

University of Huddersfield Repository

Bevan, Adam

Use of Magnetic Flux Techniques to Detect Wheel Tread Damage

Original Citation

Bevan, Adam (2015) Use of Magnetic Flux Techniques to Detect Wheel Tread Damage. In: RRUKA Annual Conference 2015, 5th November 2015, London. (Unpublished)

This version is available at https://eprints.hud.ac.uk/id/eprint/26468/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Use of Magnetic Flux Techniques to Detect Wheel Tread Damage

Dr Adam Bevan – Institute of Railway Research Stephanie Klecha – MRX Technologies

Overview

- Background
- Wheel tread damage
- SCM development
- Theory of SCM
- Wheel handheld unit
- Damage types
- Summary
- Acknowledgements

Background

- Wheelset account for a large proportion of a fleets whole-life costs
- Wheelsets are routinely maintained to ensure safe operation and prolong life
- This includes measurements to inspect:
 - Roundness
 - Profile shape
 - Rim thickness
 - Visual inspection of surface damage

Wheel Tread Damage

- Surface damage is difficult to classify through visual inspections
 - Not possible to establish depth of damage
- Wheelsets are re-profiling to remove any identified damage
- Crucial balance exists:
 - Removing enough material to eliminate the damage
 - Minimising cut depth to preserve the rim thickness
- Taking multiple smaller cuts increases time at wheel lathe

Cut Depths

Example radial material loss during turning

SCM Development

- MRX's Surface Crack Measurement (SCM) technology has been in use on rails for 8+ years
- Technology has been adapted to measure surface damage on wheels using a hand held device
- Funding awarded through the RSSB/Future Railway 'Rail Operator Challenge Competition' to validate and further develop the product in collaboration with:
 - Bombardier Transportation
 - Institute of Rail Research, University of Huddersfield
 - Arriva Trains

Theory of SCM – 1

- Magnetic Particle Inspection (MPI) and SCM are similar
- They involve magnetizing the specimen surface
- This introduces lines of magnetic flux into the specimen

Theory of SCM – 2

- In a defect free specimen, these lines travel undisturbed through the specimen
- If a defect is present, the flux cannot travel as easily through it
- This causes some flux to leak at the position of the defect

Wheel Handheld Unit – 1

- Wheel SCM uses 16
 magnetic field sensors to
 measure and record the
 leaking flux
- Reports the depth of the deepest artifact in the scan
 - Amount of material to remove from the wheel to eliminate the damage

Wheel Handheld Unit – 2

Handheld unit specification:

- 1mm = Lower Detection Limit (shallowest artifact)
- 10mm = Upper Detection Limit (deepest artifact)
- +/-0.5mm = System Accuracy

Damage Types – 1

- Surface breaking and nearsurface damage
 - Cracking and cavities

Damage Types – 2

- Surface breaking and nearsurface damage
 - Rolling contact fatigue (RCF) cracking

Damage Types – 3

- Surface breaking and nearsurface damage
 - Rolling contact fatigue (RCF) cracking
 - Thermal cracking and cavities

Non-visible Damage – 1

 HHU reveals damage not visible on uncut wheel

Non-visible Damage – 2

 HHU reveals damage not visible on uncut wheel

Damage Free Wheel

Confirms when wheel is damage free

Summary

- SCM technology has been adapted to evaluate surface and sub-surface defects in wheels
- Potential uses include:
 - Replacing visual inspection during routine maintenance exams
 - Repeatable, not reliant on judgement
 - Reveals damage that is not obvious/visible on uncut tread
 - Optimisation of cut depths at wheel lathe
 - Reduce risk of overcutting and also saves time removing defects
 - Trending to understand RCF development and growth rates
 - Improved planning of maintenance
 - Highlight problem wheels/vehicles
 - Supporting specific case studies
 - New profiles, steels etc. (monitor performance)

Next Steps

- Further wheel lathe trials to confirm damage depth readings and access constraints etc.
- Further developments of prototype HHU
- Assessment of scrap wheels:
 - Samples to be examined optically to determine deformation depth, crack length and crack depth
 - Micro-hardness testing
 - Correlation HHU readings with measured damage
- Business case detailing the benefits of the data for trending and maintenance planning

Acknowledgments

 The results and findings presented were developed as part of the RSSB/Future Railway managed 'Rail Operator Challenge Competition'

- For further information visit us at the blue-sky village exhibition or contact:
 - a.j.bevan@hud.ac.uk
 - sek@mrxtech.co.uk