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ABSTRACT 

Pectin was isolated by aqueous extraction at pH 6.0 or 2.0 from okra 

(Abelmoschus esculentus L.) pods. An isolation protocol was designed to extract 

pectin and study the influence of the extraction pH on its chemical composition, 

macromolecular and functional properties. The extraction protocols resulted in the 

isolation of pectin of high purity as evidenced by their high total carbohydrate (70.0 – 

82%) and low protein (4.3 – 6.3%) contents. Samples contained between 47-57% 

galacturonic acid, had broad molecular weight distributions, a low degree of 

methylation (40 and 25 %) and high degree of acetylation (52 and 38 %). Neutral 

sugar analysis showed that pectin extracted at pH 6.0 contained more neutral sugars, 

particularly, galactose, rhamnose and arabinose than that extracted at pH 2.0 

indicating variations in fine structure. In addition, molecular parameters of the 

isolated pectins, such as intrinsic viscosity (2.8 – 4.4 dL g-1), critical concentration 

(0.15 – 0.45 dL g-1) and coil overlap parameter (0.66 –1.51), showed that extraction 

conditions resulted in pectin with different chain macromolecular characteristics.  

Following extraction, the functional properties of okra pectin were 

investigated in high and low moisture systems and also in colloidal dispersions. It has 

been shown that okra polysaccharides are non-gelling pectins and their inability to 

form ordered structures was attributed to the high degree of acetylation and branching 

of the side-chains. The pH sensitivity of okra pectins has been further demonstrated in 

high solid systems, where the mechanical relaxation of LM-pectin in the presence of 

co-solute has been altered by pH. It has been shown that high pH values result in 

extended chain conformation and early vitrification events. In contrast, viscoelastic 

functions of polyelectrolyte decreased and resulted in delayed vitrification events at 

low pH.  
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The next step of present work was focused on potential utilization of okra 

polysaccharides in fabrication of oil-in-water emulsions for food and pharmaceutical 

applications. The emulsifying properties of crude okra extracts and okra isolates (rich 

in pectin) have been investigated under different conditions (e.g., oil volume fraction, 

biopolymer concentration, pH values, energy input methods) in order to produce fine 

emulsions with long-term stability. It has been shown that pH of extraction has a 

pronounced effect on the interfacial activity of both crude extract and pectin isolates. 

Extracts or isolates obtained at high pH demonstrated higher emulsifying capacity 

than those extracted at low pH. In general, okra pectin isolates were more efficient in 

emulsion stabilisation than crude extracts by producing emulsions of smaller droplet 

sizes. Moreover, emulsifying capacity of okra pectin was affected by the pH and 

stable emulsions were produced only at low pH values (pH 2.0 or 3.0). It has been 

shown that okra pectin-stabilized emulsions evolve under the effects of Ostwald 

ripening and coalescence during the long-term storage.  

The present work shows the potential of okra pectins as emulsifiers under 

acidic conditions and serves as the basis for the development of such systems in 

encapsulation technology of bioactive components. 
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1.1 CONTEXT OF WORK 

Food science in the modern era focuses on several critical aspects to improve 

human health and wellbeing. Modern marketplaces induce competition between food 

manufacturers and force them to produce food products according to consumer-

tailored specifications (e.g., products for vegetarians). Recently, the challenges for the 

food industry arise from the increasing public interest in the availability of “natural” 

or “healthy” food ingredients where only naturally available materials such as 

carbohydrates or proteins are used. For instance, replacement of gelatin (animal 

origin) that has been utilized for structuring of confectionery products over decades or 

the elimination of synthetic surfactants (e.g., Tweens) from formulations of food 

emulsions are some examples of these demands. Therefore, the investigation of novel 

biopolymer structures and sources that can replace existing ingredients is ongoing.  

Pectin is widely utilized across food and pharmaceutical industries as a gelling 

agent (e.g., jams, jellies, gums), stabilizer (e.g., acidified dairy products) or delivery 

agent (e.g., flavors, vitamins). The structural diversity of pectin results in a multitude 

of functional properties and pectin is considered as a potential multifunctional food or 

as a pharmaceutical ingredient. Pectin applicability is widely governed by the type 

and availability of fruit from which commercial grade pectin can be manufactured. 

This indicates that only sustainable plant sources could be considered for 

development and manufacturing of novel pectin. Moreover, extraction should be 

inexpensive and yield reasonable quantities of pectin. Okra plant could be considered 

as a potential source of pectin. Okra (Abelmoschus esculentus L.) is an economically 

important and sustainable vegetable crop grown in tropical and sub-tropical parts of 

the world. The worldwide production of okra is estimated to be around 8.7 million 

tonnes grossing more than $4 billion (FAOSTAT, 2013). Okra water-extracts have a 
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slimy texture due to its polysaccharide content and were suggested as a promising 

source of texture modifiers for complex food matrices.  

Since chemical composition of pectin is something that restrains its functional 

properties and therefore its application in various formulations, the first experimental 

chapter of this thesis attempts to evaluate the effect of extraction conditions on 

chemical and macromolecular characteristics of okra pectin. An experimental design 

was developed to study the influence of different parameters (e.g., pH, temperature, 

time, number of extraction, ethanol volume) on extraction yield of pectic substances 

from fresh okra pods. Structurally different polysaccharides could be extracted 

according to the conditions of pH, time and temperature. Therefore, the extractions of 

pectic substances from okra were performed with two acidic media (pH 2.0 and 6.0) 

in order to facilitate the conversion of insoluble pectic substances (protopectin) into 

soluble pectins and yield polysaccharides with individual characteristics in terms of 

galacturonic acid and neutral sugars content, degree of methylation and acetylation 

and molecular weight distributions. Extracted pectins were analysed in terms of total 

sugars, galacturonic acid, protein and ferulic acid contents with the following 

measurements of degree of esterification and acetylation. Physicochemical properties 

of extracted pectins were assessed using FT-IR spectroscopy, NMR spectroscopy, 

size exclusion chromatography (SEC) and dilute solution rheology. The given 

extraction methodology resulted in isolation of a high molecular weight LM-pectin 

with high degree of acetylation and branching of the side chains.  

Following the isolation and characterization step the evaluation of okra pectin 

structure-function relationships was investigated. The degrees of methyl esterification 

and acetylation have a profound impact on the functional properties of pectin such as 

gelling or colloidal stabilizing capacity and therefore determine the potential 
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applications in food formulations. The first system to be examined was okra 

pectin/calcium matrix at pH 3.0, the gelation conditions that are typically applied for 

LM-pectins. The results indicated that okra pectin is a non-gelling pectin and its 

inability for structuring was mainly attributed to the presence of a high amount of 

acetyl groups that restrict the formation of hydrogen bonds between the carboxyl 

groups of galacturonic acid and calcium ions. It has been previously reported that 

non-gelling acetylated pectin from sugar beet exhibits interfacial activity and could be 

utilized as emulsifying agent in colloidal dispersions.  

Following these observations emulsifying properties of isolated okra pectins 

have been investigated in model oil-in-water systems. Resulting okra pectin-stabilized 

emulsions were analysed by means of static light scattering to evaluate the droplet 

size distribution (PSD), ζ-potential measurements, rheometry and confocal laser 

scanning microscopy. Interfacial composition analysis was also performed by 

determining protein, pectin and acetyl contents at the of oil-water interface. It has 

been shown that both okra pectins exhibit interfacial activity by producing stable 

emulsions for a period of 30 days. However, okra pectins extracted at high pH have 

greater emulsion stabilizing capacity than those extracted at low pH as revealed by 

particle size distribution and long-term stability measurements. Moreover, the 

emulsifying capacity of okra pectin was affected by pH as evidenced by the formation 

of stable emulsions only at pH below its pKa. The pH sensitivity of okra pectin could 

be successfully utilized for formulation of emulsion-based targeted delivery system of 

bioactive compounds. An advantage of such system would be the resistance to acidic 

pH of stomach with consequent release of bioactive compound in the small intestine 

where pH is slightly alkaline.  
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1.2 BIOPOLYMERS 

Colloids are categorized into two groups: hydrophobic and hydrophilic. 

Hydrophilic colloids are easily miscible with the solvent and thermodynamically 

stable whereas hydrophobic colloids are not easily miscible and are 

thermodynamically unstable. Over a decade, macromolecules have been erroneously 

classified as associated colloids or lyophilic (e.g., micelle) colloidal systems (Sun, 

2004). Colloids are dispersions of small molecules formed as a result of the interplay 

between attractive vs. repulsive forces and are highly dependent on the physical 

environment (e.g., solvent). Modifications of solvent properties may result in 

irreversible changes of colloidal dispersions. In contrast, macromolecules are 

composed of repeating units that are connected by covalent bonds. Changes in solvent 

nature have an impact on properties of macromolecules, but they do not cause 

structure degradation unless its covalent bonds are broken. Macromolecules are 

divided into two groups: synthetic and biological polymers.  Biopolymers are 

polymers produced by living organisms and composed of a diverse range of 

monomers (e.g., carbohydrates, amino acids etc.). In contrast to synthetic polymers 

(e.g., polyethylene, polyvinyl chloride, or polystyrene) that have small number of 

identical repeating units, biopolymers are complex molecular assemblies that adopt 

precise and defined three-dimensional shapes and structures (Sun, 2004). 

Biopolymers can be classified in three groups, depending on the nature of the 

repeating unit they composed of and the structure of biopolymer formed: (i) 

polynucleotides, which are long polymers composed of >13 nucleotide monomers 

covalently bonded in a chain, (ii) polypeptides which are polymers of amino acids 

bound by peptide bond, and (iii) polysaccharides that are complex carbohydrates in 

which simple sugars are linked through glycosidic bonds (McMurry, 2008).  
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Polysaccharides and proteins that are currently widely utilized in food and 

pharmaceutical industries to accomplish a number of functions, such as thickening 

and gelling of aqueous solutions, stabilizing of dispersions, inhibiting of ice and sugar 

crystal formation, delivering and release of bioactive ingredients, are referred to as 

“food hydrocolloids” (Williams & Phillips, 2000). Protein or polysaccharide-based 

formulations are suitable for many industrial applications due to their 

biodegradability, biocompatibility and high potential to be modified to achieve the 

desired chemical and physical properties. Sources of commercially available 

hydrocolloids include botanical (e.g., cellulose, gum arabic, starch, pectin, guar gum), 

algal (e.g., carrageenan, alginate), microbial (e.g., xanthan gum, gellan gum) and 

animal (e.g., gelatin, caseinate, whey protein, chitosan) origin (Williams & Phillips, 

2000). Polysaccharides composed of only one type of monomer are defined as homo-

polysaccharides (e.g., starch, cellulose), but those composed of different types of 

monomers are referred as hetero-polysaccharides (e.g., xanthan, gum arabic and 

pectin). The functional properties and application field of each biopolymer are 

dictated by a range of physicochemical characteristics, such as molecular weight, 

electrical charge, conformation, flexibility, hydrophobicity and molecular interactions 

(BeMiller, Whistler & Barbalowm, 1993). Conformational diversity, presence of 

functional groups, formation of high viscosity solutions and the high temperature 

stability of polysaccharides makes them versatile components to stabilize a wide 

variety of food and pharmaceutical systems.  

1.3 CHEMICAL STRUCTURE OF PECTIN 

Pectins belong to family of covalently linked galacturonic acid-rich plant cell 

wall polysaccharides. They are detected in primary walls of dicots and non-

graminaceous monocots with ~35%, in grass and other commelinoid primary walls 
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(~2-10%) and in walls of woody tissues (~5%) (Ridley, O'Neill & Mohnen, 2001). 

Pectin is abundant in walls that surround growing and dividing cells, walls of cells in 

the soft parts of the plant, and in the middle lamella and the cell corners (Mohnen, 

2008). In plants, pectins accomplish vital biological functions, such as growth, 

morphogenesis, wall structure, cell expansion, cell-cell adhesion, signaling, binding 

of ions, growth regulators and enzyme modulation, pollen tube growth, leaf 

abscission and fruit development (Mohnen, 2008). The contribution of pectin to the 

firmness and structure of plant tissues is similar to that of collagen in tissues of animal 

origin. Some pectin molecules are covalently bonded or tightly associated with other 

types of wall polysaccharides, such as hemicelluloses and cellulose (McCann & 

Roberts, 1991; Mohnen, 2008). Hemicelluloses are a group of complex 

polysaccharides with a backbone composed of β-(1→4)-linked pyranosyl residues 

with an equatorial configuration at C1 and C4 (Caffall & Mohnen, 2009). 

Hemicelluloses comprise of xyloglucans, xylans and mannans. It has been shown that 

a cellulose-hemicellulose network is embedded in a matrix of pectic polysaccharides, 

which form a hydrated and cross-linked three-dimensional network (Zandleven, et al., 

2007). 

Early work on carbohydrate chemistry of plant cells used the umbrella term 

“pectic substances”, which included pectin and other gel- and slime-forming 

polysaccharides, such as xyloglucans (Sinnott, 2007). Modern usage confines the 

word “pectin” to a series of polysaccharides based on poly-α-(1→4)-galacturonan. 

Therefore, pectin is a group of heteropolysaccharides with backbone mainly 

composed of D-galacturonic acid units (D-GalA, ~70%) bonded with α-(1→4) 

glycosidic linkages. Similarly to other plant polysaccharides, pectin shows a wide 

variety of structures and has a polydisperse nature (Sriamornsak, 2003). The diversity 
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of pectin chemical structures and molecular weight depends on the source, plant 

ripening state and extraction conditions applied. The structural classes of pectic 

polysaccharides involve homogalacturonan (HG), rhamnogalacturonan I (RG-I), 

rhamnogalacturonan II (RG-II), xylogalacturonan (XGA), and apiogalacturonan 

(AGA). The apiogalacturonan was found in the walls of aquatic plants such 

duckweeds (Lemnaceae) and marine seagrases (Zosteraceae) with D-apiose residues 

2,3-linked to homogalacturonan (Caffall & Mohnen, 2009). The xylogalacturonan has 

a HG backbone (α-(1→4)-linked D-galacturonic acid) substituted by β-D-xylose at the 

O-3 position and has been detected in cell walls of marine seagrasses, cotton seeds, 

watermelons, peas, apples, and soybeans (Zandleven, Sørensen, Harholt, Beldman, 

Schols, Scheller & Voragen, 2007). Complexes of RG-I, AG-I, and arabinan are often 

referred to as the “hairy” regions whereas HG is defined as “smooth”.  

1.3.1 Homogalacturonan (HG) 

Homogalacturonan (HG) is the most abundant polymer in pectins and it 

comprises about ~65% of pectin in plant cell walls (Mohnen, 2008). HG is composed 

of long chains of linear 1,4-linked α-D-GalpA residues and some of the carboxyl 

groups are partially methyl-esterified at C-6 position and/or acetyl-esterified at O-2 

and/or O-3 positions of GalpA depending on plant species (Figure 1.1) (Sinnott, 

2007). Those HGs with >50% methyl-esterification of GalpA residues are described 

as high methyl-esterified HGs and those with <50% are defined as low methyl-

esterified HGs. The methyl esterification of linear HG units determines the industrial 

applicability (gelling agent) of pectin, which depends not only on the amount of 

methyl-esterification, but also on distribution of methyl groups on the HG backbone.  
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Figure 1.1. The primary structure of homogalacturonan (Caffall & Mohnen, 2009). 
 

1.3.2 Rhamnogalacturonan II (RG-II) 

Rhamnogalacturonan II (RG-II) is a minor pectic component of plant cell 

walls and represents about 0.5 to 8% in dicots, non-graminaceous, monocots, and 

gymnosperms, and less than 0.1% in primary walls of commelinoid monocots 

(Matsunaga, Ishii, Matsunamoto, Higuchi, Darvill, Albersheim & O´Neill, 2004). 

RGs-II have been detected in the cell walls of many tissues of edible plants including 

apple, kiwi, carrot, tomato and radish (Cui, 2005). RG-II is not structurally related to 

RG-I since it does not have rhamnogalacturonan backbone as RG-I. However, Rha 

residues are represented in RG-II structure to a lower extent and mainly in the side-

chains of RG-II rather than in backbone. RG-II is described as a stretch of HG 

backbone, approximately seven to nine 1,4-linked α-D-GalpA residues with four long 

side-chains attached (labeled A-D, Figure 1.2) (Caffall & Mohnen, 2009). The 

structure of RG-II is highly complex with 12 different types of sugars and over 20 

different linkages.  
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Figure 1.2. The structure of rhamnogalacturonan II (O'Neill, Ishii, Albersheim & 
Darvill, 2004). 
 
 
A number of uncommon sugars occur in RG-II structure including 2-keto-3-deoxy-D-

manno octulosonic acid (Kdo), 2-keto-3-deoxy-D-lyxo-heptulosaric acid (Dha), 

apiose, 2-O-methyl xylose, 2-O-methyl fucose and aceric acid (Caffall & Mohnen, 

2009; Stevenson, Darvill & Albersheim, 1988). Despite its complexity, the RG-II 

structure is largely conserved across plant species. RG-II molecules are known to self-

associate, forming RG-II dimers via a boron diester bond that was first demonstrated 

in sugar beet pectin (Caffall & Mohnen, 2009). 

1.3.3 Rhamnogalacturonan I (RG-I) 

Another constituent polysaccharide of pectin is rhamnogalacturonan I (RG-I) 

that represents around 20-35% of pectin in plant cell wall (Obro, Harholt, Scheller & 

Orfila, 2004). Its backbone is composed of the repeating disaccharide galacturonic 

acid and rhamnose [α-(1,2)-D-GalpA-α-(1,4)-L-Rhap]n where n can be larger than 100 

(Figure 1.3a). The RG-I backbone is partially substituted at O-4 and/or O-3 positions 

of α-L-Rhap residues with polymeric side-chains predominantly composed of α-(1,5)-

L arabinans and β-(1,4)-D galactans, arabinogalactans I (AG-I), arabinogalactans II 
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(AG-II) and galacto-arabinans (Mohnen, 2008). The side-chains can be a single unit 

as [β-D-Galp-(1→4)], but also polymeric, such as arabinan and arabinogalactan I 

(AG-I). The arabinans consist of a 1,5-linked α-L-Araf backbone, which can be 

substituted with α-L-Araf-(1→2)-, α-L-Araf-(1→3)- and/or α-L-Araf-(1→3)-α-L-Araf-

(1→3)- side chains depending on the pectin source (e.g., sugar beet, soybean) (Ridley, 

O'Neill & Mohnen, 2001). It has been also shown that the galactan and arabinan side-

chains of RG-I are the most mobile parts of the pectin molecule with the higher 

degree of mobility exhibited by arabinan (Sinnott, 2007).  AG-I is composed of a 1,4 

linked β-D-Galp backbone and α-L-Araf are attached to the O-3 position of galactosyl 

residues (Ridley, O'Neill & Mohnen, 2001). The galactan chain of AG-I can have 

branches of one or more Araf residues or single terminal Arap residues. 

Arabinogalactans II (AG-II) are predominantly associated with proteins 

(arabinogalactan proteins or AGPs), and its participation in a pectin complex is still 

debatable. Pectin and AG-II often seem to co-extract and are subsequently difficult to 

separate from each other, suggesting that they can be covalently linked (Vincken, 

2003). AG-II is composed of 1,3-linked β-D-Galp backbone, containing short side 

chains of α-L-Araf-(1→6)-[β-D-Galp-(1→6)]n, where galactosyl residues of the side-

chains can be substituted with α-L-Araf-(1→3) residues (Vincken, 2003). 

The proportion and distribution of branched Rhap residues typically varies in 

the range of 20-80% depending on the source of polysaccharide (Visser & Voragen, 

1996).  This also results in a heterogeneous structure of RG-I arabinan and galactan 

side-chains from source to source, something that has been observed for pectic 

polysaccharides from the walls of apple, sugar beet, soybean, persimmon, and potato 

(Duan, Wang, Dong, Fang & Li, 2003; Huisman, Brüll, Thomas-Oates, Haverkamp, 

Schols & Voragen, 2001; Obro, Harholt, Scheller & Orfila, 2004; Sakamoto & Sakai, 
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1995; Schols & Voragen, 1996). However, unbranched RG-I molecules have been 

also reported in seed mucilages (Western, Young, Dean, Tan, Samuels & Haughn, 

2004). The RG-I backbone can be acetylated at O-2 and/or O-3 positions of GalpA or 

at O-3 position of Rhap residues depending on the plant species (Sengkhamparn, 

Bakx, Verhoef, Schols, Sajjaanantakul & Voragen, 2009; Vincken, 2003). 

      

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3. The structure of rhamnogalacturonan I (a) (Caffall & Mohnen, 2009) and 
general structure of pectin (highly simplified) (b).  
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Typically, carboxyl groups of α-D-GalpA residue are not methyl-esterified in RG-I, 

however RG-I fraction isolated from flax has been reported to contain methyl esters 

(Rihouey, Morvan, Borissova, Jauneau, Demarty & Jarvis, 1995). Many plant cell 

walls contain phenolic acids that are ester-linked to pectic polysaccharides. The 

presence of feruloylated pectins has been reported in spinach, sugar beet, glasswort, 

quinoa and butternut (Fissore, Rojas, Gerschenson & Williams, 2013; Fry, 1982; 

Renard, Champenois & Thibault, 1993; Renard, Wende & Booth, 1999; Rombouts & 

Thibault, 1986). In beet and spinach cell walls, ferulic acids are linked to L-Araf 

residues of the main core of α-(1–5)-linked arabinan chains at the O-2 position and to 

D-Galp residues of the main core of β-(1–4)-linked galactan chains at O-6 position.  

1.3.4 Macromolecular organization of HG, RG-I and RG-II in the primary wall 

The fine structure of pectin has been widely investigated, however how these 

structural elements are incorporated in the macromolecular structure is still a matter 

of debate. The endo-polygalacturonase (EPG) treatment of pectic polysaccharides 

(O'Neill, Warrenfeltz, Kates, Pellerin, Doco, Darvill & Albersheim, 1996) 

demonstrated that HG, RG-I, and RG-II backbones are covalently cross-linked. It has 

been suggested that the RG-I and RG-II backbones are continuous with the HG 

backbone indicating the presence of a macromolecular structure with specific 

domains, however, the arrangement of these domains in vivo has still not been 

reported (Caffall & Mohnen, 2009). The pectic network is based on multiple levels of 

cross-linking that include, but are not limited, to backbone glycosidic linkages, 

calcium crosslinking, borate ester crosslinking, and covalent linkages to phenolic and 

possibly other compounds (Caffall & Mohnen, 2009). The HG segments of pectin 

self-associate depending on the degree of methyl-esterification through the calcium 

cross-linking and RG-I side-chains could be cross-linked to other wall components 
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such as xylans, xyloglucans, proteins, and lignins. RG-II domains form crosslinks to 

other RG-II molecules through borate diester linkages. Alternative models of 

macromolecular structure of pectin have been also proposed, where HG was depicted 

as a side chain of RG-I (Vincken, 2003).  

HG, RG-I, and RG-II are typically isolated from cell by treating the walls with 

aqueous buffers or calcium chelators. Extracted polysaccharides have high molecular 

weight (> 200 g mol-1) and therefore, cannot be separated from each other by size-

exclusion chromatography (Ridley, O'Neill & Mohnen, 2001). Therefore, most of 

pectic polysaccharides isolated using conventional extraction methods are 

polydisperse and represent complex mixtures of HG, RG-I and RG-II rather than one 

uniform polysaccharide species (Figure 1.3b). Typical molecular weight distribution 

of polydisperse mixture of pectin will be shown in Chapter 2. Isolation of HG, RG-I 

or RG-II enriched fractions can be performed using enzymatic treatment (e.g., 

polygalacturonases, lyases) of high molecular weight material. Generally, the 

abundance of “smooth” and “hairy” pectic polysaccharides, and distribution and 

length of side-chains varies considerably from species to species and is controlled by 

the extraction conditions. It has been reported that pectic polysaccharides isolated 

from apple, citrus and sugar beet are primarily composed of HG, whereas those 

isolated from soybean, linseed mucilages, green tea leaves and okra (Chapter 2) 

mainly contained RG-I (Ele-Ekouna, Pau-Roblot, Courtois & Courtois, 2011; Leroux, 

Langendorff, Schick, Vaishnav & Mazoyer, 2003; Muralikrishna, Salimath & 

Tharanathan, 1987; Nakamura, Furuta, Maeda, Nagamatsu & Yoshimoto, 2001).  

1.4 ISOLATION OF PECTIN  

Over the past decade, various novel extraction methods of pectic 

polysaccharides have been introduced and investigated to satisfy the demand for more 
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efficient and/or environmentally friendly pectin production. The techniques include 

the isolation of pectins with enzymes (e.g., polymethylgalacturonases, 

polygalacturonases, polygalacturonate lyases), electromagnetic induction heating, and 

microwave- and ultrasound- assisted isolation (Bagherian, Zokaee Ashtiani, 

Fouladitajar & Mohtashamy, 2011; Kashyap, Vohra, Chopra & Tewari, 2001a; 

Kashyap, Vohra, Chopra & Tewari, 2001b; Wang, Chen, Wu, Wang, Liao & Hu, 

2007). The more conventional methods of pectin cell wall extraction are cold and/or 

hot aqueous, buffers, use of chelating agents (e.g., potassium-oxalate), diluted acids 

(e.g., HCl) or diluted sodium hydroxide solutions. Although the various alternative 

extraction methods have been recently proposed, the isolation of pectin until now is 

mainly performed using hot acid (nitric acid, sulfuric acid and hydrochloric acid) 

treatment in combination with high temperatures between 70 - 90°C. The pH varies 

between 1.5 and 2.5 and the time of extraction depends on raw material (e.g., 

efficiency of protopectin release), desired chemical composition of pectin and 

manufacturer’s individual needs. Moreover, the chemical composition of isolated 

pectin also varies with respect to the extractant used. It has been shown (Visser & 

Voragen, 1996) that pectins isolated from various plant sources (e.g., leek, pineapple, 

sugar beet, cucumber, lemon, fennel) appear to be rich in HG when isolated with mild 

agents (e.g., water or K-oxalate) and become considerably richer in RG-I when 

extracted by stronger agents (e.g., HCl, NaOH). Following the hot extraction step, the 

precipitation of pectin from extraction liquor is performed with organic solvent (e.g., 

methanol, ethanol or isopropanol). Therefore, the pectin extract obtained by 

commercial acid extraction is composed of those polymer molecules that are soluble 

at a certain pH and time-temperature regime. However, those harsh acidic conditions 

of pectin extraction particularly during longer times could contribute to the 
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depolymerisation of pectin. The isolation of pectic substances from cell walls is pH 

sensitive and could be also performed in the presence of basic extraction medium. 

The modification of pH of extraction results in pectins with a different degree of 

methyl-esterification (DM) and therefore, functional properties. Extractions 

performed at high pH typically result in isolation of pectin with low DM due to the 

saponification of the ester groups. In contrast, acidic extractions yield pectins of high 

DM. Previous work on isolation of pectin reported the remarkable effect of extraction 

time, temperature, pH, type of acid, number of extraction cycles, the ratio of water to 

raw material and volumes of organic solvent on the yield and chemical composition 

of pectin from various plant sources, such as apple and peach pomace, mango peel, 

okra pods and passionfruit (Kliemann, de Simas, Amante, Prudêncio, Teófilo, Ferreira 

& Amboni, 2009; Kumar & Chauhan, 2010; Pagan, Ibarz, Llorca & Coll, 1999; 

Samavati, 2013; Sudhakar & Maini, 2000).  

1.5 PECTIN CONFORMATION  

The molecular architecture of polysaccharides has a profound effect on the 

functional properties and therefore, evaluation of shapes and conformational diversity 

is a critical step in polysaccharide analysis. Polysaccharide chains consist of many 

structural units and depending on the nature of monomer could be classified as homo- 

or hetero-polysaccharides as described in section 1.2. Biopolymers are commonly 

used in the form of solutions where under the effect of Brownian motion their 

physical properties change and this results in modification of molecule dimensions 

and shapes (Cui, 2005). Solvent molecules collide with individual monomer units and 

therefore cause a continuous change in conformation of the biopolymer. Biopolymers 

may exist in many different conformations (compact, extended, random, rod and 

sphere) and their occurrence is restricted by the chemical bonds in the molecule. A 
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molecule may possess a variety of structures, however, only certain conformations are 

possible due to the interference and restrictions imposed by rotational angles under 

certain conditions. In polysaccharides, the global conformation primarily depends on 

rotations about the glycosidic linkages due to the limited flexibility of pyranose ring 

and insufficient influence of attached groups on the conformational space of molecule 

(Perez, Mazeau & Herve du Penhoat, 2000). Therefore, the main source of polymer 

flexibility originates from the variation of torsion angles of the glycosidic linkages. 

The monosaccharide units in polysaccharides rotate about the glycosidic linkage with 

two torsion angles (φ, ψ). Angle φ is located between the anomeric carbon and the 

oxygen of the glycosidic linkage of the first monomer, and  ψ between the oxygen of 

the glycosidic linkage and the non-anomeric carbon of the second monomer (Figure 

1.4). The formation of 1→6 glycosidic linkage between two monosaccharides 

introduces an extra torsion angle (ω) about C-5 and C-6 bond (Kontogiorgos, 2014). 

Those angles increase the freedom of a molecule to adopt the most stable 

conformation, which is typically the one with the lowest energy and referred as 

secondary structure (e.g., ribbon or helix). In case of branched RG-I polysaccharide, 

three degrees of rotational freedom (φ, ψ, ω) are observed for arabinan side-chains 

making them the most mobile parts of pectin molecule (Figure 1.4) (Sinnott, 2007). 

However, the influence of α-L-rhamnosyl residues, methoxyl and acetyl groups on the 

overall conformation of pectic backbone has not been shown (Perez, Mazeau & Herve 

du Penhoat, 2000).  

Polysaccharides can adopt either ordered or disordered conformations. 

Ordered conformations are characterized by the fixed values of torsion angles due to 

the complex interactions between sugar residues (Cui, 2005). Overall, the shape of a 

polysaccharide chain will be dictated by the geometrical relationship within each 
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monosaccharde unit (e.g., β-(1→4) is ribbon-like, β-(1→3) and α-(1→4) is a hollow 

helix, β-(1→2) is a crumpled ribbon). Therefore, homopolysaccharide chains could 

adopt ribbon-like (e.g., cellulose, xylan, mannan), hollow helix (e.g., amylose, 

curdlan) and crumpled (e.g., pectin RG-I sequences) types of conformations. Some 

anionic (1→4)-linked polysaccharides, such as poly-α-D-galacturonic acid sequences 

in pectin can adopt buckled ribbon conformation. This type of chain arrangement may 

leave interstices when they pack together that are usually stabilized by 

accommodating metal cations (e.g., Ca2+) (Cui, 2005). This type of ribbon-ribbon 

association is described as the so called egg-box model and some polysaccharides, 

such as low-methoxylated pectins and alginates form ordered structures (e.g., gels) 

via this model (Jarvis & Apperley, 1995).  

 

                    

Figure 1.4.  Model of torsion angles (φ, ψ and ω) in a polygalacturonate chain. 

 

A number of polysaccharides do not show sequence regularities and are 

composed of alternating units of different monosaccharides. It has been shown that 

most polysaccharides (e.g., alginates, κ-carrageenan) even with a certain degree of 

regularity, will adapt a random coil conformation in dilute solutions (Cui, 2005). 

However, the biopolymer chains with certain structural regularities could form 

ordered conformations under specific conditions (e.g., high concentration, T, pH, 
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binding agents). In contrast, irregularly sequenced polysaccharides can adapt only 

random coil conformation. Pectins in a solid state mainly exist in the form of right-

handed helices that are stabilized by intra-molecular and inter-molecular hydrogen 

bonding (Morris, Rees, Thom & Welsh, 1977). In solutions, pectin adopts a random 

coil conformation with a certain degree of rigidity. The term “random coil” is often 

used to describe the unperturbed shape of ideal polymer chain in dilute solutions 

(Sperling, 2006). The simplest mathematical model of an ideal polymer chain in a 

space is the freely jointed chain (Rubinstein & Colby, 2003). It has n segments, each 

of length L, joined in a linear sequence, where all orientations have equal probability 

(Walstra, 2003). Every possible conformation of an ideal chain can be mapped onto a 

random walk model. If the length of each step is constant and the direction of each 

step is independent of all previous steps, the trajectory of this random walk is one 

conformation of an ideal chain (Sperling, 2006). The dimensions of linear chains are 

typically characterized by mean-square end-to-end distance (Flory radius) (rm, Eq. 1). 

However, branched or ring biopolymers cannot be treated in the same way and the 

radius of gyration (rg, Eq. 2) is used to characterize biopolymers of any architecture in 

the absence of any physical interference (idealized conditions).  

                                               rm = Ln
0.5                                               (1) 

                                              rg = 0.41Ln
0.5                                          (2) 

The qualitative models used for the characterization of ideal chain 

conformation are oversimplified and based on the model of polymer chain that has no 

volume and short (steric hindrances) or long-range interactions between 

polysaccharide segments. The real chains have volume and cannot cross themselves 

in the space and therefore, cannot “walk” randomly. As a result, the statistical model 

of self-avoiding random walk that includes the excluded volume parameter (Ve) (same 
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chain segments do not occupy the same space) is used to adjust the random coil 

concept for the characterization of real chains. Interactions and preferred 

configuration of polysaccharide chains at the molecular level depend most commonly 

on the quality of the solvent and temperature of the system. In a good solvent, 

solvent-segment interactions are greater than chain segment-segment interactions and 

polysaccharide molecule follows self-avoiding random walk resulting in higher 

solubility and more extended conformation (Cui, 2005). In contrast, polymer-polymer 

attraction is dominant in poor solvents resulting in aggregation and phase separation. 

The θ-temperature differentiates the poor (T <Tθ) and good (T >Tθ) solvents, and 

defines θ solvent. In θ solvent, the net excluded volume is zero, because of the 

cancelation between the short-range and long-range interactions (Rubinstein & Colby, 

2003). Therefore, the chains of polymer in a θ solvent have nearly ideal 

conformations at all concentrations. Polydispersity, stiffness, polyelectrolyte nature 

and branching of many natural polysaccharides are additional parameters that also 

control the dimensions of random coil conformation. A real polysaccharide chain has 

fixed bond angles indicating lower freedom of orientation and therefore, natural 

polysaccharide chains are stiffer than the ideal chains. Polysaccharides can adopt a 

wide variety of orientations that leads to a great diversity of chain conformations. For 

instance, pectins, xanthan, κ-carrageenan adapt elongated conformations, gellans form 

short rods whereas arabic gum has a globular structure. 

1.6 PHYSICAL PROPERTIES OF PECTIN 

1.6.1 Pectin solubility  

Molecular architecture and molecular weight are two important parameters 

that determine polysaccharide solubility. Neutral polysaccharides are less soluble than 

polyelectrolytes and solubility typically increases with reduced regularity of 
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molecular structure. For instance, linear polysaccharides with high degree of 

regularity, such as cellulose are insoluble in hot or cold water and therefore, chemical 

modification is required in order to produce derivatives (e.g., hydroxymethyl, 

carboxymethyl cellulose) with improved chain solvation and swelling properties 

(Belitz, Grosch & Schieberle, 2009). Monovalent cation pectic salts (e.g., sodium and 

potassium pectates) and pectic acids are typically soluble in water whereas di- and 

trivalent cation pectic salts are almost insoluble in water. Higher solubility of pectic 

polysaccharides is attributed to the heterogeneous structure (HG, RG-I, RG-II), the 

presence of hydrophilic carboxyl (degree of methyl esterification) and hydroxyl 

groups that interact with water mainly through hydrogen bonding. Other factors 

affecting pectin solubility kinetics include pH of solution, DM, branching of side-

chains, solution concentration, presence of counterions and molecular weight.  

 
 
 
Figure 1.5. Pectin chain conformations a) extended (pH > pKa), b) compact (pH < 
pKa).  
 

At high pH values (pH > pKa) carboxyl groups of pectin are ionized. 

Therefore, biopolymer chains are highly hydrated and extended due to the 

electrostatic repulsions between the carboxylate anions. The number and distribution 

of negative charges is determined by the degree of methyl esterification and degree of 

blockiness (DB) with methyl groups. The ionization of carboxylic groups decreases 

with pH (pH < pKa) and consequently promotes chain-to-chain associations. 
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Therefore, the absence of repulsion results in higher viscosity of pectin solutions and 

formation of pectin aggregates. The addition of salts of monovalent cations to pectin 

solutions results in viscosity reduction due to the suppression of electrostatic 

repulsions. In contrast, increase in viscosity values of pectin solutions is observed 

with addition of co-solutes, such as sucrose, dextrose and maltose. The co-solutes 

compete for water with polysaccharides. Therefore, interactions between 

polysaccharide molecules become greater than polysaccharide-solvent interactions 

leading to the increase in solution viscosity. The pH at which 50% of galacturonic 

acid is dissociated (pKa) varies depending on the DM and typically is in the range of 

3.55 – 4.10 for 0% DM and 65% DM, respectively (Sriamornsak, 2003). Pectic 

polysaccharides typically have high molecular weights (50 – 700 × 103 g mol-1) 

something that hinders the dissolution rate of pectin. It has been reported that pectin 

molecules associate in solution and form stiff or segmented rods through non-covalent 

interactions (Thakur, Singh, Handa & Rao, 1997). Moreover, pectin molecules have a 

tendency to form supramolecular aggregates when dispersed in water and the 

probability of aggregation depends on pH and ionic strength of solution. The presence 

of pectin aggregates results in molecular weight overestimation particularly when 

measured with light scattering techniques. The dissociation of aggregated network is 

typically performed by addition of hydrogen bond breakers. It has been also shown 

that the strength of pectin aggregates depends on the amount of methyl-esterified 

groups and stronger aggregates are formed in the case of LM-pectins. Stronger 

aggregation of LM-pectins was attributed to the higher amount of deesterified 

carboxyl groups than in HM-pectin that creates more hydrogen bonds and therefore 

stronger aggregates. A typical pectin dissolution scenario includes the following 

steps: 1) solvent wets the pectin, 2) solvent diffuses into the polymer, 3) polymer 
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swells, 4) polymer diffuses out of the swollen mass into the solvent (Sperling, 2006). 

Slow solubility kinetics of pectins is explained by the fact that the disentanglement, 

swelling and subsequent diffusion of pectin to the bulk solution takes longer time 

compared to that of polymers with smaller molecular weights.  

1.6.2 Molecular weight distributions and averages 

Molecular weight (Mw) and molecular weight distributions (MwD) are 

fundamental characteristics of polysaccharides and in combination with chain 

conformations can be utilized for the modelling of mechanical and rheological 

properties of pectins. Molecular weight distributions vary depending on the botanical 

source of pectin and extraction condition (temperature, time, extraction medium and 

pH). Pectic polysaccharides are polydisperse, indicating that each polymer population 

composed of chains of different monosaccharide composition or length giving a 

distribution of molecular weights as discussed in section 1.3.4. Molecular weight of 

pectic polysaccharides is typically described by molecular averages, such as number 

average molecular weight (Mn), weight average molecular weight (Mw), z-average 

molecular weight (Mz), and viscosity average molecular weight (Mv) that are given by: 
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, where ni is number of molecules, ci concentration and Mi molecular weight. 

The choice of the molecular weight averages depends on the characteristics of 

polymer that are of primary interest. For instance, number average molecular weight 

(Mn) typically represents the chain length of biopolymer and highly sensitive to small 

molecules present in polymer mixture (Cui, 2005). Moreover, Mn is frequently used in 

the examination of thermodynamic properties of polymer material. The weight 

average molecular weight (Mw) describes the size of the polymer chain and is more 

sensitive to large polymer molecules. The Mz is typically utilized for the evaluation of 

elasticity of polymer melts. The viscosity average molecular weight (Mv) is based on 

the measurements of intrinsic viscosity calculated using Mark-Houwink relationship, 

which is discussed in the next section. The estimation of polysaccharide molecular 

weight includes not only molecular weight averages, but also distribution of 

molecular weights that are described by the mode of distribution and polydispersity. 

The ratio Mw / Mn is called polydispersity index (PDI) and varies in the range of 1.5 – 

2.0 for natural polysaccharides (Sperling, 2006). Various techniques for molecular 

weight determination are available and vary in terms of information that is required 

for the statistical modelling in order to calculate molecular weight and information 

that can be obtained with the method. The most common techniques for Mw 

determination include static light scattering (LS), size exclusion chromatography 

(SEC), viscometry, sedimentation and membrane osmometry (Cui, 2005). Separation 

using size exclusion chromatography occurs on the basis of hydrodynamic volumes 
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and macromolecular characteristics such as Mw, Mn, Rg and polydispersity index can 

be determined.  

1.6.3 Viscosity and flow properties of pectin solutions 

The viscosity (η, Pas) of a fluid is a measure of its resistance to flow. It is 

defined as the ratio of applied shear stress (τ) to rate of shear strain (dγ/dt): 

                                              η =
τ

dγ / dt
=
τ
γ

                                       (7) 

A fluid that obeys Eq.7 is called a Newtonian fluid in which the viscosity is 

independent of the shear rate and all energy is dissipated as molecules slide past each 

other. A fluid that does not obey Eq.7 is called non-Newtonian fluid. The behaviour 

of a polymer solution is defined as shear thinning flow when its viscosity decreases 

with increasing shear rate. The opposite flow behaviour is called shear thickening. 

Dilute pectin solutions exhibit Newtonian flow. However, as the concentration 

increases to a critical point, shear thinning becomes dominant. The polysaccharide 

flow behaviour is explained in terms of pectin chain entanglements. As the pectin 

concentration is increased, the freedom of movement of the individual chains 

becomes restricted due to the increased number of entanglements. Therefore, longer 

time is required to form new entanglements to replace those disrupted by the 

externally imposed deformation (Hwang & Kokini, 1992). Moreover, increase in 

degree of branching of pectin results in higher shear rate dependency of viscosity 

(Hwang & Kokini, 1992). It is apparent that concentration influences polymer 

properties in solution and therefore, solutions are classified as dilute, semidilute and 

concentrated based on the polymer concentration. In the dilute concentration regime, 

each polymer behaves as an isolated chain and occupies a discontinuous 

hydrodynamic domain in the solution. Therefore, bulk properties of the polymer 
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solutions are determined by the macromolecular characteristics of individual polymer 

chains. As a result, the evaluation of fundamental molecular properties of 

polysaccharides such as chain conformation, molecular weight and intermolecular 

interactions are typically performed in dilute solutions (c < c*). The increase of 

concentration to a critical point causes polymer chain crossover and entanglement. 

This concentration is called overlap or critical concentration (c*) and the region above 

critical concentration is called semi-dilute (c > c*). The critical concentration (c*) 

depends on the volume occupied by each molecule and the differences in c* between 

various pectin samples are attributed to the fluctuations in molecular weights and/or 

stiffness of polymer chains. In the semi-dilute regime polymer molecules cannot 

distribute themselves randomly over the solution volume and adjacent chains start to 

interpenetrate. Further increase of polymer concentration leads to a concentrated 

regime (c**). 

The ratio of the viscosity of the solution to that of the solvent is called relative 

viscosity (ηrel) (Eq. 8). Another associated term is specific viscosity (ηsp) and it 

expresses the incremental viscosity in the presence of the polysaccharide in solution 

(Eq. 9). Dividing ηsp by concentration c gives ηsp/c that corresponds to reduced 

viscosity (ηred) (Eq. 10) and expresses the capacity of a polymer to cause the solution 

viscosity to increase. A remaining term is inherent viscosity (ηinh), which is defined in 

Eq. 11. Similarly to ηred, ηinh is zero for pure solvent and increases with increasing 

concentration and therefore, ηinh also expresses the incremental viscosity due to the 

presence of the polymer in the solution. Extrapolation of both ηred and ηinh to zero 

concentration yields the intrinsic viscosity [η]. The [η] is a measure of hydrodynamic 

volume occupied by the isolated polymer chains for a given polymer-solvent pair. 

Huggins and Kraemer equations (Eq. 12, 13) describe the dependence of ηred, ηinh and 
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[η] with concentration in dilute solutions. KH and KK are the Huggins and Kraemer 

constants. Equations 12 and 13 form the theoretical basis for the determination of [η] 

and typical Huggins-Kraemer plots used for determination of [η] of biopolymer 

solution are shown in Figure 1.6.  

 

                                    ηrel =
η
ηs

                                                 (8) 

                                   ηsp =
η −ηs
ηs

=ηrel −1                                (9) 

                                   ηred =
1
c

 
η −ηs
ηs

=
1
c
ηsp                             (10) 

                                   ηinh =
lnηrel
c

                                            (11) 

                                   ηred = η!" #$ 1+ KH η!" #$c( )                             (12) 

                                  lnηrel( ) / c = η!" #$ 1− KK η!" #$c( )                    (13) 

 

As it shown in Figure 1.6, both lines should extrapolate to the same point at zero 

concentration and have identical intercept values that correspond to [η] of a pectin 

solution in a given solvent. The [η] is controlled by molecular characteristics of a 

polymer (linearity, degree of branching, flexibility, rigidity, polyelectrolyte nature, 

presence of functional groups), molecular weight and solvent quality.  

The most frequently used tool for intrinsic viscosity determination of polymer 

dilute solutions is the Ubbelohde type viscometer (Figure 1.7). The method is based 

on the measurement of the resistance to flow of solvent and biopolymer solution 

through a calibrated capillary. 
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Figure 1.6. Huggins-Kraemer plots for okra pectin (OP6) in phosphate buffer and 0.1 
M NaCl at 25°C.  
 
 
According to Poiseuille law (resistance to flow), ηrel can be expressed as shown in Eq. 

14, where t, t0 and ρ, ρ0 are the flow times and corresponding densities of solvent and 

biopolymer solution at a concentration c under certain experimental conditions 

(laminar constant flow, T = const) (Harding, 1997). The ηrel can be expressed without 

the density correction and in that case it will be called as a kinematic relative viscosity 

(ηʹ′rel) (Eq. 15).  

                                      ηrel = tρ / t0ρ0( )                                    (14) 

                                      !ηrel = t / t0( ) =ηrel                                  (15) 

However, in polymer science a reasonable approximation of ηrel = ηʹ′rel has been 

introduced for biopolymer (polysaccharides, glycoproteins) solutions at concentration 

<1g L-1. As it has been discussed, [η] is a measure of hydrodynamic volume occupied 

by individual molecules in a very dilute biopolymer solution. Since hydrodynamic 

volume of polymer chains depends on macromolecular characteristics including 
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molecular weight (coil expansion increases with molecular weight), it has been 

proposed that those two parameters are interrelated. Mark, Houwink and Sakurada 

arrived at an empirical relationship between [η] measured in a specific solvent and the 

viscosity average molecular weight (Mv):  

                                              η!" #$= KMv
a                                   (16) 

where K and a (also called coiled expansion constant) are empirical constants that 

depend on polymer conformation, solvent and temperature at which the [η] was 

measured. Therefore, constants can be used for evaluation of biopolymer 

conformation. Polysaccharides with expanded random coil conformation result in 

high values of K whereas those with compact conformation give low K (Harding, 

1997). The exponent a of polysaccharides adapting a random coil conformation is 

typically in the range of 0.5 - 0.8 and strongly depends on the quality of a solvent. For 

stiff coils the value a is about 1.0 and for rods in the range of 1.8 – 2.0 (Harding, 

1997; Tanford, 1961). In a Flory θ-solvent, polysaccharide chains have more compact 

conformation and therefore, lower [η]. The value of a equals 0.5 under these 

conditions. In a good solvent, the expansion of polysaccharide chains results in high 

[η] and a value is close or higher than 0.8. It has been reported that a value for pectin 

varies in the range of 0.62 – 0.94 corresponding to a slightly stiff conformation 

whereas xanthan value is about 1.23 depending on the applied solvent (Morris, 

Adams & Harding, 2014). Mark-Houwink constants can be obtained from literature or 

experimentally from a plot of log [η] over log Mv, where the slope of regression line 

represents a and intercept equals to log K.  
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Figure 1.7. Schematic representation of the effect of shear rates on polymer chain 
rotation. Hydrodynamic work is converted into heat, resulting in an increased solution 
viscosity. 1 - Ubbelohde type viscometer, 2 – relative velocity of solvent in capillary, 
3 – rotational motion of polymer molecule.  
 
 

As it has been discussed earlier, the bulk properties of polysaccharide 

solutions are also concentration-dependent (c, c*, c**) and the critical concentration 

(c*) that is used to define dilute and non-dilute concentration regimes typically 

depends on molecular weight and conformational characteristics (e.g., stiffness) of 

polysaccharide chains. However, Eq. 17 and double logarithmic plots of (ηsp)o versus 

dimensionless coil overlap parameter, c[η], that measures the total volume occupied 

by all polysaccharide coils in solution are typically used to determine the transition 

from the dilute to concentrated regime regardless of polysaccharide primary structure 

and molecular weight. The effects of concentration on η are studied using zero shear 

specific viscosity ((ηsp)o). The c[η] can be estimated from master curves of log(ηsp)o 

versus logc[η] and typically is in the range of 2.5 – 4.0 for random coil 

polysaccharides, such as carboxymethylamylose and λ-carrageenan (Morris, Cutler, 
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Ross-Murphy, Rees & Price, 1981). However, some of polysaccharides including 

amylose, guar gum and locust bean gum demonstrate much lower values about 1.0 – 

1.3 (Doublier & Launay, 1981; Ellis & Ring, 1985). It has been also observed that 

double logarithmic plots for polysaccharides of different primary structure, but with 

similar conformational characteristics result in the range of slope values 1.2 – 1.4 for 

c < c* and 3.3 – 4.4 for c > c*.  

                                          ηsp( )o = c η!" #$( )
n
                                   (17) 

1.7 OKRA PLANT 

Okra (Abelmoschus esculentus L.) is an annual, flowering plant that belongs to 

the Malvaceae family and it has many local names in various parts of the world, for 

instance, lady’s fingers in England, gumbo in the USA or bhindi in India. It is 

primarily cultivated in tropical and subtropical areas including India, Middle East, 

Southern USA and West Africa. According to (FAOSTAT, 2013) the most important 

okra-producing country is India with more than 70% of world okra production (5 

million tonnes) followed by Nigeria (1 million tonnes) and Sudan (0.3 million tonnes) 

with the total trade exceeding $4 billion. Okra is cultivated for its fibrous fruits or 

pods that contain white, round seeds and eaten as a vegetable. About 50 species are 

identified and those that are cultivated include A. moschatus, A. manihot and A. 

esculentus. Okra pods are normally harvested in an immature state when they are high 

in mucilage. Okra plays important role in the human diet, as it is high in vitamin C, 

minerals (e.g., Ca, Mg and K) as well as fibers. The high fiber content and 

polysaccharides present in okra have been the subject of significant research of their 

applications in food and pharmaceutical industries. Recently, the nutritional and 

functional properties of okra pods have re-awakened interest to research its potential 



 46 

uses. Studies on okra flour have revealed that it possesses antioxidant activity, which 

increases with roasting (Adelakun, Oyelade, Ade-Omowaye, Adeyemi & Van de 

Venter, 2009) suggesting their application in food industry as inhibitors of lipid 

oxidation and microbial activity in meat products during storage (Arapitsas, 2008). 

Okra seeds are considered as a coffee substitute and also as a high-protein oilseed 

crop that can be used to complement other protein sources (Martin, 1982). 

Physiological studies have revealed hypoglycemic properties of okra polysaccharides 

(Lengsfeld, Titgemeyer, Faller & Hensel, 2004) suggesting their potential use as 

functional food ingredients similar to soluble fibers from cereals (β-glucan) or 

psyllium. In the food industry, the thick and slimy texture of okra aqueous extracts is 

of primary technological interest as they can be used as thickening agents or as 

stabilizers in food emulsions (Sengkhamparn, Sagis, de Vries, Schols, Sajjaanantakul 

& Voragen, 2010).  

Currently, it is suggested that water extracted okra polysaccharides can be 

used as a diverse food ingredient (BeMiller, Whistler & Barbalowm, 1993; Costantino 

& Romanchick-Cerpoviez, 2004; Romanchik-Cerpovicz, Costantino & Gunn, 2006; 

Romanchik-Cerpovicz, Tilmon & Baldree, 2002; Woolfe, Chaplin & Otchere, 1977). 

Okra pectins are found to be acidic, random coil polysaccharides composed of 

galactose, rhamnose and galacturonic acid. The repeating unit was reported to be α-

(1-2)-rhamnose and α-(1-4)-galacturonic acid residues including disaccharide side 

chains (Tomada, Shimada, Saito & Sugi, 1980) and they form viscous solutions that 

exhibit pseudoplastic behavior (Georgiadis, Ritzoulis, Sioura, Kornezou, Vasiliadou 

& Tsioptsias, 2011; Kontogiorgos, Margelou, Georgiadis & Ritzoulis, 2012; 

Sengkhamparn, Sagis, de Vries, Schols, Sajjaanantakul & Voragen, 2010). 

Furthermore, they differ greatly from those extracted from apple, citrus and beet in 
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terms of protein and acetyl contents, indicating their greater hydrophobicity and 

therefore substantial surface activity at the o/w interface suggesting that pectin 

derived from okra can be used as an effective emulsifying agent (Kravtchenko, 

Voragen & Pilnik, 1992; Levigne, Ralet & Thibault, 2002; Sengkhamparn, Verhoef, 

Schols, Sajjaanantakul & Voragen, 2009; Thibault, 1988). 

1.8 PECTIN AS A FUNCTIONAL FOOD INGREDIENT  

1.8.1 High moisture regime - Gelation 

A number of polysaccharides in a hydrated state can form gels under certain 

conditions. Gelation of polysaccharides occurs due to the cross-linking of polymer 

chains via covalent (in the presence of cross-linking agent) or non-covalent bond 

(e.g., van der Waals interactions, hydrophobic interactions, hydrogen bonding or ionic 

bonds for charged polymers) so as to convert polysaccharide solution into the three-

dimensional metastable, viscoelastic network that fills the volume of the liquid 

medium (Walstra, 2003). When polysaccharides are dispersed in aqueous medium, 

inter- and intra-chain interactions occur alongside with chain-solvent interactions.  

Inter-chain interactions typically result in formation of a gelled network whereas 

intra-chain interactions result in aggregation of polysaccharide followed by 

precipitation. In order to decrease the intra-chain interactions and increase inter-chain 

interactions, polysaccharide solutions are subjected to various temperature profiles 

(e.g., cooling, heating ramps), pH variation, addition of cations and co-solutes (e.g., 

sucrose, glucose).  

Chemical structure and molecular conformation of polysaccharides are 

primary determinants of gelling mechanisms and gel properties. Therefore, gels are 

classified based on their interactions in covalent polymeric networks, entanglement or 

physical networks (Flory, 1974). Gels comprised of physical networks are the most 
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common in food systems. In order to gel, polysaccharide chains or chain segments 

have to adopt short-range ordered structures (Cui, 2005). Cross-linking of ordered 

structures of two or more polysaccharide chains results in formation of junction zones 

(Sperling, 2006). A certain number of cross-links has to be formed in order to 

overcome the entropy barrier and form a stable network. Several idealized models of 

junction zones of polysaccharide gels have been reported and include the egg-box 

junction (e.g., low-methoxyl pectin, alginate), the aggregated double helical junction 

(carrageenan), cation (e.g., Ca2+, Mg2+, Na+, K+) promoted association of double 

helices (e.g., low acyl gellans) and association of extended ribbon-like structure (e. g., 

segments of amidated pectin and of mannan segments of galactomannan) (Grant, 

Morris, Rees, Smith & Thom, 1973; Piculell, 1998; Racape, Thibault, Reitsma & 

Pilnik, 1989).  

It is worth to mention that polysaccharide solutions are viscoelastic in nature 

and have both solid-like and liquid-like characteristics. The sol-gel transition is 

typically accompanied by considerable changes in flow behaviour and increase in 

viscoelastic properties. The dynamic mechanical experiments of gelling systems are 

often used to show the evolution of the storage (Gʹ′) and loss (Gʺ″) moduli during the 

formation of gelled network. Figure 1.8 shows an example of gelation kinetics of 

acid-induced gelation of LM-citrus pectin where the crossover point of Gʹ′ and Gʺ″ is 

taken as the gelation point. The gelation mechanisms can be entirely different 

between pectins that have variations in fine structure (e.g., DE, DA, degree of 

branching of RG-I). For instance, high-methoxyl (HM) and low-methoxyl (LM) 

pectins have different gelation mechanisms and therefore gel properties. In contrast, 

pectins with high degree of acetylation and branched RG-I typically do not gel. 
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Figure 1.8. Acid-induced gelation of citrus LM-pectin (ω=6.283 rad/s, 1% strain, 
T=20°C). 

 

The gelation of LM-pectins is induced by incorporation of divalent cations, 

such as Ca2+ over a wide range of pH values. However, binding efficiency of calcium 

ions to pectin chains is controlled by the pH. It has been shown that at neutral pH 

values pectin chains are highly extended and stiffened due to the intra-chain 

electrostatic repulsions and chain geometry is close to the two-fold helix structure 

(Gilsenan, Richardson & Morris, 2000). In contrast, more compact three-fold helix 

structures are formed under acidic pH due to the suppression of electrostatic 

repulsions and increase of hydrophobic interactions and hydrogen bonds (carboxyl 

groups act as a hydrogen-bond donors) (Gilsenan, Richardson & Morris, 2000). Those 

interactions could strengthen the gel formation of LM-pectins and, therefore, the 

gelation of LM-pectins could be favoured by decreased pH. Moreover, LM-pectin 

gels fabricated at low pH are thermally reversible and those at neutral pH are 

irreversible. Amidation increases the gelling ability of LM-pectins and typically less 

calcium is required for formation of gelled network. Reactivity to calcium depends on 

the number and distribution of carboxyl groups and degree of methyl-esterification. 

The gelation mechanism of LM-pectins is based on the egg-box junction model 

similarly to calcium alginate gels. The model involves long arrays of site-bound Ca2+ 
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fixed between (1→4) linked GalA chains in a highly buckled two-fold conformation 

as shown in Figure 1.9 (Jarvis & Apperley, 1995). The oxygen atoms of hydroxyl 

groups and pyranose ring, and the bridging oxygen atoms of the component sugar 

units are involved in covalent bonding.  

In contrast, gelation of HM-pectins occurs in the presence of high 

concentrations of co-solute, such as sucrose at around 60 – 65% under acidic 

conditions. Low pH values (< ~ 3.6) are required for protonation of pectin carboxyl 

groups and elimination of electrostatic repulsions between pectin chains whereas 

sucrose competes with pectin for available water. These conditions (co-solute and low 

pH) limit the hydration of pectin chains and promote gel formation. The amount of 

required co-solute typically increases with increasing degree of methyl-esterification 

of pectin. It has been shown that hydrogen bonding and hydrophobic interactions are 

the major driving forces in gelation of HM-pectins (da Silva, Gonzalves & Rao, 

1995). HM-pectin gels are thermally irreversible and depending on the degree of 

methyl-esterification are classified as rapid-set (>79% DM) or slow-set (~ 58 – 65% 

DM) pectins.  

1.8.2 Low moisture regime – High solid biopolymer systems 

High solid systems or systems with low moisture content are widely utilized in 

food and pharmaceutical industry. Dehydrated, partially frozen foods, tablet coatings 

and encapsulated bioactive ingredients are the common examples of low moisture 

biopolymer systems. The typical solids level in a gelled biopolymer system is in the 

range of 0.5 – 2.0% whereas high solids systems usually contain > 65% of solids. 

Amorphous or crystalline solid states of polysaccharides can be distinguished based 

on the ability of polysaccharide segments to adopt disordered or long-range ordered 

structures (Kontogiorgos, 2014). 
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Figure 1.9.  The gelation mechanism of LM-pectins is based on the egg-box model 
(Axelos & Thibault, 1991). 
 
 
An amorphous biopolymer does not demonstrate regular periodicity in atom or 

molecule density and therefore does not form crystals (Walstra, 2003). Instead, 

amorphous systems are subjected to glass transition where disordered supercooled 

liquids undergo a transition from liquid to solid states. The transition occurs over a 

temperature range or more often referred to a definite temperature called glass 

transition temperature (Tg) (usually onset or midpoint of transition). The formation of 

glasses typically occurs when a polymer solution or rubbery system is cooled fast (or 

by removal of water) below its melting temperature and therefore, molecules have 

limited time to rearrange themselves and pack into the crystalline domain 

(Hutchinson, 1995). Further reduction of temperature and inhibited crystallization 

contribute to the considerable increase in viscosity values and the system eventually 

enters the glassy state.  

The solutions of food biopolymers typically do not crystallize on cooling 

however, glass transition and glassy state are important determinants of physical 

stability and textural properties of food matrices (Kasapis, Mitchell, Abeysekera & 

MacNaughtan, 2004; Kontogiorgos, 2014). Several polysaccharides have a semi-

crystalline character including starch, cellulose and chitin (Belitz, Grosch & 
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Schieberle, 2009). The presence of double helices of amylopectin in starch and 

hydroxyl groups in cellulose that are involved in intra- and intermolecular hydrogen 

bonding result in various ordered crystalline arrangements (microcrystalline regions) 

below a melting temperature. Further cooling of such systems does not result in 

formation of greater proportion of crystalline domains due to the restrictions in 

conformational and rotational freedom of polymer chains imposed by the reduction of 

free volume. As a result, part of the material in such systems will be crystalline and 

part in a glassy state. Glassy state in food systems can be achieved by removal of 

water (e.g., freeze drying, extrusion) and/or by cooling high solids biopolymer 

systems below a defined temperature range. Some properties of high solids systems 

could be also modified on introduction of a softening agent (plasticizer) (Kasapis, 

2008). In relation to biopolymer systems, water acts as a plasticizer. The hydration of 

amorphous polysaccharides chain considerably affects vitrification by reducing the 

glass transition temperature.  

Various concepts are utilized to rationalize molecular processes of a material 

in the glass transition. The existing theories mainly focus on the thermodynamic, 

kinetics, or the free volume concepts and utilize a single property or parameter to 

characterize the glass. Differential scanning calorimetry (DSC) is a widely used 

method to analyse glass transitions based on the changes in heat capacity of the 

material during the transition period. However, calorimetrically determined glass 

transition temperatures are affected by the heating rate and also do not stand the 

comparison with mechanically determined Tg. The mechanistic evaluation of rubber-

to-glass transition and associated molecular processes is based on the concept of 

macromolecular free volume (Kasapis, 2005). Free volume (υf) has been defined 

(Ferry, 1980) as a vacant space between the packing irregularities of long chain 
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segments or as the space required for large-scale rotational and vibrational motions of 

the molecules. In contrast, the definition of occupied volume (υ0) describes the space 

taken by the van der Waals radii of polymeric contours and vibrational motion of 

atoms. Therefore, according to the free volume concept, Tg is defined as temperature 

at which free volume of a system is nearly zero and molecular motions are arrested. 

The only molecular motions that occur below Tg are those allowed by the occupied 

volume and typically include local, restricted to atom or bond vibrations and/or 

reorientation of small groups (Champion, Le Meste & Simatos, 2000). It has been 

shown for polymer melts that the free volume accounts around 30% of the total 

volume above Tg and it reduces to 3% once the system enters glassy state (Cangialosi, 

Schut, Van Veen & Picken, 2003).   

The molecular origin of viscoelastic behaviour of biopolymers is controlled by 

temperature, time, pressure, molecular weight and concentration (Angell, 2002). 

Small deformation oscillation on shear is used to evaluate the viscoelastic properties 

of biopolymer materials and glass transition region, as a function of frequency and 

time within the linear viscoelastic range. Typical viscoelastic spectrum of a 

polysaccharide system is shown in Figure 1.10. The master curves are composed of 

four distinct (frequency or temperature) parts based in the intersection of storage (Gʹ′) 

and viscous (Gʺ″) modulus traces. Molecular flow (Gʺ″ > Gʹ′) is typically observed in 

biopolymer solutions (e.g., protein, polysaccharides) and concentrated glucose syrup 

at high temperatures (region I, Fig., 1.10). Cooling of the biopolymer system results 

in domination of Gʹ′ over the Gʺ″ due to the formation of elastic elements forming 

physical associations with transient stability, but able to support the applied stress 

(e.g., entanglements).  
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Figure 1.10. Variation of Gʹ′, Gʺ″ and tan δ as a function of temperature, frequency, 
molecular weight and concentration for amorphous polymers (adopted from (Kasapis, 
Mitchell, Abeysekera & MacNaughtan, 2004).  
 

The crossover point between Gʹ′ and Gʺ″ demarcates the onset of the rubbery region 

(region II, Fig., 1.10). On further cooling, the rubbery biopolymer (in the absence of 

crystallization) enters the glass transition region (region III, Fig., 1.10) where viscous 

response becomes again dominant. At the lowest temperature the storage modulus 

dominates viscous and the system enters the glassy state where chemical, enzymatic 

and microbial activity is typically ceased. The time-temperature superposition (TTS) 

relation is based on the following: velocity or times of shearing and temperature have 

a comparable effect on sample rheological behaviour in the absence of conformational 

transitions or formation of supermolecular structures. The approach of master curve 

construction is focused on the application of William, Landel and Ferry equation (Eq., 

18) (Williams, Landel & Ferry, 1955). 

                                       logaT = −
C1
o T −To( )

C2
o + T −To( )

              (18) 

where (B/2.303fo) and (fo/αf) are the WLF constants at the reference 

temperature To and related to the free volume theory (discussed below). The WLF 

C1
o C2

o
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method is a concept of thermo-rheological simplicity (TS) indicating that all 

relaxation processes have the same temperature dependence and changes in 

temperature shifts the time and/or frequency scale of relaxations by the same amount 

(Kasapis, 2005; Mezger, 2011). It has been shown that TS is applicable for high 

molecular weight materials as opposed to the low molecular weight products where 

thermo-rheological complexity (TC) dominates. The WLF equation provides a good 

fit of the empirically derived shift factors only in the rubbery and/or glass transition 

state of a biopolymer system. The restrictions on applicability WLF/free volume 

theory are imposed by the considerable reduction of free volume (~3%) when system 

enters a glassy state. At this point, the thermal expansion coefficient of free volume 

(αf) undergoes a discontinuity and total volume of a system does not change linearly 

as a function of temperature (Kasapis, 2008). Therefore, the concept of free volume 

reduction as a function of temperature is applicable only until the glassy state. Instead, 

the progress in mechanical properties at the region of the lowest temperatures and 

shift factors in a glassy state are typically described by the modified Arrhenius 

equation (Eq. 19) (Peleg, 1992). The change in relaxation processes also indicates the 

passage of the system controlled from free volume derived phenomena to those of 

energy barrier processes for the molecular rotation in the glassy state (Kasapis, 2008). 

Therefore, a temperature at which these modifications occur can be defined as the 

mechanical glass transition temperature. 
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2.303R
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1.8.3 Colloidal systems 

Emulsions are a class of disperse systems consisting of two immiscible liquids 

(e.g., oil, water) (Tadros, 2005). The droplets of one phase (dispersed phase) are 
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dispersed in the second phase (the continuous phase). The term “oil” includes any 

hydrophobic liquid such as n-alkanes, triglycerides or mineral oils. Several classes of 

emulsions can be distinguished based on the distribution of the oil and aqueous 

phases, e.g., oil-in-water (o/w), water-in-oil (w/o) and oil-in-oil (o/o). Most of the 

emulsions used in the food industry have the droplet average diameters at around 0.1 - 

100 µm and defined as macro-emulsions (McClements, 1999). Those emulsions that 

are of primary interest for pharmaceutical applications typically have smaller droplet 

sizes and can be divided into micro- (0.01 - 0.1 µm) and nano-emulsions (0.05 - 1 

µm) (Mahdi, He & Bhandari, 2006). Emulsions are thermodynamically unstable 

systems and therefore kinetic stability (metastability) for a certain period of time is 

achieved by introducing additional components such as emulsifiers and thickening 

agents. Therefore, emulsion classification can be also based on the nature of 

emulsifier or the structure of the system (e.g., polyelectrolytes-bilayer droplets, ionic 

surfactants-micellar emulsions, solid particles-Pickering emulsions etc.) (Tadros, 

2005). The concentration of droplets in the emulsion is described by the term 

dispersed-phase volume fraction (φ), which is the ratio of the total volume of 

emulsion droplets (VD) and total volume of the emulsion (VE) (Eq. 20). 

                                                  φ =VD
VE

                              (20) 

1.8.3.1 Thermodynamics of mixing 

The miscibility of two substances can be described by statistical 

thermodynamics. Molecule ensembles undergo self-organisation and arrange in a way 

that minimizes the free energy of the system (Ritzoulis, 2013). Therefore, the free 

energy of a system is determined by the combination of an enthalpic factor (the 

enthalpy of mixing of two components, ΔHm) and an entropic factor (the entropy of 
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mixing ΔSm at temperature T). The enthalpy is determined by the molecular 

interaction energies (e.g., bond energies, electrostatic interaction and van der Waals 

interactions) whereas entropy is generally governed by the propensity of a system to 

adopt a disordered conformation (McClements, 1999). The Gibbs free energy for a 

given system is given by the Eq., 21. The concept of free energy change on mixing of 

binary liquid systems helps to evaluate whether the resulting system will consist of 

two immiscible liquids or form a regular solution depending on the strength of the 

interactions between the liquids and entropy of mixing. The negative sign of ΔGm 

indicates that mixing of two liquid systems is favourable whereas positive ΔGm is a 

sign of unfavourable mixing and molecules exist as two separate (immiscible) phases.  

                                              ΔGm = ΔHm −TΔSm                  (21) 

1.8.3.2 Interaction forces between emulsion droplets  

In the previous section a thermodynamic approach was used to characterize 

the stability of a colloidal system. Since the inter- and intra-molecular forces control 

the kinetic development of a colloidal system, it is also important to describe the 

system in terms of acting forces rather than only of energy. Generally, there are three 

main interaction energies (forces) between emulsion droplets: the van der Waals 

attractive interactions, electrostatic repulsive forces and steric repulsion. Furthermore, 

there are three types of van der Waals attraction between atoms and molecules: 

dipole-dipole (Keesom), dipole-induced dipole (Debye) and dispersion (London) 

interactions (Tadros, 2005). The London forces typically arise from charge 

fluctuations and are exceptionally short-ranged, and occur at very short separations 

between the droplets. Hamaker (Bergström, 1997) described the relationship between 

the separation distance (h) and van der Waals attraction (GA) for two droplets with 

equal radii (R) by the following equation 



 58 

                                              GA =
AR
12h

                               (22) 

where A is an effective Hamaker constant that is specific for each material and 

depends on the number of atoms or molecules per unit volume q and the London 

dispersion constant β (Eq., 23). Eq. 22 also shows that GA increases considerably with 

decreasing h and increasing the droplet size. The Hamaker function has electrostatic 

nature and depends on the interactions that involve permamanent dipoles. Therefore, 

the strength of interactions decreases when droplets are immersed in electrolyte 

solution due to the electroststic screening (McClements, 1999). In case of colloidal 

systems containing emulsifier the strength of the intercation will depend on the 

composition and thickness of intefacial layer. 

                                                         A= πq2β                                 (23) 

The sole predominance of van der Waals attraction at the molecular level will 

result in destabilization of colloidal system. However, colloidal systems typically are 

stable for a certain period of time indicating the presence of forces that 

counterbalance van der Waals attraction. Two main mechanisms of repulsion can be 

distinguished based on the nature of used emulsifier. These include electrostatic 

repulsion that forms due to the formation of double electric layers (e.g., ionic 

surfactant) and steric repulsion that occurs due to the adsorption and layer formation 

of emulsifier at the interface (Walstra, 2003).  

The occurrence of electrostatic repulsion in emulsions is attributed to the 

occurrence of electrically charged surfaces. Surfaces in colloidal systems become 

charged due to the adsorption of ionic emulsifiers (e.g., surfactants) and/or ionization 

of functional groups of emulsifiers. The latter scenario is typically observed for 

polysaccharides and proteins where ionization of carboxyl (-COOH) and amino (-
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NH2) groups results in formation of carboxylate anion (-COO-) and ammonium cation 

(-NH3
+). The magnitude and the sign of the electrical charge of emulsion droplet 

depends not only on the type of emulsifier used, but also on environmental conditions 

such as pH, temperature and ionic strength. Therefore, electrostatic interaction can be 

either attractive or repulsive depending on the sign of the charges on the droplets. In 

the aqueous systems, a cloud of counter-ions surrounds a charged surface according to 

a charge preservation concept (Ritzoulis, 2013). According to this concept, the system 

must be electrically neutral and therefore the charge on the surface must be 

completely balanced by the excess charge of counter-ions (Figure 1.11). The 

concentration of counter-ions close to the immobile surface charge layer leads to the 

formation of electrical double layer (Tadros, 2005) (Figure 1.11). The density (σ) and 

potential (Ψo) of counter-ions fluctuates with distance (d) from the surface whereas 

the distribution of counter-ions in the main bulk of the liquid medium will remain 

constant (Ritzoulis, 2013). This first layer of solvated ions is called Stern layer. Ions 

are strongly bound in Stern layer as opposed to the diffuse layer, where they are less 

firmly associated. Within the diffuse layer there is a notional boundary inside which 

the ions and particles form a stable entity. The potential at this boundary is called ζ-

potential and its magnitude typically indicates the potential stability of colloidal 

system. When two droplets approach to a distance (d) that is smaller than the double 

layer thickness, this leads to overlap of double layers and subsequent repulsion. The 

combination of van der Waals attraction and double layer repulsion results in the 

theory for colloidal stability described by the Deryagin, Landau, Verwey and 

Overbeek (DLVO theory).  
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Figure 1.11. Schematic representation of the distribution of ions on the surface of a 
droplet (Wikipedia, 2015). 
 
 
According to this theory, two droplets at a distance h have a total interactive potential 

(u(h)) that equals to the sum of attractive (uA(h)) and repulsive inter-droplet 

interactions (uR(h))  (Eq. 24, Figure 1.12). The van der Waals, steric, electrostatic, 

depletion and hydrophobic interactions are the most important interactions that 

contribute to the overall inter-droplet potential. These individual interactions vary in 

their sign (e.g., attractive, repulsive), magnitude (e.g., weak to strong) and range (e.g., 

short to long) (Piorkowski & McClements, 2013). 

                                         u h( ) = uA h( )+uR h( )                    (24) 

The aforementioned repulsion forces occur only when a layer of charged 

emulsifier surrounds droplets. However, it is well known that colloidal systems are 

prone to mechanisms of destabilisation caused by the attractive forces even in the 

presence of neutral emulsifier. 

d 

ΨΟ 
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Figure 1.12. Schematic representation of the interaction potential between two 
emulsion droplets. Adapted from (Piorkowski & McClements, 2013). 
 
 
This indicates the presence of other than electrostatic mechanisms of repulsion. The 

most important of these is steric stabilisation that occurs due to the presence of 

uncharged polymeric emulsifiers at the interface. There is a strong relationship 

between the conformation of emulsifier (e.g., proteins, polysaccharides) and its ability 

to stabilize emulsions. Typically emulsifiers tend to adopt at the interface, the 

conformation which minimizes the free energy of a system. The conformational 

arrangement at the interface is controlled by various factors including the flexibility 

of polymer, type and sequence of monomers along its backbone and also distribution 

of polar and non-polar groups. As a result, a polymer adopts the conformation that 

minimizes the number of unfavourable interactions with the liquid medium (Figure 

1.13).  
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Figure 1.13. Interfacial orientation of polymeric emulsifiers.  

1.8.3.3 Mechanisms of emulsification 

It has been shown in the previous section that emulsion components (oil and 

water) are immiscible and therefore emulsions are thermodynamically unstable 

systems as indicated by the positive sign of their free energy of formation (ΔGf > 0). 

This instability is attributed to the energy associated with the large interfacial area (γ) 

of the droplets in emulsion (Tadros, 2005; Taylor, 1998). Therefore, a large quantity 

of energy is trapped as additional free energy at the interface. A positive value for γ 

means that energy required for expanding the interface is also positive whereas the 

entropy due to formation of droplets (TΔSf) is small. As a result, the total free energy 

of emulsion formation is positive and a thermodynamically unstable system is 

formed. Therefore, a significant amount of external energy has to be applied to a 

system in order to compensate the interfacial free energy and initiate droplet 

disruption. Moreover, thermodynamic instability of emulsions can be delayed by 

stabilizing the system kinetically. The production of large droplets (e.g., macro-

emulsions) requires lower energy inputs and is typically performed using high shear 

devices (e.g., colloid mills, high pressure homogenizers etc.). High-energy input 

methods (e.g., ultrasonication) are generally used for fabrication of submicron 

droplets in nano-emulsions.  These examples indicate a relationship between the 
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droplet size and the amount of energy delivered to a system, and is related to the 

Laplace pressure (Δp). When colloidal particles are dispersed in a medium they adopt 

a shape that corresponds to a minimum surface area. A sphere is the only geometrical 

shape that represents the smallest surface area per unit volume and therefore droplets 

in an emulsion exist in a spherical shape (Ritzoulis, 2013). External energy (forces) 

that causes the deformation of droplets is opposed to the Laplace pressure and is 

defined as the work that is required to produce a curved surface (Eq. 25): 

                                         Δp = γ 1
R1
+
1
R2
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where γ is interfacial tension, R1 and R2 are the radii of curvature of droplet distorted 

into the ellipsoidal shape. For a spherical drop R1 = R2 = R. Consequently, a strong 

deformation has to be applied to a droplet in order to disrupt it into smaller ones and 

therefore more energy is needed to fabricate smaller droplets. The addition of 

surfactants to a colloidal system decreases the amount of energy needed to disrupt the 

droplets by lowering the interfacial tension. Emulsification is a dynamic process 

where droplet disruption, adsorption of surfactant and droplet collision (e.g., re-

coalescence) happens simultaneously, with characteristic time scale for each event 

that is usually short. Therefore, droplets have to be effectively covered with 

emulsifier in order to provide steric and/or electrostatic repulsions and eliminate re-

coalescence.  

1.8.3.4 Emulsion kinetic stability 

The mechanisms that result in kinetic instability of colloidal systems include 

gravitational separation, flocculation, coalescence, Ostwald ripening and phase 

inversion. Gravitational separation (creaming and sedimentation) typically occurs due 

to the interplay between gravitational movement and Brownian diffusion. Brownian 
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diffusion is a typical event for small droplets (~ 0.1µm) whereas the gravitational 

forces mainly affect larger droplets. Monodisperse emulsions (~ >1 µm) after 

separating typically form two distinct layers in the form of cream/sediment and clear 

liquid (serum). Polydisperse emulsions typically cream or sediment at various rates. 

Stoke’s law describes the velocity (υ) of a spherical particle of radius (r) in a 

gravitational field (Eq. 26) 

                                           υ =
2r2 ρ0 − ρ( )g

9η0
                    (26) 

where g is the acceleration due to the gravity, η0 is the viscosity of continuous phase, 

ρ and ρ0 are the densities of continuous and dispersed phases. From equation 26 it can 

be clearly seen that the velocity of droplets is proportional to the acceleration caused 

by gravity and the radius of the droplet. Therefore, higher kinetic stability can be 

achieved by decreasing the droplet size of the emulsion. This principle is widely 

utilized in the fabrication of nano-emulsions where Brownian diffusion exceeds the 

gravitational forces and emulsions show negligible tendency for graviational 

separation (Tadros, 2005). Other prevention methods that are based on the utilization 

of Stoke law are focused around the application of thickeners (e.g., xanthan gum, 

carrageenans, hydroxymethyl cellulose etc.) that increase the viscosity of continious 

phase and therefore decrease the velocity of droplets.  

Flocculation is a result of the van der Waals attraction that is universal for all 

collloidal systems. As flocculation proceeds there is a decrease in the total number of 

particles in the colloidal system and the rate of flocculation can be descibed by the 

following equation 

                                              dnT
dt

= −
1
2
FE                      (27) 
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where dnT/dt is a flocculation rate, nT is the total number of particles per unit volume, 

t is the time, F is the collision frequence and E is the collision efficiency. Therefore, 

the flocculation rate is proportional to the frequency of collision between the droplets 

and the amount of succesful collisions that result in droplet aggregation. Droplet 

collisions occur due to their continuous movement due to thermal motion in the 

colloidal system and can be induced by the Brownian motion, gravitational separation 

and applied mechanical forces. Collision frequency can be decreased or eliminated by 

the increase of viscosity of the continious phase. The colloidal attractive interactions 

can influence the structure that flocs will adapt. For instance, flocs are immobilized in 

opened structures when the attractive interactions between the droplets are greater 

than the thermal energy. In contrast, weak droplet attractions promote formation of 

floc entities with close packing due to the ability of each individual floc to undergo 

structural rearrangements (McClements, 1999). The effective way to control or 

manipulate the rate of flocculation in the colloidal system is to restrain the colloidal 

interactions between the droplets. Inhibition of van der Waals attractive interactions 

can be performed by promoting eletrostatic (effective energy barrier) and steric 

intercations. Gravitational separation and aggregation in the form of flocculation are 

the processes that are not involved in the increase of droplet sizes, however, they can 

be precursors to coalescence. 

Coalesecence between two droplets refers to the merging of droplets followed 

by interfacial film rupture and consequently formation of a larger droplet. Generally, 

colloidal systems that undergo coalescence move towards the most 

thermodynamically stable state by decreasing the area of contact bewteen the oil and 

aquaeous phases. Since coalescence typically occurs during the close contact between 

the droplets it indicates that the process mainly depends on the short-range forces. 
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The rate of coalescence and physical mechanism that control the destabilisation is 

highly dependent on the nature of a given emulsifier. Several mechanisms of 

coalescence have been identified including colaescence induced by collisions, 

prolonged contact or ʺ″holeʺ″ formation (McClements, 1999). Coalescence induced by 

collisions is a common form of coalescence in colloidal systems where droplets move 

freely (Brownian motion, gravity or applied mechanical forces) and collide with each 

other. In contrast to flocculation, only those collisions are successful that contribute to 

the interfacial film rupture. Coalescence that occurs due to the prolonged contact 

between the droplets is typically spontaneous and occurs at high droplet 

concentrations (e.g., creamed, sedimented or flocculated droplets). It has been 

previously shown that coalescence frequently occurs in colloidal systems that are 

sterically stabilized through the formation of a ʺ″holeʺ″ in the interfacial membranes 

surrounding the droplets. Hole formation depends on various factors including the 

type of emulsifier and environmental conditions and, therefore, the rate of 

coalescence depends on the probability that these holes will be formed in droplet 

membranes. Holes are formed spontatenously and can be a result of thermal 

fluctuations of shape of surfactant layers, chemical breakdown of the emulsifier over 

time or emulsifier displacement from the droplet interface by more surface active 

components.  

The destabilisation mechanism that is accompanied by the change in oil and 

water distribution in the colloidal system is called phase inversion. Phase inversion is 

typically triggered by some compositional or environmental conditions such as 

dispersed phase volume fraction, emulsfier type, concentration or mechanical 

agitation. Typical mechanisms of phase inversion are non-anionic surfactant and fat 
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crystallization induced phase inversion (e.g., butter and margarine melts). Emulsions 

that undergo the phase inversion are capable to a retaining their kinetic stability.  

As it has been previosuly mentioned, coalescence is a destabilisation 

mechanism that occurs between droplets in close proximity. In contrast, Ostwald 

ripening does not depend on the distance between the droplets because the process 

occurs due to the transport of dissolved matter through the dispersion medium. As a 

result, Ostwald ripening leads to the increase in average droplet radius of the 

emulsion with time as the small droplets dissolve and re-deposit their matter onto the 

large. The process of ripening can be also defined in terms of thermodynamics where 

the free energy of a system decreases considerably due to the decrease in interfacial 

area. The driving force for Ostwald ripening is the difference in solubility between 

small and large droplets (the small droplets have higher Laplace pressure and higher 

solubility than the large ones). The solubility and therefore chemical potential of the 

dispersed phase in the bulk phase depends on the radius of curvature of the droplet, 

with solubility (c) increasing with decreasing radius (r). This relationship is described 

by the Kelvin equation: 

                                     S r( ) = S∞ exp
2γM
RrT
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where M is the molar mass, S (∞) is the solubility of the solute in the continuous 

phase for a droplet with infinite curvature (a planar interface), γ is the interfacial 

tension, S (r) is the solubility of the solute when contained in a spherical droplet of 

radius r. This is illustrated in Figure 1.13, where R1 decreases and R2 increases 

because of diffusion of molecules from the small to the large droplets and therefore 

Ostwald ripening is also referred to as a process of molecular diffusion (Figure 1.14). 

The mathematics behind the Kelvin equation in relation to Ostwald ripening rate is 
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complex and several treatments using model simplification were developed in order to 

describe the rate of Ostwald ripening. The most complete theory was proposed by 

Lifshitz-Slyozov-Wagner and typically referred as LSW theory. The theory assumes 

that the process of ripening is entirely diffusion-controlled and there is no barrier to 

the passage of droplet material through the interface and therefore ignoring the effect 

of interfacial layer formed by adsorbed surfactant (other considerations related to 

LSW model are also discussed in Chapter 4, section 4.3). 

 

                

Figure 1.14.  Schematic representation of Ostwald ripening-driven droplet growth. 

 

 

 

 

 

 

 

 



 69 

1.9 HYPOTHESIS, AIMS AND OBJECTIVES 

1.9.1 Hypothesis 

Okra plant is a novel source of pectin with distinct physicochemical and bio-

functional properties. 

1.9.2 Aims 

Develop cost-effective functional systems (e.g., gels, emulsions) from sustainable 

natural resources.  

1.9.3 Objectives 

• Design an isolation protocol for polysaccharides from okra pods 

• Examine the influence of extraction conditions on molecular characteristics 

of pectins 

• Characterize physiochemical and macromolecular properties of isolated 

polysaccharides  

• Establish structure-function relationships of okra pectin 

• Evaluate the gelation capacity of okra pectin 

• Evaluate the emulsification capacity of okra pectin  

• Optimize the emulsification with okra pectin 

• Examine emulsification capacity of okra pectin under acidic conditions 

• Analyze the interfacial composition of oil droplets 

• Evaluate mechanisms of instability in okra pectin-stabilized emulsions 

during storage 
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CHAPTER 2 

ISOLATION AND CHARACTERIZATION OF OKRA 

PECTIN 
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2.1 INTRODUCTION 

Okra pectins obtained by sequential extraction are described as acidic random 

coil heteropolysaccharides containing α-(1→2)-rhamnose and α-(1→4)-galacturonic 

acid residues with disaccharide side chains composed of galactose attached to O-4 of 

half of the rhamnose residues (Tomada, Shimada, Saito & Sugi, 1980). It has been 

also reported that okra extracts contain high amounts of RG-I segments and 

acetylation on rhamnose residues something that is uncommon for pectin from other 

sources (Sengkhamparn, Bakx, Verhoef, Schols, Sajjaanantakul & Voragen, 2009). 

Isolation of polysaccharides can be performed on a laboratory scale by extractions of 

the cell-wall material, which involve the use of calcium-chelating agents, dilute alkali 

or dilute acid (Levigne, Ralet & Thibault, 2002). Alternatively, degrading enzymes 

can be employed in order to release polysaccharide fragments. One of the drawbacks 

of the extraction with chelating agents is that it is laborious to remove the residual 

chelates. Alkaline extraction contributes to the reduction of length and degree of 

acetylation and methylation by β-elimination (Rombouts & Thibault, 1986). It has 

been reported that the highest yields of pectic substances are generally obtained by 

hot acid extractions which is also the most convenient approach for industrial 

extraction of pectin (May, 1990; Pagan, Ibarz, Llorca & Coll, 1999). Previous studies 

reported that the temperature, pH and time could modify the quantity as well as the 

quality of the extracted pectins (Levigne, Ralet & Thibault, 2002; Pagan, Ibarz, 

Llorca & Coll, 1999). Furthermore, it was shown that the variations in the number of 

methyl-esterified groups and composition of neutral sugars of the isolated fractions 

are primarily governed by the extraction protocol (Kjøniksen, Hiorth & Nyström, 

2005; Turquois, Rinaudo, Taravel & Heyraud, 1999). The extracted materials 

typically are polydisperse heteropolymers having diverse chemical structures and 
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molecular sizes (MacDougall & Ring, 2004).  

Okra polysaccharides are potentially a new source of natural polysaccharides, 

which can be used as functional ingredients (thickeners, viscosity enhancers, gelling 

agents and texture modifiers) (Georgiadis, Ritzoulis, Sioura, Kornezou, Vasiliadou & 

Tsioptsias, 2011). Recent studies have mainly focused on characterization of okra 

polysaccharides obtained with sequential extractions, starting with hot acidic buffers 

followed by chelating agents and dilute alkali buffers. Nevertheless, the effect of 

extraction pH on the physicochemical characteristics and therefore functional 

properties of okra isolates has not been extensively studied (Georgiadis, Ritzoulis, 

Sioura, Kornezou, Vasiliadou & Tsioptsias, 2011; Kontogiorgos, Margelou, 

Georgiadis & Ritzoulis, 2012; Ndjouenkeu, Akingbala & Oguntimein, 1997; 

Sengkhamparn, Verhoef, Schols, Sajjaanantakul & Voragen, 2009). The aims of the 

present work were to extract okra pectins at different pH values and examine the 

effect of the extraction conditions on their molecular and compositional 

characteristics.  

2.2 MATERIALS AND METHODS 

2.2.1 Materials 

Okra pods of Abelomoschus esculentus L. were purchased from the local 

market. Pods were frozen and kept at –20 °C until use. Sodium azide, all buffer salts, 

acetic acid, phenol, 3-phenylphenol, sodium tetraborate, sulfamic acid, 1.25 M 

hydrogen chloride-methanol solution, anhydrous pyridine, acetic anhydride, 

anhydrous ethyl acetate, ethanol (96% w/w) (all analytical grade reagents) and 

petroleum ether (bp 40-60°C) were obtained from Sigma-Aldrich (Poole, UK). De-

ionized water was used throughout the extraction experiments. Dextrans (Mp 270, 410 
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× 103 g mol-1), D-galacturonic acid monohydrate, D-galactose, L-rhamnose, L-

arabinose, D-glucose, D-xylose, pectins from citrus fruit (esterified 55-70% and 20-

34% potassium salts) and dialysis membranes (molecular weight cut-off 12000) were 

purchased from Sigma–Aldrich (Poole Dorset, UK).  

2.2.2 Isolation of okra pectins 

The isolation of pectins from okra pods was carried out according to the 

experimental design shown in Figure 1. The extraction protocol resulted in the 

isolation of two pectin samples namely OP2 and OP6 for isolates extracted at pH 2.0 

and pH 6.0, respectively. 

2.2.3 Chemical characterization 

Total carbohydrates were determined by the phenol-sulphuric method 

(Dubois, Gilles, Hamilton, Rebers & Smith, 1956). Protein content was established 

using Bradford assay (Bradford, 1976). The galacturonic acid (anhydrous) content of 

pectins was estimated colorimetrically by the m-hydroxydiphenyl method (Filisetti-

Cozzi & Carpita, 1991). The determination of ferulic acids in isolated okra pectin 

samples was performed using UV/VIS spectroscopy (Williams, Sayers, Viebke & 

Senan, 2005). The UV absorption spectrum of 0.167 % w/v pectin and 0.01 % w/v 

ferulic acid (trans-4-hydroxy-3-methoxycinnamic acid) standard solutions were 

determined from 200 to 400 nm using a Cary 60 UV-Vis (Agilent Technologies, 

USA). Pectin solutions were centrifuged at 14100×g for 25 min (MiniSpin Plus, 

Eppendorf, Hamburg, Germany) prior to ferulic acid determination. The pH of ferulic 

acid and pectin solutions was 4.0. Quartz cells were used for the UV/VIS 

measurements. 
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Figure 2.1. Isolation protocol for pectins isolated from okra pods. 
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The methoxyl (-OCH3) content of pectins was determined by titration (Schultz, 1965). 

The method is based on a titration of free carboxyl groups present followed by de-

esterification and titration of the carboxyl groups that have been made available. A 

correction was made for the acetic acid liberated due to the cleavage of the O-acetyl 

groups. The degree of methyl esterification (DM) was calculated from the 

galacturonic acid and methoxyl content values determined above according to the 

following equation (Schultz, 1965):  

                     
(29) 

where 176 and 31 are the molecular weights of anhydrous galacturonic acid (GA) and 

methoxyl, respectively. The acetyl content was determined with the hydroxamic acid 

method (McComb & McCready, 1957). The degree of acetylation (DA) was 

calculated from the galacturonic acid and acetyl content values determined above 

according to the following equation: 

                                      (30) 

where 176 and 43 are the molecular weights of anhydrous galacturonic acid 

(GA) and acetyl, respectively. Neutral sugars were determined using methanolysis 

conducted with 1 M methanolic HCl solution at 85 °C for 24 h, as described 

previously (Bleton, Mejanelle, Sansoulet, Goursaud & Tchapla, 1996). Sugar 

derivatives were analysed using an Agilent 7890A GC system (Santa Clara, CA, 

USA) coupled to an Agilent 5675C quadrupole MS. The samples were eluted from a 

HP-5 column (30 m x 0.25 mm, 0.25 µm film) using helium as carrier at a flow rate 

of 1 mL min-1 by applying the following temperature settings: start temperature 140 

°C, hold time 1 min and final column temperature 220 °C with 2.5 °C min-1 gradient. 

DM (%)=
176 x methoxyl content (%(w/w))

31 x GA content (%(w/w))
x100

 
DA (%) = 176 x acetyl content (% (w/w))

43 x GA content (% (w/w))
x 100
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Calculations on sugar composition were performed using molar ratios formulated 

specifically for pectic substances (Houben, Jolie, Fraeye, Van Loey & Hendrickx, 

2011). The molar percentage of homogalacturonan (HG) and rhamnogalacturonan-I  

(RG-I) were also calculated according to the following equations (M’sakni, Majdoub, 

Roudesli, Picton, Le Cerf, Rihouey & Morvan, 2006):  

                                                      (31)  

                             (32) 

2.2.4 FT-IR spectroscopy 

Spectra were obtained between 400-4000 cm-1 in Attenuated Total Reflection 

(ATR) mode at a resolution of 4 cm-1 using 128 scans (Nicolet 380, Thermo 

Scientific, UK). Spectral smoothing was applied using instrument software (OMNIC 

3.1). 

2.2.5 1H-NMR and 13C-NMR spectroscopy 

NMR spectroscopy was performed with a Bruker AV 500 spectrometer 

(Bruker Co., Switzerland) at 500 MHz 1H and 125.76 MHz 13C using a 5 mm probe. 

In order to record 13C-NMR spectra samples were dispersed (5% w/v) in D2O (99.9%, 

Goss Scientific Instruments Ltd., Essex) by continuous stirring overnight. Proton-

decoupled spectra were recorded at 70°C with 19000 scans by applying 12800 pulses 

with a delay time of 2 s and 30 degrees pulse angle.  

1H-NMR spectra were recorded for 640 scans at the same temperature. Prior to 

scanning, samples were sonicated (QSonica 1375, QSonica LL, Newtown) for 9 min 

in order to assist in aggregate dissociation. Sets of 1H-NMR spectra were recorded at 

various okra pectin concentrations (1%, 2%, 4% and 5% w/v) with and without 

sonication in order to investigate how sonication affects the primary structure of the 

HG (mol%) = GalA (mol%) - Rha (mol%)

RG-I (mol%) = 2Rha (mol%) + Ara (mol%) + Gal (mol%)



 77 

polymers. Preliminary data (not shown) demonstrated that sonication for 9 min does 

not contribute to the structural modifications as evidenced by inspection of 1H-NMR 

spectra of sonicated and non-sonicated samples at various concentrations. Chemical 

shifts were expressed in δ (ppm) relative to the resonance of internal standard: spectra 

were referenced to internal or external acetone (13C δ = 31.55 ppm and 1H δ = 2.225 

ppm).  

2.2.6 Molecular weight determination 

To evaluate the average molar masses (Mw, weight average molar mass; Mn, 

number-average molar mass) samples were analyzed by size exclusion 

chromatography (SEC). Pectins were solubilized in 50 mM NaNO3 solution (3 mg 

mL-1) at room temperature under magnetic stirring overnight. Samples were injected 

onto an analytical SEC system comprising of three columns Aquagel-OH 40, 50 and 

60 (15µm particle size, 25cm × 4mm, Agilent, Oxford, UK) connected in series. 

Pectins were eluted with 50 mM NaNO3 (containing 0.02% NaN3 as a preservative) at 

a flow rate of 1 mL min-1 and detected with an RI detector (differential index of 

refraction (dn/dc) equal to 0.1470 ml g-1). Molecular parameters (Mw, Mn, Rg, 

Mw/Mn) were measured with a multiangle laser light scattering (MALLS) detector 

(mini-DAWN, Wyatt, Santa Barbara, CA, USA). Dextrans of known molecular 

weights (270 × 103 and 410 × 103 g mol-1) were used as Mw standards. 

2.2.7 Dilute solution rheology            

Okra pectin was dispersed at 0.01 – 5.0 % g dL-1 at pH 7.0 in Sorensen’s 

phosphate buffer or pH 3.0 citric buffers in the presence of 0.1 M NaCl with 0.02 g 

dL-1 NaN3 as a preservative. Pectins were placed in sealed glass-vials and left 

overnight under continuous stirring to ensure complete solubilisation. Intrinsic 
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viscosity [η] of okra pectins was determined at 20 °C with an Ubbelohde capillary 

viscometer (PSL, UK). Calculations were obtained by extrapolation of viscometric 

data to zero concentration according to the Huggins equation: ηsp/c = [η] + kH[η]2c 

where ηsp=(η solution/ηbuffer) – 1 and kH is the Huggins constant. Zero shear viscosity 

measurements were carried out at 20 °C using a Bohlin Gemini 200HR Nano 

rotational rheometer (Malvern Instruments, Malvern, UK) equipped with cone-and-

plate geometry (55 mm diameter, cone angle 2°) and a Peltier temperature controller. 

All measurements were performed in a steady shear mode in the range 1–1000 s-1.  

2.3 RESULTS AND DISCUSSION 

2.3.1 Isolation and compositional analysis 

An isolation protocol was designed to study the influence of pH on extraction 

yield and the molecular characteristics of pectic substances from fresh okra pods. 

Extraction with petroleum ether (bp 40-65 °C) was performed as a first step in order 

to obtain a lipid-free material, which was subsequently used in aqueous extractions at 

pH 2.0 and 6.0 with 100 mM citric and phosphate buffer, respectively. The highest 

yields of pectic substances are usually obtained at high temperatures and low pH 

values in order to facilitate the cleavage of strong bonds between protopectin and 

other cell wall materials (Voragen, Rolin & Marr, 2003). It has been also reported that 

temperature has significant impact on the extraction yield of okra polysaccharides 

(Samavati, 2013). The isolation of the present okra polysaccharides was performed at 

80 °C in order to facilitate the solubilisation of insoluble pectic substances 

(protopectin). Polysaccharides with different compositional characteristics can be 

isolated depending on the pH, time and temperature of extraction. It has been reported 

that pectic substances extracted at pH 3.0 have similar compositional characteristics 
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to water-soluble pectin but result in low yield values. Extraction at pH values below 

3.0 leads to higher yields with pectins rich in rhamnogalacturonans (Levigne, Ralet & 

Thibault, 2002). Therefore, the extractions of pectic substances from okra were 

performed at two different pH values in order to obtain polysaccharides with distinct 

molecular characteristics. Pectic substances from okra pods could not be 

quantitatively recovered in a single extraction step and a second extraction was 

required (Figure 2.1). Similar findings have been reported for the extraction of pectins 

from other raw materials (Samavati, 2013; Sudhakar & Maini, 2000). The final stage, 

which can significantly affect the yield and chemical characteristics of pectins, is 

precipitation with ethanol. In the present work, precipitation was performed with 

ethanol at a 1:2 (v/v) supernatant to ethanol ratio and resulted in higher yields of 

pectic substances in comparison to preliminary 1:1 (v/v) ratio. It has been also 

reported that there is a pronounced effect of ethanol volume used in precipitation step 

on DM of isolated pectic substances (Faravash & Ashtiani, 2007). This occurs as the 

interaction between water, the carboxylic groups of pectin and the hydroxyl groups of 

ethanol facilitates cleavage of methyl ester linkages. Following alcohol precipitation, 

the pectin was washed with isopropanol and extensively dialysed against distilled 

water. Extraction with citric buffer adjusted to pH 2.0 resulted in slightly lower yield 

compared to extraction at pH 6.0. Furthermore, these extraction protocols result in 

pectin isolates of high purity as evidenced by low protein content (Table 2.1).  

The highest yields of pectin are typically obtained by hot acid extraction in the 

pH range 1.5 to 3.0. Studies on pectin from other sources such as sugar beet pulp and 

banana peels also showed that the pectin yield increases significantly with a decrease 

in the pH of the extraction and the highest yields were obtained at pH around 1.5 
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(Happi Emaga, Ronkart, Robert, Wathelet & Paquot, 2008; Levigne, Ralet & 

Thibault, 2002; Yapo, Robert, Etienne, Wathelet & Paquot, 2007). 

 

Table 2.1. Chemical composition of okra pectins extracted at pH 2.0 or 6.0. 

 OP2 OP6 
Yield (g pectin/100 g okra pods) 13.3 ± 0.3 15.7 ± 0.2 
Total sugarsa 70.0 ± 3.7 81.8 ± 6.4 
D-GalAa 46.8 ± 2.1 (55.0)b 56.9 ± 6.9 (51.6)b 

Methoxyl (-OCH3)a 3.3 ± 0.1  2.5 ± 0.1 
Degree of methylation (DM%) 40.0 ± 1.6 24.6 ± 1.0 
Acetyl (-COCH3)a 6.0 ± 0.6 5.2 ± 0.4 
Degree of acetylation (DA%) 52.2 ± 5.5 37.6 ± 3.0 
D-Gala 17.0 ± 3.3 (21.7)b 26.1 ± 1.5 (25.7)b 

L-Rhaa 7.1 ± 2.0 (10.1)b 12.1 ± 0.9 (13.2)b 

L-Araa 4.5 ± 3.1 (7.1)b 6.0 ± 3.3 (7.3)b 

D-Glca 2.4 ± 0.5 (3.1)b 2.2 ± 0.1 (2.2)b 

D-Xyla 2.0  ± 0.7 (3.0)b n/a 
Proteina 4.3  ± 0.0 6.3 ± 0.1 

aAll values are expressed as % on wet basis of pectin powder. 
bValues in brackets are mol%. 
 
 
These discrepancies with present data could be attributed to the origin of the initial 

material and the extraction conditions applied. The lower pectin yield at pH 2.0 could 

be attributed to partial acid hydrolysis that occurs at elevated temperatures as will be 

discussed later.  

The chemical composition of okra pectins is shown in Table 2.1. The GalA 

content of the okra isolates varied from 46.8 to 56.9 % (Table 2.1). The GalA content 

was found to be significantly higher than has been previously reported for okra hot 

buffer soluble solids (HBSS, 35%) (Sengkhamparn, Verhoef, Schols, Sajjaanantakul 

& Voragen, 2009) and was close to that of sugar beet pectins (29.5-52.8 %) (Levigne, 

Ralet & Thibault, 2002). Furthermore, the highest GalA content and pectin yield were 

obtained when okra pectins were extracted at pH 6.0. The results strongly indicate, 
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that the pectin extraction yield is related to the content of GalA reinforcing that partial 

degradation of pectic substances can take place under extraction conditions at pH 2.0. 

Both okra pectins were found to be low methoxyl (LM) pectins with DM of 40.0% 

and 24.6% for OP2 and OP6, considering that DM represents methoxyl content per 

galacturonic acid unit. The differences in DM of pectin samples could be attributed to 

the de-esterification process caused by β-eliminative degradation of the esterified 

homogalacturonan backbone that leads to the removal of methyl esters resulting in 

pectin with lower degree of methylation and consequently lower molecular weight 

(Kurita, Fujiwara & Yamazaki, 2008). Previous studies on okra extracts obtained by 

sequential extraction also revealed the presence of low methoxyl pectins 

(Sengkhamparn, Verhoef, Schols, Sajjaanantakul & Voragen, 2009). Okra extracts 

also exhibited high acetyl content with marginal differences for 6.0 (OP2) and 5.2 % 

(OP6) (Table 2.1). Highly acetylated pectins have been previously isolated from sugar 

beet where acetyl content varied in the range of 2.2–9.0% (Dea & Madden, 1986; 

Endreß & Rentschler, 1999). Previous studies on okra polysaccharides obtained by 

sequential extraction reported DA in the range of 18–58% and also revealed 

uncommon acetylation patterns. It has been previously reported that not only 

galacturonosyl residues, but also rhamnosyl residues were acetylated in the RG-I 

segments (Sengkhamparn, Bakx, Verhoef, Schols, Sajjaanantakul & Voragen, 2009). 

It should be stressed, that in the present study, DA is expressed to a first 

approximation as acetyl content per galacturonic acid (GalA) unit assuming 

acetylation only on galacturonosyl residues.  

It has been widely shown that pectic polysaccharides are ester-linked to ferulic 

acids in some plant cell walls including spinach, sugar beet, glasswort and quinoa 

(Fry, 1982; Renard, Champenois & Thibault, 1993; Renard, Wende & Booth, 1999).  
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Figure 2.2. UV absorption spectra for 0.167 % w/v OP2, OP6 solutions and 0.01 % 
w/v of ferulic acid solution (pH 4.0). 
 
 
Ferulic acid is a hydroxycinnamic acid (trans-4-hydroxy-3-methoxycinnamic acid), a 

type of phenolic compounds. The studies on ferulic acids from sugar beet have 

demonstrated that 50% of feruloyl in the beet pectins are linked to arabinose residues 

and 50% to galactose residues (discussed in detail in chapter 1) (Saulnier & Thibault, 

1999). The presence of feruloyl groups may impact physical and chemical properties 

of pectic polysaccharides. For instance, sugar beet pectin has poor gelling properties, 

however, in the presence of oxidizing agent (e.g., H2O2 and peroxidase) a good 

quality sugar beet pectin-based gel could be formed (Thibault, Guillon & Rombouts, 

1991). The network formation occurs due to the oxidative coupling of two ferulic 

acids and results in formation of ferulic acid dimers. The chemical structure of ferulic 

acids, particularly aromatic ring, produces strong absorbance in the ultraviolet region 

(UV) associated with electronic transitions of the molecule. The UV absorption 
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spectra of okra pectin solutions (OP2 and OP6) and standard of ferulic acid are shown 

in Figure 2.2. Ferulic acid exhibits a maximum absorbance at 317 nm and a shoulder 

at 280 nm that indicate the esters of cinnamic acid. The UV absorption spectra of OP2 

and OP6 samples indicated the absence of any ferulic acids in okra pectin as 

evidenced by the absence of absorption peaks in the range of 250-350 nm.  

The main neutral sugars present in OP2 and OP6 were galactose (17.0 – 

26.1%), rhamnose (7.1 – 12.1%) and arabinose (4.5 – 6.0%). The retention times of 

sugar standards are shown in Table 2.2 and elution profiles of OP2, OP6 in Figure 

2.3. The presence of 4 – 6% of the proteinaceous components may indicate that 

galactose and arabinose could also originate from arabinogalactans forming 

arabinogalactan-protein complexes (Immerzeel, Eppink, de Vries, Schols & Voragen, 

2006). Very low levels of glucose (2.2 – 2.4%) and xylose (2.0% in OP2) were also 

detected in the okra pectins extracted at pH 2.0 suggesting the presence of 

rhamnogalacturonan II (RG-II) or xylogalacturonan regions. The total neutral sugar 

content was expressed as the sum of the individual neutral sugars and revealed that 

the highest neutral sugars yield was obtained with extraction at pH 6.0 (46.4%) that 

corresponds to milder extraction conditions which avoids degradation of pectin side 

chains. In addition, the content of GalA in OP2 was lower than in OP6. It seems that 

extraction at pH 2.0 also induces a breakdown in the smooth region composed 

primarily of homogalacturonan. Degradation of glycosidic linkages is usually 

observed at low pH values and elevated temperatures with different degree of stability 

(GalA – GalA > GalA – Rha > neutral sugar – neutral sugar) (Thibault, Renard, 

Axelos, Roger & Crépeau, 1993).  
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Table 2.2. Retention times of methanolysis products of standard sugars. Inositol was 
used as an internal standard. 

 

Monosaccharide Retention time (min) 

 Peak1 Peak 2 Peak 3 

D-GalA 6.531 7.311 7.406 
D-Gal 7.849 8.057 n/a 

L-Rha 3.325 3.537 n/a 
L-Ara 3.495 3.544 n/a 

D-Glc 8.331 n/a n/a 
D-Xyl 3.441 3.558  

Inositol 12.498 n/a  

 

 

 

Figure 2.3. GC-chromatograms of a) OP6 and b) OP2. 

The ratios of constituent sugars were used in order to investigate the structure 

of the extracted pectins at the molecular level. According to the sugar composition 
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data expressed as sugar molar ratios (Table 2.3) some interesting characteristics of the 

extracted polysaccharides were observed. The molar ratio of rhamnose to galacturonic 

acid is indicative of the presence of RG-I segments within the pectin population. The 

RG-I backbone is typically composed of alternating units of rhamnose and 

galacturonic acid and therefore the molar ratio of Rha/GalA is virtually 1:1 (Yapo, 

2011).  

 

Table 2.3. Sugar molar (%) ratios for OP2 and OP6.  

Sample GalA/ 

(Rha+Ara+Gal+Xyl) 

Rha/GalA (Ara+Gal)/ 

Rha 

  HG RG–I HG/RG 

OP2 1.3 0.18 2.9 44.9 49 0.9 

OP6 1.1 0.25 2.5 38.9 59.4 0.7 

 

The contribution of RG-I to the pectin population was 0.18 and 0.25 for OP2 and 

OP6, respectively (Table 2.3). Furthermore, the analysis of molar percentages of HG 

and RG-I in both okra pectins revealed the prevalence of RG-I pectins in OP6 

whereas OP2 was composed of almost equal amounts of HG and RG-I pectins (Table 

2.3). These data suggest structural dissimilarities of our samples compared to 

common pectins isolated from apple or sugar beet, where RG-I segments constituted 

~16.2 or ~31.9% of the pectin populations (Leroux, Langendorff, Schick, Vaishnav & 

Mazoyer, 2003). However, more than 50% of RG-I has been previously reported for 

hot water-extracted pectins from soybean and green tea leaves and almost as the only 

pectic component in okra polysaccharides obtained by hot buffer sequential extraction 

and linseeds mucilages (Ele-Ekouna, Pau-Roblot, Courtois & Courtois, 2011; 

Muralikrishna, Salimath & Tharanathan, 1987; Nakamura, Furuta, Maeda, Nagamatsu 

& Yoshimoto, 2001; Sengkhamparn, Verhoef, Schols, Sajjaanantakul & Voragen, 



 86 

2009). The molar ratio of (Ara+Gal)/Rha is indicative for the degree of branching of 

RG-I segments. The molar ratio for OP2 was 2.9 and 2.5 for the OP6 suggesting 

slightly shorter side chains of RG-I regions in OP6 than in OP2. Generally, OP2 and 

OP6 demonstrated remarkably higher degree of branching of side chains than was 

previously reported for okra polysaccharides obtained by sequential extractions (1.3–

1.4) (Sengkhamparn, Verhoef, Schols, Sajjaanantakul & Voragen, 2009). In addition, 

the (Ara+Gal)/Rha ratio indicates the presence of galactan and arabinan side chains in 

the RG-I segments (Table 2.3). 

2.3.2 FT-IR spectroscopy 

Polysaccharides extracted at pH 2.0 or pH 6.0 were analysed using FT-IR 

spectroscopy in the wavenumber region 900 – 4000 cm-1 and their spectra were 

compared to low- and high-methoxyl citrus pectin (Figure 2.4). The region between 

3500 and 1800 cm-1 shows two major identical peaks for both samples corresponding 

to O-H stretching absorption due to inter- and intramolecular hydrogen bonding of the 

GalA backbone (3000 – 3500 cm-1) and C-H absorption (2940 cm-1), which typically 

includes CH, CH2 and CH3 stretching vibrations (Chatjigakis, Pappas, Proxenia, 

Kalantzi, Rodis & Polissiou, 1998; Gnanasambandam & Proctor, 2000). A second 

region of the FT-IR spectra below 1800 cm-1 indicates the ‘fingerprint’ region for 

carbohydrates and corresponds to the skeletal C-O and C-C vibration bands (ca. 900 – 

1200 cm-1) of glycosidic bonds and pyranose rings (Kamnev, Colina, Rodriguez, 

Ptitchkina & Ignatov, 1998). The spectral regions with three bands at around 1044, 

1072 and 1147 cm-1 were assigned to pyranose ring vibrations and may indicate 

certain similarities in the monosaccharide composition of OP2 and OP6 (Figure 2.4). 

Also this region of FT-IR spectra demonstrates considerable differences in neutral 

sugars composition between commercial citrus and extracted okra pectin. While citrus 
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pectin has typical bands at around 1004, 1022, 1047, 1072 cm-1, the okra pectin has 

only at 1044, 1072 and 1147cm-1 with relatively higher abundance of each band. This 

difference was expected as citrus pectin typically contains low amounts of galactose 

(2.4%) and arabinose (1.1%) as opposed to the OP2 and OP6 (Table 2.1) 

(Kravtchenko, Voragen & Pilnik, 1992). 

 

Figure 2.4. Fourier transform–infrared spectra (FT-IR) of commercial pectin 
standards with different DM and OP2, OP6. 
 

The chemical analysis of OP2 and OP6 also indicated the presence of proteins 

(Table 2.1), which were detected also by FT-IR with absorption bands appearing at 

around ca. 1500–1600 cm-1. Analysis of OP2 and OP6 FT-IR spectra revealed 

similarities with low-methoxyl citrus pectin in absorption bands corresponding to 

stretching vibration of free (ca. 1610 – 1630 cm-1) and methyl-esterified (ca. 1730 cm-

1) carboxyl groups. In addition, FT-IR spectra for OP6 have demonstrated higher 

intensity of free carboxyl stretching band in comparison to OP2, which indicates 

lower degree of esterification for OP6 sample. These data further support chemical 
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analysis, which revealed DM of 40.0 and 24.6% for OP2 and OP6, respectively. 

2.3.3 1H and 13C-NMR spectra 

NMR spectroscopy was employed in order to obtain structural information 

about the isolated okra polymers. 1H-NMR spectra (Figure 2.5a, 2.5b) of both 

samples revealed similar resonance patterns suggesting similarities in compositional 

characteristics of OP2 and OP6. A large signal was detected at 3.84 ppm, which was 

attributed to methyl groups bonded to carboxyl groups of galacturonic acid (GalA) 

(Cheng & Neiss, 2012). Signals at around 2.10 ppm were assigned to acetyl groups. 

Previous work on okra extracts reported the acetylation of both galacturonosyl and 

rhamnosyl residues in the RG-I fractions. Signals at 1.27 and 1.36 ppm are from 

methyl groups of unbranched α-(1→2)-linked and branched a-(1→2) and α-(1→4)-

linked rhamnose. Due to the complexity of 1H-NMR spectra in the low-field region, 

proton signals found at around 3.70–5.20 ppm were investigated with the aid of a 

COSY spectrum (data not shown), which provided the evidence of the presence of six 

major protons, which were assigned to D-galacturonic acid.  

13C-NMR spectra OP2 and OP6 are presented in Figure 2.6 (a, b). The signals 

at around 172.00 ppm in the carbonyl region of the spectrum were attributed to the 

carbonyl group (C=O) of galacturonic acid whereas the next signal at around 175 ppm 

corresponds to the C-6 of esterified carboxyl groups of galacturonic acid (Tamaki, 

Konishi, Fukuta & Tako, 2008).  In the 13C-NMR spectra of both pectins, two signals 

at around 21.87 ppm can be readily assigned to the methyl of acetyl groups. The 

presence of methyl groups bonded to carboxyl groups of galacturonic acid is also 

confirmed by a resonance at 54.18–54.21 ppm in OP2 and OP6 spectra (Figure 2.6a, 

2.6b). The third signal attributed to methyl groups at 18.5 and 17.58 ppm 

corresponded to methyl groups of rhamnose. 
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Figure 2.5. 1H-NMR spectra of OP2 (a) and OP6 (b) samples in D2O at 70 oC. 
Acetone reference at 2.22 ppm. 
 
 

1H and 13C-NMR spectra of both okra polysaccharides demonstrated good 

match with the spectrum of okra polysaccharides isolated using sequential extractions 

and those isolated from pumpkin, apple, flax stems and citrus plant (Bédouet, 

Courtois & Courtois, 2003; Cozzolino, Malvagna, Spina, Giori, Fuzzati, Anelli, 

Garozzo & Impallomeni, 2006; Grasdalen, Bakøy & Larsen, 1988; Koštálová, 
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Hromádková & Ebringerová, 2013; Rosenbohm, Lundt, Christensen & Young, 2003; 

Sengkhamparn, Verhoef, Schols, Sajjaanantakul & Voragen, 2009; Tamaki, Konishi, 

Fukuta & Tako, 2008). 

 

       

Figure 2.6. 13C-NMR spectra of OP2 (a) and OP6 (b) samples in D2O at 70 oC. 
Acetone reference at 31.25 ppm. 
 

2.3.4 Macromolecular characteristics of pectin 

To obtain information with regards to molecular dimensions of the pectins 

weight average (Mw) and number average (Mn) molecular weights, radius of gyration 

(Rg), and polydispersity index (Mw/Mn) were determined by size exclusion 

chromatography (SEC) coupled to multiangle laser light scattering. The elution RI 

traces of OP2 and OP6 are shown in Figure 2.7, whereas estimates of their molecular 

characteristics are represented in Table 2.4. The elution profiles of both samples 

indicated broad Mw distributions and were comprised of polymer populations of high 
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and low hydrodynamic volumes as indicated by the presence of three RI peaks 

(Figure 2.7).  

 

            
Figure 2.7. Refractive index (RI) and MALLS traces (LS) of size exclusion 
chromatograms of OP2 and OP6.  
 

Moreover, it can be clearly seen that only the third peak to elute was similar for both 

OP2 and OP6 samples. On the contrary, a shift towards a population of polymers of 

lower hydrodynamic volumes was observed for the first and second peak in OP2 

elution profile indicating the conformational differences between pectin samples 

(Figure 2.7). This variation in elution patterns should be attributed to the differences 

in the pH of the extraction that results in partial hydrolysis of OP2. The polydispersity 

index of OP2 and OP6 was relatively low in comparison to values reported for other 

polysaccharides (1.5 – 2.0) (Table 2.4) (Cui, 2005). The separation of polysaccharide 

fractions in an SEC column is based on the differences in hydrodynamic volume of 

polymer chains. Polysaccharide hydrodynamic volume can significantly vary with the 

number, positions and length of the branches in polymer chains (Gaborieau & 

Castignolles, 2011). Therefore, polymer chains with comparable molecular weight, 

but different degree of branching will elute at different times. Analysis of RI and 
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MALLS traces indicates that both OP6 and OP2 are composed of three distinct 

polymer populations of relatively comparable molecular weights, but different 

hydrodynamic volumes. However, similar in that aspect (three polymer populations), 

pectin samples differentiated significantly in terms of weight-average molar mass as 

shown in Table 2.4. The weight-average molar mass values were much higher than 

those obtained for okra polysaccharides obtained by sequential extraction (10 – 100 × 

103 g mol-1), sugar beet (70 – 355 × 103 g mol-1) and citrus pectins (162 × 103 g mol-1) 

(Leroux, Langendorff, Schick, Vaishnav & Mazoyer, 2003; Levigne, Ralet & 

Thibault, 2002; Sengkhamparn, Verhoef, Schols, Sajjaanantakul & Voragen, 2009) 

indicating that the present protocol results in especially high molecular weight 

pectins. 

Table 2.4. Molecular characteristics of OP2 and OP6. Slopes, intrinsic viscosity ([η]), 
critical concentration (c*) and coil overlap parameter (c*[η]) of OP2 or OP6 at two 
different buffer pH values. 
 

Parameter OP2 OP6 

Mw x 103 (g/mol) 

Mn x 103 (g/mol) 

Rg (nm) 

Mw/Mn 

641 

628 

108 

1.02 

767 

715 

121 

1.07 

 pH 7 pH 3 pH 7 pH 3 

Slope 1 0.71 0.44 0.31 0.20 

Slope 2 1.97 2.13 1.75 2.04 

[η] (dL g-1) 4.1 3.3 4.4 2.8 

c* (g dL-1) 0.37 0.45 0.15 0.44 

c*[η] 1.51 1.49 0.66 1.24 
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2.3.5 Dilute solution viscometry 

Intrinsic viscosity, a measure of the hydrodynamic volume occupied by a 

molecule, is a measure of the capacity of a polymer molecule to enhance the viscosity 

of solutions. Pectins isolated from okra pods contain substantial amounts of 

galacturonate residues. In aqueous solutions (pH 7.0), the expansion of individual 

coils by intramolecular electrostatic repulsion increases intrinsic viscosity. Therefore, 

to avoid complications stemming from changes in coil dimensions with polymer 

concentrations and to obtain intrinsic viscosity values in the absence of electrostatic 

interactions, all measurements were performed under the electrostatic screening 

provided by 0.1M NaCl (Kontogiorgos, Margelou, Georgiadis & Ritzoulis, 2012; 

Ndjouenkeu, Akingbala & Oguntimein, 1997). Dilute solution viscometry was also 

performed at two different buffer pH values (7.0 and 3.0) in order to investigate the 

changes in coil conformations with modulation of intramolecular forces. The intrinsic 

viscosity values of okra pectins dispersed in phosphate buffer adjusted to pH 7.0 were 

4.1 and 4.4 dL g-1 for OP2 and OP6, respectively (Table 2.4). A modest difference in 

[η] values for OP2 and OP6 could be attributed to the higher Mw of OP6 and higher 

degree of branching of RG-I segments in OP2 indicating higher flexibility of RG-I 

regions and formation of compact macrostructures with a shorter hydrodynamic size 

(Yapo, 2011). Okra pectin [η] values were found to be higher in comparison to those 

previously reported for okra extracts obtained by sequential extractions (~ 0.9 – 2.7 

dL g-1) and comparable to pectins isolated from sugar beet (~ 2.1 – 4.1 dL g-1) or 

pumpkin (~ 3.3 – 3.4 dL g-1) (Kontogiorgos, Margelou, Georgiadis & Ritzoulis, 2012; 

Levigne, Ralet & Thibault, 2002; Morris, Castile, Smith, Adams & Harding, 2010; 

Morris, Ralet, Bonnin, Thibault & Harding, 2010; Ndjouenkeu, Akingbala & 

Oguntimein, 1997; Ptitchkina, Danilova, Doxastakis, Kasapis & Morris, 1994). The 
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contribution of acetyl and methyl groups and degree of branching of side chains can 

also play a significant role to the coil dimensions of extracted pectin (Anger & Berth, 

1986; Sengkhamparn, Sagis, de Vries, Schols, Sajjaanantakul & Voragen, 2010). 

Lower amounts of RG-I regions (49.0 – 59.4%) and much higher of HG segments 

(44.9 – 38.9%) could account for the higher [η] values of OP2 and OP6. It is well 

documented that charge density, chain length (molecular weight) and stiffness of 

polymer control the magnitude of [η] (Morris, Cutler, Ross-Murphy & Rees, 1981). 

The polyelectrolyte nature of pectin also controls the conformation of the chains. 

Increase of pH results in dissociation of GalA and both samples (OP2, OP6) are 

negatively charged resulting in electrostatic repulsion, extended conformations and 

consequently high [η] values. Intrinsic viscosity data obtained with citric buffer 

adjusted to pH 3.0 (Table 2.4) show that [η] of OP2 and OP6 were 3.3 dL g-1 and 2.8 

dL g-1, respectively. Decrease of pH leads to protonation of GalA contributing to the 

decrease in net charge and strength of electrostatic repulsions resulting in more 

compact conformations. It has been previously shown (Table 2.1) that OP6 has higher 

GalA content than OP2 counterpart. Therefore, changes of intramolecular forces 

contributed to slightly lower [η] of OP6 indicating a decrease of the hydrodynamic 

volume of the macromolecular chain consequently leading to the predominance of a 

more compact structure in comparison to OP2 sample where expansion of individual 

coils takes place.  

The dilute solutions of most random coil polysaccharides (with the exception 

of xanthan and some β-glucans) show Newtonian flow behaviour. Figure 2.8 (a, b) 

demonstrates a typical plot for shear rate dependence on viscosity for OP6 at pH 3.0 

and 7.0. As expected for dilute OP6 solutions dispersed in citric (pH 3.0) or phosphate 

buffer (7.0), the measured viscosities remained independent of shear rate indicating 
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Newtonian flow behaviour. As the polymer concentration increased, there was a 

progressive development of shear thinning flow behaviour where reduction in 

viscosity values occurred with increasing shear rate (Figure 2.8 a, b). Moreover, 

Figure 2.8 (a, b) shows that OP6 dispersed in phosphate buffer (pH 7.0) exhibits a 

transition from Newtonian to shear thinning flow behaviour at lower polymer 

concentration (~ 0.25% w/v) than in citric buffer (pH 3.0) (~ 0.5% w/v). This 

indicates an increase in the number of pectin inter-chain interactions and formation of 

polymer chain entanglements. In order to further investigate this the solution 

behaviour of okra pectins was studied by measuring the zero shear specific viscosity 

(ηsp)o at different concentrations of the polysaccharide and plotting them versus the 

dimensionless coil overlap parameter, c[η]. Double-logarithmic plots of (ηsp)o vs. c[η] 

were constructed to determine specific critical concentration (c*) at which the 

transition from the dilute to  concentrated regime appears and which is accompanied 

by significant changes in solution rheological properties (Figure 2.9, Table 2.5) 

(Morris, Cutler, Ross-Murphy & Rees, 1981). Critical concentration values (c*, g dL-

1) for OP2 and OP6 dispersed in phosphate buffer (pH 7.0) were between 0.15 – 0.37 

g dL-1 whereas solutions prepared with citric buffer (pH 3.0) demonstrated higher 

values in the range 0.44 – 0.45 g dL-1. In general, polymers that have high [η] will 

also exhibit a transition from the dilute to concentrated region at lower polymer 

concentration due to the increased number of intermolecular interactions. For okra 

pectin solutions, c* values were lower than those reported for okra gum (1.5 g dL-1), 

okra polysaccharides obtained by hot buffer sequential extraction (0.83 – 1.23 g dL-1), 

apple pectins (1.27 – 1.39 g dL-1) and other random coil polysaccharides (Hwang & 

Kokini, 1992; Kontogiorgos, Margelou, Georgiadis & Ritzoulis, 2012; Morris, Cutler, 

Ross-Murphy & Rees, 1981; Ndjouenkeu, Akingbala & Oguntimein, 1997; 
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Sengkhamparn, Sagis, de Vries, Schols, Sajjaanantakul & Voragen, 2010). The c*[η], 

a measurement of the total volume occupied by all coils within the polymer solution 

regardless of their molecular weight at the critical concentration, was also calculated.  

 

 

 

Figure 2.8. Viscosity (η) as a function of shear rate for OP6 at different 
concentrations (0.01 – 5% w/v) and two buffer pH values a) pH 3.0 and b) pH 7.0.  
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The results presented in Table 2.4 show the c*[η] for OP2 and OP6 in different buffer 

solutions. It has been reported that for most disordered linear polysaccharides double-

logarithmic plots of (ηsp)o vs. c[η] superimpose closely regardless of the primary 

structure and molecular weight, and also fall into two linear regions with a sharp 

change of slopes (Morris, Cutler, Ross-Murphy & Rees, 1981; Ndjouenkeu, 

Akingbala & Oguntimein, 1997).  

 

   
Figure 2.9. Double logarithmic plots of zero shear specific viscosity (ηsp)o vs. reduced 
concentration c[η] of OP2 and OP6 at pH 3 and pH 7.  
 
 
However, as shown in Figure 2.9, the results obtained for present okra pectins do not 

comply well with this generalisation, particularly for dilute region (c < c*) and 

demonstrate a significant deviation in slopes values regardless of solution pH. 

Moreover, slopes 1 of OP2 and OP6 were found to be significantly lower in 

comparison to those reported for polymers of different primary structure but with 

similar conformational characteristics (1.1 – 1.6) (Lapasin & Pricl, 1999). Therefore, 
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our results indicate that the polyelectrolyte nature and differences in molecular 

structure of extracted pectins significantly affect conformational characteristics of 

polymer chains within the dilute region.  However, values of slopes 2 are in a good 

agreement with the slopes values typical for disordered polysaccharides (~ 1.9 – 5.6) 

indicating that in dilute solutions the net charge of pectin chains plays predominant 

role for chain conformations (Table 2.4) (Lapasin & Pricl, 1999). The above findings 

suggest that buffer composition and extraction strategy are principal determinants of 

the structural characteristics of the isolated pectins and the properties of resulting 

solutions.  

 

2.4 CONCLUSIONS 

In the present chapter, the molecular features of okra pectins as affected by 

extraction conditions were studied. Extraction conditions influenced the fine structure 

of pectins resulting in isolates with distinct molecular characteristics. The present 

isolation protocols resulted in high molecular weight pectins with low degree of 

methylation (DM) and high degree of acetylation (DA). Galacturonic acid (GalA) 

amount varied by altering the pH of the extraction with higher pH values (pH6.0) 

resulting in greater GalA content. Both isolates contained high amounts of branched 

RG-I segments as indicated by the ratio of rhamnose to galacturonic acid and the high 

content of galactose to rhamnose. Dilute solution viscometry revealed changes in the 

coil dimensions for both of the isolated biopolymers with changes in pH as evidenced 

by intrinsic viscosity measurements. The high molecular weight and degree of 

acetylation as well as the influence of pH on the conformation of the chains 

introduces a new source of pectins with potentially high emulsifying and emulsion-

stabilizing capacity that will be dealt in detail in chapter 4.	
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CHAPTER 3 

APPLICATIONS OF OKRA PECTIN IN HIGH AND LOW 

MOISTURE CONTENT SYSTEMS 

 

 

 

 

 

 

 

 

 

 

 

Parts of this chapter were published as: 

 

Alba, K., Kasapis, S., & Kontogiorgos, V. (2015). Influence of pH on mechanical 

relaxations in high solids LM-pectin preparations. Carbohydrate Polymers, 127, 182-

188. 
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3.1 INTRODUCTION 

The major commercial applications of pectin in the food industry include 

gelling and thickening of jams, jellies, bakery fillings, confectionery and stabilization 

of milk and fruit beverages. The mechanisms of cross-linking of pectin molecules into 

the three-dimensional network are typically impacted by the degree of methyl 

esterification, distribution of ester groups along the chain and molecular weight 

distributions (discussed in detail in Chapter 1). Gelation (high moisture regime) in 

low methoxylated pectin is mediated by electrostatic bridging of adjacent carboxyl 

groups of D-GalA residues typically with calcium cations or in some instances with 

monovalent ions (Strom, Schuster & Goh, 2014). Sol-gel transition, however, is 

frequently interrupted by the presence of side-chains or acetyl groups that moderate 

the ability of the polymer to gel. Okra pectin is distinct because it primarily consists 

of RG-I units and has a high acetyl content virtually halting the gelation process. 

Preliminary work on okra pectin in the absence of glucose syrup confirmed that it 

remained in the sol-state under an extensive set of experimental conditions (e.g., 

calcium and pectin concentration, pH, temperature) and the results are shown in Table 

3.1.  

Pectic polysaccharides traditionally play a central role as major components in 

the development of high-solid (low moisture regime) confectionery products (Al-

Ruqaie, Kasapis, Richardson & Mitchell, 1997; Almrhag, George, Bannikova, 

Katopo, Chaudhary & Kasapis, 2012; Kasapis, Al-Alawi, Guizani, Khan & Mitchell, 

2000). Recently, their ability to create systems for controlled delivery of bioactives 

was also explored (Panyoyai, Bannikova, Small & Kasapis, 2015).  In previous 

investigations, high methoxylated (HM) pectin from citrus sources was utilized to 

explore the relaxation properties of the pectin–co-solute systems. The structural 
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simplicity and usually low molecular weight of HM-pectin allows gelation under high 

solid (> ~50%) and low pH conditions (Evageliou, Richardson & Morris, 2000b). 

Depending on the chemical nature of the sugar employed (monosaccharide vs. 

disaccharide vs. polydisperse glucose syrups) the morphology of networks and their 

viscoelasticity may change dramatically (Kasapis, Al-Marhoobi, Deszczynski, 

Mitchell & Abeysekera, 2003). To build on previous findings, we increased the 

structural complexity of the polysaccharide as the fine structure of pectin influences 

to a great extent its physical behavior (Kim, Williams, Galant, Luzio, Savary, Vasu & 

Cameron, 2013) and we introduced pectin extracted as described in the previous 

chapter.  

Relaxation studies are frequently employed in biopolymer systems as a probe 

to shed light on macromolecular rearrangements. These motions in turn are pertinent 

to vitrification that is responsible for the mechanical performance and stability of 

biopolymer glasses. In the low moisture (or high solids) regime, including those 

found in dehydrated or frozen foods and low moisture pharmaceutical formulations 

(e.g., tablets, powders), biopolymers are of particular importance in both academic 

and industrial fields. To that end, mechanical and thermal relaxations are commonly 

employed in the study of viscoelasticity for natural polymers and are now well 

understood so as to draw structure-function relationships (Kasapis, 2012). We have 

previously demonstrated that glassy pectin-matrix tablets slow the kinetics of drug 

release and furthermore create stable emulsions indicating that they could be 

exploited in drug or nutrient encapsulation and delivery (Alba, Ritzoulis, Georgiadis 

& Kontogiorgos, 2013; Ghori, Alba, Smith, Conway & Kontogiorgos, 2014). 
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Table 3.1. Experimental conditions used to form gelled network in okra pectin 
solutions. 
 
 
          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          a (Cardoso, Coimbra & Lopes da Silva, 2003). 
          b (Draget, Òstgaard & Smidsròd, 1989). 
          c (Evageliou, Richardson & Morris, 2000a). 
 
 
 
 
 

                               Result Gelator! Experimental conditions 

a, b, c – 3% w/v pectin / 4, 6 and 10 mM of CaCO3, d, 
e, f – 2% w/v pectin / 4, 6 and 10 mM of CaCO3.  
 

a - 2.0% w/v pectin / 25mM CaCO3/ 50 mM GDL, b - 
2.0% w/v pectin / 40 mM CaCO3/ 80 mM GDL, c - 
3.0% w/v pectin / 25mM CaCO3/ 50 mM GDL, d - 
3.0% w/v pectin / 40 mM CaCO3/ 80 mM GDL. 
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Calcium-mediated gelation of 
okra pectin solution was 
attempted according to 
experimental conditions 
described elsewherea. Mixtures 
pH was set at 3.0. 
 
 
 
!
 
 
Gelling of okra pectin solutions 
by CaCO3 and GDL (D-
Gluconic acid δ-lactone) was 
attempted according to 
procedures described elsewhere 
in detailb. Briefly, CaCO3 was 
dispersed in the okra pectin 
solutions and a freshly made 
aqueous GDL solution was 
added. All gels were prepared 
using stoichiometric amount of 
GDL and CaCO3 in order to 
keep a constant pH. Mixtures pH 
was set at 3.0. 
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following experimental 
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In the present chapter, we aim to gather further evidence on the influence of 

macromolecular conformations on the mechanical properties of pectin, as impacted by 

the degree of ionisation in the presence of small molecular weight co-solutes in low 

moisture systems. 

3.2 MATERIALS AND METHODS 

3.2.1 Pectin extraction 

Okra pectin was isolated as described in Chapter 2.  

3.2.2 Glucose syrup 

Glucose syrup Sipa-Wheat 69 (Sipal Partners, Herve, Belgium) with 80% total 

solids and dextrose equivalent of 69 was used for sample preparation. The total 

carbohydrates on dry matter were 97.5% w/w and carbohydrates with degree of 

polymerization greater than 2 constituted 13.5% w/w of the syrup. Glucose and 

maltose were 35 and 49% w/w, respectively. 

3.2.3 Sample preparation 

Pectin dispersions were prepared by dissolving the isolated polysaccharide 

(OP6 sample) at 1% (w/w) in either citric (pH 3.0) or phosphate (pH 7.0) buffers 

(100mM) at room temperature under continuous stirring. Following dispersion of the 

polysaccharide, the temperature was raised to 70 oC and the appropriate amount of 

glucose syrup was added. The mixture was maintained at 70 oC until the required total 

solids content was obtained (80% w/w) by slowly evaporating water.  

3.2.4 Rheological measurements 

These were performed using a Bohlin Gemini 200HR-nano rotational 

rheometer (Malvern Instruments, Malvern, UK) equipped with plate-plate geometry 
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(20 mm diameter and 1 mm gap). Temperature was controlled with a Peltier 

supported by a low temperature ethylene glycol bath (Julabo, F12, Germany) able to 

reach -30 oC. Experimental protocol of the present investigation included the 

following steps: Cooling scans were performed between 20 and -30 oC at a cooling 

rate of 2 oC/min, 0.01% strain and angular frequency of 1 rad/sec. To investigate the 

viscoelastic behavior of the systems and create master curves of viscoelasticity, 

frequency sweeps were performed within the range of 0.628-62.8 rad/sec at a strain of 

0.01% with 4.4 oC temperature intervals. Modeling of rheological data was performed 

on Prism v.6 (Graphpad Software, San Diego, USA). 

3.2.5 Differential scanning calorimetry 

Thermal analysis was performed using a Star System DSC1 (Mettler Toledo, 

Switzerland) with a Huber TC100 cooling system (Huber, Germany) to achieve 

temperatures down to -90 oC and a nitrogen DSC-cell purge at a flow rate of 50 

ml/min. Samples with total solids of 80% (w/w) were weighed (about 15 mg) and 

hermetically sealed in aluminum pans, which were cooled from 10 to -90 oC at 2 

oC/min. Glucose syrup was used as a reference. First derivative curve of heat flow and 

estimation of glass transition temperatures were determined with STARe Evaluations 

software supporting the instrument (v. 12.1, Mettler Toledo, Switzerland). 

3.2.6  ζ-potential titration 

These measurements were performed using a ZetaSizer Nano Series ZEN2600 

(Malvern Instruments, Malvern, UK) at 25 °C. Pectin solutions were dispersed at 

0.625% w/v in citric buffer (100 mM) at pH 3.0 and titration was performed with 0.75 

M sodium hydroxide to pH 7.0 or 0.75 M hydrochloric acid to pH 1.0. All 

measurements were performed in duplicate. We are aware of the calculation of ζ-

potential from particle electrophoretic mobility (UE) that depends on the particle size 
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and shape (Tadros, 2005). Those calculations are typically performed using Henry’s 

equation that is only applicable for spherical or nearly spherical particles (Tadros, 

2005). Pectin is a random coil polyelectrolyte and therefore does not comply well 

with Henry’s criteria. However, the measurements of ζ-potential of pectin solutions in 

this study (including Chapter 4) serve the purpose of demonstrating the effect of pH 

on the electrical and, consequently conformational, characteristics of the anionic 

polymer.  

3.2.5 Numerical computation 

This was performed in MATLAB (v7.0 R14 Service Pack 2, The Mathworks 

Inc., MA). The first step involves discretization of the viscoelastic functions of G΄ or 

G΄΄ to create matrix A and was performed with the discrG.m script published 

elsewhere (Kontogiorgos, 2010). Following that step, algorithms csvd.m for 

calculation of the singular value decomposition of the matrix A and l_curve.m for 

computation of the optimum regularization parameter were used from Hansen’s 

regularization tools package (Hansen, 1994). Finally, the algorithm NLCSmoothReg.m 

was used for the calculation of the relaxation spectra (Wendlandt, 2005). 

3.3. RESULTS AND DISCUSSION 

3.3.1 Viscoelasticity of pectin–co-solute mixtures 

Intrinsic viscosities were determined at two different pH values (7.0 and 3.0) 

matching those in sample preparation. These measurements were performed under the 

electrostatic screening of 0.1 M NaCl. This approach masks non-specific electrostatic 

interactions so that changes in coil dimensions are attributed to changes in the degree 

of ionization with variation of buffer pH (citric and phosphate). It is evident that pH 

plays a decisive role in coil dimensions resulting in an expanded conformation due to 
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dissociation of D-GalA at high pH values (Table 2.4). It is expected that the high co-

solute concentration (glucose syrup) in the samples will have an influence on the 

conformational properties of pectin as solvent quality changes. It has been reported 

for β-glucan (Grimm, Kruger & Burchard, 1995), guar and locust bean gum 

(Richardson, Willmer & Foster, 1998) and seed gums (Behrouzian, Razavi & 

Karazhiyan, 2014; Mohammad Amini & Razavi, 2012) that intrinsic viscosity reaches 

a minimum before starting increasing again depending on the sugar type and 

concentration. 

This has been attributed to changes in the solvent quality as sugar 

concentration varies up to 40% w/w solids, and to the degree or extent of inter- and 

intra-chain interactions (Richardson, Willmer & Foster, 1998). Clearly, intrinsic 

viscosity measurements are difficult to perform at higher levels of solids, but we are 

aware that at the level of solids in this investigation (80% w/w) competition for water 

changes the phase morphology of our preparation paving the way for molecular 

phenomena of glassy consistency with decreasing temperature. Quoted values of 

intrinsic viscosity in Table 2.4 serve the purpose of demonstrating the effect of pH 

(from 7.0 to 3.0) on the conformational characteristics of the polymer. Thus, 

hydrodynamic volume can be modulated by changes in the degree of ionization, and 

this modification of macromolecular interactions controls the viscoelasticity of the 

samples, which is the subject of focus in this chapter. 

 Determination of functional groups content revealed that the polyelectrolyte is 

a low methoxylated pectin (LM) with a high degree of acetylation (DA) and an 

intermediate D-GalA content (Table 2.1). Branching analysis of the sample showed 

high contribution of RG-I units (~60%) to the pectin backbone whereas the remaining 

units were HG segments indicating a highly branched biopolymer (Chapter 2). At this 
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juncture, it should be mentioned that preparation of polysaccharide solutions at 

alkaline or acidic pH might affect their structural characteristics. In general, 

polysaccharides may undergo degradation reactions in relation to the pH of the 

system. For instance, β-elimination and peeling degradation reactions occur at 

elevated pH values whereas acid hydrolysis upon prolonged exposure to low pH 

values. However, reduced water content and mobility due to the presence of high 

levels of glucose syrup (79% w/w) dramatically decelerate hydrolysis in our 

materials, since water is largely unavailable to participate in chemical reactions. 

Furthermore, the resistance of D-GalA glycosidic bond to both acidic and alkaline 

hydrolysis (due to inductive effects of the carboxyl group at C-5) and the limited time 

that the sample remains at elevated temperatures during sample preparation (~15 min) 

minimize potential hydrolytic reactions. Therefore, prominent molecular 

characteristics from the original material remain and allow meaningful comparisons 

in this investigation regarding the effect of degree of ionization (pH variation from 

3.0 to 7.0) on vitrification phenomena.  

The following discussion deals with molecular relaxations of LM pectin–co-

solute mixtures at total solids of 80% (w/w) and acidic or neutral pH (3.0 or 7.0) in 

the absence of network formation. Calorimetric measurements provide a first insight 

into the macromolecular relaxations. Usually, polydisperse polymers vitrify over a 

broad range of temperatures as the intermolecular energy barriers to segmental and 

group motions exhibit a broad distribution (Bohmer, Ngai, Angell & Plazek, 1993; 

Roland, 2010). Figure 3.1 shows calorimetric traces of glucose syrup and high-solid 

mixtures at two different pH values. The onset of glass transition temperature was 

estimated by the crossover of the tangents of first derivative curve of heat flow at the 

onset of the transition (Figure 3.1, bottom right inset). The midpoint of glass 
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transition temperature was estimated at the midpoint between the tangents of the heat 

flow curve before and after the transition (Figure 3.1). The onset and mid-point glass 

transition temperatures for glucose syrup were estimated to be at -35 and -53 °C, 

respectively. The pectin–glucose syrup mixtures at pH 3.0 revealed only marginal 

differences from its counterpart in the absence of pectin, with the onset and midpoints 

being -31 and -48 °C, respectively. 

However, switching pH to 7.0 accelerates vitrification events for pectin–

glucose syrup samples to about eight degrees (-27 °C (onset) and -45 °C (midpoint)). 

The first derivative of a glass transition gives a peak whose area is proportional to the 

value of Δcp (Figure 3.1, bottom right inset). Peak temperatures of the first derivative 

can be used as a measure of changes in Tg or for the comparison of the effects of 

different treatments (Haines, Reading & Wilburn, 2003). Analysis of calorimetric 

traces in Figure 3.1 with this approach showed peak maxima at -55, -56 and -49 °C 

for glucose and high solids pectin samples at pH 3 and 7, respectively. Treatment of 

calorimetric data revealed the pH-induced influence of the polyelectrolyte 

conformation on calorimetric relaxation of the samples. Such a behavior calls for 

further exploration on the effect of pH on macromolecular conformation of our 

samples.  

Top left inset in Figure 3.1 shows results on the ζ-potential titration of the 

pectin in the absence of sugar. It is evident that from pH 6.0 upwards, D-GalA 

residues on the polymeric backbone are fully dissociated. This yields an extended 

conformation in the macromolecule, an outcome that is also reflected in the intrinsic 

viscosity values of the sample discussed in Table 3.1. On the other hand, the compact 

molecular arrangement at pH 3.0 creates strong intra-chain associations as the charge 

is neutralized at around pH 1.0. A compact polymeric structure increases the overall 
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free volume of the pectin-glucose syrup mixture as the hydration and interaction of 

the polyelectrolyte with water and co-solute is restricted. This enhances the 

dominance of the co-solute in mixture with pectin at pH 3.0 leading to a vitrification 

pattern that is similar to the single glucose-syrup preparation in the DSC thermograms 

(Figure 3.1).   

The influence of pH on pectin conformation should also play a central role in 

the mechanical properties of the high-solid samples. It is possible to monitor 

mechanical developments on cooling of our samples by employing well-established 

approaches from synthetic polymer science. 

 

  
 
Figure 3.1. DSC thermograms of 80% glucose syrup and 1% LM-pectin plus 79% 
glucose syrup at pH 3.0 and 7.0. Top left inset shows ζ-potential titration of the pectin 
solution. Bottom right inset shows a typical first derivative curve of heat flow of the 
samples and calculations used to derive the onset of the glass transition. 
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The dependence of storage and loss modulus on temperature at pH 3.0 and 7.0 close 

to the onset of the calorimetric glass transition regime is recorded down to -28 oC in 

Figure 3.2. In both cases, Gʺ″ is higher than G΄ throughout the experimental 

temperature range, a behaviour that is typical of viscous materials. Clearly, 

viscoelastic functions at pH 7.0 are two orders of magnitude greater than the low pH 

counterparts. This is a direct evidence of the role of intermolecular interactions in the 

mechanical properties, with the extended pectin conformation at pH 7.0 increasing the 

elastic character of the mixture.  

An approach to extend monitoring the viscoelastic parameters beyond the 

experimentally accessible range is to utilize the time-temperature superposition 

principle. 

     

 
Figure 3.2. Temperature dependence of the storage and loss modulus for glucose 
syrup and systems containing 1% LM-pectin and 79% glucose syrup at pH 3.0 and 
7.0 (scan rate: 2 oC/min; frequency: 1 rad/s; strain: 0.01%). 
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When materials do not exhibit structural transitions (e.g., gelation, melting or 

denaturation) during the course of measurement, the viscoelastic modulus measured at 

a set of frequencies and temperatures (ω, T) is equivalent to measurements taken at 

frequency ω multiplied with a shift factor (aT) (Mezger, 2011). The master curve at a 

convenient reference temperature To can then be obtained by plotting the viscoelastic 

functions versus ωaT. In doing so, frequency sweeps were carried out at temperature 

intervals of 4.4 °C from 20 to -28 °C in Figure 3.3. Enhanced intermolecular 

associations are evident with lowering temperature as the storage and loss modulus 

values are becoming progressively higher. Plateauing of the values, however, is not 

observed, which is typical of polymers well within the glassy state. In order to 

calculate the horizontal shift factors, we used the method of reduced variables (aT = 

ωr/ω) at the reference temperature of To = -19 oC. The reference temperature is 

usually chosen to be near to the operating temperature of the biopolymer. In our case, 

we have chosen a temperature that is well within the glass transition range of our 

biopolymer in order to appreciate the influence of pH in macromolecular dynamics. 

Figure 3.4 illustrates the results of the aforementioned treatment for the 

mechanical spectra in Figure 3.3. The master curves of viscoelasticity extend over 

four orders of magnitude in frequency revealing relaxation patterns that correspond to 

the glass transition region of the sample at pH 7.0. To further explore the effect of 

temperature, horizontal shift factors, aT, were plotted against T-To in Figure 3.5. This 

approach provides information about the temperature dependence of molecular 

mobility upon which the various relaxation mechanisms depend (Williams, Landel & 

Ferry, 1955). It appears that below about 0 oC (or T-To = 20 oC) shift factors exhibit a 

strong temperature dependence indicating a transition to distinct relaxation kinetics 

with reduced temperature. This commonly occurs as the sample enters the glass 
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transition region in high-solid biopolymer systems (Al-Ruqaie, Kasapis, Richardson 

& Mitchell, 1997; Jiang, Kasapis & Kontogiorgos, 2011; Kasapis, Al-Marhoobi & 

Khan, 2000). Free volume theory and the empirical WLF equation are then employed 

to follow the process of vitrification: 

                                     (33) 

and are the WLF constants at the reference temperature To and are related to 

the free volume theory as follows: 

                                     (34) 

where, fo is the fractional free volume at To, αf is the thermal expansion coefficient 

and B is a constant that equals unity.  

Utilization of this approach allows association of the concept of glass transition 

with fundamental quantities such as the evolution of free volume during vitrification. 

Our experimental setup captures a significant part of this event to return estimates of 

,  fo and αf at To in Table 3.2. Values of fo for the sample at pH 7 is in good 

agreement with previously studied high-solid biopolymer mixtures (Al-Ruqaie, 

Kasapis, Richardson & Mitchell, 1997) and amorphous synthetic polymers (Ferry, 

1980) to demarcate the mechanical rubber-to-glass transition. In contrast, adjusting 

pH to 3 brings about a mechanical behavior with values of fo being an order of 

magnitude higher than for the neutral pH counterpart. This behavior indicates that for 

these samples the glass transition region occurs at lower temperatures and could not 

be accessed in the temperature range we employed in the present work.  
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Figure 3.3. Double logarithmic plots of (a) storage and (b) loss modulus against 
frequency of oscillation for a sample containing 1% LM-pectin and 79% glucose 
syrup at pH 7.0 (temperature interval: 4.4 oC; strain: 0.01%). 

 

The above predictions are congruent with the cooling scans in Figure 3.2 and the 

calorimetric data in Figure 3.1 arguing that the high pH samples move towards the 

glassy state at a rapid rate. Electrokinetic potential measurements also in Figure 3.1 
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indicate that D-GalA residues are fully dissociated at pH 7 resulting in electrostatic 

repulsion and an extended chain conformation. The macromolecular outcome is an 

efficient polymer hydration and interaction with glucose syrup that reduces the overall 

free volume in the mixture. Conversely, the compact pectin conformation at pH 3, due 

to the protonation of the D-GalA residues, results in a co-solute dominated matrix of 

increased diffusional mobility and free volume that delays vitrification.  

Previous work on other gelling polysaccharide systems showed that the 

rheologically determined Tg is affected by the structural morphology, network 

strength and molecular weight of the biopolymer (Kasapis, 2008). Generally, the 

ability of the polysaccharide to form a network in the presence of high levels of co-

solute accelerates vitrification events due to restricted diffusional mobility of the 

chains as, for example, it has been shown for κ-carrageenan with added potassium 

counterions (Evageliou, Kasapis & Hember, 1998), high methoxy pectin (Almrhag, 

George, Bannikova, Katopo, Chaudhary & Kasapis, 2012), deacylated gellan with 

added sodium counterions (Al-Ruqaie, Kasapis, Richardson & Mitchell, 1997) or 

gelatin of various molecular weights (Kasapis, Al-Marhoobi & Mitchell, 2003). 

Present work highlights the importance of biopolymer conformation on the 

vitrification of high-solid polysaccharide systems. For instance, in gelling systems 

including κ-carrageenan and deacylated gellan, network formation is a kinetic process 

being influenced by the degree of ionization. This ultimately affects gel 

microstructure and how rapidly the system arrives at the onset of glass transition. 

Careful tuning of pH seems to be a prerequisite for this, but it somehow has escaped 

attention thus far.  Conversely, the addition of small amounts of non-gelling 

polysaccharides such as guar or locust bean gum has little effect on the mechanical 

manifestation of vitrification (Kasapis, Al-Marhoobi & Khan, 2000). The inability to 
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form a network results in molecular mobility in the sugar matrix thus requiring lower 

temperatures to achieve the glassy state. Those systems show comparable glass 

transition regimes and fractional free volume values with pectin samples at pH 7.0 

(Kasapis, Al-Marhoobi & Khan, 2000) and are also on a par with mechanical results 

obtained for low methoxylated pectin in deionized water although in these studies pH 

was not controlled (Kasapis, Al-Alawi, Guizani, Khan & Mitchell, 2000). 

 

Figure 3.4. Master curves of viscoelasticity as a function of reduced frequency of 
oscillation (ωaT) for systems containing 1% LM-pectin and 79% glucose syrup at pH 
3.0 and 7.0 at the reference temperature of -19 οC. 
 
 

It should be noted that in neutral polysaccharides, pH effects on chain 

conformation are reduced, as solvent ionization does not exert the same influence as 

in polyelectrolytes. On the contrary, we demonstrated that in polyelectrolytes by 

drastically shifting the pH towards the isoelectric point changes in coil conformation 

result in remarkable modification in the mechanical properties of the system.  
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Table 3.2. Values of WLF Parameters for 1% LM-pectin and 79% glucose syrup at 
pH 3.0 and 7.0 
 
Sample  (oC) fo αf  (x10-4 oC-1) 

pH 3 2.07 24.12 0.209 86 

pH 7 13.27 149 0.032 2.1 

 

Figure 3.5. Logarithmic shift factor, aT, for systems containing 1% LM-pectin and 
79% glucose syrup at pH 3.0 and 7.0 plotted against temperature from the data of the 
master curves presented in Figure 3.4 (WLF fits are also shown for both samples). 
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glass transitions assists in controlling optimum fabrication in industrially relevant 

preparations.   

3.3.2 Calculation of relaxation spectra 

It is possible to determine the time needed for the completion of 

macromolecular motion with the help of a relaxation spectrum. Appropriate 

conversion of mechanical spectra from master curves can be used to calculate the 

relaxation spectra of biopolymers. The relationship between the storage modulus, loss 

modulus and angular frequency (ω) in shear is given by the following integrals 

(Tschoegl, 1989): 

              (35) 

                      (36) 

where, H(τ) is the distribution function of the structural elements with relaxation time 

τ, and Go is the equilibrium modulus with a zero value for viscoelastic liquids. 

Equations 3 and 4 can be generalized with a Fredholm integral equation of the first-

kind, which takes the form: 

,  α ≤ s ≤ β            (37) 

where, K(s,t) is the kernel that describes the system being (ω2τ2/(1+ω2τ2) and 

ωτ/(1+ω2τ2) for equations 3 and 4, respectively, g(s) is the measured signal (G΄(ω) or 

G΄΄(ω)) and f(t) is the relaxation spectrum H(τ). Numerical integration determines the 

spectral function f(t) that represents the relaxation pattern of the material. Spectra 

calculation proceeds with discretization of the kernels of functions (3) or (4) using an 

algorithm that is published elsewhere (Kontogiorgos, 2010). The master curves in 
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Figure 3.4 were then analyzed with the L-curve criterion followed by the Tikhonov 

regularization. 

Discretization of equations 3 and 4 was performed between 10-4 – 102 s using a 

heuristic approach. Calculation of the optimum regularization parameter, λ, is a 

necessary step as it controls the interplay between the regularization error and the loss 

of resolution (Hansen, 1994). The optimum regularization parameter is located at the 

corner of the L-curves in Figure 3.6 (top right inset). The x-axis of the curve (residual 

norm) corresponds to solutions where the calculation error controls the solution, with 

the y-axis (solution norm) reflecting solutions that are sensitive to experimental noise. 

We show semi-logarithmic plots of relaxation spectra produced using both kernels of 

equations (35) and (36).  

The two viscoelastic functions returned qualitatively similar monomodal 

spectra centered around 0.015 s for the sample at pH 7.0. Differences in the intensity 

of the spectra follow the magnitude of the modulus values in the master curve. This is 

in very good agreement with relaxation times of various polysaccharides that have 

been previously reported in the literature (Rincon, Munoz, Ramirez, Galan & Alfaro, 

2014; Rodriguez-Rivero, Hilliou, Martin del Valle & Galan, 2014). Although pH does 

not seem to affect the overall relaxation behavior, acidic samples tend to resolve more 

relaxation elements in Figure 3.6 (bottom right inset).  

According to the coupling model (Ngai, 2000), the extent of interactions 

between neighboring segments relates to the distribution of relaxation times, with 

strongly interacting macromolecules exhibiting a broad distribution in contrast to 

those with rather weak molecular interactions. Modeling indicates distinct molecular 

interactions due to conformational differences, with more resolved relaxation 

elements occurring as the isoelectric point is approached. It should be stressed, 
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however, although qualitatively different, the spectra reveal that that all relaxation 

processes are essentially complete within < ~0.1 s regardless of pH. This is an 

important observation that adds to the earlier discussion from the thermomechanical 

analysis for the identification of the molecular origin of interactions in the high-solid 

pectin system as a function of pH. 

 

Figure 3.6. Semi logarithmic plots of relaxation spectrum of 1% LM-pectin and 79% 
glucose syrup at pH 7.0 obtained using data from master curves in Figure 3.4; Solid or 
dashed lines were obtained after discretization of the loss or storage modulus, 
respectively; Top right inset shows a typical shape of L-curves that were used to 
calculate the optimum regularization parameter, and bottom right inset shows the 
relaxation spectrum of 1% LM-pectin and 79% glucose syrup at pH 3. 
 
 

This outcome indicates that discrepancies between the mechanical properties 

of the samples in the glass transition region stem from topological or steric 

restrictions in chain mobility in addition to the conformational changes that were 

induced with variations in the degree of ionization.  
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3.4 CONCLUSIONS 

The influence of pH on the structural properties of non-gelling LM-pectin in 

the presence of co-solute has been investigated by means of thermomechanical 

analysis and theoretical modeling of results. Tuning pH at acidic or neutral conditions 

affects the conformation of the polysaccharide, hence impacting its micro- and 

macromolecular behaviour within the experimentally accessible temperature range. 

Dissociation of galacturonic acid residues at the high pH values results in extended 

chain conformation and early vitrification events. Conversely, as the polyelectrolyte 

approaches its isoelectric point at low pH, recorded viscoelastic functions decrease 

and vitrification is delayed. Time-temperature superposition extended the 

experimental timeframe of observations yielding master curves of viscoelasticity and 

enabling calculation of the corresponding shift factors. These were utilised in WLF 

modeling to confirm the early vitrification of the pectin molecule in mixture with 

glucose syrup at neutral pH. Spectral analysis of the viscoelastic master curves 

revealed the exact positioning of the relaxation events characterized by one dominant 

regime where the relaxation of the macromolecules concludes.  

In the present chapter, it has been shown that pectin isolated from okra pods is 

non-gelling pectin due to the high degree of acetylation and branching of the side-

chains. However, pectin with aforementioned properties could be utilized as an 

emulsifier in fabrication of emulsions. Therefore, emulsion-stabilizing properties of 

OP2 and OP6 will be investigated in the next chapter.  

 

 

 

 



 121 

CHAPTER 4 

EMULSIFYING PROPERTIES OF OKRA PECTIN 
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54(2), 1730-1737. 

2) Ghori, M. U., Alba, K., Smith, A. M., Conway, B. R., & Kontogiorgos, V. 

(2014). Okra extracts in pharmaceutical and food applications. Food 

Hydrocolloids, 42, 342-347. 
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4.1 CRUDE OKRA EXTRACTS AS EMULSIFIERS FOR ACIDIC 

EMULSIONS 

4.1.1 Introduction 

High emulsification capacity is usually attributed to proteins whereas 

polysaccharides typically demonstrate negligible surface activity at the o/w interface 

due to their hydrophilic character and are, therefore, not so useful as emulsifying 

agents. Similarly to most polysaccharides, pectins are not normally considered as 

emulsifying agents except the acetylated pectin from sugar beet (Siew & Williams, 

2008b). It has been shown that it possesses greater surface activity than commercially 

produced low- or high-methoxyl pectins and is capable of producing and stabilizing 

fine o/w emulsions (Williams, Sayers, Viebke & Senan, 2005). The emulsifying 

properties of sugar beet pectins were attributed to the presence of acetyl groups (4–

5%), co-extracted protein fraction and ferulic acid moieties covalently attached to the 

pectin molecule (Dea & Madden, 1986; Endreß & Rentschler, 1999; Leroux, 

Langendorff, Schick, Vaishnav & Mazoyer, 2003). Citrus pectins with low molecular 

weight of about 60-70 g mol-1 and high degree of methoxylation were found also to be 

good emulsifying agents (Akhtar, Dickinson, Mazoyer & Langendorff, 2002). The 

emulsifying capacity of pectin under acidic conditions is another property that can be 

utilized in the food industry particularly in acidified dairy and/or fruit drink products 

where direct acidification with fruit juices and/or acids is typically performed. The pH 

of these products ranges from 3.4 to 3.6 and protein (caseins) instability at this pH 

range usually occurs (Nakamura, Yoshida, Maeda & Corredig, 2006). Therefore, 

alternative stabilizer needs to be added in order to prevent protein aggregation and 

eliminate changes in the colloidal system. In addition, the resistance of pectin to 
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acidic environments can be effectively exploited in pharmaceutical industry in the 

form of drug delivery agents.  

The aim of present chapter was to determine the emulsifying capacity of okra 

crude extracts in model o/w emulsions under acidic conditions.  

4.1.2 Materials and Methods 

4.1.2.1 Isolation and partial characterization of okra extracts 

Okra extracts for this part of the project have been kindly donated by Associate 

Professor Christos Ritzoulis (Department of Food Technology, ATEI of Thessaloniki, 

Thessaloniki, Greece) and isolation and characterization procedures are described 

elsewhere in detail (Alba, Ritzoulis, Georgiadis & Kontogiorgos, 2013; Vierhuis, 

Schols, Beldman & Voragen, 2000). Briefly, seeds and calyces were removed and the 

remaining okra pods were freeze-dried. These were then defatted and alcohol 

insoluble solids (AIS) were recovered. AIS were then used to extract okra 

polysaccharides at pH 6.0 or pH 4.0 and these samples were labeled as “OE6” and 

“OE4”, respectively. Insoluble particles were removed by centrifugation and the 

resulting fractions were freeze-dried. The molecular weights of extracted 

polysaccharides were evaluated using high-pressure size exclusion chromatography 

(HPSEC). 

4.1.2.4 Preparation of okra extract solutions and emulsions 

Preliminary experiments on the optimum concentration of okra extracts 

towards emulsion stability showed that okra extracts at concentration 1.5% w/v with 

dispersed phase volume fraction φ = 0.2  (n-hexadecane) and under acidic conditions 

(pH 3.0) produce fine emulsions. The aqueous phases of the emulsions were prepared 

by means of dissolving okra extract powders at 1.875% w/v concentration in citric 
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buffer (0.01 M, pH 3.0) at room temperature. Okra extract solutions were 

characterized at 1.875% w/v concentration. For 1.5% w/v emulsion preparation, the 

above aqueous phases were magnetically stirred with hexadecane for 3 min in order to 

produce emulsion pre-mixes with oil volume fraction φ = 0.2 and 1.5% w/v final 

extract concentration in the entire emulsion. This pre-mix was immediately 

homogenized (IKA T18 basic, Ultra-Turrax, Germany) for 1 min. For the 

determination of the long-term stability all emulsions were stored in an incubation 

chamber at 25°C.  

4.1.2.5 Determination of particle droplet distribution 

Droplet size distribution was measured immediately after the emulsion 

preparation and after 5, 10, 20 and 30 days of storage using a Malvern Mastersizer 

2000 (Malvern Instruments Ltd, Worcestershire, UK) laser diffraction particle size 

analyzer using the small volume sample dispersion unit Hydro 2000SM (Malvern Ltd, 

UK). Refractive index of hexadecane and dispersion medium (citric buffer, 10 mM, 

pH 3.0) was set to 1.434 and 1.333, respectively. Consequently, droplet size was 

described using the surface-weighted mean diameter (d3,2) and volume-weighted 

mean diameter (d4,3). The measurements were performed in duplicate in three 

different emulsion preparations yielding in total six replicates for each sample. 

4.1.2.6 Rheological measurements of okra extracts and emulsions  

Rheological properties of samples were measured using a Bohlin Gemini 

200HR Nano rotational rheometer (Malvern Instruments, Malvern, UK) equipped 

with cone-and-plate geometry (40 mm diameter, cone angle 4°) and Peltier 

temperature controller. All measurements were performed in a steady shear mode in 

the range 0.01–1000 s-1 at 25 °C. Viscosity measurements were conducted 
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immediately after preparation of okra extract solutions and emulsions and after 5, 10, 

20 and 30 days of storage. All measurements were performed in duplicate.  

4.1.2.7 Determination of interfacial protein concentration 

Okra extract stabilized o/w emulsions were centrifuged at 2727×g for 5 min 

(Centrifuge 5702, Eppendorf, Hamburg, Germany) in order to separate the dispersed 

phase (oil droplets) from the continuous phase and serum was then carefully collected 

using a syringe. Interfacial protein concentration (Γ, mg m-2) was calculated as the 

protein concentration difference in the extract and serum solutions divided by the 

specific surface area of the oil droplets: 

             (37) 

where specific surface area (SSA), m2/mL was obtained by the result analysis report 

of the instrument. Protein was measured in both solutions and serum of centrifuged 

emulsions according to the Bradford method (Bradford, 1976) using Quick Start 

Bradford Protein Assay kit. Calibration curve was constructed using bovine serum 

albumin (BSA) and absorption was measured at 595 nm. All measurements were 

performed at least six times. 

4.1.2.8 Determination of ζ-potential  

All ζ-potential measurements were performed using a ZetaSizer Nano Series 

ZEN2600 (Malvern Instruments, Malvern, UK) at 25 °C. Emulsions were diluted 

1000 times in citric buffer (0.01 M, pH 3.0) in order to avoid multiple scattering 

effects. All measurements were performed in duplicate immediately after emulsion 

preparation and after 5, 10, 20 and 30 days of storage.  

emulsionin  oil of mLSSA 
protein adsorbed of mg=

×
Γ
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4.1.2.9 Emulsion morphology 

Fluorescence microscopy was performed using an Olympus BX41TF 

microscope (Olympus Optical Co. Ltd, Japan) and an Olympus U-RFL-T-200 burner 

(Olympus Optical Co. Ltd, Japan). The fluorescent dye (Rhodamine B, 0.02%) was 

added into the extract solutions prior to emulsification. Emulsions were placed on a 

glass slide and were consequently covered with a coverslip prior to imaging. Filter 

cubes with wide band UV excitation/emission filter 555/595nm were used to observe 

the protein phase. 

4.1.3 Results and discussion 

4.1.3.1 Emulsification capacity – emulsion stability 

OE4 and OE6 were constituted of three polymer populations that corresponded 

to peak molecular weights of 1400 x103, 50-80 x103 and about 1 x103 g/mol. Overall, 

OE6 was composed of higher Mw polysaccharides than OE4 counterparts (Alba, 

Ritzoulis, Georgiadis & Kontogiorgos, 2013). The capacity of the extracts to act as 

emulsifiers was tested by means of emulsifying n-hexadecane into an aqueous 

medium buffered at pH 3.0 containing 1.875% w/v of extract so as to yield emulsions 

of φ = 0.2 of a nominal extract concentration in the entire emulsion volume of 1.5% 

w/v. In order to quantify the capacity of these emulsifiers towards long-term emulsion 

stability, the droplet size distribution and the average droplet sizes were measured at 

set time intervals. Both extracts showed good emulsification ability, considering that 

the homogenizer was a colloidal mill and not a high-power ultrasonic or high-pressure 

homogenizer, producing emulsions with d32 of about 12 µm in the case of OE4 and 

d32 of about 11 µm in the case of OE6 both of monomodal droplet size distribution 

(Figures 4.1.1a, b, Table 4.1.1).  
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Figure 4.1.1. Particle size distributions of emulsions prepared using a) 1.5% OE4 and 
b) 1.5% OE6. The time development of the distributions is also shown. c) Variations 
in the cube of d0.1 with time for emulsions stabilized by extract OE4 (square) or OE6 
(circle). 
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Although similar in that aspect (stabilization against re-coalescence immediately after 

emulsification), the two emulsifiers differentiated vividly in terms of their efficiency 

towards long-term emulsion stability (protection against droplet size increase over 

time). Emulsions prepared using OE4 presented a marked increase in average droplet 

size, i.e, d3,2 rising from 12.5 µm to 33.4 µm after 5 days of storage and then 41.5 µm 

after 30 days of storage (Table 4.1.1).  

Fluorescence micrographs (Figures 4.1.2a-c) suggest that this measured increase 

in average particle diameter is related to the increase of the average droplet size rather 

than the formation of strong, compact flocs. Moreover, white arrows depict droplets, 

which have shrunk at the expense of the larger ones that is a typical result of Ostwald 

ripening. In the case of OE6, the droplet size distributions (Figure 4.1.1b) and the 

average droplet diameters (Table 4.1.1) remain stable for the duration of the 30 days 

of the experiment, although a gradual shifting of the monomodal particle size 

distribution towards larger sizes (from 11.2 µm to 14.5 µm) was observed (Figure 

4.1.1b). These are in agreement with the fluorescent micrographs (Figures 4.1.2b, d), 

where droplet size was at around 10 µm and do not appear to be strongly flocculated. 

The above suggest that OE6 has good potential to act as an effective emulsifier 

in acidic emulsions such as the ones modeled here. As mentioned in the previous 

paragraphs, a similar shift of the droplet populations towards larger average droplet 

sizes was also observed for OE4. In this case, however, the increase was more 

dramatic where d32 changes from about 12.5 to 33.4 µm. The pattern of change in the 

droplet distributions (Figure 4.1.1a) was a shift of a single monomodal peak towards 

larger sizes, rather than the appearance of a coalescence-generated second peak 

corresponding to a population of larger droplets. 
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Table 4.1.1. Influence of okra extract type and storage time (days) on the average 
droplet diameters (d3,2 and d4,3) and ζ-potential in emulsions formed with 1.5% (w/v) 
OE4 and OE6.a 
 

Sample Time (days) d3,2 (µm) d4,3 (µm) ζ-potential (mV) 

OE4 0 12.5±0.3 19.5±0.5 -10.6±0.2 

 5 33.4±1.3 51.5±0.9 -10.1±0.2 

 10 23.5±1.6 44.1±4.4 -9.3±0.4 

 20 39.0±0.7 57.6±1.7 -8.2±0.4 

 30 41.5±0.1 61.8±0.1 -9.0±0.5 

OE6 0 11.2±0.6 15.0±0.8 -8.4±0.2 

 5 12.4±0.4 20.8±2.9 -8.6±0.2 

 10 10.8±0.8 20.6±4.4 -8.6±0.2 

 20 16.4±4.3 22.6±1.5 -8.5±0.2 

 30 14.5±0.8 25.1±0.3 -6.9±0.4 
aData are means ± SD. Sample OE4 indicates 1.5% w/v emulsion stabilized with 
OE4; sample OE6 indicates 1.5% w/v emulsion stabilized with OE6. Both emulsions 
have ϕ = 0.2, citric buffer pH 3.0. 

 

This gradual shifting of a monomodal size distribution towards higher droplet sizes is 

generally related to emulsion destabilization by an Ostwald ripening mechanism 

(Dickinson, Galazka & Anderson, 1991; McClements, 2005), as opposed to the 

development of  a bimodal droplet distribution over time, which is more 

representative of droplet coalescence (Dickinson, Golding & Povey, 1997). In a 

typical Ostwald ripening scenario, according to the LSW (Lifshitz–Slyozov–Wagner) 

theory (Lifshitz & Slyozov, 1961), the average change in number droplet diameter 

cubed (d0.1
3)  is linear to the time of observation. Figure 4.1.1c presents such a plot for 

both samples, in which d0.1
3 vs. time was linear with the slope for OE4 being steeper 

than OE6. This was a strong indication that Ostwald ripening, rather than coalescence, 

should be considered as the principal coarsening mechanism in the case of these 

emulsions. These observations are in agreement with micrographs of OE4 (Figure 
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4.1.2c), where the diameter of large droplets was several microns, while the smaller 

droplets shrunk significantly (white arrows). The Ostwald ripening as major 

destabilisation mechanism has been previously observed on caseinate-stabilized n-

hexadecane–in–water or surfactant stabilised n-hexadecane- or triglyceride-in-water 

emulsions (Nazarzadeh, Anthonypillai & Sajjadi, 2013; Wooster, Golding & 

Sanguansri, 2008). 

4.1.3.2 Surface coverage 

The question arising from the emulsification tests is related to the difference 

observed between the efficiency of the two extracts and in their mode of action 

towards stabilization. It is commonly argued that the main contribution of such 

extracts towards emulsion stability is related to the presence of co-extracted proteins 

that adsorb at the o/w interface of the droplets. However, since the o/w interface is 

composed of a complex mixture of proteins and polysaccharides, contribution from 

functional groups of the pectin structure such as acetyl and methyl or of smaller 

molecules (ferulic acid moieties) can result to a greater hydrophobicity of okra 

extracts, increasing their surface activity (Leroux et al., 2003). As a first step in 

addressing the above, the amount of protein adsorbed at the hexadecane–water 

interface was determined both in terms of absolute value and also as a percentage of 

the total protein present in each extract (Table 4.1.2).  

In the case of OE4, protein surface coverage of the emulsions was 0.6 mg m-2 

accounting for 33% of the total protein present. In the case of OE6, surface coverage 

was almost twice that value (1.0 mg m-2) close to other surface-active protein 

material, while a far larger proportion (57%) of the total protein was transferred from 

the bulk to the interface. 
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Figure 4.1.2. Fluorescent micrographs of emulsions containing 1.5% w/v (a) OE4 and 
(b) OE6 after 6 hours of preparation (φ = 0.2, 25 °C, citric buffer pH 3.0). The bottom 
micrographs (c) and (d) depict the same emulsions after dilution in buffer (1:1000). 
Scale bars represent 100 µm. 
 
 
 
Table 4.1.2. Interfacial protein concentration Γ (mg m-2), percentage of protein 
adsorbed at the oil-water interface of fresh emulsions and protein content of okra 
extracts. 
 
 
 

 

 

 

 

Sample Γ (mg m-2) Adsorbed protein (%) Protein (% w/v) 

OE4 0.6 ± 0.1 33.3 ± 6.4 2.0 ± 0.3 

OE6 1.0 ± 0.2 57.0 ± 11.9 3.0 ± 0.1 

 

 
 
 
 
 
 
 
 
 
 
Figure 4 

a. b. 

c. d. 
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Although the protein content of extracts was marginally different (Table 4.1.2), 

since the pH of extraction was different (4.0 or 6.0) we expect variations in the 

structure as well as the amino acid composition of the extracted proteins. This 

influences the capacity of the proteins to unfold and arrange at the interface as was 

evidenced from the interfacial protein load measurements that they showed variable 

ability of the proteins to adsorb at the interface. The higher protein coverage can 

account for the differences observed in the emulsification capacity of the two extracts. 

The difference in protein surface coverage (Table 4.1.2) and molecular weight 

distribution of biopolymers can provide some useful insights on the higher Ostwald 

ripening rate observed for OE4 as compared to OE6. It is well-documented that a 

mechanically strong and elastic interfacial layer can provide stability against Ostwald 

ripening . This was also the case for emulsions prepared with OE6 where the interface 

has greater Γ values (Table 4.1.2) and composed of higher Mw of polysaccharides 

than the OE4 counterparts. The above can contribute to a far more rigid interfacial 

network for OE6 that are expected to reduce the rate of Ostwald ripening to a higher 

extent as compared to OE4, allowing for extended stability against this destabilization 

mechanism.  

4.1.3.3 ζ-Potential measurements 

ζ-Potential was measured for fresh okra extract solutions and fresh emulsions 

after 5, 10, 20 and 30 days of storage. ζ-Potential of fresh 1.875% w/v okra extract 

solutions at pH 3.0 (hence continuous phase) was investigated first (data not shown). 

The ζ-potential of solutions containing OE4 or OE6 was found to be -9.6 mV and -8.2 

mV, respectively. The negative value of ζ-potential was attributed to the presence of 

anionic polysaccharides in both okra extracts and was higher in comparison to other 

recently investigated okra extracts that were below -14 mV (Georgiadis, Ritzoulis, 
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Sioura, Kornezou, Vasiliadou & Tsioptsias, 2011). Both fresh emulsions (pH 3.0) 

have manifested negative ζ-potential value with -10.6 mV for OE4 stabilized 

emulsion and -8.4 mV for emulsion composed of OE6 (Table 4.1.1). These values do 

not differ significantly from those of the aqueous solutions used to prepare the 

emulsion indicating first that the interfacial layer has similar composition to that of 

the continuous phase and second that the biopolymers in the extracts do not adsorb 

preferentially at the interface (e.g., proteins over polysaccharides). Generally, it can 

be seen that ζ-potential values for both emulsions was not sufficient to produce a 

strong electrostatic repulsion between the droplets thereby causing an increase in the 

d43 value (Gharsallaoui, Yamauchi, Chambin, Cases & Saurel, 2010). This also 

indicates the contribution of steric repulsion into the emulsion stability. In Table 

4.1.1, ζ-potential values for both emulsions show a marginal tendency to decrease 

over the duration of the experiment that can be attributed to the decrease of droplet 

mobility due to their increase in size (Table 4.1.1) rather than to any actual changes in 

the interfacial charge density.  In order to further explore the microstructural changes 

of emulsions flow behaviour measurements were performed. 

4.1.3.4 Rheology of emulsions 

Figure 4.1.3 shows viscosity curves for fresh okra extract solutions 

(continuous phase viscosity) and emulsions containing OE4 or OE6. At low shear 

rates the viscosity of 1.875% w/v OE6 solutions was about two times greater as 

compared to those OE4 (Figure 4.1.3). Viscosity of polysaccharide solutions is 

governed by various factors, such as molecular mass, stiffness, charge and charge 

density of the chains (Williams & Phillips, 2000). The macromolecular analysis of 

extracts shows that although polymer components of OE6 and OE4 have similar 

molecular weight distributions, OE6 was richer in high-molecular weight 
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components. The differences in viscosity of its solutions should be attributed to the 

effect of the impact of the higher molecular weight of the OE6 components, but also 

to conformational differences of their composing macromolecules, as has been 

previously reported (Kontogiorgos, Margelou, Georgiadis & Ritzoulis, 2012).  

 

 

Figure 4.1.3. Rheological behavior of 1.5% w/v emulsions containing OE4, OE6 and 
rheological behavior of fresh 1.875% w/v okra extract solutions pH 4.0 or 6.0 (25 °C). 
 

The difference in viscosities of the present okra solutions at low shear rates 

could be also attributed to the molecular structure of pectins as it has been reported 

that the hydrophobic acetylated rhamnogalacturonan I (RG-I) moieties increase the 

viscosity to a much higher level than acetylated galacturonic acid (GalA) residues 

(Sengkhamparn, Sagis, de Vries, Schols, Sajjaanantakul & Voragen, 2010). In 

addition, similar remarks can be made due to the differences in degree of methylation 

(DM) of investigated samples. As has been previously reported (Pagan, Ibarz, Llorca 

& Coll, 1999) pectins extracted at higher pH (OE6 in the present investigation) may 

 
 
 
 
 
Figure 5 
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have greater DM and therefore contribute to stronger intermolecular interactions 

under acidic conditions. Finally, the viscosity curves (Figure 4.1.3) of OE4 and OE6 

solutions demonstrate a shear-thinning behaviour that can be attributed to the 

tendency for self-association that is increasing with concentration (Kontogiorgos, 

Margelou, Georgiadis & Ritzoulis, 2012).  

Figure 4.1.4a depicts the rheological behavior of emulsions containing OE4 at 

different storage times. The viscosity of fresh emulsions was found to be significantly 

greater than that of OE4 solutions throughout the shear rate range. This was expected, 

as the presence of oil droplets raises the overall viscosity of a system. Fresh OE6 

emulsions demonstrated higher low-shear viscosity than those containing OE4 (Figure 

4.1.4b) that was consistent with the viscosity data of OE4 and OE6 solutions, (Figure 

4.1.3). In addition, the OE4 and OE6 emulsions have comparable high shear rate 

viscosity, but at low shear rates, the viscosity of OE6 is two orders of magnitude 

higher than that of OE4 (Figures 4.1.4a, b). This should be attributed to the higher 

component of high molecular weight polysaccharides in OE6 as compared to OE4. 

The above suggest that at least OE6 was involved to some sort of reversible 

flocculation process as can be seen in Figure 4.1.2b, before the droplets become 

isolated after dilution. This weak flocculation could originate either from weak 

depletion due to unadsorbed macromolecules from the extract or from bridging of 

droplets due to interactions of the interfacial macromolecules. The tendency for self-

association noticed in the solutions could well also apply to the hydrocolloids 

adsorbed at adjacent droplets, leading to a weakly flocculated droplet network. By 

comparing viscosities of fresh, 5 and 30 days old emulsions, it can be noticed that the 

latter demonstrate a significant increase in viscosity in the low shear rate regime (<1 

s-1). The effect was far more pronounced in the case of OE4-stabilized emulsions. 
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Figure 4.1.4. (a): Influence of ageing (0-30 days) on the rheological behavior of 1.5% 
w/v emulsion containing OE4 and rheological behavior of fresh 1.875% w/v okra 
extract solution pH 4.0 (25 °C), (b): Influence of ageing (0-30 days) on the 
rheological behavior of 1.5% w/v emulsion containing OE6 and rheological behavior 
of fresh 1.875% w/v okra extract solution pH 6.0 (25 °C). 

 

It was also observed that high-shear rate viscosity of emulsions during aging was 

comparable for both extracts (5–6 mPas), suggesting that the floc structures are 

almost disrupted at high shear rates and viscosity in such stresses depends on the 

rheology of the continuous phase. This increase in viscosity should not be related to 

a) 

 
 
 
b) 

 
 
 
Figure 6 
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existing flocculated structures, as such would tend to rearrange to produce more 

compact flocs, bringing about an overall reduction in viscosity. In the present case, 

the most plausible explanation is desorption of adsorbed polysaccharide and protein 

from the interface due to the reduction in free surface area, as the average droplet 

increases (Table 4.1.1). Such fresh bulk macromolecules would both increase the bulk 

phase viscosity itself and also enhance the depletion potential, strengthening any 

depletion flocculation. Therefore, the rheological data are in complete agreement with 

the results of the other measurements, such as alterations in the volume-weighted 

average diameters (d4,3) and particle size distributions between day 5 and 30, 

especially in OE4.  

4.1.4 Conclusions 

Extraction protocols have considerably affected the physiochemical properties 

of okra extracts and had an effect on physical stability resulting emulsions. Both okra 

extracts showed good emulsification capacity, producing fine emulsions but the two 

emulsifiers differentiated significantly in terms of their efficiency towards long-term 

stabilization against coarsening. Emulsions containing OE6 were found to be stable as 

evidenced by particle size distribution measurements during the 30 days storage trial. 

Those composed of OE4 were more susceptible to coarsening mechanisms resulting 

in droplets of greater average size. Ostwald ripening was identified to be one of the 

major destabilization mechanisms particularly for emulsions prepared with OE4. 

Overall, OE6 demonstrated higher surface activity at the o/w interface and its 

viscosity was found to be two times greater in comparison to OE4. Consequently, 

emulsions containing OE6 manifested greater stability than the OE4 counterparts.  
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4.2 EFFECT OF ISOLATION CONDITIONS ON INTERFACIAL ACTIVITY 

OF OKRA BIOPOLYMERS.  

4.2.1 Introduction 

Like many other biopolymers, the physicochemical properties of okra 

polysaccharides are amenable to interdisciplinary applications between the food and 

pharmaceutical industry in both dry and hydrated systems. In the previous section, 

good emulsion stabilising properties of okra extracts in acidic environments have 

been demonstrated. The emulsifying capacity of okra polysaccharides can be utilized 

in the food industry particularly in fruit drinks or acidified dairy products. The 

interfacial activity of okra polysaccharides may also find applications in emulsion-

based flavour or drug delivery systems. However, such functional properties are 

controlled by the extraction protocol that influences the backbone composition of the 

isolated biopolymer (Chapter 2). Therefore, the aim of this part of investigation was 

to fabricate n-hexadecane-in-water emulsions stabilized with OP6 that was isolated 

using the extraction protocol presented in Chapter 2 and evaluate its emulsifying 

capacity.  

4.2.2 Materials and methods 

4.2.2.1 Isolation of okra pectin 

Isolation of okra pectin was performed at pH 6.0 and detailed description of 

procedure was presented in Chapter 2. Okra pectin sample was labeled as OP6. 

4.2.2.3 Preparation of emulsions 

O/W emulsions with OP6 at concentration 0.625% w/v with dispersed-phase (n-

hexadecane) volume fraction φ = 0.2 and under acidic conditions (pH 3.0) were 

prepared in accordance to emulsification procedure previously applied for OE4/OE6 
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stabilized emulsions and described in detail in subchapter 4.1, section 4.1.2.4. For the 

determination of the long-term stability, all emulsions were stored in an incubation 

chamber at 25°C.  

4.2.2.4 Determination of particle droplet size distribution 

Droplet size distribution was measured immediately after the emulsion 

preparation and after 5, and 30 days of storage using the same protocol described in 

section 4.1.2.5.  

4.2.2.5 Determination of ζ-potential 

All ζ-potential measurements were performed according to protocol described 

in section 4.1.2.8. All measurements were performed in duplicate immediately after 

emulsion preparation and after 5, 15, and 30 days of storage. 

4.2.2.6 Rheological measurements of okra extracts and emulsions 

Rheological properties of samples were measured using experimental conditions 

described in section 4.1.2.6. Viscosity measurements were conducted immediately 

after preparation of okra extract solutions and emulsions and after 5 and 30 days of 

storage. All measurements were performed in duplicate.  

4.2.3 Results and discussion 

4.2.3.1 Emulsification capacity of OP6 

The emulsification capacity of OP6 was examined at pH 3.0 in order to 

investigate the emulsification properties of okra extracts in acidic food matrices and 

their possible stability in the acidic environment of the stomach. n-Hexadecane (φ = 

0.2) was dispersed in okra aqueous solution (0.625% w/v) to obtain emulsions of a 

nominal extract concentration in the entire emulsion volume of 0.5% w/v. 
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Quantification of emulsification capacity in relation to long-term emulsion stability 

proceeds with measurement of the droplet size distribution and the average droplet 

sizes. Fresh n-hexadecane-in-water emulsions stabilized with OP6 demonstrated 

droplet mean diameter (d3,2) about 6 µm (Figure 4.2.1, Table 4.2.1) indicating that 

finer emulsions were fabricated with OP6 than those that have been previously 

prepared with OE6 (~11 µm, described in section 4.1). This can be attributed to either 

changes in the fine structure of pectins due to different extraction procedures (e.g., 

degree of methylation, presence of acetyl groups, MW) or to higher protein content in 

the extracts (Chapter 2, Table 2.1).  

 

Table 4.2.1. Influence of ageing on the surface weighted average droplet size (d32), 
(d4,3) and ζ-potential in emulsions formed with 0.5% OP6. 
 

Time (days) d3,2 (µm) d4,3 (µm) ζ-potential (mV) 

0 5.9±1.4 11.2±2.5 -19.3±0.8 

5 23.5±0.9 89.8±16.0 -21.7±0.1 

15 24.2±1.6 91.5±5.2 -21.4±0.5 

30 25.9±3.8 100.0±17.1 -24.0±0.4 

 

The average droplet size of the emulsions increased during ageing with d3,2 

rising from ~ 6 µm to ~ 23 µm after 5 days and staying relatively constant after 30 

days of storage (~ 25 µm). The horizontal shift of the major peak to larger droplet 

sizes (Figure 4.2.1) instead of the emergence of a coalescence-generated second peak 

is usually attributed to an Ostwald ripening coarsening mechanism (Dickinson, 

Galazka & Anderson, 1991; McClements, 2005). Droplets coalescence generally 

contributes to the development of a bimodal curve or broadening of monomodal curve 

on ageing, but Ostwald ripening leads to a sharpening of particle size distribution 

curves, something that can be also observed in Figure 4.2.1 (Dickinson, Golding & 
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Povey, 1997). Ostwald ripening is significant in polydisperse emulsions containing 

oils with some solubility in the continuous phase and the rate-limiting step of the 

growth rate is the diffusion of the dissolved droplets through the bulk (Taylor, 1995). 

Hydrocarbons such as n-hexadecane are poorly soluble in water, something that may 

hinder development of Ostwald ripening. However, transport of oil through the 

aqueous phase assisted by the presence of surface-active impurities in the extract 

(Kabalnov, 1994; McClements, Dungan, German & Kinsella, 1992) or enhancement 

of depletion effects due to the presence of unadsorbed biopolymers (Djerdjev & 

Beattie, 2008) are possible pathways to Ostwald ripening. Gradual reduction of the 

small peak on ageing in the fresh emulsions (Figure 4.2.1) where the small droplets 

are incorporated into the major peak may also indicate the possibility of the 

occurrence of depletion flocculation. It has been also reported that in the systems 

where two distinct instability processes may be distinguished, coalescence occurs 

when droplets are not completely covered with surface-active biopolymer whereas 

Ostwald ripening becomes dominant only at high biopolymer concentrations 

(Nazarzadeh, Anthonypillai, & Sajjadi, 2013).  

ζ-Potential was measured for fresh okra extract solutions and emulsions after 0 

(fresh), 5, 15 and 30 days of storage (Table 4.2.1). The ζ-potential of OP6 solutions 

was −26.3 mV showing that continuous phase carried negative charge at pH 3.0. Most 

proteins associated with food components usually have pI in the range of ~ 4.0. 

Below pI proteins are positively charged but the fact that solutions carry negative 

charge indicates that the electrical properties are dominated by the presence of pectins 

rather than proteins that may be present as contaminants during the extraction. 
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Figure 4.2.1. Particle size distributions of 0.5% w/v emulsions stabilized with OP6. 
The time development of the distributions is also shown. 
 
 

Similar behavior has been observed with mixed pectin solutions in the 

presence of β-lactoglobulin where pectins controlled the charge of the solutions (Cho, 

Decker & McClements, 2010). This value was lower in comparison to those obtained 

for okra extract investigated in subchapter 4.1 indicating the influence of extraction 

procedures on the molecular characteristics of pectins. ζ-Potential values of fresh 

emulsions (-19.3 mV) did not depart significantly from that of the continuous phase 

indicating that the droplet interface has similar electrical properties with the bulk. 

These observations suggest the presence of pectin at the interface. With ageing 

surface charge does not change appreciably and after thirty days of storage increases 

to -24.0 mV.  

4.2.3.2 Flow behaviour of okra pectin solutions and emulsions 

        Figure 4.2.2 shows viscosity curves for continuous phase and emulsions 

containing OP6. Continuous phase shows weak pseudoplastic behaviour with the 

onset becoming apparent only at high shear rates (>100 s-1). The viscosity of freshly 

prepared emulsions was greater than that of the continuous phase throughout the shear 
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range (Figure 4.2.2). This was anticipated, as the presence of oil droplets increases the 

viscosity of dispersions (McClements, 1999). Emulsions did not show appreciable 

changes in the viscosity curves with storage time (30 days) and they generally 

followed the flow behavior of the continuous phase. The absence of a significant 

shear-thinning pattern in the presence of droplets indicates that emulsions do not 

flocculate during ageing. At pH 3 droplets have negative ζ-potential (-19.3 mV) 

mostly due to the dissociation of carboxyl groups of galacturonic acid. This renders 

negative charge to pectins that also results in extended conformation at the 

hydrocarbon-water interface. This weakly negative surface potential along with 

possible steric hindrance increases the repulsion between the droplets thus impeding 

substantial droplet flocculation. Similar behaviour has been observed with okra 

extract-stabilized emulsions prepared at pH 3.0 in subchapter 4.1 where samples also 

showed weak flocculation with ageing. Therefore, it can be assumed that depletion 

flocculation is improbable pathway to Ostwald ripening in the investigated system as 

opposed to the surfactant-stabilized octane- and decane–in–water emulsions (Djerdjev 

& Beattie, 2008). Moreover, in the absence of flocculation coalescence in emulsions 

leads to a reduction of their viscosity. Since the changes in viscosities at low shear 

rates of fresh, 5 and 30 days old emulsions were found negligible, the occurrence of 

coalescence cannot be considered as a major destabilization mechanism.  

Particle size distribution and rheological data suggest that Ostwald ripening is 

a probable mechanism of coarsening in the investigated systems. Ostwald ripening 

was previously observed for biopolymer-stabilised alkane–in–water emulsions as 

demonstrated in subchapter 4.1 or surfactant-stabilised n-hexadecane- or triglyceride-

in-water emulsions (Nazarzadeh, Anthonypillai & Sajjadi, 2013; Wooster, Golding & 

Sanguansri, 2008). 
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Figure 4.2.2. Influence of aging (0–30 days) on the rheological behaviour of 0.5% 
w/v emulsion containing OP6 and rheological behaviour of fresh 0.625% w/v OP6 
solution (25 °C). 
 

This behaviour shows the great potential of okra extracts to act as emulsifiers in 

acidic environments and at the same time providing emulsions with relatively low 

viscosity (<0.1 Pas). 

4.2.4 Conclusions 

Okra biopolymers isolated using hot aqueous extraction at pH 6.0 also showed 

potential as emulsifiers in acidic environments producing fine emulsions with good 

stability against coarsening. Flow behaviour and particle size distributions of OP6 

stabilized emulsions demonstrated that modification of extraction protocol results in 

biopolymers with distinct physicochemical structures and tuning of these 

characteristics allows the design of emulsion formulations for specific applications.  

Such a property could be exploited in delivering emulsified hydrophobic drugs or 

nutrients through the acidic environment of stomach. Overall, the physicochemical 

attributes of pectins extracted from okra seem to be promising for uses in drug or 

nutrient encapsulation and delivery.  
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4.3 SURFACE ENGINEERING OF O/W INTERFACES WITH OKRA 

PECTIN  

4.3.1 Introduction 

Industrial convergence between food and pharma has gathered pace in the last 

five years with the demand for controlled and targeted delivery systems for nutrients, 

supplements and drugs of particular focus for disease prevention and treatment. Food-

grade emulsions are increasingly being utilized for encapsulating and delivering 

functional food ingredients and nutraceuticals (Abbas, Hayat, Karangwa, Bashari & 

Zhang, 2013). A wide variety of lipophilic food bioactives, including flavors, 

vitamins (D, E), carotenoids, flavonoids, phytosrerols and polyunsaturated lipids have 

been encapsulated in colloidal systems (Guttoff, Saberi & McClements, 2015; Mayer, 

Weiss & McClements, 2013; McClements, 2012; McClements, Decker, Park & 

Weiss, 2009; McClements & Rao, 2011). High hydrophobicity and low solubility in 

water of these bioactive compounds limit their utilization in aqueous-based foods and 

beverages. Emulsion technology is particularly suited for the design and fabrication of 

delivery systems in order to resolve this issue. Emulsions as delivery vehicles allow 

sustained release and protection from degradation during the storage of lipophilic 

bioactive components incorporated into the hydrophobic core of the lipid droplets. 

Furthermore, protection of the bioactive when loaded in the emulsion internal phase 

from environmental conditions (e.g., gastric fluids) is another advantage that may 

result in more efficient delivery of bioactive.  

Emulsions are most typically fabricated with proteins, low molecular weight 

surfactants and surface-active carbohydrate polymers. Most protein is easily digested 

within the gastrointestinal tract and is often highly sensitive to the alterations in pH, 

ionic strength, and temperature resulting in changes of surface composition of oil 
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droplets and modification of the physical properties of the colloidal system (Joye & 

McClements, 2014). This causes the droplets that arrive in the small intestines to be 

different from those that were ingested. Polysaccharides such as 

hydroxypropylmethylcellulose, guar gum and xanthan gum have been effectively 

utilized as delivery vehicles due to the their biocompatibility, biodegradability, and 

high potential to be modified to achieve the required properties (Fathi, Martín & 

McClements, 2014). Pectin is a linear anionic polysaccharide at high pH that is 

resistant to enzymatic digestion in the mouth and stomach and therefore makes it 

suitable for delivery of acid sensitive bioactives (Sinha & Kumria, 2001). A number 

of studies have also shown that pectin can be used to form nano-scale particles 

suitable for delivery of bioactive ingredients (Yu, Cao, Zhang, Zhou, Cheng & Zhang, 

2009).  

In the previous sections 4.1 and 4.2, the effect of extraction protocol on 

physicochemical properties of isolated biopolymers (crude okra extract and okra 

pectin) has been established and the emulsifying capacity of these carbohydrate 

polymers has been demonstrated in model n-hexadecane-in-water emulsions at pH 

3.0. That part of the investigation mainly focused on fabrication of okra pectin 

stabilized emulsions with colloidal mill and resulted in particle mean diameters (d3,2) 

in the range of 5 – 11 µm. Changes in particle mean diameters lead to the variations in 

functional performance of emulsion-based delivery systems. The smaller particle 

sizes are typically associated with higher solubility of emulsion and kinetic stability to 

mechanisms of coarsening determined by gravity and/or droplet dimensions. 

Moreover, it has been reported that the bioavailability and encapsulation efficiency of 

bioactive compounds incorporated in the colloid system tends to increase with 

reduction in particle sizes (McClements & Rao, 2011). 
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Therefore, in this part of investigation, we aim to fabricate okra pectin 

stabilized emulsions of smaller droplet sizes using ultrasound-assisted emulsification 

at lower pH values (pH 2.0), evaluate the fundamental mechanisms that lie behind the 

functionality of this biopolymer and identify the suitability of emulsions to act as a 

delivery agents for hydrophobic compounds (e.g., drugs, flavors) in highly acidic 

environments.  

4.3.2 Materials and Methods  

4.3.2.1 Materials 

Pectin powders isolated in Chapter 2 and labeled as OP2 and OP6 were used in 

this part of investigation. Sodium azide, citric acid monohydrate, sodium citrate 

dihydrate, phenol, n-hexane, n-decane, n-hexadecane, n-dodecane, formaldehyde (37-

40%), 0.01M phosphate buffer saline (PBS) (all analytical grade reagents) were 

obtained from Sigma-Aldrich (St Louis, MO). Anti-homogalacturonan antibody 

LM19 and LM4 (non-pectin specific antibody) were supplied by Plant Probes, Leeds, 

United Kingdom. De-ionized water was used throughout the extraction experiments. 

The measurements were performed in duplicates in three different emulsion 

preparations yielding in total six replicates for each sample.  

4.3.2.2 Preparation of okra emulsions 

Preliminary experiments on the optimum concentration of okra pectin towards 

emulsion stability showed that fine emulsions are produced at pectin concentration of 

1.5% w/v with dispersed phase volume fraction φ = 0.1 (n-dodecane or n-hexadecane) 

and under acidic conditions (pH 2.0). The aqueous phases of the emulsions were 

prepared by means of dissolving okra pectin powders at 1.67% w/v concentration in 

citric buffer (0.01 M, pH 2.0) at room temperature. Emulsions were fabricated in two 
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stages: a) pre-emulsions were obtained with a high-speed (IKA T18 basic, Ultra-

Turrax, Germany) homogenizer for 2 min and, b) the coarse emulsions were then 

further emulsified using an ultrasound device (Hielscher Ultrasonics, Model UP 

100H) equipped with 7 mm diameter MS7 tip immersed (two-thirds) in the coarse 

emulsion and operating at 30 kHz. An ultrasonic treatment of emulsions was 

performed for 40 s with pulsed ultrasound (30% per second) at 100% amplitude 

(corresponding to ultrasonic wave of 125 µm). These sonication conditions were 

chosen in accordance to the preliminary data that showed the absence of “over 

processing” of pectin-stabilized emulsions. All experiments were performed in 8 mL 

sample tubes containing 7.5 mL of the pre-emulsion. Emulsions were placed in the 

temperature-cooling bath, keeping the sample temperature at 25° C.  

4.3.2.3 Determination of droplet size distribution 

Droplet size distribution was measured immediately after the emulsion 

preparation and after 1 hour followed by measurements after 1, 10 and 30 days of 

storage using the same protocol described in section 4.1.2.5. Refractive indexes of n-

dodecane, n-hexadecane and dispersion medium citric buffer (10 mM, pH 2.0) were 

set to 1.421, 1.434 and 1.333, respectively. Consequently, droplet size was described 

using the surface-weighted mean diameter (d3,2) and volume-weighted mean diameter 

(d4,3). The development of droplet sizes was monitored at 5 min increments for 1h 

using d0.1 diameters. The width of the droplet distributions was expressed using span 

((d0.9-d0.1)/d0.5) that was obtained from the result analysis report of the instrument.  

4.3.2.4 Interfacial composition analysis 

Interfacial composition analysis was performed by determining protein, pectin 

and acetyl contents at the of oil-water interface. Okra pectin (OP2 and OP6) stabilized 
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o/w emulsions were centrifuged at 60000×g for 1 h (Optima L-100K ultracentrifuge, 

rotor 50.2 Ti, Beckman Coulter, USA) until equilibrium phase separation conditions 

were achieved and serum was collected using a syringe. The interfacial composition 

was evaluated as the protein, pectin or acetyl concentration difference between the 

pectin solutions (i.e., aqueous phase before emulsification) and serum solutions. 

Protein was measured with Bradford analysis using Quick StartBradford Protein 

Assay kit (Bradford, 1976). The quantification of adsorbed pectin was expressed as 

determination of total carbohydrates in pectin and serum solutions using the phenol-

sulphuric method (Dubois, Gilles, Hamilton, Rebers & Smith, 1956). The acetyl 

content was determined with the hydroxamic acid method (McComb & McCready, 

1957). Interfacial protein and pectin concentrations (Γ, mg m-2) were calculated as 

protein or pectin concentration difference between the biopolymer and serum 

solutions divided by the specific surface area (SSA) of the oil droplets: 

                                                 (38) 

where specific surface area (SSA), m2/mL was obtained by the result analysis report 

of the instrument.  

Surface (pectin solution/air) tensions of OP2 and OP6 solutions were 

measured using tensiometer (Leybold Didactic GMBH, Hürth, Germany) equipped 

with 60 mm diameter ring. Deionised water was used as a reference.  

4.3.2.5 Rheological characterization of okra pectin solutions and emulsions 

Rheological properties of samples were measured using the same protocol 

described in section 4.1.2.6. Viscosity measurements were conducted immediately 

after preparation of okra extract solutions and emulsions and after 1, 10 and 30 days 

of storage. All measurements were performed in duplicate.  

Γ =
mg of adsorbed protein or pectin
SSA ×  mL of alkane in emulsion
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4.3.2.6 Determination and titration of ζ-potential 

All ζ-potential measurements were performed using protocol previously 

described in section 4.1.2.8. The ζ-potential titration of 1.67% w/v OP2 or OP6 

solutions and 1.5% w/v emulsions was conducted under the same conditions 

described in Chapter 3, section 3.2.6.  

4.3.2.7 Pectin immunolocalization at the o/w interface 

Anti-homogalacturonan antibody LM19 (Plant Probes, Leeds, United 

Kingdom) was used to localize pectin at the alkane-water interface and LM4 (non-

pectin specific antibody) was used as a negative control. A set of OP2 aqueous phases 

(1.67% w/v) and OP2 stabilized n-dodecane emulsions (1.5% w/v) were prepared in 

phosphate-buffered saline (0.01M PBS, pH 7.4). A drop of OP2 solution was spread 

out on the microscopy glass with a spatula and dried using Bunsen burner. Dried 

sample was fixed using 10% formalin solution buffered in 0.01M PBS. Following the 

washing step, samples were blocked with 5% BSA (bovine serum albumin) in 0.01M 

PBS. The immunolabeling of pectic epitopes started with an incubation with primary 

antibody (LM19 was used as 5-fold dilutions of hybridoma supernatant) overnight at 

4°C followed by a washing step in PBS. LM19 was visualized using secondary 

labelling with anti-rat IgG coupled to fluorescein isothiocyanate  (FITC) (Sigma-

Aldrich, St. Louis, USA). The secondary antibody was diluted 1:5 in PBS and 

incubation was performed for 2 h at room temperature.  

In order to use the probes for specific in situ immunolocalisation of pectin at 

the alkane-water interface, 1.5% w/v coarse OP2 stabilized emulsions were prepared 

using high-speed homogenizer (IKA T18 basic, Ultra-Turrax, Germany) for 2 min. 

Monoclonal antibody LM19 (100 µL, diluted 1:5) was added to 0.5 mL of coarse 

emulsion and left overnight at 4°C.  For localizing pectin at the o/w interface, 
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secondary antibody IgG-FITC (100 µL, diluted 1:5) was added and emulsions were 

incubated for 2 h at room temperature. Emulsions were centrifuged at 14100×g for 25 

min (MiniSpin Plus, Eppendorf, Hamburg, Germany) in order to separate creamed 

layer from serum. Diluted creamed layer was analysed using microscopy. 

Immunostained emulsion droplets and OP2 solutions were visualized using an 

Olympus IX70 microscope (Olympus, Optical Co. Ltd, Tokyo, Japan) equipped with 

epiflourescence illumination and using 10x and 40x oil immersion objectives. FITC 

was excited at 490 nm and emitted signal collected between 528 and 538 nm. Image 

acquisition and analysis were performed with SoftWoRx software (Applied precision 

Inc.).  

4.3.3. Results and discussion 

4.3.3.1 Emulsifying capacity of okra pectin and ageing of emulsions 

n-Hexadecane–in–water emulsions (1.5% w/v) were stabilized by either okra 

pectin isolated at pH 2.0 (OP2) or okra pectin isolated at pH 6.0 (OP6). Change in 

particle size distributions (PSD) and the average droplet sizes were monitored for a 

period of 30 days (Table 4.3.1). The temporal evolution of the particle size 

distributions for OP2 and OP6 stabilized emulsions containing n-hexadecane are 

presented in Figures 4.3.1a and 4.3.2a. Both samples demonstrated good 

emulsification capacity producing emulsions with d3,2 in the range of 1.7 – 3.0 µm 

(Table 4.3.1). Figure 4.3.3a shows that fresh emulsions stabilized with OP2 have 

monomodal narrow droplet size distributions with span ~ 1.8 (Table 4.3.1). On the 

contrary, emulsions fabricated with OP6 demonstrated bimodal and broader particle 

size distributions as indicated by d3,2 (3.0 µm), d4,3 (7.3 µm), and span ( ~ 3.0). The 

presence of a second peak composed of population of larger droplets in emulsion 

stabilized with OP6 could be explained by the disruption of just those oil droplets that 
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are close to the probe due to the insufficient mixing caused by ultrasound. It has been 

also previously reported that high viscosity of the continuous phase restricts the 

induction of cavitation phenomena (Camino, Sánchez, Rodríguez Patino & Pilosof, 

2011). These factors contribute to the low emulsification uniformity in case of OP6- 

stabilized emulsions. The behaviour of bimodal dispersed systems, when referring to 

the mechanisms of instability, is typically governed by the presence of higher droplet 

sizes, even if they are present as a small proportion of the total number of droplets in 

emulsion (McClements, 1999). Therefore, it is expected that population of larger 

droplets in OP6-stabilized emulsions may result in emergence of coalescence as the 

predominant destabilisation mechanism. However, Figure 4.3.1a shows that 

emulsions stabilized with OP6 do not exhibit any appreciable development of 

coalescence–induced second peak with time and any appreciable degradation over a 

period of 30 days. These observations may indicate the formation of mechanically 

rigid interfacial layer in OP6-stabilized emulsions that restricts coalescence. The 

width of distributions (span ~ 3.0 – 2.4) and droplet size (d4,3 ~ 7.3  – 11.4 µm) of 

OP6 stabilized emulsions did not show appreciable changes throughout the ageing 

period, but the maximum in the distribution slightly shifted with time towards larger 

average droplet sizes indicating that the colloidal system may evolve under the effect 

of Ostwald ripening (Figure 4.3.1a). Coalescence events typically increase the 

polydispersity and therefore accelerate the rate of coarsening (Schmitt, Cattelet & 

Leal-Calderon, 2004), something that can be observed in OP2-stabilized emulsions. 

Figure 4.3.2a shows that emulsions prepared with OP2 destabilise rapidly and 

demonstrate a marked increase in average droplet size, i.e., d4,3 rising from 2.4 µm to 

10.0 µm after 1 hour of storage. 
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Table 4.3.1. Influence of okra pectin type and storage time on the average droplet 
diameters (d3,2 and d4,3) and span in n-dodecane and n-hexadecane emulsions formed 
with 1.5% (w/v) OP2 and OP6.  

a Data are means ± SD. Sample OP2 indicates 1.5% w/v emulsion stabilized with 
OP2; sample OP6 indicates 1.5% w/v emulsion stabilized with OP6. Both emulsions 
have ϕ = 0.1, pH 2.0.  
 

 

Considerable destabilisation of emulsion occurs after 1 day of storage as evidenced by 

the broader PSD curve (span ~ 7.5) and d4,3 (34.5 µm) (Table 4.3.1, Figure 4.3.2a). At 

the later point, the distribution becomes polymodal followed by the formation of a 

new mode at large droplet mean diameters (d4,3 around 132.7 µm) after 30 days of 

ageing. Polymodal nature of PSD curve on ageing shows that coalescence could play 

a major role in determining droplet instability in OP2-stabilized emulsions.  

Table 4.3.1 and Figures 4.3.1b, 4.3.2b demonstrate that droplet mean 

diameters (d3,2 and d4,3), shape and width of PSD of n-dodecane-in-water OP2 and 

OP6-stabilized emulsions are comparable to those observed in the corresponding n-

hexadecane-in-water emulsions, but the sharpening of PSD curve is more pronounced 

and in accordance to alkane solubility values. 

 

Sample Time d3,2 (µm) d4,3 (µm) Span 

  C12H26 C16H34 C12H26 C16H34 C12H26 C16H34 

 OP2 fresh 1.8 ± 0.1 1.7 ± 0.1 2.6 ± 0.1 2.4 ± 0.1 2.0 ± 0.0 1.8 ± 0.0 

1 hour 5.1 ± 0.2 4.1 ± 0.1 11.9 ± 0.4 10.0 ± 0.4 2.5 ± 0.0 2.7 ± 0.0 

1day 5.7 ± 0.1 4.6 ± 0.2 52.2 ± 1.4 34.5 ± 1.7 7.0 ± 0.2 7.5 ± 0.2 

10 days 7.0 ± 1.3 5.5 ± 1.1 122.5±38.2 107.9±21.2 11.0 ± 1.6 11.4 ± 2.6 

30 days 8.7 ± 1.3 6.0 ± 0.2 162.4±30.8 132.7±0.9 3.0 ± 0.3 3.6 ± 0.2 

        

OP6 fresh 2.8 ± 0.0 3.0 ± 0.3 7.6 ± 2.6 7.3 ± 1.9 2.9 ± 0.5 3.0 ± 0.1 

1 hour 3.3 ± 0.1 3.1 ± 0.1 11.2  ± 2.6 7.4 ± 1.1 2.7 ± 0.1 2.5 ± 0.1 

1day 5.0  ± 0.1 3.2 ± 0.0 11.8 ± 0.9 7.7 ± 0.4 2.2 ± 0.2 2.4 ± 0.0 

10 days 9.1 ± 0.2 4.1 ± 4.1 19.2 ± 1.3 10.5 ± 2.1 2.2 ± 0.1 2.4 ± 0.3 

30 days 8.9 ± 0.2 4.5 ± 0.4 20.7 ± 0.9 11.4 ± 1.2 2.2 ± 0.1 2.4 ± 0.1 
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Figure 4.3.1. Particle size distributions of a) n-hexadecane-in-water emulsion with 
OP6 and b) n-dodecane-in-water emulsion with OP6 at 25 °C.  
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Figure 4.3.2. Particle size distributions of a) n-hexadecane-in-water emulsion with 
OP2 and b) n-dodecane-in-water emulsion with OP2 at 25°C. 
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The macroscopic examination of n-hexadecane-in-water emulsions on storage also 

denotes the variations in interfacial properties of both biopolymers. Figure 4.3.3. 

demonstrates that emulsions stabilized with OP2 show creaming after 1 day of storage 

whereas OP6 counterpart remains stable. Furthermore, Figures 4.3.3 also shows the 

formation of macroscopic n-hexadecane layer in OP2 stabilized emulsions after 30 

days of storage.  

It is critical to determine the mechanisms of emulsions coarsening 

(coalescence or Ostwald ripening) in order to construct effective strategies to improve 

emulsions stability on ageing. Therefore, further analysis was performed in order to 

assess the magnitude of coalescence and Ostwald ripening events in OP2 and OP6 

stabilized emulsions that is described in the next section. 

4.3.3.2 Examination of destabilisation mechanisms  

The susceptibility of droplets to Ostwald ripening can be described by the 

LSW (Lifshitz–Slyozov–Wagner) model that is based on the assumption that 

diffusion of oil through the water determines the overall ripening rate (Lifshitz & 

Slyozov, 1961). In a typical Ostwald ripening scenario, at asymptotically long times, 

the change in number droplet diameter cubed (d0.1)3 is a linear function of time. 

Brownian motion-induced coalescence also results in linear correlation of droplet 

growth rate as a function of time (Wang & Davis, 1993). Brownian motion is not 

expected to influence the destabilisation mechanisms of the dispersion of the present 

study due to the predominance of gravity as evidenced by droplet size (1.7 – 3.0 µm). 

The destabilisation of emulsions may occur due to the interplay between Ostwald 

ripening and coalescence (Schmitt, Cattelet & Leal-Calderon, 2004). The examination 

of coarsening mechanisms is commonly performed under conditions where one type 

of instability dominates the other in order to monitor its progress more accurately. 
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Therefore, OP2 and OP6 stabilized emulsions were fabricated at the optimum 

biopolymer concentrations (1.5 % w/v). The preliminary data have shown that 

increase of okra pectin concentration up to ~ 2.0 % w/v did not result in further 

reduction of droplet diameter indicating saturation of the n-hexadecane-in-water 

interface. A sufficient surface coverage of droplets with emulsifier ensures that 

coalescence does not dominate the destabilisation kinetics and therefore enables to 

monitor Ostwald ripening without coalescence interference at early stages of the 

coarsening process.  

Plots of (d0.1)3 vs. time were constructed (Figure 4.3.5) to evaluate whether 

droplet growth could be accounted for Ostwald ripening or coalescence. The change 

in (d0.1)3 with time was monitored for 1 h with 5 min intervals due to the fast kinetics 

of destabilisation that typically occurs at the early stages of storage. The n-

hexadecane-in-water emulsions fabricated with both OP2 and OP6 demonstrated a 

linear increase of (d0.1)3 with time. OP2-stabilised n-hexadecane-in-water emulsions 

exhibited considerably steeper slope than their OP6 counterparts indicating higher 

rate of droplet growth. In general, droplet stability increases to Ostwald ripening with 

size due to the decrease in Laplace pressure and therefore solubility. Slower 

coarsening kinetics of OP6-stabilized emulsions (as long as Ostwald ripening is 

concerned) could be attributed to the larger droplet mean diameters (d3,2 ~2.9 µm) as 

opposed to the OP2-stabilized emulsions with d3,2 ~1.8 µm and consequently higher 

solubility according to a process described by Kelvin equation. 
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Figure 4.3.3. Macroscopic examination of n-hexadecane-in-water emulsions stored at 
25°C.  
 

Moreover, the temporal evolution of droplet size distributions in Figure 4.3.4 

shows that OP6-stabilized n-hexadecane-in-water emulsions were stable to droplet 

growth throughout the observation period (1 h) i.e., there was a modest change in 

droplet size distributions or mean droplet diameter with time. Therefore, neither 

Ostwald ripening nor coalescence had an appreciable influence on the stability of 

these emulsions during 1 hour of observation. In contrast, PSD curve of OP2-

stabilized emulsions further corroborated the presence of faster coarsening kinetics as 

indicated by the increase in droplet mean diameters and considerable broadening of 

droplet distribution (Figure 4.3.4b). 
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Figure 4.3.4. Time evolution of n-hexadecane-in-water emulsions stabilized with a) 
OP6 and b) OP2 at 25°C for 1 h (0-60 min) with 5 min increments.  
 
 
This behaviour is typically attributed to the development of coalescence rather than 

Ostwald ripening that typically results in sharpening of PSD curves. Moreover, the 

differences in the shape of PSD curves (Figure 4.3.4) of OP2 and OP6 stabilized 

emulsions suggest that colloidal systems evolve under different mechanisms of 
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destabilisation and aforementioned difference in droplet size have negligible effect on 

the overall stability of colloidal system.  

The linearity of (d0.1)3 vs. time plots cannot be solely utilized in assessment of 

mechanisms of instability in such complex colloidal systems. The possible origins of 

emulsion coarsening can be further established with respect to the alkane chain 

length. The impact of hydrocarbon physical properties such as water solubility and 

polarity on Ostwald ripening rate has been extensively investigated (Chanamai, Horn 

& McClements, 2002; Kabalnov & Shchukin, 1992; Weiss, Herrmann & 

McClements, 1999). 

 LSW model describes the change in cubed mean droplet number diameter as 

a function of time is given by:  

                                                           (39) 

where t is time, d is mean number droplet diameter, γ is the interfacial tension at the 

oil-water interface, D is the diffusion coefficient of the oil through aquaeous 

(continuous) phase, is the solubility of the oil in the aqueous phase, Vm is the 

molar volume of the oil, R is the gas constant, T is the absolute temperature and ω is 

the Ostwald ripening rate. Equation 39 shows that diffusion-controlled Ostwald 

ripening rate is proportional to the solubility of the hydrocarbon in dispersed phase. 

The solubilities of alkanes vary considerably with the alkane chain length, therefore, 

appreciable variation in Ostwald ripening rate is expected on changing the alkane 

chain length. In contrast, coalescence rate for this type of colloidal system depends on 

the initial droplet size and concentration and therefore modification in hydrocarbon 

chain length at the same emulsifier concentration and droplet size would not change 

the coalescence rate.  

dt
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Equation 39 is in principle valid in the limit of highly dilute emulsions 

(φ<0.01) and ignores the droplet-droplet interactions as in the case of concentrated 

emulsions (Wooster, Golding & Sanguansri, 2008). Dispersed systems with higher oil 

volume fractions (φ), will have broader particle size distributions and faster absolute 

growth rates than those predicted by the LSW theory (Taylor, 1998). The theoretical 

rate (ω0) of Ostwald ripening predicted by LSW equation should, therefore, be 

corrected by a factor kf = 1.75 that reflects the dependence of the coarsening rate (ωf) 

on the dispersed phase volume fraction φ = 0.1 (Enomoto, Tokuyama & Kawasaki, 

1986). Theoretical growth rates have been calculated with Eq.39 using the parameters 

shown in Table 4.3.2.  

                                                        ω f = k f ×ω0                                    (40) 

As indicated by Eq.39, the cube of the droplet mean diameter should be a 

linear function of time with slope equal to the experimental rate of ripening. Table 

4.3.3 shows the outcome of theoretical (ωth) calculations and compares them with 

experimental (ωexp) growth rates. Generally, experimental droplet growth rates for the 

systems under investigation were considerably greater than the theoretical Ostwald 

ripening rates (Table 4.3.3). Faster experimental droplet growth kinetics has been 

previously reported for Tween 20, sodium dodecyl sulphate and gum Arabic 

stabilized emulsions, and typically attributed to the limitations of LSW model 

(Chanamai, Horn & McClements, 2002; Schmitt, Cattelet & Leal-Calderon, 2004; 

Soma & Papadopoulos, 1996). The discrepancy between experimental and theoretical 

Ostwald ripening rates of colloidal dispersions could be attributed to the a) variation 

of interfacial energy at a curved droplet surface and at a planar alkane-aqueous phase 

boundary, b) water solubility of long-chain hydrocarbons (n > 12) which is greater in 

real systems than expected from commonly used extrapolation technique. The 
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presence of bimodal PSD in OP6-stabilized emulsions could also initiate the 

considerable acceleration of the ripening rate (Figure 4.3.2a). Alternatively, faster 

experimental coarsening kinetics of studied emulsions could occur due to the 

development of coalescence that may progress simultaneously with Ostwald ripening 

or flocculation which enhances it by reducing the diffusion path length (Djerdjev & 

Beattie, 2008). 

Emulsions fabricated with OP2 demonstrated faster coarsening kinetics on 

replacing the n-hexadecane with n-dodecane (Figure 4.3.5). These observations are in 

a good agreement with water solubility values of the hydrocarbons (Table 4.3.2) and 

suggest that Ostwald ripening is the predominant coarsening mechanism in OP2 

emulsions within a time frame of 1 h. Emulsions fabricated with OP6 also 

demonstrated acceleration of coarsening rate by introducing hydrocarbons with higher 

water solubility (n-dodecane), however, at a lower extent than their OP2 counterparts.  

 

Table 4.3.2. Physical properties required for calculations of theoretical Ostwald 
ripening rates in n-dodecane and n-hexadecane-in-water emulsions (25°).  
 

 n-alkane type 

Physical property C12H26 C16H34 

cr→∞ (mol m-3)a 2.3 × 10-5 9.3 × 10-8 

10-10 × D (m2 s-1)b 5.4 4.6 

10-4 × Vm (m3 mol) 2.27 2.92 

10-3 × γ (N m-1)c 52.5 53.3 

Mw (kg mol-1) 0.170 0.226 

a (Weiss, Herrmann & McClements, 1999). 
b (Wilke & Chang, 1955), (Weiss, Herrmann & McClements, 1999). 
c (Aveyard & Haydon, 1965), (Zeppieri, Rodriguez & Lopez de Ramos, 2001). 
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Figure 4.3.5. Dependence ((d0.1)3 versus time) of Ostwald ripening rates on n-
hydrocarbon type in 1.5% w/v OP2 and OP6 stabilized emulsions at pH 2.0 (25 °C). 
 
 
 

 

             
 
Figure 4.3.6. Dependence ((d3,2)3 vs time) of Ostwald ripening rates on n-
hydrocarbon type in 1.5% w/v OP2 and OP6 stabilized emulsions at pH 2.0 (25 °C). 
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Table 4.3.3. Theoretical (ωth) and experimental (ωexp) rates of Ostawld ripening for 
various oil-in-water emulsions. 
 

Sample                        OP2                       OP6 
     n-alkane type C12H26 C16H34 C12H26 C16H34 

ωth (m3 s-1) × 10-26 16.6  0.1  16.6  0.1  

 
ωexp

a
 (m3 s-1) × 10-22 

 
20.0 ± 1.1 × 10-3 

 
16.0 ± 4.9 × 10-4 

 
4.5 ±7.1 × 10-5 

 
1.5 ±7.1 × 10-5 

 
ωexp

b
 (m3 s-1) × 10-21 

 
 26.0 ± 0.4 × 10-2 

 
21.0 ± 3.2 × 10-3 

 
2.6 ±6.4 × 10-3 

 
2.5 ±2.1 × 10-2 

a experimental rate calculated based on (d0.1)3 vs. time plot. 
b experimental rate calculated based on (d3,2)3 vs. time plot. 

 
 

Further analysis of kinetic plots for OP6 emulsions demonstrate that n-

dodecane emulsions have steeper slopes than those containing n-hexadecane 

indicating faster coarsening rates. However, one should note that colloidal systems 

should have similar initial droplet size when evaluating the dependence of Ostwald 

ripening rates on hydrocarbons solubility, something that can be clearly observed for 

OP2-stabilized emulsions where d0.1 was about 0.9 µm for n-dodecane and n-

hexadecane emulsions (Figure 4.3.5). On the contrary, OP6-stabilized emulsions had 

initial droplet size of marginally smaller mean diameter (d0.1 ~ 1.2 µm) with n-

dodecane than with n-hexadecane (d0.1 ~ 1.4 µm) (Figure 4.3.5). Small droplets 

diffuse faster than large and therefore, destabilisation of OP6-stabilized emulsions 

containing n-dodecane occurs at higher rate resulting in overestimation of Ostwald 

ripening. In order to address this (d3,2)3 vs. time plots were constructed for the same 

set of emulsions (Figure 4.3.6, Table 4.3.3). These plots show that the change of 

hydrocarbon did not affect the coarsening rate of OP6-stabilized emulsions and 

emulsions were stable to droplet growth during 1 h as also was demonstrated by the 

PSD (Figure 4.3.4). Moreover, Figure 4.3.6 further corroborates that destabilisation 

kinetics of OP2-stabilized emulsions is triggered by the solubility of dispersed phase.  
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The analysis of temporal evolution of PSD and LWS model was applied in the 

assessment of mechanisms of emulsions instability. It has been shown that Ostwald 

ripening or coalescence do not affect OP6-stabilized emulsions during 1 hour of 

storage as evidenced by the evolution of the particle size distribution and diffusion-

controlled model during this period of observation. However, these emulsions could 

undergo Ostwald ripening at later stage of coarsening process as indicated by the 

sharpening of PSD after 30 days of storage. Ostwald ripening as a rate-determining 

mechanism has been previously reported for gum Arabic stabilized decane-in-water 

emulsions and sodium caseinate stabilized n-hexadecane-in-water emulsions 

(Chanamai, Horn & McClements, 2002; Dickinson, Ritzoulis, Yamamoto & Logan, 

1999). In contrast, the coarsening process in OP2-stabilized emulsions was more 

complex and could be determined by Ostwald ripening in conjunction with 

coalescence. It should be noted that most of high molecular weight polysaccharides 

including pectin, do not tend to adsorb at the oil-water interface and are typically 

defined as weakly adsorbing biopolymers. It can be proposed that as an OP2-

stabilized emulsion ripens during the first hour of storage, OP2 pectin has a tendency 

to desorb from the interface leading to a poorer coverage of the newly formed larger 

droplets. Therefore, coalescence becomes of prime importance when droplets have 

insufficient surfactant coverage. The evolution of PSD, formation of macroscopic oil 

layer at the top of the sample tube after 30 days of storge (Figure 4.3.3) and rate of 

droplet growth also provide convincing evidence that coalescence takes place and 

influences the droplet growth after 1 day of storage in OP2 stabilized emulsions. It 

should be also mentioned that depletion flocculation can also contribute to emulsion 

ripening. As the small alkane droplets solubilize the total surface area in the colloidal 

system decreases during ripening, and consequently pectin is released in the aqueous 



 166 

phase. A fraction of the released OP2 pectin cannot readsorb and will induce 

depletion flocculation. The enhancement of Ostwald ripening rate due to the depletion 

flocculation has been previously reported in surfactant-stabilized octane– or decane–

in–water stabilized emulsions and sodium caseinate stabilized oil-in-water emulsions 

(Djerdjev & Beattie, 2008). Therefore, it can be proposed that the coarsening of OP2 

stabilized n-hexadecane emulsions follows a complex mechanism, where Ostwald 

ripening of the emulsion initiates the gradual thinning of adsorbed layer that 

eventually leads to coalescence through deletion mechanism.  

The variations in destabilisation kinetics of okra pectin-stabilized emulsions 

also suggest that OP2 and OP6 have different mechanisms of adsorption and 

arrangement at the n-alkane-water interface and therefore the interfacial composition 

was performed in order to further investigate the quality of alkane-water interface and 

the magnitude of okra biopolymers adsorption.  

4.3.3.3 Interfacial composition 

Table 4.3.4 shows the interfacial composition of OP2 and OP6-stabilized n-

hexadecane-in-water emulsions. During emulsification using sonication droplet 

disruption and re-coalescence occur simultaneously (Kaltsa, Michon, Yanniotis & 

Mandala, 2013). The kinetics of each one affects the final droplet size of emulsions 

and depends on the interfacial properties of emulsifier. According to Table 4.3.1, 

emulsions fabricated with okra pectin of higher degree of methylation (OP2, 

DM=40.0) resulted in smaller (1.7 µm) droplet mean diameters (d3,2) than their 

counterparts of lower DM (OP6, DM=24.6, d3,2 ~ 3.0 µm). Higher hydrophobicity of 

methyl ester groups in comparison to carboxyl groups can influence the surface 

activity of pectin molecules. It has been previously shown that an increase in 

emulsifying capacity of citrus pectin is correlated to the increase in number of methyl 
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esters within the backbone of biopolymer (Schmidt, Koch, Rentschler, Kurz, Endreß 

& Schuchmann, 2014). 

 

Table 4.3.4. Weight percentage and amount of adsorbed protein, pectin and acetyl at 
the oil-water interface of fresh 1.5% w/v n-hexadecane emulsions stabilized with OP2 
and OP6 at φ = 0.1, pH 2.0. 
 

Sample OP2 OP6 

Adsorbed acetyl (%) 9.7 ± 0.4 9.1 ± 0.6 

Adsorbed protein (mg/m2) 0.3 ± 0.1 1.6 ± 0.5 

Adsorbed protein (%) 17.1 ± 6.0 49.5 ± 15.6 

Adsorbed pectin (mg/m2) 3.3 ± 0.2 9.4 ± 0.2 

Adsorbed pectin (%) 14.2 ± 1.1 16.3 ± 5.7 

 

It has been proposed that higher methyl esterification of carboxyl groups leads 

to the formation of more compact and less extended pectin conformation, something 

that facilitates the mobility of molecules. Consequently, pectin adsorbs faster at the 

interface thus limiting the re-coalescence of newly formed droplets during 

emulsification. However, extensive coiling could also restrict the accessibility of 

hydrophobic groups and therefore decrease polymer adsorption at the interface. In 

contrast, other studies on citrus pectin reported that degree of methyl esterification is 

of minor importance for the emulsifying capacity of pectins as opposed to the 

molecular weight of biopolymer (Akhtar, Dickinson, Mazoyer & Langendorff, 2002; 

Leroux, Langendorff, Schick, Vaishnav & Mazoyer, 2003). It has been shown that 50 

– 80 × 103 g mol-1 is an optimum molecular weight required for an effective 

emulsification and stabilizing properties of citrus pectin. Reduced molecular weight 

promotes faster adsorption rate of pectin at the n-alkane-water interface. In our case, 
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okra pectin samples used for fabrication of n-hexadecane-in-water emulsions have 

remarkably higher molecular weights (OP2, 641 × 103 g mol-1 and OP6, 767 × 103 g 

mol-1) than those previously reported for citrus pectin and some fractions of sugar 

beet pectin (Akhtar, Dickinson, Mazoyer & Langendorff, 2002; Leroux, Langendorff, 

Schick, Vaishnav & Mazoyer, 2003). However, the OP2 that has lower molecular 

weight exhibited similar behaviour as evidenced by the droplet mean diameters (d3,2) 

of fresh emulsions (Table 4.3.1). The smaller droplet mean diameters of OP2 

stabilized emulsions can be also attributed to the lower viscosity of its composing 

solutions (Figure 4.3.5), as it will be discussed in section 4.3.3.5 indicating that less 

energy input is required for effective droplet disruption. 

The hydrophobic character of pectin is also frequently attributed to the 

presence of acetyl groups within the polymer backbone (Dea & Madden, 1986; 

Schmidt, Koch, Rentschler, Kurz, Endreß & Schuchmann, 2014). Table 4.3.4 shows 

that comparable amounts of acetyl were adsorbed at the interface in both OP2 and 

OP6-stabilized emulsions, suggesting a preference for acetyl groups to arrange at the 

interface. These results are also in a good agreement with the chemical composition 

data that report marginal differences in the number of acetyl groups (6.0 – 5.2 %) for 

OP2 and OP6 samples (Chapter 2, Table 2.1). Since both biopolymers have the 

similar amount of acetyl adsorbed at the o/w interface, it can be proposed that the 

differences in the droplet mean diameters of fresh emulsions are more likely 

attributed to the variations in molecular weight, protein and degree of methyl 

esterification of OP2 and OP6. Surface (pectin solution/air) tensions of OP2 and OP6 

as a function of polymer concentration were measured (Figure 4.3.7). Both 

biopolymers showed lower surface tension than deionised water at concentrations 

higher than 0.1% w/v and decreased surface tension to a similar extent (OP6, 63.7 × 
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10-3 N m-1, OP2, 65.0 × 10-3 N m-1) at 1.67% w/v concentration. Surface tension 

values of OP2 and OP6 were higher than those reported for high-methoxyl citrus 

pectin ~ 50.8-62.7 × 10-3 N m-1, sugar beet pectin ~ 54.5 × 10-3 N m-1, gum Arabic ~ 

57.1 × 10-3 N m-1 and lower than for high-methoxyl apple pectin ~ 66.9 × 10-3 N m-1 

(Schmidt, Koch, Rentschler, Kurz, Endreß & Schuchmann, 2014; Siew & Williams, 

2008b). Surface tension, adsorption data and droplet mean diameter measurements 

show that interfacial activity of biopolymers in such complex colloidal systems 

depends not only on chemical composition, but also on accessibility of hydrophobic 

sites and conformation of pectin.  

An effective emulsifier should rapidly adsorb at the freshly formed droplet 

interface, reduce interfacial tension in order to facilitate droplet disruption and 

provide a protective coating that prevents the droplets from aggregating 

(McClements, 2004). 

 

 
Figure 4.3.7. Surface tension of OP2 and OP6 solutions (pH 2.0) as a function of 
polymer concentration at 25°C.  
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In general, it has been shown that OP2 with relatively smaller molecular weight and 

higher DM adsorbs faster at the o/w interface as evidenced by d3,2 values for fresh 

OP2 and OP6-stabilized emulsions (Table 4.3.1). Therefore, OP2 provides an 

efficient stabilization against re-coalescence of freshly formed droplets during 

emulsification. However, it has been demonstrated that OP6 exhibits more efficient 

emulsion stabilization during long-term storage as opposed to the OP2 counterpart 

(Figures 4.3.1, 4.3.2). The pectin and protein adsorption capacities of OP2 and OP6 

were also determined in order to evaluate the strength of interactions that take place 

between the polymer and interface during emulsification and storage. Table 4.3.4 

shows the amount of protein adsorbed at the n-hexadecane-water interface for OP2 or 

OP6 emulsions. In the case of OP2-stabilized emulsions, protein surface coverage of 

emulsions was 0.3 mg m-2 accounting for a total of 17.1 % of the protein present in 

pectin sample. In contrast, protein surface coverage in OP6 stabilized emulsion was 

almost five times higher (1.6 mg m-2) representing a far larger proportion of the total 

protein (49.5 %) transferred from continuous phase to the interface. Similar protein 

surface coverage (1.0 mg m-2) and amount of adsorbed protein (57.0 %) were 

observed for OE6 stabilized n-hexadecane emulsions (Chapter 4.1). The protein 

surface coverage in OP6 stabilized emulsion was also comparable to the 0.9 mg m-2 in 

limonene oil-in-water emulsion (φ=0.2) stabilized with sugar beet pectin at 1.5 % 

(w/w) concentration (Siew & Williams, 2008b). Other studies on sugar beet pectin 

and depolymerized citrus pectin also reported that pectin fraction adsorbed at the 

interface was significantly enriched in protein and played a key role in emulsion 

stabilizing capacity (Akhtar, Dickinson, Mazoyer & Langendorff, 2002; Leroux, 

Langendorff, Schick, Vaishnav & Mazoyer, 2003). The protein content in okra pectin 

is 4.3% and 6.3% w/v for OP2 and OP6, respectively (Chapter 2, Table 2.1). 
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According to these values the amount of adsorbed protein at the n-hexadecane-in-

water interface should be comparable for both emulsions, something that is not 

reflected by the protein adsorption data (Table 4.3.4). These observations suggest that 

not only protein content, but also accessibility to the interface of the protein within the 

biopolymer backbone and composition of amino acids (polar/non-polar sites) 

influence the emulsification properties of okra pectin.  

Table 4.3.4 shows that the surface coverage with pectin in OP6-stabilized 

emulsions was about 9.4 mg m-2 and the amount of adsorbed pectin at the interface 

amounted for 16.3% of total carbohydrates present in the OP6. This value is higher 

than previously reported for sugar beet pectin (Akhtar, Dickinson, Mazoyer & 

Langendorff, 2002; Siew & Williams, 2008b) ~ 7.5 mg m-2 at the same polymer 

concentration in limonene oil-in-water emulsion and depolymerized citrus pectin 

(Akhtar, Dickinson, Mazoyer, & Langendorff, 2002) ~ 9.8 mg m-2 at 3 % polymer 

concentration in entire volume of rapeseed oil-in-water emulsion. However, it has to 

be stressed that emulsions in the previous studies were fabricated with higher oil 

volume fractions (φ=0.2) than those investigated in this study (φ=0.1). In contrast, 

emulsions fabricated with OP2 had considerably lower pectin interfacial load (3.3 mg 

m-2) than its OP6 counterpart (Table 4.3.4). The comparison of the amount of 

adsorbed protein and pectin indicate that n-hexadecane-in-water interface is 

dominated by pectin (Table 4.3.4). Interestingly, the total amount of adsorbed pectin 

was accounted for 14.2 % of total carbohydrates present in the OP2 and was 

comparable to the values obtained for OP6 stabilized emulsions (16.3 %). The 

decrease in droplet sizes typically leads to the increase in specific surface area. Fresh 

emulsions stabilized with OP2 demonstrated smaller droplet mean diameters (d3,2) 

and therefore have much larger surface area that need to be covered with monolayer 
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of biopolymer in order to imped coalescence. Therefore, it can be proposed that 

mechanically weak and thin interfacial layer was formed in emulsions stabilized with 

OP2 as evidenced by adsorption capacities of protein and pectin, and biopolymer 

molecular weight (Table 4.3.3). On the other hand, emulsions stabilized with OP6 

demonstrated higher interfacial load and consequently thicker protective layer around 

the droplets that made them more resistant to the mechanisms of emulsion coarsening 

during the storage. This is also further supported by the fact that for many dispersed 

systems the interfacial load is in the order of 1 mg m-2, which is consistent with 

monolayer coverage (Siew & Williams, 2008b). Higher values shown for investigated 

dispersed systems indicate the presence of multilayer adsorption or adsorption of 

biopolymer at n-hexadecane-in-water interface with long tails protruding into the 

continuous phase. The multilayer adsorption has been previously reported for the 

naturally occurring polysaccharide–protein complexes, such as Arabic gum and sugar 

beet pectin (Evans, Ratcliffe & Williams, 2013).  

These results indicate that OP2 and OP6 have distinct adsorption kinetics as 

evidenced by the PSD and interfacial composition data. OP2 has faster adsorption rate 

to the n-hexadecane-in-water interface, however, the formed biopolymer film has 

insufficient thickness to impede Ostwald ripening and coalescence. In contrast, OP6 

demonstrated slower adsorption velocity and formation of thick, multi-layered droplet 

protective coverage that hinders droplet growth. It can be concluded that the 

interfacial activity of OP2 and OP6-stabilized emulsions was attributed to the 

proteinaceous components, the molecular mass of biopolymers and the amount, and 

distribution of ester groups within the biopolymer backbone.  
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4.3.3.4 Electric properties of alkane-in-water interface 

The ζ-potential titration measurements of solutions (OP2 and OP6) and 

emulsions were determined in the pH range of 1.0 – 9.0 (Figure 4.3.8). The ζ-

potential titration curves of OP2 and OP6 solutions demonstrated the strong influence 

of pH on the charge of the polyelectrolyte. At pH values above 6.0 galacturonic acid 

groups are fully dissociated. In contrast, the protonation of carboxyl groups of 

galacturonic acids results in considerable decrease in ζ-potential values at pH below 

6.0. Preliminary work with OP2 and OP6-stabilized emulsions at pH 4.0 and 7.0 

revealed the inability of the samples to stabilize dispersions. This indicates that the 

strong repulsions and extended chain conformations between the negatively charged 

biopolymer chains hinder its arrangement and adsorption at the n-alkane-water 

interface (Figure 4.3.8, inset). Furthermore, decrease in pH value to 4.0 resulted in 

formation of fine n-dodecane and n-hexadecane-water-emulsion when it was 

stabilized exclusively with OP2 (Figure 4.3.8, inset). This can be attributed to the 

relatively higher ζ-potential of OP2 (~ -30 mV) than OP6 solutions (~ -35 mV) 

together with the surface composition characterization that we described in the 

previous section. These observations suggest that OP2 and OP6 manifest an 

emulsifying capacity only at pH values below 4.0 where an effective steric 

stabilization occurs due to the biopolymer compact conformation resulting in 

formation of a thick protective layer around the droplets. In contrast, extended 

conformations of both biopolymers at pH 6.0 restrict their alignment and adsorption at 

the n-alkane-water interface.  

The amount of a biopolymer adsorbed at the alkane-water interface depends 

on various factors including the interactions between polymer and the surface, 

conformation of the polymer and surface physical properties (polarity, solubility). 
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Figure 4.3.8 (inset) demonstrates the effect of alkane type on the emulsion stability. It 

has been observed that OP2 and OP6 did not exhibit any interfacial activity in 

emulsions, where hexane and/or decane were used as dispersed phases (Figure 4.3.8, 

inset). These results can be attributed to the high – water solubility of both alkanes 

and relatively slow adsorption kinetics of biopolymers.  

 

   
Figure 4.3.8. ζ-potential titration of  1.67% w/v pectin solutions and 1.5% w/v pectin 
stabilized emulsions at 1/1000 dilution. Inset shows the emulsifying capacity of okra 
biopolymers as affected by the pH and hydrocarbon chain length (25 °C).  
Inset - both biopolymers do not form emulsion, both biopolymers form 

emulsion, OP6 forms emulsion, OP2 forms emulsion.   
 
 

Both fresh emulsions (pH 2.0) exhibited negative ζ-potential values of - 5.5 

mV for OP2-stabilized emulsions and - 6.1 mV for OP6-stabilized emulsions and 

were slightly lower than those found for the aqueous phase (- 3.9 mV and -4.0 mV for 

OP2 and OP6 solutions, respectively). These results denote that the n-hexadecane-in-

water interface has similar electrical properties to that of the continuous phase and is 

dominated by the presence of pectin rather than protein as also evidenced by the 

analysis of interfacial composition. The increase in ζ-potential values could be 
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attributed to the formation of electrostatic complexes at the interface as also 

evidenced by the occurrence of multilayer adsorption for both colloid systems.  

The electrostatic complexes could arise due to the possible cross-linking of 

pectin molecules at the surface by calcium ions, ferulic acid or protein (Siew & 

Williams, 2008b). It has been previously reported that the removal of calcium from 

the sugar beet pectin has no effect on the adsorbed layer thickness and therefore 

calcium cross – linking is highly implausible (Siew & Williams, 2008a). In order to 

evaluate the effect of ferulic acids to the cross–linking of pectin chains, the UV 

absorption spectrum of 0.5 % w/v of OP2 and OP6 solutions was determined and 

revealed the absence of ferulic acids in both okra biopolymers (Chapter 2, section 

2.3.1). Therefore, the formation of electrostatic polysaccharide - protein complexes at 

the interface can occur through the interactions of charged protein moieties with 

charged galacturonic acid residues. However, low ζ-potential values for fresh OP2 

and OP6 stabilized emulsions indicate that electrostatic repulsion can have 

insignificant effect on the overall stability of emulsions (Figure 4.3.8). Therefore, 

these results indicate that the proteinaceous components, as an integral part of OP2 

and OP6, anchor pectin at the n-alkane-water interface, while the covalently cross – 

linked carbohydrate moieties protrude out into the continuous phase and provide an 

effective steric barrier that prevents droplet aggregation (Leroux, Langendorff, 

Schick, Vaishnav & Mazoyer, 2003; Siew & Williams, 2008a; Siew & Williams, 

2008b).  

ζ-Potential values of fresh emulsions (OP2, -5.5 mV, OP6, -6.1 mV) did not 

depart significantly from those of the continuous phase indicating that droplet 

interface has similar composition with the bulk. With ageing surface charge does not 
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change appreciably and after thirty days of storage increases to 5.9 and 6.6 mV for 

OP2 and OP6-stabilized emulsions, respectively. 

4.3.3.5 Flow behavior of emulsions and pectin solutions 

The effect of continuous phase viscosity on the overall stability of n-

hexadecane-in-water emulsions was evaluated using rheological measurements. 

Figure 4.3.9 shows the viscosity curves for continuous phases and fresh emulsions 

containing OP2 and OP6. The comparison of viscosities of sonicated and non-

sonicated OP2 solutions shows the absence of sonication effect on viscosity. In 

contrast, sonication of OP6 solutions resulted in a moderate decrease in viscosity 

values indicating the disaggregation of biopolymer chains (Figure 4.3.9). The OP6 

solution exhibited weak shear-thinning behaviour and its viscosity was greater 

compared to OP2. In contrast, OP2 solutions manifested stronger shear-thinning 

behaviour with the distinct onset at low shear rates (< 0.5 s-1). Lower viscosity values 

and higher shear rate dependency of OP2 solutions can be attributed to the lower 

molecular weight and higher degree of branching of side chains compared to OP6. 

The flow behaviour of both biopolymers has been examined at concentrations (1.67 g 

dL-1) beyond c* (0.45 – 0.44 g dL-1 at pH 3.0, Chapter 2). High shear rate dependency 

of OP2 solutions was attributed to stronger disentanglement of biopolymer coils than 

in OP6 samples indicating higher polymer flexibility.  

Figures 4.3.10a and 4.3.10 b depict the flow behaviour of fresh emulsions 

fabricated with OP6 and OP2. Fresh emulsions demonstrated relatively higher low-

shear rate viscosity and generally followed the flow behaviour of the continuous 

phase (Figure 4.3.9a and b). Figure 4.3.8a shows that emulsions stabilized with OP6 

did not exhibit appreciable changes in viscosity curves with storage time (10 days) 

indicating that emulsions do not flocculate on storage. 
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Figure 4.3.9. Flow behavior of 1.5% w/v emulsions stabilized with OP2 and OP6 and 
flow behavior of fresh 1.67%% w/v okra pectin sonicated and non-sonicated solutions 
at pH 2.0 (25 °C). Okra biopolymer solutions were sonicated under the same 
conditions as emulsions. 
 

Furthermore, a drop in viscosity values was observed for OP6-stabilized 

emulsions after 30 days of storage (Figure 4.3.10a). Coalescence in the absence of 

flocculation typically leads to a reduction of the emulsion viscosity. This suggests that 

mild Ostwald ripening-induced coalescence was activated after 10 days of storage and 

appreciable modifications of flow behaviour were observed after 30 days of storage 

with the coalescence onset. In contrast, the comparison of flow curves (Figure 

4.3.10b) of OP2-stabilized emulsions revealed a considerable increase in viscosity 

values at day 1, 10 and 30 particularly in low-shear rate regime (>1 s-1). Flow curves 

of OP2-stabilized emulsions show that colloidal system breaks after 1 day of storage 

and strong shear-thinning behaviour is attributed to the aggregates from pectin that 

has been desorbed from the alkane-water interface during emulsion ripening.  

Figure 5 
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Figure 4.3.10. a) Influence of aging (0–30days) on the flow behavior of 1.5% w/v 
emulsion stabilized with OP6 and flow behavior of 1.67% w/v OP6 sonicated solution 
(25 °C), b) influence of aging (0–30 days) on the flow behavior of 1.5% w/v emulsion 
stabilized with OP2 and flow behavior of 1.67% w/v OP2 sonicated solution (25 °C). 
 

4.3.3.6 Pectin immunolocalization at the alkane-water interface. 

Fluorescence microscopy was used to locate okra pectin at the hydrocarbon-

water interface. Because of the non-specific nature of conventional fluorescent dyes 

used for pectin staining, our focus moved to the implementation of monoclonal 

Figure 6 
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antibodies that allow the precise localisation of distinct structural elements of the 

pectin molecules (Christiaens, Van Buggenhout, Ngouémazong, Vandevenne, Fraeye, 

Duvetter, Van Loey & Hendrickx, 2011). The LM19 monoclonal rat antibody has 

affinity for pectin with low degree of esterification and therefore, was chosen for the 

in situ localization of pectin at the interface (Verhertbruggen, Marcus, Haeger, Ordaz-

Ortiz & Knox, 2009).  

The interaction between antibody and epitope consists of hydrogen bonds, 

electrostatic, van der Waals, and hydrophobic interactions (Arltoft, Madsen & Ipsen, 

2007). These interactions are pH-sensitive and therefore, pH of investigated 

emulsions and solutions was adjusted to pH 7.4 in order achieve a high binding 

capacity. A model coarse emulsion was fabricated with OP2 due to the modest 

emulsifying capacity of OP6 at pH above 4.0 as was demonstrated in the previous 

sections. Figure 4.3.11 shows maximum intensity z-projected images of the 

morphology of OP2 solutions and coarse emulsions. Figures 4.3.11a (1-3) correspond 

to the micrographs of controls that included OP2 solution, OP2 solution with anti-rat 

IgG coupled with FITC and OP2 solution with a negative control. A weak signal was 

spread evenly over the polymer sample and can be attributed to the intrinsic 

fluorescence emission of pectin. It has been previously reported that pectin 

demonstrates auto-fluorescence at around 530-550 nm (Liu, Jin, Liu, Hicks, Mohanty, 

Bhardwaj & Misra, 2008). Figure 4.3.11 a(4) shows that LM19 binds to the HG 

domains of OP2 as evidenced by the presence of small entities (arrow) in the vicinity 

of the polymer network that was also observed in controls (Figures 4.3.11a, 1-3).  
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Figure 4.3.11. Fluorescent images a1-4) 1.67% fixed OP2 solutions at pH 7.4, b1-4) 
1.5% w/v emulsions stabilized with OP2 at pH 7.4, c1-4) 1.5% w/v n-dodecane-in-
water emulsions stabilized with OP2 at pH 7.4 (images are in hydrated state).  

 

The binding specificity of LM19 probes in polymer solutions was established 

with indirect immunostaining method, the methodology that is not achievable with 

dispersed systems. Therefore, the direct immunostaining technique was used to 

specifically localize pectin at the n-dodecane-in-water interface in the hydrated state 

(Figures 4.3.12b, c1-4). OP2-stabilized emulsions show the absence of signal and 

those emulsions containing fluorescent dye exhibit weak signal due to the possible 

aggregation of IgG-FITC (Figures 4.3.12b, 1-3).  
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Figure 4.3.12. Fluorescent images (1, 2) of 1.5% w/v n-dodecane-in-water OP2-
stabilized emulsions at pH 7.4, a- bottom, b- middle, c- top planes and d- z-projected 
image. 
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Figure 4.3.11 b(4) provides the evidence that OP2 did adsorb at the n-dodecane-in-

water interface and in situ localisation of OP2 was effectively performed as indicated 

by the presence of much brighter green emulsion droplets in comparison to control 

images. It should be stressed that images were z-projected and therefore, they 

demonstrate the network (in case of solutions) and droplet (in emulsion) in three 

dimensions from top to bottom of the image plane (Figure 4.3.11).  

Micrographs (Figure 4.3.11, c4) of OP2 stabilized emulsion at higher 

magnification enable to distinguish green fluorescent spots at the droplet surface and 

also fluorescence bands around the droplets both indicating the presence of interfacial 

layer composed of pectin. It should be noted that the model emulsions that were used 

for the microscopic examination were fabricated at pH that hinders the effective 

biopolymer adsorption at the alkane-water interface. Nevertheless, pectin was 

successfully visualized at the interface using direct immunostaining technique 

indicating its interfacial activity.  

4.3.4 Conclusions 

The influence of physicochemical characteristics of okra biopolymers on 

emulsifying capacity has been investigated by means of particle size evolution, flow 

behaviour and direct localisation of pectin at the alkane-water interface using 

immunostaining. It has been shown that both biopolymers exhibit interfacial activity, 

however, higher stability of emulsions was achieved only when was stabilized with 

OP6. Pectin adsorption at the n-alkane-water interface was evidenced by localisation 

of pectin with specific antibodies. Emulsions undergo different destabilisation 

kinetics and mechanisms depending on the biopolymer applied. It has been shown 

that OP6-stabilised emulsions are stable to coalescence or Ostwald ripening during 1 
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h of storage, however Ostwald ripening becomes predominant destabilisation 

mechanism after 1 day of storage. OP2-stabilized emulsion showed lower stability to 

coarsening mechanisms and considerable destabilisation of emulsions occurred after 1 

h of storage. It has been shown that coarsening of OP2-stabilized emulsions is a 

complex mechanism that has been identified as combination of Ostwald ripening and 

coalescence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 184 

CHAPTER 5 

GENERAL CONCLUSIONS AND FUTURE WORK 
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In the present work, the molecular features of okra pectins as affected by 

extraction conditions were studied. Extraction conditions influenced the fine structure 

of pectins resulting in isolates with distinct molecular characteristics. The present 

extraction protocols resulted in isolation of acetylated LM-pectins with high 

molecular weight. Galacturonic acid (GalA) amount varied by altering the pH of the 

extraction with higher pH values (pH6.0) resulting in greater GalA content. Isolates 

contained different amounts of branched RG-I segments as indicated by the ratios of 

rhamnose to galacturonic acid and galactose to rhamnose. It has been shown that OP6 

is mainly composed of RG-I whereas OP2 contained almost equal amounts of HG and 

RG-I. Dilute solution viscometry revealed changes in the coil dimensions for both of 

the isolated biopolymers with changes in pH as evidenced by intrinsic viscosity 

measurements.  

It has been shown that okra pectins are non-gelling pectins due to the high 

degree of acetylation and branching of side-chains. Furthermore, the influence of pH 

on the structural properties of non-gelling LM-pectin in the presence of co-solute has 

been investigated by means of thermomechanical analysis and theoretical modeling of 

results. Dissociation of galacturonic acid residues at the high pH values results in 

extended chain conformation and early vitrification events. Conversely, as the 

polyelectrolyte approaches its isoelectric point at low pH, recorded viscoelastic 

functions decrease and vitrification is delayed. Spectral analysis of the viscoelastic 

master curves revealed the exact positioning of the relaxation events characterized by 

one dominant regime where the relaxation of the macromolecules concludes. 

Okra extracts and pectins demonstrate a good emulsifying capacity in model 

oil-in-water emulsions. Extraction protocols have considerably affected the 

physiochemical properties of okra extracts and pectins, and had an effect on physical 
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stability of resulting emulsions. Overall, okra extracts (OE4 and OE6) differentiated 

significantly in terms of their efficiency towards long-term stabilization of emulsions 

against coarsening. Emulsions containing OE6 demonstrated higher surface activity at 

the o/w interface and stability during the 30 days storage than its OE4 counterparts. In 

contrast, emulsions composed of OE4 were more susceptible to coarsening 

mechanisms resulting in droplets of greater average size. It has been identified that 

Ostwald ripening is the major destabilization mechanisms particularly for emulsions 

prepared with OE4.  

Okra pectins (OP2 and OP6) isolated using hot aqueous extractions 

demonstrated higher interfacial activity than okra extracts. It has been shown that OP2 

and OP6-stabilized emulsions undergo different destabilisation kinetics and 

mechanisms depending on the biopolymer applied. OP2-stabilized emulsion showed 

low stability to coarsening mechanisms and considerable destabilisation of emulsions 

occurred after 1 h of storage. It has been shown that coarsening of OP2-stabilized 

emulsions was a complex mechanism that has been identified as combination of 

Ostwald ripening and coalescence. In contrast, OP6-stabilised emulsions were 

relatively stable for a period of 30 days indicating the potential of OP6 to act as 

emulsifier in acidic emulsions.  

The rapid growth of functional food, medical nutrition and nutritional 

supplement markets results in a demand for development of delivery systems that can 

control the digestion, release and absorption of hydrophobic compounds such as 

drugs, bioactive nutrients. Emulsions are systems that are particularly suited for the 

fabrication of such type delivery systems. Therefore, based on the results of current 

work, further investigation of functionality of okra pectin in emulsion-based delivery 

systems has to be performed in the future. An advantage of an emulsion system based 
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on OP6 would be the resistance to proteolytic enzymes and the acidic pH of stomach 

(1.5-3.5). Furthermore, as emulsions are not stable at neutral pH, the emulsified 

bioactive would be released in the small intestine where pH is slightly alkaline 

making OP6 an effective delivery vehicle with a distinct functional attributes. Further 

investigation is also required in the application of okra pectin in the fabrication of 

edible films. Films produced from natural products are of increasing interest due to 

their biodegradability and that they can be utilized for human consumption and 

pharmaceutical applications. Edible films from pectin have been previously used as 

barriers to gas and solutes resulting in prolonged food quality and shelf life. 

Moreover, film-forming properties of okra pectin could be used for pharmaceutical 

applications such as in fabrication of drug coatings.  
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