closeness of the normalised results makes it difficult to draw any conclusions by 

inspection of tables. The boxplots in figure 9-10 and 9-11 provide a better 

representation of the data. The averages in the boxplots are Median values. 

 

Figure 9-10 Compression Accuracy Boxplots 
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Figure 9-11 Gating Accuracy Boxplots 

Neither of the data sets exhibit normal distribution (as assessed by the Shapiro-Wilk 

test), therefore the results were tested for statistical significance using the Friedman 

test. 

 

Figure 9-12 Friedman Test Results for Compression Setting Accuracy 
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Figure 9-13 Friedman Test Results for Gating Setting Accuracy 

Friedman tests results, as shown in figures 9-12 and 9-13, concluded that the accuracy 

measurements did not deviate far enough from the mean to be considered statistically 

significant (p > .05). Therefore we can conclude that the type of visualisation did not 

impair (or improve) the accuracy of a user’s setting.  

9.3.4 - Preferences and Questionnaire Answers 

Participants were asked to choose whether they preferred using the gestural interface 

with or without visualisation when making fast or accurate parameter adjustments. 

Figure 9-14 displays the frequency of responses. 

 

Figure 9-14 Visualisation Preference Frequencies for Interface Speed and Accuracy 
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A recurring comment from the preference questionnaire was that the ‘Blind’ mixing 

test proved difficult when making small adjustments to a setting. This reiterates the 

importance of visualisation as a guide whilst mixing. The most commonly suggested 

reason for interface preference with visualisation concerned small adjustments to the 

dynamics processors. Of the 29 instances where visualisation was preferred (for both 

speed and accuracy of the interface) 45% reported some kind of difficulty making 

small adjustments or problems executing small gestural movements without visual 

indication that the correct gesture had been (or was being) performed. The latter may 

be a result of user familiarity and lack of confidence using the new interface.  

Participants were asked whether they preferred making attack and release adjustments 

with the gate or the compressor. Where the gate used a representative ‘angle’ setting 

and the compressor used arbitrary multi-touch swipes. 55% reported a preference for 

the compressor method; therefore neither method was preferred significantly by this 

participant population.   

The final section of the questionnaire asked participants to describe the ‘envelope 

shape’ pictured in figure 9-15. 

 

Figure 9-15 Questionnaire Envelope Shape 

Participants were asked whether they considered the attack and release to be fast or 

slow, and to suggest a value in milliseconds that it might represent. The purpose of 

this question was to evaluate whether the visualisation is representative of a user’s 

perception of envelope time. 

The actual settings of the envelope represented in Figure 9-15 are 13ms (fast) attack 

and 1400ms (slow) release.  
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100% of participants correctly described the attack as ‘fast’ and 95% described the 

release as ‘slow’. With such a strong majority, we can conclude that the visualisation 

is correctly representative of user’s perception of ‘fast’ and ‘slow’ envelope times.  

 

9.4 - Semantically Motivated Combination of Compression Controls          
Firstly, the NRMT (normalised reference matching times) for each compression 

setting will be presented, giving an impression of which reference was easiest to 

match. Following this the accuracy will be measured, proving whether the 

‘continuous preset’ could sufficiently match the accuracy of settings made with 

traditional multi-parameter control.  

Following this, the times and accuracies for ‘reference 1’ will be compared to those 

from the previous compression tests. This will demonstrate the speed and efficiency 

of the ‘continuous preset’ interface against the other four interface types: 

1. WIMP 

2. Gestural With Plug-in GUI 

3. Gestural With Representative GUI 

4. Gestural Blind 

Only 20 of the 22 original test participants could make this round of testing. 

Therefore, Participant 11 and Participant 16 have been omitted from the comparisons 

in section 9.4.2. Averages and normalisations were recalculated accordingly. 
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9.4.1 - Comparison of Reference Matching Times 

Table 9-10 displays the NRMTs for each of the three references, all matched using the 

semantically rationalised high-level gestural controller.  

 

	
  
(N)	
  Reference	
  Matching	
  Time	
  

Participant	
  #	
   Ref	
  1	
   Ref	
  2	
   Ref	
  3	
  
Participant	
  1	
   1.00	
   0.99	
   0.70	
  
Participant	
  2	
   0.35	
   0.53	
   1.00	
  
Participant	
  3	
   0.18	
   0.73	
   1.00	
  
Participant	
  4	
   0.34	
   1.00	
   0.79	
  
Participant	
  5	
   1.00	
   0.54	
   0.92	
  
Participant	
  6	
   0.86	
   0.85	
   1.00	
  
Participant	
  7	
   0.41	
   0.39	
   1.00	
  
Participant	
  8	
   0.77	
   1.00	
   0.72	
  
Participant	
  9	
   0.88	
   0.49	
   1.00	
  
Participant	
  10	
   0.63	
   1.00	
   0.60	
  
Participant	
  12	
   1.00	
   0.77	
   0.48	
  
Participant	
  13	
   1.00	
   0.75	
   0.86	
  
Participant	
  14	
   0.68	
   0.64	
   1.00	
  
Participant	
  15	
   0.33	
   1.00	
   0.39	
  
Participant	
  17	
   0.73	
   1.00	
   0.55	
  
Participant	
  18	
   0.30	
   0.34	
   1.00	
  
Participant	
  19	
   0.63	
   1.00	
   0.60	
  
Participant	
  20	
   0.47	
   0.43	
   1.00	
  
Participant	
  21	
   0.39	
   0.88	
   1.00	
  
Participant	
  22	
   0.69	
   0.95	
   1.00	
  
MEAN	
   0.63	
   0.76	
   0.83	
  
STANDARD	
  DEV	
   0.27	
   0.24	
   0.21	
  

Table 9-10 - NRMTs for ‘Continuous Preset’ 

 

The datasets were tested for normal distribution. Both reference 1 and reference 2 

displayed uneven distribution (as assessed with the Shapiro-Wilk Test). Therefore, the 

non-parametric Friedman test was used to test for statistical significance. The 

Friedman test reported that there was no statistically significant difference between 

the NRMTs with a value of p = .522. Therefore, on average, each reference was 

matched within a statistically similar time.  
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9.4.2 - Comparison of Interfacing Methods 

Table 9-11 presents the normalised reference matching times (NRMTs) for all 

interfacing methods, where participants, process and reference sample used are 

consistent.  

 

	
  
COMPRESSION	
  -­‐	
  Reference	
  Matching	
  Time	
  

Participant	
  #	
   WIMP	
  
Gestural	
  -­‐	
  
TRAD	
  GUI	
  

Gestural	
  -­‐	
  
Visualisation	
  

Gestural	
  -­‐	
  
No	
  
Visualisation	
  

SAFE	
  
'Continuous	
  
Preset'	
  

Participant	
  1	
   0.51	
   1.00	
   0.51	
   0.73	
   0.67	
  
Participant	
  2	
   1.00	
   0.66	
   0.67	
   0.36	
   0.05	
  
Participant	
  3	
   1.00	
   0.60	
   0.68	
   0.51	
   0.08	
  
Participant	
  4	
   0.72	
   0.98	
   0.71	
   1.00	
   0.14	
  
Participant	
  5	
   0.50	
   1.00	
   0.93	
   0.84	
   0.32	
  
Participant	
  6	
   0.86	
   0.57	
   0.51	
   1.00	
   0.22	
  
Participant	
  7	
   0.60	
   0.58	
   0.47	
   1.00	
   0.08	
  
Participant	
  8	
   1.00	
   0.44	
   0.48	
   0.59	
   0.47	
  
Participant	
  9	
   0.48	
   0.36	
   0.94	
   1.00	
   0.29	
  
Participant	
  10	
   1.00	
   0.77	
   0.61	
   0.33	
   0.16	
  
Participant	
  12	
   0.70	
   1.00	
   0.47	
   0.62	
   0.24	
  
Participant	
  13	
   0.67	
   1.00	
   0.37	
   0.58	
   0.77	
  
Participant	
  14	
   1.00	
   0.77	
   0.66	
   0.78	
   0.66	
  
Participant	
  15	
   0.79	
   1.00	
   0.57	
   0.95	
   0.19	
  
Participant	
  17	
   1.00	
   0.78	
   0.65	
   0.93	
   0.25	
  
Participant	
  18	
   1.00	
   0.62	
   0.38	
   0.53	
   0.42	
  
Participant	
  19	
   0.63	
   0.59	
   0.82	
   1.00	
   0.32	
  
Participant	
  20	
   0.40	
   0.47	
   1.00	
   0.53	
   0.19	
  
Participant	
  21	
   0.38	
   0.35	
   0.33	
   1.00	
   0.10	
  
Participant	
  22	
   0.72	
   0.24	
   0.68	
   1.00	
   0.22	
  
MEAN	
   0.75	
   0.69	
   0.62	
   0.76	
   0.29	
  
STANDARD	
  DEV	
   0.22	
   0.25	
   0.19	
   0.24	
   0.21	
  

Table 9-11 - NRMTs of all interfacing methods 

By inspection of the average NMRTs in Table 9-11 it can be observed that the SAFE 

‘continuous preset’ allowed participants to reach a satisfactory compression setting in 

less than half the time of any other interfacing method. Figure 9-16 illustrates this 

data in a bar graph. 
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Figure 9-16 Bar Graph Illustration of NRMTs for Every Compressor Interface Method 

What remains to be determined is whether the participant’s settings were suitably 

accurate with the novel interface, as speed alone does not indicate a successful 

interfacing method. Table 9-12 Displays the accuracy measurements (taken with the 

same cross-correlation methodology as the results in Section 9.3.3) of all interfaces. 
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Compression	
  -­‐	
  Reference	
  Matching	
  ACCURACY	
  

Participant	
  #	
   WIMP	
  
Gestural	
  -­‐	
  
TRAD	
  GUI	
  

Gestural	
  -­‐	
  
Visualisation	
  

Gestural	
  -­‐	
  
No	
  
Visualisation	
  

SAFE	
  
'continuous	
  
preset'	
  

Participant	
  1	
   0.9992	
   0.9948	
   0.9638	
   0.9844	
   0.9994	
  
Participant	
  2	
   0.9906	
   0.9975	
   0.9770	
   0.9977	
   0.9995	
  
Participant	
  3	
   0.9895	
   0.9961	
   0.9956	
   0.9854	
   0.9422	
  
Participant	
  4	
   0.9879	
   0.9765	
   0.9986	
   0.9950	
   0.9953	
  
Participant	
  5	
   0.9700	
   0.9760	
   0.9529	
   0.9645	
   0.9858	
  
Participant	
  6	
   0.9433	
   0.9905	
   0.9926	
   0.9734	
   0.9485	
  
Participant	
  7	
   0.9971	
   0.9962	
   0.9956	
   0.9839	
   0.9986	
  
Participant	
  8	
   0.9819	
   0.9649	
   0.9473	
   0.9792	
   0.9886	
  
Participant	
  9	
   0.9711	
   0.9711	
   0.9882	
   0.9588	
   0.9955	
  
Participant	
  10	
   0.9912	
   0.9934	
   0.9944	
   0.9967	
   0.9951	
  
Participant	
  12	
   0.9892	
   0.9877	
   0.9531	
   0.9779	
   0.9964	
  
Participant	
  13	
   0.9839	
   0.9814	
   0.9930	
   0.9634	
   0.9855	
  
Participant	
  14	
   0.9928	
   0.9966	
   0.9965	
   0.9953	
   0.9911	
  
Participant	
  15	
   0.9863	
   0.9776	
   0.9935	
   0.9673	
   0.9991	
  
Participant	
  17	
   0.9953	
   0.9993	
   0.9969	
   0.9408	
   0.9946	
  
Participant	
  18	
   0.9722	
   0.9762	
   0.9698	
   0.9399	
   0.9908	
  
Participant	
  19	
   0.9944	
   0.9985	
   0.9974	
   0.9961	
   0.9991	
  
Participant	
  20	
   0.9859	
   0.9752	
   0.9633	
   0.9970	
   0.9982	
  
Participant	
  21	
   0.9892	
   0.9810	
   0.9672	
   0.9435	
   0.9422	
  
Participant	
  22	
   0.9898	
   0.9936	
   0.9959	
   0.9944	
   0.9964	
  
MEAN	
   0.9850	
   0.9862	
   0.9816	
   0.9767	
   0.9871	
  
STANDARD	
  DEV	
   0.0128	
   0.0107	
   0.0178	
   0.0196	
   0.0190	
  

Table 9-12 Accuracy of All Interfacing Methods 

Again, the datasets are unevenly distributed. The Friedman Test concluded that there 

is statistically significant difference between the Interface accuracy values, X2 (4) = 

11.980, p < .05. 

The boxplots in Figure 9-17 illustrate the improved accuracy results of the SAFE 

interface. 
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Figure 9-17 Accuracy Ratings for Each Interface Type - Boxplot 

Therefore, one can conclude that the SAFE continuous preset allowed participants to 

make more accurate settings in a shorter amount of time.  

10 - Discussions and Conclusions 

10.1 - Evaluation of the Proposed Gesture Set 
The intrinsic lack of mimetic gestures, representative of low-level control parameters, 

limits the overall usability of the system as a ‘blind mixing tool’. Elicitation of a 

gesture set through user defined gestures proved the selection layer to be the most 

easily defined: 

• Select Compression - Inward Pinch, thus ‘squashing’ the audio. 

• Select Gating - Shape of Amplitude Envelope for a ‘closing gate’. 

• Select EQ - Shape Representative of an EQ response (freq vs time). 

Conversely, continuous controllers are more complex and resulted in arbitrary 
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semaphoric gesture allocations. For example, only the following system gestures can 

be described as mimetic, three of which were altered by the author to produce a more 

representative action:  

• Increase Q Factor - Inward Pinch, thus ‘tightening’ the bandwidth of the filter. 

• Increase Ratio - Inward Pinch, thus ‘squashing’ the audio. 

• Increase Attack Time (gate) - Draw an angle representative of Amplitude 

Envelope. 

• Increase Release Time (gate) - Draw an angle representative of Amplitude 

Envelope. 

With the remaining allocated thusly: 

• Threshold - Single Touch movement in Y-axis. 

• Make-Up Gain - Three-Touch movement in Y-axis. 

• Attack Time (comp) - Three-Touch movement in the X-axis (made in top half 

of touch screen) 

• Release Time (comp) - Three-Touch movement in the X-axis (made in bottom 

half of touch screen) 

• Increase Gain Reduction - Three-Touch movement in the Y-axis. 

EQ Control can be described as Deictic (pointing) where the user points towards a 

desired place on an x-y axis: 

• Increase Centre (or cut-off frequency) - Point in the direction of increased x-

value. 

• Increase Gain - Point in the direction of increased y-value.  

Preference testing reported that 55% of participants favoured the arbitrary gestural 

allocation for control of attack and release (as found in the compressor). This could be 

down to ergonomic factors, as identified in Chapter 9.2.1 where the rotational range 

of the envelope control settings had to be changed.  

It was concluded that the lack of representative gestures for low-level controls was 

detrimental to the learnability and memorability of the gestural audio interface. 

Fundamentally this could be attributed to the abstract concept of directly associating a 
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hand movement with small changes in specific sonic characteristics (such as 

compressor release time). A representative GUI is required to assist the engineer with 

these, more complex, controls.  

10.2 - Gestural Interfaces for the Control of EQ  
Tests revealed that the gestural interface was, on average, faster at matching both 

target settings. When comparing all four tests (both target settings with both 

interfaces), it can be observed that the slowest average target matching time was with 

the WIMP interface, while was the quickest was with the Gestural Interface. This 

could be caused by three factors present in the gestural interface: 

1. Combination of controls - Gain, frequency and Q-factor could be controlled 

simultaneously by the gestural system by moving a two-touch pinch in x and y 

directions. This allowed users to make multiple adjustments without stopping 

to perform a different gesture. It was still necessary to include gestures that 

were mapped exclusively to single parameters for the sake of accuracy. In 

particular when resonant frequencies had to be notched (as identified in the 

engineer workflow observations). 

2. No requirement for locational selection (movement between parameters) - It 

was reported from the preliminary tests that users spent a large amount of time 

navigating between parameters. The gestural interface does not encounter this 

problem, an intrinsic benefit is that the user does not need to look at the screen 

to make control changes.  

3. Intuitive and Familiar relationship with visualisation - The x-y, frequency 

verses gain, representation of EQ is something that is familiar to the majority 

of engineers because of its widespread use in plug-ins, visualisers and 

spectrograms. Therefore, it is intuitive for an engineer to associate changes to 

the frequency content of a signal with movements on a 2D surface.  

The significantly improved performance of the gestural interface for the control of EQ 

set the benchmark for other audio processing tasks. It should be the case that adhering 

to points 1, 2 and 3 when designing a gestural audio interface will produce a system 

that improves usability and workflow over a WIMP interface. Where familiarity is not 

already in place (point 3), a suitably representative GUI should be presented. This was 

found to be the case with the gestural control of dynamics processing.   
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10.3 - Gestural Interfaces for the Control of Dynamics Processing 

Initial tests of Gestural Dynamics control, where the standard plug-in GUI was used, 

showed no benefits over WIMP interaction. Therefore, changes to the interface were 

made and tested to try and match the performance of the EQ gestural control. 

10.3.1 - Suitability of Visualisation 
As identified in EQ gesture testing, the familiarity and intuitiveness of the 

visualisation helped to optimise the interface. Standard plug-in GUIs have been 

identified as unsuitable for gestural control because of their unrepresentative, 

skeuomorphic designs.  

Testing of novel visualisation, based on amplitude envelope designs, showed that a 

gating reference could be matched 35% quicker with a gestural interface and a 

representative GUI than a WIMP interface with traditional visualisation methods. The 

average times for compression appeared to show the same trends, however, the 

variances were too small to be considered statistically significant.   

Blind mixing tests proved that users could maintain the same level of accuracy when 

using the gestural interface without any visualisation. It can therefore be concluded 

that the purpose of visualisation is to improve the speed of settings through familiarity 

with a representative GUI. The fact that users were unable to view parameter values 

also had no effect on accuracy. 

It is important to note that the gestural interface still facilitates blind mixing (as 

specified at the start of development), however visualisation is required as a reference 

point and helps provide more feedback to the user. The benefit of a Gestural Interface 

over a WIMP equivalent is that the visualisation is not a necessity. 

10.3.2 - Combination of Controls into ‘Continuous Presets’ for Compression 
Low-level Gestural control alone, proved inadequate to optimise the control of 

dynamics processing. In order to try and match the performance of the gestural 

control of EQ, the compression interface should try to offer simultaneous control over 

multiple plug-ins. This could have been achieved in two ways; firstly, simultaneous 

parameter mappings to suitable gestures. For example, the distance between two 

touches is mapped to ratio, while the rotation of those touches is mapped to threshold. 
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Secondly, the parameters could be combined intelligently by the interface and offer 

the user a higher-level control. For the purposes of this research project, it was more 

insightful to evaluate the effectiveness of combined parameters into higher-level 

controls.  

For the potential of a gestural system to be realised (as benchmarked by the EQ tests), 

semantically motivated gestural shortcuts were suggested as a means of implementing 

‘continuous presets’. Testing revealed that users found it easier to match a reference 

when the number of controls had been reduced. Results showed that participants 

could achieve a higher level of accuracy in a faster time by using the ‘Continuous 

Preset’ prototype to compress a kick drum sample. 

Some reservations should be held with regard to the ‘continuous preset’ test results as 

the interface is directly source dependent. The kick drum sample used throughout the 

compression testing proved to be a suitable, transient source for the ‘continuous 

preset’. It may be the case that the gestural interface would be less effective at 

processing different audio sources. However, by making improvements to the preset 

interpolation response (The preset elicitation process was carried out with a linear 

interpolation between parameters) or offering more specific semantic descriptors 

(such as categories for instrumentation) the gestural control of a ‘continuous preset’ 

could prove to optimise processor control in any mix scenario.  

10.4 - Possible Applications 

10.4.1 - Studio Controller 
In its current form, the Gestural Mix Interface would be best suited as an ‘auxiliary 

controller’ in a studio. It would provide a fast and intuitive ‘quick mix’ interface for 

starting a mix. But it would require the addition of numerous navigational elements to 

make its operation more practical in a global DAW environment.  

10.4.2 - Broadcast Engineering  
The prototype was taken for a short demonstration at Calrec Audio in Holmfirth, 

West Yorkshire. It was hoped that the opinions and feedback from industry experts 

would help identify the potential applications of the interface. Henry Bourne, head 

design engineer, introduced a design problem that Calrec encounter when 

incorporating touch-screens into mixing desks for broadcast production (such as the 
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Summa Console). He stated that they always have to include a tactile control (rotary, 

fader or switch) for each on-screen parameter because broadcast engineers need to 

watch a live-stream while simultaneously mixing the audio. Bourne suggested that the 

gestural interface could provide a suitable solution, commenting that “The interface 

would allow the operator to achieve everything they need without ever looking away 

from the video”.  

10.4.3 - Live Sound Engineering 

The fast and intuitive implementation of the ‘continuous presets’ would be 

particularly suitable for applications where speed and efficiency of processor settings 

are paramount, such as ‘sound-checking’ bands during Live Music Production. 

11 - Further Work 

11.1 Gestural Control in More Typical Mix Scenarios 
The gestural control system remains to be tested in a more practical, subjective mix 

scenario. A navigational gesture-set could be added to the system which would allow 

its usability and efficiency to be compared to a large control surface. A ‘stage 

metaphor’ design might prove to be a suitable approach.  

11.2 Enhanced Visualisation  

Testing proved the importance of a representative GUI in a gestural control system. 

Further improvements could produce a GUI that can be directly manipulated by 

gestures, as with the IIR gestural reverb interface developed by Madden et al (2011).  

Such a system would help to close the ‘action perception loop’ thus providing more 

intuitive feedback to the engineer. 

As discussed by Giannoulis et al (2013), the ideal compression processor would be 

intelligent and react to changes in the audio signal. The same was identified for the 

controller and visualisation in a gestural system. For example, monitoring of the input 

signal would facilitate the automation of the threshold and a time-domain 

representation of the amplitude. The gesture prototype was adjusted so that audio data 

could be streamed back to the iPad via Wi-Fi. However, latency was introduced to the 

gesture recognition time of such a magnitude that was deemed to compromise the 
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performance of the overall interface. The proposed visualiser for the reactive 

compressor controller was based around a circle that represented the average level of 

an audio source. Essentially this was achieved by quickly plotting a VU meter in a 

clockwise motion over time. Figure 11-1 displays two of the audio source 

representations of this GUI that were produced autonomously by the system. It shows 

the resulting plots of a looped, transient audio source. One with and one without 

compression applied.  

 

 

Figure 11-1 Proposed Circular Compression Visualisation 

The ultimate goal was to combine control and visualisation, so that the user could 

‘shape’ the circle with a gesture and the program would make the corresponding 

parameter changes (which were calculated intelligently through analysis of the audio 

stream). This GUI would demonstrate a marriage between visualisation and control 

that could greatly improve intuitiveness and effectiveness of the interface, in much the 

same was as was observed with EQ interaction. Further development of the audio 

streaming and gesture recognition algorithms would allow this technique to be tested. 

The disadvantages of such a visually active system might be that users are distracted 

from the audio (Mycroft et al, 2013). It would also prevent the gestural interface from 

being used to ‘mix blind’, an advantage that was received favourably by test 

participants.  
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11.3 Exploring the Global Benefits of Non-Locational Controls  
An advantage of the Gestural Interface that was repeatedly observed during this 

research project was the ability to move between plug-ins and controls without the 

need for finding the relevant menus or windows within a DAW. Nash and Blackwell 

(2011) reinforce this claim with results from their extensive DAW operation 

observations, finding that engineers spend 24.8% of their time moving between 

windows and menus. If the testing of the gestural interface was opened up to more 

global mixing tasks, the observed engineer workflow could be significantly improved. 

Much like playing an instrument, the engineer would have access to all the processing 

controls of a DAW through memorised gestures, with the added assistance of 

representative GUIs.  
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Appendix A - A Technological Overview of Touch Screen 

Operation 
Although there are many ways to gather x-y positional data from a flat surface, 

historically, there have been two main types or touch screen: resistive and capacitive. 

 

Traditional resistive screens are built from two transparent layers with a small gap in-

between them. Each layer in covered with a conductive coating. The coating is 

generally indium tin oxide (IDO), which has a uniform (linear) resistance. Figure A-1 

demonstrates the orientation of these layers and how they can be ‘sandwiched’ with 

an LCD screen to produce an interactive touch surface. 

 

 

Figure A-1 Resistive Screen Operation (Finn, 2010) 

When a user presses on the screen, the two layers join at the point of touch. This 

produces a connection between the layers that can be localised. In a resistive screen, x 

and y positions have to be gathered separately. Figure A-2 shows how the x and y-

axis positions can be located. A voltage, often 5V, is passed between the Electrode 

strip (x+) and the common strip (x-). The voltage at the point of connection can then 

be read from the y-layer because the resistive coatings form a potential divider. This 

voltage can be used to find the location of the touch along the x-axis. The process has 

to be repeated using the opposite layers to find the y-axis position.  
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Figure A-2 Finding X and Y on a Resistive Screen 

The example in Figure A-2 displays how an x-axis touch that occurs closer to the 

supply rail will have less resistance (4Ω). The y-axis position is central, therefore the 

resistance is equal either side of the touch. Essentially the two layers operate in the 

same way as a potentiometer (variable resistor), where layer X is the resistor track and 

layer Y is the wiper position.  

 

The problem with this resistive design is that multi-touch cannot be achieved, as only 

one voltage can be read at a time. Some of the more modern resistive screens are 

capable of reading multiple touches, but generally capacitive screens offer more 

accurate readings of multiple touches (Freescale, 2014).  

 

Capacitive touch screens take advantage of the human body’s intrinsic capacitance. 

Capacitance can be given by the equation (Fujitsu, 2014): 

 

 
 

 

Where: 

C is the capacitance 

εr is the relative permittivity (dielectric constant) of the insulating material between 

the capacitor plates. 



 129 

ε0 is the permittivity of free space (8.854x10-12F/m) 

A is the area of the plates. 

d is the distance between the plates. 

 

Figure A-3 shows the practical implications of these values when a person touches a 

capacitive surface. 

 

Figure A-3 The Body’s Influence on a Capacitive Screen (Fujitsu, 2014) 

The addition of a touch on the surface of the screen adds capacitance (CT) to the 

system. The resulting change in capacitance can be measured by a microcontroller. 

This simple method of capacitive touch sensing is known as ‘Surface Capacitance’. 

 

A variation of surface capacitance, referred to as projective capacitance, detects 

disturbances in a capacitive field, rather changes in capacitance value (Blindmann, 

2011). To detect this, capacitive screens implement a series of pads, or alternatively 

columns and rows to detect the location of a touch. Figures A-4 and A-5 display the 

difference between the two approaches. 
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Figure A-4 Capacitive Sensing with Multi-Pads (3M, 2013) 

 

Figure A-5 Capacitive Sensing with Rows and Columns (3M, 2013) 

Employing the multi-pad design allows multiple touches to be detected with ease, 

however, each pad has to be addressed individually by the controller circuit, which 

compromises speed and, ultimately, increases cost of the system. The disadvantage of 

the rows and columns design is that it cannot accurately detect multiple points 

(without software optimization). Figure A-6 displays the ‘ghost points’ that are 

produced in a column and row design. It demonstrates how the system is only able to 

locate simultaneous touches with a low degree of accuracy. For example, a 

microcontroller can detect a touch has occurred on Rows X1 and X2. It can also 

detect that a touch has occurred on Columns Y0 and Y3. What it cannot do is 

determine which X-position relates to which Y-position.  
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Figure A-6 Ghost Points (Barrett and Omote, 2010) 

One way to combat this is to use mutually capacitive touch screens. All of the 

previous examples are described as ‘self-capacitive’ where a touch introduces 

capacitance to a system. In a mutually capacitive design, the ‘charge field’ 

(capacitance) between two objects is altered by the presence of another capacitive 

object, such as a finger (Barrett and Omote, 2010). Essentially the capacitance of the 

human body ‘steals’ some of the charge at the intersections between the rows and 

columns, as shown in figure A-7. 

 

 

Figure A-7 Interference between X and Y Crossing Points (Narasimhan, 2014) 

This results in a co-ordinate (x-y) position being produced for each touch. Therefore, 

ghost points are not an issue with mutually capacitive screens. Mutually Capacitive 

screens require more processor intensive and complex ‘scanning’ methods to 

determine locations of each touch, but the accuracy of their multi-touch 

measurements mean that these types of screens remain the most popular.  
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Other methods of touch screen gesture recognition include frustrated total internal 

reflection (FTIR) and acoustic pulse recognition. These, along with other optical 

designs, are often used where large touch surfaces need to be created at low cost.  
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Appendix B - Proposed System Structure 
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Appendix C - Engineer Workflow Observation Hand-out 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hello,&Thank&you&for&taking&part&in&my&Investigation.&I&will&
remain&in&the&room&while&you&follow&the&steps,&simply&to&make&
observations&and&save&the&project&when&you&finish&each&stage.&
The&whole&test&should&take&no&more&than&20&minutes,&though&
there&are&no&time&limits&or&expectations.&

!
There!will!be!4!parts!to!the!test.!In!each!part!you!will!be!asked!to!
match!the!sample!to!the!reference!using!the!following!processes:!
!

• Corrective!EQ!@!Remove!The!Resonant!Frequency!
• Creative!EQ!@!Match!the!tonality!of!the!reference.!
• Gating!@!Isolate!the!kick!drum,!as!demonstrated!in!the!
reference.!

• Compression!@!This!test!mimics!an!inconsistent(drummer.(Use!
compression!to!make!the!hits!more!dynamically!consistent.!

!
The!plug@ins!have!already!been!loaded,!please!DO!NOT!change!the!
plug@in.!!

!
1. Are!the!Keyboard!and!Mouse!Set!up!in!a!comfortable!position?!
Make!sure!the!mouse!sensitivity!is!suitable.!

2. Have!you!used!pro@tools!before?!Are!you!familiar!with!the!
standard!plug@ins?!Let!me!know!if!not.!

3. Please!familiarise!yourself!with!the!mix!window.!You!will!only!
need!to!adjust!the!plug@in!and!switch!between!the!source!and!
reference!tracks.!X@OR!solo!mode!has!been!enabled!to!make!
this!easier.!!

4. Each!part!of!the!test!will!be!recorded!using!Quicktime!Screen!
Capture!software.!

5. The!test!will!begin!when!the!Quicktime!screen!recording!is!
initialised.!

6. When!you!feel!you!have!finished!the!first!part!of!the!test!
(Corrective!EQ),!you!can!stop!the!recording!by!clicking!the!stop!
button!in!the!top!right!corner!of!the!menu!bar.!

!
!
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Appendix D - Gesture Recognition Algorithm Example 
This Appendix presents a generalised and simplified Objective-C code example for 

one of the custom gesture recognition algorithms used in the system. Other parts of 

the system follow a similar recognition process, with different nuances, particularly 

with regard to shape detection and temporal probability calculations. Full source code 

is provided on the CD accompanying this thesis.  
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Appendix E - EQ Control Test Hand-outs 

 
 

Selecting & Controlling The Filter 

You Can Control 3 Seperate ‘Filters’. Bass, Mid and Treble. You can Select each of these by DOUBLE TAPPING in 
the left, middle or right of the screen.

Don’t worry about ‘mixing up’ the position of these filters, the 
iPad Controller will always make sure that BASS selects Lowest, 
Treble selects Highest and Mid selects middle.

Don’t worry about ‘mixing up’ the position of these filters, the 
iPad Controller will always make sure that BASS selects Lowest, 
Treble selects Highest and Mid selects middle.

The distance that you swipe from the edge of the screen 
determines the Cut-off frequency of the Filter.

The High Pass or Low Pass filters are turned off by returning to 
the edge of the screen.

BASS

X-axis = 
Frequency(Hz) 

Inward Pinch = 
Increased Q

High Pass Low Pass

Swipe two fingers from Left (High Pass) or Right (Low Pass)

Adjusting Filters(X-Y):

Adding High Pass and Low Pass Filters

Adjusting Filters(Q - Factor):

Y-axis = 
Gain(dB) 

MID

TREB

LOW Q HIGH Q

HIGH Pass LOW Pass
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Match The following EQ Settings As quickly as possible with both the iPad and 
mouse/keyboard, while maintaining a 10% degree of accuracy:

Using the iPad First:

Using the Mouse First:
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Gestural Equalisation Control -  Questionnaire

Name _____________________________

1. How often do you use touch screen devices?
a) Very Often (hourly)  b) Often (daily)
c) Rarely (weekly)   d) Very Rarely (Monthly)   e) Not at all

2. How often do you use equalisation plug-ins / processors for mixing/composing.
a)Very Often (More than Once a day)  b)Often (Once a day)
c)Rarely (weekly)     d)Very Rarely (Monthly)  e)Not at all

3. Did you Prefer using the Mouse or the iPad Controller?
a)Mouse
b)iPad
What are your reasons for this preference?
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

4. How would you rate the sensitivity of the iPad Controller? 
Please give a number between 1 and 10.
1- Not Sensitive enough.  5- The correct Sensitivity. 10 - far too sensitive.

4. How would you rate the accuracy of the iPad Controller (How easy was it to 
match the target value)? Please give a number between 1 and 10.
1- Not Accurate Enough  5- Moderate accuracy  10 - very accurate

5. Did you prefer using the iPad Controller in portrait or Landscape orientation?
_____________________________________

Thank you for helping me with my research. Please include any notes or sugges-
tions on the back of this sheet. I’m particularly interested in ways you might think 
the controller could be improved!
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Appendix F - Dynamics Control Test Hand-outs 

 
 

Controlling The Gate 

Threshold 

Attack

Hold

Attack Hold 
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Controlling The Compressor 

Threshold 

Ratio 

Attack

Release

Gain
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Match The following Gate Settings As quickly as possible with both the iPad and 
mouse/keyboard, while maintaining a 10% degree of accuracy:

Using the iPad First:

Using the Mouse First:

19ms > attack  < 23ms

54ms > release < 66ms

432ms > hold < 528ms -100 > reduction < -90

-44 > threshold < -36

47ms > attack  < 57ms

95ms > release < 116ms

207ms > hold < 253ms 10.8 > gain < 13.2

-11 > threshold < -9
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Match The following Compression Settings As quickly as possible with both the 
iPad and mouse/keyboard, while maintaining a 10% degree of accuracy:

Using the iPad First:

Using the Mouse First:

9ms > attack  < 11ms

525ms > release < 635ms

5.5 > ratio < 6.7 3.6 > gain < 4.4

-17.6 > threshold < -14.4

104ms > attack  < 128ms

36ms > release < 44ms

2.25 > ratio < 2.75 10.8 > gain < 13.2

-31.9 > threshold < -26.1
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Gestural Gate/Comp Control -  Questionnaire

Name _____________________________

1. How often do you use touch screen devices?
a) Very Often (hourly)   b) Often (daily)
c) Rarely (weekly)   d) Very Rarely (Monthly)   e) Not at all

2. How often do you use comp/gate plug-ins for mixing/composing.
a)Very Often (More than Once a day)  b)Often (Once a day)
c)Rarely (weekly)     d)Very Rarely (Monthly)  e)Not at all

3. Did you Prefer using the Mouse or the iPad Controller?
a)Mouse
b)iPad
What are your reasons for this preference?

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

4. How would you rate the sensitivity of the iPad Controller? 

Please give a number between 1 and 10.

1- Not Sensitive enough.  5- The correct Sensitivity. 10 - far too sensitive.

4. How would you rate the accuracy of the iPad Controller (How easy was it to match the target 

value)? Please give a number between 1 and 10.

1- Not Accurate Enough  5- Moderate accuracy  10 - very accurate

5. Did you find that an INWARD pinch to INCREASE compression ratio felt intuitive? Or should 

an INWARD pinch DECREASE the compression ratio?

 Inward Pinch = Increased Ratio & Outward Pinch = Decreased Ratio.

 Inward Pinch = Decreased Ratio & Outward Pinch = Increased Ratio.

6. Did you prefer the method of setting Attack and Release on the gate or compressor?

 Compressor - 3 touch swipe in top or bottom half of screen.

 Gate - Attack and release set by the angle (ramp) between two touches.

What are you reasons for this choice?

____________________________________________________________________________________

____________________________________________________________________________________

Thank you for taking part in my test, if you have any other comments or sugges-
tions, please note them on the back of this page. 
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Appendix G - SAFE Rationalised Control Questionnaire 

 

SAFE Gesture Shortcut -  Questionnaire

Name _____________________________

1. Please give a rating for how EASILY and  how ACCURATELY you feel reference SAMPLE 1 was 
matched using the interface.

EASE OF USE   (between 1 & 5, where 5 is very easily and 1 is not easily set)

ACCURACY   (between 1 & 5, where 5 is very Accurately and 1 is not Accurately)

2. Please give a rating for how EASILY and  how ACCURATELY you feel reference SAMPLE 2 was 
matched using the interface.

EASE OF USE   (between 1 & 5, where 5 is very easily and 1 is not easily set)

ACCURACY   (between 1 & 5, where 5 is very Accurately and 1 is not Accurately)

3. Please give a rating for how EASILY and  how ACCURATELY you feel reference SAMPLE 3 was 
matched using the interface.

EASE OF USE   (between 1 & 5, where 5 is very easily and 1 is not easily)

ACCURACY   (between 1 & 5, where 5 is very Accurately and 1 is not Accurately)

4. Do you think that the level of accuracy offered by the interface was sufficient to match each 
reference sample?

 yes

 no

5. What aspect of the audio did you have most difficulty matching?

 Loudness    Dynamics (Envelope Characteristics)

 Tonality    Other __________________________________

 
6. In order to improve the mixing accuracy. Which parameter would you find most useful to 
have independent control over?

 Threshold    Ratio

 Make-Up Gain   Attack     Release
 

Thank you for taking part in my test, if you have any other comments or suggestions, please note them on the back of this page. 


