Computing and Library Services - delivering an inspiring information environment

Engineering of a glycosidase family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reeseis Ce17A and its E223S/A224/L225V/T226A/D262G mutant

Becker, D., Braet, C., Brumer, H., Claeyssens, Marc, Divine, Christina, Fagerstroms, B.R., Harris, Mark, Jones, T.A., Kleywegt, G.J., Koivula, Anu, Mahdi, Sabah, Piens, K., Sinnott, Michael L., Stahlberg, J., Teeri, T.T., Underwood, M. and Wohlfahrt, G. (2001) Engineering of a glycosidase family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reeseis Ce17A and its E223S/A224/L225V/T226A/D262G mutant. Biochemical Journal, 356. pp. 19-30. ISSN 0264-6021

[img] PDF
Restricted to Registered users only

Download (469kB)


The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala224) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 Å (= 0.1nm) closer to the acid/base Glu217 residue, with a 3.1 Å contact between Ne2 and Oe1. The pH variation of kcat/Km for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK1 shifting from 2.22±0.03 in the wild-type to 3.19±0.03 in the mutant, and pK2 shifting from 5.99±0.02 to 6.78±0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative kcat for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower kcat/Km values for both lactosides and cellobiosides, and a marginally lower stability. However, kcat values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds.

Item Type: Article
Additional Information: UoA 18 (Chemistry) © 2001 Biochemical Society
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Biomolecular Sciences Research Centre
Related URLs:
References: 1 Davies, G., Sinnott, M. L. and Withers, S. G. (1998) Glycosyl transfer. In Comprehensive Biological Catalysis (Sinnott, M. L., ed.), vol. 1, pp. 119±208, Academic Press, London 2 Alberty, R. A. and Bloom®eld, V. (1963) Multiple intermediates in steady state kinetics. V. Effect of pH on the rate of a simple enzymatic reaction. J. Biol. Chem. 238, 2804±2810 3 Be! guin, P. and Lemaire, M. (1996) The cellulosome : an exocellular, multiprotein complex specialized in cellulose degradation. CRC Crit. Rev. Biochem. Mol. Biol. 31, 201±236 4 Henrissat, B., Teeri, T. T. and Warren, R. A. (1998) A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 425, 352±354 5 Claeyssens, M., Nerinckx, W. and Piens, K. (eds.) (1998) Carbohydrases from Trichoderma reesei and Other Microorganisms, Royal Society of Chemistry, Cambridge 6 Henrissat, B. and Bairoch, A. (1996) Updating the sequence-based classi®cation of glycosyl hydrolases. Biochem. J. 316, 695±696 7 Henrissat, B. and Davies, G. J. (1997) Structural and sequence-based classi®cation of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637±644 8 Divne, C., Sta/ hlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles, J. K. C., Teeri, T. T. and Jones, T. A. (1994) The three-dimensional structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265, 524±528 9 Divne, C., Sta/ hlberg, J., Teeri, T. T. and Jones, T. A. (1998) High resolution crystal structures reveal how a cellulose chain is bound in the 50 A / long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 275, 309±325 10 Barr, B. K., Hsieh, Y.-L., Ganem, B. and Wilson, D. B. (1996) Identi®cation of two functionally distinct classes of exocellulases. Biochemistry 35, 586±592 11 Boisset, C., Fraschini, C., Schu$ lein, M., Henrissat, B. and Chanzy, H. (2000) Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl. Environ. Microbiol. 66, 1444±1452 12 Kleywegt, G. J., Zou, J.-Y., Divne, C., Davies, G. J., Sinning, I., Sta/ hlberg, J., Reinikainen, T., Srisodsuk, M., Teeri, T. T. and Jones, T. A. (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A / resolution, and a comparison with related enzymes. J. Mol. Biol. 272, 383±397 13 MacKenzie, L. F., Sulzenbacher, G., Divne, C., Jones, T. A., Wo$ ldike, H. F., Schu$ lein, M., Withers, S. G. and Davies, G. J. (1998) Crystal structure of the family 7 endoglucanase I (Cel7B) from Humicola insolens at 2.2 A / resolution and identi®cation of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate. Biochem. J. 335, 409±416 14 Schu$ lein, M. (1997) Enzymatic properties of cellulases from Humicola insolens. J. Biotech. 57, 71±81 15 Margolles-Clark, E., Hayes, C. K., Harman, G. E. and Penttila$ , M. (1996) Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei Appl. Environ. Microbiol. 62, 2145±2151 16 Mach, R. L., Schindler, M. and Kubicek, C. P. (1994) Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expressional signals. Curr. Genet. 25, 567±570 17 Sta/ hlberg, J., Divne, C., Koivula, A., Piens, K., Claeyssens, M., Teeri, T. T. and Jones, T. A. (1996) Activity studies and crystal structures of catalytically de®cient mutants of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 264, 337±349 18 Tomme, P., van Tilbeurgh, H., Pettersson, G., van Damme, J., Vanderkerckhove, J., Knowles, J., Teeri, T. and Claeyssens, M. (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem. 170, 575±581 19 Koivula, A., Lappalainen, A., Virtanen, S., Ma$ ntyla$ , A. L., Suominen, P. and Teeri, T. T. (1996) Immunoaffinity chromatographic puri®cation of cellobiohydrolase II mutants from recombinant trichoderma reesei strains devoid of major endoglucanase genes. Protein Expression Purif. 8, 391±400 20 van Tilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, T. and Pettersson, G. (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. Separation of functional domains. FEBS Lett. 204, 223±227 21 McPherson, A. (1982) Preparation and Analysis of Protein Crystals. Wiley, New York 22 Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307±326 23 Bru$ nger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S. et al. (1998) Crystallography & NMR system : A new software suite for macromolecular structure determination. Acta Crystallogr. Sect. D 54, 905±921 24 Jones, T. A., Zou, J.-Y., Cowan, S. W. and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. Sect. A 47, 110±119 25 Bru$ nger, A. T. (1992) Free R value : a novel statistical quantity for assess the accuracy of crystal structures. Nature (London) 355, 472±475 26 Kleywegt, G. J. and Bru$ nger, A. T. (1996) Checking your imagination : applications of the free R value. Structure 4, 897±904 27 Wolfram, S. (1996) The Mathematica Book, 3rd edn. Wolfram Media/University Press, Cambridge 28 Gilkes, N. R., Jervis, E., Henrissat, B., Tekant, B., Miller, Jr., R. C., Warren, R. A. J. and Kilburn, D. G. (1992) The adsorption of a bacterial cellulase and its isolated domains to crystalline cellulose. J. Biol. Chem. 267, 6743±6749 29 Lever, M. (1972) A new reaction for colorimetric determination of carbohydrates. Anal. Biochem. 47, 273±279 30 Teleman, A., Koivula, A., Reinikainen, T., Valkeaja$ rvi, A., Teeri, T. T., Drakenberg, T. and Teleman, O. (1995) Progress curve analysis shows that glucose inhibits the cellotriose hydrolysis catalysed by cellobiohydrolase II from Trichoderma reesei. Eur. J. Biochem. 231, 250±258 31 Srisodsuk, M., Kleman-Leyer, K., Kera$ nen, S., Kirk, T. K. and Teeri, T. T. (1998) Modes of action on cotton and bacterial cellulose of a homologous endoglucanase±exoglucanase pair from Trichoderma reesei. Eur. J. Biochem. 251, 885±892 32 Sulzenbacher, G., Driguez, H., Henrissat, B., Schu$ lein, M. and Davies, G. J. (1996) Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue : substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry 35, 15280±15287 # 2001 Biochemical Society 30 D. Becker and others 33 Schu$ lein, M., Kauppinen, M. S., Lange, L., Lassen, S. F., Andersen, L. N., Klysner, S. and Nielsen, J. B. (1998) Characterisation of fungal cellulases for ®bre modi®cation. In Enzyme Applications in Fibre Processing (Eriksson, K.-E. L. and Cavaco-Paulo, A., eds.), ACS Symposium Series vol. 687, pp. 66±74, American Chemical Society, Columbus, OH 34 Mackenzie, L. F., Davies, G. J., Schu$ lein, M. and Withers, S. G. (1997) Identi®cation of the catalytic nucleophile of endoglucanase I from Fusarium oxysporum by mass spectrometry. Biochemistry 36, 5893±5901 35 van Tilbeurgh, H. (1986) Studie van het cellulasecomplex uit Trichoderma reesei. Ph.D. Thesis, University of Ghent 36 Claeyssens, M., van Tilbeurgh, H., Tomme, P., Wood, T. M. and McRae, S. I. (1989) Fungal cellulase systems. Comparison of the speci®cities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 261, 819±825 Received 13 July 2000/26 January 2001 ; accepted 2 March 2001 37 Mock, W. L. and Stanford, D. J. (1996) Arazoformyl dipeptide substrates for thermolysin. Con®rmation of a reverse protonation catalytic mechanism. Biochemistry 35, 7369±7377 38 Joshi, M. D., Sidhu, G., Pot, I., Brayer, G. D., Withers, S. G. and McIntosh, L. P. (2000) Hydrogen bonding and catalysis : a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 299, 255±279 39 Vonhoff, S., Piens, K., Pipelier, M., Braet, C., Claeyssens, M. and Vasella, A. (1999) Inhibition of cellobiohydrolases from Trichoderma reesei. Synthesis and evaluation of some glucose-, cellobiose-, and cellotriose-derived hydroximolactams and imidazoles. Helv. Chim. Acta 82, 963±980 40 Roberge, M., Shareck, F., Morosoli, R., Kluepfel, D. and Dupont, C. (1998) Sitedirected mutagenesis study of a conserved residue in family 10 glycanases : histidine 86 of xylanase A from Streptomyces lividans. Protein Eng. 11, 399±404
Depositing User: Briony Heyhoe
Date Deposited: 13 Jul 2007
Last Modified: 28 Aug 2021 23:33


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©