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ABSTRACT 

In the modern global economy, there is a demand for high precision in manufacture as 

competitive pressures drive businesses to seek greater productivity.  This results in a demand 

for a reduction in the errors associated with CNC machine tools.  To this end, it is useful to 

develop a greater understanding of the mechanisms which give rise to errors in machine tool 

drives. 

This programme of research covers the geometric, thermal and load errors commonly 

encountered on CNC machine tools.  Several mathematical models have been developed or 

extended which enable a deeper understanding of the interaction between these errors, various 

details of ballscrew design and the dynamic behaviour of ballscrew driven systems. 

Some useful models based on the discrete matter or “lumped mass” approach have been 

devised.  One extends the classical eigenvalue method for finding the natural frequencies and 

other dynamic characteristics of ballscrew systems to include viscous damping effects using a 

generalised eigenvalue approach.  This gives the damping coefficient of each predicted 

vibration mode along with the estimates of the natural frequencies, enabling many of the 

natural frequencies predicted by standard undamped natural frequency analyses to be 

dismissed as being of little consequence to the vibratory behaviour of the system. 

A development of this modelling method gives the sensitivity of the system to changes in 

stiffness and damping characteristics, which is helpful at the preliminary design stage of a 

ballscrew system, and is an aid in deciding the most convenient remedy to vibration problems 

which may occur in service. 

The second set of lumped-mass models is specially developed to take account of the 

changes in the configuration of the system with time as the nut moves along the screw while 

taking into account the non-linear phenomena of backlash and Coulomb friction.  These can 

deal with the axial, torsional and transverse degrees of freedom of the system and predict 

many aspects of the dynamic behaviour of a ballscrew system which have an effect on the 

errors arising from such systems.  They also include features which calculate the energy 

converted to heat by all the energy dissipative mechanisms in the model which can be used in 

conjunction with models already developed at the University of Huddersfield to predict 

thermal errors. 

Further, a strategy for compensation of some of these errors has been devised. 
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s, s’ submatrices which connect p and t     N/m, N, N m/rad 

t time         sec 

t stiffness submatrix representing part of system where 

external forces normally act      N/m, N, N m/rad 

v velocity vector        m/sec, rad/sec 

v0 initial velocity vector       m/sec, rad/sec 

x displacement of mass       m 

x displacement array       m, rad 

x′  transpose of vector x       m, rad 

xbs axial position of part of screw in same plane as nut centre  m 

xi displacement of node i      m, rad 

xj displacement of massless node     m, rad 

xn displacement of nut       m 

xp axial displacement of point of contact on screw   m 
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xpn displacement of nut at point of contact    m 

xst steady state displacement response     m 

z distance of ballscrew axis below the centre of mass of load  m 

A screw cross-sectional area      m² 

BB1, B2B  nodes where journal bearings are attached    - 

BBlf1, Blf2B  backlash factors       - 

C damping coefficient matrix of ballscrew system   N sec/m, N sec, 

           N m sec/rad 

D' modified determinant       - 

E Young’s modulus       N/m² 

Ed energy dissipated       J 

Ein energy input        J 

F forcing term, equation (5.1)      N 

F external force        N 

F force array        N, N m 

Fi forces         N, N m 

Fi(t) external force applied at ith node     N 

Fn i contact force acting on sliding face     N 

F0 amplitude of harmonic forcing term     N 

G shear modulus of screw material     N/m² 

J inertia of load about Y axis through centre of mass   kg m² 

Ji rotational inertia of ith node      kg m² 

K torsional constant of screw      m4

K stiffness matrix of ballscrew system     N/m, N, N m/rad 

Kbs submatrix representing the ballscrew     N/m, N, N m/rad 

Kbs n submatrix representing the cross terms between the screw 

  and the nut        N/m, N, N m/rad 

Kdr submatrix representing the controller, drive motor 

  and mechanical coupling device     N/m, N, N m/rad 

Kdr bs submatrix representing the cross terms between 

  the driving mechanism and the screw    N/m, N, N m/rad 

Kij term of stiffness matrix      N/m, N, N m/rad 

Kn submatrix representing the nut and load    N/m, N, N m/rad 

KE kinetic energy        J 
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M mass of saddle or table      kg 

M mass matrix of ballscrew system     kg, kg m² 

Nf number of degrees of freedom at each node of ballscrew  - 

Ns number of starts       - 

PE potential energy       J 

R ballscrew ratio        m/rad 

S number of spring elements in ballscrew    - 

T time interval or time step      sec 

Xi x coordinates of nodes      m 

Xn position of ballscrew nut      m 

α, β special matrices used to develop time series    - 

δ displacements of degrees of freedom of submatrix p   m, rad 

ε displacements of massless node     m, rad 

ζ fraction of critical damping      - 

θ phase lag        rad 

θbs angular position of part of screw in same plane as nut centre rad 

θp rotation of the screw at point of contact of nut on screw  rad 

μi coefficient of friction       - 

ξi stiffness/damping distribution factors     - 

ϕ  displacements of degrees of freedom where external forces act m, rad 

φn tilt displacement of saddle/table     rad 

ω phase velocity        rad/sec 

ωn undamped natural frequency      rad/sec 

Γ(t) system applied torque       N m 

Γi(t) torque on ith node       N m 

Θ torsional stiffness of a single element of ballscrew   N m/rad 

Φ torsional stiffness of slideways     N m/rad 

Chapter 6 
an amplitude of acceleration vector     m/sec² 

acirc “circular” component of acceleration     m/sec² 

f fraction of distance of contact point along element length  - 
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fl(i,j) flexibility matrix       m/N, 1/N, rad/(N 

m) 

“g” acceleration due to gravity      m/sec² 

g gravitational field vector      m/sec² 

i node number        - 

ib bearing number = 1 or 2      - 

jstr y, jstr z effective tilt inertia of support structure close to bearing  kg m² 

kax ib axial or thrust stiffness of ibth bearing    N/m 

kn radial stiffness of nut       N/m 

kslide y support stiffness of saddle/table slideways in Y direction  N/m 

kslide z support stiffness of saddle/table slideways in Z direction  N/m 

kslide θy tilt stiffness of saddle/table slideways in Y direction   N/m 

kslide θz tilt stiffness of saddle/table slideways in Z direction   N/m 

ktilt θy ib tilt or rocking stiffness of ibth bearing about Y axis   N m/rad 

ktilt θz ib tilt or rocking stiffness of ibth bearing about Z axis   N m/rad 

ktr y ib transverse or radial stiffness of ibth bearing in Y direction  N/m 

ktr z ib transverse or radial stiffness of ibth bearing in Z direction  N/m 

l beam or element length      m 

m mass         kg 

mi mass at node i        kg 

mstr x, mstr y, mstr z effective mass of support structure close to bearing kg 

pred reduced stiffness matrix      N/m, N, N m/rad 

ri radial distance of centre of mass of ith node from X axis  m 

rcirc radius of node orbit       m 

t time         sec 

vn amplitude of velocity vector      m/sec 

x global displacement vector      m, rad 

xr displacements involving Y and Θz degrees of freedom  m, rad 

y transverse displacement      m 

yi, zi components of displacement ri in local X and Y directions  m 

{zi}i deflected shape at ith of iteration of pre-tension transverse 

 deflection calculation       m 

A cross-sectional area       m² 
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BBi out-of-balance at node i      kg m 

D modified determinant       - 

E Young’s modulus       N/m² 

F force vector        N, N m 

Fa i external axial force       N 

Fgyr gyroscopic torque vector      N m 

Fi force generated by out-of-balance mass, equation (6.38)  N 

G shear modulus        N/m² 

I second moment of area      m4

Jtilt tilt inertia        kg m² 

Jtors torsional moment of inertia      kg m² 

Jx polar moment inertia       kg m² 

Jxx moment of inertia about X axis     kg m² 

J0 moment of inertia about X direction through centre of mass  kg m² 

K torsional constant       m4

K stiffness matrix       N/m, N, N m/rad 

K+ib modified bearing stiffness matrix     N/m, N m/rad 

K+slide modified stiffness matrix, slideways degrees of freedom  N/m, N m/rad 

Kang modified bearing stiffness submatrix, angular degrees of freedom N m/rad 

Klin modified bearing stiffness submatrix, linear degrees of freedom N/m 

Kr stiffness submatrix involving Y and Θz degrees of freedom  N/m, N, N m/rad 

Kstr i stiffness matrix of support structure close to bearing   N/m, N m/rad 

Kz stiffness submatrix involving the Y, Z, Θy and Θz degrees of freedom 

          N/m, N, N m/rad 

K1 , K2 and K3 – stiffness submatrices, Figure 6.3    N/m, N, N m/rad 

Mi angular momentum of node i      kg m²/sec 

M mass matrix        kg, kg m² 

Mr mass submatrix involving Y and Θz degrees of freedom  kg, kg m² 

Mstr i effective mass matrix of support structure close to bearing  kg, kg m² 

My i titling moment of ith node of ballscrew    N m 

Mz mass submatrix involving the Y, Z, Θy and Θz degrees of freedom kg, kg m² 

Sdz 2 measure of the difference between two deflection shapes 

 in iteration        m² 
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Sz2 measure of the “size” of a deflection shape    m² 

T pre-tension        N 

T+ tension in element “upstream” of node    N 

T- tension in element “downstream” of node    N 

δM small change of angular momentum vector    kg m²/sec 

δt time interval        sec 

θ tilt angle        rad 

θx i torsional position       rad 

θx i, θy i, θz i angular position of ith node     rad 

θx ib angular position of ballscrew in bearing    rad 

φa direction of acceleration vector     rad 

φn tilt stiffness of nut       N/m 

φv direction of velocity vector      rad 

ω angular speed of screw      rad/sec 

Γ torque         N m 

Γe i external torque       N m 

Γy, Γz tilt torques about Y and Z axes     N m 

Chapter 7 
d diameter of tube       m 

h heat transfer coefficient      W/(m² ºK) 

hr heat transfer coefficient      W/(m2 K) 

itime row number of time history array     - 

jx node number        - 

jQ node at which heat is applied      - 

k thermal conductivity       W/(m ºK) 

l length of coolant hole       m 

mjx node mass        kg 

q nett heat flux from surface (eq 7.1)     W/m² 

t time         sec 

th time of initial heating       sec 

tstop time at end of cooling phase      sec 

tcjx node thermal capacity       W/ºK 

u∞ convective flow rate of bulk of fluid     m/sec 
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vper peripheral speed       m/sec 

vw average speed of cooling water through hole    m/sec 

x axial coordinate       m 

Ac cross-sectional area of conductivity elements    m² 

Asi cylindrical surface area of ith element    m² 
Asijx, surface area of inner cylindrical surface of node   m² 

Asojx surface area of outer cylindrical surface of node   m² 

Cp specific heat at constant pressure     J/(kg ºK) 

H heat production rate density (equ 7.6 and eq 7.7)   W/kg 

H heat transfer rate for the whole ballscrew (eq 7.23)   W/ºK 

L characteristic length of surface (eq 7.5)    m 

L length of bar        m 

Nu Nusselt number       - 

Q rate of heat supply at node jQ      W 

Qc heat conducted along element      J 

N number of nodes or “thermal masses”    - 

Re Reynolds number       - 

T absolute temperature of surface     ºK 

Ta representative temperature of surroundings (radiation)  ºK 

Ta ambient temperature       ºK 

Tb temperature of ballscrew      ºK 

Tw cooling water temperature      ºK 

Twi cooling water inlet temperature     ºK 

Tavjx average temperature distribution     ºK 

Thitime ix temperature time history array     ºK 

α absorptivity of surface       - 

δq heat gain or loss from cooling water     J 

δt time interval (smaller)       sec 

δx element length        m 

δT temperature difference      ºK 

ε emissivity of surface       - 

κ thermal diffusivity       m²/sec 

ν kinematic viscosity       m²/sec 
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ρ material density       kg/m³ 

ρw density of water       kg/m³ 

σ Stefann-Boltzmann constant = 5.672×10-8    W/(m2 K4) 

Δt time interval (larger)       sec 

 

Chapter8 
di inside diameter of ballscrew      m 

do outside diameter of ballscrew      m 

do eq equivalent outside diameter of ballscrew    mm 

g acceleration due to gravity      m/sec² 

i, j element or member identifiers     - 

k roots of characteristic equation of equation (8.A3.4)   1/m 

l length of the ballscrew between bearing pack centres  m 

n a non-zero integer       - 

p pitch of ballscrew groove      m 

rg radius of ballscrew groove      mm 

s screw section number       - 

w weight per unit length of beam     N/m 

xj axial position on ballscrew      m 

y transverse deflections of ballscrew centre    m 

y(x) deflected shape of ballscrew      m 

yg distance from outer cylinder of screw to groove’s centre of area mm 

ym measured values of transverse movement    m 

ymax maximum transverse deflection     m 

A amplitude of solution of equation (8.A3.4)    m 

A dimension in Figure 8.3      mm 

Ag cross sectional area of ballscrew groove    mm² 

Ai constants of integration    (units dependent on equation) 

Aj subvectors of terms used to define deflected shape of ballscrew (various) 

B dimension in Figure 8.3      mm 

BBi constants of integration    (units dependent on equation) 

E modulus of elasticity       N/m² 

EI flexural rigidity of beam      N m² 
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Hij submatrices of quantities determined by geometry of ballscrew (various) 

I second moment of area      m4

Ki radial stiffness of bearing      N/m 

L length of beam along X axis      m 

M bending moment       N m 

Mi applied moment at intermediate points on ballscrew   N m 

ML applied moment at non-drive end of ballscrew   N m 

M0 applied moment at drive end of ballscrew    N m 

Nm number of groups of measurements in a set of readings  - 

Q shear force        N 

Qi shear load at intermediate points on ballscrew   N 

QL shear load at non-drive end of ballscrew    N 

Q0 shear load at drive end of ballscrew     N 

Vi subvectors of the forces vector     N, N m 

W total weight of ballscrew      N 

T pre-tension in ballscrew      N 

Vp volume of material in a length of screw one pitch long  mm³ 

Xi axial coordinates       m 

α roots of characteristic equation equation (8.A3.4)   1/m 

δx length of element of beam      m 

ε radial errors        m 

θ angle used in derivation of equivalent outside diameter of screw rad 

λ wave number, equations (8.A2.7) to (8.A2.52)   1/m 

λ non-dimensional factor used in Levenburg-Marquardt method - 

μ mass per unit length or linear density of beam   kg/m 

ξ roots of characteristic equation (8.A2.5)    1/m 

ρ density         kg/m³ 

χ2 “chi squared” measure of error     m² 

ω rotational speed of ballscrew      rad/sec 

Φi tilt stiffness of bearing      N m/rad 

Chapter 9 
di inner diameter of ballscrew      m 

do outer diameter of ballscrew      m 
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flbs axial flexibility of the ballscrew     m/N 

flsys total system flexibility referred to the motor shaft between 

 the motor and the ballscrew nut     rad/(N m) 

lbs length of ballscrew between its supporting bearings   m 

kax B1, kax B2 axial stiffness of the ballscrew support bearings   N/m 

kdr stiffness of drive coupling      N m/rad 

kms stiffness of motor shaft      N m/rad 

kθbs torsional stiffness of ballscrew     N m/rad 

mload mass of the nut and saddle and/or table    kg 

p screw pitch        m 

x linear position of nut       m 

Abs cross sectional area of ballscrew     m² 

CE material factor for contact stress     m²/N 

E modulus of elasticity       N/m² 

iE  Young’s modulus       N/m² 

Fnut axial force delivered by the ballscrew to the nut   N 

G shear modulus        N/m² 

Jm motor inertia        kg m² 

Jtot total referred inertia of the ballscrew drive system   kg m² 

Ns number of helices = number of starts on screw   - 

R screw ratio        m/rad 

Tm torque applied to the motor rotor by its electrical fields  N m 

Tm net motor output torque       N m 

 δxbs axial deflection at the centre of the nut    m 

δxcomp total deflection to be compensated for    m 

 θ angular position of ballscrew      rad 

θbs torsional deflection of ballscrew at centre of nut   rad 

 iν  Poisson’s ratio        - 
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Chapter 1 - INTRODUCTION 

In the modern global economy, there is a demand for high precision in manufacture as 

competitive pressures drive businesses to seek greater productivity.  The resulting high-

volume production has meant that machines have replaced manual labour in many instances.  

Following the development of reliable digital electronic technology it became possible to 

produce computer numerically controlled (CNC) machine tools.  At the present time a great 

variety of products or product parts are made on such machines.  The annual world wide 

demand for machine tools is of the order of £500 million [1].  Japan is one of the world’s 

leading suppliers and some 84% of her total production comprise numerically controlled 

machines [2]. 

Most manufactured products are an assembly of many parts.  It is highly desirable that 

these parts are made to the highest standards of accuracy [3].  Workpiece accuracy is 

influenced by the environment in which a machine tool operates, the way it is used and errors 

associated with the machine itself.  In order to achieve the desired levels of accuracy the 

errors associated with machine tools must be reduced to the lowest practicable level.  Errors 

in machine tools can be grouped under three main categories [4] – geometric, thermal [5] and 

load [6-9]. 

In the operation of a machine tool, one or more machine tool drives are needed to move 

the tool relative to the workpiece.  If the required motion is linear, the motion is generated by 

a screw mechanism in which the rotational motion of a screw is transferred to linear motion of 

the nut.  For machines with above 3 m travel, rack and pinion drives are often employed.  

Linear motors are sometimes employed for smaller machines, but screws remain the most 

widely used mechanisms.  In most modern machine tools, the control of the motion of its 

various parts is by means of motor-driven mechanisms governed by an electronic controller. 

The controller receives signals from transducers placed at suitable locations on the 

machine which enable the position and speed of the different parts to be determined.  It uses 

this information, together with a set of instructions known as a part program, to determine 

how the machine should operate to produce the desired shape in the workpiece.  A typical 

machine tool drive therefore consists of an electronic controller, an electric motor, a drive 

mechanism and transducers or encoders which provide feedback signals to the controller [10].  

Modern control systems use digital technology and so errors in the drive system can arise due 

to the sampling and quantisation involved in converting analogue signals into digital form.  

Errors such as interpolation and servo up-date errors can also be generated while converting 

the digital output to the analogue signal used to drive the motor. 

[1] 



 

Traditionally the screw mechanisms consisted of a steel helical screw of a “square” profile 

with a matching nut lubricated by oil or grease.  Such mechanisms involved a great deal of 

sliding friction.  In order to reduce problems associated with friction, the ballscrew was 

developed where a set of rolling elements are introduced between the screw and the nut.  The 

basic elements of a ballscrew are 

• a screw with one or more helical grooves on its outer surface, 

•  a sleeve known as a nut which has corresponding grooves on its inner surface, 

and 

•  a set of balls which provide rolling contact between the screw and the nut. 

The main considerations taken into account when designing a ballscrew are that 

• it should be strong enough to carry the loads imposed 

• it should be durable enough in terms of fatigue life and wear characteristics of 

the materials involved to last for the design life 

• it should be rigid enough to meet the required precision 

• it should be dynamically stable throughout its operating envelope.  In practice this 

means that the system should not operate at or near sensitive natural frequencies for 

long enough for troublesome vibrations to occur. 

In order that the nut runs freely on the screw, there must be a small amount of clearance 

between the balls and the grooves they run in.  This gives rise to backlash between the nut 

and the screw.  In most instances the screw, nut and balls are made of an appropriate grade of 

steel and can be made to a high level of accuracy, especially where ground screws are 

employed.  Cooling of the parts of the ballscrew can be achieved by passing a water based 

coolant through hollow passage ways in the parts where the cooling is desired.  Ballscrew 

drives are used in a wide variety of machines with drive travels of up to about three metres. 

Ballscrews are the first choice for many machine tool drives.  The error associated with 

ballscrews which has a direct effect on the machine performance is the pitch error associated 

with the screw grooves.  Others include thermal growth of the screw and elastic deformation 

due to the dynamic loads imposed on the screw.  An understanding of these errors is 

important to improving the accuracy of machine tool drives. 

Two strategies can be deployed to improve the accuracy of a machine, viz: 

• error avoidance – this approach minimises errors through better machine design, 

construction and control of the machine’s environment [11].  
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• error compensation – this approach seeks to compensate for errors which cannot be 

eliminated.  The assumption is made that many errors are repeatable and predictable.  

A model of the machine’s behaviour can therefore be made which describes the 

machine tool and which can be validated experimentally [12].  The information 

received from the modelled simulations can be used along with data from the 

machine’s transducers by the machine’s controller to improve the accuracy of the 

manufactured parts. 

Error avoidance in ballscrews is normally achieved by making the components from 

suitably tough grades of steel and maximising dimensional accuracy by using grinding to 

finish the surfaces most relevant to positional accuracy.  Backlash can be removed by using 

one of the several ways of applying preload, (see §3.1, p 22). 

Commercially it is desirable to be able to achieve the desired accuracy by compensating in 

the most cost-effective way.  In this context it is best, where possible, to avoid using 

expensive special environments such as temperature controlled rooms.  Also it is better to use 

pre-calibrated measurements for known errors in machine tools rather than rely on additional 

measuring equipment which may prove vulnerable to coolant, swarf and other hostile 

elements in the machine tool environment.  Well formulated mathematical models can take a 

useful role in understanding the effects which generate errors so that improvements in the 

manufacturing process can be made.  Advances have been made recently in the modelling of 

CNC machine tool feed drives [13, 14], particularly hybrid modelling [15], though these do 

not deal with details of the behaviour which might arise from movement of the nut.  These 

have been used as a starting point for the development of a new approach to ballscrew 

modelling. 

The programme of research described in this investigation will seek to develop means of 

understanding the static, dynamic and thermal behaviour of a ballscrew system and to 

incorporate that understanding in a set of mathematical models.  The prime purpose of a 

ballscrew is to move one part of a machine relative to another.  This movement causes some 

of the characteristics of the machine, for example, the effective stiffness of the ballscrew to 

change.  Therefore, a case of special concern in ballscrew systems is that of the dynamics of a 

system where the characteristics change with time.  This can be been addressed under two 

broad headings – first, axial and torsional, and second transverse. 

Any torsional or axial deflection of the screw, or axial movement within the support 

bearings, or axial movement in the nut has a direct impact on errors generated by the 

ballscrew system.  The modelling method is based on the discrete matter approach and 
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involves setting up a set of matrices to represent the mass, damping and stiffness of the 

components of the ballscrew system.  The changes in the characteristics of the system are 

modelled by updating these matrices as the solution proceeds.  The solution is obtained by a 

series method which avoids the repeated inversion of large matrices.  Comparisons are made 

with “classical” solutions based on elastic beam theory. 

The transverse case has to do mainly with the vibration of the screw.  Since the bearings 

and nut give radial restraints to the screw, it is to be expected that the natural frequencies of a 

ballscrew system will change with the position of the nut along the screw.  Whether or not 

any particular natural frequency is of detriment to the performance of the machine of which 

the ballscrew is part will depend on the severity of the vibration which occurs.  This depends 

in part on the damping involved, the magnitude of the excitation forces and the time that such 

excitation is effective at frequencies close to that natural frequency.  All of these points can be 

addressed using the method developed in this programme of research.  Problems with the 

method have been identified and overcome.  Non-linear phenomena such as Coulomb friction 

and backlash can be accommodated. 

The dynamic model has built into it a means of determining the heat generated by the 

dissipative mechanisms active in a ballscrew system.  The thermal model takes account of the 

heat generating processes, the means of distributing the heat throughout the ballscrew system 

and the means of losing heat to its surroundings.  It can therefore generate predictions of the 

temperature distribution throughout the ballscrew system and the resulting thermally induced 

movements.  Consideration is also given to the various means of cooling available for 

different parts of the ballscrew system. 

Use has been made of a special rig developed during the investigation to undertake various 

tests of these models.  Consideration has also been given to the aspects of ballscrew design 

which influence error generation and what steps may be taken to minimise errors.  Finally a 

means of applying compensations for some of the effects identified is put forward.  Taken 

together, the models contribute to knowledge by enabling a deeper understanding to be gained 

into 

• the interaction between the various details of ballscrew design,  

• the dynamic behaviour of a ballscrew drive and 

• the thermal behaviour of the systems into which the ballscrew is to be built. 

The aims of this research therefore are:- 
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• to prepare a mathematical model of a ballscrew which takes into account the 

geometric, thermal and load errors commonly encountered on CNC machine tools and 

• to devise strategies and algorithms for the correction of these errors. 

The objectives of the research can be listed as follows:- 

• Starting from a basic understanding of the behaviour of a ballscrew, to outline the 

relevant static elastic theory, dynamic elastic theory and the theory of thermal 

modelling. 

• To develop further the dynamic theory by examining the continuous matter approach 

including wave solutions and the discrete matter (or “lumped mass”) approach with its 

matrix solutions. 

• To extend the classical eigenvalue method for finding the natural frequencies and 

other dynamic characteristics of ballscrew systems and to include viscous damping 

effects using a generalised eigenvalue approach.  This will give estimates of not only 

the natural frequencies, but also the damping coefficient of each predicted vibration 

mode [16].  The sensitivity of the system to changes in stiffness and damping 

characteristics will also be derived. 

• To devise a method of modelling a ballscrew driven mechanical system with a moving 

nut whose configuration changes with time. 

• To develop a means of compiling a mathematical model which includes non-linear 

phenomena such as backlash and Coulomb friction as well as time dependent stiffness 

and damping characteristics. 

• To apply the new approach to the axial and torsional behaviour of the screw with a 

view to predicting the position error of the ballscrew nut. 

• To apply the new approach to the transverse behaviour with a view to predicting the 

vibration characteristics of the screw. 

• To develop the mechanical model in such a way that the energy dissipative 

mechanisms give a prediction of heat inputs for a model of the thermal behaviour. 

• To develop a model to predict the thermal behaviour of a ballscrew system 

• To consider the feasibility of cooling parts of the ballscrew system with a view to 

reducing thermal errors. 

• To compare the simulated results of the models with data measured from the test rig 

and other relevant experimental data that is in the public domain or within the 

University internal reports. 
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• To consider ways of reducing errors by changes in the design of a ballscrew. 

• To devise a means of correcting ballscrew errors which will improve the accuracy of a 

machine tool. 

The investigation has added a novel method of analysing machine tool drives which takes 

into account the characteristics of the ballscrew system which change as the nut moves along 

the screw.  This can be especially helpful in analysing a system’s susceptibility to high levels 

of vibration due to the excitation of its natural frequencies.  It also includes a useful extension 

to eigenvalue analysis applied to machine tool drives. 

The remainder of the thesis is divided into the following chapters:- 

• Chapter 2 is a critical review of the literature in the public domain.  The results of 

the review lead to the topics covered by this investigation. 

• In Chapter 3 the theoretical background is set out.  This includes the basic 

behaviour of a ballscrew, errors in machine tool drives and static elastic theory as 

applied to ballscrew action.  The applicable dynamic elastic theory and the 

approach to thermal modelling are also introduced. 

• The approach to dynamic modelling is developed in Chapter 4.  Continuous matter 

methods including wave solutions and lumped mass methods with their matrix 

solutions are discussed leading on to a generalised eigenvalue model of a machine 

tool drive.  The chapter finishes by outlining a method of undertaking an analysis 

of the sensitivity of such a drive to changes in its system parameters. 

• A method for analysing the dynamic behaviour of a system whose dynamic 

characteristics change with time is developed in Chapter 5.  The case of the axial 

and torsional degrees of freedom of a machine tool drive including a ballscrew is 

solved and comparisons with classical elastic theory are made. 

• In Chapter 6 the solution is extended to include the transverse degrees of freedom 

of the ballscrew.  Consideration is made of the static case of gravitational sag and 

the effects of pre-tension in the screw.  A comparison with a conventional 

consideration of a dynamic case is made. 

• Thermal modelling is discussed in Chapter 7.  The thermal characteristics of 

various components of a machine tool drive are described and the one dimensional 

approach to modelling the screw is justified.  Various aspects of cooling are also 

covered. 

• Chapter 8 covers the experimental verification of various aspects of the models. 
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• In Chapter 9 error reduction is discussed including reduction through design and 

reduction through compensation. 

• The conclusions to the investigation are drawn in Chapter 10 and 

recommendations for further research are made. 

The first part of the investigation is the review of literature in public domain and follows in 

Chapter 2. 
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Chapter 2 - LITERATURE SURVEY 

Screw based mechanisms have been in use since early times.  The name of Archimedes (287 

– 212 or 211 BC) [17, 18] is associated with a helical device used for moving water.  Similar 

devices are used extensively today for moving bulk solids [19].  The use of screws for 

transmitting force and motion also dates back to the middle ages.  In the Mittelalterliche 

Hausbuch of about 1480 a lathe with a screw device to control the motion of the cutting tool was 

shown [20]. 

2.1  Basic modelling of screw mechanisms 

The special properties of screws have given rise to a branch of mathematics called screw 

theory [21].  The theory of screws was largely developed by Sir Robert Stawell Ball [22] over 

100 years ago to investigate general problems in rigid-body mechanics.  This has been refined 

and extended to include the modern formulations of dual numbers, Plücker coordinates and Lie 

algebra.  Lipkin and Duffy have presented an overview of these methodologies along with a 

perspective of the re-emergence of screw theory as an important tool in robot mechanics, 

mechanical design, computational geometry and multi-body dynamics. 

In machine tools, the ACME thread screw has been used to move and position different parts 

of machines for many years.  The ballscrew was introduced in a bid to reduce friction and 

backlash.  Here a set of balls is constrained to roll between two helical tracks.  Knowledge of the 

kinematic behaviour of bodies in contact is therefore useful in order to gain a thorough 

understanding of the dynamic behaviour of ball-contact mechanisms.  Pfister [23] has developed 

a point contact kinematic model, using a non-holonomic parameterisation first introduced by 

Neumann [24] and Richter [25].  The model is built with two auxiliary pairs of imaginary bodies 

and each body carries a co-ordinate reference frame.  By this, one single point pair becomes a 

serial composite of three pairs:  two Levi-Civita and one revolute pair.  The approach is general 

and applicable to any pair of regular, parametric surfaces.  The algebra is simplified by the 

discovery of an intimate relationship between point-contact kinematics and parallel transport of 

vector fields in the sense of Levi-Civita.  A new special motion, Levi-Civita motion, is defined 

and discussed.  The following first- and second-order kinematic properties of Levi-Civita motion 

are presented:  motion screw, motion pitch, Hamilton cylindroid, Sturm theorem, parallelism, 

Schieldrop-Johnsen vector of non-holonomic deviation, analogy to a rigid body with a fixed 

point and a kinematic proof of the Gauss-Bonnet theorem of differential geometry. 

These methods can be applied to a large variety of phenomena and Pfister obtained 

convenient, profound and computationally attractive algebraic expressions which can be applied 
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to a variety of bodies in contact.  However, the behaviour of the components of a ballscrew is 

only a sub-set of the phenomena covered.  Balls are the simplest possible form of rolling 

element, having but one positive curvature, in theory at least.  The raceways are most commonly 

of “gothic” profile.  So their section consists of two circles which overlap in such a way that 

there is a cusp at the lowest point of the profile.  This simplifies the pattern of contact to “two 

point” or “four point” contact.  The detailed contact behaviour of the balls and raceways has an 

effect on the heat generated by the operation of a ballscrew, and on the wear of these parts.  

However, it is the axial deviations of the raceways, especially that of the screw (screw pitch 

errors), which contribute most to the geometric errors generated by ballscrew drives.  Calculation 

methods based on a simpler set of assumptions are widely used by ballscrew manufacturers to 

estimate the static behaviour of their products [26]. 

2.2  Error compensation in CNC machine tools 

The Ultra Precision Engineering Group at Huddersfield University has carried out extensive 

work on geometric and thermal errors of machine tools and their drives. They also have 

developed considerable expertise in modelling machine tool drives. 

The geometric errors which occur on a three-axis machine tool can be expressed in terms of 

21 components [27].  There are six errors for each of the three Cartesian axes:  a linear positional 

error, a straightness error in the two directions perpendicular to the axis, an angular error about 

the axis itself (“roll”) and an angular error about the two perpendicular axes (“pitch” and “yaw”).  

In addition there are three squareness errors between the axes.  It is possible to measure the 

positional, straightness, pitch and yaw angular errors by means of optical methods which involve 

counting interference fringes generated by laser beams passing through an appropriate set of 

lenses and mirrors.  The roll angular errors can be measured using devices such as the Talyvel 

electronic level.  Squareness can be measured using laser techniques, but mechanical methods 

can also be used, the latter entails the use contact probes in conjunction with a special high 

precision artefact like a granite set square. 

Postlethwaite et al [28] described a novel technique for the fast, accurate and detailed 

geometric calibration of CNC machine tools.  This technique uses a standard Renishaw laser 

interferometer system to extract geometric error data from measurements taken dynamically. 

Tests carried out on a typical machine tool enable the accuracy and potential of this calibration 

technique to be assessed.  Further work in this field [29] has led to the development of software 

which computes the machine volumetric accuracy from the individual geometric error 

components, and then calculates the effect of machine angular errors.  The software is based on 
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the Windows operating system and incorporates a user-friendly graphical interface.  This 

approach is considerably faster than standard techniques for measuring static errors.  It also 

enables patterns of errors to be identified that normal methods would miss. 

The analysis of errors arising from component variations in geometry and temperature of a 

non-Cartesian machine is far more complex than in the case of the Cartesian machine.  Freeman 

et al [30] described techniques leading to the development of general software which is capable 

of analysing the geometric and thermal errors in any structure consisting of measurable struts.  

Three dimensional plots of errors in any plane can be produced.  The limitation that the machine 

should be made of struts is not so restrictive as it might appear, since solid components can 

usually be modelled as interconnected struts if large temperature gradients do not cause thermal 

deformation of the machine’s components.  The approach is to divide a machine into sub-

assemblies and to analyse each of these individually.  This method enables the errors arising 

from a source of heat, (such as a spindle motor), to be evaluated, and also the effect of random 

errors in strut lengths.  It is very useful when dealing with non-conventional machine formats. 

Ford et al [31] have developed a unique algorithm, based on an indirect identification pre-

calibrated technique, which allows the system to compensate for geometric error components of 

the normal orthogonal machine tool configuration.  The method takes into account both rigid 

body effects and the behaviour of some machine specific non-rigid elements.  It introduces a 

novel technique for reducing workpiece errors caused by the thermal distortion of a 

CNC machine tool.  The universal rigid body compensation model which works for machines 

with up to three axes includes machine specific non-rigid body and thermal effects.  It can 

achieve accuracy improvements of the order of 10:1 up to 30:1.  A universal non-rigid body 

compensation was not possible.  Models specific to each machine need to be developed and 

incorporated into the machine’s compensation system.  A similar approach is needed for thermal 

distortion. 

White et al discussed [32] the relative accuracy of ballscrews and linear encoders over a broad 

range of application configurations and usage conditions.  Frank and Ruech [33] made similar 

comparisons.  It was shown that ballscrew expansion is the largest thermal error source within a 

broad range of CNC machine tool configurations and running conditions when a rotary encoder 

fitted at the end of the ballscrew is used to measure the position of the axis.  Such an 

arrangement exhibits offset, scale and reversal errors that change quickly according to the 

thermal state of the ball-screw.  It was found that linear encoder measurement systems exhibit 

the same error categories, but generally with smaller maximum values, and slower rates of 

change.  The thermal errors exhibited by ball-screws are primarily due to an inability to de-
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couple the measuring system from the heat in the ball-screw and mounting system that sets the 

position of the tool relative to the work-piece. 

Linear expansion and distortion of the structural elements also cause unwanted movement 

between the tool and workpiece.  Heat inputs that cause temperature elevation and gradients 

come from many sources, both internal and external to the machine tool.  Internal sources 

include drive motors, ballscrews and the cutting action of the tool.  External sources include 

sunlight and draughts from convective heating systems.  This makes thermal errors difficult to 

control without some form of compensation.  Many thermal error modelling and compensation 

systems have been proposed which use neural networks [34], multi-regression analysis [35], heat 

modelling [36] or probing techniques [37].  However, each method suffers from one or more 

major drawbacks that limits its effectiveness when used in a practical machining environment.  

One feature of all the thermal error compensation techniques is the lack of flexibility that makes 

them difficult to apply to more than one machine type in a timely and cost-effective way. 

White et al [38] described a combined thermal and geometric error compensation system with 

a flexible structure that is general purpose in its application to any machine tool.  The system can 

accept input from any number of temperature sensors.  Using data from a single test on the 

machine, a novel Matlab model can be programmed in such a way that it estimates its thermal 

movement.  The program then directs error values to a number of outputs which are used by the 

machine controller to effect compensation by axis position modification.  The entire 

compensation system can be applied either in a stand-alone computer that accepts a wide range 

of feedback signal types, or integrated into an open architecture machine controller.  The system 

allows the management of temporary or permanent input failures and displays every thermal 

error component as an aid to fault diagnosis.  Both position independent and position dependent 

thermal errors can be reduced through compensation.  The system has been applied to several 

machine tools, and has shown itself capable of reducing thermal movements between the tool 

and the workpiece by over 6 times when using a quick heating and cooling test for calibration. 

The connectivity of the structural elements determines the effect of the expansion and 

distortion on the relative positions of the tool and workpiece, leading to thermal errors on the 

workpiece.  Measurement on a wide range of machine tools has confirmed that temperature 

gradients are significant in their effect on machining accuracy and that they move and change 

shape during the machining process.  White et al [39] demonstrated a bending model that 

estimates the effects of thermal distortion using knowledge of the position of the temperature 

gradient which is derived.  The performance of the bending model was compared with a finite 

element model and a model that has no knowledge of the position of temperature gradients.  
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Results obtained from a vertical machining centre show that knowledge of the position and 

magnitude of temperature gradients is an essential part of predicting thermal distortion 

accurately. 

Freeman et al [40] developed a system which minimises the number of temperature sensors 

used as inputs to a thermal simulation model of the ball-screw which is used to estimate on-line 

the thermal errors of the ball-screw.  Assuming that position measurements of the nut are 

available from the rotary encoder, it is possible to calculate the speed of the screw.  Assuming a 

knowledge of the frictional and heat transfer characteristics, and using the speed and the 

measured temperatures of the nut and bearings, the heat generated in the nut, bearings and screw 

can be estimated.  The thermal model constitutes a one-dimensional finite analysis of the whole 

length of the screw.  The output of the model is a temperature distribution along the screw and an 

estimate of the thermal errors along the screw. 

They also described an experimental test rig, which provided facilities to test the model on-

line.  The position measured with a laser interferometer was compared with the estimated 

position derived from the model.  The results were displayed graphically and saved for future use 

in optimisation software to determine the parameters of the thermal model which best fit the 

experimental data.  Improvements of better than 90% in the thermal error have been obtained.  

The software is capable of making estimates of the thermal behaviour of a user-specified ball-

screw in an off-line simulation mode.  This can be used to aid design and help understand the 

effect of thermal errors on machine accuracy. 

Postlethwaite et al [41] described a novel compensation technique, based on indirect 

measurement of thermal error, that overcomes the main difficulties of applying thermal 

compensation, making it practical and generally applicable.  The technique makes extensive use 

of thermal imaging for rapid assessment of machine tool thermal behaviour and off-line 

development of the compensation models.  It was applied to the head-slide of a vertical 

machining centre. 

It is difficult to develop a practical single compensation strategy which can deal with different 

aspects of machine tool thermal behaviour.  Systems which attempt to do this are usually 

complex and time consuming to implement.  Postlethwaite et al [42] devised a range of relatively 

simple error tracking techniques, and a formalised philosophy for determining which technique 

is appropriate in each case.  The different techniques were illustrated by four case studies.  The 

approach is to split the problem of finding the best error compensation strategy into two phases:- 

1. to undertake an assessment of the thermal behaviour of the machine tool.  At this 

stage an understanding of the type and magnitude of likely thermal errors is gained. 
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2. The selection and implementation of a suitable compensation method. 

Improvements in accuracy of 2.5:1 to 6:1 were achieved in the case studies used. 

Machine tool thermal distortion can account for 75% of the total machining error [43].  The 

approaches taken to achieve thermal error reduction can be divided into two broad categories:- 

(a) reducing structural temperature change and 

(b)  reducing the effect of structural temperature change. 

Postlethwaite et al [43] discussed a number of representative examples of applied thermal 

error reduction techniques that utilise machine design and compensation.  White et al [44] 

described tests that have been performed on ten different CNC machine tools of widely differing 

configurations.  These tests aimed to identify thermal errors and methods by which these errors 

may be eliminated from components produced by these machines.  The general testing 

methodology used, the data recorded and analysed from the tests, and a list of actions which may 

be performed in order to reduce the thermal errors in the machines tested were explained.  The 

general testing methodology has evolved from both the BSI 3800 part 3 standard and the need to 

identify the factors affecting thermal errors.  Thermal imaging, non-contact probes, level sensing 

equipment, material constructed from invar and appropriate exercise of machine functions have 

all been used to identify thermal errors.  The data recorded has identified thermal errors that can 

be associated with particular mechanism types.  Mechanisms investigated include ball-screws, 

hydro-screws, linear scales, hydrostatic bearings, structures, and cooling systems within 

structures.  Reduction in the thermal errors can be achieved by design changes, improved chiller 

settings, application of linear scales and revised probing systems.  It has become clear that a 

fundamental understanding of the mechanical arrangement of a particular machine is essential in 

order to reduce thermal errors in an economic and effective manner.  The paper takes a broad 

overview of the mechanisms which give rise to thermal errors in CNC machine tools.  It draws 

particular attention to the significance of ballscrew thermal errors and the sensitivity of ballscrew 

pre-tension to changes in temperature. 

Working in a similar field Pahk and Lee [45] measured and modelled thermal error caused by 

heat generated by the spindle.  They have used linear regression, neural network, and system 

identification methods.  The general conclusion was drawn that the System Identification model 

performed better than those based on linear regression or neural network techniques. 

Providing a comprehensive compensation system able to cope with the variety of axis 

combinations and configurations available in the modern machine tool market is a potentially 

complex matter.  This problem is compounded by the demand from industry for precision 5 axis 

machining.  Postlethwaite et al [46] described a practical geometric error compensation system 
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that can be applied to any machine tool that has up to 5 axes.  The system can correct for the 

effects of all the geometric errors associated with a machine’s linear axes, together with the 

geometric errors associated with a fork type servo head.  The system applies compensation 

dynamically and in real time as the machine moves throughout its working volume. 

Machine calibration has become an important tool for assessing and maintaining machine 

accuracy, and for providing a measure of production quality.  The calibration techniques 

supported by the calibration standards and the available metrology technology use static 

measurement cycles.  Static calibration cycles can be time consuming to perform, and with 

coarse step sizes cannot give a complete picture of the machine performance. 

Recent advances in the laser interferometer technology used for machine calibration allow 

data to be captured dynamically.  Dynamic data capture technology provides the potential for 

dynamic machine calibration.  Dynamic calibration overcomes the inherent problems of static 

calibration, being quick to perform and providing detailed information on machine performance. 

Postlethwaite et al [47] described the concept of dynamic machine calibration.  In particular a 

novel dynamic calibration technique, utilising the Renishaw laser system, was devised.  Capture 

rates between 5 kHz and 10 kHz are possible and up to 75,000 data points can be processed. 

Ford et al [48] described an investigation into a laser feedback transducer for high 

performance CNC machine tool applications.  A commercial system available at the time 

operated at 1 m/s but it was anticipated that further development using the latest state of the art 

technology would miniaturise the transducer and lower its cost.  The interface between the 

transducer and the controller incorporated a compensation card through which compensation for 

machine tool geometric, load and thermal errors can be applied in real time. 

2.3  Feed drives modelling 

In the field of precision machining, vibration problems may occur which cannot be evaluated 

using compensation methods based on standard algorithms.  Weck and Hilbing [49] have 

produced an overview of the requirements of non-linear algorithms for use in the field of 

precision engineering.  Examples are given for the analysis of machine vibrations and an active 

compensation of the dynamic displacement between workpiece and tool in a turning process is 

demonstrated.  The implementation of non-linear algorithms in real-time applications using a 

standard PC or DSP is discussed. 

Pislaru et al [50, 51] described a 3D model proposed for evaluating the performance of 

CNC machine tool axis drives.  A modular approach is used to overcome the shortcomings of 

traditional methods by allowing for the easy exchange of elements without the need to alter the 
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whole model.  It represents the basis for future incorporation of geometric, non-rigid and thermal 

models of machine tool behaviour.  A two-axis model for CNC machine tool axis drives shows 

how geometric errors affect the machining accuracy across the working volume.  A comparison 

was made between the simulated errors and those measured directly from the machine by a ball 

bar.  The method described represents an advance on simple lumped-parameter methods and 

compared well with results from classical control theory.  Hybrid models which incorporate 

distributed loads have also been developed [15].  These models take account of the electrical 

characteristics of the controller, sensors and feed-back loops and the electrical and mechanical 

behaviour of the drive motor and drive system components using lumped parameter or 

distributed parameter techniques as appropriate. 

Various methods have been used to determine the dynamic parameters, as well as the friction 

characteristics of machine tool drives.  For example Erkorkmaz and Altintas [52] have used a 

method based on jogging the axes at various speeds under closed loop control while observing 

the disturbance torque through a Kalman filter.  The parameters of the model were derived from 

observations of the dynamic response by a least squares method.  As verification of the identified 

friction model, contouring test results without and with friction compensation are also presented.  

Working in a similar field, Ro et al [53] found that the performance of ball-screw-driven slide 

systems using standard proportional-integral-derivative (PID) control algorithms is 

unsatisfactory in sub-micrometre motion control because of non-linear friction effects.  They 

have developed controllers based on a bristle-type nonlinear contact model which have been 

implemented for sub-micrometre motion.  A proportional-derivative (PD) control scheme with a 

non-linear friction estimate algorithm was developed, and its performance was compared with 

that of a PID controller.  For tracking performance, a disturbance observer was added to reject 

external disturbances and to improve robustness.  The experimental results indicated that the 

proposed controller has consistent performance in positioning with under 1.5% of steady-state 

error in the sub-micrometre range.  The proposed controller showed good and robust behaviour 

with respect to parameter variation. 

An important limitation in the high performance controlled motion systems is due to the 

interaction between a flexible mechanism and its feedback controller.  Dequidt et al [54] have 

sought to include this interaction in the mechanical design.  They have generated some design 

rules with a generic model which includes this interaction.  Afterwards, with these new design 

rules it is possible to determine the bandwidth and the inertial ratio of the mechanism to meet the 

controlled motion requirements (e.g., speed and precision).  With these rules and some other 

classical rules, an attempt to raise the selection of design solutions has been set within the 
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context of the ball screw drive system for high speed machine tools (e.g., kinematics, 

components and sensor location choices). 

Braasch [55], (see Figure 2.1), considered whether linear encoders or rotary encoders and 

ballscrews represent the best solution for measurement on NC machine tools.  The action of the 

balls - wavy motion, changes in speed of spin going in and out of the recirculation system and 

the frictional behaviour involved – was discussed without giving any modelling method.  He 

concluded that the primary problem involved with position measurement using a rotary encoder 

attached to the drive motor and a ballscrew is the thermal expansion of the ballscrew and that a 

linear encoder would be better as requirements for machine tool accuracy and speed increase. 

 
Figure 2.1 – The essential elements of a typical machine tool drive [55] 

 

Huang [56] used a multiple regression method to generate a model based on experimental 

measurements.  The front bearing, ballscrew nut and back bearing are the key points of heat 

sources and were used as independent variables of the analysis model.  The method succeeded in 

predicting the thermal deformation of the ballscrew under a variety of speed conditions.  Yun et 

al [57] have also analysed a ballscrew using a modified lump capacitance model and a fuzzy 

logic like approach to fitting the model to measured data.  Their method gave predictions which 

compared well with data from a laser interferometer.  Only linear positioning error at the tool tip 

was attributed to the ballscrew.  The authors recommended taking into account the 

characteristics of the guideway as well as those of the ballscrew since some of the errors they 

measured arose from tilt errors in the guideways. 

Kim and Cho [58] tried to model the thermal behaviour of a ballscrew using a finite element 

method.  This worked well for a steady state, but they found that a modified lumped parameter 

method gave better results for real-time estimation of the temperature distribution.  They claim to 
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be able to estimate the temperature of the ballscrew shaft to within 5% deviation in several 

milliseconds. 

Lin et al [59] have developed a method for evaluating the efficiency of a ballscrew nut based 

on both quasi-static and dynamic considerations and have derived a design procedure from this.  

An exact theory based on the simultaneous solution of both the Newton-Euler equations of 

motion and the relevant kinematic equations was employed to determine mechanism efficiency.  

The steady-state motion of all components within the ballscrew could also be calculated.  

However, the development of design methods based on this exact theory was difficult due to the 

extensive computation necessary.  Therefore an approximate closed-form representation, that 

still accounts for the ballscrew dynamics, was derived.  The validity of this closed-form solution 

has been proven.  It was then used as a basis for developing an optimum design methodology for 

the ballscrew mechanism based on efficiency.  Additionally, the self braking condition was 

examined, where the internal friction prevents torsional movement of a screw mechanism in the 

case where axial loads are applied to the nut.  Load capacity considerations were also taken into 

account. 

Greater accuracy in axial positioning a ballscrew nut can be obtained by pre-loading the 

assembly, but too much pre-load can shorten life.  Markhauser [60] has given a method for 

calculating the stiffness and optimum pre-load of a ballscrew to provide maximum accuracy for 

the required life expectancy. 

Thermal stress can have an adverse effect on the accuracy of measurements taken by indirect 

means.  Therefore it is vital to improve our understanding of the thermal behaviour of the drive 

systems used in modern machine tools in order to improve the drive’s performance.  Schmitt 

[61] has used a variety of analytical methods to derive a model of the heat transfer process in the 

mechanical structure of a CNC controlled feed system.  The model includes the bearings and belt 

as well as the ballscrew.  Friction characteristics, heat flow, and radiation and convection of heat 

from the screw are taken into account.  A real-time error compensation method was derived.  

Using this method the CNC controller gave a substantially improved performance in positioning 

accuracy of the feed axes for a variety of operating conditions.  He concluded that an 

inexpensive improvement in the positioning accuracy of the form feed axes can be obtained 

using indirect measurements but control of the heat sources falls into the scope of an overall 

compensation package. 
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2.4  Analysis of vibration damping for feed drives 

The amplitude of vibration response to various stimuli is determined to a large extent by the 

level of damping.  Damping can take several forms (viscous, hysteresis, friction etc.) [62], but 

only viscous damping is a linear phenomenon and therefore more amenable to mathematical 

analysis.  The response of damped systems can be studied by a “forced damped” approach [63] 

in which various stimuli (for example out-of-balance forces) can be applied to a system.  A 

picture can be built up for the vibration characteristics of the system by applying such forces at a 

variety of frequencies. 

Holroyd [64] modelled the friction and damping in a typical ballscrew machine drive.  The 

machine used was a CNC milling machine which has a vertical spindle mounted on a fixed 

column.  The drives for the horizontal axes consisted of a DC electric motor driving a ballscrew 

via a belt drive, the ballscrew then driving the table (X drive) or saddle (Y drive).  The axis 

drives were simulated using the MATLAB/Simulink package.  The principal natural frequency 

and its damping factor were measured for both of these drives.  A set of mathematically stable 

models were produced which modelled the main vibration characteristics of the system. 

The natural frequencies can be determined by an eigenvalue method without applying stimuli 

over a range of frequencies if no damping is involved.  Holroyd et al [65] presented a theoretical 

analysis of a CNC machine tool drive and used it as a basis on which to develop a method of 

studying the effects of the damping elements in the drive.  The torsional behaviour of the drive’s 

mechanical components was considered.  The mechanical elements of the drive were modelled 

as point inertias coupled by springs and dampers using MATLAB/Simulink.  The undamped 

natural frequencies and their likely mode shapes were determined using an eigenvalue approach 

in order to act as a guide to the numbers expected.  The effect of the distributed mass in the 

ballscrew was also investigated.  Comparison with measurements gave values of the dynamic 

stiffness and damping factor governing the lowest of the observed natural frequencies.  This 

approach can be used as a basis for investigations into other aspects of the dynamic behaviour of 

machine tool drives, (for example those arising from Coulomb friction, viscous damping and 

hydrodynamic drag, and the backlash in the ball-screw).  The method is limited to coupled axial 

and torsional behaviour and some of the parameters are difficult to measure.  The models are 

capable of predicting many of the natural frequencies which have been observed.  The models 

are also limited to the nut being set in a particular position on the screw.  This position can be 

changed from analysis to analysis, but the effects of the continuous change in nut position which 

in fact takes place in a ballscrew driven system are not included. 
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The sensitivity of eigensystems has been analysed by the use of derivatives.  These methods 

involve the use of sophisticated mathematical techniques which are necessary when dealing with 

computationally large problems involving large order matrices. 

Adhikari [66] derived a method to calculate derivatives of eigenvectors of damped discrete 

linear dynamic systems with respect to the system parameter.  The eigenvectors and their 

derivatives become complex due to the non-proportional nature of the damping.  The derivatives 

were calculated using a small damping assumption, and the method avoids using the state-space 

approach.  The results were obtained in terms of complex modes and frequencies of the second-

order system, which in turn are related to the eigensolutions of the undamped system using a 

perturbation method.  Based on the derivatives, an expression for total change of the complex 

eigenvectors was obtained for a more general case when all the elements of mass, stiffness and 

damping matrices are varying. 

Nelson [67] presented a simplified procedure for the determination of the derivatives of 

eigenvectors of nth order algebraic eigensystems.  The method is applicable to symmetric or 

nonsymmetric systems, and requires knowledge of only one eigenvalue and its associated right 

and left eigenvectors.  The matrix of the original eigensystem of rank (n-1) is modified to 

convert it to a matrix of rank n.  This can be solved directly for a vector which, together with the 

eigenvector, gives the eigenvector derivative to within an arbitrary constant.  The norm of the 

eigenvector is used to determine this constant and complete the calculation. 

In its early stages, sensitivity analysis found its predominant use in assessing the effect of 

varying parameters in mathematical models of control systems.  Adelman and Haftka [68] have 

surveyed methods for calculating sensitivity derivatives for discrete structural systems.  They 

describe methods for calculating derivatives of static displacements and stresses, eigenvalues and 

eigenvectors, transient structural response, and derivatives of optimum structural designs with 

respect to the parameters of the systems involved. 

Murthy and Haftka [69] have concentrated on reviewing methods for sensitivity analysis of 

the algebraic eigenvalue problem for non-Hermitian matrices.  They put forward a modification 

of one method based on a better normalising condition.  Methods are classified as Direct or 

Adjoint and are evaluated for efficiency.  Operation counts are presented in terms of matrix size, 

number of design variables and number of eigenvalues and eigenvectors of interest.  The effect 

of the sparsity of the matrix and its derivatives has also been considered, and typical solution 

times are given.  General guidelines are established for the selection of the most efficient 

method. 
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Zeng [70] has derived a highly accurate modal superposition method for computing complex 

eigenvector derivatives in viscous damping systems.  The conventional modal superposition 

method cannot give an accurate solution when higher modes are truncated, and the errors may 

become significant.  In Zeng’s method, calculating the derivatives is regarded equivalent to 

calculating the structural response to harmonic excitation.  Using multiple modal accelerations 

and shifted-poles, highly accurate results would be obtained when only few modes are used.  

Numerical examples show that it achieves better calculation efficiency than other available 

modal methods and Nelson's method when more than one eigenvector derivative is of interest.  

Moreover, the presented method can be used to improve response calculations and substructure 

syntheses. 

Perturbation methods can also be used.  For example, Cronin, [71] has derived a perturbation 

method for the eigenanalysis of non-classically damped dynamic systems.  The method appears 

to be suitable for the rapid determination to any accuracy of one or all of a system's complex 

eigenvalue-eigenvector pairs.  It is not limited to the case where the system damping matrix is 

symmetric.  Being capable of handling non-symmetric matrices, the method is suitable for the 

eigenanalysis of gyroscopic and other interesting systems.  The derivation of the method 

involves a partial diagonalisation of the homogeneous equations of motion by the eigenvectors of 

the undamped system.  A perturbation quantity based on the off-diagonal terms of the partially 

diagonalised damping matrix is defined.  The eigenvalues and eigenvectors for the damped 

system are described in terms of power series in the perturbation quantity.  Equations have been 

developed for the general coefficient in each power series.  The potential value of the method is 

illustrated by the eigenanalysis of a set of example systems.  For the majority of the systems 

analysed, the method produced results in less time than the standard Foss approach to curve 

fitting [72]. 

Woodhouse [73] used both a dissipation matrix and a general linear model to deal with the 

case of light damping.  Linear damping models for structural vibration were examined:  first the 

familiar dissipation-matrix model, then the general linear model.  In both cases, an 

approximation of light damping was used to obtain simple expressions for damped natural 

frequencies, complex mode shapes, and transfer functions.  Results for transfer functions can be 

expressed in the form of simple extensions of the expression for the undamped case.  This 

allowed a detailed discussion of the implications of the various models of damping for the 

interpretation of measured transfer functions, especially in the context of experimental modal 

analysis.  In the case of a dissipation-matrix model, it would be possible in principle to determine 

all the model parameters from measurements.  In the case of the general model, however, there is 
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a fundamental ambiguity which prevents full determination of the model from measurements on 

a single structure.  

  2.5  Summary 

Modelling of screw mechanisms has developed from the pioneering work of Ball to the more 

recent sophisticated work of Pfister.  A body of expertise on machine tool errors and means of 

compensating for them has been built up by Ford, Postlethwaite and White.  Freeman and White 

have done some useful research on thermal errors associated with ballscrews.  Schmidt and 

Pislaru have done detailed work on modelling of ballscrew drive systems.  Together their work 

has led to the development of successful models of ballscrew drives which take into account the 

known characteristics, both mechanical and thermal, of the components of a ballscrew drive and 

predict some of the dynamic behaviour in such a way that a means of compensation can be 

applied to the drive system’s controller.  However, the way that the dynamic characteristics 

change as the nut moves along the screw is especially relevant to machine tool applications.  

An enhancement to modelling methods which deals with this aspect of ballscrew behaviour 

would therefore be a useful addition to the available methods. 

An approach to this might be to use finite element analysis (FEA), a computer simulation 

technique widely used in the analysis of a variety of engineering and scientific systems.  The 

range of problems which can be covered includes, but is not limited to, analysis of linear and 

non-linear static systems, problems involving elastic instability (buckling), dynamic analysis, 

modal analysis, frequency analysis, thermal analysis and fluid flow problems, and various 

combinations of some of these.  It uses a numerical technique called the finite element method 

(FEM). 

Commonly this method is divided into three phases:- 

• Pre-processing – defining the finite element model and its environmental factors 

• Solution of the finite element model 

• Post-processing of the results 

Pre-processing pre-processing entails the construction of a finite element model of the 

structure to be analysed.  The usually involves inputting a topological description of the 

structure's geometric features.  In mechanical sytems this can be in either 1D, 2D, or 3D form, 

modeled by line, shape, or surface representation, respectively.  The main purpose of the model 

is to represent the important features of the real system in the best possible way.  This is usually 

done by representing a complex system by a large number of smaller sub-systems connected 

together, the smaller sub-systems having well understood mathematical representations. 
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Analysis (computation of solution) involves carrying out a series of computational procedures 

involving applied forces, and the properties of the elements which produced the system model.  

The procedures are commonly based on an energy principle such as the virtual work principle or 

the minimum total potential energy principle.  In a mechanical system such an analysis allows 

the determination of deformations, strains, and stresses which are caused by the applied 

structural loads.  In a thermal analysis, temperatures and heat flows are computed. 

Post-processing.  The results can then be presented in a variety of ways.  This often involves 

the use of visualisation tools within the FEA environment to view the results and to identify the 

implications of the analysis. 

Because the method can be applied to very complex systems which cannot be analysed 

mathematically by any other means, a lot of effort has been put into the development of finite 

element software packages which are capable of solving such problems.  The use of such 

packages has enabled the speedier development of complex structures and the reduction of the 

amount of prototype testing required. 

The mathematical aspects of  finite element analysis were first developed in 1943 by Richard 

Courant, who used a numerical method to obtain approximate solutions to vibration systems 

[130].  Much of the early structural finite element analysis was developed in British aerospace 

research.  By late 1950s, the key concepts of stiffness matrix and element assembly existed 

essentially in the form used today and the American space research agency NASA started the 

development of the finite element software NASTRAN in 1965. 

Nowadays there are many finite element packages available, both free and proprietary.  

Proprietary ones include ALGOR, ANSYS, ABAQUS, LUSAS, LS-DYNA, NASTRAN, 

SAMCEF, STAMPACK and STRAND7. 

ALGOR offers a series of packages based on their FEMPRO finite element modeling, results 

evaluation and presentation interface, the most comprehensive of which, Professional 

Multiphysics, includes, mechanical event simulation and static stress analysis with linear and 

nonlinear material models, linear dynamic analysis, steady-state and transient heat transfer 

analysis, steady and unsteady fluid flow analysis and electrostatic analysis [131]. 

ANSYS also offers a multiphysics package which combines structural, thermal, 

computational fluid dynamics (CFD), acoustic and electromagnetic simulation capabilities, 

together with a series of packages designed to handle particular aspects, e.g. fatigue, structural, 

drop test etc. [132]. 
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ABAQUS supplies a “standard” version which can carry out a wide range of linear and 

nonlinear engineering simulations efficiently, accurately, and reliably, making it an effective tool 

for many engineering analyses.  They also supply an “explicit” version which is particularly well 

suited to simulate brief transient dynamic events such as consumer electronics drop testing, 

automotive crashworthiness, and ballistic impact.  A common analysis requirement is the 

treatment of distinct solution regimes where the characteristic time scale within each regime is 

different.  From any point within an Abaqus/Explicit run, the analysis can be "imported" as the 

starting conditions for continuation in Abaqus/Standard.  Similarly, an analysis that starts in 

Abaqus/Standard can be imported as the starting conditions for continuation in Abaqus/Explicit.  

The flexibility provided by this integration allows Abaqus/Explicit to be applied to those 

portions of the analysis where high-speed, nonlinear, transient response dominates the solution; 

while Abaqus/Standard may be applied to those portions of the analysis that are well-suited to an 

implicit solution technique, such as static, low-speed dynamic, or steady-state transport analyses 

[133]. 

Similarly LUSAS sells a “base” version of their software which is suitable for linear static 

and linear dynamic analysis with optional add-ons which cover non-linear and thermal analyses.  

They also have some special versions designed to deal with civil engineering applications [134].

LS-DYNA is an explicit finite element program for the analysis of the non-linear dynamic 

response of three dimensional structures.  It includes nearly 100 models to simulate a whole 

range of engineering materials from steels to composites and soft foams to concrete.  Coupled 

thermal/structural problems can also be handled [135]. 

NASTRAN is a finite element analysis program that was originally developed for NASA in 

the late 1960s.  Nowadays NASTRAN source code is used in a number of commercial software 

packages.  It is written primarily in FORTRAN and is compatible with a large variety of 

computers and operating systems.  It has been designed to consist of several modules each of 

which is a collection of subroutines designed to perform a specific task, e.g. processing model 

geometry, assembling matrices, applying constraints, solving matrix problems, calculating output 

quantities, conversing with the database, printing the solution, and so on.  The modules are 

controlled by an internal language called the Direct Matrix Abstraction Program (DMAP).  The 

capabilites include linear and non-linear static, buckling, modal, eigenvalue, frequency response, 

transient response, non-linear static and non-linear transient with heat transfer, and design 

optimization and sensitivity analysis.  Commercially available versions include MSC Nastran 

and NEi Nastran [136, 137]. 
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SAMCEF is another suite of general-purpose analysis software modules which uses finite 

element methods [138]. 

STRAND7 is a finite element analysis package designed and built for Windows®.  It includes 

a variety of one- two- and three-dimensional elements and range of constraints.  It can handle a 

wide range of materials and do linear, buckling and non-linear static analyses, natural frequency 

analyses, harmonic response and spectral response analyses, transients, and thermal analyses 

[139]. 

There are also a variety of finite element programs available as free-ware, often in 

conjunction with the LINUX free-ware operating system. 

Although the capabilities of the commercial systems are indeed impressive, several problems 

would occur using them to investigate the dynamics of ballscrew systems in the case where the 

main concern is to study the errors which may arise.  The first is that modelling a CNC system 

inevitably includes modelling the controller which makes the problem “multiphysics” rather than 

purely mechanical.  This means that one of the more expensive packages with costs of the order 

of tens of thousands of pounds would need to be deployed.  Secondly, a detailed finite element 

model would require details of the ballscrew geometry which are not normally available in the 

literature from ballscrew manufacturers.  Finally, running a detailed model for a sufficient 

number of configurations to build up a picture of what happens dynamically as the nut runs 

along the screw could involve significantly long execution times.  The use of free-ware obviates 

the cost problem, but for understandable reasons, such packages are only available on an “as is” 

basis, and the results would need to be checked against known cases.  Often the use of free-ware 

includes the understanding that developments based on them should also be free.  This could 

lead to intellectual property problems. 

For these reasons it was decided to develop a method which included the control aspects with 

the mechanical aspects kept to as simple a form as possible consistent with the objectives of the 

investigation. 

The eigenvalue method is extended in an attempt to determine the damped natural frequencies 

with their associated modes using a generalised method (see Chapter 4).  This is done in order to 

avoid having to analyse the system with a variety of stimuli over a possibly extended frequency 

range.  The sensitivity of the various modes to changes in the stiffness and damping 

characteristics of the machine drives are derived.  These values can be used as an aid to design or 

fault correction. 
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Based on the modelling techniques developed by Pislaru et al [15], the problem of predicting 

how the dynamic behaviour of a ballscrew changes as the nut moves along the screw will be 

investigated in detail in Chapters 5 and 6.  In view of the variety of mechanical phenomena 

which may be involved, solution methods which can be used conveniently for low or medium 

order systems, and which are not limited to the linear behaviour, have been developed.  Some 

consideration of a continuous matter approach is given in Chapter 4 before a finite element 

approach is developed which handles the energy dissipative processes in such a way as to give 

heat sources to a thermal model. 

Chapter 3 sets out the theoretical bases of the various models developed in this investigation. 
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Chapter 3 - THEORETICAL BACKGROUND 

The function of a ballscrew is to move one part of a machine relative to another by 

transferring the rotational motion of the screw to linear motion of the nut.  This interaction 

between linear and rotary motion is achieved by other screw mechanisms such as screw jacks 

and various forms of screw fixings. 

3.1  Basic characteristics of a ballscrew 

In order to reduce problems associated with friction and backlash, the ballscrew was 

developed where a set of rolling elements are introduced between the screw and nut.  A 

ballscrew consists of two main components, a screw and a nut with the rolling elements 

being balls, see Figures 3.1 to 3.3. 

Figure 3.1  -  A double nut ballscrew 

The screw is a relatively long cylindrical solid or hollow rod with one or more helical 

grooves on its outer cylindrical surface.  These grooves are close to being a part-circular 

section, so that the balls can roll in them.  The detailed geometry of these grooves and their 

effect on the ballscrew stiffness and its heat generation processes is included in the scope of 

this project. 

Relative axial movement of the parts of the ballscrew can be achieved by rotating the 

screw and holding the nut, or by holding the screw and rotating the nut.  (Logically, axial 

movement can be also achieved by rotating both the screw and the nut, though this 

arrangement is not used in machine tool drives.)  In the case where the screw is held, it needs 
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to be clamped at one or both ends.  In the more common case where the screw is rotated it has 

provision for bearings, at one or both ends, by means of which it is held in the machine.  At 

least one of these bearings needs to be a thrust bearing to provide axial constraint.  The screw 

also has provision at one end for mounting the means of driving the screw, (a flexible 

coupling, gear wheel, belt drive pulley or chain sprocket etc.). 

Figure 3.2  -  An end cap ballscrew 

The inner surface of the nut is a relatively short hollow cylindrical tube with a diameter a 

little bigger than the outer diameter of the screw.  The outer surface is defined by the 

requirements of ballscrew application.  A very common arrangement is a cylinder with a pair 

of parallel flat surfaces with a mounting flange at one end.  The inner surface of the nut has 

helical grooves which correspond to those on the screw.  The space between the nut and 

screw is filled with balls which fit into the grooves in the screw and the nut and by this means 

locate one relative to the other.  If the screw is turned relative to the nut, the nut will move 

axially along the screw. 

The nut has to have means of re-circulating its balls in order to enable continuous 

operation.  The balls may be re-circulated at each turn of the screw or after several.  There 

can therefore be several different sets of balls circulating at once which are known as circuits. 
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Figure 3.3  -  A return pipe ballscrew 

Re-circulation can be achieved in a variety of ways. 

• One makes use of one or more return tubes, (see Figure 3.3), inserted into the nut.  

As the screw rotates, they collect the balls from one end of the groove holding the 

circuit and guide them back to the other, thus ensuring that the nut is always kept 

full of balls. 

• Another method involves the use of a deflector which is placed inside the nut and 

re-positions the balls to the adjacent groove as the nut rotates, (see Figure 3.1).  In 

this arrangement the balls only make just short of one turn of the screw before they 

are re-circulated. 

• A third way is to use end caps which capture the balls and send them back to the 

other end of the nut through one or more drillings in the nut, (see Figure 3.2). 

There should be a small amount of clearance between the balls and the grooves in which 

they run so that the nut runs freely on the screw.  This gives rise to backlash between the nut 

and the screw.  In applications where high positional accuracy is important, as is the case with 

machine tools, it is essential that the backlash should be minimised. 

This can be achieved by effectively splitting the nut into two and moving one half axially 

relative to the other.  This traps the balls and puts them under compressive stress thus locating 

the nut on the screw with a high axial stiffness.  This compressive stress is known as pre-

load. 
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Commonly, pre-load is introduced in one of five ways:- 

1. by having two nuts separated by a spacer washer, (see Figure 3.1). 

2. to increase or decrease the pitch of the turn in the middle of the nut.  This is known 

as pitch shift. 

3. Another form of pitch shift is to have the spirals of a double start nut slightly off-set 

from one another. 

4. to arrange the nut in two halves and make the portion between them in the form of 

a spring.  This spring can be set up to exert a steady axial load on each half. 

5. to use balls which are slightly oversized for the screw and nut groove profiles. 

The nut, screw and balls are lubricated by either oil or a charge of grease and a seal is fitted 

at each end to contain the lubricant and keep foreign matter, (such as swarf and coolant), 

away from the bearing surfaces. 

3.2  Errors in machine tool drives 

    Ballscrew errors 

Based on the previous experience at the University of Huddersfield [27, 28, 30, 31, 38, 40, 

50, 51], and incorporating as appropriate the information in the public domain [29, 33, 53, 

74], the project seeks to develop relevant models of the mechanisms giving rise to the 

geometric, thermal and load errors seen on the ballscrews commonly used in machine tools. 

These various effects need to be incorporated into the ballscrew models. 

The aim of this work is to model the geometric, thermal and load errors associated with a 

ballscrew as applied in a CNC machine tool.  Error associated with a ballscrew can be defined 

as the difference between the actual position of the ballscrew nut and the position which is 

expected or required. 

Errors can be grouped under three headings – geometric, thermal and load. 

Geometric errors arise from manufacturing errors in the ballscrew and its mounting 

arrangement.  In principle six types of error can occur – axial, lateral (in two mutually 

perpendicular directions), tilting (in two mutually perpendicular directions), and torsional.  

However, since a ballscrew allows rotation of the screw relative to the nut, the idea of a 

torsional error is meaningless in this case. 

A ballscrew is included in a machine to effect linear movement of one part relative to 

another along the axis of the ballscrew, for example, the movement of a saddle along a 

machine bed.  The location of these parts in the plane at right angles to the ballscrew axis is 

looked after by components other than the ballscrew, typically linear guides or slideways.  
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Therefore, any run-out in the screw is likely to be restrained by the rest of the machine 

structure and give rise to fluctuations in the lateral forces within the ballscrew nut.  Much the 

same can be said of run-out of the cylindrical surfaces provided for fitting the bearings and 

swash in the abutments provided for their axial location.  The same applies to run-out and 

swash of the feature provided on the screw for applying the torque and of the mounting flange 

on the nut.  All these geometrical “imperfections” will give rise to additional forces in the 

screw and nut which will affect the dynamic behaviour, but will only have a second order 

effect on the axial position of the nut. 

The geometrical generating errors in axial positioning are pitch errors in the screw and nut 

and clearance between the screw, the balls and the nut in the case of ballscrews which are not 

pre-loaded. 

 
Figure 3.4  -  Thermal model of ballscrew 

Thermal errors arise when the temperature of various parts of the ballscrew differ from 

ambient temperature and the ballscrew nut moves to a position different from where it would 

be if all the parts of the ballscrew were to be at ambient temperature.  The major sources of 

thermal error are heat generated by the ballscrew system during running and heat entering or 

leaving the ballscrew to or from the torque input device, the bearing mountings and the part to 

which the nut is mounted.  The heat sources within the ballscrew system are the nut and the 

bearings supporting the screw.  Several heat generation mechanisms can be identified within 

the nut: 

• friction associated with rolling contact between the balls, the screw and the nut 

• friction between the balls and parts of the re-circulation system as the balls 

change angular velocity as they enter and leave the ballscrew grooves 

• friction arising from the opposing velocities of adjacent balls 
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• churning of the lubricant 

• seal friction 

Heat is transmitted to, from and through the system by conduction and dissipated from it 

by convection and radiation, (see Figure 3.4). 

Load errors arise from relative movement of the parts of a ballscrew which occur due to 

the loads imposed on the ballscrew system.  Loads can occur due to torques applied, 

acceleration of parts, pre-load of the screw and self weight.  All these loads cause various 

forms of deformation, such as torsional and axial deformation of the ballscrew, with the 

possibility of introducing unwanted movement in the axial direction.  The magnitude of some 

of these errors depends on the axial position of the nut. 

Also there is an interaction between the various forms of error.  For example, run-out of 

the screw which is a geometric error may induce extra loads in the nut and bearings through 

out of balance forces.  The additional friction in the bearings can then cause extra heating 

giving rise to an additional thermal error. 

3.3  Factors affecting thermal, geometric and load performance 

The factors contributing to the various errors arise as a result of the action of the different 

parts of the ballscrew.  These are now considered on a component by component basis. 

3.3.1  Bearings 

The bearing arrangement which is used to mount a ballscrew within a machine tool 

structure can be divided into four types:- 

1. an arrangement whereby the screw is held at one end only by a set of bearings 

capable of carrying radial and bi-directional axial forces and tilt moments.  This is 

called a “fixed – free” arrangement, (see Figure 3.5).  Such an arrangement is 

commonly used in a vertical orientation with the free end at the bottom. 

 
Figure 3.5 – The “fixed-free” bearing arrangement 

2. The “fixed - supported” arrangement (see Figure 3.6) is where axial and radial 

loads are resisted at one end and only lateral forces are carried by the other bearing, 
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Figure 3.6 – The “fixed-supported” bearing arrangement 

3. The “fixed – fixed” arrangement (see Figure 3.7) uses a bearing or set of bearings 

at both ends which is able to carry both thrust and radial loads. 

 
Figure 3.7 – The “fixed-fixed” bearing arrangement 

4. When the nut is to be rotated rather than the screw, the screw may be clamped at 

both ends, (see Figure 3.8).  This is also a “fixed – fixed” arrangement [75]. 

 
Figure 3.8 – The “fixed-fixed” screw clamping arrangement 

The bearings affect the behaviour of a ballscrew system by inducing geometric errors, 

generating and transmitting heat, and providing support to the ballscrew. 

Factors which may affect the contribution of bearings to ballscrew errors include:- 

(a) Bearing type 

There is a great variety of types of bearing [76] such as deep groove ball bearings, self-

aligning ball bearings, angular contact ball bearings, cylindrical roller bearings, needle roller 

bearings, spherical roller bearings, taper roller bearings, thrust ball bearings, angular contact 

thrust ball bearings, cylindrical roller thrust bearings, needle roller thrust bearings, spherical 

roller thrust bearings and taper roller thrust bearings etc. 

For a ballscrew in a machine tool where high running accuracy is required, the types best 

able to give high accuracy are deep groove ball bearings, back-to-back angular contact 

bearings and double row cylindrical roller bearings. 

(b) Quality factors 

The number, diameter, surface finish and sphericity of the balls or rollers, etc and the 

surface finish of the bearing races and their circularity can influence geometric errors to a 

small degree.  The surface finish and variations in size affect friction and hence have thermal 

consequences.  They also induce load fluctuations and hence cause vibration.  For example, a 
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bearing with an outer race diameter of do and an inner race diameter of di with Nb balls has a 

ball passing frequency given by:- 
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where ωs is the angular speed of the shaft.  Defects such as pits or scratches in the balls or 

raceways produce high frequency vibration.  The possible occurrence of such vibration is 

used as a condition monitoring technique in process machinery to detect potential problems 

with bearings. 

(c) Effect of caging 

The design and influence of the cages which separate the rolling elements of the bearings 

can have an effect on friction and heat generation.  Phosphor bronze cages are common and 

cages made of PTFE (polytetrafluoroethylene) can reduce friction.  “Full complement” 

bearings, which do not have cages, increase stiffness but at the expense of greater friction. 

(d) Lubrication and sealing 

Lubrication can be of two types, oil or grease. 

• Oil lubrication, where oil is fed to each bearing and drained away to a separate oil 

tank, has several advantages – the temperature of the oil can be controlled and the 

flow can be directed in such a way as to act as a coolant.  The lubricant can be 

changed without stripping down the machine.  Its quality can be maintained by 

appropriate filtration and topping up of depleted additives as needed.  Compared to 

grease, however, sealing can be more difficult.  There is also the cost of installing 

and maintaining the lubrication system with its pumps, pipes, tanks, valves and 

filters. 

• Grease lubrication, where a charge of grease is put in each bearing, can be of the 

“sealed for life” variety, which needs no further maintenance, or can have grease 

nipples whereby extra grease can be put in from time to time.  Automatic greasing 

systems are fitted on many modern machine tools.  Grease systems have the 

advantage of being simple and cheaper to install.  Much of the heat generated in the 

bearings in such cases must be transmitted to the shaft or bearing housing and is 

difficult to predict or control. 

Seals can be of two types - contact or non-contact.  Non contact seals, (e.g. labyrinth 

seals), tend to leak especially at low speeds.  Contact seals, (e.g. lip seals of various kinds), 

grip the shaft and the associated friction produces heat. 
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(e) Pre-load 

Pre-load in the bearing system increases the rate of heat generation through friction by 

imposing internal loads in addition to the other loads carried by the bearing.  It also increases 

stiffness and reduces geometric errors by taking out backlash.  Pre-load also reduces the 

fatigue life of the balls and the bearing race surfaces. 

(f) Misalignment 

Like pre-load, misalignment can induce additional loads with their consequent additional 

heating.  Increases in out-of-balance caused by radial misalignment cause vibratory excitation 

forces at the rotational speed of the shaft.  Misalignment generally causes vibration to occur at 

twice the shaft speed and its harmonics. 

 

    3.3.2  Ball nut 

The ball nut contributes to the behaviour of a ballscrew system by generating geometric 

errors, by generating and transmitting heat and by providing axial location and force to the 

machine part to which the nut is attached. 

Factors which may affect the contribution of the ball nut to ballscrew errors include:- 

(a) Nut type 

There is a variety of types of ball nut [77] such as single nuts without pre-load (Figure 3.2), 

and nuts with pre-load.  These include single nuts with slightly oversized balls, double nuts 

with spacers (Figure 3.1), nuts with a pitch shift arrangement in the middle (Figure 3.3), and 

double nuts with a spring arrangement in the middle.  This last arrangement is meant to give a 

near-constant pre-load force.  Ball nuts also vary as to the means used to re-circulate the balls 

and the sealing methods. 

For a ballscrew in a machine tool, where high running accuracy is required, some pre-load 

is desirable. 

(b) Quality factors 

The number, diameter, surface finish and sphericity of the balls and the surface finish of 

the screw and nut grooves and their geometric accuracy can influence geometric errors to a 

small degree.  The surface finish and variations in size of the balls affect friction and hence 

have significant thermal consequences.  They also induce load fluctuations which cause 

vibration. 

(c) Effect of ball re-circulation method 

As the balls circulate along the screw, they spin at a high speed determined by the 

geometry of the ballscrew.  When they leave the screw to be re-circulated, they stop spinning 
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and are pushed back to where they re-enter the screw.  They then start spinning again.  This 

process entails a loss of mechanical energy and hence the generation of heat each time the ball 

is stopped.  Forces are involved in the impacts of the balls with the walls of the re-circulation 

system and with other balls, which occur as the balls are picked up for re-circulation.  The 

ability of the means of re-circulation to stand these forces sometimes sets a limit on the 

ballscrew’s performance. 

(d) Lubrication and sealing 

Lubrication can be of two types, oil or grease, and the comments in Section 3.3.2d also 

apply to ball nuts. 

(e) Pre-load 

As in the case of bearings, pre-load in the ball nut gives rise to internal loads which act on 

the rolling elements in addition to the externally imposed loads carried by the nut.  These 

increase the rate of heat generation which is generated by friction.  It also increases the 

stiffness of the nut and reduces geometric errors by taking out backlash.  Pre-load also 

reduces the fatigue life of the balls, and that of the screw and nut groove surfaces. 

(f) Misalignment 

Like pre-load, misalignment can induce additional loads with their consequent additional 

heating. 

3.3.3  Pre-tension 

The axial stiffness of a ballscrew system can be increased by putting the screw in a state of 

tension.  This is commonly achieved by fixing the outer races of the support bearings at both 

ends of the screw, and locating the screw axially at the driven end by butting the bearing inner 

race against a shoulder on the screw.  Pre-tension is then achieved by pulling the screw 

through the inner race at the non-drive end using a ring nut which is locked in position once 

the desired tension has been achieved. 

Pre-tension also increases the friction losses in the bearings and tends to reduce bearing 

life.  If the screw runs at a higher temperature than the part of the machine in which the 

ballscrew is mounted, the pre-tension is reduced as the relative temperature increases. 

3.4  Basic behaviour of screw 

Essentially a screw mechanism consists of a cylindrical rod with one or more helical 

grooves cut in the outer surface.  If there is more than one helix, these are arranged so that the 

adjacent grooves are equally spaced axially along the screw.  The axial distance between 

corresponding points on the grooves is known as the pitch p, (see Figure 3.9).  The number of 
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helices is known as the number of starts Ns.  The nut includes a cylindrical hole with 

grooves compatible with those on the screw formed in it.  If the screw is rotated by some 

angle θ relative to the nut, the nut moves axially along the screw by an axial distance x given 

by:- 

θθ
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where θ is expressed in radians and x and p in metres.  R can be called the ratio of the screw, 

its units are metres/radian.  In the simplest case, the outside of the screw and the inside of the 

nut are ideal frictionless surfaces.  Then the axial force F delivered by the screw to the nut can 

be derived from the torque Γ applied to the screw by:- 
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Figure 3.9 – A simple screw 

Friction plays a very important role in screw mechanisms because without it screws would 

be quite useless for one of their most common applications, namely holding things together.  

Consider, for simplicity, the case of the rectangular section screw thread.  Such threads were 

widely used on machine tools drives in situations where a ballscrew would be used today.  In 

this case contact between the screw and the nut takes place along a radial helix.  Three distinct 

modes of operation occur.  To illustrate this, consider a lead screw system where the screw 

rotates and the nut is mounted on a component that does not.  A ballscrew without pre-load 

acts in a similar manner to a lead screw but with a significantly lower coefficient of friction, 

typically 0.003 – 0.01 [140].  It can therefore be considered using the same mathematical 

formulae.  Pre-load removes the backlash and brings extra forces into consideration. 

1. The first case is where the contact force in the nut is acting on the nut in the same 

axial direction as the direction in which the nut is travelling, (see Figure 3.10).  In 
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this case the screw can be said to be “driving” the nut and the force of friction 

opposes the torque applied to the screw. 

 
Figure 3.10 – “Ballscrew driving” mode of operation 

2. The second case is where the contact force in the nut is acting on the nut in the 

opposite axial direction to that in which the nut is travelling, (see Figure 3.11).  In 

this case the screw can be said to be “driven by” the nut and the friction opposes 

the force applied to the nut.  

3. The third case is where there is backlash between the screw and the nut.  In this 

case contact can be lost and for a short time the nut and screw act independently. 

Where the screw is fixed and the nut rotates as might be the case for screw greater than 

3 m in length, the same applies but contact takes place on the opposite flanks of the nut and 

screw profiles.  In machine tool drive applications, normally the screw drives the nut, 

 
Figure 3.11 – “Ballscrew driven” mode of operation 

[37] 



however, if the drive is slowing down the part of the machine which is being driven by the 

screw, it is possible that the nut will push the screw. 

    3.4.1  Ballscrew driving 

For the case where the screw is driving the nut, if the sum of the forces of contact normal 

to the helix is Fn and the coefficient of friction is μ, then the sum of the forces acting in the 

axial direction Fa is given by:- 

λμλ sincos nna FFF −= ,     (3.4), 

where λ is the helix angle.  The sum of the forces acting tangential to the axis of the screw Ft 

is given by:- 

λμλ cossin nnt FFF += ,     (3.5). 

Considering a cylinder of radius r which intersects the helices at the middle of the zone of 

contact, 
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Substituting into equations (3.4) and (3.5) now gives:- 
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Eliminating Fn and deriving the torque from Ft gives 

arF
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μ
μ

−
+

=Γ       (3.9) 

Assuming that the friction follows Coulomb’s law these equations represent a running 

screw when both the following conditions apply:- 

λμλλμ sincossin nnan FFFF ≤−≤−     (3.10a) 

λμλλμ cossincos nntn FFFF ≤−≤−     (3.10b) 

3.4.2  Ballscrew driven 

Considering next the screw being driven by the nut, equations (3.4), (3.5), (3.7) and (3.8) 

become:- 

λμλ sincos nna FFF +=      (3.11), 
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λμλ cossin nnt FFF −=      (3.12), 
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=      (3.14). 

Eliminating Fn and deriving the torque from Ft now gives 

arF
Rr
rR

μ
μ

+
−

=Γ      (3.15). 

A mathematical model of a screw drive which seeks to take into account the behaviour of a 

screw drive should include these two possible types of operation. 

A third mode of operation is of course when the screw moves across the backlash.  In this 

case the dynamic behaviour of the sub-system upstream of the screw/nut connection and that 

of the sub-system downstream need to be considered independently.  This is achieved by 

making zero the stiffness of the spring which represents the ball action in the models.  This 

aspect is studied in Chapter 5. 

3.5  Static elastic theory 

3.5.1  General Hertzian theory 

Contact between the screw and its nut is mediated by a set of balls.  In order to gain insight 

into the way a ballscrew responds to the loads imposed upon it, it is necessary to understand 

how two elastic bodies behave when in contact [78]. 

This problem was solved by Hertz [79] in 1882.  Consider two elastic bodies 1 and 2 and 

let them touch at some point.  At this point of contact let the curvature of body 1 be described 

by radii  and  and the curvature of body 2 be described by radii  and .  Let the 

angle between the plane containing 

1R 1R′ 2R 2R′

11 R  in body 1 and that containing 21 R  in body 2 be φ . 

The material properties of the bodies are Young’s modulus and Poisson’s ratio iE iν . 

The following variables are defined: 

a material factor, 
2

2
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1 11

EE
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= ,     (3.16) 

a geometry factor 
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Let P be the contact force.  The bodies contact over an elliptical area of semi-axes c and d.  

Provided that c and d are small compared to the radii R1, R’1, R2 and R’2 and that there is no 

friction between the contacting bodies, c and d are given by: 

3
EDCKPc α=      (3.19a) 

3
EDCKPd β=      (3.19b) 

The movement between a point in body 1 remote from the contact zone and a similar point 

in body 2 is given by: 

3

22

D

E

K
CPy γ=      (3.20) 

The dependence of α , β  and γ  on θcos  is as tabulated here in Table 3.1: 

Table 3.1 – Factors used in determining Hertzian stress and deflection [78] 

θcos  α  β  γ  θcos  α  β  γ  

0.00 1.000 1.000 0.750 0.80 2.292 0.544 0.594 

0.10 1.070 0.936 0.748 0.85 2.600 0.507 0.559 

0.20 1.150 0.878 0.743 0.90 3.093 0.461 0.510 

0.30 1.242 0.822 0.734 0.92 3.396 0.438 0.484 

0.40 1.351 0.769 0.721 0.94 3.824 0.412 0.452 

0.50 1.486 0.717 0.703 0.96 4.508 0.378 0.410 

0.60 1.661 0.664 0.678 0.98 5.937 0.328 0.345 

0.70 1.905 0.608 0.644 0.99 7.774 0.287 0.288 

0.75 2.072 0.578 0.622     

 

A system of local axes is set up in the contact zone such that the ξ axis is along the c semi-

axis and the η axis is along the d semi-axis.  The contact pressure σc (N/m2) is spread across 

the contact zone in a parabolic manner according to the formula:- 
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where the maximum pressure σc max is given by 

cd
P

c π
σ 5.1

max =       (3.22) 

The stiffness is non-linear, because it changes with load.  For a given load, the contact 

stiffness kc is expressed as follows:- 
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==      (3.23a) 

and the flexibility flc as:- 
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Therefore, considering a single contact area between a ball and a raceway, the stiffness of 

such a contact is zero when the load is zero.  For a positive load the stiffness increases with 

the cube root of the load.  Since contact must be established before a set of opposing forces 

can occur, negative loads cannot arise. 

 
Figure 3.12 – Contact in ballscrew meshing action 

In the case of a ballscrew, contact between a single ball occurs in two places, between the 

ball and the screw and between the ball and the nut, (see Figure 3.12).  Let the balls have a 

diameter of db, the ball track sections have radii of Rs for the screw and Rn for the nut and the 
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ballscrew have a ball pitch circle diameter of Dbp.  Let the contact angle be αc and the lead 

angle be λ.  The conformity ratio fs,n is defined by:- 

bnnbss dRfdRf == ,      (3.24) 

In terms of the variables used in equations (3.17) and (3.18), for ball / screw contact, 
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and for ball / nut contact, 
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In both cases, 

0=φ        (3.25c) 

Then, for ball / screw contact, 

cbbp

c

bsb

sD

dDdfd

K

α
α
cos

cos214
5.1

−
+−

=     (3.26a) 

cbbp

c

bsb

cbbp

c

bs
s

dDdfd

dDdf

α
α
α

α

θ

cos
cos214

cos
cos21

cos

−
+−

−
−−

=     (3.26b) 

and for ball / nut contact, 
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For one ball the flexibility is given by 
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and in terms of the axial component of force and displacement 
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The number of balls in contact z1 is given by 
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where Nt is the number of active turns in the nut.  The axial stiffness of the balls in contact is 

then:- 
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3.5.2  Other elastic effects 

Besides the Hertzian compression of the balls and raceways, there are other factors which 

contribute to the overall deflection of the ballscrew nut. 

First, the radial forces induced by the action of the balls in contact with the outer surface of 

the screw and the inner surface of the nut tend to squash the screw and stretch the nut.  This 

effect can be quantified using thick-shell theory [80] and gives a flexibility with an axial 

component given by:- 
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where do and di are the outer and inner effective diameters of the screw and Do and Di are the 

outer and inner diameters of the nut.  En is the Young’s modulus of the nut material and νn is 

its Poisson's ratio, Es and νs are the corresponding values for the screw.  In the event that one 
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value of the modulus of elasticity is applicable to the material of both the screw and the nut, 

which is usually the case, equation (3.32) simplifies to:- 
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In a typical ballscrew application Do and do are available from manufacturer’s data.  Most 

ballscrews are solid so that di = 0.  Di is best obtained from the ballscrew manufacturer.  In the 

absence of this information, it is reasonable, in view of the need to maintain as effective 

contact between the nut and the balls as there is between the balls and the screw, to estimate 

the nut effective inner diameter as being as far “out” from the ball’s pitch circle as the outside 

diameter of the screw is “in” from it.  In this case:- 

opi ddD −×= 2       (3.33a) 

where dp is the pitch circle diameter of the ball action. 

Second, the axial forces generated by the screw action usually are applied to the nut at 

some distance from the flange used to mount it to the saddle, table or whatever part of the 

machine the ballscrew is meant to drive.  A very common arrangement has the mounting 

flange close to one end of the nut.  Taking the centre of action of the forces to be close to the 

mid-point of the nut, the flexibility associated with the resulting stretch can be estimated as:- 
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Third, the flange itself is subject to some deflection.  The flexibility associated with this 

can be estimated from the shear deflection of the material which lies between the mounting 

screw’s pitch circle and the body of the nut as follows:- 
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     (3.35). 

where DPCD is the pitch circle diameter of the mounting flange holes and Gn is the shear 

modulus of the nut material. 

The axial flexibility given by equation (3.31b) should be added to that given by 

equation (3.32) or equation (3.33) and that given by equations (3.34) and (3.35) to give the 

total axial flexibility of the ball action. 
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3.5.3  Rolling element friction 

The radius of curvature of the contact zone is different from that of the undeformed ball.  

Under no load, the ball would roll on a circle of diameter equal to that of the ball, and the 

velocity of contact relative to the ball centre is the angular speed of the ball times its radius.  

Consider the outer race of a ball bearing.  (The same situation also occurs on the inside of a 

ball nut assuming that the nut is not rotating.)  The surface against which the ball is rolling is 

“stationary”.  Under load the different parts of the contact surface are at different radii from 

the axis of rotation of the ball.  Since the angular speed of the ball is fixed, the relative 

velocity of the ball centre and a particular point on the race is dependent on the radius of the 

part of the ball in contact with the point.  In this situation it is not possible for all points on the 

contact surface to be involved in pure rolling and there must be a certain amount of sliding 

which gives rise to rolling friction.  Further, some of the strain energy which is put into the 

material of the ball and raceway when they come under load is dissipated as heat upon release 

of the load.  There is sliding between adjacent balls and shearing and churning of the lubricant 

[81]. 

In the simplest terms this can be represented as an equivalent coefficient of friction.  Work 

on rolling element bearings [82] suggests a value in the range of 0.0020 – 0.0024 is 

appropriate for ballscrews.  A more sophisticated approach gives the friction moment Mf as 

the sum of a load independent component Mf0 and a load dependent component Mf1 [83]:- 

10 fff MMM +=      (3.36) 

in which 
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where, for an axial load of Fa and a radial load of Fr, 

•  for oil lubrication and 65.30 −=f 375.10 −=f  for grease. 
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• n = screw speed, (rpm) 

•               (3.39b) ar FYFXP 000 +=

•               (3.39c) ra FFP 1.05.11 −=
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•  and  10 =X 5.00 =Y

• ν = operating kinematic viscosity (mm²/sec = cS). 

It should be noted that any pre-load built into the nut should be included when estimating 

the load used in all the relevant equations in Section 3.5. 

The mathematical approach can equally be applied to rolling element bearings. 

3.6  Dynamic elastic theory 

The components of a ballscrew drive system have inertial and elastic properties.  The laws 

which govern their behaviour are the laws of elasticity and the laws of motion.  There are 

many ways that these laws can be applied to mechanical systems to derive mathematical 

models.  Four methods have been applied in this investigation:- 

1. one using a hybrid modelling technique implemented in SIMULINK, 

2. a second based on wave theory 

3. the third method was based on generalised eigenvalue theory.  The above methods 

are developed in detail in Chapter 4. 

4. The fourth method is a series solution technique which deals with the case where 

one part of the system moves relative to the rest causing changes in the dynamic 

characteristics of the system.  This novel approach to ballscrew dynamics is 

covered in Chapters 4 and 5. 

The moving mass models consider various energy dissipation mechanisms.  The energy 

flows calculated by these models can be used as energy sources in the model which deals with 

the thermal behaviour of a ballscrew system. 

The next Chapter takes a general overview of the methods which can be used to develop 

dynamic models of ballscrews.  It goes on to demonstrate a general eigenvalue method which 

can be used to investigate various characteristics of ballscrew driven systems. 
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Chapter 4 - DYNAMIC MODEL – GENERAL CONSIDERATIONS 

A ballscrew drive system is made up of several mechanical components, see Figure 4.1.  

These are solid bodies made of materials which deform elastically under applied forces.  They 

also have the property of resisting changes in their state of motion which is known as inertia.  

The system also includes an electric motor governed by a controller.  In order to model the 

mechanical parts it is necessary first to set up equations of motion which are based on the laws of 

physics to which such mechanical components are subject.  These are the laws of elasticity first 

enunciated by Hooke [84] and the laws of motion formulated by Newton [85].  There are several 

ways that these laws can be applied to mechanical systems in order to investigate their dynamic 

properties. 

 

Figure 4.1  -  A feed drive system 

In this investigation work has been done under four broad headings 

1. a hybrid modelling approach, 

2.  a wave theory approach, 

3.  a generalised eigenvalue approach and 

4.  the moving mass models. 

The first three are developed in this Chapter and the moving mass models are dealt with in 

detail in Chapters 5 and 6. 

There are two ways of looking at the bodies of which a mechanical system is made.  One is 

the “continuous matter” approach and the other is the “discrete matter” or “lumped mass” 

approach. 

In the “continuous matter” approach the mass is considered to be distributed throughout the 

volume occupied by the body in a smooth manner, so that at any point in the body a mass per 

unit volume (density) ρ can be defined.  The mass δm of any arbitrarily small volume δv is thus 

ρ.δv.  The elastic properties of the material are defined by its elastic moduli, which are the stress 
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required to produce a unit strain.  The equation of motion of such an arbitrarily small volume is 

derived which normally gives rise to a partial differential equation.  The solution of such an 

equation often is a set of waves.  This approach is discussed in Section 4.1. 

The “discrete matter” approach can involve modelling the mechanical system under 

consideration as a set of “lumped masses” and springs, see Figure 4.2.  In other words the mass 

or inertia in the system has to be considered to act at a set of discrete points in a multi-

dimensional space.  These point masses are connected by a set of “springs” in which the stiffness 

of the system is considered to act.  The points at which the masses are considered to act are 

commonly called nodes and the springs which connect them elements.  The discrete matter 

approach is in essence a finite element method.  Therefore the behaviour of the system can be 

represented by a finite number of differential equations which are derived by considering the 

equations of motion of each element of the system.  The solutions of such sets of differential 

equations lend themselves naturally to matrix methods.  This approach is used in Sections 4.2 

and 4.3. 

 
Figure 4.2  -  A ballscrew drive system  -  discrete matter approach 

4.1  Continuous matter approach – wave solutions 

The analysis of dynamic systems using a continuous matter approach gives rise to differential 

equations.  These can be sub-divided into homogeneous equations, where some function based 

on the partial derivatives of the variables involved (one or more spatial dimensions and time) is 

equal to zero, and inhomogeneous or non-homogenous equations where the function involving 

derivatives equals a function of time which in general is non-zero.  In a mechanical system, this 

latter function expresses the external forces on the system and is commonly known as the 

“forcing term”.  Solving the homogeneous equation with the appropriate boundary conditions 

gives an indication of how a system will behave after it has been set in motion and then subject 

to no further force.  This will often show a tendency of the system to vibrate at one or more 
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“natural frequencies”.  Solving the non-homogeneous equation gives an indication of how a 

system will respond to a particular set of forces. 

 
Figure 4.3  -  A ballscrew drive system  -  continuous matter approach 

Some parts of a ballscrew system can be modelled conveniently using the “lumped mass” 

approach because the mass, (particularly the rotational or tilt inertia), is concentrated close to the 

centre of a particular component.  A gear or drive belt pulley serves as an example of such a 

component.  (Also the distributed mass behaviour of such components can be very complex and 

very difficult to analyse in detail.)  The component which is least suited to this approach is the 

ballscrew itself which is often the longest component of a ballscrew system, see Figure 4.3.  The 

distributed mass behaviour of slender bodies can be represented by fairly simple equations [86].  

It was therefore thought desirable to have an element which would represent closely the 

behaviour of the screw using a distributed mass approach.  The remainder of the system would 

be modelled using lumped mass elements connected by spring/damper elements. 

One method of solving the non-homogeneous equations of motion is the forced-damped 

method, in which transfer matrices are used to calculate the steady-state response to a set of 

exciting forces.  Pestel and Leckie [63] constructed the transfer matrices for distributed mass and 

stiffness elements.  This method enables a smaller number of elements to be used than would be 

needed to get a good model using the lumped mass approach.  The forced-damped response 

method needs the frequency of excitation to be specified because they contain terms which are 

dependent on frequency.  It would be useful to have an element which can respond to any form 

of excitation.  Wave theory was used to derive an element with distributed mass and stiffness 

which could be used with any input excitation. 
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The ballscrew has to transmit thrust loads and torsional loads (torque) as the nut is driven 

along the screw.  Motion in the axial direction is the simplest to model mathematically and so it 

was considered first. 

Considering a shaft with cross sectional area A, made from a material with density ρ and 

Young’s modulus E, which lies along the x axis.  Let u represent the axial motion of a small 

element at a point x along the axis.  It can be shown that this motion is governed by a wave 

equation shown by Coulson [87]:- 
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The general solution is a superposition of a wave uf travelling forwards with a velocity c and a 

wave ub travelling backwards with the same speed:- 
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Torsional movement of a shaft with a shear modulus of G is represented by a similar set of 

equations summarised by De Silva [88] where:- 

ρ
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Considering the axial strain of the shaft at any point along its length, the axial tension T is 

given by:- 
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from which it follows that 
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It was therefore decided to design an element based on velocity waves to model the behaviour 

of the screw. 
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Figure 4.4  -  A test model made of two masses connected by a continuous matter spring 

To test this element, a simple system consisting of two masses m1 and m2 connected by such 

an element was constructed using Simulink, (see Figure 4.4).  The first mass could be subject to 

an external force, Fe.  A viscous damper parallel to the spring was included to prevent the system 

going into a state of perpetual oscillation.  The force on the mass was determined by including 

three terms:- 

• the external force 

• the force from the forward and backward velocity waves using equation (4.8) 

• the force from a viscous damper determined by the difference between the velocity of the 

two masses multiplied by its damping coefficient. 
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where cv is the damping coefficient of the viscous damper. 

The acceleration was calculated by applying the force to the mass.  This was integrated to 

give the velocity of the first mass 

∫= dt
dt

ud
dt

du .2
1

2
1       (4.10). 

The magnitude of the forward wave was then given by using the fact that 

t
u

t
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t
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∂
∂       (4.11) 

and taking into account the backward wave coming from the second mass. 

The transmission of the forward wave from the first mass to the second was simulated by 

using a delay block whereby the wave arrived at the second mass Δt after it left the first.  The 

time delay is determined from the wave velocity and the length l of the shaft:- 

c
lt =Δ       (4.12). 
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The motion of the second mass was derived as for the first one, except that an external force 

was not applied.  The magnitude for the backward wave was calculated from the velocity of the 

second mass taking into account the forward wave coming from the first mass. 
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∫= dt
dt

ud
dt

du
.2

2
2

2       (4.14). 

The displacement of each mass was calculated by integrating the velocity of the respective 

mass. 

∫= dt
dt

du
u .2,1

2,1       (4.15). 

In addition to calculating the motion of the masses, the energy balance of the system was 

calculated by summing the following terms:- 

• the kinetic energy of the first mass using “½ mass × velocity2” 

• the total energy of the spring by integrating the nett power supplied to the spring by both 

masses.  Since the internal motion of the various parts of the spring were not computed, it 

was not possible to separate the kinetic energy from the potential energy 

• the kinetic energy of the second mass using “½ mass × velocity2” 

• the energy dissipated by integrating the product of the force in the damper and the 

relative velocity of the masses which it connects. 
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where Et is the sum of the energy in the system and the dissipated energy. 

The model is illustrated in Figure 4.5.  The values of the model parameters were kept to small 

round numbers to make the results easy to check by hand calculation.  An example is given in 

Appendix 4.1.  A force of 1 N for the first second of motion and zero thereafter, which resulted 

in a pattern of motion whose detailed characteristics are described in the appendix.  It was found 

that the damped natural frequency and the logarithmic decrement predicted by the model were 

very close to what would be expected.  The value for the energy in the spring checked out 

against the kinetic energy of the spring calculated on a “½ mass × velocity2” basis.  When the 

system settled down there was a continuous small interchange of energy between the masses and 
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the spring at a frequency higher than but not obviously related to the natural frequency.  More 

research should be performed in order to determine the causes of this phenomenon. 

 
Figure 4.5 – A model based on wave theory of two masses connected by a spring 

Therefore using velocity, rather than displacement waves, it proved possible to make sensible 

predictions about simple “mass and spring” models, although some problems remain to be 

solved. 

A more fundamental difficulty arose when considering the lateral degrees of freedom of a 

beam, when beam flexure occurs.  The equation governing flexural vibration of a thin beam 

whose section has a second moment of area I is:- 
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where y represents movement of the centre of the beam normal to the axis and f(x,t) the forcing 

term [86].  For beams of constant section this simplifies to:- 
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This equation is fourth order in x and second order in t and so cannot be solved by the simple 

wave equation.  No simple way could be seen around this difficulty and so the line of 

investigation was abandoned. 

4.2  Lumped mass approach – matrix solutions 

The “discrete matter” approach entails representing the behaviour of the system at a finite set 

of nodes by an equation of motion for each node.  The mass of such systems can be represented 

by a consistent mass matrix Me defined by:- 

∫= dv.NNM Te ρ       (4.19) 

where ρ is the density, N is a matrix representing the shape of the system and v is the volume.  

This can be simplified by using direct lumping, that is modelling the mechanical components as 

a set of “lumped masses” in which the mass or inertia in the system acts at the nodes.  This 

simplification entails significant computational advantages in calculations which use the inverse 

of the mass matrix M-1 [141]  The methods developed in Chapters 5 and 6 make extensive use of 

the inverse of the mass matrix, so this simplification has proved useful.  The approach has been 

tested against classical methods and found to give satisfactory results, (see Table 4.2 and 

Figures 4.10 to 4.13).  The flexibility inherent in the components is modelled by springs which 

connect the point masses together.  Damping effects can be modelled by including a set of 

dampers “in parallel” with the springs and a differential equation can be written for each node in 

the system. 

Holroyd et al [89] applied this method to modelling the Y axis drive of a Beaver VC35 CNC 

milling machine, see Figure 4.6. 

 

Figure 4.6  -  Beaver VC35 CNC milling machine 
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This fixed vertical column CNC milling machine has a saddle which moves towards and away 

from the column in the Y direction, carrying a table which moves sideways in front of the 

column in the X direction. Z motion is achieved by moving the spindle up and down on the front 

face of the column. 

The drive for the Y direction consists of a DC electric motor which drives a ballscrew via a 

belt drive, the ballscrew then drives the saddle, (see Figure 4.7). 

The ballscrew is considered as comprising N elements of equal length.  The drive is then 

modelled as follows:- 

• The rotational inertia of the drive motor is represented by a single mass (Jm); 

• The motor shaft is represented by a torsional spring (kms); 

• The rotational inertia of the driving (motor) pulley is depicted by a single mass (Jp1); 

• The flexibility of the belt which transmits the driving torque from the motor to the 

ballscrew is represented by a torsional spring (kbl); 

• One element consists of a mass Jp2 representing the rotational inertia of the driven 

pulley plus 1/(2N) × the rotational inertia of the ball-screw (Jbs); 

• The rest of the ball-screw is modelled as a set of N-1 masses representing 1/N of the 

torsional inertia of the ballscrew and one mass representing 1/(2N) of the ball-screw 

inertia at the free end, connected in series to each other by a set of N torsional springs 

describing the elastic behaviour of the ballscrew.  Each spring has a stiffness of N × 

the torsional stiffness of the ballscrew itself. 

• A mass mbm representing the mass of the ballscrew connected at the iLth node; 

• The axial stiffness of the ballscrew kax is illustrated by a linear spring that connects the 

ball-screw centre mass to “earth”; 

• The axial stiffness of the ballscrew nut knut is depicted by a linear spring linking the 

ball-screw centre to the saddle, and 

• The mass of the table and saddle mtab. 

 
Figure 4.7  -  Beaver Machine – X or Y drive 
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The drive ratio which is the number of turns the motor makes while the screw turns once is 

represented by u, and the ballscrew ratio (see Chapter 3, equation 3.1) is represented by R. 

A schematic representation of the model for the mechanical transmission of the CNC machine 

tool axis drive is presented in Figure 4.8 and the numerical values of parameters are shown in 

Appendix 4.2. 

If there are Nn nodes in the system, in principle it is possible to connect each node with the 

other Nn-1.  Let the masses be represented by mi, the stiffness of the spring connecting mi to the 

jth node be ks ij and the damping coefficient of the corresponding damper be cd ij.  If the 

dissipitave behaviour can be modelled by viscous damping, where the force generated by the 

damper is proportional to the relative velocity of its two ends, then a linear differential equation 

for the displacement xi of each node can be written for the ith node by applying Newton’s second 

law of motion to the mass:- 

( ) )()()( tfxxcxxkxm i
ij

ijijdijijsii +−+−= ∑
≠

&&&&     (4.20), 

where fi(t) is the forcing term.  Rearranging this equation gives:- 

)()()( tfxkxkxcxcxm i
ij

jijsi
ij

ijs
ij

jijdi
ij

ijdii =−+−+ ∑∑∑∑
≠≠≠≠

&&&&   (4.21). 

 
Figure 4.8  -  Schematic representation of the mechanical elements of the drive model 

If the coefficients of  are replaced as follows:- ix
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∑
≠

=
ij

ijsij kK  for ij =   and  ijsij kK −=  for ij ≠     (4.22a) 

and the coefficients of  are replaced as follows:- ix&

∑
≠

=
ij

ijdij cC  for ij =   and  ijdij cC −=  for ij ≠     (4.22b) 

equation (4.21) can be replaced by:- 

)(tFxKxCxm jijjijii =++ ∑∑ &&&      (4.23). 

When the equations for all of the Nn nodes are put together they form the matrix equation:- 

)(2

2
t

td
d

td
d fxKxCxM =++       (4.24) 

For details of how each term of the mass and stiffness matrices are derived from the physical 

parameters of the system see Appendix 4.3.  The remainder of this Chapter and Chapters 5 and 6 

deal with solving this equation in a variety of ways relevant to the dynamics of ballscrew driven 

systems. 

4.3  Dynamic model – a generalised eigenvalue approach 

The amplitude of the vibration response of an electro-mechanical system to various stimuli is 

determined to a large extent by the level of damping.  Damping can take several forms (viscous, 

hysteresis, friction etc.) [62], but only viscous damping is a linear phenomenon and therefore 

amenable to simple mathematical analysis.  The response of damped systems can be studied by a 

“forced damped” approach [63] in which various stimuli (for example out-of-balance forces) can 

be applied to a system.  A picture can be built up of the vibration characteristics of the system by 

applying such forces at a variety of frequencies. 

It has been thought useful to extend the eigenvalue method so an attempt has been made to 

determine the damped natural frequencies with their associated modes using a generalised 

eigenvalue method.  This avoids having to analyse the system with a variety of stimuli over a 

possibly extended frequency range.  The method of approach adopted here is to seek to 

understand the vibration characteristics of a system in two stages:- 

1. to determine the natural frequencies and modes of vibration which would be expected 

if there were no damping 

2. to investigate how damping modifies this behaviour. 

Using the MATLAB/Simulink approach it is possible to model “damping” in the form of 

Coulomb friction, viscous damping and hydrodynamic drag, and also to model the backlash in 

the ballscrew nut [90].  Strictly speaking the method used here can only take into account linear 
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effects, that is viscous damping.  Various researchers have devised means of deriving viscous 

damping coefficients which are equivalent to various non-linear damping phenomena in a 

restricted set of circumstances.  Tan and Rogers [91] have come up with a method of deriving a 

coefficient of viscous damping which is equivalent to Coulomb friction.  Their approach can also 

be applied to other forms of damping.  Careful use of these methods can extend the scope to 

which this approach is applicable. 

4.3.1  An eigenvalue approach – undamped case 

In order to develop the method, the system without damping has been considered first, then 

the method has been extended to include viscous damping. 

If there is no damping, a system will vibrate at certain frequencies with little stimulus [92].  A 

natural frequency of a system is a frequency at which such free vibration takes place. 

A vibration mode is a characteristic pattern assumed by a system in which the motion of 

every particle is simple harmonic with the same frequency [92].  The mode shape can be 

represented by plotting on a graph the relative amplitude of the different points taking part in the 

vibration mode.  The mode shape gives an idea of where in the system the greatest vibratory 

activity may be seen. 

A common approach to determining the undamped natural frequencies and mode shapes is the 

eigenvalue method [93-95]. 

To use this method it is necessary to model the mechanical system under consideration as a 

set of “lumped masses” and springs.  In other words the mass or inertia in the system has to be 

considered to act at a set of discrete points in some sort of space.  These point masses are 

connected to one another by a set of “springs” in which the stiffness of the system is considered 

to act.  The behaviour of such a system can be represented by a finite number of differential 

equations which are derived by considering the equations of motion of each element of the 

system.  These equations can be solved to give the natural frequencies and the mode shapes as 

will be shown later. 

There are as many natural frequencies as there are point masses in the system although not all 

of them are necessarily distinct.  If the motion is unrestrained, there will be one zero frequency 

mode for each degree of freedom of motion (e.g. axial movement, lateral movement, angle of 

twist, angle of tilt etc.) of the points in the system.  Also there is a mode shape corresponding to 

each natural frequency. 

Writing an equation of motion for each mass and grouping them in matrix form gives 

)(2

2
t

td
d fxKxM =+      (4.25) 
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where M is the inertia matrix, a diagonal matrix of the form (Mii), K is the stiffness matrix of the 

form (Kij), x is the displacement vector and f(t) is the forcing term vector.  In this case used here 

as an example the vectors have N+5 elements and the matrices are (N+5) × (N+5), where N is the 

number of equal length elements into which the ballscrew is divided.  However, the equations 

apply equally well to a system of any finite number of masses. 

In the example analysed here, the elements of the mass matrix are defined as follows: 
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for i = 4 to i = N+2    . . . . 
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The upper half of the stiffness matrix is assembled as follows 
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for i = 4 to i = N+2, except i = iL, the ballscrew node where the spring representing the nut is 

attached, 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

........

..2..

........

........

....

........

1 bsbsiiii kNkNKK          (4.27b) 

for i = iL 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−+=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+++

............
..2..

............

............
....

............
2

541 nutnutbsnutbsNiLNiLiLiLiLiL kRkRkNkRkNKKKK

 (4.27c) 

and 
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For all other values    0=jiK                (4.28) 

[59] 



 

The full matrix is then completed using ijji KK =                (4.29) 

Solutions of the form x = (xi ejωt) when f(t) = 0 are tried to determine the undamped natural 

frequencies of the system.  Equation (4.25) now becomes:  

0xMK =− )( 2ω      (4.30) 

Dividing each equation by the square root of its inertia term Mii and replacing x by 

x/ = (√Mii ×xi ejωt) gives the following eigenvalue equation: 

0xIK =′− )( 2
mod ω      (4.31) 

where Kmod is derived from K by dividing its rows and columns by √Mii and I is the unity 

matrix.  This is an eigenvalue equation. 

This eigenvalue equation has a non-trivial solution for x/ when 

0IK =− )( 2
mod ω      (4.32) 

In this case Kmod is real and symmetric and there are standard solutions to such equations 

available in many mathematics software packages [96].  The number of solutions for ω2 is equal 

to the order of matrix Kmod although not all of them are bound to be distinct.  To each value of ω2 

there is a vector called an eigenvector which gives the mode shape of x/ for that frequency.  The 

mode shape in terms of the original x is obtained by dividing each term by √Mii. 

The eigenvectors are arbitrary to one scalar factor; therefore only their relative values are 

determined and the absolute value can be any desired value.  For the purposes of presentation, 

the eigenvectors are normalised such that the sum of the squares of their absolute values equals 

one.  Also because the ball-screw ratio R is so small (0. 0015915 m/rad) for the studied case, any 

mode shape selected for plotting is set to equivalent ball-screw rotation before plotting.  This 

drive model was incorporated into the MATLAB software.  The resulting program 

(Appendix 4.3) calculates the eigenvalues and eigenvectors and orders them in order of 

ascending natural frequency. 

The results of the sample undamped natural frequency analysis are presented in Table 4.1.  

The mode shapes are shown in Figure 4.9.  The Y-axis represents the normalised vibration 

amplitude.  The nodes or masses are laid out along the X-axis in the order that they are included 

in the mass matrix.  Thus the point at x = 1 represents the torsional motion of the motor, the 

point at x = 2 represents the torsional motion of the driving pulley, that at x = 3 the torsional 

motion of the driven pulley and those at x = 4 to 11 the torsional motion of the points along the 

ballscrew in increasing distance from the driven pulley.  The point at x = 12 represents the axial 

motion of the point at the ballscrew centre at the position along the ballscrew where the nut is 
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Table 4.1  The sensitivity of vibration behaviour to model parameters (Y-axis drive) [16] 

M 1 2 3 4 5 ode 

N      at. freq. 

U 0.0 75.1 1 5 5ndamped, Hz 11.8 24.7 81.6 

D 0.0 75.3 1 5 5amped, Hz 11.6 24.8 74.2 

D -0.0 -25.7 -36.7 -21.2 -491.8 amping, 1/sec 

δ      nf / δk 

 - NaN 0 0 0 0 k_ms .0605 .0274 .0171 .4002 

 - NaN 0 0 0 0k_bl .2653 .1396 .0000 .0978 

 - NaN 0 0 0 0k_bs .0107 .0036 .4730 .0145 

 - NaN 0 0 0 0 k_nut .0773 .1601 .0032 .0000 

 - NaN 0 0 0 0k_ax .0781 .1698 .0049 .0001 

δ      ζ / δk 

- 0.0 0 0 0 - k_ms .1115 .3564 .1323 0.4346 

- 0 - 0 0 - k_bl .0 1.3340 .0868 .0007 0.0578 

- 0.0 0 - - - k_bs .0424 0.0226 0.5528 0.0125 

- 0.0 0 - - - k_nut .2698 0.6709 0.1723 0.0004 

- 0.0 0 - 0 - k_ax .4185 0.2532 .2160 0.0003 

δ      nf / δc 

 - NaN - - - - c_ms 0.0000 0.0000 0.0000 0.0000 

 - N 0 - - - c_bl aN .0082 0.0053 0.0000 0.0262 

 - N - 0 - - c_bs aN 0.0000 .0000 0.0000 0.0000 

 - N - 0 0 0 c_nut aN 0.0013 .0015 .0004 .0000 

 - N - - - 0 c_ax aN 0.0003 0.0001 0.0001 .0000 

 - N - - - 0 c_brg_ms aN 0.0000 0.0000 0.0000 .0000 

 - N 0 - - 0 c_brg_bs aN .0000 0.0000 0.0000 .0000 

δ      ζ / δc 

 - 0.0 0 0 0 0c_ms .0001 .0001 .0016 .0019 

 - 0.0 0 0 0 1c_bl .9020 .7236 .0001 .0033 

 - 0.0 0 0 0 0c_bs .0003 .0001 .7386 .0011 

 - 0.0 0 0 0 0 c_nut .0791 .2504 .1925 .0001 

 - 0.0 0 0 0 0c_ax .0119 .0394 .0435 .0000 

 - 0 0 0 - 0 c_brg_ms .0 .0000 .0000 0.0000 .0000 

 - 0.0 0 0 0 0 c_brg_bs .0011 .0007 .0106 .0000 
 

NaN = not a number, that is, the variable is not defined in these cases. 
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considered to be, and the point at x = 13 represents the axial motion of the table to which the 

ballscrew nut is attached.  This information is summarised in the left-hand box on Figure 4.9. 

The results of the analysis were compared with measured data taken from the milling machine 

drive operated by a controller.  The controller is set up to ensure that the motion of the motor 

follows a pre-determined pattern.  This has the effect of restraining the vibratory motion of the 

motor.  In order to simulate this restraining effect, the inertia of the motor in the model was 

increased by a factor of 1000.  The first mode is, as expected, the “roll mode” at 0 Hz.  The 

second mode, predicted for the resonance frequency of 75 Hz for the Y-axis drive, involves the 

driven pulley, ball-screw and load bouncing against the motor and driving pulley.  The third 

mode corresponding to 112 Hz involves mainly axial movement.  The fourth and fifth modes are 

quite high in our frequency range for experimental measurement of 1 - 600 Hz. 

The results computed by the eigenvalue method are compared with the measured ones further 

on in Chapter 8. 

 

Figure 4.9  -  Undamped mode shapes predicted by the eigenvalue method 

In order to account for transverse vibration, extra degrees of freedom must be accommodated.  

In its simplest case transverse vibration is a “two dimensional” phenomenon.  The displacements 
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are transverse displacement y and tilt angle θ.  The inertia terms are mass and tilt inertia which 

can be represented by a matrix M such as 
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where m is the mass and J is the tilt inertia. 

The stiffness is represented by springs which are 2 × 2 matrices such as 
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where E is Young’s modulus, I is the second moment of area and l is the element length. 

When assembling a submatrix for a spring into a system stiffness matrix,  the submatrix added 

is typically 
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One such submatrix is added in for each spring modelled. 

Table 4.2  Natural frequencies (Hz) predicted by lumped-mass models and by beam theory 

Natural frequency (Hz) 1 2 3 4 

Lines on Figures 4.10 to 4.13 solid dashed chained dotted 

M 62.91 172.9 337.9 556.3 Free – free 

Figure 4.10 C 63.2 174 341 564 

M 9.912 62.03 173.4 338.9 Fixed – free 

Figure 4.11 C 9.93 62.0 174 341 

M 27.82 111.2 249.8 443.0 Supported – supported 

Figure 4.12 C 27.8 111 251 446 

M 63.06 173.6 339.8 560.4 Fixed – fixed 

Figure 4.13 C 63.2 174 341 564 
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In order to prove the method, MATLAB program “natf_tr1”, which uses the eigenvalue 

approach was produced which gave natural frequencies and mode shapes for the case of free 

vibration of the ballscrew, (Appendix 4.4 and Figure 4.10).  These were compared with the 

standard results given by Harris [92].  It was found that the predicted natural frequencies were 

very sensitive to the number of elements used and only gave results close to those standard 

results in the case where a large number of elements was used.  The first two modes are, as 

expected, the “tilt modes” at 0 Hz and are not included on the mode shape plot. 

By including an extremely large mass element it is possible to provide a “pinned” restraint 

and by including a large tilt inertia as well it is possible to model a “built-in” restraint.  Using 

such methods it was possible to model a cantilever beam which also gave results that compared 

well with the standard results when a large number of elements was used.  Comparisons between 

natural frequencies predicted by the models (M rows) and those predicted by classical methods 

(C rows) are given in Table 4.2.  The mode shapes are illustrated in Figures 4.10 to 4.13. 

 

 
Figure 4.10  -  Natf_tr1.m – Natural frequency and modes shapes – free-free 
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Figure 4.11  -  Natf_tr2.m – Natural frequency and modes shapes – fixed-free 

 

 
Figure 4.12  -  Natf_tr3.m – Natural frequency and modes shapes – supported-supported 

[65] 



 

 
Figure 4.13  -  Natf_tr4.m – Natural frequency and modes shapes – fixed-fixed 

These results validate the method of modelling the screw.  The same method of representing 

the screw is used in Chapter 6 as part of the model representing the transverse vibration 

behaviour of a ballscrew with a moving mass. 

4.3.2  A generalised eigenvalue approach – damped case 

a)  Theoretical treatment of the linear dissipative effects 

Viscous damping gives rise to a force that is proportional to the relative velocity of two parts 

of a system.  Therefore viscous damping has a linear effect and fits in readily with linear 

differential equations.  It can be introduced deliberately as in the case of a hydraulic damper or 

“shock absorber” in a vehicle suspension, or it might occur naturally as the result of the 

dissipative properties of the component’s material. 

In this investigation, the elements representing shafts are considered as a viscous damper in 

parallel with a spring as in Figure 4.14. 

The force F generated by the spring / damper is given by the relation: 

)()( 12
12 dt

dx
dt

dxcxxkF −×+−×=     (4.36) 

where x1, x2 = displacements, k = stiffness and c = the damping coefficient. 
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Figure 4.14  -  Representation of viscous damping phenomenon 

b)  Damped natural frequencies and mode shapes 

A damped natural frequency of a system can be understood as a frequency of free vibration, 

that is, it is a frequency at which a system will vibrate after some stimulus with the amplitude of 

the vibrations dying away with time. 

A vibration mode is a characteristic pattern assumed by a system in which the motion of 

every particle is simple harmonic with the same frequency.  The mode shape of a damped mode 

can be represented by plotting on a graph or graphs the relative amplitude of the different points 

taking part in the vibration mode.  Phase changes of other than ±180º are expected to occur in the 

case of a damped mode so the mode shape has to be represented by two sets of numbers.  The 

mode shape shows where in the system the greatest vibratory activity may be seen. 

The approach to determining the damped natural frequencies and mode shapes used here is 

the generalised eigenvalue method [97, 98].  The drives are modelled as detailed in Section 4.3.1 

for the undamped case with the additional features as follows:- 

• A torsional damper is placed parallel to each torsional spring 

• A linear damper is placed parallel to each linear spring 

• A torsional damper cbrg_ms is placed between the motor inertia and “earth” to represent 

the viscous drag in the motor bearings 

• A torsional damper cbrg_bs is placed between the driven pulley inertia and “earth” to 

represent the viscous drag in the ballscrew pulley end bearing 

• A torsional damper is placed between the ballscrew end inertia and “earth” to 

represent the viscous drag in the ballscrew free end bearing 

The model for the mechanical transmission of the CNC machine tool axis drive considering 

viscous damping is depicted in Figure 4.15. 

The generalised eigenvalue method is used for determining the damped natural frequencies 

and mode shapes.  Writing an equation of motion for each mass and grouping them in matrix 

form gives the same equation as in 4.24.  The damping matrix C, a square matrix of the form 

(Cij).  Again the vectors have N+5 elements and the matrices are (N+5) × (N+5). 
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The upper half of the damping matrix is assembled in a manner similar to that used for the 

stiffness matrix (Equations (4.27a), (4.27b), (4.27c) and (4.27d)) using the damping 

coefficients c corresponding to the stiffness terms k except that damping coefficients are 

included to account for the viscous drag in the bearings as follows: 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−
−++−−

−+−
+−

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−
−−

−

..........

..2

..

..0

..00

..........

..

..

..

..

1
2

44

4333

423222

41132111

bs

bsbrgbsbl

blblms

mbmsms

cN
cNccNcu

cucc
ccc

C
CC
CCC
CCCC

 (4.37a) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−
−+−

+
=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−
−

++

++++

++++++

nut

nutaxnut

brgbs

NN

NNNN

NNNNNN

c
ccc

ccN

C
CC
CCC

..

..
00..
........

..

..

..
........

2

55

5444

534333  (4.37b) 

For all other values    0=jiC              (4.38) 

The full matrix is then completed using ijji CC =              (4.39). 

c)  The generalised eigenvalue method – mathematical details 

The first step in calculating the damped natural frequencies of the system is to try solutions of 

the form x = (xi eωt) when f(t) = 0.  In this case the Equation (4.24) yields: 

0xKCM =++ )( 2 ωω      (4.40) 

Substituting xx1 ω=  in equation (4.40) gives 

0KxCxxM 11 =++ω      (4.41a) 

or rearranging 
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1

1
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Substituting  and  and putting alongside the definition of xCMB 1
1

−−= KMB 1
2

−−= 1 yields 

1112

1

xxBxB
xx

ω
ω

=+
=

      (4.42a) 

which in matrix form is 
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This is an eigenvalue equation.  The vectors have 2N+10 elements and the matrices are 

(2N+10) × (2N+10). 
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In this case the matrix is real and not symmetric and there are standard solutions to such 

equations available in many mathematics software packages [96].  The number of solutions for ω 

is equal to twice the order of matrices M, C and K although not all of the solutions are bound to 

be distinct.  To each value of ω there is a vector called an eigenvector from which can be 

extracted the mode shape of x for that frequency. 

This model was incorporated into MATLAB model “natf_dr3”, (Appendix 4.5). 

The eigenvalues come in conjugate pairs in the case that the mode is sub-critically damped, 

(when a sudden application of an external force gives rise to oscillations that die away), therefore 

a lightly damped model might have up to N+5 pairs.  The imaginary part is the natural frequency 

in radians per second and the real part is the coefficient of damping.  In order to represent a 

positive coefficient of damping the real part of the eigenvalue should be negative.  If the mode is 

critically damped or over-critically damped, all the solutions will be real.  This means that there 

is not an oscillatory response to a step input.  There are two real “solutions” for each mass 

element.  Since the sub-critical natural frequencies come in conjugate pairs, a sense of 

mathematical tidiness suggests that the two real solutions also be grouped together.  At this stage 

it is not understood how to pair them up as two solutions of one “mode”. 

 
Figure 4.15  -  Model of the mechanical transmission of the CNC machine tool axis drive 

considering viscous damping 

The eigenvectors are arbitrary to one scalar factor; so only their relative values are 

determined, the absolute value can be chosen for convenience.  For the purposes of presentation 

the eigenvectors are normalised such that the sum of the squares of their absolute values equals 
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one.  Then any vector selected for plotting is re-normalised such that the term with the largest 

amplitude has a phase of zero.  Finally, because the ballscrew ratio R is so small 

(0.0015915 m/rad), the mode shape is set to equivalent ballscrew rotation before plotting. The 

MATLAB program (Appendix 4.5) is similar to the one presented in Section 4.3.1 but 

incorporating the generalised eigenvalue method.  This program also orders the eigenvalues and 

eigenvectors in order of ascending natural frequency. 

The eigenvectors from which the mode shapes are derived are essentially complex numbers.  

In order to give a visual representation of these, two approaches have been used.  In the first 

case, each mode shape is shown in a Cartesian form with the real component designated “in 

phase” and the imaginary component “quadrature” (see Figure 4.16).  In the other case, the mode 

shapes are shown in a polar from with the “amplitude” and “phase” being plotted (see 

Figure 4.17). 

Figure 4.16  -  Damped mode shapes predicted by the generalised eigenvalue method - Cartesian 

It is to be expected that the “in phase” component will compare most directly with the 

undamped mode shape in the case of light damping.  Although in many cases this is so, in some 

instances the damped mode shapes are close to the undamped mode shape reflected on the 
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X axis.  Then, considering that the eigenvectors on which the mode shapes are based are 

arbitrary to a scalar factor, it is possible to make them more easily comparable with the 

undamped mode shapes by multiplying one of the sets by minus one.  This difference can arise 

because the normalisation process used on the complex raw eigenvectors is slightly different 

from that used on the real eigenvectors which occur in the undamped case. 

The polar form (Figure 4.17) is comparable with measurement results.  The amplitude of the 

mode shapes can be compared with vibration readings and the phase can be compared with the 

phase data generated by many data analysis packages. 

 
Figure 4.17  -  Damped mode shapes predicted by the generalised eigenvalue method – polar 

4.3.3  Sensitivity analysis 

The values for the sensitivity of the various modes to changes in the stiffness and damping 

characteristics of the machine drives are also derived.  This is done by developing programs 

which give the sensitivity of the system to a 1% change in one of the model’s parameters.  This 

enables decisions to be made more easily about, say, where the best place is to increase the 

damping to reduce the level of a troublesome mode of vibration, or which stiffness should be 
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changed to move an undesirable natural frequency.  Such sensitivity information can be used as 

an aid to design or fault correction. 

These values can also prove useful in adjusting the parameters of a model for a CNC machine 

tool axis drive, for example that developed by Pislaru [15], in order to adjust the simulated 

results to fit best to the measured ones.  An estimate of the amount of change necessary to make 

the simulation results fit the experimental ones can be easily obtained. 

An example of a set of mode shape plots is included in Figure 4.16 and Figure 4.17.  A table 

of sensitivity data is included in Table 4.1. 

The MATLAB programs described in this Chapter can be used for the following purposes: 

• to determine the natural frequencies and damping factors for the elements of the drive 

using the generalised eigenvalue method; 

• to plot the mode shapes in order of ascending natural frequency; 

• to calculate the sensitivity of natural frequency to changes in stiffness, and to changes 

in damping coefficient; 

• to calculate the sensitivity of damping ratio to changes in stiffness, and to changes in 

damping coefficient. 

The next stage of the study is to investigate the effects on the dynamics of the ballscrew drive 

of the nut moving along the screw.  In Chapter 5 the dynamics of the principal degrees of 

freedom involved in ballscrew action will be dealt with, that is torsional movement of the screw 

and axial movement of the nut and screw.  The effects of non-linear phenomena such as friction 

and backlash will be included. 
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Chapter 5 - AXIAL AND TORSIONAL CASE FOR MOVING MASS MODEL 
When a ballscrew is being selected for a particular application, the dynamic behaviour is 

taken into account.  One area of concern is whether or not the ballscrew will vibrate 

excessively because it is running at one of its natural frequencies.  One method used 

commercially for sizing ballscrews to avoid whirling uses a set of criteria which only includes 

the restraining effects of the ballscrew bearings and takes no account of the nut [77]. 

In fact the nut has a significant lateral restraining effect, but the effect varies with time as 

the nut moves.  This implies that the natural frequencies of a ballscrew system change with 

time.  This chapter deals with the analysis of ballscrew system dynamics taking into account 

the changes in stiffness and damping characteristics which occur as the nut travels along the 

screw.  Initially, the analysis focuses mainly on the degrees of freedom involved in the action 

of the ballscrew, namely the torsional movement of the screw and the axial displacement of 

the nut.  The effects of backlash in the nut are also investigated.  Considerations of the 

transverse degrees of freedom of the screw are analysed in Chapter 6. 

This changing of resonant frequency with time can be a dominant factor in the behaviour of 

a ballscrew system which contains a relatively slender screw.  This is because such a screw 

will have low natural frequencies which might be excited by quite low running speeds. 

The classical equations which predict the amplitude of vibrating systems give the “steady 

state” value [99], that is the level to which the system settles down after any transient response 

which might arise as the force is applied has died away.  For example, consider the simplest 

such system, a mass m mounted to earth by a spring of stiffness k with a viscous damper of 

damping coefficient c along side it. 

 

Figure 5.1  -  Simple “mass on a spring” system 

The equation of motion for this system is 

Fkxxcxm =++ &&&      (5.1) 

where x is the displacement of m and F is the forcing term.  When 0=c , the solution of this 

equation gives rise to harmonic motion with an undamped natural frequency ωn given by 

m
k

n =ω       (5.2) 
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When a small amount of damping is included, the natural frequency is reduced and the 

amplitude dies away exponentially after the forcing term is removed.  The rate of decay of the 

harmonic motion is proportional to the damping coefficient, thus as c gets bigger the motion 

dies away more rapidly.  At the point of critical damping the motion tends most quickly to 

zero.  As the damping is increased beyond critical, the motion tends more slowly to zero but 

with no oscillation.  The fraction of critical damping ζ is given by 

km
c

2
=ζ       (5.3) 

The steady state displacement response xst to a sinusoidal force of tFF ωsin0=  is 
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where the phase lag θ is given by 
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It will be noted that if nωω = , 

)sin(0 θω
ζ

−= t
k

F
xst  where ( )ζθ 2tan 1−=    (5.6) 

which gives a value of infinity for xst if there is no damping.  However infinite amplitude 

implies infinite energy which will take an infinite time to achieve with a finite force pushing it.  

It is therefore necessary for a system to be excited for a “significant time” at a natural 

frequency for the vibration amplitude to build up to a level high enough to be detrimental.  

What a “significant time” is will vary from system to system, and will depend on several 

factors:- 

• how close to the natural frequency is the frequency of the forcing term, 

• the amplitude of the forcing term, and 

• the level of damping involved. 

If the natural frequency changes with time, it may be that the vibration amplitude always 

remains low enough to be of no detriment to the ballscrew or the machine of which it is part.  

It was therefore thought worth while to try to model the dynamic behaviour of a ballscrew 

with a moving nut. 
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5.1  Dynamics of a ballscrew with a moving nut – the axial case 

 

Figure 5.2  -  A ballscrew drive system 

The essential features of a ballscrew in a machine tool drive are shown in Figure 5.2.  The 

drive from the motor is passed to the screw through some mechanism such as a belt drive, a 

chain drive, gears or a flexible coupling.  The first part of the ballscrew proper is therefore an 

“inertial component”, the belt pulley, chain sprocket, driven gear or the driven half of the 

flexible coupling, see Figure 5.3.  The screw is an almost cylindrical component mounted in 

two bearings and the nut makes contact with the screw at a various positions along the screw.  

The nut carries an inertial load which represents the part of the machine to which it is attached. 

It is common to model such systems as a beam with the bearings giving some defined 

restraints to the motion of the beam.  At first the possibility of an analytical solution in terms 

of beam theory was considered.  However a fundamental problem was that it was natural to 

split the beam representing the screw into two at the nut.  At this point the boundary 

conditions and continuity are difficult to define since the split point changes with time. 

A special method has been devised to overcome this disadvantage.  Using this approach, 

the moving mass is connected to all the other masses in the system, the effect of the moving 

point of contact being achieved by varying the stiffness between the node representing the nut 

and the nodes representing the ballscrew.  This has the advantage that each degree of freedom 

included in the matrices always refers to the same physical quantity. 

Applying the method in detail, the ballscrew was split into S equal portions thus generating 

S+1 nodes with x coordinates Xi.  The set of these coordinates {Xi} form the abscissa for mode 

shape plots.  If the screw is of length l, the first and the S+1th element are considered to be of 

length l/2S and all the intermediate elements of length l/S and the mass of the screw is 

considered to act at the nodes.  The stiffness is considered to act in the S elements.  The 

bearings are modelled as restraints applied at the appropriate position on the screw. 
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Figure 5.3  -  A typical ballscrew in a machine tool drive 

The case of axial degrees of freedom only is considered first, so that the mathematical 

method can be developed while keeping the 

algebraic expressions as simple as possible.  

In this case the stiffness k of the ith element 

of the ballscrew is given by 
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where E is Young’s modulus for the screw 

material and A is the screw cross-sectional 

area. 

 Figure 5.4  -  Ballscrew model 

The nut is modelled as a single node at which the mass is considered to act and the stiffness 

between the nut and the screw is considered as a single value kn, (see Figure 5.4).  To allow for 

motion of the nut along the screw, the analysis has been set up so that the nut is considered to 

be connected to all of the ballscrew nodes.  Writing an equation of motion for each node of the 

ballscrew in turn gives a set of equations as follows. 
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For node S+1: 
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Here k is the stiffness of a single element of the ballscrew, c is the coefficient of damping of 

the element and ξi are factors whose value depends on the position of the nut.  Since the nut 

must be somewhere along the screw, the factors must satisfy the condition 

∑
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iξ      (5.10) 

If the ballscrew nut is at a position Xn between nodes j-1 and j, the effect of the nut is put in the 

correct place by using values of ξj-1 and ξj given by 
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For  or ,    1−≠ ji ji ≠ 0=iξ              (5.11b) 

Fi(t) is the external force applied at the ith node. 

Put together these equations give rise to a stiffness matrix for the ballscrew system as 

follows 
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In a similar way a matrix C of damping coefficients can be built up. 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−−
−+−
−−+

−+−
−−+−
−−+

=

+

++

nnSnSnnn

nSnS

nSnS

nn

nn

nn

cccccc
cccc

cccc

cccc
ccccc
cccc

1321

11

33

22

11

...

...000
2...000

.....................
00...20
00...2
00...0

ξξξξξ
ξξ
ξξ

ξξ
ξξ
ξξ

C  (5.13) 

The solution of the moving ballscrew problem therefore reduces to the solution of the 

equation 

)F(KxxCxM t=++ &&&     (5.14) 
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where M is the mass matrix, x is the displacement array and F is the force array.  The matrices 

C and K can change with time. 

5.2  Solution of differential equation with time-dependent coefficients 

Equation (5.14) is a non-homogeneous differential equation and, of course, the 

displacement array x and the force array F are functions of time.  Because the nut moves, the 

ξi terms in equations (5.12) and (5.13) can be expected to vary continuously with time in a 

manner, which in the general case, is not periodic.  Therefore the stiffness matrix K and the 

damping matrix C also change with time.  The solution to equation (5.14) can therefore be 

expected to be a continuous but non-periodic function of time.  It was therefore decided to 

seek solutions of the form 
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Differentiating with respect to time gives 
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A further differentiation gives 
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Initially, the force is regarded as a constant vector for the time interval over which a 

solution is sought, while C and K also remain constant.  This is reasonable provided that the 

time interval over which the solution is sought is short compared with the scale over which 

changes in f, C and K take place.  In this case, substituting equations (5.15)-(5.17) into 

equation (5.14) gives, for the constant terms 
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Comparing coefficients for t k gives 
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Thus, given the initial displacement vector a0 and the initial velocity vector a1, all the other 

coefficients ak are calculable.  Furthermore, the higher order coefficients are derived from the 

lower order ones by dividing by larger and larger numbers.  Comparing this with the power 

series expansions for ex, sin x and cos x it seems most probable that the series will converge to 

a finite solution. 

Physical constraints on the system mean that F(t) has to be finite with, at worst, finite 

discontinuities.  This means that the “roughest ride” for the system is one with finite 

discontinuities in acceleration.  This implies that the velocity will always be continuous and 

the displacement “smooth”.  Such mathematically “well behaved” functions are likely to cause 

relatively little trouble in computation. 

A series of programs based on this approach “T1.cpp” - “T3.cpp” have been written.  Using 

values typical of the Beaver VC35 CNC machine tool (see Figure 4.12 and Section 4.2), it was 

found that ak diverged significantly before converging.  However, since the time interval 

considered was small, ti converged rapidly.  To avoid problems with multiplying very large 

numbers by very small ones, the displacement d at the end of a time interval T can be obtained 

by using a series 
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Letting d0 be the displacement and v0 be the velocity at the beginning of the time interval, 

b0 and b1 are calculable from the initial conditions as follows 

T0100 and vbdb ==     (5.22), (5.23) 

Multiplying equation (5.18) by T2 gives 

2
0

2

1

20
2

2222
2

222

222

222

TTT

TTTTT

TTTT

fMbKMbCM

fMaKMaCM

fMaKMaCMab

111

1

0

1

1

1

1

0

1

1

1

2

−−−

−−−

−−−

+−−=

+−−=

+−−==

  (5.24) 

and multiplying equation (5.20) by Tk gives 
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   (5.25) 

Making the substitutions  (5.26) and  (5.27) into equations (5.24) 

and (5.25) gives 

21 TKMα −−= TCMβ 1−−=

2
012 222

TfMbαbβb
1−

++=      (5.28) 

21 )1( −− −
+= kkk kkk

bαbβb      (5.29) 

Thus, knowing the force, b2 can be derived from b0 and b1, which are set by the initial 

conditions, and bk can be derived from bk-1 and bk-2 for .  It should be noted that all b3≥k k 

have the dimension of the degree freedom being computed.  For example, if the degree of 

freedom represents axial movement all bk have units of length. 

bk are column vectors N long and α and β are N×N matrices, (N being the order of M, C 

and K). 

The velocity can also be calculated.  From equation (5.21) it is possible to define 

∑∑
∞

=

∞

=
+ =+==

00
1)1(

i
i

i

i
i Ti caxv &     (5.30) 

Thus 
i

ii Ti 1)1( ++= ac       (5.31) 

01
0

100 )10( vaac ==+= + T     (5.32) 

T

T
TT

2

2
21

111

2

2)11(

b

aac

=

=+= +
    (5.33) 

A recurrence relation for ck can be derived by substituting for ai+1 in equation (5.31) using 

equation (5.20) 
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 (5.34) 

ck are column vectors N long.  Again it should be noted that all ck have the dimension of the 

time derivative of the degree freedom being computed.  For example, if the degree of freedom 

represents axial movement all ck have units of velocity. 

It is now possible to define the state {d, v} at the end of a time step T in terms of its state 

{d0, v0} at the beginning of the step. 

The dynamic behaviour of a ballscrew system with a moving nut is calculated by starting at 

some initial state {d0, v0} and solving equation (5.14) for a time step of duration T.  The final 

state given by equations (5.21) and (5.30) is used as the initial state of the next time step and 

so on.  Progress of the nut is accounted for by redefining K and C at each step which means 

that α and β in equations (5.26) and (5.27) and recurrence relations (5.29) and (5.34) are also 

redefined.  This process is repeated for as long as necessary to cover the period of interest. 

The energy of the system can also be computed.  The kinetic energy KE is given by:- 

xMx && ′=
2
1KE      (5.35). 

Because the mass matrix M is diagonal the computation of KE can be simplified to:- 

∑∑ == 2

2
1

2
1

iiiiiii xMxMxKE &&&     (5.36). 

(Here symbols in bold, e.g. x, M, represent whole vectors and matrices and symbols in italics, 

e.g. KE, xi, Ki j, represent scalar quantities, vector elements and matrix elements.   represents 

the transpose of vector x.) 

x′

The potential energy PE is given by:- 

xKx′=
2
1PE      (5.37). 

Equation (5.37) could be coded as a double matrix multiplication.  However, the evaluation of 

such an expression would entail adding up terms of the form Kiixi
2, which will be positive, and 

terms of the form -Kijxixj, which could be of a similar magnitude but negative.  This could lead 
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to numerical instability.  It was therefore decided to compute the potential energy by summing 

the potential energy of all the springs in the system.  Thus:- 

∑ −= 2)(
2
1

jiji xxKPE     (5.38). 

for all non-zero Kij where i < j. 

The rate at which energy is dissipated by the viscous dampers in the system is given by:- 

xCx

FvvF

&& ′=

×′=×=
dt

dEd

     (5.39). 

For the same reason as the case of the potential energy the rate of energy dissipation was 

computed by:- 

∑ −= 2)( jiji
d xxC

dt
dE

&&     (5.40). 

for all non-zero Cij where i < j.  The rate of energy dissipation for non-linear phenomena such 

as Coulomb friction is calculated by multiplying the relevant force by the appropriate velocity 

on an ad hoc basis.  For example 

∑ ×= iini
d xF

dt
dE

&μ     (5.41), 

where μi is the coefficient of friction and Fn i is the contact force acting on the sliding face.  

The total energy dissipated is determined by integrating over time the sum of the rates of 

dissipation of the mechanisms involved. 

The energy input Ein is derived by integrating the applied forces over their respective 

displacement:- 

∫ ×= xf dEin      (5.42). 

The sum of the kinetic and potential energies and the energy dissipated less the energy 

supplied should, of course, be zero.  In fact this is not exactly the case because of rounding 

errors and approximations in the validity of the time series.  Its magnitude compared to a 

measure of the maximum values of the items involved is used as a measure of the stability of 

the models’ performance. 

The solution programs were originally coded in the MATLAB language and were used to 

model the behaviour of a ballscrew test rig.  Using a load cycle typical of such a rig it was 

found that the execution time for the programs was of the order of several hours.  Steps were 

therefore taken to accelerate the solution. 
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One step was to convert the program which derives the time series solutions to the 

C language.  To avoid writing graphic routines for C, the results of the solution process were 

written to file on the computer’s hard disc and standard routines available in MATLAB were 

used to produce the results in graphical form.  Another step was to note that the K and C 

matrices are sparse and so a large number of the calculations would entail multiplying by zero.  

If this could be avoided a substantial acceleration should occur.  However the form of K and C 

is not that of a normal banded matrix since the non-zero terms on a typical row are Ki-1 i, Ki i , 

Ki i+1 and Ki N.  Taking advantage of the symmetry property of normal stiffness matrices meant 

that a N×N matrix could be reduced to a N×6 in the axial and torsional case.  It was necessary 

to write special routines to manipulate matrices in this form. 

At first the programs wrote the results to file at the end of each main time step and the 

execution time was significant.  The program was therefore changed to write to file at the end 

of a block of 1000 outer time steps.  The result is a program with acceptable execution times, 

having achieved an acceleration from of the order of hours to run a 25 element model of the 

ballscrew to about 15 minutes.  A MATLAB routine reads the information from files 

generated by the C program and plots them in graphical form. 

In order to avoid problems with convergence of the b series, the program has been modified 

to select its own time step.  A plot of the energy balance check as a function of time shows an 

energy balance of less than 1% of the maximum energy level involved.  This is a better 

precision than that to which many of the errors can be measured so this is considered to be 

satisfactory. 

5.3  Extension to include torsional movement 

When extending the model to include torsional behaviour an extra degree of freedom is 

needed at each of the nodes of the screw.  The equations of motion for these additional nodes 

are as follows. 

For node 1:             (5.43a) )()()( 1121211 tcJ Γ=−Θ−−− Θ θθθθθ &&&&

For node i, where Si ≤≤2 : 

)()()()()( 11111 ticcJ iiiiiiiiii Γ=−Θ−−Θ+−−−+ +−+Θ−Θ θθθθθθθθθ &&&&&&  (5.43b) 

For node S+1: 

)()()( 11111 tccJ SSSSSSS ++Θ+Θ++ Γ=−+−+ θθθθθ &&&&     (5.43c) 
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where Ji is the rotational inertia of the ith node, cΘ is the coefficient of torsional damping of 

the element and the torque is Γi(t).  Here Θ is the torsional stiffness of a single element of the 

ballscrew given by 

1....,2,1,
1

+=
−

=Θ
+

Si
XX

GK

ii
    (5.44) 

where G is shear modulus for the screw material and K is the screw’s torsional constant. 

Therefore the submatrix representing each element of the screw is extended from 
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where k is the axial stiffness of the ith element as used previously (equation (5.6)). 

At the point of contact, the motion of the nut xpn is derived by taking the axial motion of the 

point of contact of the screw xp and adding to it the axial movement caused by the rotation of 

the screw θp

pppn Rxx θ+=      (5.46) 

where R is the ballscrew ratio.  For a screw of pitch p with Ns starts, this is 

π2
pN

R s=       (5.47) 

Neglecting friction, the force delivered to the nut is related to the torque reacted on the screw 

by 

torqueScrewRforceNut ×=    (5.48) 

The connection between the axial and torsional subsystems is illustrated in Figure 5.5 using 

as an example a case where only two elements are considered and the nut is connected at the 

second node. 

The thrust bearings which restrain the screw are modelled by springs of axial stiffness a1 

and a2.  The saddle or table onto which the nut is mounted has a mass M. 

In many systems the load on the nut can rock about the Y axis.  The load’s inertia about a 

line parallel to this axis through its centre of mass is represented by J.  The distance of the 

ballscrew axis below the load’s centre of mass is z.  The rocking motion is represented by φn 

and the restraining effect of the load’s supporting slideways is modelled by a torsional spring 
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of stiffness Φ.  The damping is assumed to be zero in order to show the mathematical 

development in as simple a manner as possible. 

The system is driven by a torque Γ(t) applied to inertia J1. 

Figure 5.5  - Ballscrew system model 

The equations of motion for the masses are:- 

1112111 )( xaxxkxm −−=&&        (5.49a) 

)()()( 2223212122 θφ Rxzxkxxkxxkxm nnn −−−+−+−−=&&   (5.49b) 

3223233 )( xaxxkxm −−−=&&       (5.49c) 

)( 22 θφ RxzxkxM nnnn −−−−=&&      (5.49d) 

and the equations of motion for the inertias are:- 

)()( 12111 tJ Γ+−Θ= θθθ&&        (5.50a) 

)()()( 2223212122 θφθθθθθ RxzxRkJ nnn −−−+−Θ+−Θ−=&&   (5.50b) 

)( 23233 θθθ −Θ−=&&J        (5.50c) 

)( 22 θφφ RxzxzkJ nnnn −−−=&&       (5.50d) 

 

In matrix form the equation of motion is given by 
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(5.51) 
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Here, for compactness of presentation, only the upper half of the stiffness matrix is 

included because it is symmetric. 

Moving on to the general case of S spring/damper elements in the ballscrew and the 

moving nut is being allowed for, considering the motion of node 1, equation (5.8a) becomes 

)()(
)()(

11112

1111211

θφξ
θφξ
Rxzxkxxk

Rxzxcxxcxm

nnn

nnn

−−−+−+
−−−+−= &&&&&&&&

     (5.52a) 

For node i, where and or Si ≤≤2 1Bi ≠ 2Bi ≠ , where BB1 and B2B  are the nodes at which the 

journal bearings are attached, equation (5.8b) becomes: 

)()()(
)()()(

11

11

iinnniiiii

iinnniiiiiii

Rxzxkxxkxxk
Rxzxcxxcxxcxm

θφξ
θφξ

−−−+−+−−

−−−+−+−−=

+−

+−
&&&&&&&&&&

   (5.52b) 

For node S+1, equation (5.8c) becomes: 

)()(
)()(

1111

111111

++++

++++++

−−−+−−

−−−+−−=

SSnnnSSS

SSnnnSSSSS

Rxzxkxxk
Rxzxcxxcxm

θφξ
θφξ &&&&&&&&

   (5.52c) 

Finally for the nut, equation (5.9) becomes: 

∑∑
+

=

+

=

−−−−−−−−=
1

1

1

1

)()(
S

i
iinnni

S

i
iinnnin RxzxkRxzxcxM θφξθφξ &&&&&&   (5.52d) 

The equations of motion for the masses at the bearing nodes are:- 

11111111

1111111111

)()(
)()(

BBBBB

BaBBBBBB

xaxxkxxk
xcxxcxxcxm

−−+−−
−−+−−=

+−

+− &&&&&&&
    (5.53a) 

22212122

2221212222

)()(
)()(

BBBBB

BaBBBBBB

xaxxkxxk
xcxxcxxcxm

−−+−−
−−+−−=

+−

+− &&&&&&&
    (5.53b) 

(In the event that , the first and third parentheses in equation (5.53a) become zero and if 

, the second and last parentheses in equation (5.53b) become zero.) 

11 =B

12 += SB

Using the same conditions for the node number i as for equation (5.52b), the equations of 

motion for the inertias are:- 

)()()(

)()(

22112

1111211

tRxzxRk

RxzxRccJ

nnn

nnn

Γ+−−−+−Θ+

−−−+−=

θφξθθ

θφξθθθ θθ
&&&&&&&&

   (5.54a) 

)()()(
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iinnniiiii

iinnniiiiiii
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&&&&&&&&&&

  (5.54b) 
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  (5.54c) 

[86] 



∑∑
+
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i
iinnnni
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i
iinnnnin RxzxkzRxzxczJ θφξθφξφ &&&&&&  (5.54d) 

 

5.4  Backlash 

Backlash is taken into account by allowing bl free movement between the screw and the nut 

before contact is made.  This is shown in a simplified form in Figure 5.6. 

This means that there are three modes of motion:- 

• First where the screw is pushing the nut in the negative x direction OR when the nut 

is “over-riding” the screw in the positive x direction.  This condition is designated 

“negative” and, allowing for rocking of the load, occurs if 

2/lnnbsbs bzxRx −−<+ φθ      (5.55a) 

where xbs is the axial position of the part of the screw which would be in the same 

plane as the nut centre if the system were to be at rest under no load and θbs is the 

angular position of the same point.  In this case the backlash indicating factors are 

set as 

1,1 21 −== lflf BB      (5.55b) 

 
Figure 5.6  -  Ballscrew backlash 

• Second where the screw is pushing the nut in the positive x direction OR when the 

nut is “over-riding” the screw in the negative x direction.  This condition is 

designated “positive” and, allowing for rocking of the load, occurs if 

bsbslnn Rxbzx θφ +<+− 2/      (5.56a) 

In this case the backlash indicating factors are set as 

1,1 21 == lflf BB       (5.56b) 
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• Third where the screw is riding in the backlash and the screw and its attachments 

and the load are treated as mechanically independent.  This condition is designated 

“free” and, allowing for rocking of the load, occurs if 

2/2/ lnnbsbslnn bzxRxbzx +−≤+≤−− φθφ    (5.57a) 

In this case the backlash indicating factors are set as 

0,0 21 == lflf BB      (5.57b) 

Two of the equations of motion for the masses (5.49b) and (5.49d) need to be modified to:- 

2/)()()(

)2/()()(

2221232121

222123212122

lnlfnnnlf

llfnnnlf

bkBRxzxkBxxkxxk

bBRxzxkBxxkxxkxm
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θφ&&
 (5.58b) 

2/)(

)2/(

2221
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lnlfnnnlf

llfnnnlfn

bkBRxzxkB

bBRxzxkBxM

+−−−−=

−−−−−=

θφ

θφ&&
         (5.58d) 

and the equations of motion for the inertias (5.50b) and (5.50d) also need to be changed to:- 

2/)()()(
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(5.59b) 
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   (5.59d) 

In matrix form the equation of motion has to be changed in two ways.  First the stiffness 

matrix is replaced by 
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(5.60a) 

and the force vector by 
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All of these changes to the stiffness matrix and force vector can be accommodated readily 

by the solution method 

5.5  A refinement of the method 

The approach outlined in the preceding sections was found to give results consistent with 

the expected behaviour of a ballscrew system.  When the transverse degrees of freedom came 

to be modelled, it turned out that the displacements exhibited some rather odd behaviour 

during a trapezoidal velocity demand run.  The underlying trend of the displacements showed 

a series of discontinuities in gradient as the nut crossed the boundaries from one ballscrew 

element to another.  It appeared that the vibration characteristics of the system changed as the 

nut passed from one spring/damper element to another.  This was particularly distressing since 

the individual elements are mathematical abstractions which do not correspond to a real 

physical phenomenon of themselves though taken together they model the behaviour of the 

screw. 

Consideration of the cause of this phenomenon has led to a refinement of the method along 

the following lines. 

It will be recalled that the stiffness of a ballscrew system can be represented by a matrix 

(K) which can be partitioned conveniently as follows 

( )
⎟
⎟
⎟
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⎞

⎜
⎜
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⎝

⎛

′−
−′−

−
=

nnbs

nbsbsbsdr

bsdrdr

KK0
KKK
0KK

K    (5.61) 

The submatrix Kdr represents the controller, drive motor and mechanical coupling device, 

Kbs the ballscrew and Kn the nut and load.  Kdr bs represents the cross terms between the 

driving mechanism and the screw and Kbs n the cross terms between the screw and the nut.  

The submatrix Kbs n includes influence coefficients which are zero when the nut is not over the 

relevant part of the ballscrew and which are between 0 and 1 when the nut is over an element.  
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Up to now the influence has been shared on a linearly proportional basis with f1, f2 being given 

by 

1
1

−−
−

=
ii

ni

xx
xx

f   and 
1

1
2

−

−

−
−

=
ii

in

xx
xx

f   (5.62), c.f. (5.11a) 

This estimate of distribution gives acceptable results for the axial and torsional cases but it 

is not strictly correct.  The presence of two connections from the nut to the ballscrew at 

nodes i-1 and i gives in addition to the desired connection to the nut an undesired parallel 

connection between nodes i-1 and i making the screw stiffer in an undulating way as the nut 

moves along, (see Figure 5.7). 

An estimate of the magnitude of this effect for the ballscrew being used to test the model 

gives a fluctuation of the axial stiffness between the bearings of the order of 0.15% when 

25 elements are used to model the screw.  This is presumably why the effect was not noticed 

earlier. 

 
Figure 5.7  -  First method  

 

(In the transverse case the effect is more pronounced, in part because when the nut is in the 

middle of a section the two springs between which the stiffness is shared give a moment 

support not seen when the nut is passing a node.) 

 
Figure 5.8  -  The refined method 

A more rigorous approach would be to consider the spring representing the nut connected at 

a massless node between two nodes i-1 and i (see Figure 5.8) and derive the equations of 

motion as follows 
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  (5.63) 

Here j designates the massless node where no external force F will be applied.  The masses mi 

and the stiffnesses Kij will be, in general, Nf × Nf submatrices, where Nf is the number of 

degrees of freedom at each node of the ballscrew.  The displacements xi and the forces Fi are 

Nf × 1 column vectors. 

It is necessary to eliminate xj.  This can be done as follows.  First re-order and partition the 

matrix 
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Grouping the internal and external forces together and bearing in mind that mj=0 
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or in simpler terms 
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Expanding 

rεδq0
qεpδf

+′=
+=

 

Whence           δqrε 1 ′−= −

Finally                      (5.66) 
δp

δ)qqr(pf

red

1

=

′−= −

This means that the matrix representing the spring attached to the massless node can be 

replaced by a reduced matrix of the form .  In the case of the axial and torsional 

degrees of freedom, (x, θx), p is a 6×6 submatrix, q a 6×2 submatrix and r

qqrp 1 ′− −

-1 a 2×2 submatrix. 
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Using f to represent the fraction of the distance of the contact point along the element {Xi-1, 

Xi} in the terms of equation (5.62) 

11 ff =−   and 2ff =    (5.67) 

The parts of the stiffness matrix relating to the element in contact with the nut can now be 

written 
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r-1 is a flexibility matrix and is given by 
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where the determinant 
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It will be noticed that r-1 vanishes at f=0 and f=1 and that the modified determinant is equal 

to one at f=0 and f=1. 

Deriving the reduced stiffness matrix pred is made easier by using the expression 
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To take an example, the first term of the reduced stiffness matrix covering the element 

connected to the nut load and the nut load freedoms can be derived as follows 
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(5.72) 

It will be noticed that if , 0=f nred kkp +=11  and if 1=f ,  as one would 

expect.  A similar exercise for the other 20 independent members of matrix  gives 

kpred =11

redpD′
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When ,  and  reduces to 0=f 1=′D redp
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Both of equations (5.73b) and (5.73c) are to be expected by comparison with equation (5.51). 

To give a more rigorous approach, equation (5.65b) can be expanded as follows 
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Here 

• r is the matrix representing the massless node at the point where the nut connects to 

the screw, 
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• p represents the partition of the matrix which includes the nut and its load and the 

nodes of the ballscrew at either side of the connecting point 

• q, q’ represent the submatrices which connect p and r, 

• t represents the rest of the system where the external forces normally act,  

• s, s’ represent the submatrices which connect p and t and 

• ϕ  represents the displacements of the degrees of freedom where external forces act. 

Expanding 
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Finally                    (5.75) 
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Therefore the relevant parts of the system stiffness matrix can be modified along the lines 

shown to give a better representation of a ballscrew with a moving nut. 

5.6  Comparison with classical theory 

 
Figure 5.9  -  Comparison with classical theory 

In order to demonstrate the method’s capabilities the following test has been undertaken. 

A steel ballscrew 38.1 mm in diameter and 1520 mm long was modelled using program 

T3.cpp.  The screw was supported at the drive end with a bearing of 8 × 108 N/m axial 

stiffness at the tail end with a bearing of 15.6 × 108 N/m axial stiffness.  A simple PID 

controller was coded into the model to enable a trapezoidal velocity profile to be run.  This 
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controller had a proportional constant Kp of 2 N m/rad, an integral constant Ki of 

100 N m/(rad sec) and a differential constant Kd of zero.  Velocity feedback came from the 

nut, (see Figure 5.9).  The demand signal is the diagonal straight line on Figure 5.13. 

At the start of the motion the nut was positioned at 100 mm from the driven end in the 

centre of 10 μm of backlash.  The first part of the motion entailed an acceleration of the nut of 

0.2 m/sec2.  In order to avoid the results being swamped by the friction between the table and 

the slideways, the coefficient of friction between them was assumed to be zero.  A load of 

359 kg was carried by the nut.  The first 50 msec of the ensuing motion is shown on 

Figures 5.10 to 5.13 and Figures 5.16 and 5.17.  The first 100 msec is shown on Figures 5.14 

and 5.15. 
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Figure 5.10 – Ballscrew torsional displacement   Figure 5.11 – Ballscrew torsional velocity 

In the first few milliseconds the drive starts the screw  (Figures 5.10 and 5.11).  The screw 

runs through the backlash and picks up the nut with a “bump”, (Figure 5.13).  The controller 

reacts to the additional load by increasing significantly the torque to bring the nut to the 

required position.  In doing so the velocity of the screw is increased beyond demand for a 

short while.  This has the effect of flinging the nut into the backlash when the controller 
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Figure 5.12 - Ball nut displacement   Figure 5.13 - Ball nut velocity 

[96] 



reduces the torque as speed is achieved.  As the screw picks up speed, with the inertia of the 

system reduced by not having to carry the nut, it again catches up with nut with a second but 

smaller bump.  This also causes the controller to increase the torque resulting in what appears 

to be a momentary loss of contact between the screw and the nut.  Thereafter the nut and screw 

settle down to a steady acceleration.  Figures 5.12 and 5.13 show the motion of the nut.  Hand 

calculations based on classical elastic theory show that the force required to accelerate the 

table is 71.8 N.  This gives rise to an axial displacement of the screw at its point of contact 

with the nut of 0.962 × 10-7 m.  Figures 5.14 and 5.15 show the motion of 5 points distributed 

equally along the screw.  Hand calculations (see Appendix 5.2) reveal that the axial 

deflections to be expected are:- 

• Drive end bearing  0.717 × 10-7 m 

• Ballscrew ¼ point  0.791 × 10-7 m 

• Ballscrew ½ point  0.558 × 10-7 m 

• Ballscrew ¾ point  0.328 × 10-7 m 

• Tail end bearing  0.093 × 10-7 m. 
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Figure 5.14 – Ballscrew axial displacement     Figure 5.15 – Ballscrew axial velocity 

As can be seen (Figures 5.14 and 5.15) the axial deflection of the drive end of the ballscrew, 

which is close to the drive end bearing, (blue trace, 4th line from the top) is settling down to 

about 0.75 × 10-7 m.  The axial deflection of the ¼ point of the ballscrew (green trace, bottom 

line) to 0.8 × 10-7 m, the mid-point (red trace, third line from the top) to 0.55 × 10-7 m, and the 

¾ point (cyan trace, second line from the top) to 0.3 × 10-7 m.  Finally the axial deflection of 

the tail end of the ballscrew, which is close to the tail end bearing (magenta trace, top line) to 

0.1 × 10-7 m.  Therefore the axial behaviour of the screw as predicted by the model 

corresponds to that predicted by classical theory. 

 

[97] 



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time, (sec)

To
rq

ue
, (

N
 m

)

Torque applied to ballscrew end

 
Figure 5.16  –  Torque applied at the driven end of the ballscrew 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
x 10-5

Time, (sec)

P
os

iti
on

 e
rro

r, 
(m

)

Nut position error

 

Figure 5.17  –  Ball nut position error 
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The torque required to accelerate the table is 0.114 N.m and that needed to accelerate the 

screw is 0.300 N.m.  The torque necessary to overcome viscous drag in the bearings is 

0.004 N.m giving a total torque of 0.423 N.m.  Figure 5.16 shows the torque settling down to 

around 0.42 N.m.  The “square corner” at about 0.008 seconds and the “blip” at about 

0.023 seconds coincide with the bumps, (c.f. Figures 5.14 and 5.15).  These most likely arise 

from delays in response caused by the cycle time of the solution process which is typically 

50 micro-seconds combined with the small time needed to compress the nut stiffness sufficient 

to establish full effective contact between the nut and the screw. 

Figure 5.17 shows the position error of the nut.  Hand calculations reveal that the 

contributions to this error can be expected to be – axial deflection of the screw 0.1 μm, axial 

deflection within the nut 0.7 μm, torsional wind up of the screw ~0 μm, backlash 5.0 μm and 

following error of the controller 6.7 μm, making 12.5 μm in total.  The position error of the 

nut can be seen to be settling down to about 12 μm.  The model thus checks out well against 

classical theory. 

In order to include transverse vibration in the model it is necessary to include four extra 

degrees of freedom for each node of the ballscrew and to extend the requirements of the 

bearing sub-models.  The phenomena of sagging of the shaft under gravity and pre-tension are 

also considered in Chapter 6. 
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Chapter 6 - TRANSVERSE CASE FOR MOVING MASS MODEL 

The main function of a ballscrew is to transform rotary motion of the screw into linear 

motion of the nut.  The degrees of freedom in which this motion takes place are the linear 

degrees of freedom along the direction of the screw (“x”) and the rotational degrees of 

freedom about the axis of the screw (“θx”).  In Chapter 5 a technique was developed which is 

capable of modelling a ballscrew’s behaviour in these degrees of freedom.  Transverse 

vibratory behaviour, although it does not impact directly on drive system errors, can affect the 

life of ballscrew components and the surface finish of products made on the machine tool of 

which the ballscrew is part.  This chapter deals with these aspects of the dynamic behaviour of 

a ballscrew system. 

6.1  Modelling the transverse behaviour of the screw 

In order to account for transverse vibration, extra degrees of freedom must be 

accommodated.  In its simplest case transverse vibration is a “two dimensional” phenomenon.  

The displacements are transverse displacement y and tilt angle θ.  The inertia terms are mass 

and tilt inertia which can be represented by a matrix M such as 
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⎞
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tiltJ
m
0

0
M       (6.1) 

where m is the mass and Jtilt is the tilt inertia. 

 
Figure 6.1  The global reference axes 

Using a right hand set of Cartesian axes (see Figure 6.1), the elastic behaviour of a cantilever 

beam can be represented by the following set of equations, derived from classical beam theory 
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where E is Young’s modulus, I is the second moment of area and l is the beam or element 

length.  In matrix form:- 
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where fl(i,j) is the deflection of the ith degree of freedom caused by applying a force at the jth 

degree of freedom. 

The stiffness of a cantilever beam can be represented by a 2 × 2 matrix such as K derived 

by inverting the flexibility matrix fl 
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Considering the forces at both ends of a beam element which are set up by applying a unit 

deflection at each degree of freedom in turn a 4 × 4 stiffness matrix representing the whole 

beam can be derived.  A matrix of this kind forms a submatrix which represents an individual 

element in the system stiffness matrix typically as follows:- 
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One such submatrix should be added in for each spring element modelled. 

6.2  Combining the transverse behaviour of the screw with the axial and torsional 

Combining both Y and Z transverse degrees of freedom with the axial and torsional case 

dealt with in Chapter 5 leads to a 6 degree of freedom system.  The mass matrix of the ith node 

of the screw is given by 
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where Jtors is the torsional moment of inertia and Jtilt is the tilt or rocking moment of inertia 

(i.e. that about the transverse axes).  The stiffness submatrix of a 6 degree of freedom spring 

element is shown in Figure 6.2, where G the shear modulus, A the cross-sectional area and 

K the torsional stiffness constant. 

The bearings are modelled by attaching a set of springs at a node axially located at the 

centre of the bearing and “earthed” at the other end.  The additional terms in the stiffness 

matrix are:- 
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where kax i is the axial or thrust stiffness of the ith bearing, ktr y i is the transverse or radial 

stiffness in the Y direction and ktr z i is that in the Z direction and ktilt θy i, ktilt θz i are the tilt or 

rocking stiffnesses.  i is the bearing number and can be 1 or 2. 

In the case of the transverse degrees of freedom the stiffness matrix needs to be modified to 

avoid the phenomenon of discontinuous behaviour at element boundaries described in 

Chapter 5.  The method of solution is essentially the same.  If kn is the radial stiffness of the 

nut and φn the tilt stiffness, then using the terminology of Chapter 5 

Dkk nnnn /)( φφ 321red KKKKp +++=    (6.8) 
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and K, K1 , K2 and K3 are taken from Figures 6.2 and 6.3. 

One of the most common ways of operating a ballscrew is the one where the shaft is rotated 

and the nut moves axially.   This application is the one considered in this investigation.
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Figure 6.2  Six degree of freedom matrix for a beam element representing part of the ballscrew 
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Figure 6.3a  Y and θz degree of freedom matrix for the beam element representing part of the ballscrew in contact with nut 

Terms in Izz, kn and φn
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Figure 6.3b  Y and θz degree of freedom matrix for the beam element representing part of the ballscrew in contact with nut 

Additional terms in kn
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Figure 6.3c  Y and θz degree of freedom matrix for the beam element representing part of the ballscrew in contact with nut 

Additional terms in φn

[105] 

 
 

Dk

EI
lff

EI
lfff

EI
lffff

EI
lff

EI
lff

EI
lff

EI
lff

EI
lff

EI
lff

EI
lff

EI
lff

EI
lff

EI
lff

EI
lff

EI
lff

EI
lff

EI
lff

nn

zz

zz

zzzz

zzzzzz

zzzz

zzzzzz

/

3
)1(...............

2
)12()1()331)(1(............

6
)1(

2
)1(

3
)1(.........

2
)1()1(

2
)1()1(......

6
)1(

2
)1(00

3
)1(...

2
)1()1(00

2
)1()1(

.........

......

.........

3
33

2
222

3
34

2
24

3
34

2
244

2
244

3
43

2
42

3
43

2
424

2
424

3 φ

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−−+−−

−−−

−−−−−−−

−−−−

−−−−−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
K

Figure 6.3d  Y and θz degree of freedom matrix for the beam element representing part of the ballscrew in contact with nut 



Additional terms in kn φn



In addition to the degrees of freedom considered in Chapter 5, others need to be included to 

account for the transverse movement of the nut.  In total the degrees of freedom used in 

modelling the nut are:- 

 An axial degree of freedom to represent movement of the nut in the X direction, 

 Two transverse degrees of freedom to represent movement in each of the Y and 

Z directions, and 

 Two rotational degrees of freedom to represent tilt movement about the Y and 

Z axes 

The transverse support stiffness of the slideways which carry the nut’s weight is modelled by 

adding kslide y to the diagonal term of the global stiffness matrix which relates to the degree of 

freedom representing Y movement of the nut and kslide z to the corresponding Z term.  

Similarly, the tilt support stiffness is modelled by adding kslide θy and kslide θz to the respective 

diagonal term relating to the degrees of freedom representing tilting motion about the Y and 

Z axes. 

6.3  Initial conditions 

Since most ballscrews are used close to the surface of the earth they are subject to a 

gravitational field of one “g”.  Using the global axes shown earlier, this acts in the –

Z direction.  One consequence of this is that the screw sags when at rest.  The extent of this 

sag can be determined by solving the equation 

MgKx =       (6.10) 

where 

• K is the system stiffness matrix 

• x is the global displacement vector, a column containing the displacements of each degree 

of freedom in the system.  For the screw this is a succession of Cartesian coordinates 

{.., xi, yi, zi, θxi, θyi, θzi, ..} for each node of the screw. 

• M is the mass matrix is built up from terms like those defined in equation (6.6) 

• g is the gravitational field vector, a column consisting of –g for all the Z degrees of 

freedom and zero elsewhere.  g is, of course, the acceleration due to gravity. 

 

A detailed examination of the stiffness matrix reveals that it can be partitioned into one Kz 

involving the X, Z, Θx and Θy degrees of freedom and one Kr involving “the rest” as follows:- 
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The diagonal mass matrix M is likewise partitioned into Mz and Mr and so also with the 

vector g.  This gives the equations 

0MxK
FgMxK

rrr

zzzz

=
==

    (6.12a) and (6.12b) 

F is a force vector consisting of –mi × g at all the Z degrees of freedom and zero elsewhere.  

This gives a means of deriving the sag displacement (Z freedoms) and slope (Θy freedoms) 

using a standard method of solving linear algebraic equations.  The one used in this 

investigation is LU decomposition [101]. 

At first glance it would appear that only the Z and Θy degrees of freedom need be included 

in Kz.  The X and Θz degrees of freedom are included because the tilt of the ballscrew in the 

nut causes the saddle or table to tilt about the slideways.  This can cause an axial movement of 

the nut which in turn can cause a rotation of the screw.  Although these effects are small, if 

neglected they can give rise to a small “kick” at the beginning of the motion predicted by the 

model. 

The remaining displacements xr are zero if 0≠rK  and the diagonal terms of Mr are non-

zero.  The two conditions are true for physically realistic systems and the result is to be 

expected. 

When there is pre-tension in the ballscrew, tilt moments occur.  The extent of these 

moments is dependent on the deflected shape of the screw, but the moments themselves have 

an effect on the deflected shape.  For the ith node in the ballscrew the titling moment My i is 

given by:- 

)()( 11 iiiiiy zzTzzTM −×+−×= +−−+     (6.13) 

where T+ is the tension in the element on the “upstream” or driving end side of the node and T- 

is the tension in the element on the “downstream” side.  If a pre-tension T of the typical order 

used in machine tool applications is set into the ballscrew, then .  The small 

difference which can arise between T

TTT ≈≈ +−

- and T+ occur because of axial transient or vibratory 

behaviour of the screw.  When calculating the initial condition, TTT == +− . 

The deflected shape under pre-tension is derived as follows.  First the deflected shape with 

no pre-tension {zi}0 is calculated using equation (6.12a).  Then the tilt moments are derived 

and included in the load vector.  Equation (6.12a) is solved again to give {zi}1.  A measure of 
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the difference between the two shapes is obtained by adding the square of the difference in 

deflection for each of the nodes:- 

∑ −= 2
012 )( iidz zzS      (6.14) 

and a measure of the “size” of the shape is based on:- 

∑= 2
02 iz zS       (6.15). 

{zi}0 is an over-estimate of the required deflections and {zi}1 is an under-estimate.  An 

improved estimate can be obtained by using the tilt moments derivable from {zi}1 and solving 

again.  The difference measure is now:- 

∑ −= 2
012 )( iidz zzS      (6.16) 

The deflected shape can be improved progressively, a satisfactory solution being considered to 

have been obtained when:- 

20

2

2 10−=< ε
z

dz

S
S      (6.17). 

The sag displacements are used as the “initial values” in calculating the dynamic behaviour 

of the ballscrew system. 

6.4  Developing the transverse motion of the ballscrew system 

The sag induced by gravity sets up a distribution of strains and associated potential energy 

within the body of the screw.  When the screw rotates these strains are carried round with it.  

Therefore, one approach to the analysis of the subsequent behaviour of the screw is to use a set 

of local axes which rotate with the screw, (see Figure 6.4).  In the cases considered here there 

are more degrees of freedom associated with the screw than with the rest of the system put 

together.  To start with, it is therefore considered to be more convenient, mathematically 

speaking at least, to rotate the universe than to rotate the screw.  This means that the following 

changes have to be made to the terms in the modelling process. 

 
Figure 6.4  Axes rotated with ballscrew 

First the bearing stiffness must be rotated in a direction opposite to the screw:- 
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θx ib is the angular position of the ballscrew in the bearing. 

Similarly the terms representing the support of the slideways must also be “rotated”. 
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Figure 6.5  Polar coordinate system 

The degrees of freedom of the screw have to be treated specially because they are in a 

“rotating world”.  Three consequences arise. 

• First, considering the rate of change of angular momentum of a node gives an 

expression for torque Γ about the X axis, (see Figure 6.5) 
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or 
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where m is the mass, J0 is the torsional moment of inertia about an axis through the 

centre of mass and parallel to the X axis and Jxx is the moment of inertia about the 

X axis.  Therefore the inertia term has to be increased as the centre of the node moves 

off centre and a “Coriolis” term has to be introduced into the force vector 

• Secondly the additional terms in the acceleration vector give rise to extra terms in the 

“y” and “z” columns of the force vector at each node of the ballscrew 

• Thirdly the gravitational force term needs to be “rotated” as the screw rotates. 

The combined effect of these factors gives the force vector for node i as 
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where 

• Fa i is the external axial force 

• mi is the mass at the node 

• yi, zi are the components of the displacement ri in the local X and Y directions respectively.  

Their derivatives with respect to time are the corresponding velocities 

• θx i is the torsional position.  The first and second derivatives with respect to time are the 

angular velocity and acceleration.  It should be noted that the position is in terms of the 

global (i.e. stationary) axes.  When this method of analysis is being used the acceleration is 

calculated by using the velocities from the previous two cycles of analysis.  Provided the 

results are stable and the time step is small, this should not introduce much error 

• Γe i is the external torque. 

The approach to rotating the shaft outlined above was found to have a significant drawback, 

namely that it assumes that the screw rotates about the “x” axis.  This is not normally the case.  

At rest the screw assumes a deflected shape dependent on its weight and the support provided 

by the bearings.  If the screw turns slowly, its centre line stays in the same deflected shape 

(apart from changes caused by repositioning of the support provided by the nut).  As speed 
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increases there is an increased tendency for the screw to move like a skipping rope in which 

case the centre of rotation does move closer to the “x” axis. 

Because the screw does not, in general, rotate around the “x” axis, it is better to use a 

reference frame which is fixed relative to earth.  The transformations described in 

equations (6.18), (6.19) and (6.22) are not therefore needed. 

6.5  Gyroscopic effect 

 
Figure 6.6  Gyroscopic effects 

A further consideration is the so-called “gyroscopic effect”.  When a shaft is rotating, if it is 

subject only to small transverse vibrations, by far the greatest component of the angular 

momentum vector is that parallel to the axis of rotation, (see Figure 6.6).  In this case the 

angular momentum Mi is given by 

ixixi JM θ&=       (6.23) 

where Jx is the polar moment inertia of the node. 

Now consider a small change of the angular momentum vector δM.  Let this be in the 

Y direction and take place over time interval δt.  This gives rise to a torque Γy as follows:- 

tMM yz δθδδ Γ== .       (6.24) 

Dividing throughout by δt and letting 0→tδ gives:- 

tt
J

t
M zx

x
z

y ∂
∂

∂
∂

=
∂
∂

=Γ
θθθ

     (6.25) 

If δM occurs in the Z direction then:- 

tMM zy δθδδ Γ=−= .      (6.26) 

and:- 
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These torques are “active” on the node inertia, therefore to allow for gyroscopic effects extra 

terms need to be added to the force vector as follows:- 
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6.6  Ballscrew orbits 

It has been found that the trajectory of a node on the ballscrew is a curve that can be 

approximated to an ellipse, which in turn can be thought of as the sum of a displacement in the 

YZ plane, a transverse vibration along some line in that plane, and a circular motion. 

In the case of transverse vibration, the acceleration vector is parallel to the velocity vector, 

but in the case of circular motion, acceleration acts at right angles to velocity.  This gives a 

means of obtaining a local centre of motion.  First the acceleration amplitude an and its 

direction φa from the Y axis of a node are derived from the components in the Y and 

Z directions:- 

22
iiin zya &&&& +=      (6.29) 

  
i

i
a y

z
&&

&&1tan−=φ      (6.30) 

Then similarly, the velocity amplitude vn and direction angle φv are obtained:- 

22
iiin zyv && +=      (6.31) 

  
i

i
v y

z
&

&1tan−=φ      (6.32) 

The angle between them enables the “circular” component of the acceleration acirc to be 

derived from:- 

)sin( vainicirc aa φφ −=      (6.33) 
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The radius rcirc of the motion then follows from:- 

2ω
icirc

icirc

a
r =      (6.34), 

where ω is the angular speed of the screw. 

It had been intended to us this information to up-date the moment of inertia of the screw 

nodes, and introduce a centrifugal force component to the dynamic equations.  However, it 

was found that for the examples used to test the C program these effects were quite small and 

were neglected. 

6.7  Bearing cap vibrations 

One final consideration.  It is often the case that vibration measurements using 

accelerometers or velocity transducers are taken on parts of a structure close to the bearing 

caps in order to monitor a machine’s condition.  This can be more convenient to measure.  For 

example, a shaft order vibration of 0.1 μm at 1000 rpm could prove difficult to detect, but this 

gives an acceleration of 10.11000
60
10002101.0

2
6 =×⎟

⎠
⎞

⎜
⎝
⎛ ×

×× − π  mm/sec-2 which should be 

quite easy. 

In order that bearing support movement can be predicted additional terms should be 

included in the model, (see Figure 6.7). 

 
Figure 6.7  Modelling bearing cap 

At each bearing support point five additional degrees of freedom are included – y, z, θy, θz.  

The mass matrix is extended to include an effective mass mstr x, mstr y and mstr z and an effective 

tilt inertia jstr y and jstr z. 
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Including the K+i matrix defined by equation (6.7), the additional terms in the stiffness matrix 

which represent the bearings and their support structures are 
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where 
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6.8  Out-of-balance excitation 

An important form of excitation for transverse vibration is out-of-balance of the screw.  

This can be introduces at any node i by an additional force term of:- 
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where BBi is the out-of-balance.  It has dimension of “mass×distance”.  A mass of 50 g at a 

radial distance of 20 mm from the centre of the ballscrew, which is typical of the levels of out-

of-balance used on the test rig, was used.  The behaviour shown on Figure 6.8 is predicted by 

the model.  On this figure five trajectories of the ballscrew centre are plotted in the transverse 

(YZ) plane.  These are:- 

• ballscrew driven end (blue trace), 

• ballscrew 1/4 point (green trace) 

• ballscrew mid-point (red trace) 
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• ballscrew 3/4 point (cyan point) 

• ballscrew non-drive end (black trace) 

The motion starts with the screw sagging under its own gravitational load.  Thus the points all 

lie in the y=0 plane.  As the screw picks up speed, the driven end, the 1/4 point and the 

3/4 point follow spiral trajectories.  The movement predicted for the non-drive end and the 

mid-point, which is restrained by the ball nut, is very small. 

 
Figure 6.8  Trajectory of ballscrew centre under out-of-balance load 

Comparison with measured vibration levels is deferred to Chapter 8. 

The basic layout of the C program which predicts axial, torsional and transverse dynamic 

behaviour of a ballscrew drive system is included in Appendix 6.1, together with a typical 

example of the data used. 

The models of the dynamic behaviour described in Chapter 5 and this chapter include 

features which calculate energy dissipated by the ballscrew as it operates.  This energy is 

converted to heat and can be used as energy sources in the thermal model described in the next 

chapter. 
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Chapter 7 - THERMAL CONSIDERATIONS 

A thermal model of a ballscrew system needs to take into account where and how heat is 

generated in the system, where and how heat is dissipated and how the heat gets from one part of 

the system to another.  The heat sources are the ballscrew nut and the screw support bearings, 

and the heat sinks are the machine part in which the bearings are mounted, the machine part to 

which the nut is attached and the surrounding air.  In addition, the means by which the screw is 

driven may be either a source or a sink or both. 

In the case of the ball nut, the heat generation mechanisms are expected to be friction in the 

rolling action, hysteresis associated with repeated compression and decompression of the nut, 

screw and ball material, viscous effects, churning of the lubricant and seal friction.  In addition, 

the acceleration and deceleration of the balls as they pass from the recirculation paths to the 

screw helix also dissipates mechanical energy as heat.  These factors in turn are affected by the 

number, size and quality of the rolling elements, the surface finish and circularity of the screw 

and nut races, the lubrication type, performance and temperature, pre-load and pre-tension, 

misalignment and the type of seal. 

In the case of the bearings also, the heat generation mechanisms are expected to be friction in 

the rolling action, hysteresis associated with repeated compression and decompression of the 

race and ball or roller material, viscous effects, churning of the lubricant and seal friction.  

Again, these factors in turn are affected by the bearing type (ball, roller, angular contact etc), the 

number, size and quality of the rolling elements, the surface finish and circularity of the races, 

the effect of caging, the lubrication type, performance and temperature, pre-load, misalignment 

and the type of seal. 

The means of dissipating the heat are radiation, convection and conduction.  The principal 

means of transferring heat from one part of the system to another is conduction. 

Dealing first with radiation; heat is a form of energy which in matter - solid, liquid or gas - is 

the kinetic energy of the particles which make up the matter.  This energy can also take the form 

of electromagnetic particle/wave quanta with a characteristic wavelength in the range of 10-4 m 

to 7 ×10-7 m [102].  In this form heat travels through space at the speed of light.  Such energy is 

known as radiant heat and the law of physics which governs radiation from a surface of a body 

is the Stefan Boltzmann law [103], which can be stated as:- 
44

aTTq σασε −=       (7.1) 

where q is the nett heat flux from the surface and T is the absolute temperature of the surface 

under consideration.  Ta is a temperature representative of the surroundings into which the 
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surface is radiating heat.  In the case of a machine tool drive, typically a ballscrew is mounted 

inside a bed, saddle or column surrounded by guarding designed to keep swarf away from the 

machine’s mechanism.  In such cases the average temperature of the surfaces surrounding the 

ballscrew would serve.  ε is the emissivity of the surface, that is the heat radiating ability of a 

surface compared to that of an ideal black body, and α is the absorptivity of a surface, which is 

the surface’s heat absorbing ability compared to that of an ideal black body.  Both ε and α are 

measures of the efficiency of a surface in transferring energy between the kinetic energy of the 

molecules of the body and quanta of radiant heat.  σ = 5.672×10-8 W/(m2 K4) [104] is the 

Stefann-Boltzmann constant, a fundamental property of the universe. 

Commonly, because the temperature of the emitting surface is significantly higher than that of 

the surroundings, and therefore the range of wavelengths in which the greater part of the emitted 

energy is different from that of the energy absorbed, the emissivity is different from the 

absorptivity [105].  However, since the temperature reached by the surface of the ballscrew is 

only of the order of tens of degrees above that of the cavity in which it operates, the absorptivity 

can be regarded as the same as the emissivity and so equation (7.1) can be rewritten as:- 

)( 44
aTTq −= σε       (7.2) 

Factorising  a heat transfer coefficient h)( 44
aTT − r can be derived as follows:- 
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Using a typical value of 0.20 for the emissivity of steel in the polished state which is normal in 

the case of a ballscrew [106], assuming an ambient temperature of 20°C and a ballscrew surface 

temperature of 35 C gives:- 

31.4
2
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8 =⎟
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⎜
⎝
⎛ +++

××××= −
rh  W/(m2 K)  (7.4) 

When a surface of a solid body is covered by fluid which is at a different temperature to that 

of the solid close to the surface, heat is conducted from the solid into the fluid.  This causes the 

fluid close to the surface to be at a temperature different from that of the bulk of the fluid.  The 

resulting changes in density cause differential buoyancy effects which set the fluid in motion.  

The effect of such motion is to replace the fluid whose temperature is different from the bulk 

temperature of the fluid by some whose temperature is closer to the bulk temperature.  The nett 
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effect of this is to transport heat to or from the surface of the solid at a rate greater than could be 

achieved by conduction.  This process is known as natural convection and the motion in the 

fluid is called a convection current. 

If the solid body is moving through the fluid, or if the fluid is caused to move across the 

body’s surface, the motion of the fluid is at a rate greater than that which would be set up by 

differential buoyancy, and the rate of heat transfer to the fluid can be expected to be greater.  

This process is known as forced convection. 

Analysis of these phenomena is fraught with difficulties.  The convection currents can be 

laminar where adjacent layers within the fluid slide over one another, or turbulent where the 

flow includes lots of eddies acting in a chaotic manner.  Generally speaking laminar flow occurs 

at low fluid speeds and turbulent flow at high speed.  Especially in the case of natural 

convection, the amount of space in which convection currents can be established has an effect on 

their speed and behaviour.  The density, viscosity and thermal conductivity of the fluid all have 

an influence on convective behaviour.  All of these physical properties are affected by 

temperature, viscosity especially so.  The flow rate at which turbulent behaviour is expected to 

start is determined using the dimensionless Reynolds number, Re.  For flow where the speed of 

the bulk of the fluid is u∞ and ν the kinematic viscosity, for a surface of characteristic length L 

v
Lu∞=Re        (7.5) 

In physical terms, the Renolds number can be thought of as the ratio of the inertia force to the 

viscous force.  The onset of turbulence can occur when .  For a flat plate the 

critical Reynolds number is commonly taken to be 5 × 10

65 104Re10 ×<<
5 [107]. 

In many convection problems, a boundary layer is considered to exist close to the surface in 

which the flow is laminar.  The flow in the fluid beyond this layer is considered to be turbulent.  

The thickness of this layer has an important influence on the heat dissipating ability of a surface. 

The behaviour of a ballscrew system is especially complex.  Convection can be expected to 

occur at the surface of the bearing housings, the ball nut and the ballscrew itself.  The ballscrew 

rotates, thus generating relative motion between itself and the surrounding air.  The nut also 

moves through the air generating a flow across its surface as well as displacing air in front of it 

and entraining air behind it.  Nevertheless, the mounting arrangements of the nut flange are often 

such that the side of the nut closest to the body it is mounted to is sheltered to some extent from 

windage generated by movement of the nut.  Lots of work has been done on the convective 

properties of flat plates at various orientations to the vertical, on cylindrical tubes and on banks 
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of cylindrical tubes.  The case of a ballscrew does not fit conveniently into any of these 

categories and so estimates of the convective behaviour have had to be made. 

Heat in a body is stored in the kinetic energy of its constituent particles, the more vigorous the 

motion of the atoms etc., the higher the temperature.  If one part of the body is at a higher 

temperature than another, there is a general tendency for the internal energy of the body to 

become shared out more evenly.  This means that, in effect, energy is transferred from hotter 

regions to colder regions.  This process is known as thermal diffusion or thermal conduction. 

For a body made of a material of density ρ, specific heat at constant pressure Cp and thermal 

conductivity k the heat diffusion equation can be stated in a general form as:- 
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TC p ∇∇+=
∂
∂ ρρ      (7.6a) 

or:- 
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where H is the heat production rate density (watt/kg) of the part of the body under consideration.  

In the case of ballscrew systems, the materials of which their parts are made are isotropic and so 

equation (7.b) can be simplified to:- 
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2∇+=
∂
∂ κ       (7.7) 

where the thermal diffusivity κ is given by 

pC
k

ρ
κ =        (7.8). 

(It is of interest to note that the units of thermal diffusivity are those of area per unit time, the 

same as those of kinematic viscosity.)  Where there are no heat sources, equation (7.7) can be 

simplified further to:- 
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ρ
κ      (7.9) 

7.1  Modelling of screw – justification of one dimensional approach 

The solution of equation (7.9) in the three-dimensional case can be very difficult.  It would be 

a lot simpler to model the ballscrew considering the temperature as being dependent only on the 

axial position along the screw.  Intuitively this seems reasonable because steel, the material of 
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which the ballscrew is made, is a good conductor of heat, and the typical distance from a piece of 

ballscrew material from the surface is small compared to the length of the screw. 

In order to test the reasonableness of this assumption, the following approach was undertaken.  

A round bar of a size typical of a ballscrew in a medium sized machine tool was taken and 

modelled as a string of N “thermal masses” connected by conductivity elements of cross-

sectional area Ac, that is to say, the material was considered to act at N nodes equally spaced 

along the length L of the bar.  The elements between the nodes pass heat according to the Fourier 

equation:- 

T
x

A
k

dt
dQ cc δ

δ
=       (7.10) 

where 
dt

dQc  is the rate of heat conducted along the element and δT is the temperature difference 

across it.  Its length δx is given by:- 

1−
=

N
Lxδ        (7.11). 

Each node has a thermal capacity tcjx given by:- 

jxpjx mCtc =        (7.12) 

where the mass mjx is given by:- 

N
LAm cjx 2

ρ=  for 1=jx  and Njx =    (7.13a) 

and 

N
LAm cjx ρ=  for 12 −≤≤ Njx     (7.13b). 

Heat losses from the cylindrical surface of the bar and from its end are achieved by radiation.  

Heat is supplied at a rate of Q at node jQ for a period of initial heating  and the system 

is allowed to cool for the period 

htt ≤≤0

stoph ttt ≤< .  The analysis proceeds by setting the first row of a 

time history array of temperatures Thitime ix to the ambient temperature Ta then calculating the 

subsequent rows at time interval Δt.  This was done by defining a smaller time interval δt by 

Ntt Δ=δ  (7.14), then at each of these small intervals the changes in temperature dTjx were 

calculated for each node as follows:- 

• For :- 1=jx
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• for 12 −≤≤ jQjx  and for 11 −≤≤+ NjxjQ :- 

ttcTTAs
x

TTT
AkT jxajxjx

jxjxjx
cjx δσε

δ
δ ×−−

+−
= +− /))(

2
( 4411    (7.15b) 

• for :- jQjx =
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• and for :- Njx =

ttcTTAAs
x

TTAkT NaNcN
NN
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δ
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= − /)))((( 441     (7.15d) 

where Asi is the cylindrical surface area of the ith element. 

The temperature at row itime in the temperature history array Th was then given by 

∑
=

− +=
N

ix
jxjxitimejxitime TThTh

1
1 δ  for Njx ≤≤1    (7.16) 

Selected rows from the temperature history array could then be plotted on a temperature versus 

axial position plot to illustrate the development of the temperature distribution along the rod as 

time passes.  This model is one-dimensional, that is to say the temperature is dependent only on 

the axial position of a point on the body and on time. 

In fact, a ballscrew is a three-dimensional object and, when it is running, heat from the 

bearings and nut will be applied in an approximately symmetrical manner at the surface.  In 

order to study the effect of this the model was extended to two dimensions by considering the 

temperature to be a function of the radial distance from the axis of the rod as well as of the axial 

position.  This was achieved by splitting each of the nodes tcjx into five nodes with the same 

axial coordinate.  One is a central cylinder with a diameter a fifth of that of the rod, the 

remaining four are hollow cylinders of progressively larger size with the last one having an 

outside diameter equal to that of the rod.  The axial conductivity elements are split up in a similar 

manner, and four radial conductivity elements have been included to allow flow of heat from one 

layer to another.  Of course, heating and cooling can only be applied to the outer layer.  The 

surface area of the inner and outer cylindrical surfaces of the nodes Asijx, Asojx are derived from 

the outer surface of the rod, the thermal capacity of the nodes are derived from those of the 

corresponding one-dimensional nodes and the cross sectional area of the axial conductivity 

elements are derived from that of the bar as shown in Table 7.1. 

Equations (7.15) need to be modified to allow for radial conduction between the outer layer 

and the next one in as follows:- 
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• for 12 −≤≤ jQjx  and for 11 −≤≤+ NjxjQ :- 
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ttcrTTAAs
d

TT
Asik

x
TT

AkT NaNcN
NN

N
NN

cN δσε
δ

δ ×−+−
−

+
−

= − /)))((
10

( 44
11

12111
11  (7.17d) 

Table 7.1 – Derivation of 2D thermal model data 

Layer 1 

(outer) 

2 3 4 5 

(inner) 

 

Aci 9/25 7/25 5/25 3/25 1/25 × Ac 

Asijx 4/5 3/5 2/5 1/5 - × Asjx

Asojx - 4/5 3/5 2/5 1/5 × Asjx

tcrjx 9/25 7/25 5/25 3/25 1/25 × tcrjx

 

In the case of the inner hollow layers, heat can be conducted between a layer further out from 

the centre as well as one further in.  Equations (7.17) have to be developed further for 42 ≤≤ ir  

as:- 
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• for 12 −≤≤ Njx :- 

[122] 



ttcr
d

TT
Asik

d
TT

Asok
x

TTT
AkT

jx
jxirjxir

jx

jxirjxir
jx

jxirjxirjxir
ircjxir

δ

δ
δ

×
−

+

−
−

+−
=

+

−+−

/)
10

10
2

(

1

111

    (7.18b) 

• and for :- Njx =
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In the case of the central row of elements, heat can only be conducted between a layer further 

out and so equations (7.18) can be simplified to:- 

• For :- 1=jx
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• for 12 −≤≤ Njx :- 
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An average temperature distribution Tavjx was given by:- 

jxjxjxjxjxjx TTTTTTav 54321 25
1
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++++=    (7.20) 

These two methods were coded in MATLAB routines “therm2a” and “therm3a” 

respectively.  They were both run to predict how the temperature distribution would develop 

with time and the results were compared.  A steel bar of 38.4 mm diameter and 1.362 m long 

was used, this being the size of the ballscrew in the linear guide rig.  This was heated for 

10 seconds at the centre by a 500 W source and then allowed to cool for a further 50 seconds.  

Figure 7.1 shows the difference between a succession of temperature distributions predicted by a 

one-dimensional thermal model of a ballscrew and the corresponding average temperature 

distributions predicted by a two-dimensional model, (a three dimensional model with radial 

symmetry). 
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Figure 7.1 – A comparison of one-dimensional thermal and two-dimensional 

thermal models of a ballscrew, 2Dave – 1D 

 
Figure 7.2 – A comparison of one-dimensional thermal and two-dimensional 

thermal models of a ballscrew, 2Dsurf – 1D, heating 
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The results show that the difference was very small when comparing the average 

2D temperatures with the 1D values.  This indicates that a one-dimensional approach can be used 

with confidence for modelling thermal growth effects which are dependent on average 

temperatures.  When the temperatures predicted at the surface are compared, a temperature 

difference of 15ºC occurs under the heating element at the end of the heating phase (Figure 7.2), 

but the temperature differences during the cooling phase are no more than 0.03ºC (Figure 7.3). 

 
Figure 7.3 – A comparison of one-dimensional thermal and two-dimensional 

thermal models of a ballscrew, 2Dsurf – 1D, cooling 

It should be borne in mind that in these models heating was applied locally at one node, 

whereas in the models developed to predict the thermal behaviour of the whole ballscrew system 

account is taken of the fact that the ballscrew covers a finite axial length and therefore such 

highly localised temperature rises should not arise.  The small temperature differences in the 

cooling phase should not materially affect the predictions of heat dissipated from the ballscrew 

surface.  Therefore a one-dimensional approach can be used to model the screw. 

7.2  Thermal behaviour of bearings 

The bearings which support the ballscrew are commonly of the rolling element type.  Such 

bearings have an inner sleeve, usually known as a race, which mounts on a suitably machined 

diameter of the ballscrew, an outer race which fits into a housing held by the machine part into 
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which the ballscrew system is mounted, and a set of rolling elements which roll between the 

inner and outer races.  The rolling elements might be balls, cylindrical rollers, taper rollers, or a 

form of long thin cylindrical rollers known as needles.  In most types of bearing the rolling 

elements are kept in place by some sort of “cage”, commonly a thin sleeve with a set of near 

radial holes to constrain the rolling elements.  Such bearings can be lubricated by oil supplied 

from a centralised supply, or grease which is packed into the bearing during manufacture.  

Arrangements whereby the grease can be replenished from time to time are common.  Bearings 

on machine tool drives normally have lip seals or similar to keep the lubricant in and foreign 

matter out. 

As the ballscrew rotates the rolling elements roll between the inner and outer races.  The load 

carried by the bearing puts the rolling elements in compression, and a set of Hertzian 

compression zones are set up on the rolling elements and the raceways.  The size and shape of 

these zones depend on the load being carried and the relative radii of curvature of the surfaces 

involved.  The zones on the inner race will have different characteristics from those on the outer 

race.  Taking the case of a ball bearing as an example and defining convex curvature as positive, 

the inner race/ball contact will involve three positive curvatures and one negative, whereas the 

ball/outer race contact will involve two positive curvatures and two negative.  The local 

compression will push the ball and race away from the shapes in which they would ideally roll 

and therefore the rolling action will in practice entail a small amount of sliding with its attendant 

friction.  This rolling friction is a source of heat. 

As the bearing rotates the regions of material that are under compression change with time.  A 

particular piece experiences a time when it is under little strain, it is then given energy in the 

form of strain potential energy as it comes under load, this energy is then released as the load is 

removed.  Some of this energy is dissipated as heat.  The process is known as hysteresis and 

involves the material in the races and the rolling elements which come into the compression 

zones. 

The lubricant can be subject to viscous shear as it passes through a compression zone and 

churning of lubricant being pushed aside by the rolling action also occurs.  Both these effects 

give rise to heat. 

Finally a lip seal normally has a circumferential spring which helps the lip of the seal keep in 

contact with the shaft being sealed.  The friction effect associated with the lip contact force is 

also a source of heat. 
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7.3  Thermal behaviour of nut 

In the case of the ball nut, the heat generation can take place in all of the ways described in 

Section 7.2.  In addition, as the balls roll between the screw and the nut, eventually they come 

close to the end of the nut.  At this stage they need to be collected and fed back to the “front” of 

the nut as described in Chapter 3.  While the balls are working in the nut, they contain kinetic 

energy of rotation, kinetic energy associated with the “whole body” movement of their centre of 

gravity, and strain potential energy associated with the compressive load which they carry.  

Much of this energy is dissipated as heat as the balls leave the working part of the nut.  Since the 

ball collection arrangements are part of the nut, it is expected that this heat will pass into the nut. 
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Figure 7.4 - Heat transfer elements of ballscrew system model [108] 

7.4  Ballscrew system thermal model 

The Ultra Precision Engineering group at the University of Huddersfield has undertaken 

extensive research into the thermal behaviour of machine tool drives.  Based on this work 

Dr Simon Fletcher [108] has developed a model of the thermal characteristics of a ballscrew 

system based on the physical behaviour of the following components of a ballscrew drive:- 

• heat generated by the ballscrew nut action 

• heat generated by the support bearings 

• heat conducted along the body of the ballscrew shaft 

• heat conducted through the ballscrew 

• heat conducted through the bearings 

• heat dissipated from the ballscrew shaft 

• heat dissipated from the ballscrew housings, and 
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• heat dissipated from the bearing and ballscrew nut mounting arrangements, (see Figure 7.4). 

The model, which uses finite element techniques, can predict the thermal behaviour under a 

variety of conditions. 

The ballscrew on the Linear Guide Rig has been the subject of several thermal tests 

undertaken in a recent Research Project carried out at the University of Huddersfield [109].  One 

of the results of this work has been to find that the dissipative effect of the ballscrew nut is 

approximately independent of load, in the sense of mass of the saddle, and only slightly 

dependent on speed.  The friction torque of the nut and bearings has been measured by noting the 

motor current which is proportional to torque.  This has shown that the nut torque drag on the 

ballscrew is 1.1 N m at low speed increasing to 1.2 N m at high speed [110].  A feature, which 

enables speed-dependent empirical torque data to be used, has been incorporated into the 

C program which models the mechanical system (see Chapter 6 and Appendix 6.1).  This feature 

has been shown to work correctly by checking against hand calculations. 

The C program also computes the energy dissipated, and therefore the heat generated from 

7 effects as follows:- 

1. drive motor bearings, Coulomb friction plus viscous drag 

2. drive coupling (coupling element, drive belt, chain, gear mesh), viscous effects 

3. ballscrew drive end bearings, Coulomb friction plus viscous drag 

4. ballscrew shaft, viscous effects 

5. ballscrew nut, to suit empirical data OR calculated from screw theory using an 

equivalent coefficient of friction 

6. ballscrew tail end bearings, Coulomb friction plus viscous drag 

7. saddle / table support bearings, Coulomb friction plus viscous drag 

It did not prove possible to build a comprehensive model incorporating mechanical and 

thermal effects, because of the incompatibility of the time scales of the two effects.  In order to 

cope adequately with mechanical effects, especially with transients, it was necessary to use small 

time steps, typically of the order of 50 µsec, whereas thermal models’ time steps are typically of 

the order of minutes.  The method developed in this Thesis is capable of modelling dissipative 

effects, including non-linear ones, but the output would best be converted to heating rates to be 

input into a thermal model.  If the thermal model suggested that parameters in the mechanical 

model had changed over the order of the time scales in which the thermal model operates, the 

mechanical model would have to be run again to generate a set of new thermal inputs, and so on 

to cover the period covered by a full thermal analysis. 
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Experience has shown that a fully coupled thermal / stress analysis is rarely required, very 

few parameters need up-dating on a small time scale, so it is acceptable to use data generated 

from a “brief” simulation to provide them. 

 

7.5  Ballscrew cooling 

Thermal expansion of a ballscrew relative to the component in which it is mounted can induce 

significant positional errors especially if the position of the ballscrew is determined by a rotary 

encoder on the motor which drives the screw.  Many ballscrews are set up with some degree of 

pre-tension.  Expansion of the screw changes this pre-tension, possibly into compression.  Loss 

of pre-tension can give rise to backlash in the bearings.  If the screw is mounted in single-row 

bearings, changes in pre-tension can also effect the bearing stiffness and therefore the dynamic 

characteristics of the drive of which the ballscrew is part. 

When a ballscrew runs heat is generated.  Although it is desirable to reduce the amount of this 

heat by maximising the mechanical efficiency of the screw and its supporting bearings 

nevertheless some heat will still be generated.  Cooling therefore suggests itself as a means to 

counter the effects of the thermal expansion resulting from the heat generated by the ballscrew 

system.  To be effective the cooling system needs to remove sufficient heat, but only sufficient 

heat, to bring the ballscrew to such a length that its expansion matches that of the support 

structure.  This suggests that any system devised should have two functional sections – cooling 

and control. 

Research has shown [108] that the temperature distribution in a ballscrew follows a complex 

pattern dependent, amongst other things, on the position of the ballscrew in the time recently 

before the time of interest.  It is not going to be practicable to bring the ballscrew to an even 

temperature along its length between its support bearings with any reasonably simple system.  

The majority of users of ballscrews are under pressure to minimise costs and maximise 

reliability, and for those reasons any system devised should be as simple as possible. 

Cooling could be applied by supplying coolant to the outside of the screw by a nozzle or 

spray, or to the inside through a hole or set of holes running parallel to the axis along the length 

of the screw.  Just as the heating effects are not uniformly distributed along the length of the 

screw, so also the cooling effects will be unevenly distributed.  Control therefore is only sought 

over total expansion. 
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7.5.1  Cooling using a moving fluid 

The first thing to note is that as a consequence of the second law of thermodynamics [111], 

which in its simplest form can be stated as “heat can’t flow from a colder to a hotter body”, it is 

only possible to reduce thermal expansion by the use of cooling media whose temperature is 

about the ambient temperature of the machine where the ballscrew is being used.  In order to 

bring the temperature of the screw down to ambient the cooling medium must be cooler than 

ambient. 

Considering the two options of external or internal cooling:- 

• External cooling involves squirting the cooling medium at the outside surface of the 

ballscrew or nut.  It offers the advantages that it entails little extra equipment, a few 

nozzles and the associated pipe-work will do, and if some of the nozzles are mounted on 

the part propelled by the nut, the cooling effort can be concentrated close to the sources 

of heat generation.  However, external cooling has the drawbacks that the surface area of 

the parts being cooled which is in contact with the cooling medium is small, and, because 

the coolant quickly falls from or is flung off the surface, the time that the medium is in 

contact is short.  This makes the use of the coolant inefficient.  Also if the coolant is 

water-based, it is not good practice to flood the ballscrew.  If the nut is grease lubricated, 

sufficient coolant to impair lubrication may eventually get past the seal.  If the nut is oil 

lubricated by a pressure system, the lubricant tends to flow out so lubricant 

contamination should not be a problem.  Nevertheless, in order to avoid abrasive damage 

to the screw and the possibility of abrasive particles finding their way past the seals into 

the ball mechanism, the coolant would need to be well filtered.  Further, care would need 

to be taken over the siting of the coolant nozzles in order to avoid collisions or restricting 

the scope of movement of the nut. 

• Internal cooling entails passing the cooling medium through one or more passages in the 

part being cooled.  The surface area over which the coolant flows is under the control of 

the designer and it can be arranged that the coolant remains in contact with the surface 

being cooled for a significant time. 

Because internal cooling arrangements are more amenable to analysis and control, it is these 

that will be considered in this Chapter. 

7.5.1.1  Water cooling of the ballscrew 

It will simplify matters a great deal if the “water” used is the water/oil emulsion commonly 

used on machine tools for cooling and lubricating the cutting process.  This has the advantage of 
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making most use of the services already available on most machines and that the coolant can be 

allowed to drain into the coolant sump of the machine after it has finished its cooling work. 

If the ballscrew is made with an axially central hole, coolant can be introduced at one end and 

collected mainly at the other.  A nozzle arrangement which directs the coolant along the tube and 

outwards to the surface of the internal passage should ensure a flow along the internal surface of 

the ballscrew when it is running.  A collecting shroud would be fitted over the opposite end of 

the screw to direct the used coolant towards the coolant drain.  A similar shroud should also be 

fitted around the inlet end to collect any coolant which might overflow past the nozzle and spill 

out at the inlet end.  These arrangements would not have to be “water-tight” since the momentum 

of the flow from the nozzle should ensure that the greater part of the coolant should flow in the 

direction intended. 

Such arrangements would be satisfactory for ballscrews driven by gears, belt pulleys or chain 

sprockets.  In the case of screws driven in-line by a flexible coupling two arrangements are 

possible.  One would be to have the nozzle mounted internal to the screw at the drive-end and the 

coolant fed via a sleeve fitted on the outside of the screw.  The other would be to mount the 

nozzle at the non-drive end and arrange drainage via a series of radial holes close to the drive 

end of the ballscrew.  In the case of the ballscrew on the linear guide rig at Huddersfield 

University, its outside diameter is typically 40 mm, its pitch 16 mm and its maximum speed 

40 000 mm/min.  Its maximum peripheral speed is therefore:- 

24.5
60
1

1000
40

16
00040

=×
×

×=
π

perv  m/sec    (7.21). 

Lip seals should be adequate in this situation for the pressures likely to be involved, although it 

is recommended by seal manufacturers that the surface against which they bear should be ground 

if the lip speed exceeds 4 m/sec [112]. 

For laminar flow the Nusselt number, which can be understood as the ratio of the rate of heat 

transfer by convection to that by conduction, is about 3.66 [113].  The relation between the 

Nusselt number Nu and the heat transfer coefficient h is given by:- 

k
hdNu =        (7.22) 

where d is the diameter of the tube and k is the thermal conductivity of the fluid.  For the whole 

ballscrew the heat transfer rate per degree is therefore:- 

lNukld
d
NukH ππ =×=      (7.23) 
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where l is the length of the coolant hole.  The thermal conductivity of water at 20°C is 

0.597 W/(m K) [114] and so the heat transfer rate per unit length of whole hole can be estimated 

as:- 

86.666.3597.0 =××=
∂
∂ π

x
H  W/(m K)    (7.24) 

Consider water flowing through the hole with an average speed of vw.  Let the temperature of the 

water at the inlet (x = 0) end of the cooling duct be Twi, that of the water as it travels through the 

screw be Tw and the temperature of the ballscrew material be Tb.  The change in temperature of 

the water as it passes through an element of the screw from x to x + δx is δT.  Balancing the heat 

δQ which passes from the water into the ballscrew metal in time interval δt against the heat gain 

or loss from the water flowing through the hole gives:- 

wwwpbw TtvdCtxTTNukq δρδπδδπδ −=−= 2

4
)(  joules  (7.25) 

where ρw is the density of water.  This gives the temperature gradient in the coolant as:- 
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Since the thermal conductivity of the screw material is much greater than that of water, assume 

for simplicity that Tb is uniform throughout the screw.  Then the temperature of the water is 

given by:- 

b
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and for a coolant hole of length l the average temperature is:- 
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For water at 20ºC 6
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leading to:- 
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Using the average temperature of the water derived by equation 7.30 and equation 7.23 the rate 

at which heat can be removed by water passing through the ballscrew can be derived.  
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Calculations based on this approach (Appendix 7.1) for a typical application show that this 

method of cooling can remove the heat likely to be generated by the action of the ballscrew and 

its bearings using reasonable coolant flow rates if a supply of chilled water, that is water at about 

10ºC below the ambient temperature of the machine, is available. 

If this method is to be used to correct ballscrew thermal errors and to maintain pre-tension, it 

is necessary to control the heat flow through the coolant.  The heat loss rate can be changed by 

changing the coolant inlet temperature, the flow rate or both.  Control would need to be achieved 

by monitoring the average temperature of the screw. 

7.5.2  Evaporative cooling 

An alternative to water cooling is to use air.  It is possible to cool the air by spraying water 

into the cooling air.  As the water evaporates it takes in its latent heat thus causing a drop in 

temperature of the air. 

 
Figure 7.5 – Evaporative cooling – typical temperature drop 

Compressed air available in typical workshops is obtained by compressing air from the 

atmosphere and storing it in a pressure vessel.  The atmosphere contains a certain amount of 

water vapour which depends on the weather and the proximity of “steamy” processes.  The 

amount of water vapour it can carry before condensation takes place depends on temperature.  

Therefore compressing air tends to make it more humid.  Commercial air supplies should 
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therefore be regarded as “wet”, and arrangements need to be made for draining excess water 

from compressor receivers.  Unless the compressor is working in a particularly arid region or 

special arrangements have been made, the partial pressure of water vapour in the air supply line 

will be near to the saturated vapour pressure at the temperature of the workshop. 

If compressed air is expanded down to atmospheric pressure it dries and has the capacity to 

absorb moisture from a water spray and achieve a cooling effect.  Calculations using a typical 

workshop air supply pressure (Appendix 7.2) show that a cooling effect of about 12ºC can be 

achieved, (see Figure 7.5).  However, the rate of air flow needed to remove the heat at the 

required rate is likely to be regarded as excessive by many users and so of the two options water 

cooling is better in most cases. 

7.6  Comparison with measured data 

The dynamic models keep an account of all the dissipation mechanisms built into them.  At 

each stage of the analysis the rate of energy dissipation is calculated for any Coulomb friction, 

viscous damping and any other dissipative process which is incorporated into the mechanical 

model.  As presently set up, the dissipative effects are formed into seven sums as follows:- 

• motor bearings 

• drive coupling 

• ballscrew driving end bearing 

• ballscrew shaft (material dissipation) 

• ballscrew nut 

• ballscrew driven end bearing 

• saddle or table slideways 

The rates of dissipation of each of these groups is integrated to give a total energy.  This 

energy is mainly in the form of heat. 

As the analysis proceeds, the energy dissipated by the various mechanisms is added to the 

potential energy in the springs and the kinetic energy in the inertias.  This total energy is 

balanced against the energy put in by the motor.  This is a check on the validity of the model and 

shows that the system obeys the first law of thermodynamics.  A sample result is shown in 

Figure 7.6.  As can be seen a balance is achieved within 0.5%.  One source of energy input 

which is not considered in the energy balance is that involved in the vertical movement of the 

gravitational forces as the nut changes position in the run.  Though the movements are small, the 

forces are significant.  If the model were to be refined to include this energy term, even the 0.5% 

might be improved upon. 
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Figure 7.6 – Energy balance in a typical ballscrew movement 

The dynamic model includes two broad options for accounting for dissipation.  One is based 

on considering the detailed mechanical environment of each part of the mechanical system.  The 

other involves the use of measured data (e.g. measured friction torques) where available. 
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Figure 7.7 – Energy dissipated in nut   Figure 7.8 – Energy dissipated in nut 

 and bearings – thermal model   and bearings – dynamic model 

A comparison has been made between the energy used in a model used to account 

successfully for some thermal measurements on the Linear Guide Rig [108] and the energy 

dissipation calculated by the dynamic model based on measured friction data.  Figure 7.7 shows 
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the energy involved in the thermal model, and Figure 7.8 gives the corresponding result from the 

dynamic model. 

The figures compared are one single run with the dynamic model compared with a “half 

cycle” for the thermal model.  The pattern of energy dissipation is the same and the differences 

in final energy level are approximately 10%.  This degree of correlation shows that the 

dissipative mechanisms included in the dynamic model can give valid inputs to a thermal model 

without the need to take measurements in a situation where the mechanisms of dissipation are 

well understood. 
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Figure 7.9 - Simulated and measured error between axis positions 0 and -460 

during a heating and cooling cycle [108, Fig. 9] 

Figure 7.9 shows that errors of the order of 100 µm can easily occur due to ballscrew heating.  

Such errors can cause loss of pre-load, added wear and pre-tension becoming compression.  

Direct measurements of the terms involved in heat generation can be difficult to make.  

Therefore, a method of generating heating terms from the dynamic performance of the screw 

coupled with knowledge of the dissipation mechanisms involved is a useful addition to the 

analytical tools available.  If an understanding of how the dissipation effects vary with 

temperature can be built up, the dynamic model can be used in conjunction with a thermal model 

to predict changes in dynamic response as a system warms up.  Two models would need to be 

used because of the different time scales involved as discussed in Section 7.4. 
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Chapter 8 - EXPERIMENTAL VERIFICATION 

The experimental verification of the dynamic model has been undertaken using the linear 

guideway rig, (see Figure 8.1). 

This consists of a cast iron milling machine base with a cast iron saddle carried on two 

linear guideways.  The saddle is driven by a ballscrew mounted in the base.  The ballscrew 

nut is attached to the underside of the saddle by a set of screws.  The ballscrew itself is held 

between two sets of angular contact ball bearings.  Each bearing set is mounted in a bearing 

housing into which the outer races of two bearings have been pressed.  The inner races are a 

sliding fit on the ballscrew and are held in place by a locking nut.  The degree of preload 

applied to a bearing set is determined by the torque applied to the locking nut with an upper 

limit being reached when the axial gap between the inner races has been closed.  Each bearing 

housing is held in a carrier block which in turn is fixed to the base casting by a set of screws 

and dowels. 

 
Figure 8.1 – Ballscrew linear guide rig with controller and vibration monitoring equipment 

The ballscrew is driven by a DC motor which is fixed to one end of the base via a 

mounting plate.  Control of the motor is achieved using a Heidenhain controller located close 

to the rig.  Electronic signals which give an indication of the position of the ballscrew nut are 

generated by a rotary encoder attached to the motor and are fed to the controller.  Similar 
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information can also be obtained from a linear encoder on the side of the base with a sensor 

attached to the saddle. 

Pre-tension can be applied to the screw by stretching it.  This is achieved by adjusting the 

position of a lock nut at the non-drive end of the screw. 

Since the ballscrew is manufactured to a good standard of precision, and since the 

ballscrew is limited to a speed of 2500 rpm (40 m/min nut speed), it is not expected that this 

particular screw should generate high levels of vibration by itself.  Other applications 

involving long ballscrews may do so, it is hoped that the mathematical models developed in 

this Thesis will be of help in designing or helping to diagnose problems with such systems.  

But in order to demonstrate the model’s ability to predict levels of transverse vibration it is 

necessary to subject the screw to artificially high levels of vibration excitation.  It is also 

necessary to measure the vibration produced.  To this end two ‘monitoring rings’ have been 

designed and fitted to the screw.  The drawings of the rings are included in Figure 8.2.  Their 

function is to provide a cylindrical surface concentric with the centre of the ballscrew which 

can be used in conjunction with non-contacting displacement transducers (NCDT’s) to give 

an indication of the radial position of the ballscrew, and to provide a means of carrying a set 

of off-centre masses whose centripetal acceleration generates a transverse force proportional 

to the square of the speed of the shaft. 

The NCDT’s are held in place using mounting pieces which are either carried by magnetic 

clamps attached to the base or bonded to the base using epoxy resin.  The signals from the 

NCDT’s are carried via special cables to a set of matched amplifiers the output of which is a 

voltage signal proportional to the distance of the monitoring ring surface from the probe end.  

When the probes are set at the correct distance from the monitoring ring surface, the 

sensitivity of the system is 10mV/μm. 

A signal originating from the rotary encoder on the drive motor is taken from the controller 

to give the angular position of the ballscrew.  This signal takes the form of two series of 

pulses in quadrature. 

The signals obtained are fed into the University of Huddersfield’s “Data Logger” system.  

This system consists of a personal computer (PC) fitted in this case with a digital scalar card 

to handle the signal from the rotary encoder and a Blue Chip PCI analogue to digital interface 

card to handle each of the signals from the NCDT’s.  The signals are processed using data 

logging software that operates under DOS to achieve high rates of data digitisation.  The rate 

depends on the number and type of interface cards used and the speed of the PC’s processor.  

In the present case a sampling rate greater than 6000 Hz was achieved.  The output of the data 
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Figure 8.2 – Ring used as a target for an N.C.D.T and to carry out-of-balance weights 
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logger is a set of computer files each of which contains a record of the configuration data for 

the hardware set up used and a time series of data values for each channel of information 

monitored. 

8.1.  Static measurements 

The support stiffness of the bearings has a significant influence on the dynamic behaviour 

of the ballscrew.  Data given by bearing manufacturers are often “typical” and do not cover 

the range in which values of particular bearings can lie.  Also the stiffness offered to the 

screw by the bearings also includes that of the support structure, in this case the rig base, 

bearing housings etc.  It was therefore decided to try to derive the bearing support stiffness 

from the deflected shape of the screw under a known set of forces. 

To achieve this the ballscrew nut was detached from the saddle and parked near to the tail 

end of the ballscrew.  In order to prevent the screw moving axially in subsequent tests two 

split clamping rings were fitted to the screw, one at each side of the nut.  Two monitoring 

rings were fitted to the screw, one as close as possible to the drive end bearing.  This first ring 

had to be fitted between the bearing support block and the part of the base which would have 

supported the bottom of the column had the base been used as part of a milling machine.  This 

was the closest we could get to the bearing.  Another monitoring ring was fitted between the 

column support bridge and the ballscrew nut.  In the case of this second ring it was possible to 

fit it in a variety of positions.  One of the rings was fitted with a pair of screws in one of the 

holes which could be used for carrying balance weights.  A wire was slung over the 

workshop’s crane’s hook with a 0 - 100 N spring balance at each end, the lower end of the 

balances being attached to the screws in the monitoring ring.  Load could be applied to the 

screw by pulling up using a crane. 

Deflection of the ballscrew was measured by mounting an NCDT close to the ballscrew 

next to a cylindrical portion of its surface, that is avoiding the helical grooves where the balls 

run.  The probe was held by bracketry carried on a magnetic clamp attached to the saddle.  

Since the ballscrew nut was not connected to the saddle, it was possible to move the saddle 

along the guides by hand.  By this means the radial position of the ballscrew surface could be 

monitored at a variety of axial locations along the screw.  Since the loads are applied 

statically, that is, the loads are held steady while deflection readings are taken, the output 

from the NCDT’s was measured using a digital voltmeter. 
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8.1.1  Preliminary considerations 

To get a feel for the order of magnitude of the deflections likely to be encountered consider 

the case of a cylindrical bar supported at each end.  Neglecting the ballscrew nut, the 

clamping rings, the monitoring rings and half of the flexible coupling between the ballscrew 

and the drive motor, the ballscrew can be represented approximately by a hollow cylindrical 

bar of length l = 1.182 m, the distance between the bearing pack centres. 

The screw has an outside diameter do of 39.95 mm and 

inside diameter di of 10 mm.  The ballscrew groove is a 

single start helix with a pitch p of 16 mm.  The axial 

length of the cylindrical portion between the groove has 

been measured to be 8.52 mm using Vernier callipers.  

This gives dimension A, Figure 8.3, to be 7.48 mm.  

Dimension B has been measured to be 2.95 mm.  

Applying Pythagoras’ theorem [115] gives:- 

( ) 22
2

2 gg rBrA
=−+⎟
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⎜
⎝
⎛   (8.1) 

where rg is the radius of the groove. 

Figure 8.3 Dimensions A and B 
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Putting in the measured values gives 
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Angle θ can be derived from 

222 4
4

28

22sin
BA

AB
B

B
A

A
r
A

g +
=

+
==θ     (8.4) 

Substituting 

3357.19725.0
95.2448.7
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= θθ  rad (8.5) 
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Using standard formulae [116], the cross sectional area of the groove is:- 

407.16)2sin2(
2
1 2 =−= θθgg rA  mm2    (8.6) 

and the distance from the outer cylinder to the groove’s centre of area is:- 

230.1cos
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The volume of material in a length of screw one pitch long will therefore be about:- 

1684916))230.1
2
95.39(2(407.1616)1095.39(

4
2222 =+−×××−×−×= ππ

pV  mm3

 (8.8) 

Replacing the grooved cylinder by a uniform one would need a cylinder of outside diameter 

given by:- 

96.3710
16

1684944 22 =+
×

×
=+=

ππ i
p

eqo d
p

V
d  mm  (8.9) 

Considering first the “stiff” case when the bearings give “built in” support, standard beam 

theory gives [117] the maximum deflection to be:- 

EI
wly

384

4
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−

=       (8.10) 

where the weight per unit length w is given by:- 

gddw io ρπ )(
4

22 −=      (8.11) 

and the second moment of area I is given by:- 

)(
64

44
io ddI −=

π      (8.12) 

The ballscrew is made of steel of which the density ρ = 7860 kg/m3 and the modulus of 

elasticity E = 206×109 N/m2 [118].  The acceleration due to gravity g = 9.80665 m/sec2 [119].  

The maximum deflection is therefore:- 
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Considering secondly the “flexible” case when the bearings give “simple” support, 

standard beam theory gives the maximum deflection to be:- 
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The maximum deflection is therefore:- 
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The maximum deflection of the ballscrew under its own weight should be between 20 and 

100 μm. 

The total weight of the ballscrew using this simple model is:- 

95.9580665.97860182.1)010.003796.0(
4

22 =×××−×=
πW  N  (8.16) 

The deflections predicted by simple beam theory and those predicted by the moving mass 

model refer to points on an imaginary line at the centre of the screw.  A measurement taken at 

the surface of the screw would follow the centre if the screw surface were to be perfectly 

cylindrical (except for the ball groove of course).  In practice the surface deviates from the 

ideal.  Manufacturing imperfections in the inner and outer diameters of the monitoring rings 

also contribute to errors in the readings taken from their surface.  Also the fact that the probe 

is mounted indirectly to the saddle also gives rise to errors because the linear guides are not 

perfectly parallel to the line joining the centres of the two bearing pairs which support the 

ballscrew.  For a given angular position of the ballscrew, the measured deflections can 

therefore be understood as the sum of the deflection of the centre, which is dependent on the 

loading pattern and axial position along the screw, and the errors which are dependent only on 

axial position:- 

{ } { } { } mjjijim Njxloadmatlgeomxyxy L1,)(),,,()( =+= ε   (8.17) 

where ym are the elements of a set of Nm members which make up the ith set of readings, each 

element being the radial deflection as measured at the axial position xj on the ballscrew.  y are 

the elements of the corresponding set of deflections of the ballscrew centre and ε are the 

elements of the set of radial errors.  The terms geom, matl and load indicate that these 

deflections are dependent on the shape and size of the screw, the material of which it is made 

and the pattern of loads to which it is subject.  If the ballscrew is subject to several loading 

patterns, the set of the deflections derived by subtracting the corresponding elements of the 

sets obtained from any pair of loading patterns is independent of the errors. 

 

8.1.2  Measurement strategy 

[143] 



Therefore the measurement strategy was to set the second monitoring ring in a particular 

axial position and to subject the screw to three sets of loads, one pulling up with a load of 

20 N, the second with 110 N and the third with 200 N and to measure the deflection of the 

ballscrew cylindrical surface at as many “lands” between grooves as were accessible to the 

NCDT probe.  (The reason why a minimum of 20 N load was maintained was to prevent the 

link arrangement from coming loose and moving as measurements were under way.) 

The original idea had been to set the load and then work through all the axial positions in 

turn to get a deflection curve, move on to the next load, take another set of deflection readings 

and so on.  However it became clear that the readings were subject to a significant drift of 

values with time.  The rig is situated under a fan driven convector heater which comes on and 

goes off from time to time and so concern was expressed about thermal errors.  In the event it  

 
Figure 8.4 – Static tests, Position 1 

was found that the drift was most likely due to the stretching of the insulator covered copper 

wire being used to suspend the spring balances on the crane hook.  This was replaced by a 

stouter steel one and the readings were then found to be much more stable.  Also to avoid 

thermal errors the NCDT probe was set at one axial position and successively increasing loads 

(20 N, 110 N, 200 N) were applied (say), then the probe was moved on a land and 

successively decreasing loads (200 N, 110 N, 20 N) were applied, then the probe was moved 

on another land and the process repeated.  In this way values which were to be subtracted 

were taken within about a minute of time of one another thus reducing substantially the 

probability of significant thermal errors. 

Three loading positions were used, (see Figures 8.4, 8.5 and 8.6 respectively):- 
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1. Monitoring ring 2 set close to the column base bridge, pulling on monitoring ring 2 

2. Monitoring ring 2 set close to the ballscrew centre, pulling on monitoring ring 2 

3. Monitoring ring 2 set close to the column base bridge, pulling on monitoring ring 1. 

 

Figure 8.5 – Static tests, Position 2 

 

Figure 8.6 – Static tests, Position 3 

 

8.1.3  Measurement results 
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The results are summarised in Table 8.1.  The data for Position 1 is plotted on Figure 8.7 

Table 8.1 – Static measurements – Raw data 

 Position 1 Position 2 Position 3 
Land 20 N 110 N 200 N 20 N 110 N 200 N 20 N 110 N 200 N 

1 5.527 5.286 5.046 5.451 4.960 4.471 5.361 5.254 5.148 
2 5.541 5.296 5.048 5.465 4.961 4.461 5.463 5.354 5.244 
3 5.559 5.302 5.045 5.471 4.956 4.438 5.478 5.364 5.249 
4 5.580 5.317 5.053 5.485 4.964 4.439 5.505 5.389 5.272 
5 5.572 5.303 5.029 5.485 4.955 4.421 5.494 5.374 5.253 
6 5.557 5.278 5.004 5.469 4.925 4.381 5.478 5.355 5.231 
7 5.553 5.270 4.989 5.455 4.901 4.353 5.465 5.338 5.210 
8 5.535 5.247 4.958 5.435 4.879 4.328 5.456 5.325 5.195 
9 5.522 5.227 4.937 5.427 4.866 4.306 5.448 5.317 5.183 
10 5.514 5.219 4.919 5.421 4.857 4.291 5.437 5.304 5.168 
11 5.531 5.228 4.923 5.433 4.865 4.298 5.426 5.289 5.152 
12 5.456 5.148 4.841 5.365 4.797 4.231 5.392 5.251 5.113 
13 5.410 5.099 4.787 5.317 4.750 4.184 5.332 5.190 5.049 
14 5.394 5.080 4.766    5.315 5.175 5.032 
15 5.384 5.068 4.754    5.305 5.161 5.015 
16 5.341 5.026 4.711    5.270 5.124 4.978 
17 5.149 4.832 4.511    5.084 4.935 4.786 
18 5.166 4.848 4.527    5.081 4.933 4.785 
19 5.160 4.848 4.531    5.093 4.945 4.798 
20 5.146 4.834 4.523    5.065 4.920 4.772 
21 5.150 4.841 4.535    5.057 4.911 4.764 
22 5.127 4.823 4.517    5.039 4.893 4.747 
23 5.105 4.805 4.505    5.057 4.915 4.771 
24 5.054 4.760 4.466    4.987 4.845 4.701 
25 5.033 4.749 4.461    4.982 4.843 4.701 
26 5.055 4.776 4.497    5.017 4.877 4.738 
27 5.080 4.814 4.546    5.036 4.903 4.767 

MR1 5.941 5.819 5.694 6.688 6.558 6.426 5.864 5.788 5.711 
          

The results tabulated are NCDT amplifier output in volts.  Scaling factor:  1 V = 100 µm 

The results are processed in the case of each loading position by first subtracting the data 

in the columns obtained from a 110 N pull from data in the columns obtained from a 20 N 

pull and then subtracting the 200 N data from the 110 N data.  The result is a set of data which 

gives the effect of pulling with a force of 90 N in zero gravitational field.  (This is because the 

effect of gravity, the self weight forces, are the same in all cases, as are the geometrical 

errors.)  A MATLAB function, “funcs_2_dat” has been written which does this.  

Figures 8.7 and 8.8 show this process applied to the results for Position 1. 
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Figure 8.7 – Raw data, static tests, Position 1 
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Figure 8.8 – Transducer output for 90 N transverse pull, static tests, Position 1 
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The next stage is to formulate a model which predicts the behaviour of the ballscrew.  The 

final stage is to extract by an optimisation process the support stiffness which gives a 

predicted behaviour closest to the observed behaviour. 

8.1.4  Static deflection models 

In these models only the static behaviour is considered.  The ballscrew is considered as an 

elastic beam supported at each end by a bearing whose radial stiffness is Ki and whose tilt 

stiffness is Φi, i being one at the drive end of the screw and two at the non-drive end. 

In the first instance the pre-tension T in the ballscrew is considered to be zero, or, to be 

more precise, T is considered to be small enough to make no measurable difference to the 

behaviour of the screw to the precision to which the deflection is being measured.  As shown 

in Appendix 8.1, the deflected shape of the ballscrew can be represented by the equation:- 

41for,
2624 4)1(43)1(4

22)1(431)1(44 L=++++−= +−+−
+−+− sAxAx
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x
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EI
gy ss

ssμ  (8.18) 

where Ai are constants determined by the boundary conditions and s is the screw section 

number. 

In the case where the pre-tension is tensile (positive) it is shown in Appendix 8.2 that the 

deflected shape of the ballscrew is given by:- 
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2 4)1(43)1(4

2
2)1(41)1(4 L=++−+= +−+−+−+− sxAxAx
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(8.19) 

where 
EI
T

=λ . 

For any particular geometrical configuration and loading condition equation (8.18) or 

equation (8.19) can be solved to give a set {Ai} which can be used to give a predicted set of 

{yi} to compare with the measured data.  A set of MATLAB functions have been written 

which give a predicted y for any x for the constants A given by equations (8.18) or (8.19). 

(In the case of compressive or negative pre-tension, the deflected shape can be expected to 

take the form: 

41for,sincos
2 4)1(43)1(4

2
2)1(41)1(4 L=++−+= +−+−+−+− sxBxBx

T
gxBBy ssss λλμ  

(8.20), 

where BBi are constants determined by the boundary conditions.  However, a method of 

calculating these constants was not derived because ballscrews normally have positive pre-

tension.) 
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The best estimate of the bearing stiffness has been extracted from the measured data by a 

least squares method.  Because the equations giving rise to {Ai} are dependent on the stiffness 

in a non-linear way, a routine based on the Levenburg-Marquardt method was prepared [120].  

This seeks to minimise an error measure χ2 by a method which seeks to vary smoothly 

between the inverse-Hessian approach and the steepest descent method.  It achieves this by 

use of a special non-dimensional factor λ.  When this factor is small the method leans towards 

being an inverse-Hessian approach using a matrix of partial derivatives.  When λ gets bigger 

the method leans towards a steepest descent.  The method is recommended because it is 

unlikely to fail due to a zero pivot in the Hessian matrix, although it can wander round in 

shallow valleys (in a multi-dimensional sense).  The method has been coded in MATLAB 

functions “Mrq_min” and “Mrq_cof”.  The model was incorporated in function 

“funcs_2” and since some problems were experienced with singular matrices when using 

the MATLAB standard coding for processing matrices, a function “GaussJ” was prepared 

which uses Gauss-Jordan elimination [121].  Since it did not prove possible to come up with a 

reliable method of terminating the search for the minimum automatically, some manual 

intervention was necessary to arrive at a reasonable answer. 

The fitted curves are shown in Figures 8.9, 8.10 and 8.11. 
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Figure 8.9 – Fit of modelled curve to measured data, Position 1 
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Figure 8.10 – Fit of modelled curve to measured data, Position 2 
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Figure 8.11 – Fit of modelled curve to measured data, Position 3 
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It had been hoped at the outset that this method would yield the effective diameter of the 

ballscrew, the transverse and tilt stiffness for each bearing, and the pre-tension from the best 

fit data.  In the event the three sets of data did not give a consistent set of results for all six of 

these parameters.  It was therefore decided to estimate the effective diameter of the shaft 

starting from the value of 37.96 mm given by equation 8.9.  The portions of the ballscrew 

where its support bearings are located are 30 mm in diameter which suggests a smaller 

effective diameter would be appropriate.  These portions are however, quite short and have 

bearing inner races or portions of coupling attached to parts of them.  A weightier 

consideration is that the stiffness of a shaft is determined by the second moment of area which 

is a function of the fourth power of the diameter.  Equation 8.9 is based on volume which is 

dependent on the square of the diameter, it was therefore thought that the ball groove would 

bring the effective diameter down to lower than 37.96 mm.  A value of 37.5 mm was chosen 

in the absence of a detailed analysis based on the fourth power.  The pre-tension was believed 

to be low at the time of these tests, and so it was assumed that it was zero.  Consideration of 

the forces and deflections involved suggests that the tilt stiffness of the bearings has a greater 

influence on transverse behaviour than does the transverse stiffness.  Further, the tilt stiffness 

of the structures supporting the bearings at both ends appear to be greater than the bearings 

themselves, and since the bearings were of the same type at both ends, it was assumed that the 

bearing stiffness would be the same.  The results from the curve fitting method then gave the 

values set out in the following table:- 

Table 8.2 – Static measurements - Results 

Position 1 2 3 Average *  

Transverse stiffness 4.25 × 108 4.25 × 108 4.25 × 108 4.250 × 108 N/m 

Tilt stiffness 1.70 × 105 1.55 × 105 1.92 × 105 1.743 × 105 N m/rad

χ² 429.3877 149.4193 129.1332   

* weighted by χ². 

A summary of data used in the dynamic models is given in Appendix 8.6. 

8.2.  Dynamic measurements – nut in fixed position 

During these measurements the ballscrew nut was detached from the saddle and clamped 

in position near to the tail end of the ballscrew as in the case of the static measurements.  Two 

monitoring rings were fitted to the screw, one as close as possible to the drive end bearing.  

The other monitoring ring was fitted between the column support bridge and the ballscrew nut 
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and was used to carry the eccentric weights used to apply radial force excitation to the 

ballscrew.  In the case of this second ring it was possible to fit it in a variety of positions. 

Deflection of the ballscrew was measured by mounting an NCDT close to each monitoring 

ring.  The probe for the second NCDT was held by bracketry carried on a magnetic clamp 

attached to the bed slide.  The probe for the NCDT closest to the drive end bearing was held 

on a mounting plate which was bonded to the bed. 

8.2.1  Preliminary considerations 

It has been shown in Appendix 8.3 that any persistent transverse vibration of a rotating 

ballscrew is likely to be caused by external forces, as opposed to a mode generated by its 

deflections under centrifugal loading. 

In the dynamic case, for a given angular position of the ballscrew, the measured deflections 

can be understood as the sum of the deflection of the centre, which is dependent on the 

loading pattern and axial position along the screw, and the errors which are dependent on the 

axial position of the monitoring ring and the angular position of the screw:- 

{ } { } { } mjxjjijim Njxloadmatlgeomxyxy L1,),(),,,()( =+= θε   (8.21) 

where ym are the elements of a set of Nm members which make up the ith set of readings, each 

element being the radial deflection as measured at the axial position xj on the ballscrew.  y are 

the elements of the corresponding set of deflections of the ballscrew centre and ε are the 

elements of the set of radial errors.  The terms geom, matl and load indicate that these 

deflections are dependent on the shape and size of the screw, the material of which it is made 

and the pattern of loads to which it is subject.  Given that the dynamic loads are applied by an 

eccentric weight, it was anticipated that load will depend on the square of the speed of the 

screw.  If the speed of the ballscrew is low, load will be close to zero.  This should give a 

means of subtracting out the effects of the errors. 

8.2.2  Measurement strategy 

Therefore the measurement strategy was to set the second monitoring ring in a particular 

axial position and to subject the screw to two sets of out-of balance loading, one with the 

eccentric weights applied and one without.  The maximum load was fixed by running the 

screw with the out-of-balance weights fitted at a speed which gave rise to vibration levels 

which appeared to an experienced operator of the rig to be at the upper end of the tolerable 

range.  Using this speed as a maximum four other speeds were determined so as to give 20%, 

40%, 60% and 80% of the dynamic force applied at the maximum speed.  A final speed was 
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chosen to give a “slow roll” the results of which might be used to subtract out the effects of 

the run-out of the monitoring ring and other errors. 

In order to make comparison of the different data sets as easy as possible, it was decided to 

arrange the data to be read as close as possible to the same angular positions for each run.  To 

this end, the speeds chosen were in part determined by considerations of which sampling 

times could be set most conveniently in the configuration file of the Data Logger. 

 
Figure 8.12 – Dimension X in the dynamic tests 

Three loading positions were used.  These were such that Dimension X (see Figure 8.12) 

was 410 mm, 235 mm and 60 mm respectively. 

Table 8.3 - Dynamic Tests 1 – Speeds and Sampling times 

Speed Sample 
time 

Nominal 
travel 

Fraction of 
excitation 

Error 

 rpm mm/min 
(nom’l) 

sec mm % cycles 

S6 5000 32000 0.16667 320 100 0.072 
S5 5362.5 28600 0.18648 320 79.9 -0.0036 
S4 4650 24800 0.21505 320 60.1 -0.063 
S3 3787.5 20200 0.26403 320 39.8 0.04905 
S2 1936.5 14300 0.37296 320 20.0 -0.0036 
S1 500.0625 2666 2.0005 320 0.7 -0.000225 
 

[153] 



Position 1

0

20

40

60

80

100

120

140

160

0.0 200.0 400.0 600.0 800.0 1000.0

Speed^2, (m^2/min^2)

D
is

pl
ac

em
en

t, 
(m

ic
ro

ns
)

Ring 1
Ring 2
Ring 1 p
Ring 2 p

 

Figure 8.13 – Comparison of measured and predicted vibration levels 
Monitoring ring position 1 
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Figure 8.14 – Comparison of measured and predicted vibration levels 
Monitoring ring position 2 
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Figure 8.15 – Comparison of measured and predicted vibration levels 
Monitoring ring position 3 

8.2.3  Measurement results 

For each test, the raw data recorded by the data logger was a time series of the vertical 

displacement of the monitoring rings as sensed by the NCDT’s, and the angular position of 

the screw as seen by the drive motor’s rotary encoder.  The data recorded at the “full speed” 

of the run (e.g. Appendix 8.4, Figure A8.4.1) was extracted and plotted as a function of 

angular position (Figure A8.4.2), and an average of ring surface vertical position as a function 

of angle was formed (Figure A8.4.3).  This was done both with and without excitation 

weights.  The difference between the two plots was taken, thus giving the effect of the 

weights alone (Figure A8.4.4).  This curve was Fourier analysed to extract the shaft order 

amplitude, which is the one caused by out-of-balance excitation.  Grouping these values by 

monitoring ring position enables a graph to be plotted of observed amplitude versus speed for 

each position.  The results are summarised in tabular form in Appendix 8.4. 

The C program was run with a slow acceleration to full speed for each monitoring ring 

position.  This gave a plot of vibration amplitude versus speed which can be compared 

directly to the measured results, (see Figures 8.13 to 8.15).  In these graphs "Ring 1" and 

"Ring 2" refer to data extracted from measured values and "Ring 1 p" and "Ring 2 p" refer to 

values predicted by the C program. 
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Table 8.4 – “Fixed nut” dynamic tests – correlation of measured and predicted results 

(See Appendix 8.4 and Appendix 6.1) 

Position 1 2 3 Overall  

Ring 1, rms deviation 4.5 5.5 4.6 4.9 µm 

Ring 2, rms deviation 7.1 5.4 6.8 6.4 µm 

As shown in Table 8.4, overall the model predicted vibration levels which agreed with 

experiment to within about 5 to 6.5 µm.  Given that the ballscrew was modelled as a single 

section shaft and the bearings as simple springs, this shows that the modelling method is 

basically sound. 

8.3  Dynamic measurements – nut moving along screw 

After taking the measurements with the ballscrew nut clamped close to the non-drive end 

bearing, the clamps were removed and the nut was re-attached to the saddle.  As for the “fixed 

nut” measurements, two monitoring rings were fitted to the screw, one as close as possible to 

the drive end bearing, the other being fitted between the column support bridge and the 

ballscrew nut and was used to carry the eccentric weights used to apply radial force excitation 

to the ballscrew.  In the case of this second ring it was possible to fit it in a variety of 

positions.  The controller was set to run the nut from close to the non-drive end of the screw 

to close to the second monitoring ring. 

Deflection of the ballscrew was measured using NCDT’s as in the case of “fixed nut” 

measurements. 

8.3.1  Preliminary considerations 

As for the “fixed nut” case, the measured value can be expressed by:- 

{ } { } { } mjxjjijim Njxloadmatlgeomxyxy L1,),(),,,()( =+= θε   (8.22). 

In this case the term geom should be understood to include effects caused by the different 

axial positions occupied by the nut as the screw turns.  Again, given that the dynamic loads 

are applied by an eccentric weight, it is anticipated that load will depend on the square of the 

speed of the screw.  If the speed of the ballscrew is low, load will be close to zero. 

8.3.2  Measurement strategy 

Therefore the measurement strategy was to set the second monitoring ring in a particular 

axial position and to subject the screw to two sets of out-of balance loading, one with the 

eccentric weights applied and one without.  Because of the limited time at which vibrations 

were being generated, the maximum speed used was increased to 40 000 mm/min.  Using this 
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speed as a maximum four other speeds were determined so as to give 40%, 60%, 80% and 

90% of the dynamic force applied at the maximum speed.  A final speed was chosen to give a 

“slow roll” the results of which might possibly be used to subtract out the effects of the run-

out of the monitoring ring and other errors. 

In order to make comparison of the different data sets as easy as possible as the speeds 

were reduced the data sampling period was increased. 

Three loading positions were used.  These were such that Dimension X (see Figure 8.12) 

was 57.2 mm, 230 mm and 400 mm respectively. 

 

8.3.3  Measurement results 

As in the case of the “fixed nut” investigation, the raw data recorded by the data logger for 

each test was a time series of the vertical displacement of the monitoring rings as sensed by 

the NCDT’s (e.g. Appendix 8.5, Figure A8.5.1), and the position of the screw as seen by the 

drive motor’s rotary encoder (Figure A8.5.2).  The data recorded at the “full speed” of the run 

was extracted and plotted as a function of angular position (Figure A8.5.3), and a picture was 

built up of how the ring surface vertical position as a function of angle developed with time 

(Figure A8.5.4).  This was done for both with and without excitation weights.  The difference 

between the two plots was taken, thus giving the effect of the weights alone.  These curves 

were Fourier analysed and the first five shaft orders were extracted and plotted against time.  

It was found that the first order was the largest of the five and showed a level which changed 

consistently with nut position.  The other orders were significantly lower than the first order 

and fluctuated as the position of the nut changed (Figure A8.5.5). 

The C program was run with the monitoring ring set at each of the three positions.  To 

illustrate its capabilities three samples are shown here.  The first order measured vibration 

levels are being compared with levels predicted by the C program. 
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Figure 8.16 – Comparison of measured and predicted vibration levels 
Monitoring ring position 1, speed 5 
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Figure 8.17 – Comparison of measured and predicted vibration levels 
Monitoring ring position 2, speed 5 
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Figure 8.18 – Comparison of measured and predicted vibration levels 
Monitoring ring position 3, speed 3 

In the keys to Figures 8.16 to 8.18 "R1" and "R2" refer to data extracted from measured 

values for monitoring rings 1 and 2 respectively, and "C1" and "C2" refer to the 

corresponding values predicted by the C program. 

Table 8.5 – “Moving nut” dynamic tests – correlation of measured and predicted results 

(See Appendix 8.5 and Appendix 6.1) 

Position 1 2 3 Overall  

Ring 1, rms deviation 5.2 4.7 3.0 4.4 µm 

Ring 2, rms deviation 0.6 2.8 8.7 5.6 µm 

For most of the positions tested an excellent degree of agreement was obtained, (see 

Table 8.5), though the results presented for Positions 1 and 2 (Figures 8.16 and 8.17) were 

generally better than those for Position 3 (Figure 8.18).  Again, bearing in mind the 

simplifications used in setting up the ballscrew model, the results show the method to be well 

founded. 
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Chapter 9 - ERROR REDUCTION 

A ballscrew drive converts an angular position θ of the motor to a linear position x of the 

machine part attached to the nut.  The ideal position of the nut is given by the equation 

θθ
π

RpNx s ==
2

      (3.1) 

where the ratio of the nut R is defined by the pitch p and the number Ns of helices in the 

ballscrew. 

Errors between the ideal position and the actual position arise because of errors in 

manufacture of the ballscrew, errors in installation, deflection of the drive components under 

load, thermal movements and errors that arise due to the action of the drive’s control system. 

Attempts can be made to decrease these errors by improvements in design and installation, or 

by means of compensation. 

9.1  Error reduction through design 

Errors could, in principle, be reduced by improving the precision of manufacture, but 

ballscrews are already offered in a variety of grades of precision, up to JIS c0 [122] or better.  

These are at the forefront of precision manufacture, and can be used if the application justifies 

the costs involved. 

9.1.1  Effects on stiffness of detailed geometry 

The precision of a ballscrew drive could be improved by increasing its stiffness because the 

deflections of the drive would be lower for a given applied force.  The components which 

contribute to the overall flexibility are the nut, the ball-mechanism, the screw, the support 

bearings and the structure in which the ballscrew is mounted. 

Using manufacturer’s data [26], a range of precision ballscrews mounted in a typical support 

bearing arrangement has been considered.  The screw sizes varied from 12 mm to 50 mm in 

diameter with bearings to match.  The screw lengths considered were the maximum available in 

accuracy grade c1.  By applying a unit torque in each case it was found that the proportion of the 

resulting axial deflection arising from the various components of the drive was as follows:- 

Table 9.1 – Distribution of ballscrew drive flexibility 

Element of flexibility Range Average 

Equivalent of torsional wind-up of screw 1.2 – 12.5% 4% 

Movement in nut 35.0 – 54.9% 43% 

Screw deflection – average of both sides of nut 30.2 – 50.4% 43% 

Bearing deflection  - average of both bearings 8.8 – 11.1% 10% 
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Of these, typically half of the total deflection is made up of deflection of the screw itself, and the 

only way of increasing the stiffness of this component is to make the screw bigger.  This would 

have the effect of increasing the cost, the running speed of the bearings and ball mechanism, 

which would have thermal implications, and increasing system inertia, which would have energy 

consumption and control implications. 

About 10% of total deflection is in the bearings.  This can be reduced by putting pre-tension 

in the screw, but at the expense of greater energy consumption, heat generation and a greater 

tendency to bearing wear. 

Just under half of the total deflection was found to occur in the nut.  The flexibility of this 

component is dependent to a significant degree on the Hertzian contact between the circulating 

balls and the nut and screw.  A normal ballscrew has its races packed as full as possible with 

balls, and the races are typically of gothic arc section with a conformity of about 55%.  (This 

means that the radius of the race profile is 1.1× that of the balls.)  This suggests that provided the 

nut contains as many ball races as can be reasonably fitted in the space available, there is little 

scope for increasing the stiffness beyond increasing the length of the nut or the pre-load.  

Increasing the pre-load also increases energy consumption, heat generation and the tendency to 

wear. 

9.1.2  Thermal considerations 

Wherever possible, a machine which is being used to produce high-precision components 

should be run in a temperature-controlled environment in a location where it does not receive 

direct sunshine.  This should prevent environmental effects distorting the components of the 

machine of which the drive is part. 

As the ballscrew is run some heat is generated, the more so if high levels of pre-tension and 

pre-load are used.  It is possible to bring the temperature nearer to ambient by cooling the 

ballscrew, the nut or the bearing housing, though control of such cooling would require careful 

consideration due to the time scales involved. 

9.1.3  Material considerations 

The stiffness of a component part is dependent on the material’s elastic modulus, as well as 

on its shape.  The elastic modulus for pure metals ranges from 11.0 GPa for indium to 517 GPa 

for iridium  [123].  Those for commonly used engineering materials range from 15.9 GPa for 

lead to 226 GPa for Nimonic 90.  Carbon steel at 206 GPa is close to the upper end of this range 

[118].  Ceramic materials typically have values of 275 – 350 GPa for alumina [124], 160 – 

350 GPa for zirconia [125], 600 GPa for tungsten carbide [126], 170 – 290 GPa for silicon 
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nitride and 390 – 450 GPa for silicon carbide [127].  Machineable ceramics, however, have 

elastic moduli of only 19 – 66.9 GPa. 

Iridium is one of the platinum group metals and is the most corrosion resistant metal known.  

It is, however, very hard and brittle, making it very hard to machine, form, or work [128].  This 

makes it an undesirable choice of material for a ballscrew.  Ceramics are a possibility, bearings 

with ceramic balls have already been developed and are used in certain applications.  The 

contribution of material compliance to Hertzian flexibility is represented by the factor CE, (see 

§3.5.1, equation 3.16). 
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For tungsten carbide on steel, 
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This represents a 48% increase in the ball action stiffness when compared with steel balls. 

If the nut were to be made of Macor, a machineable ceramic, and the balls of tungsten 

carbide, for ball – nut contact 
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The screw – ball contact would still have a CE of 6.00 × 10-12 m²/N, this would give an average 

CE value for the screw – nut engagement of 10.62 × 10-12 m²/N which is a 16% reduction in 

stiffness compared to an all steel ballscrew. 

9.2  Error reduction through compensation 

9.2.1  Compensation for dynamic effects 

Correction of spatial dependent errors 

The axial pitch errors can be measured by laser.  The data can be stored in a look up table.  

The errors can therefore be corrected for by modifying the position error signal in the controller.  

This is a well-established method [46]. 

Correction of time dependent errors 

The axial and torsional errors can be represented by a simple model.  Basically the position 

error which is caused by the torque applied to the ballscrew can be closely approximated as a 

simple function of load and axial position.  The load can be determined from the drive motor 

current, a measure of which can be taken from the controller, and the position can be determined 

from the output of the rotary encoder. 
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For example, in simple static terms, the torsional deflection at the centre of the nut θbs is given 

by:- 

)111(
bsdrms

netmsysbs

kkk

Tfl

θ

θ

++=

=

     (9.4) 

where 

 flsys = the total system flexibility referred to the motor shaft between the motor and the 

 ballscrew nut, 

 Tm net = the motor output torque, and 

 kms, kdr and kθbs = the stiffness of the motor shaft, drive coupling and ballscrew. 

The motor output torque can be approximated by:- 

m
tot

mtot
netm T

J
JJT −

=      (9.5) 

where 

 Jtot = the total referred inertia of the ballscrew drive system, 

 Jm = the motor inertia, and 

 Tm = the torque applied to the motor rotor by its electrical fields. 

The torsional stiffness of the ballscrew is given approximately by 

x
ddGk io

bs 32
)( 44 −

=
πθ      (9.6) 

where 

 G = the shear modulus of the ballscrew material, 

 do and di = the outer and inner diameters of the ballscrew, and 

 x = the position of the nut. 

Similarly, the axial deflection at the centre of the nut δxbs is given by:- 
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where 

 flbs = the axial flexibility of the ballscrew, 

 Fnut = the axial force delivered by the ballscrew to the nut, 

 kax B1 and kax B2 = axial stiffness of the ballscrew support bearings, 
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 lbs = length of ballscrew between its supporting bearings, 

 E = the modulus of elasticity of the nut material, 

)(
4

22
iobs ddA −=

π      (9.8), 

and force on the ballscrew nut can be approximated by:- 

tot

m
loadnut J

TRmF =      (9.9) 

where 

 mload = the mass of the nut and saddle and/or table, and 

 R = the ballscrew ratio. 

The total deflection to be compensated for δxcomp is then given by 

bsbscomp xRx δθδ +=      (9.10). 

By a similar approach, if the tilt stiffness of the slideway which carries the load being driven 

by the ballscrew is known, a term which compensates for tilting of the load can be included. 

The program described in Chapters 5 and 6 of this Thesis has been modified to include such 

compensation. 
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Figure 9.1  Nut position error without compensation 
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Figure 9.1 shows the nut position error predicted by the model during the acceleration phase 

of a trapezoidal velocity demand cycle.  If the various easily predictable mechanical deflections 

are compensated for, the position error can be reduced to the values shown in Figure 9.2. 
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Figure 9.2  Nut position error with compensation for flexibility 

The characteristics of the controller play a significant role in the behaviour of a ballscrew 

drive.  In the case of a simple analogue PI (proportional integral) velocity controller, the 

“integral” term, together with the motor constant, have the same effect as a mechanical spring, 

and introduces an error during the acceleration phase.  (Similarly, the “proportional” term has a 

damping effect.)  Once known, these terms can be easily compensated for. 

However, modern machine tool controllers have more sophisticated logic than a simple PI 

device, and include velocity feed forward components and other features which, when tuned 

correctly, compensate for acceleration lag error.  As an example, the Heidenhain controller used 

on the linear guide test rig at the University of Huddersfield has been studied in detail, the results 

of which are set out in Appendix 9.1.  Were this controller to work in analogue form, it should be 

able to accelerate a load with little error.  The reality is that it works in a "quantised" manner, 

that is, its feedback loops are changed at fixed time steps.  This introduces both delay errors and 

vibration excitation. 
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A compensation strategy which can compensate for such errors needs therefore to take 

account of the detailed characteristics of the controller.  An attempt to compensate for effects 

other than mechanical deformation using the techniques derived in this Thesis gives the result 

shown in Figure 9.3. 
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Figure 9.3  Nut position error with compensation for flexibility and controller effects 

As can be seen, although some improvement in "steady" state errors has been achieved, transient 

responses at start-up and at the end of the acceleration phase remain largely unchanged. 

9.2.2  Compensation for thermal effects 

Thermal errors in machine tool drives have been the subject of a lot of research.  Effective 

compensation strategies have been devised which reduce substantially the effect of thermal 

errors [38]. 

In conclusion, 

• ballscrews have reached an advanced state of development and can already reach a high 

standard of precision 

• spatial errors which arise in their use can be compensated for 

• thermal errors can be compensated for 

• "steady state" errors arising from mechanical loading can be compensated for 
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• transient errors cannot be compensated for but can be reduced by incorporating a 

suitable level of damping in the mechanical system, and by adopting "smooth" methods 

of control, e.g. "sin²" demand characteristics, wherever possible. 
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Chapter 10 - CONCLUSIONS 

During the course of the programme of research covered by this Thesis the geometric, 

thermal and load errors commonly encountered on CNC machine tools have been studied.  

Several mathematical models have been developed or extended which enable a deeper 

understanding of the interaction between these errors, various details of ballscrew design and 

the dynamic behaviour of ballscrew driven systems.  Further, a strategy for compensation of 

some of these errors has been devised. 

Results 

The results of the research are detailed as follows:- 

• The static elastic theory relevant to ballscrew machine tool drives has been brought 

together to form a group of formulae useful for estimating the static stiffness 

characteristics of such systems. 

• The relevant dynamic elastic theory and the theory of thermal modelling have been 

applied to develop a detailed understanding of the behaviour of a ballscrew driven 

system.  A set of working models have been assembled which cover the dynamic and 

thermal aspects of ballscrew behaviour. 

• The continuous matter approach to the dynamics of a ballscrew using wave solutions 

was developed.  Although this succeeded in giving satisfactory results for the case of 

axial and torsional behaviour, it did not prove to be a useful method for dealing with 

transverse vibratory behaviour. 

• Several models based on the discrete matter or “lumped mass” approach were devised.  

Using matrix solutions, three useful models were developed as follows. 

• The first of these models extends the classical eigenvalue method for finding the 

natural frequencies and other dynamic characteristics of ballscrew systems to include 

viscous damping effects by using a generalised eigenvalue approach.  This not only 

gives estimates of the natural frequencies, but also the damping coefficient of each 

predicted vibration mode.  This feature enables many of the natural frequencies 

predicted by standard undamped natural frequency analyses to be dismissed as being 

of little consequence to the vibratory behaviour of the system and is a useful 

contribution to knowledge in this field. 

A development of this modelling method gives the sensitivity of the system to changes 

in stiffness and damping characteristics.  When a mode of vibration is considered to be 

potentially detrimental to a system’s performance, the design parameters which have 
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greatest influence on the mode can be identified.  Changes in these parameters can be 

tested quickly by the model and improved dynamic characteristics found before going 

on to the stage of detailed design changes.  This is a tool useful both at the preliminary 

design stage of a ballscrew system, and for helping to decide the most convenient 

remedy to vibration problems which may occur in service. 

With some modification, the approach can be applied to many electro-mechanical 

systems.  Specifically, the controller parameters can be included in the model giving a 

means of investigating how changes in such parameters can be used to modify the 

drive system's behaviour. 

By using a suitable means of deriving a set of viscous damping coefficients which are 

equivalent, in defined circumstances, to non-linear damping effects, it is possible to 

extend this method to include non-linear behaviour. 

• The second set of lumped-mass models is specially developed to take account of the 

changes in the configuration of the system with time as the nut moves along the screw.  

These deal only with the axial and torsional degrees of freedom of the system, which 

have the most direct impact on the response of a ballscrew driven system.  A special 

difficulty arises when the position of the nut does not coincide with a node in the 

model.  Using a “simple” approach to connecting the nut with the screw gave rise to a 

response that was dependent on the structure of the model.  This problem has been 

successfully addressed by using a “massless node” as the connection point.  

Implementation of this approach entailed the development of an algorithm based on 

sophisticated matrix algebra, which has succeeded in advancing knowledge by giving 

a seamless dynamic response. 

• These models can predict the position error of the ballscrew nut. 

• The third set of models includes the transverse degrees of freedom as well as the axial 

and torsional ones.  These give a means of predicting the vibration amplitudes which 

might be expected as a system “runs through” a natural frequency, either because the 

system parameters change as the nut moves along the screw or because the speed of 

the screw is changing. 

• The second and third sets of models include the non-linear phenomena of backlash 

and Coulomb friction as well as time dependent stiffness and damping characteristics.  

Both of these models are capable of being extended to include other non-linear 

phenomena, such as stiffness which is dependent on the state of strain (e.g. Hertzian 
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contact stiffness characteristics) and drag terms which are dependent on the square of 

the speed. 

• The three groups of lumped mass models all include features which calculate the 

energy converted to heat by all the energy dissipative mechanisms in the model.  The 

Engineering Control and Machine Performance Group at the University of 

Huddersfield have already produced a model which predicts the thermal behaviour of 

a ballscrew system.  This model has been validated experimentally.  The heat output 

from a dynamic model has been shown to correlate well with the heat levels used in 

this proven thermal model.  Therefore dynamic models and a suitably adapted thermal 

model, used together, could be used to predict the thermal behaviour of a ballscrew 

system. 

• Various methods by which cooling parts of the ballscrew system can be used to reduce 

thermal errors have been investigated.  The use of a flow of chilled water based 

coolant is the one most likely to best in the majority of cases. 

• A novel experimental approach has been devised which uses beam theory as a basis 

for measuring support stiffness characteristics which are not possible to measure 

directly unless the bearing system has been designed with this in mind.  The method 

allows measurements to be taken on accessible parts of the system and represents a 

contribution to knowledge. 

• Comparison of the model predictions with well-established modelling methods and 

with data obtained from a machine tool and from a special test rig show that the 

modelling approaches are valid. 

• The effect of modifying the design of precision ballscrews has been investigated.  The 

existing designs incorporate many features which minimise errors.  This programme 

of research suggests that the basic design is sound, and that efforts to reduce 

substantially the remaining errors arising from design or manufacture should be 

concentrated on understanding better the details of their behaviour in the applications 

in which they are used. 

• An algorithm which will correct for the errors due to the expected elastic deformations 

of the ballscrew system has been devised. 

• The position error can be reduced further by correcting for the lags induced by the 

controller 
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Further work 

The following fields of investigation are suggested by the results of the work covered by 

this Thesis:- 

• The methods devised in this investigation enable the effects of damping to be 

assessed at the early stages of the design of a machine tool drive.  It is 

recommended that the generalised eigenvalue approach be extended to include the 

electrical aspects of the system and the controller.  This will enable hybrid model 

parameters to be optimised, and will enhance the understanding of the influence of 

controller characteristics on the vibratory behaviour of ballscrew-driven systems. 

• The dynamic models enable not only the behaviour of the ballscrew nut to be 

predicted, but also that of the motor, of all parts of the screw, including ballscrew 

wind-up and transient torsion and tension deformation, and the three-dimensional 

behaviour of the machine tool component driven by the nut.  It is recommended 

that this approach be incorporated into further research into improving overall 

control of a ballscrew system.  Specifically, this modelling approach enables the 

output from a rotary encoder on the motor, and that from a rotary encoder on the 

non-drive end of the screw, and that from a linear encoder mounted close to a 

slideway all to be predicted.  The method can therefore be used as a basis of 

investigating a multi-variable control strategy whose aim would be to reduce 

transient errors in machine tool drives. 

• The temperature dependency of dissipative mechanisms should be investigated 

further with a view to developing an interacting pair of models which predict 

thermal behaviour of a system together with mechanical behaviour (sampled) over 

long time scales. 

• The techniques developed here can be extended to devise a control system that 

reduces thermal errors by regulating the supply of chilled coolant to the ballscrew 

centre, the nut, and possibly the ballscrew support bearing housings. 

• The methods of dynamic analysis used in this research are not limited to ballscrew 

driven systems.  They can, for example, be used to investigate the dynamics of gear 

tooth excitation where the conditions of engagement change continuously as the 

teeth move through the mesh. 
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Appendix 4.1 – Validation of continuous matter test model 

A method of predicting the dynamic behaviour of a mechanical system based on wave 

theory is set out in Section 4.1 of Chapter 4.  This appendix validates the model by comparing 

a sample of the results from the model with those calculated from classical theory.  Using the 

following data:- 

Model Simulink “wave_7e.mdl” 

Basic data:-   

Mass of lump masses 0.1 kg each 

Length of spring 1 m 

Cross sectional area of spring 1 m2

Young’s modulus of spring material 1 N/m2

Wave velocity 5 m/sec 

Damping coefficient of viscous damper, c 0.1 N sec/m 

Derived data:-   

Spring constant, k = EA/l 1 N/m 

Density of spring, c.f. equation (4.2) 0.04 kg/m3

Mass of spring 0.04 kg 

Forcing terms:-   

A force of 1 N for the first second of motion and zero thereafter 

the pattern of motion predicted by the model is:- 

• The first mass moves farther than the second in the first 1.3 seconds or so. 

• After the first 0.7 seconds, the two masses execute lightly damped relative motion 

with a frequency of 0.671 Hz and a logarithmic decrement of 1.405. 

• The system settles down to a speed of 4.16 m/sec. 

• The total energy increases for the first second while the external force is being 

applied, then remains constant for the remainder of the motion.  The energy values 

settle out at 0.87 J for each mass and 0.35 J for the spring with 0.32 J being 

dissipated by the damper. 

The results from the model are shown on Figures A4.1.1 to A4.1.6. 

In a spring system of this nature it is common practice to add a third of the mass of the 

spring to the lumped mass when estimating the fundamental natural frequency [87].  

Following this approach the damped natural frequency ωd is predicted to be 0.654 Hz and the 

logarithmic decrement Δ 1.350 as follows. 
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The natural frequency of system comprising two masses with an interconnecting spring is 

calculated by first reducing the system to a single “mass on a spring” system of stiffness k and 

reduced mass μ given by:- 

kg05.0
1.01.0
1.01.0

21

21 =
+
×

=
+

=
mm

mm
μ  

The total equivalent mass including the spring is therefore:- 

kg056667.0
32

04.005.0 =
×

+=totμ  

and the undamped natural frequency is then:- 

Hz66858.0rad/sec2008.4
056667.0

1

tot

====
μ

ω k
n . 

The fraction of critical damping is:- 

21004.0
056667.012
1.0

2
=

×
==

μ
ζ

k
c  

The undamped natural frequency is then:- 

Hz65367.021004.0166858.01 22 =−×=−= ζωω nd . 

and the logarithmic decrement is:- 

3498.1
21004.01

21004.02
1
2

22
=

−

××
=

−
=Δ

π

ζ

πζ . 

If the system were a rigid body, the velocity at the end of the “forcing” stage of the motion 

would be:- 

m/sec1667.41
1.004.01.0

1
=×

++
==

∑
t

m
Fv  

and the kinetic energy:- 

J868.01667.41.0
2
1)1()1( 2 =××== MassKEMassKE . 

J347.01667.404.0
2
1)( 2 =××=springKE . 

The value for the energy in the spring checks out against the kinetic energy of the spring 

calculated on a “½ mass × velocity2” basis.  When the system settles down there is a continual 

small interchange of energy between the masses and the spring at a frequency of about 

2.7 Hz.  The reason for this is not clear. 
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Figure A4.1.1  -  Wave model – wave amplitude (m/sec) v. time (sec) 

 
Figure A4.1.2  -  Wave model – mass velocities (m/sec) v. time (sec) 
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Figure A4.1.3  -  Wave model – mass displacements (m) v. time (sec) 

 
Figure A4.1.4  -  Wave model – relative displacement of masses (m) v. time (sec) 
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Figure A4.1.5  -  Wave model – forces (N) v. time (sec) 

 
Figure A4.1.6  -  Wave model – energies (J) v. time (sec) 
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Appendix 4.2  -  Details of Y-axis drive for Beaver VC 35 CNC machine tool 

 

Jbs rotational inertia of the ball-screw    =0.002724 kg m2

Jm rotational inertia of the drive motor    = 0.0048 kg m2

Jms rotational inertia of the shaft inertia    =0.0000075 kg m2

Jp1 rotational inertia of the driving pulley   =0.0004986 kg m2

Jp2 rotational inertia of the driven pulley    = 0.009524 kg m2

kax axial stiffness of the ball-screw and its support bearings = 482.7e6 N/m 

kbl torsional stiffness of the belt drive    = 1167 Nm/rad 

kbs torsional stiffness of the ball-screw    = 9735 Nm/rad 

kms torsional stiffness of the motor shaft    = 5466 Nm/rad 

knut axial stiffness of the ball-screw nut    = 5.e8 N/m 

mbm a third of the mass of the ball-screw    = 5 kg 

mtab mass of the table and saddle     = 677 kg 

R ball-screw ratio for 10 mm/turn   = 0.0015915 m/rad 

u drive belt ratio       =2 
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Appendix 4.3 – MATLAB function for calculating undamped natural frequencies 
 
function[natf,V]=natf_dr2(drive,N,iL,ipl) 
 
% This routine computes the undamped natural frequencies and mode shapes 
% for a motor driven ballscrew system. 
% 
% The degrees of freedom considered are:- 
%  1        motor           torsional 
%  2        driving pulley  torsional 
%  3        driven pulley   torsional 
%  4 – N+3  ballscrew       torsional 
%  N+4      ballscrew       axial 
%  N+5      table / saddle  axial 
% 
% Output variables 
%     natf()    natural frequency array 
%     V(,)      eigenvector matrix 
% 
% Input variables 
%     drive     select 'x' or 'y' drive 
%     N         number of elements in ballscrew 
%     iL        node number of load position 
%     ipl       node to plot 
% 
% Other variables 
%     D(,)      square of natural frequency matrix 
%     i         for loop counter 
%     ii        for loop counter 
%     j         for loop counter 
%     J()       inertia array 
%     Jbs       moment of inertia ballscrew 
%     Jm        moment of inertia motor 
%     Jms       moment of inertia motor shaft 
%     Jp1       moment of inertia driving pulley 
%     Jp2       moment of inertia driven pulley 
%     K(,)      stiffness matrix 
%     k_()      stiffness array 
%     k_ax      stiffness ballscrew axial 
%     k_bl      stiffness drive belt 
%     k_bs      stiffness ballscrew 
%     k_ms      stiffness motor shaft 
%     k_nut     stiffness ball nut 
%     m_bm      mass of ballscrew 
%     m_tab     table ('x' drive), saddle and table ('y' drive) 
%     natf_     "hold" value for natural frequency 
%     pi        pi 
%     R         ballscrew ratio 
%     rsum2     root mean square of mode shape amplitudes 
%     sum2      sum of squares of mode shape amplitudes 
%     u         belt drive ratio 
%     V_()      "hold" array for mode shape amplitudes 
%     x()       "x" array for plots 
%     y()       "y" array for plot data 
% 
% Subroutines used 
% MATLAB - atan eig int2str num2str plot sqrt title xlabel ylabel 
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% UoH    -  
 
pi=4.*atan(1.); 
 
Jm=0.0048;% kg m^2            Data 
Jms=0.0000075;% kg m^2 
Jp1=0.0004986;% kg m^2 
Jbs=0.002724;% kg m^2 
m_bm=5.;% kg 
k_ms=5466.;% N m/rad 
k_bs=9735.;% N m/rad 
k_nut=5.e8;% N/m 
k_ax=482.7e6;% N/m 
u=2.; 
R=0.0015915;% m/rad 
if (drive=='x'|drive=='X') 
   Jp2=0.017779;% kg m^2 
   m_tab=359.;% kg 
   k_bl=1188.;% N m/rad 
else 
   Jp2=0.009524;% kg m^2 
   m_tab=677.;% kg 
   k_bl=1167.;% N m/rad 
end 
 
J(1)=Jm + Jms/2.;            %Assemble inertia array 
J(2)=Jp1 + Jms/2.; 
J(3)=Jp2 + Jbs/(N*2.); 
for i=4:N+3 
   J(i)=Jbs/N; 
end 
J(N+3)=J(N+3)/2.; 
J(N+4)=m_bm; 
J(N+5)=m_tab; 
 
k_(1)=k_ms;                  %Assemble stiffness array 
k_(2)=k_bl; 
for i=3:N+2 
   k_(i)=(N*k_bs); 
end 
k_(N+3)=k_nut; 
k_(N+4)=k_ax; 
 
for i=1:N+5                  %Zeroise upper half of  matrix 
   for j=i:N+5 
      K(i,j)=0.; 
   end 
end 
 
K(1,1)=k_(1);                %Assemble upper half of K matrix 
K(1,2)=(-1.)*k_(1); 
K(2,2)=k_(1)+k_(2); 
K(2,3)=(-1.)*u*k_(2); 
K(3,3)=u^2*k_(2)+k_(3); 
K(3,4)=(-1.)*k_(3); 
for i=4:N+2 
   K(i,i)  =k_(i-1)+k_(i); 
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   K(i,i+1)=(-1.)*k_(i); 
end 
K(iL,iL)  =K(iL,iL)+R^2*k_(N+3); 
K(iL,N+4) =R*k_(N+3); 
K(iL,N+5) =(-1.)*R*k_(N+3); 
K(N+3,N+3)=k_(N+2); 
K(N+4,N+4)=k_(N+3)+k_(N+4); 
K(N+4,N+5)=(-1.)*k_(N+3); 
K(N+5,N+5)=k_(N+3); 
 
for i=1:N+4                  %Fill out K matrix 
   for j=i+1:N+5 
      K(j,i)=K(i,j); 
   end 
end 
 
for i=1:N+5                  %Convert K matrix to eigenvalue form 
   for j=1:N+5 
      K(i,j)=K(i,j)/sqrt(J(i)); 
   end 
end 
for j=1:N+5 
   for i=1:N+5 
      K(i,j)=K(i,j)/sqrt(J(j)); 
   end 
end 
 
[V,D]=eig(K);                %Solve eigenvalue equation 
 
for i=1:N+5                  %Prepare mode shape vectors 
   x(i)=i; 
   natf(i)=sqrt(D(i,i))/(2.*pi); 
   for j=1:N+5 
      V(j,i)=V(j,i)/sqrt(J(j)); 
   end 
end 
 
for i=1:N+5                  %Normalise mode shape vectors 
   sum2=0.; 
   for j=1:N+5 
      sum2=sum2 + V(j,i)^2; 
   end 
   rsum2=sqrt(sum2); 
   for j=1:N+5 
      V(j,i)=V(j,i)/rsum2; 
   end 
end 
 
for ii=1:N+4                 %Order mode shape vectors by frequency 
   for i=2:N+6-ii 
      if (natf(i-1)>natf(i)) 
         natf_=natf(i-1); 
         natf(i-1)=natf(i); 
         natf(i)=natf_; 
         for j=1:N+5 
            V_(j)=V(j,i-1); 
            V(j,i-1)=V(j,i); 
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            V(j,i)=V_(j); 
         end 
      end 
   end 
end 
 
for i=1:N+5                  %Select mode shape 
   y(i)=V(i,ipl); 
end 
 
y(1)=y(1)/u;                 %Set vector to ballscrew equivalent 
y(2)=y(2)/u; 
y(N+4)=y(N+4)/R; 
y(N+5)=y(N+5)/R; 
 
plot(x,y,'k+-.')             %Plot mode shape 
title([drive,' drive, mode shape ',int2str(ipl),', f = ',num2str(natf(ipl)),' 
Hz']) 
xlabel('Motor to ballscrew') 
ylabel('Mode shape ') 
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Appendix 4.4 – MATLAB function for calculating transverse natural frequencies 
 
function[natf,x,yp,Op]=natf_tr1(N,ip) 
 
% This routine computes the natural frequencies and mode shapes 
% for the free vibration of a round bar and plots the first four 
% non-zero frequency modes. 
 
% Output variables 
%     x()       "x" array for plots 
%     yp()      "y" array for pth mode shape 
%     Op()      "dy/dx" array for pth mode shape 
% 
% Input variables 
%     N         number of elements in ballscrew 
%     ip        mode number of output mode 
% 
% Other variables 
%     D(,)      square of natural frequency matrix 
%     d_bs      diameter of ballscrew 
%     E         modulus of elasticity 
%     i         for loop counter 
%     ii        for loop counter 
%     I_bs      second moment of area of shaft 
%     j         for loop counter 
%     Jt()      tilt inertia array 
%     K(,)      stiffness matrix 
%     l_bs      length of ballscrew 
%     M()       mass array 
%     MJ()      square root of inertia array 
%     natf()    natural frequency array 
%     natf_     "hold" value for natural frequency 
%     O1()      "dy/dx" array for 1st mode shape 
%     O2()      "dy/dx" array for 2nd mode shape 
%     O3()      "dy/dx" array for 3rd mode shape 
%     O4()      "dy/dx" array for 4th mode shape 
%     pi        pi 
%     rho       density 
%     rsum2     root mean square of mode shape amplitudes 
%     sum2      sum of squares of mode shape amplitudes 
%     V(,)      mode shape matrix 
%     V_()      "hold" array for mode shape amplitudes 
%     y1()      "y" array for 1st mode shape 
%     y2()      "y" array for 2nd mode shape 
%     y3()      "y" array for 3rd mode shape 
%     y4()      "y" array for 4th mode shape 
% 
% Subroutines used 
% MATLAB - atan eig figure hold plot sqrt subplot xlabel ylabel 
% UoH    -  
 
pi=4.*atan(1.); 
 
E=207.e9;        % Material properties 
rho=7600.; 
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d_bs=38.1e-3;    % Dimensions of bar 
l_bs=1.675; 
 
                 % Mass and tilt inertia of the nodes 
M(1)=(pi/4.*d_bs^2*l_bs*rho/(2.*N));   % first node 
Jt(1)=M(1)*(d_bs^2/16.+(l_bs/(2.*N))^2/3.); 
for i=2:N 
   M(i)=(pi/4.*d_bs^2*l_bs*rho/N);     % central N-1 nodes 
   Jt(i)=M(i)*(d_bs^2/16.+(l_bs/N)^2/12.); 
end 
M(N+1)=(pi/4.*d_bs^2*l_bs*rho/(2.*N)); % last node 
Jt(N+1)=M(N+1)*(d_bs^2/16.+(l_bs/(2.*N))^2/3.); 
 
I_bs=pi/64.*d_bs^4; % second moment of area of bar 
 
                 % Stiffness matrix 
for i=1:2*N 
   for j=i:2*N 
      K(i,j)=0.; % zeroise matrix 
   end 
end 
K(1,1)= 12.*E*I_bs/(l_bs/N)^3; % first element 
K(1,2)=  6.*E*I_bs/(l_bs/N)^2; % upper half 
K(1,3)=-12.*E*I_bs/(l_bs/N)^3; 
K(1,4)=  6.*E*I_bs/(l_bs/N)^2; 
K(2,2)=  4.*E*I_bs/(l_bs/N); 
K(2,3)= -6.*E*I_bs/(l_bs/N)^2; 
K(2,4)=  2.*E*I_bs/(l_bs/N); 
for i=2:N 
   K(2*i-1,2*i-1)= 12.*E*2.*I_bs/(l_bs/N)^3; % central N-2 elements 
   K(2*i-1,2*i+1)=-12.*E*I_bs/(l_bs/N)^3;    % upper half 
   K(2*i-1,2*i+2)=  6.*E*I_bs/(l_bs/N)^2; 
   K(2*i  ,2*i  )=  4.*E*2.*I_bs/(l_bs/N); 
   K(2*i  ,2*i+1)= -6.*E*I_bs/(l_bs/N)^2; 
   K(2*i  ,2*i+2)=  2.*E*I_bs/(l_bs/N); 
end 
K(2*N+1,2*N+1)= 12.*E*I_bs/(l_bs/N)^3; % last element 
K(2*N+1,2*N+2)= -6.*E*I_bs/(l_bs/N)^2; % upper half 
K(2*N+2,2*N+2)=  4.*E*I_bs/(l_bs/N); 
for i=1:2*N+2 
   for j=i+1:2*N+2 
      K(j,i)=K(i,j); % fill lower half of matrix 
   end 
end 
 
for i=1:N+1 
   MJ(2*i-1)=sqrt(M(i));  % combined mass and inertia array 
   MJ(2*i  )=sqrt(Jt(i)); % (square root) 
end 
 
for i=1:2*N+2 
   for j=1:2*N+2 
      K(i,j)=K(i,j)/MJ(j); % divide rows of K by MJ 
   end 
end 
for i=1:2*N+2 
   for j=1:2*N+2 
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      K(i,j)=K(i,j)/MJ(i); % divide columns of K by MJ 
   end 
end 
 
[V,D]=eig(K); % solve eigenvalue equation to generate 
              % mode shape and square of natural 
              % frequency matrices 
 
for i=1:2*N+2 
   natf(i)=sqrt(D(i,i))/(2.*pi); % natural frequency array 
   for j=1:N+1 
      V(2*j-1,i)=V(2*j-1,i)/sqrt(M(j));  % mode shapes corrected 
      V(2*j  ,i)=V(2*j  ,i)/sqrt(Jt(j)); % by square root of mass 
   end 
end 
 
for i=1:2*N+2    % Normalise mode shapes 
   sum2=0.; 
   for j=1:2*N+2 
      sum2=sum2 + V(j,i)^2; 
   end 
   rsum2=sqrt(sum2); 
   for j=1:2*N+2 
      V(j,i)=V(j,i)/rsum2; 
   end 
end 
 
                 % Order natural frequencies and mode shapes in 
for ii=1:2*N+1   % ascending order of natural frequency 
   for i=2:2*N+3-ii 
      if (natf(i-1)>natf(i)) 
         natf_=natf(i-1); 
         natf(i-1)=natf(i); 
         natf(i)=natf_; 
         for j=1:2*N+2 
            V_(j)=V(j,i-1); 
            V(j,i-1)=V(j,i); 
            V(j,i)=V_(j); 
         end 
      end 
   end 
end 
 
for i=1:N+1      % Define first four mode shapes for plotting 
   x(i)=i; 
   y1(i)=V(2*i-1,3); % amplitude 
   O1(i)=V(2*i  ,3); % slope 
   y2(i)=V(2*i-1,4); 
   O2(i)=V(2*i  ,4); 
   y3(i)=V(2*i-1,5); 
   O3(i)=V(2*i  ,5); 
   y4(i)=V(2*i-1,6); 
   O4(i)=V(2*i  ,6); 
   yp(i)=V(2*i-1,ip); % mode shape for output 
   Op(i)=V(2*i  ,ip); 
end 
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                 % Plot mode shapes 
figure           % amplitude 
subplot(2,1,1),plot(x,y1,x,y2,x,y3,x,y4) 
xlabel('Motor to ballscrew') 
ylabel('y amplitude') 
title('Mode shapes') 
 
hold on          % slope 
subplot(2,1,2),plot(x,O1,x,O2,x,O3,x,O4) 
xlabel('Motor to ballscrew') 
ylabel('y slope') 
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Appendix 4.5 – MATLAB function for calculating damped natural frequencies 
 
function[natf,damp]=natf_dr3(drive,N,iL,ipl) 
 
% This routine computes the damped natural frequencies and mode shapes 
% for a motor driven ballscrew system. 
% 
% The degrees of freedom considered are:- 
%  1        motor           torsional 
%  2        driving pulley  torsional 
%  3        driven pulley   torsional 
%  4 – N+3  ballscrew       torsional 
%  N+4      ballscrew       axial 
%  N+5      table / saddle  axial 
% 
% Output variables 
%     natf()    natural frequency array 
%     damp()    damping data array 
% 
% Input variables 
%     drive     select 'x' or 'y' drive 
%     N         number of elements in ballscrew 
%     iL        node number of load position 
%     ipl       node to plot 
% 
% Other variables 
%     A0(,)     A0 sub-matrix 
%     A1(,)     A1 sub-matrix 
%     A2(,)     A2 sub-matrix 
%     B1(,)     B1 sub-matrix 
%     B2(,)     B2 sub matrix 
%     c_()      damping coefficient array 
%     c_ax      damping coefficient ballscrew axial 
%     c_bl      damping coefficient drive belt 
%     c_brg_bs  damping coefficient ballscrew bearing 
%     c_brg_ms  damping coefficient motor bearing 
%     c_bs      damping coefficient ballscrew 
%     c_ms      damping coefficient motor shaft 
%     c_nut     damping coefficient ball nut 
%     D(,)      natural frequency matrix 
%     D_=       "hold" value for square of natural frequency 
%     damp_=    "hold" value for damping data 
%     damping   description of type of damping 
%     i         for loop counter 
%     ipl_      node number 
%     I(,)      unit matrix 
%     ii        for loop counter 
%     j         for loop counter 
%     J()       inertia array 
%     Jbs       moment of inertia ballscrew 
%     Jm        moment of inertia motor 
%     Jms       moment of inertia motor shaft 
%     Jp1       moment of inertia driving pulley 
%     Jp2       moment of inertia driven pulley 
%     K(,)      stiffness and damping combined matrix 
%     k_()      stiffness array 
%     k_ax      stiffness ballscrew axial 
%     k_bl      stiffness drive belt 
%     k_bs      stiffness ballscrew 
%     k_ms      stiffness motor shaft 
%     k_nut     stiffness ball nut 
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%     m_bm      mass of ballscrew 
%     m_tab     table ('x' drive), saddle and table ('y' drive) 
%     natf_     "hold" value for natural frequency 
%     natf_max  maximum natural frequency 
%     O(,)      zero matrix 
%     pi        pi 
%     R         ballscrew ratio 
%     rsum2     root mean square of mode shape amplitudes 
%     sum2      sum of squares of mode shape amplitudes 
%     u         belt drive ratio 
%     V(,)      mode shape matrix 
%     V_()      "hold" array for mode shape amplitudes 
%     x()       "x" array for plots 
%     y()       complex "y" array for plot data 
%     y1()      "y" array for "in-phase" plots 
%     y2()      "y" array for "quadrature" plots 
%     y3()      "y" array for "amplitude" plots 
%     y4()      "y" array for "phase" plots 
%     y_save    "hold" value for member of "y" array 
%     y_norm    renormalising value for "y" array 
%     zeta      damping ratio 
% 
% Subroutines used 
% MATLAB - abs angle atan diag eig eye (figure) (hold) imag int2str inv 
%          num2str plot real sqrt subplot title xlabel ylabel zeros 
% UoH    -  
 
pi=4.*atan(1.); 
 
                            % Data common to both drives 
Jm=0.0048;%kg m^2 
Jms=0.0000075;%kg m^2 
Jp1=0.0004986;%kg m^2 
Jbs=0.002724;%kg m^2 
m_bm=5.;%kg 
k_ms=5466.;%N m/rad 
k_bs=9735.;%N m/rad 
k_nut=5.e8;%N/m 
k_ax=482.7e6;%N/m 
c_ms=0.001;%N m sec/rad 
c_bs=0.0295;%N m sec/rad 
c_nut=58060.;%N sec/m 
c_ax=8326.;%N sec/m 
c_brg_ms=0.668e-3;%N m sec/rad 
c_brg_bs=0.668e-3;%N m sec/rad 
u=2.; 
R=0.0015915;%m/rad 
if (drive=='x'|drive=='X') 
   Jp2=0.017779;%kg m^2       Data particular to X drive 
   m_tab=359.;%kg 
   k_bl=1188.;%N m/rad 
   c_bl=0.797;%N m sec/rad 
else 
   Jp2=0.009524;%kg m^2       Data particular to Y drive 
   m_tab=677;%kg 
   k_bl=1167.;%N m/rad 
   c_bl=0.452;%N m sec/rad 
end 
 
J(1)=Jm + Jms/2.;           % Assemble inertia array 
J(2)=Jp1 + Jms/2.; 
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J(3)=Jp2 + Jbs/(N*2.); 
for i=4:N+3 
   J(i)=Jbs/N; 
end 
J(N+3)=J(N+3)/2.; 
J(N+4)=m_bm; 
J(N+5)=m_tab; 
 
k_(1)=k_ms;                 % Assemble stiffness array 
k_(2)=k_bl; 
for i=3:N+2 
   k_(i)=N*k_bs; 
end 
k_(N+3)=k_nut; 
k_(N+4)=k_ax; 
 
c_(1)=c_ms;                 % Assemble damping array 
c_(2)=c_bl; 
for i=3:N+2 
   c_(i)=N*c_bs; 
end 
c_(N+3)=c_brg_ms; 
c_(N+4)=c_brg_bs; 
c_(N+5)=c_nut; 
c_(N+6)=c_ax; 
 
O=zeros(N+5);               % Define zero matrix 
 
I=eye(N+5);                 % Define unity matrix 
 
A0=diag(J);                 % Define A0 matrix 
 
A1=O;                       % Define A1 matrix 
A1(1,1)=c_(1)+c_(N+3);      % Assemble upper half of A1 matrix 
A1(1,2)=(-1.)*c_(1); 
A1(2,2)=c_(1)+c_(2); 
A1(2,3)=(-1.)*u*c_(2); 
A1(3,3)=u^2*c_(2)+c_(3)+c_(N+4); 
A1(3,4)=(-1.)*c_(3); 
for i=4:N+2 
   A1(i,i)  =c_(i-1)+c_(i); 
   A1(i,i+1)=(-1.)*c_(i); 
end 
A1(iL,iL)  =A1(iL,iL)+R^2*c_(N+5); 
A1(iL,N+4) =R*c_(N+5); 
A1(iL,N+5) =(-1.)*R*c_(N+5); 
A1(N+3,N+3)=c_(N+2)+c_(N+4); 
A1(N+4,N+4)=c_(N+5)+c_(N+6); 
A1(N+4,N+5)=(-1.)*c_(N+5); 
A1(N+5,N+5)=c_(N+5); 
for i=1:N+4                 % Fill out A1 matrix 
   for j=i+1:N+5 
      A1(j,i)=A1(i,j); 
   end 
end 
 
A2=O;                       % Define A2 matrix 
A2(1,1)=k_(1);              % Assemble upper half of A2 matrix 
A2(1,2)=(-1.)*k_(1); 
A2(2,2)=k_(1)+k_(2); 
A2(2,3)=(-1.)*u*k_(2); 
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A2(3,3)=u^2*k_(2)+k_(3); 
A2(3,4)=(-1.)*k_(3); 
for i=4:N+2 
   A2(i,i)  =k_(i-1)+k_(i); 
   A2(i,i+1)=(-1.)*k_(i); 
end 
A2(iL,iL)  =A2(iL,iL)+R^2*k_(N+3); 
A2(iL,N+4) =R*k_(N+3); 
A2(iL,N+5) =(-1.)*R*k_(N+3); 
A2(N+3,N+3)=k_(N+2); 
A2(N+4,N+4)=k_(N+3)+k_(N+4); 
A2(N+4,N+5)=(-1.)*k_(N+3); 
A2(N+5,N+5)=k_(N+3); 
for i=1:N+4                 % Fill out A2 matrix 
   for j=i+1:N+5 
      A2(j,i)=A2(i,j); 
   end 
end 
 
B1=-inv(A0)*A1;             % Sets up K matrix for eigenvalue equation 
B2=-inv(A0)*A2; 
K=[O, I; B2, B1]; 
 
[V,D]=eig(K);               % Solve eigenvalue equation 
 
x=1:N+5;                    % Prepare natural frequency arrays 
natf_max=0.; 
for i=1:2*N+10 
   natf(i)=imag(D(i,i))/(2.*pi); 
   damp(i)=real(D(i,i)); 
   if natf_max<natf(i) 
      natf_max=natf(i); 
   end 
end 
 
for i=1:2*N+10              % Normalise mode shape vectors 
   sum2=0.; 
   for j=1:N+5 
      sum2=sum2 + V(j,i)*V(j,i)'; 
   end 
   rsum2=sqrt(sum2); 
   for j=1:N+5 
      V(j+N+5,i)=V(j+N+5,i)/D(i,i); 
   end 
   for j=1:2*N+10 
      V(j,i)=V(j,i)/rsum2; 
   end 
end 
 
for ii=1:2*N+9              % Order mode shape vectors by frequency 
   for i=2:2*N+11-ii 
      if (natf(i-1)>natf(i)) 
         natf_=natf(i-1); 
         natf(i-1)=natf(i); 
         natf(i)=natf_; 
         damp_=damp(i-1); 
         damp(i-1)=damp(i); 
         damp(i)=damp_; 
         for j=1:2*N+10 
            V_(j)=V(j,i-1); 
            V(j,i-1)=V(j,i); 
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            V(j,i)=V_(j); 
         end 
         D_=D(i-1,i-1); 
         D(i-1,i-1)=D(i,i); 
         D(i,i)=D_; 
      end 
   end 
end 
 
if (ipl<0)                  % Select mode shape 
   ipl_=N+6+ipl; 
elseif (0<ipl) 
   ipl_=N+5+ipl; 
else 
   disp('Invalid mode number - must be non-zero') 
   return 
end 
for i=1:N+5 
   y(i)=V(i,ipl_); 
end 
 
y_save=abs(y(1));           % Renormalise mode shape 
y_norm=y(1)/abs(y(1)); 
for i=1:N+5 
   if y_save<abs(y(i)) 
      y_save=abs(y(i)); 
      y_norm=y(i)/abs(y(i)); 
   end 
end 
for i=1:N+5 
   y(i)=y(i)/y_norm; 
end 
 
y(1)=y(1)/u;                % Set vector to ballscrew equivalent 
y(2)=y(2)/u; 
y(N+4)=y(N+4)/R; 
y(N+5)=y(N+5)/R; 
 
for i=1:N+5                 % Plot mode shape 
   y1(i)=real(y(i)); 
   y2(i)=imag(y(i)); 
   y3(i)=abs(y(i)); 
   y4(i)=angle(y(i))*180./pi; 
end    
if abs(natf(ipl_))<natf_max*1.e-5 
   damping='critical or over-damping'; 
else 
   zeta=sqrt((damp(ipl_))^2/((damp(ipl_))^2+(imag(D(ipl_,ipl_)))^2)); 
   damping=['zeta = ',num2str(zeta)]; 
end 
subplot(4,1,1) 
plot(x,y1,'k-.') 
title([drive,' drive, mode shape ',int2str(ipl),', f = 
',num2str(natf(ipl_)),' Hz, ',damping]) 
ylabel('In phase') 
subplot(4,1,2) 
plot(x,y2,'k-.') 
ylabel('Quadrature') 
subplot(4,1,3) 
plot(x,y3,'k-.') 
ylabel('Amplitude') 
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subplot(4,1,4) 
plot(x,y4,'k-.') 
ylabel('Phase (deg)') 
xlabel('Motor to ballscrew') 
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Appendix 4.6 – MATLAB routine for calculating sensitivity of a ballscrew system 
    to changes in stiffness 

Function “natf_dr3_k” calculates the damped natural frequencies.  It is based of function 

“natf_dr3” (see Appendix 4.5).  The input argument list includes the stiffness parameters which 

may be changed and the argument list includes all the natural frequencies and damping terms.  

The plotting section has been omitted. 
function[dnf_dk,dzt_dk]=natf_dr4(drive,N,iL) 
 
% This routine computes the sensitivity of damped natural frequencies to 
% changes in stiffness of various parts of a motor driven ballscrew system. 
 
% The degrees of freedom considered for the natural frequencies are:- 
%  1        motor           torsional 
%  2        driving pulley  torsional 
%  3        driven pulley   torsional 
%  4 – N+3  ballscrew       torsional 
%  N+4      ballscrew       axial 
%  N+5      table / saddle  axial 
% 
% The component stiffnesses considered are:- 
%           motor shaft          torsional 
%           drive belt           torsional equivalent 
%           ballscrew            torsional 
%           ballscrew + support  axial 
%           ballscrew nut        axial 
% 
% Output variables 
%     dnf_dk(,) sensitivity of natural frequency to changes in stiffness 
%     dzt_dk(,) sensitivity of damping ratio to changes in stiffness 
% 
% Input variables 
%     drive     select 'x' or 'y' drive 
%     N         number of elements in ballscrew 
%     iL        node number of load position 
% 
% Other variables 
%     damp()    damping ?? 
%     dm_ddm()  damping ?? with ith stiffness parameter incremented by 1% 
%     i         for loop counter 
%     j         for loop counter 
%     k         damping ?? for ith mode 
%     k_ax      stiffness ballscrew axial 
%     K_ax      k_ax incremented by 1% 
%     k_bl      stiffness drive belt 
%     K_bl      k_bl incremented by 1% 
%     k_bs      stiffness ballscrew 
%     K_bs      k_bs incremented by 1%  
%     k_ms      stiffness motor shaft 
%     K_ms      k_ms incremented by 1% 
%     k_nut     stiffness ball nut 
%     K_nut     k_nut incremented by 1% 
%     natf()    natural frequency array 
%     nf_dnf    natural frequency with ith stiffness parameter 
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%                incremented by 1% 
%     pi        pi 
%     w         natural frequency of ith mode (rad/sec) 
%     zeta()    damping ratio array 
%     zet_dz()  damping ratio array with ith stiffness parameter 
%                incremented by 1% 
 
% Subroutines used 
% MATLAB - atan sqrt 
% UoH    - natf_dr3_k(*) 
% 
pi=4.*atan(1.); 
 
k_ms=5466.;%N m/rad         % Data common to both drives 
k_bs=9735.;%N m/rad 
k_nut=5.e8;%N/m 
k_ax=482.7e6;%N/m 
if (drive=='x'|drive=='X') 
   k_bl=1188.;%N m/rad        Data particular to X drive 
else 
   k_bl=1167.;%N m/rad        Data particular to Y drive 
end 
 
% Determine damped natural frequencies – original stiffnesses 
[natf,damp]=natf_dr3_k(drive,k_ms,k_bl,k_bs,k_nut,k_ax,N,iL); 
 
for i=1:N+5 
   k          = damp(i+N+5); 
   w          = 2.*pi*natf(i+N+5); 
   zeta(i)    =sqrt(k^2/(k^2+w^2)); 
end 
 
for i=1:5                   % Assemble increased stiffness array 
   K_ms=k_ms; 
   K_bl=k_bl; 
   K_bs=k_bs; 
   K_nut=k_nut; 
   K_ax=k_ax; 
   if i==1 K_ms=k_ms*1.01;end 
   if i==2 K_bl=k_bl*1.01;end 
   if i==3 K_bs=k_bs*1.01;end 
   if i==4 K_nut=k_nut*1.01;end 
   if i==5 K_ax=k_ax*1.01;end 
 
% Determine damped natural frequencies % – ith stiffness increased by 1% 
   [nf_dnf,dm_ddm]=natf_dr3_k(drive,K_ms,K_bl,K_bs,K_nut,K_ax,N,iL); 
    
   for j=1:N+5 
      dnf_dk(i,j)=(nf_dnf(j+N+5)/natf(j+N+5)-1.)*100.; 
                            % .... natural frequency partial derivative 
      k          = dm_ddm(j+N+5); 
      w          = 2.*pi*nf_dnf(j+N+5); 
      zet_dz(j)  =sqrt(k^2/(k^2+w^2)); 
      dzt_dk(i,j)=(zet_dz(j)/zeta(j)-1.)*100.; 
                            % .... damping ratio partial derivative 
   end 
end 
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Appendix 4.7 – MATLAB routine for calculating sensitivity of a ballscrew system 
    to changes in damping 

Function “natf_dr3_c” calculates the damped natural frequencies.  It is based of function 

“natf_dr3” (see Appendix 4.5).  The input argument list includes the damping parameters which 

may be changed and the argument list includes all the natural frequencies and damping terms.  

The plotting section has been omitted. 
function[dnf_dc,dzt_dc]=natf_dr5(drive,N,iL) 
 
% This routine computes the sensitivity of damped natural frequencies to 
% changes in damping coefficient of various parts of a motor driven ballscrew 
% system. 
% 
% The degrees of freedom considered for the natural frequencies are:- 
%  1        motor           torsional 
%  2        driving pulley  torsional 
%  3        driven pulley   torsional 
%  4 – N+3  ballscrew       torsional 
%  N+4      ballscrew       axial 
%  N+5      table / saddle  axial 
% 
% The component stiffnesses considered are:- 
%           motor shaft          torsional 
%           motor bearing        torsional 
%           drive belt           torsional equivalent 
%           ballscrew            torsional 
%           ballscrew bearing    torsional 
%           ballscrew + support  axial 
%           ballscrew nut        axial 
% 
% Output variables 
%     dnf_dc(,) sensitivity of natural frequency to changes in damping 
%     dzt_dc(,) sensitivity of damping ratio to changes in damping 
% 
% Input variables 
%     drive     select 'x' or 'y' drive 
%     N         number of elements in ballscrew 
%     iL        node number of load position 
% 
% Other variables 
%     c_ax      damping coefficient ballscrew axial 
%     C_ax      c_ax incremented by 1% 
%     c_bl      stiffness drive belt 
%     C_bl      c_bl incremented by 1% 
%     c_brg_bs  damping coefficient ballscrew bearing 
%     C_brg_bs  c_brg_bs incremented by 1% 
%     c_brg_ms  damping coefficient motor bearing 
%     C_brg_ms  c_brg_ms incremented by 1% 
%     c_bs      stiffness ballscrew 
%     C_bs      c_bs incremented by 1%  
%     c_ms      stiffness motor shaft 
%     C_ms      c_ms incremented by 1% 
%     c_nut     stiffness ball nut 
%     C_nut     c_nut incremented by 1% 
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%     damp()    damping ?? 
%     dm_ddm()  damping ?? with ith stiffness parameter incremented by 1% 
%     i         for loop counter 
%     j         for loop counter 
%     k         damping ?? for ith mode 
%     natf()    natural frequency array 
%     nf_dnf    natural frequency with ith stiffness parameter 
%                incremented by 1% 
%     pi        pi 
%     w         natural frequency of ith mode (rad/sec) 
%     zeta()    damping ratio array 
%     zet_dz()  damping ratio array with ith stiffness parameter 
%                incremented by 1% 
 
% Subroutines used 
% MATLAB - atan sqrt 
% UoH    - natf_dr3_c(*) 
 
pi=4.*atan(1.); 
 
                            % Data common to both drives 
c_ms=0.001;%N m sec/rad 
c_bs=0.0295;%N m sec/rad 
c_nut=58060.;%N sec/m 
c_ax=8326.;%N sec/m 
c_brg_ms=0.668e-3;%N m sec/rad 
c_brg_bs=0.668e-3;%N m sec/rad 
if (drive=='x'|drive=='X') 
   c_bl=0.797;%N m sec/rad    Data particular to X drive 
else 
   c_bl=0.452;%N m sec/rad    Data particular to Y drive 
end 
 
                            % Determine damped natural frequencies 
                            % – original damping coefficients 
[natf,damp]=natf_dr3_c(drive,c_ms,c_bl,c_bs,c_nut,c_ax,c_brg_ms,c_brg_bs,N,iL)
; 
 
for i=1:N+5 
   k          = damp(i+N+5); 
   w          = 2.*pi*natf(i+N+5); 
   zeta(i)    =sqrt(k^2/(k^2+w^2)); 
end 
 
for i=1:7%                    Assemble increased damping coefficient array 
   C_ms=c_ms; 
   C_bl=c_bl; 
   C_bs=c_bs; 
   C_nut=c_nut; 
   C_ax=c_ax; 
   C_brg_ms=c_brg_ms; 
   C_brg_bs=c_brg_bs; 
 
   if i==1 C_ms=c_ms*1.01;end 
   if i==2 C_bl=c_bl*1.01;end 
   if i==3 C_bs=c_bs*1.01;end 
   if i==4 C_nut=c_nut*1.01;end 
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   if i==5 C_ax=c_ax*1.01;end 
   if i==6 C_brg_ms=c_brg_ms*1.01;end 
   if i==7 C_brg_bs=c_brg_bs*1.01;end 
 
                            % Determine damped natural frequencies 
                            % – ith damping coefficient increased by 1% 
   [nf_dnf,dm_ddm] 
    =natf_dr3_c(drive,C_ms,C_bl,C_bs,C_nut,C_ax,C_brg_ms,C_brg_bs,N,iL); 
    
   for j=1:N+5 
      dnf_dc(i,j)=(nf_dnf(j+N+5)/natf(j+N+5)-1.)*100.; 
                            % .... natural frequency partial derivative 
      k          = dm_ddm(j+N+5); 
      w          = 2.*pi*nf_dnf(j+N+5); 
      zet_dz(j)  =sqrt(k^2/(k^2+w^2)); 
      dzt_dc(i,j)=(zet_dz(j)/zeta(j)-1.)*100.; 
                            % .... damping ratio partial derivative 
   end 
end 
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Appendix 4.8 – MATLAB routine for calculating sensitivity of a ballscrew system 
    to changes in inertia 

Function “natf_dr3_J” calculates the damped natural frequencies.  It is based of function 

“natf_dr3” (see Appendix 4.5).  The input argument list includes the inertia parameters which 

may be changed and the argument list includes all the natural frequencies and damping terms.  

The plotting section has been omitted. 
function[dnf_dJ,dzt_dJ]=natf_dr9(drive,N,iL) 
 
% This routine computes the sensitivity of damped natural frequencies to 
% changes in inertia of various parts of a motor driven ballscrew system. 
% 
% The degrees of freedom considered for the natural frequencies are:- 
%  1        motor           torsional 
%  2        driving pulley  torsional 
%  3        driven pulley   torsional 
%  4 – N+3  ballscrew       torsional 
%  N+4      ballscrew       axial 
%  N+5      table / saddle  axial 
% 
% The component stiffnesses considered are:- 
%           motor shaft          torsional 
%           motor bearing        torsional 
%           drive belt           torsional equivalent 
%           ballscrew            torsional 
%           ballscrew bearing    torsional 
%           ballscrew + support  axial 
%           ballscrew nut        axial 
% 
% Output variables 
%     dnf_dJ(,) sensitivity of natural frequency to changes in inertia 
%     dzt_dJ(,) sensitivity of damping ratio to changes in inertia 
% 
% Input variables 
%     drive     select 'x' or 'y' drive 
%     N         number of elements in ballscrew 
%     iL        node number of load position 
% 
% Other variables 
%     damp()    damping ?? 
%     dm_ddm()  damping ?? with ith stiffness parameter incremented by 1% 
%     i         for loop counter 
%     j         for loop counter 
%     Jbs       moment of inertia ballscrew 
%     Jbs_      Jbs incremented by 1% 
%     Jm        moment of inertia motor 
%     Jm_       Jm incremented by 1% 
%     Jms       moment of inertia motor shaft 
%     Jms_      Jms incremented by 1%  
%     Jp1       moment of inertia driving pulley 
%     Jp1_      Jp1 incremented by 1% 
%     Jp2       moment of inertia driven pulley 
%     Jp2_      Jp2 incremented by 1% 
%     k         damping ?? for ith mode 
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%     m_bm      mass of ballscrew 
%     m_bm_     m_bm incremented by 1% 
%     m_tab     table ('x' drive), saddle and table ('y' drive) 
%     m_tab_    m_tab incremented by 1% 
%     natf()    natural frequency array 
%     nf_dnf    natural frequency with ith stiffness parameter incremented by 
1% 
%     pi        pi 
%     w         natural frequency of ith mode (rad/sec) 
%     zeta()    damping ratio array 
%     zet_dz()  damping ratio array with ith stiffness parameter incremented 
by 1% 
 
% Subroutines used 
% MATLAB - atan sqrt 
% UoH    - natf_dr_J 
% 
pi=4.*atan(1.); 
 
                            % Data common to both drives 
Jm=0.0048;%kg m^2 
Jms=0.0000075;%kg m^2 
Jp1=0.0004986;%kg m^2 
Jbs=0.002724;%kg m^2 
m_bm=5.;%kg 
if (drive=='x'|drive=='X') 
   Jp2=0.017779;%kg m^2       Data particular to X drive 
   m_tab=359.;%kg 
else 
   Jp2=0.009524;%kg m^2       Data particular to Y drive 
   m_tab=677.;%kg 
end 
 
                            % Determine damped natural frequencies 
                            % – original inertias 
 [natf,damp]=natf_dr_J(drive,Jm,Jms,Jp1,Jp2,Jbs,m_bm,m_tab,N,iL); 
 
for i=1:N+5 
   k          = damp(i+N+5); 
   w          = 2.*pi*natf(i+N+5); 
   zeta(i)    =sqrt(k^2/(k^2+w^2)); 
end 
 
for i=1:7                    %Assemble increased inertia array 
   Jm_=Jm; 
   Jms_=Jms; 
   Jp1_=Jp1; 
   Jp2_=Jp2; 
   Jbs_=Jbs; 
   m_bm_=m_bm; 
   m_tab_=m_tab; 
   if i==1 Jm_=Jm*1.01;end 
   if i==2 Jms_=Jms*1.01;end 
   if i==3 Jp1_=Jp1*1.01;end 
   if i==4 Jp2_=Jp2*1.01;end 
   if i==5 Jbs_=Jbs*1.01;end 
   if i==6 m_bm_=m_bm*1.01;end 
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   if i==7 m_tab_=m_tab*1.01;end 
 
                            % Determine damped natural frequencies 
                            % – ith inertia increased by 1% 
   [nf_dnf,dm_ddm]=natf_dr_J(drive,Jm_,Jms_,Jp1_,Jp2_,Jbs_,m_bm_,m_tab_,N,iL); 
    
   for j=1:N+5 
      dnf_dJ(i,j)=(nf_dnf(j+N+5)/natf(j+N+5)-1.)*100.; 
                            % .... natural frequency partial derivative 
      k          = dm_ddm(j+N+5); 
      w          = 2.*pi*nf_dnf(j+N+5); 
      zet_dz(j)  =sqrt(k^2/(k^2+w^2)); 
      dzt_dJ(i,j)=(zet_dz(j)/zeta(j)-1.)*100.; 
                            % .... damping ratio partial derivative 
   end 
end 
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Appendix 5.1  -  “C” program for axial and torsional degrees of freedom 
 
// Program "T3.cpp" 
//         ======== 
// 
// Version dated 16/10/02 
// Axial and torsional freedoms only, one node nut, generalised solution method. 
// Archive 03 - torque applied to nut driven end of screw. 
// "Long double" precision 
// Table friction included, (but may need more sophistication). 
// 
// Standard subroutine libraries 
#include <iostream.h> 
#include <math.h> 
#include <fstream.h> 
 
// Subroutine prototypes 
signed int dl_ab(signed int S, signed int N, double dt1); 
double dl_dt(signed int S, signed int N, float dt_in); 
void d_b0(signed int Msize, signed int j); 
void dl_b1(signed int Msize, signed int j, double dt1); 
void dl_b2(signed int S, signed int N, double dt1); 
void dl_bk(signed int S, signed int N, signed int k); 
void d_c0(signed int Msize, signed int j); 
void dl_c1(signed int Msize, double dt1); 
void dl_ck(signed int S, signed int N, signed int k); 
float d_KE(signed int Msize, signed int k); 
float dl_m_d(signed int Msize, signed int j); 
float dl_max_d(signed int Msize, signed int j); 
float d_m_extra(signed int Msize, signed int j); 
double dl_PE2(double bs_rat, double blash, double blf1, double blf2, 
 signed int Msize, signed int S, signed int j); 
void dl_rEnD(double bs_rat, float c_brg_1, float c_brg_2, signed int Msize, 
 signed int S, signed int j); 
void inc_d(signed int Msize, signed int j, signed int k); 
void inc_v(signed int Msize, signed int j, signed int k); 
double fric_tab(float m_tab, float g, float mu_tab, double bs_rat, double v_max, 
 double blash, double blf2, signed int S, signed int N, signed int j, 
 double dt1, signed int mode); 
//% 
//% Definition of matrix and array sizes 
#define SMAX 50         // Maximum number of elements in ballscrew 
#define NFS 2           // Number of degrees of freedom per ballscrew node 
#define BWS 4           // Bandwidth of ballscrew 
#define NMAX 0          // Maximum number of elements in ballscrew nut, 
                        //  (0 = 1 node) 
#define NFN 1           // Number of degrees of freedom per nut node 
#define BWN 1           // Bandwidth of nut 
#define KMAX 22         // Maximum number of iterations 
#define NBLOCK 1000     // Maximum number of steps in time history block 
#define SWRIT 100       // Number of time history steps between screen writes 
 
#define L1 (1+SMAX) 
#define L2 (1+NBLOCK) 
 
 
#define M1 (1+SMAX+1+NMAX+1) 
#define M2 (1+NFS*(SMAX+1)+NFN*(NMAX+1)) 
#define M3 (1+SMAX+1) 
#define M4 (BWS+BWN) 
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#define M5 (1+BWS+BWN) 
#define M6 ((BWS+BWN)*2) 
#define M7 (1+KMAX) 
 
//% Output variables 
static float x[L1];         // x array for plotting, (m) 
static float t1[L2];        // time, (sec) 
static float lind[L2][M1];  // linear displacement time history matrix, (m) 
static float linv[L2][M1];  // linear velocity time history matrix, (m/sec) 
static float tord[L2][M1];  // torsional displacement time history matrix, (rad) 
static float torv[L2][M1];  // torsional velocity time history matrix, (rad/sec) 
static float KE[L2];        // kinetic energy, (J) 
static float PE[L2];        // potential energy, (J) 
static float Ei[L2];        // energy input, (J) 
static float ED[L2];        // energy dissipated, (J) 
static float ED1[L2];       // energy dissipated by table friction, (J) 
static float TE[L2];        // total energy, (J) 
static double rEnD[M3];     // rate of energy dissipation, (W) 
static float R[L2];         // rate of energy dissipation, (W) 
//% 
//% Common arrays 
static double K[M2][M5];    // stiffness matrix, (N/m) 
static float K1[M2][M5];    // stiffness matrix - "fixed" version, (N/m) 
static double C[M2][M5];    // damping matrix, (N sec/m) 
static float C1[M2][M5];    // damping matrix - "fixed" version, (N sec/m) 
static float M[M2];         // mass of ballscrew elements, (kg) 
static float Mi[M2];        // inverse of mass array, (1/kg) 
static long double alpha[M2][M6]; // "-/M*dt1^2" matrix, (1) 
static long double beta[M2][M6];  // "-C/M*dt1" matrix, (1) 
static float f[M2];         // force vector, (N) 
static float f1[L2];        // force vector - screw end torque, (N m) 
static float f2[L2];        // force vector - nut, (N) 
static float Kn[L2];        // nut stiffness, (N/m) 
static float Cn[L2];        // nut damping, (N sec/m) 
static long double b[M2][M7]; // terms in time series for displacement, 
                              //  (m & rad) 
static long double c[M2][M7]; // terms in time series for velocity, 
                              //  (m/sec & rad/sec) 
static long double d[M2][M3]; // linear displacement time history matrix, 
                              //  (m & rad) 
static long double v[M2][M3]; // linear velocity time history matrix, 
                              //  (m/sec & rad/sec) 
static float xn1[L2];       // position of nut - ideal, (m) 
static float err[L2];       // controller error, (rad) 
static float perr[L2];      // position error, (rad) 
//% 
/*============================================================================*/ 
//% 
signed int main(void) 
{ 
//% Input variables 
signed int S=20;      // number of elements in ballscrew 
signed int N=0;       // number of elements in ballscrew nut, (0 = 1 node) 
float dt_in=0.001F;   // input time step, (sec) 
float drs=0.00001F;   // damping ratio - shaft 
float drb=0.0001F;    // damping ratio - bearings 
double drn=0.0001;    // damping ratio - nut 
double x1=0.1;        // x coordinate of start point, (m) 
double x2=0.2;        // x coordinate of end of acceleration, (m) 
double x3=0.5;        // x coordinate of start of deceleration, (m) 
double x4=0.6;        // x coordinate of end point, (m) 
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double v_max=0.2;     // maximum nut velocity, (m/sec) 
signed int mode=1;    // "fric_tab" mode of operation 
//%                     0 = "balanced force" mode 
//%                     1 = "damper" mode 
if (S>SMAX) {cout << "Too many elements in ballscrew - STOP"; return(1);} 
if (N>NMAX) {cout << "Too many elements in nut - STOP"; return(1);} 
//% 
//% Other variables 
double a1;            // rate of acceleration, (m/sec^2) 
double a2;            // rate of deceleration, (m/sec^2) 
double blash=10.e-6;  // backlash, (m) 
double blf1;          // backlash factor 1 
double blf2;          // backlash factor 2 
float A_bs;           // cross-sectional area of ballscrew, (m^2) 
double bs_rat;        // ballscrew ratio, (m/rad) 
double bs_rat2;       // =bs_rat^2, (m^2/rad^2) 
signed int calc;      // power series calculation indicator, 
                      //  = 'cont' - continue 
                      //  = 'stop' - stop 
float c_brg_1=0.668e-3F; // equivalent damping coefficient of bearings, 
float c_brg_2=0.668e-3F; // (N m sec/rad) 
float d_bs=38.1e-3F;  // diameter of ballscrew, (m) 
double dEnD;          // increment in energy dissipated, (J)  
double df1;           // stiffness and damping distribution factor 1 
double df2;           // stiffness and damping distribution factor 2 
double dt;            // time step, (sec) 
double dt1;           // time step, inner loop, (sec) 
float E=207.0e9F;     // Young's modulus, (N/m^2) 
float Ein;            // energy input, (J) 
double EnD;           // energy dissipated, (J)  
double EnD1;          // energy dissipated by table friction, (J)  
double eps=1.0e-9;    // convergence criterion 
float error;          // error in position of ballscrew end, (rad) 
float error1;         // error - previous step, (rad) 
float fd;             // driving torque, (N m) 
float fd_max;         // maximum torque at ballscrew enf, (N m) 
float g=9.80665F;     // acceleration due to gravity, (m/sec^2) 
float G=80.0e9F;      // shear modulus, (N/m^2) 
signed int i;         // for loop counter 
signed int ib;        // block item counter 
signed int ii;        // for loop counter 
signed int it;        // for loop counter 
signed int i1;        // matrix element subscript 
signed int i2;        // matrix element subscript 
signed int j;         // for loop counter 
float J_bs;           // total inertia of ballscrew, (kg m^2) 
signed int jj;        // for loop counter 
signed int k;         // index in power series 
float k_ax_nut=1.e8F; // axial stiffness of nut, (N/m) 
float k_ax_1= 8.0e8F; // axial stiffness of bearings, (N/m) 
float k_ax_2=15.6e8F; 
float K_bs;           // torsional constant of ballscrew, (m^4) 
float Kd=0.F;         // controller differential constant, (N m sec/rad) 
float Ki=100.F;       // controller integral constant, (N m/(rad sec)) 
float Kp=2.F;         // controller proportional constant, (N m/rad) 
float l_bs=1.520F;    // length of ballscrew, (m) 
float max_d;          // measure of maximum term of displacement vector 
                      //  at kth term, (?) 
float m_d;            // measure of displacement vector at kth term, (?) 
float m_extra;        // measure of last four terms in calculation 
                      //  of d vector, (?) 
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float m_tab=359.F;    // mass of saddle and table, (kg) 
float mu_tab=0.1F;    // coefficient of friction between table and slideways 
signed int Nt;        // number of columns in time history matrices 
signed int Ns=1;      // number of starts of ballscrew grooves 
double Ob;            // angular position of "nut point" on screw, (rad) 
double pi;            // pi 
float pitch=0.010F;   // ballscrew pitch, (m) 
float rho=7600.F;     // density, (kg/m^3) 
float S_error;        // integral of error in position of ballscrew end, 
                      //  (rad sec) 
signed int SN1;       // SN1=S+1+N+1, number of nodes 
signed int SN2;       // SN2=NFS*(S+1)+NFN*(N+1), number of degrees of freedom 
double t;             // time, (sec) 
double t2;            // time of end of acceleration, (sec) 
double t3;            // time of start of deceleration, (sec) 
double t4;            // time of end point, (sec) 
double t5;            // time at end of simulation, (sec) 
double vn;            // velocity of nut - ideal, (m/sec) 
double xb;            // position of "nut point" on screw, (m) 
double xn;            // position of nut - ideal, (m) 
//% 
//% Subroutines used 
//% 1. atan, cout, double, float, fmod, ofstream, return, signed int 
//% 2. dl_ab, dl_dt, d_b0, dl_b1, dl_b2, dl_bk, d_c0, dl_c1, dl_ck, d_KE, 
//%    dl_max_d, dl_m_d, d_m_extra, dl_PE2, dl_rEnD, inc_d, inc_v 
//% 
//% Output streams used 
//% os_x, os_t1, os_f1, os_f2, os_Kn, os_Cn, os_xn1, os_lind, os_linv, 
//% os_tord, os_torv, os_KE, os_PE, os_Ei, os_ED, os_ED1, os_TE, os_rEnD, 
//% os_R, os_err, os_perr, os_b1, os_b2, os_Kf, os_b 
//% 
//% Special variables used 
//% endl, NULL 
//% 
// Sets up output streams for results files 
ofstream os_x(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\x”,ios::out); 
if (os_x==NULL) {cout << "File 'x' not opened - STOP"; return(1);} 
ofstream os_t1(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\t1”,ios::out); 
if (os_t1==NULL) {cout << "File 't1' not opened - STOP"; return(1);} 
ofstream os_f1(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\f1”,ios::out); 
if (os_f1==NULL) {cout << "File 'f1' not opened - STOP"; return(1);} 
ofstream os_f2(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\f2”,ios::out); 
if (os_f2==NULL) {cout << "File 'f2' not opened - STOP"; return(1);} 
ofstream os_Kn(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\Kn”,ios::out); 
if (os_Kn==NULL) {cout << "File 'Kn' not opened - STOP"; return(1);} 
ofstream os_Cn(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\Cn”,ios::out); 
if (os_Cn==NULL) {cout << "File 'Cn' not opened - STOP"; return(1);} 
ofstream os_xn1(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\xn1”,ios::out); 
if (os_xn1==NULL) {cout << "File 'xn1' not opened - STOP"; return(1);} 
ofstream 
os_lind(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\lind”,ios::out); 
if (os_lind==NULL) {cout << "File 'lind' not opened - STOP"; return(1);} 
ofstream 
os_linv(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\linv”,ios::out); 
if (os_linv==NULL) {cout << "File 'linv' not opened - STOP"; return(1);} 
ofstream 
os_tord(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\tord”,ios::out); 
if (os_tord==NULL) {cout << "File 'tord' not opened - STOP"; return(1);} 
ofstream 
os_torv(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\torv”,ios::out); 
if (os_torv==NULL) {cout << "File 'torv' not opened - STOP"; return(1);} 
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ofstream os_KE(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\KE”,ios::out); 
if (os_KE==NULL) {cout << "File 'KE' not opened - STOP"; return(1);} 
ofstream os_PE(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\PE”,ios::out); 
if (os_PE==NULL) {cout << "File 'PE' not opened - STOP"; return(1);} 
ofstream os_Ei(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\Ei”,ios::out); 
if (os_Ei==NULL) {cout << "File 'Ei' not opened - STOP"; return(1);} 
ofstream os_ED(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\ED”,ios::out); 
if (os_ED==NULL) {cout << "File 'ED' not opened - STOP"; return(1);} 
ofstream os_ED1(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\ED1”,ios::out); 
if (os_ED1==NULL) {cout << "File 'ED1' not opened - STOP"; return(1);} 
ofstream os_TE(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\TE”,ios::out); 
if (os_TE==NULL) {cout << "File 'TE' not opened - STOP"; return(1);} 
ofstream 
os_rEnD(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\rEnD”,ios::out); 
if (os_rEnD==NULL) {cout << "File 'rEnD' not opened - STOP"; return(1);} 
ofstream os_R(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\R”,ios::out); 
if (os_R==NULL) {cout << "File 'R' not opened - STOP"; return(1);} 
ofstream os_err(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\err”,ios::out); 
if (os_err==NULL) {cout << "File 'err' not opened - STOP"; return(1);} 
ofstream 
os_perr(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\perr”,ios::out); 
if (os_perr==NULL) {cout << "File 'perr' not opened - STOP"; return(1);} 
ofstream os_b1(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\b1”,ios::out); 
if (os_b1==NULL) {cout << "File 'b1' not opened - STOP"; return(1);} 
ofstream os_b2( “d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\b2”,ios::out); 
if (os_b2==NULL) {cout << "File 'b2' not opened - STOP"; return(1);} 
 
pi=4.*atan(1.);           // pi 
 
bs_rat=double(Ns)*double(pitch)/(2.*pi); // ballscrew ratio 
bs_rat2=bs_rat*bs_rat; 
 
SN1=S+1+N+1;             // number of nodes 
SN2=NFS*(S+1)+NFN*(N+1); // number of freedoms 
 
// Define inertia array 
J_bs=0.F; 
M[1]=float(pi)/4.F*(d_bs*d_bs)*l_bs*rho/(2.F*float(S)); 
M[2]=float(pi)/64.F*(d_bs*d_bs*d_bs*d_bs)*l_bs*rho/(2.F*float(S)); 
J_bs=J_bs + M[2]; 
for (i=2;i<=S;i++) 
  { 
  i1=2*i-1; 
  i2=2*i; 
  M[i1]=float(pi)/4.F*(d_bs*d_bs)*l_bs*rho/float(S); 
  M[i2]=float(pi)/64.F*(d_bs*d_bs*d_bs*d_bs)*l_bs*rho/float(S); 
  J_bs=J_bs + M[i2]; 
  } 
M[NFS*S+1]=float(pi)/4.F*(d_bs*d_bs)*l_bs*rho/(2.F*float(S)); 
M[NFS*S+2]=float(pi)/64.F*(d_bs*d_bs*d_bs*d_bs)*l_bs*rho/(2.F*float(S)); 
J_bs=J_bs + M[NFS*S+2]; 
M[NFS*(S+1)+NFN*(N+1)]=m_tab; // only works if N=0 
 
// Define inverse mass array 
for (i=1;i<=SN2;i++) 
  { 
  Mi[i]=1.F/M[i]; 
  } 
 
// Define stiffness and damping matrices ("fixed" terms), 
// only valid for NFS=2 ,axial and torsional 
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// Lines marked !£! - only valid for NFN=1 and N=0 
A_bs=float(pi)/4.F*(d_bs*d_bs); 
K_bs=float(pi)/32.F*(d_bs*d_bs*d_bs*d_bs); 
 
for (i=1;i<=SN2;i++) 
  { 
  for (j=1;j<=M4;j++) 
    { 
    K1[i][j]=0.F; 
    C1[i][j]=0.F; 
    } 
  } 
K1[1][1]=     E*A_bs/(l_bs/float(S)); 
K1[1][3]=-1.F*E*A_bs/(l_bs/float(S)); 
K1[2][1]=     G*K_bs/(l_bs/float(S)); 
K1[2][3]=-1.F*G*K_bs/(l_bs/float(S)); 
for (i=2;i<=S;i++) 
  { 
  i1=2*i-1; 
  i2=2*i; 
  K1[i1][1]= 2.F*E*A_bs/(l_bs/float(S)); 
  K1[i1][3]=-1.F*E*A_bs/(l_bs/float(S)); 
  K1[i2][1]= 2.F*G*K_bs/(l_bs/float(S)); 
  K1[i2][3]=-1.F*G*K_bs/(l_bs/float(S)); 
  } 
K1[NFS*S+1][1]=E*A_bs/(l_bs/float(S)); 
K1[NFS*S+2][1]=G*K_bs/(l_bs/float(S)); 
 
for (i=1;i<=NFS*(S+1);i++) 
  { 
  for (j=1;j<=M4;j++) 
    { 
    C1[i][j]=drs*K1[i][j]; 
    } 
  } 
 
K1[1][1]=K1[1][1] + k_ax_1; 
K1[NFS*S+1][1]=K1[NFS*S+1][1] + k_ax_2; 
K1[NFS*(S+1)+NFN*(N+1)][1]=k_ax_nut; // !£! 
C1[1][1]=C1[1][1] + drb*k_ax_1; 
C1[2][1]=C1[2][1] + c_brg_1; 
C1[NFS*S+1][1]=C1[NFS*S+1][1] + drb*k_ax_2; 
C1[NFS*S+2][1]=C1[NFS*S+2][1] + c_brg_2; 
C1[NFS*(S+1)+NFN*(N+1)][1]=K1[NFS*(S+1)+NFN*(N+1)][1]*float(drn); // !£! 
 
// Define time step 
for (i=1;i<=SN2;i++)// Zeroise “alpha” and “beta” matrices 
  { 
  for (j=1;j<=2*BWS+2*BWN-1;j++) 
    { 
    alpha[i][j]=0.L; 
    beta [i][j]=0.L; 
    } 
  } 
dt=dl_dt(S,N,dt_in); 
cout << "dt_in = " << dt_in << " sec, dt = " << dt << " sec\n"; 
if (dt<0.) {cout << "ERROR:  failure to define time step.\n"; return(1);} 
 
// Define trapezoidal velocity profile parameters 
a1=(v_max*v_max)/(2.*(x2-x1)); 
t2=v_max/a1; 
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t3=t2 + (x3-x2)/v_max; 
a2=-(v_max*v_max)/(2.*(x4-x3)); 
t4=t3 - v_max/a2; 
t5=t4*1.1; 
 
// Estimates maximum torque on ballscrew 
fd_max=(J_bs+float(bs_rat2)*m_tab)*float(a1/bs_rat) * 5.F; 
 
xn=x1; // Sets initial position of nut 
vn=0.; //   
 
// Sets number of time steps 
Nt=signed int(t5/dt)+1; cout << "Nt = " << Nt << “\n”; 
 
// Zeroises output arrays and energy variables 
t1[0]=0.F; os_t1 << “ “ << t1[0]; 
f1[0]=0.F; os_f1 << “ “ << f1[0]; 
f2[0]=0.F; os_f2 << “ “ << f2[0]; 
Kn[0]=0.F; os_Kn << “ “ << Kn[0]; 
Cn[0]=0.F; os_Cn << “ “ << Cn[0]; 
xn1[0]=float(x1); os_xn1 << “ “ << xn1[0]; 
for (i=1;i<=S+1;i++) 
  { 
  lind[0][i]=0.F; os_lind << “ “ << lind[0][i]; 
  linv[0][i]=0.F; os_linv << “ “ << linv[0][i]; 
  tord[0][i]=float(x1/bs_rat); os_tord << “ “ << tord[0][i]; 
  torv[0][i]=0.F; os_torv << “ “ << torv[0][i]; 
  } 
lind[0][SN1]=float(x1); os_lind << “ “ << lind[0][SN1]; 
linv[0][SN1]=0.F; os_linv << “ “ << linv[0][SN1]; 
tord[0][SN1]=0.F; os_tord << “ “ << tord[0][SN1]; 
torv[0][SN1]=0.F; os_torv << “ “ << torv[0][SN1]; 
os_lind << endl; 
os_linv << endl; 
os_tord << endl; 
os_torv << endl; 
 
KE[0]=0.F; os_KE << “ “ << KE[0]; 
PE[0]=0.F; os_PE << “ “ << PE[0]; 
Ein=0.F; 
Ei[0]=0.F; os_Ei << “ “ << Ei[0]; 
EnD=0.; 
EnD1=0.; 
ED[0]=0.F; os_ED << “ “ << ED[0]; 
ED1[0]=0.F; os_ED1 << “ “ << ED1[0]; 
os_TE << “ “ << 0.; 
rEnD[1]=0.; os_rEnD << “ “ << rEnD[1]; 
os_R << “ “ << 0.; 
os_err << “ “ << 0.; 
os_perr << “ “ << 0.; 
os_b1 << “ “ << 0.; 
os_b2 << “ “ << 0.; 
 
// Zeroises displacement, velocity and force arrays 
for (i=1;i<=SN2;i++) 
  { 
  d[i][1]=0.; 
  v[i][1]=0.; 
  } 
 
// Defines 'x' co-ordinate array for ballscrew 
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for (i=0;i<=S;i++) 
  { 
  x[i]=float(i)*l_bs/float(S); os_x << “ “ << x[i]; 
  } 
os_x << endl; 
 
// Initialises working variables for main loop 
ib=0; 
error1=0.F; 
S_error=0.F; 
dt1=dt/double(S); 
t=-dt1; 
 
for (it=1;it<=Nt;it++) // Start main loop 
  { 
  ib=ib+1; 
  error=float(vn/bs_rat-v[2][1]); // velocity control 
  S_error=S_error + error*float(dt); 
  fd=Kp*error + Ki*S_error + Kd*(error-error1)/float(dt); 
  error1=error; 
  for (j=1;j<=S;j++) // Start inner loop 
    { 
    t=t+dt1; 
    // Defines trapezoidal velocity profile 
    for (i=1;i<=SN2;i++) 
      { 
      f[i]=0.F; 
      } 
    if ((0.<=t) && (t<t2)) 
      { 
      xn=x1 + 0.5*a1*(t*t); 
      vn=a1*t; 
      } 
    else if ((t2<=t) && (t<t3)) 
      { 
      xn=x2 + v_max*(t-t2); 
      vn=v_max; 
      } 
    else if ((t3<=t) && (t<t4)) 
      { 
      xn=x3 + v_max*(t-t3) + 0.5*a2*((t-t3)*(t-t3)); 
      vn=v_max + a2*(t-t3); 
      } 
    else 
      { 
      xn=x4; 
      vn=0.; 
      } 
 
    // Copy "fixed" stiffness and damping matrices into working matrices 
    for (ii=1;ii<=SN2;ii++) 
      { 
      for (jj=1;jj<=M4;jj++) 
        {  
        K[ii][jj]=double(K1[ii][jj]); 
        C[ii][jj]=double(C1[ii][jj]); 
        } 
      } 
 
    // Define nut/screw connection terms 
    for (ii=1;ii<=S;ii++) // (only valid for NFS=2, axial and torsional) 
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      { 
      i1=2*ii-1; 
      i2=2*ii; 
      if ((x[ii-1]<=xn) && (xn<=x[ii])) 
        { 
        df1=(x[ii] - xn)*double(S)/double(l_bs); 
        df2=(xn-x[ii-1])*double(S)/double(l_bs); 
        xb=df1*d[i1][j] + df2*d[i1+NFS][j]; 
        Ob=df1*d[i2][j] + df2*d[i2+NFS][j]; 
        if ((xb+bs_rat*Ob)<(d[SN2][j]-blash/2.)) // Defines backlash state 
          { 
          blf1=1.; 
          blf2=-1.; 
          } 
        else if ((d[SN2][j]+blash/2.)<(xb+bs_rat*Ob)) 
          { 
          blf1=1.; 
          blf2=1.; 
          } 
        else 
          { 
          blf1=0.; 
          blf2=0.; 
          } 
        K[i1][1]=K[i1][1] + blf1*double(k_ax_nut)*df1; 
        K[i1+NFS][1]=K[i1+NFS][1] + blf1*double(k_ax_nut)*df2; 
        K[i1][M4]=blf1*double(-k_ax_nut)*df1; 
        K[i1+NFS][M4]=blf1*double(-k_ax_nut)*df2; 
 
        K[i2][1]=K[i2][1] + blf1*bs_rat2*double(k_ax_nut)*df1; 
        K[i2+NFS][1]=K[i2+NFS][1] + blf1*bs_rat2*double(k_ax_nut)*df2; 
        K[i2][M4]=-blf1*bs_rat*double(k_ax_nut)*df1; 
        K[i2+NFS][M4]=-blf1*bs_rat*double(k_ax_nut)*df2; 
 
        K[i1][2]=blf1*bs_rat*double(k_ax_nut)*df1; 
        K[i1+NFS][2]=blf1*bs_rat*double(k_ax_nut)*df2; 
 
        K[SN2][1]=blf1*K[SN2][1]; 
 
        C[i1][1]=C[i1][1] - K[i1][M4]*drn; 
        C[i1+NFS][1]=C[i1+NFS][1] - K[i1+NFS][M4]*drn; 
        C[i1][M4]=K[i1][M4]*drn; 
        C[i1+NFS][M4]=K[i1+NFS][M4]*drn; 
 
        C[i2][1]=C[i2][1] - K[i2][M4]*bs_rat*drn; 
        C[i2+NFS][1]=C[i2+NFS][1] - K[i2+NFS][M4]*bs_rat*drn; 
        C[i2][M4]=K[i2][M4]*drn; 
        C[i2+NFS][M4]=K[i2+NFS][M4]*drn; 
 
        C[i1][2]=K[i1][2]*drn; 
        C[i1+NFS][2]=K[i1+NFS][2]*drn; 
 
        C[SN2][1]=blf1*C[SN2][1]; 
 
        f[i1]=float(blf2*blash*double(k_ax_nut)*df1/2.); // Modifies force 
        f[i1+NFS]=float(blf2*blash*double(k_ax_nut)*df2/2.); // depending on 
        f[i2]=float(blf2*bs_rat*blash*double(k_ax_nut)*df1/2.); // state of 
        f[i2+NFS]=float(blf2*bs_rat*blash*double(k_ax_nut)*df2/2.); // backlash 
        f[SN2]=-float(blf2*blash*double(k_ax_nut)/2.); 
        f[2]=f[2] + fd; 
        } 
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      } 
 
    ofstream os_Kf(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\Kf”, 
                    ios::out); 
    if (os_Kf==NULL) {cout << "File 'Kf' not opened - STOP"; return(1);} 
    os_Kf << "K matrix:- \n"; 
    for (i=1;i<=NFS*(S+1)+NFN*(N+1);i++) 
      { 
      os_Kf << "i = " << i ; 
      for (jj=1;jj<=M4;jj++) 
        { 
        os_Kf << “ “ << K[i][jj]; 
        } 
      os_Kf << endl; 
      } 
    os_Kf << "f matrix:- \n"; 
    for (i=1;i<=NFS*(S+1)+NFN*(N+1);i++) 
      { 
      os_Kf << "i = " << i << “ “ << f[i] << endl; 
      } 
 
    // Increments energy dissipated 
    dEnD=fric_tab(m_tab,g,mu_tab,bs_rat,v_max,blash,blf2,S,N,j,dt1,mode); 
    EnD=EnD + dEnD; 
    // Increments energy dissipated by table friction 
    EnD1=EnD1 + dEnD; 
 
    // Defines "alpha" and "beta" matrices 
    dl_ab(S,N,dt1); 
 
    // Builds up the solution arrays "b" and "c" 
    // and increments the displacements and velocities 
    d_b0(SN2,j); inc_d(SN2,j+1,0); 
    d_c0(SN2,j); inc_v(SN2,j+1,0); 
    dl_b1(SN2,j,dt1); inc_d(SN2,j+1,1); dl_b2(S,N,dt1); 
    dl_c1(SN2,dt1); inc_v(SN2,j+1,1); 
    inc_d(SN2,j+1,2); 
    dl_ck(S,N,2); inc_v(SN2,j+1,2); 
    calc='cont'; 
    k=2; 
    while (calc=='cont') 
      { 
      for (i=1;i<=4;i++) 
        { 
        k=k+1; 
        if (KMAX<k) 
          { 
          cout << "ERROR:  power series calculation run over matrix 
                    size limit.\n"; 
          return(1); 
          } 
        dl_bk(S,N,k); inc_d(SN2,j+1,k); 
        dl_ck(S,N,k); inc_v(SN2,j+1,k); 
        } 
 
      // Tests for convergence of solution 
      m_extra=d_m_extra(SN2,k); 
      m_d=dl_m_d(SN2,j+1); 
      max_d=dl_max_d(SN2,j+1); 
      if ((m_extra<m_d*eps)||(max_d<1.e-12F)) calc='stop'; 
      } 
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    ofstream os_b(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\b”,ios::out); 
    if (os_b==NULL) {cout << "File 'b' not opened - STOP"; return(1);} 
    os_b << "b matrix:- \n"; 
    for (i=1;i<=NFS*(S+1)+NFN*(N+1);i++) 
      { 
      os_b << "i = " << i ; 
      for (jj=1;jj<=k;jj++) 
        { 
        os_b << “ “ << b[i][jj]; 
        } 
      os_b << endl; 
      } 
    os_b << "c matrix:- \n"; 
    for (i=1;i<=NFS*(S+1)+NFN*(N+1);i++) 
      { 
      os_b << "i = " << i ; 
      for (jj=1;jj<=k;jj++) 
        { 
        os_b << “ “ << c[i][jj]; 
        } 
      os_b << endl; 
      } 
 
    // Calculates rate of energy dissipation due to viscous damping 
    dl_rEnD(bs_rat,c_brg_1,c_brg_2,SN2,S,j+1); 
    if (it==Nt) os_rEnD << “ “ << rEnD[j+1]; 
    EnD=EnD + (rEnD[j]+rEnD[j+1])/2.*dt1; 
    Ein=Ein + float(d[2][j+1]-d[2][j])*-fd; 
    } // End of inner loop 
  os_b1 << “ “ << blf1; 
  os_b2 << “ “ << blf2; 
 
  // Up-dates output arrays 
  t1[ib]=float(t+dt1); 
  f1[ib]=fd; 
  f2[ib]=f[SN2]; 
  Kn[ib]=float(K[SN2][1]); 
  Cn[ib]=float(C[SN2][1]); 
  err[ib]=error; 
  xn1[ib]=float(xn); 
  for (i=1;i<=SN1;i++) // (only valid for NFS=2 ,axial and torsional) 
    { 
    i1=2*i-1; 
    i2=2*i; 
    lind[ib][i]=float(d[i1][S+1]); 
    linv[ib][i]=float(v[i1][S+1]); 
    tord[ib][i]=float(d[i2][S+1] + x1/bs_rat); 
    torv[ib][i]=float(v[i2][S+1]); 
    } 
  lind[ib][SN1]=lind[ib][SN1] + float(x1); 
  perr[ib]=float(d[SN2][S+1]+x1-xn); 
 
  // Re-sets displacement, velocity and energy dissipation rate arrays 
  for (i=1;i<=SN2;i++) 
    { 
    d[i][1]=d[i][S+1]; 
    v[i][1]=v[i][S+1]; 
    } 
  rEnD[1]=rEnD[S+1]; 
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  // Up-dates energy arrays 
  KE[ib]=d_KE(SN2,S+1); 
  PE[ib]=float(dl_PE2(bs_rat,blash,blf1,blf2,SN2,S,S+1)); 
  Ei[ib]=Ein; 
  ED[ib]=float(EnD); 
  ED1[ib]=float(EnD1); 
  TE[ib]=KE[ib]+PE[ib]+Ei[ib]+ED[ib]; 
  R[ib]=float(rEnD[S+1]); 
 
  // Write results to file 
  if ((ib==NBLOCK)||(it==Nt)) 
    { 
    for (ii=1;ii<=ib;ii++) 
      { 
      os_t1 << “ “ << t1[ii]; 
      os_f1 << “ “ << f1[ii]; 
      os_f2 << “ “ << f2[ii]; 
      os_Kn << “ “ << Kn[ii]; 
      os_Cn << “ “ << Cn[ii]; 
      os_xn1 << “ “ << xn1[ii]; 
      for (jj=1;jj<=SN1;jj++) 
        { 
        os_lind << “ “ << lind[ii][jj]; 
        os_linv << “ “ << linv[ii][jj]; 
        os_tord << “ “ << tord[ii][jj]; 
        os_torv << “ “ << torv[ii][jj]; 
        } 
      os_lind << endl; 
      os_linv << endl; 
      os_tord << endl; 
      os_torv << endl; 
      os_KE << “ “ << KE[ii]; 
      os_PE << “ “ << PE[ii]; 
      os_Ei << “ “ << Ei[ii]; 
      os_ED << “ “ << ED[ii]; 
      os_ED1 << “ “ << ED1[ii]; 
      os_TE << “ “ << TE[ii]; 
      os_R << “ “ << R[ii]; 
      os_err << “ “ << err[ii]; 
      os_perr << “ “ << perr[ii]; 
      } 
    ib=0; // Reset block counter 
    } 
  if (signed int(fmod(double(Nt-it),double(SWRIT)))==0) 
    { 
    cout << Nt-it << " loops to go\n"; 
    } 
  } // End of main loop 
cout << "fd_max = " << fd_max << “\n”; 
 
// Close files 
os_t1 << endl; 
os_f1 << endl; 
os_f2 << endl; 
os_Kn << endl; 
os_Cn << endl; 
os_xn1 << endl; 
os_KE << endl; 
os_PE << endl; 
os_Ei << endl; 
os_ED << endl; 
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os_ED1 << endl; 
os_TE << endl; 
os_rEnD << endl; 
os_R << endl; 
os_err << endl; cout << endl; 
os_perr << endl; 
os_b1 << “ “ << endl; 
os_b2 << “ “ << endl; 
 
return(0); 
} 
 
/*============================================================================*/ 
 
signed int dl_ab(signed int S, signed int N, double dt1) 
{ 
//  This subroutine defines the "alpha" and "beta" arrays using the 
//  formulas:- 
//  alpha = -M * dt^2 
//  beta  = -M * dt 
// 
//  The detailed coding takes into account the special compact layout 
//  of the matrices. 
// 
//% Input variables 
// S;                 // number of elements in ballscrew 
// N;                 // number of elements in ballscrew nut 
// dt1;               // time step, inner loop, (sec) 
//% 
//% Other variables 
signed int i;         // for loop counter 
signed int j;         // for loop counter 
//% 
//% Subroutines used 
//% double, cout, long double 
//% 
//% Output streams used 
//% os_ab 
//% 
for (i=1;i<=NFS*(S+1);i++) 
  { 
  for (j=-BWS+1;j<=BWS-1;j++) 
    { 
    if ((j<0)&&(0<i+j)) 
      { 
      alpha[i][j+BWS+BWN] 
       =(-1.L)*long double(Mi[i])*long double(K[i+j][1-j]*(dt1*dt1)); 
      beta [i][j+BWS+BWN] 
       =(-1.L)*long double(Mi[i])*long double(C[i+j][1-j]*dt1); 
      } 
    if ((0<=j)&&(i+j<=NFS*(S+1))) 
      { 
      alpha[i][j+BWS+BWN] 
       =(-1.L)*long double(Mi[i])*long double(K[i][j+1]*(dt1*dt1)); 
      beta [i][j+BWS+BWN] 
       =(-1.L)*long double(Mi[i])*long double(C[i][j+1]*dt1); 
      } 
    } 
  } 
for (i=1;i<=NFS*(S+1);i++) 
  { 
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  alpha[i][1]=(-1.L)*long double(Mi[NFS*(S+1)+NFN*(N+1)]) 
               *long double(K[i][BWS+BWN]*(dt1*dt1)); 
  beta [i][1]=(-1.L)*long double(Mi[NFS*(S+1)+NFN*(N+1)]) 
               *long double(C[i][BWS+BWN]*dt1); 
  alpha[i][2*BWS+2*BWN-1]=(-1.L)*long double(Mi[i]) 
                           *long double(K[i][BWS+BWN]*(dt1*dt1)); 
  beta [i][2*BWS+2*BWN-1]=(-1.L)*long double(Mi[i]) 
                           *long double(C[i][BWS+BWN]*dt1); 
  } 
alpha[NFS*(S+1)+NFN*(N+1)][BWS+BWN] 
 =(-1.L)*long double(Mi[NFS*(S+1)+NFN*(N+1)]) 
   *long double(K[NFS*(S+1)+NFN*(N+1)][1]*(dt1*dt1)); /*NOT*/ 
beta [NFS*(S+1)+NFN*(N+1)][BWS+BWN] 
 =(-1.L)*long double(Mi[NFS*(S+1)+NFN*(N+1)]) 
   *long double(C[NFS*(S+1)+NFN*(N+1)][1]*dt1); /*NOT*/ 
 
ofstream os_ab(“d:\\c_drive_1\\ph_d\ballscrew_model\\dynamic_2\\ab”,ios::out); 
if (os_ab==NULL) {cout << "File 'ab' not opened - STOP"; return(1);} 
os_ab << "alpha matrix:- \n"; 
for (i=1;i<=NFS*(S+1)+NFN*(N+1);i++) 
  { 
  os_ab << "i = " << i ; 
  for (j=1;j<=2*(BWN+BWS)-1;j++) 
    { 
    os_ab << “ “ << alpha[i][j]; 
    } 
  os_ab << endl; 
  } 
os_ab << "beta matrix:- \n"; 
for (i=1;i<=NFS*(S+1)+NFN*(N+1);i++) 
  { 
  os_ab << "i = " << i ; 
  for (j=1;j<=2*(BWN+BWS)-1;j++) 
    { 
    os_ab << “ “ << beta[i][j]; 
    } 
  os_ab << endl; 
  } 
return(0); 
} 
 
/*============================================================================*/ 
 
double dl_dt(signed int S, signed int N, float dt_in) 
{ 
//  This subroutine defines the time step suitable for use in 
//  the solution process. 
// 
//  The detailed coding takes into account the special compact layout 
//  of the matrices. 
// 
//% Output variables 
double dt;            // output time step, (sec) 
//% 
//% Input variables 
// S;                 // number of elements in ballscrew 
// N;                 // number of elements in ballscrew nut 
// dt_in;             // input time step, (sec) 
//% 
//% Other variables 
double dtest;         // first estimate of time step, (sec) 
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double dt1est;        // first estimate of inner loop time step, (sec) 
signed int exp;       // exponent of dtest 
signed int i;         // for loop counter 
signed int j;         // for loop counter 
double log10dt;       // log10(1/dtest) 
double man;           // mantissa of dtest 
double Mmag;          // "magnitude" of matrix, (1/sec^2) 
signed int Msize;     // number of rows in K,C matrices 
//% 
//% Subroutines used 
//% 1. cout, double, signed int, log10, pow, return, sqrt 
//% 2. dl_ab 
//% 
Msize=NFS*(S+1)+NFN*(N+1); 
for (i=1;i<=Msize;i++) 
  { 
  for (j=1;j<=M4;j++) 
    { 
    K[i][j]=double(K1[i][j]); 
    } 
  } 
dl_ab(S,N,1.); 
Mmag=0.; 
for (i=1;i<=Msize;i++) 
  { 
  Mmag=Mmag + double(alpha[i][M4]*alpha[i][M4]); 
  } 
Mmag=sqrt(Mmag); 
dt1est=1./sqrt(Mmag); 
dtest=dt1est*double(S); 
log10dt=-1.*log10(dtest); 
exp=-1*signed int(log10dt)-1; 
man=dtest/pow(10.,double(exp)); 
if ((man<=1.)||(10.<man)) return dt=-1.; 
else if ((1.<=man)&&(man<2.)) man=1.; 
else if ((2.<=man)&&(man<5.)) man=2.; 
else man=5.; 
dt=man*pow(10.,exp); 
if (dt<double(dt_in)) return dt; 
else return dt=double(dt_in); 
} 
 
/*============================================================================*/ 
 
void d_b0(signed int Msize, signed int j) 
{ 
//% Input variables 
// Msize;             // number of rows in K,C matrices 
// j;                 // column number of d[i][j] 
//% 
//% Other variables 
signed int i;         // for loop counter 
//% 
for (i=1;i<=Msize;i++) 
  { 
  b[i][0]=d[i][j]; 
  } 
} 
 
/*============================================================================*/ 
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void dl_b1(signed int Msize, signed int j, double dt1) 
{ 
//% Input variables 
// Msize;             // number of rows in K,C matrices 
// j;                 // column number of d[i][j] 
// dt1;               // time step, inner loop, (sec) 
//% 
//% Other variables 
signed int i;         // for loop counter 
//% 
//% Subroutines used 
//% long double 
//% 
for (i=1;i<=Msize;i++) 
  { 
  b[i][1]=v[i][j]*long double(dt1); 
  } 
} 
 
/*============================================================================*/ 
 
void dl_b2(signed int S, signed int N, double dt1) 
{ 
//% Input variables 
// S;                 // number of elements in ballscrew 
// N;                 // number of elements in ballscrew nut 
// dt1;               // time step, inner loop, (sec) 
//% 
//% Other variables 
signed int i;         // for loop counter 
signed int j;         // for loop counter 
signed int j1;        // matrix element counter 
signed int Msize;     // number of rows in K,C matrices 
//% 
//% Subroutines used 
//% long double 
//% 
Msize=NFS*(S+1)+NFN*(N+1); 
for (i=1;i<=NFS*(S+1);i++) 
  { 
  b[i][2]=0.L; 
  for (j=2;j<=2*BWS+BWN-1;j++) 
    { 
    j1=j-BWN-BWS; 
    if ((1<=i+j1)&&(i+j1<=NFS*(S+1))) 
      { 
      b[i][2]=b[i][2] + (beta [i][j]*b[i+j1][1])/2.L 
                      + (alpha[i][j]*b[i+j1][0])/2.L; 
      } 
    } 
  b[i][2]=b[i][2] + (beta [i][2*BWS+2*BWN-1]*b[Msize][1])/2.L 
                  + (alpha[i][2*BWS+2*BWN-1]*b[Msize][0])/2.L; 
  } 
 
b[Msize][2]=0.L; 
for (i=1;i<=NFS*(S+1);i++) 
  { 
  b[Msize][2]=b[Msize][2] + (beta [i][1]*b[i][1])/2.L 
                          + (alpha[i][1]*b[i][0])/2.L; 
  } 
b[Msize][2]=b[Msize][2] + (beta [Msize][BWN+BWS]*b[Msize][1])/2.L 
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                        + (alpha[Msize][BWN+BWS]*b[Msize][0])/2.L; 
 
for (i=1;i<=Msize;i++) 
  { 
  b[i][2]=b[i][2] + long double(Mi[i]*f[i])/2.L*long double(dt1*dt1); 
  } 
} 
 
/*============================================================================*/ 
 
void dl_bk(signed int S, signed int N, signed int k) 
{ 
//% Input variables 
// S;                 // number of elements in ballscrew 
// N;                 // number of elements in ballscrew nut 
// k;                 // index in power series 
//% 
//% Other variables 
signed int i;         // for loop counter 
signed int j;         // for loop counter 
signed int j1;        // matrix element counter 
signed int Msize;     // number of rows in K,C matrices 
//% 
//% Subroutines used 
//% long double 
//% 
Msize=NFS*(S+1)+NFN*(N+1); 
for (i=1;i<=NFS*(S+1);i++) 
  { 
  b[i][k]=0.L; 
  for (j=2;j<=2*BWS+BWN-1;j++) 
    { 
    j1=j-BWN-BWS; 
    if ((1<=i+j1)&&(i+j1<=NFS*(S+1))) 
      { 
      b[i][k]=b[i][k] + (beta [i][j]*b[i+j1][k-1])/long double(k) 
                      + (alpha[i][j]*b[i+j1][k-2])/long double((k-1)*k); 
      } 
    } 
  b[i][k]=b[i][k] 
           + (beta [i][2*BWS+2*BWN-1]*b[Msize][k-1])/long double(k) 
           + (alpha[i][2*BWS+2*BWN-1]*b[Msize][k-2])/long double((k-1)*k); 
  } 
b[Msize][k]=0.L; 
for (i=1;i<=NFS*(S+1);i++) 
  { 
  b[Msize][k]=b[Msize][k] + (beta [i][1]*b[i][k-1])/long double(k) 
                          + (alpha[i][1]*b[i][k-2])/long double((k-1)*k); 
  } 
b[Msize][k]=b[Msize][k] 
             + (beta[Msize][BWN+BWS]*b[Msize][k-1])/long double(k) 
             + (alpha[Msize][BWN+BWS]*b[Msize][k-2])/long double((k-1)*k); 
} 
 
/*============================================================================*/ 
 
void d_c0(signed int Msize, signed int j) 
{ 
//% Input variables 
// Msize;             // number of rows in K,C matrices 
// j;                 // column number of d[i][j] 
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//% 
//% Other variables 
signed int i;         // for loop counter 
//% 
for (i=1;i<=Msize;i++) 
  { 
  c[i][0]=v[i][j]; 
  } 
} 
 
/*============================================================================*/ 
 
void dl_c1(signed int Msize, double dt1) 
{ 
//% Input variables 
// Msize;             // number of rows in K,C matrices 
// dt1;               // time step, inner loop, (sec) 
//% 
//% Other variables 
signed int i;         // for loop counter 
//% 
//% Subroutines used 
//% long double 
//% 
for (i=1;i<=Msize;i++) 
  { 
  c[i][1]=2.*b[i][2]/long double(dt1); 
  } 
} 
 
/*============================================================================*/ 
 
void dl_ck(signed int S, signed int N, signed int k) 
{ 
//% Input variables 
// S;                 // number of elements in ballscrew 
// N;                 // number of elements in ballscrew nut 
// k;                 // index in power series 
//% 
//% Other variables 
signed int i;         // for loop counter 
signed int j;         // for loop counter 
signed int j1;        // matrix element counter 
signed int Msize;     // number of rows in K,C matrices 
//% 
//% Subroutines used 
//% long double 
//% 
Msize=NFS*(S+1)+NFN*(N+1); 
for (i=1;i<=NFS*(S+1);i++) 
  { 
  c[i][k]=0.L; 
  for (j=2;j<=2*BWS+BWN-1;j++) 
    { 
    j1=j-BWN-BWS; 
    if ((1<=i+j1)&&(i+j1<=NFS*(S+1))) 
      { 
      c[i][k]=c[i][k] + (beta [i][j]*c[i+j1][k-1])/long double(k) 
                      + (alpha[i][j]*c[i+j1][k-2])/long double((k-1)*k); 
      } 
  } 
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  c[i][k]=c[i][k] 
           + (beta [i][2*BWS+2*BWN-1]*c[Msize][k-1])/long double(k) 
           + (alpha[i][2*BWS+2*BWN-1]*c[Msize][k-2])/long double((k-1)*k); 
  } 
c[Msize][k]=0.L; 
for (i=1;i<=NFS*(S+1);i++) 
  { 
  c[Msize][k]=c[Msize][k] + (beta [i][1]*c[i][k-1])/long double(k) 
                          + (alpha[i][1]*c[i][k-2])/long double((k-1)*k); 
  } 
c[Msize][k]=c[Msize][k] 
             + (beta [Msize][BWN+BWS]*c[Msize][k-1])/long double(k) 
             + (alpha[Msize][BWN+BWS]*c[Msize][k-2])/long double((k-1)*k); 
} 
 
/*============================================================================*/ 
 
float d_KE(signed int Msize, signed int j) 
{ 
//% Output variables 
float KE;             // kinetic energy, (J) 
//% 
//% Input variables 
// Msize;             // number of rows in K,C matrices 
// j;                 // column number of v[i][j] 
//% 
//% Other variables 
signed int i;         // for loop counter 
//% 
//% Subroutines used 
//% float, return 
//% 
KE=0.F; 
for (i=1;i<=Msize;i++) 
  { 
  KE=KE + 0.5F*M[i]*float(v[i][j]*v[i][j]); 
  } 
return KE; 
} 
 
/*============================================================================*/ 
 
float dl_m_d(signed int Msize, signed int j) 
{ 
//% Output variables 
float m_d;            // measure of displacement vector at kth term, (m) 
//% 
 
//% Input variables 
// Msize;             // number of rows in K,C matrices 
// j;                 // column number of d[i][j] 
//% 
//% Other variables 
signed int i;         // for loop counter 
//% 
//% Subroutines used 
//% double, fabs, float, return 
//% 
m_d=0.F; 
for (i=1;i<=Msize;i++) 
  { 
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  m_d=m_d + float(fabs(double(d[i][j]))); 
  } 
return m_d=m_d/float(Msize); 
} 
 
/*============================================================================*/ 
 
float dl_max_d(signed int Msize, signed int j) 
{ 
//% Output variables 
float max_d;          // measure of displacement vector at kth term, (m) 
//% 
//% Input variables 
// Msize;             // number of rows in K,C matrices 
// j;                 // column number of d[i][j] 
//% 
//% Other variables 
float d_ij;           // d[i][j] 
signed int i;         // for loop counter 
//% 
//% Subroutines used 
//% double, fabs, float, return 
//% 
max_d=0.F; 
for (i=1;i<=Msize;i++) 
  { 
  d_ij=float(fabs(double(d[i][j]))); 
  if (max_d<d_ij) max_d=d_ij; 
  } 
return max_d; 
} 
 
/*============================================================================*/ 
 
float d_m_extra(signed int Msize, signed int k) 
{ 
//% Output variables 
float m_extra;        // measure of last four terms in calculation 
                      //  of d vector, (m) 
//% 
//% Input variables 
// Msize;             // number of rows in K,C matrices 
// k;                 // index in power series 
//% 
//% Other variables 
 
float extra[M2];      // additional terms in power series, (m) 
signed int i;         // for loop counter 
//% 
//% Subroutines used 
//%  fabs  float  return 
//% 
for (i=1;i<=Msize;i++) 
  { 
  extra[i]=float(b[i][k-3] + b[i][k-2] + b[i][k-1] + b[i][k]); 
  } 
m_extra=0.F; 
for (i=1;i<=Msize;i++) 
  { 
  m_extra=m_extra + float(fabs(extra[i])); 
  } 
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return m_extra=m_extra/float(Msize); 
} 
 
/*============================================================================*/ 
 
double dl_PE2(double bs_rat, double blash, double blf1, double blf2, 
               signed int Msize, signed int S, signed int j) 
{ 
//% Output variables 
double PE;            // potential energy, (J) 
//% 
//% Input variables 
// bs_rat;            // ballscrew ratio, (m/rad) 
// blash;             // backlash, (m) 
// blf1;              // backlash factor 1 
// blf2;              // backlash factor 2 
// Msize;             // number of rows in K,C matrices 
// S;                 // number of elements in ballscrew 
// j;                 // column number of d[i][j] 
//% 
//% Other variables 
signed int ii;        // for loop counter 
signed int i1;        // matrix element subscript 
signed int i2;        // matrix element subscript 
//% 
//% Subroutines used 
//% double, return 
//% 
PE=0.; 
for (ii=1;ii<=S;ii++) 
  { 
  i1=2*ii-1; 
  i2=2*ii; 
  PE=PE - K[i1][3]*double((d[i1+NFS][j]-d[i1][j])*(d[i1+NFS][j]-d[i1][j]))/2. 
        - K[i2][3]*double((d[i2+NFS][j]-d[i2][j])*(d[i2+NFS][j]-d[i2][j]))/2.; 
  PE=PE - K[i1][M4] 
          *double((d[Msize][j]-d[i1][j]-bs_rat*d[i2][j]+blf2*blash/2.) 
                 *(d[Msize][j]-d[i1][j]-bs_rat*d[i2][j]+blf2*blash/2.))/2.*blf1; 
  } 
return PE; 
} 
 
/*============================================================================*/ 
 
void dl_rEnD(double bs_rat, float c_brg_1, float c_brg_2, signed int Msize, 
              signed int S, signed int j) 
{ 
//% Input variables 
// bs_rat;            // ballscrew ratio, (m/rad) 
// c_brg_1;           // equivalent damping coefficient of bearings, 
// c_brg_2;           //  (N m sec/rad) 
// Msize;             // number of rows in K,C matrices 
// S;                 // number of elements in ballscrew 
// j;                 // column number of v[i][j] 
//% 
//% Other variables 
signed int ii;        // for loop counter 
signed int i1;        // matrix element subscript 
signed int i2;        // matrix element subscript 
//% 
//% Subroutines used 
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//% double 
//% 
rEnD[j]=0.; 
for (ii=1;ii<=S;ii++) 
  { 
  i1=2*ii-1; 
  i2=2*ii; 
  rEnD[j]=rEnD[j] 
           - C[i1][3]*double((v[i1+NFS][j]-v[i1][j])*(v[i1+NFS][j]-v[i1][j])) 
           - C[i2][3]*double((v[i2+NFS][j]-v[i2][j])*(v[i2+NFS][j]-v[i2][j])); 
  rEnD[j]=rEnD[j] 
           - C[i1][M4]*double((v[Msize][j]-v[i1][j]-bs_rat*v[i2][j]) 
                             *(v[Msize][j]-v[i1][j]-bs_rat*v[i2][j])); 
  } 
rEnD[j]=rEnD[j] + c_brg_1*double(v[2][j]*v[2][j]); 
rEnD[j]=rEnD[j] + c_brg_2*double(v[2*(S+1)][j]*v[2*(S+1)][j]); 
} 
 
/*============================================================================*/ 
 
void inc_d(signed int Msize, signed int j, signed int k) 
{ 
//% Input variables 
// Msize;             // number of rows in K,C matrices 
// j;                 // column number of d[i][j] 
// k;                 // index in power series 
//% 
//% Other variables 
signed int i;         // for loop counter 
//% 
if (k==0) 
  { 
  for (i=1;i<=Msize;i++) 
    { 
    d[i][j]=b[i][0]; 
    } 
  } 
else 
  { 
  for (i=1;i<=Msize;i++) 
    { 
    d[i][j]=d[i][j] + b[i][k]; 
    } 
  } 
} 
 
/*============================================================================*/ 
 
void inc_v(signed int Msize, signed int j, signed int k) 
{ 
//% Input variables 
// Msize;             // number of rows in K,C matrices 
// j;                 // column number of v[i][j] 
// k;                 // index in power series 
//% 
//% Other variables 
signed int i;         // for loop counter 
//% 
if (k==0) 
  { 
  for (i=1;i<=Msize;i++) 
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    { 
    v[i][j]=c[i][0]; 
    } 
  } 
else 
  { 
  for (i=1;i<=Msize;i++) 
    { 
    v[i][j]=v[i][j] + c[i][k]; 
    } 
  } 
} 
 
/*============================================================================*/ 
 
double fric_tab(float m_tab, float g, float mu_tab, double bs_rat, double v_max, 
                 double blash, double blf2, signed int S, signed int N, 
                 signed int j, double dt1, signed int mode) 
{ 
//% Output variables 
double EnD;           // energy dissipated, (J) 
//% 
//% Input variables 
// m_tab;             // mass of saddle and table, (kg) 
// g;                 // acceleration due to gravity, (m/sec^2) 
// mu_tab;            // coefficient of friction between table and slideways 
// bs_rat;            // ballscrew ratio, (m/rad) 
// v_max;             // maximum nut velocity, (m/sec) 
// blash;             // backlash, (m) 
// blf2;              // backlash factor 2 
// S;                 // number of elements in ballscrew 
// N;                 // number of elements in ballscrew nut, (0 = 1 node) 
// j;                 // column number of v[i][j] 
// dt1;               // time step, inner loop, (sec) 
// mode               // 0 = "balanced force" mode 
//                    // 1 = "damper" mode 
//% 
//% Other variables 
double a_max=6.;      // maximum acceleration, (m/sec^2) 
double eps=1.e-5;     // criterion for "zero" velocity 
float fforce;         // friction force, (N) 
signed int i;         // for loop counter 
signed int i1;        // matrix element subscript 
signed int i2;        // matrix element subscript 
signed int Msize;     // number of rows in K,C matrices 
signed int N_int=2;   // number of time inervals used to estimate v_frict 
float sforce;         // spring force on table, (N) 
float sign;           // sign of table velocity 
double vabs;          // absolute velocity of table, (m/sec) 
double v_frict;       // velocity of full friction force, (m/sec) 
//% 
//% Subroutines used 
//%  cout  fabs  float  return 
//% 
Msize=NFS*(S+1)+NFN*(N+1); 
v_frict=a_max*dt1*double(N_int); 
vabs=fabs(v[Msize][j]); 
if (v[Msize][j]/vabs<0.) sign=-1.F; 
else sign=1.F; 
fforce=mu_tab*m_tab*g; 
if (mode==0) 
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  { 
  if (vabs<=eps*v_max) 
    { 
    sforce=0.F; 
    for (i=1;i<=S+1;i++) 
      { 
      i1=2*i-1; 
      i2=2*i; 
      sforce=sforce - float(K[i2][M4] 
              *(d[Msize][j]-d[i1][j]-bs_rat*d[i2][j]+blf2*blash/2.)); 
      } 
    if (sforce<-1.F*fforce) 
      { 
      f[Msize]=f[Msize] + fforce; 
      } 
    else if (fforce<sforce) 
      { 
      f[Msize]=f[Msize] - fforce; 
      } 
    else 
      { 
      f[Msize]=f[Msize] - sforce; 
      } 
    } 
  else 
    { 
    f[Msize]=f[Msize] - sign*fforce; 
    } 
  EnD=-1.*(float(f[Msize] + K[Msize][1]*(blf2*blash/2.)))*v[Msize][j]*dt1; 
  } 
else if (mode==1) 
  { 
  v_frict=a_max*dt1*double(N_int); 
  if (vabs<v_frict) 
    { 
    f[Msize]=f[Msize] - sign*float(vabs/v_frict)*fforce; 
    } 
  else 
    { 
    f[Msize]=f[Msize] - sign*fforce; 
    } 
  EnD=-1.*(float(f[Msize] + K[Msize][1]*(blf2*blash/2.)))*v[Msize][j]*dt1; 
  } 
else 
  { 
  EnD=0.; 
  } 
return EnD; 
} 
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Appendix 5.2  -  Details of calculations used to check Program T3 

A steel ballscrew 38.1 mm in diameter and 1520 mm long was modelled using program T3.cpp.  

The screw was supported at the drive end with a bearing of 8 × 108 N/m axial stiffness at the tail 

end with a bearing of 15.6 × 108 N/m axial stiffness.  A simple PID controller was coded into the 

model to enable a trapezoidal velocity profile to be run.  This controller had a proportional constant 

Kp of 2 N m/rad, an integral constant Ki of 100 N m/(rad sec) and a differential constant Kd of zero.  

Velocity feedback came from the nut.  The demand signal is the diagonal straight line on 

Figure 5.13. 

At the start of the motion the nut was positioned at 100 mm from the driven end in the centre of 

10 μm of backlash.  The first part of the motion entailed an acceleration of the nut of 0.2 m/sec2.  In 

order to avoid the results being swamped by the friction between the table and the slideways, the 

coefficient of friction between them was assumed to be zero.  A load of 359 kg was carried by the 

nut. 

The hand calculations used to check the results of “C” program T3 are detailed as follows:- 

A5.2.1  Axial deflection 

The axial stiffness from the point of contact with the nut to “earth” was calculated by taking into 

account the stiffness of the several components (TK model BS_KAX.TK, rules 1-13).  The axial 

force on the screw was derived by considering the force needed to accelerate the nut load (ibid, 

rule 14).  The deflection at the nut contact point and at the bearings was then computed by applying 

the load to the component stiffnesses (ibid, rules 15-19). 

 
MiniTK model BS_KAX.TK 
 
Variables 
# 1 pi      3.141592653589793               pi 
# 2 E       2.07E11               N/m^2     Young's modulus 
# 3 
# 4 d       .0381                 m         screw diameter 
# 5 l_bs    1.52                  m         ballscrew length 
# 6 x1      .101                  m         position of nut 
# 7 A       .00114009182796937    m^2       cross sectional area 
# 8 
# 9 k_brg_1 8E8                   N/m       bearing 1 stiffness 
#10 k_brg_2 1.56E9                N/m       bearing 2 stiffness 
#11 k_bs_1  2336623845.442174     N/m       ballscrew stiffness 1 
#12 k_bs_2  166313607.0399292     N/m       ballscrew stiffness 2 
#13 k1      595958957.2941673     N/m       stiffness - drive end 
#14 k2      150290900.7518983     N/m       stiffness - tail end 
#15 kax     746249858.0460656     N/m       total axial stiffness 
#16 
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#17 fl_bs_1 4.279678999042158E-10 m/N       ballscrew flexibility 1 
#18 fl_bs_2 6.012737128357248E-9  m/N       ballscrew flexibility 2 
#19 fl_brg1 1.25E-9               m/N       bearing 1 flexibility 
#20 fl_brg2 6.41025641025641E-10  m/N       bearing 2 flexibility 
#21 fl1     1.677967899904216E-9  m/N       flexibility - drive end 
#22 fl2     6.653762769382889E-9  m/N       flexibility - tail end 
#23 
#24 m       359                   kg        mass of table 
#25 a       .2                    m/sec^2   acceleration of table 
#26 
#27 F       71.8                  N         force on table 
#28 F1      57.33984760246322     N         force on bearing 1 
#29 F2      14.46015239753679     N         force on bearing 2 
# 
#30 dx1     7.167480950307903E-8  m         deflection in bearing 1 
#31 dx2     9.269328459959478E-9  m         deflection in bearing 2 
#32 dxn     9.621442366233298E-8  m         deflection at nut location 
 
Rules (equations) 
# 1 pi=4.*atan(1.) 
# 2 A=pi/4.*d^2 
# 3 k_bs_1=E*A/x1 
# 4 fl_bs_1=1./k_bs_1 
# 5 fl_brg1=1./k_brg_1 
# 6 fl1=fl_bs_1+fl_brg1 
# 7 k1=1./fl1 
# 8 k_bs_2=E*A/(l_bs-x1) 
# 9 fl_bs_2=1./k_bs_2 
#10 fl_brg2=1./k_brg_2 
#11 fl2=fl_bs_2+fl_brg2 
#12 k2=1./fl2 
#13 kax=k1+k2 
#14 F=m*a 
#15 dxn=F/kax 
#16 F1=k1/kax*F 
#17 dx1=F1/k_brg_1 
#18 F2=k2/kax*F 
#19 dx2=F2/k_brg_2 
 

The axial deflections at the other points plotted on Figure 5.14 were derived by interpolation as 

follows:- 
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A5.2.2  Driving torque 

The torque needed to drive the screw is the sum of the torque required to accelerate the nut load 

(TK model BS_RIG_T.TK, rules 1 and 3-5), that to accelerate the screw (ibid, rules 6-8) and those 

to overcome viscous drag in the bearings (ibid, rules 9-13). 
MiniTK model BS_RIG_T.TK 
 
Variables 
# 1 pi      3.141592653589793               pi 
# 2 E       2.07E11               N/m^2     Young's modulus 
# 3 rho     7600                  kg/m^3    density 
# 4 
# 5 d       .0381                 m         screw diameter 
# 6 l_bs    1.52                  m         ballscrew length 
# 7 x1      .101                  m         position of nut 
# 8 A       .00114009182796937    m^2       cross sectional area 
# 9 
#10 c_brg_1 .000668               N m s/rad bearing 1 damping coefficient 
#11 c_brg_2 .000668               N m s/rad bearing 2 damping coefficient 
#12 
#13 m       359                   kg        mass of table 
#14 J       .002389774800487604   kg m^2    inertia of ballscrew 
#15 
#16 Ns      1                               number of starts of screw 
#17 p       .01                   m         pitch of screw 
#18 R       .001591549430918954   m/rad     ballscrew ratio 
#19 
#20 t       .05                   sec       time 
#21 a       .2                    m/sec^2   acceleration of table 
#22 angacc   125.6637061435917    rad/sec^2 angular acceleration of ballscrew 
#23 v        .01                  m/sec     velocity of table 
#24 w        6.283185307179587    rad/sec   speed of screw 
#25 
#26 F        71.8                 N         force on table 
#27 Tm       .1142732491399809    N m       torque to accelerate screw 
#28 Tbs      .3003079582778347    N m       torque to accelerate ballscrew 
#29 T_brg_1  .004197167785195964  N m       viscous drag in bearing 1 
#30 T_brg_2  .004197167785195964  N m       viscous drag in bearing 2 
#31 T        .4229755429882076    N m       total torque 
 
Rules (equations) 
# 1 pi=4.*atan(1.) 
# 2 A=pi/4.*d^2 
# 3 R=Ns*p/(2.*pi) 
# 4 F=m*a 
# 5 Tm=F*R 
# 6 J=pi/32.*d^4*l_bs*rho 
# 7 angacc=a/R 
# 8 Tbs=J*angacc 
# 9 v=a*t 
#10 w=v/R 
#11 T_brg_1=c_brg_1*w 
#12 T_brg_2=c_brg_2*w 
#13 T=T_brg_1+Tbs+Tm+T_brg_2 
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A5.2.3  Nut position error 

The nut position error was calculated using the following data (as well as that in Sections A5.2.1 

and A5.2.2 of this appendix). 
double blash=10.e-6;  // backlash, (m) 
float G=80.0e9F;      // shear modulus, (N/m^2) 
float k_ax_nut=1.e8F; // axial stiffness of nut, (N/m) 
float Kd=0.F;         // controller differential constant, (N m sec/rad) 
float Ki=100.F;       // controller integral constant, (N m/(rad sec)) 
float Kp=2.F;         // controller proportional constant, (N m/rad) 
 

A5.2.3.1  Axial movement of screw/nut contact point 

See Section 1 

A5.2.3.2  Axial deflection within nut 

Based on force needed to accelerate nut (see Section 1) applied to nut stiffness 
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A5.2.3.3  Torsional deflection of screw 

Based on total torque (see Section 2) applied to portion of screw between drive end and 

screw/nut contact point 
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A5.2.3.4  Backlash 
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A5.2.3.5  Controller follower error 

Based on the integral of the velocity error (i.e. position error) needed to generate the torque 

required to drive the system. 
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Appendix 6.1 – C program for 6 degree-of-freedom mechanical model 

This program generates the time history of ballscrew mechanical behaviour.  Various routines 

written in MATLAB are used to produce graphical output. 

// Program "LG_rig.cpp" 
//         ============ 
// 
// Standard function header files 
 
// Basic solution parameters defined 
 
// Matrix and array sizes 
// Subroutine prototypes 
//% 
//% Output variables allocated static arrays including:- 
// "x" array for plotting graphs, (m), (output as "float") 
// time, (sec) 
// linear "x", "y" and "z" displacement and velocity time histories, (m, m/sec) 
// torsional "θx" displacement and velocity time histories, (rad, rad/sec) 
// tilt "θy" and "θz" displacement and velocity time histories, (rad, rad/sec) 
// kinetic and potential energy, energy input, energy dissipated and total 
// energy, (J) 
//% 
//% Common vectors and matrices allocated static arrays including:- 
// mass, stiffness and damping matrices, force vectors 
// time series coefficients, and ”alpha” and “beta” matrices 
// short-term displacement, velocity and acceleration matrices 
// controller error and its integral, and position error of nut 
//% 
//% Common data block 
//% ================= 
// Defined or allocated as static variables are:- 
//% Fundamental constants – g and pi 
//% Material properties 
//% Dimensional and inertia data etc. relating to motor, drive coupling, 
ballscrew and nut 
//% Stiffness data and damping data relating to the bearings and slideways 
//% Common matrix data 
//% 
//% Controller constants defined and variables are allocated as static variables 
//% 
int main(void) 
{ 
// Main program 
//% Input variables defined including:- 
// number of elements in ballscrew and nut 
// node numbers of bearings 
// details of demand path, position and velocity 
// backlash, (m) 
// pre-tension, (m/m) 
// applied out-of-balance data, (kg m) 
//% 
//% Other variables used by program allocated 
 
//% Open output streams for the output variables 
if (timp==1) 
 { 
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 // Opens input streams in white noise mode 
 } 
 
// Initialisation section 
// ====================== 
// Defines ballscrew "x" axis and element lengths 
 
// Defines mass of system 
 
// Initialises demand state of nut 
// Initialises solution process working arrays and output arrays 
 
// Sets the angular position of the ballscrew 
 
// Sets up out-of-balance excitation in in-phase/quadrature form 
// Initialises saved motor torque 
// Initialises energy put into system 
 
// Sets up “static” stiffness matrix 
 
// Sets time step to ensure convergence of solution series 
 
// Updates the stiffness and damping matrices for initial position of nut 
 
if (timp==1) 
 { 
// Sets number of iterations for white noise mode 
 } 
else 
 { 
// Initialises trapezoidal demand profile 
 } 
 
// Initialises block counter and time 
 
// Initialises controller 
 
// Time series solution section 
// ============================ 
for (it=1;it<=Nt;it++) // Start main loop 
 { 
 // Controller updates motor torque 
 for (j=1;j<=S;j++) // Start inner loop 
  { 
  // Demand position, velocity and acceleration updated 
 
  // Defines a representative position for ballscrew 
 
  // Zeros a force vector for use as a "saved" one and zeros the 
energy dissipation arrays 
 
  // Updates the stiffness and damping matrices 
 
  // Calculates the energy dissipation rates due to various sources of 
  // friction, and applies the relevant forces 
  // - motor bearings 
  // - ballscrew bearing 1 
  // - ballscrew bearing 2 
  // - saddle/table 
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  // Updates forces due to dead weight, pre-tension and out-of-balance 
 
  // Updates "alpha" and "beta" matrices 
 
  // Defines first three terms of solution array "b" and builds them 
into 
  // the displacement array "d", the velocity array "v" and the 
acceleration array "a" 
 
  // Defines the remainder of the terms of solution array "b" and 
builds them into 
  // the arrays "d", "v" and "a" 
 
  // Calulates the rate of energy dissipation by the viscous 
  // damping elements 
 
  // Adds in energy input due to motor torque 
  // Adds in energy input due to movement of internal forces due 
  // to pre-tension and external forces due to dead weight 
  } // End of inner loop 
 
 // Puts results of analysis into arrays for output 
 
 // Resets state variables for next inner loop 
 // Puts last energy dissipation values into first position 
 // ready for next inner loop 
 
// Ouput section 
// ============= 
 // Write results to file 
  
 } // End of main loop 
 
// Close files 
return(0); 
} 

 

 

 
Typical data set 

// Basic solution parameters 
#define MDR 2                // Number of degrees of freedom in motor drive 
                                 (in addition to ballscrew) 
#define SMAX 50              // Maximum number of elements in ballscrew 
#define NFS 6                // Number of degrees of freedom per ballscrew node 
#define BWS 12               // Bandwidth of ballscrew 
#define NMAX 0               // Maximum number of elements in ballscrew nut, 
                                 (0 = 1 node) 
#define NFN 5                // Number of degrees of freedom per nut node 
#define BWN 5                // Bandwidth of nut 
#define KMAX 42              // Maximum number of iterations 
#define NBLOCK 1000          // Maximum number of steps in time history block 
#define SWRIT 100            // Number of time history steps between screen 
                                 writes 
#define TINY 1.0e-20         // Used in subroutine "ludcmp" 
#define NSOURCE 8            // Number of heat sources 
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//% Common data block 
//% ================= 
//% Fundamental constants 
static float g=9.80665F;     // acceleration due to gravity, (m/sec^2) 
//% 
//% Material properties 
static float E=207.0e9F;     // Young's modulus, (N/m^2) 
static float G=80.0e9F;      // shear modulus, (N/m^2) 
static float rho=7860.F;     // density, (kg/m^3) 
//% 
//% Dimensional data etc. 
//% Motor 
//% ----- 
static float J_mot=0.0030F;  // drive motor inertia, (kg m^2) 
static float J_ms=0.0000075F; // drive motor shaft inertia, (kg m^2) 
static float T_mot_max=42.F; // maximum motor torque, (N m) 
static float n_mot_max=4700.F; // maximum rated motor speed, (rpm) 
static float i_mot_max=41.0F; // peak motor current, (A) 
//% Drive coupling 
//% -------------- 
static float J_dr1=194.2e-6F; // driving pulley, 
                                  coupling half etc. inertia, (kg m^2) 
static float m_dr2=0.310F;   // driven pulley, coupling half etc. mass, (kg) 
static float J_dr2=194.2e-6F; // driven pulley, 
                                 coupling half etc. rotational inertia, (kg m^2) 
static float Jt_dr2=143.8e-6F; // driven pulley, 
                                 coupling half etc. transverse inertia, (kg m^2) 
static long double u=1.L;    // drive ratio 
//% Ballscrew 
//% --------- 
static float d_bsO=37.5e-3F; // outer diameter of ballscrew, (m) 
static float d_bsI=10.0e-3F; // inner diameter of ballscrew, (m) 
static float dp_bs=42.0e-3F; // pitch diameter of ballscrew, (m) 
static float l_bs1=0.109F;   // length of ballscrew pulley to bearing, (m) 
static float l_bs2=1.183F;   // length of ballscrew between bearings, (m) 
static float l_bs3=0.052F;   // length of ballscrew between bearing to end, (m) 
static signed int Ns=1;      // number of starts of ballscrew grooves 
static float pitch=16.0e-3F; // ballscrew pitch, (m) 
static signed int SignB=+1;  // hand of helix, -1 = left hand screw 
                             //                +1 = right hand screw 
static float mu_brg=0.01F;   // nominal coefficient of friction of bearings 
static float d_trace=0.045F; // diameter of bearing thrust race, (m) 
//% Nut 
//% --- 
static float mu_scr=0.019F;  // nominal coefficient of friction of screw nut 
static float m_tab=352.F;    // mass of saddle/table, (kg) 
static float Jy_tab=0.546F;  // inertia of saddle/table about "y" axis, (kg m^2) 
static float Jz_tab=120.F;   // inertia of saddle/table about "z" axis, (kg m^2) 
static float z_tab=125.e-3F; // height of saddle/table above ballscrew, (m) 
static float z_slid=75.e-3F; // height of saddle/table above slideway, (m) 
static float mu_tab=0.0341F; // coefficient of friction between saddle and 

  slideways 
static double Absnf=1.44;    // constant term in "Mode 0" ballscrew friction 

  model, (N m) 
static double Bbsnf=0.;      // speed-dependent term in "Mode 0" ballscrew 

  friction model, (N m sec/rad) //% 
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//% Monitoring ring 
//% --------------- 
static float m_Mring=1.029F; // mass of monitoring ring, (kg) 
static float Jtor_Mring=0.001289F; // torsional inertia of monitoring ring, 

  (kg m^2) 
static float Jtil_Mring=0.000701F; // tilt inertia of monitoring ring, (kg m^2) 
static float rOoB=40.e-3F;   // radius of out-of-balance weight, (m) 
//% 
//% Stiffness data 
static float k_ms=5466.F;    // torsional stiffness of motor shaft, (N m/rad) 
static float k_dr=10100.F;   // torsional stiffness of drive referred to driving 

  shaft, (N m/rad) 
static float k_ax_1=850.e6F; // axial stiffness of bearings, (N/m) 
static float k_ax_2=850.e6F; 
static float ky_rad_1=1275.e6F; // radial stiffness of bearings 
                                    - "y" direction, (N/m) 
static float ky_rad_2=1275.e6F; 
static float kz_rad_1=1275.e6F; // radial stiffness of bearings 
                                    - "z" direction, (N/m) 
static float kz_rad_2=1275.e6F; 
static float ky_tilt_1=160.e3F; // tilt stiffness of bearings 
                                    - "Oy" direction, (N m/rad) 
static float ky_tilt_2=160.e3F; 
static float kz_tilt_1=160.e3F; // tilt stiffness of bearings 
                                    - "Oz" direction, (N m/rad) 
static float kz_tilt_2=160.e3F; 
static float k_ax_nut=1.2e9F; // axial stiffness of nut, (N/m) 
static float ky_nut=1.2e9F;  // radial stiffness of nut - "y" direction, (N/m) 
static float kz_nut=1.2e9F;  // radial stiffness of nut - "z" direction, (N/m) 
static float kOy_nut=0.7e5F; // tilt stiffness of nut 
                                 - "Oy" direction, (N m/rad) 
static float kOz_nut=0.7e5F; // tilt stiffness of nut 
                                 - "Oz" direction, (N m/rad) 
static float ky_slide=1.e9F; // stiffness of slides supporting nut 
                                 - "y" direction, (N/m) 
static float kz_slide=1.e9F; // stiffness of slides supporting nut 
                                 - "z" direction, (N/m) 
static float kOy_slide=10.4e6F; // stiffness of slides supporting nut 
                                 - "Oy" direction, (N m/rad) 
static float kOz_slide=10.4e6F; // stiffness of slides supporting nut 
                                 - "Oz" direction, (N m/rad) 
//% 
//% Damping data 
static float c_brg_m=0.656e-3F; // equivalent damping coefficient of bearings, 
                                   (N m sec/rad) 
static float c_ms=0.01F;   // torsional damping coefficient of motor shaft, 
                                   (N m sec/rad) 
static float c_dr=0.797F;   // torsional damping coefficient of drive 
                                referred to driving shaft, (N m sec/rad) 
static float c_brg_1=0.668e-3F; // equivalent damping coefficient of bearings, 
                                   (N m sec/rad) 
static float c_brg_2=0.668e-3F; 
static float drb=0.0005F;    // damping ratio - bearings 
static float drs=0.00002F;   // damping ratio - shaft 
static float drn=0.0005F;    // damping ratio - nut 
static float drsl=0.0005F;   // damping ratio - slide 
// Damping reference - 
http://www.mom.gov.sg/MOM/OHD/Others/N&VGUIDELINES04(chap6).pdf. p84 - damping 
ratio for spring steel = 0.005 
//% 
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//% Controller constants 
static double K_v=4.*1000./60.; // position controller constant = 4 (m/min)/mm, 
                                  (1/sec) 
static double K_k1=1./double(pitch); // constant, (1/m) 
static double K_vff=K_k1;    // gain - velocity feed forward, (1/m) 
static double K_vel;         // constant =1./(2.*pi), (rev/rad) 
static double K_aff=0.039;   // gain - acceleration feed forward, (A sec^2/rev) 
static double K_p=26.;       // proportional gain - velocity control, 
                                (A sec/rev) 
static double K_i=6300.;     // integral gain - velocity control, (A/rev) 
static double LA=0.0062;     // motor armature inductance, (H) 
static double RA=0.68;       // motor armature resistance, (ohm) 
static double K_cp=50.;      // proportional gain - current control, (V/A) 
static double lamda=0.7639;  // flux, (V sec/rad) 
static signed int N_poles=4; // number of pairs of motor poles 
static double Kt=1.28F;      // motor torque time constant, (N m/A) 
//% 
//% Input variables 
signed int S=25;      // number of elements in ballscrew 
signed int N=0;       // number of elements in ballscrew nut, (0 = 1 node) 
signed int B1=1;      // node number at Bearing 1, (node number of first node in 
ballscrew = 0) 
signed int B2=24;     // node number at Bearing 2 
double xs=1073.e-3F;  // "x" coordinate of start point, (m) 
double xf=xs-480.e-3F; // "x" coordinate of end of deceleration, (m) 
double v_max=40./60.; // maximum nut velocity, (m/sec) 
double t1_=0.;        // time of start of acceleration, (sec) 
double tacc=1./9.;    // acceleration time, (sec) 
double tdec=1./9.;    // deceleration time, (sec) 
float blash=0.F;      // backlash, (m) 
float PT=0.e-6F;      // pre-tension, (m/m) 
float xMR1=l_bs1+133.e-3F; // “x” coordinate of monitoring ring 1 
float xMR2=l_bs1+276.e-3F; // “x” coordinate of monitoring ring 2 
mOoB1=0.F;            // mass of out-of-balance weight 1, (kg) 
phOoB1=0.F;           // phase of out-of-balance weight 1, (deg) 
mOoB2=124.e-3F;       // mass of out-of-balance weight 2, (kg) 
phOoB2=0.F;           // phase of out-of-balance weight 2, (deg) 
float dt_in=50.e-6F;  // input time step, (sec) 
plst=3.0e-3;          // controller position loop up-date time, (sec) 
vlst=0.6e-3;          // controller velocity loop up-date time, (sec) 
ilst=0.2e-3;          // controller current loop up-date time, (sec) 
// "Mode 0" bearing friction model 
//  constant term   speed-dependent  
    Abrg[0]=0.5453; Bbrg[0]=0.001208; // motor bearing 
    Abrg[1]=0.5;    Bbrg[1]=0.;       // ballscrew bearing 1 
    Abrg[2]=0.4;    Bbrg[2]=0.;       // ballscrew bearing 2 
//   (N m)           (N m sec/rad) 

[245] 



Appendix 7.1 – Water cooling the ballscrew 

Consider a ballscrew of the size used on the Linear Guide rig.  Let it be furnished with four 

cooling passages of Ø5 mm each, arranged so that the cooling water (chilled coolant) makes four 

passes of the ballscrew before draining into the sump of the machine.  Applying equations (7.23) 

and (7.30) to a coolant flow supplied at 10 C against a ballscrew running at 20ºC gives the 

estimated cooling performance for different rates of flow as shown in Figure A7.1:- 
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Figure A7.1 – Heat removal rate v. coolant flow for a water cooled ballscrew 

Fixing the flow rate at 0.5 l/min and 1 l/min, gives the estimated performance with varying 

temperature as shown in Figure A7.2:- 
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Figure A7.2 – Heat removal rate v. coolant temperature a water cooled ballscrew 
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Appendix 7.2 – Matlab model “cool2.m” 
 
function[x,T,RH]=cool2(T_in,p_res,mw,N) 
% 
% Output - x     = proportion of mixture for plots, [%] 
%          T     = temperature after evaporation, [deg C] 
%          RH    = relative humidity after evaporation 
% 
% Input  - T_in  = input temperature, [deg C] 
%          p_res = pressure of compressed air reservoir, [bar] 
%          mw    = mass of water, [kg] (for 1 m^3 at 1 bar at T_in) 
%          N     = number of increments 
% 
Cp_air=1.00;     % specific heat of air at constant pressure, [kJ/kg K] 
rho_air_0=1.293; % density of air at 0 deg C, [kg/m^3] 
 
T1     =[  0.01,  5.  , 10.  , 15.  , 20.  , 25.  , 30.  , 35.  , 40.  ]; 
          % temperature, [deg C] 
Cpl_dat=[ 4.210, 4.204, 4.193, 4.186, 4.183, 4.181, 4.179, 4.178, 4.179]; 
          % specific heat of water, [kJ/kg K] 
Cpv_dat=[ 1.86 , 1.86 , 1.86 , 1.87 , 1.87 , 1.88 , 1.88 , 1.88 , 1.89 ]; 
          % specific heat of steam at constant pressure, [kJ/kg K] 
hlv_dat=[2500.8,2488.9,2477.2,2465.5,2453.7,2441.8,2430.0,2418.2,2406.2]; 
          % latent heat, water to steam, [kJ/kg] 
T2     =[  0.01,  7.0 , 13.0 , 17.5 , 21.1 , 24.1 , 29.0 , 34.6 , 40.3 ]; 
          % temperature, [deg C] 
vg_dat =[206.1 ,129.2 , 87.98, 67.01, 54.26, 45.67, 34.80, 25.77, 19.24]; 
          % specific volume steam, [m^3/kg] 
pv_dat =[0.0061,0.010 ,0.015 ,0.020 ,0.025 ,0.030 ,0.040 ,0.055 ,0.075 ]; 
          % saturated vapour pressure water, [bar] 
 
% For 1 m^3 of air saturated at 'T_in' deg C and 'p_res' bar pressure then expanded 
% isothermally to 1 bar:- 
RH(1)=1./p_res;             % relative humidity 
pv=interp1(T2,pv_dat,T_in); % vapour pressure at T_in deg C, [bar] 
m_air=(1.-RH(1)*pv)*rho_air_0*(273.15/(T_in+273.15)); % mass of air, [kg] 
vg=interp1(T2,vg_dat,T_in); % specific volume at T_in deg C, [m^3/kg] 
m_vap=RH/vg;                % mass of water vapour, [kg] 
 
% Now add mw kg of water dm kg at a time 
dm=mw/N;                         % mass of increment of water, [kg] 
T(1)=T_in;                       % temperature set to initial value, [deg C] 
x(1)=0;                          % number of mass increments set to zero 
for i=1:N 
   pv=interp1(T2,pv_dat,T(i));   % vapour pressure at T deg C, [bar] 
   vg=interp1(T2,vg_dat,T(i));   % specific volume at T deg C, [m^3/kg] 
   m_vap_max=1./vg;              % mass of water vapour at saturation, [kg] 
   hlv=interp1(T1,hlv_dat,T(i)); % latent heat at T deg C, [kJ/kg] 
   Cpv=interp1(T1,Cpv_dat,T(i)); % specific heat of water vapour at T deg C, [kJ/kg K] 
   Tavl=(T_in+T(i))/2.;          % average temperature of water sprayed in, [deg C] 
   Cpl=interp1(T1,Cpl_dat,Tavl); % specific heat of water at Tavl deg C, [kJ/kg K] 
   dQlv=hlv*dm;                  % heat absorbed by evaporation, [kJ] 
   dQl=Cpl*dm*(T_in-T(i));       % heat given out by cooling water in spray, [kJ] 
   m_vap=m_vap+dm;               % mass of water vapour after evaporation of dm, [kg] 
   C=Cp_air*m_air + Cpv*m_vap;   % thermal capacity of mixture, [kJ/K] 
   dT=(-1.)*(dQlv-dQl)/C;        % temperature change, [K] 
   T(i+1)=T(i)+dT;               % temperature after evaporation of dm, [deg C] 
   RH(i+1)=m_vap/m_vap_max;      % relative humidity after evaporation of dm 
   x(i+1)=i;                     % update number of mass increments 
end 
x=x/N*100.; % convert mass increments to proportion of total mass added 
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Appendix 7.3 – The ballscrew thermal model 
 
function [time,z1,z2,z3,z4]=bsmodel(heatTime,coolTime,TI,xx) 
 
% BSMODEL: My model with nut and bearing temperature modelled. 
% 
% Use: [time,z1,z2,z3,z4]=bsmodel(heatTime,coolTime,TI,xx) 
% Set xx = 1 to suppress plots 
 
% Output variables 
%  time(,)     time, ['nt' × 1], (sec?) 
%  z1(,)       screw element temperature, ['nt' × nss], (degC) 
%  z2(,)       temperature of nut and bearings, ['nt' × 3], (degC) 
%  z3(,)       total error? less its starting value, ['nt' × 2], (micron) 
%  z4(,)       column 1, difference in total error of bearings, 
%              column 2, difference in thermal error of bearings, 
               ['nt' × bhs], (W) 
% 
% Input variables 
%  heatTime    time taken running ballscrew round a trapezoidal velocity 
%              load cycle, (min), (redefined later to a whole number of runs) 
%  coolTime    time taken in cooling after loading, (min)      
%  TI          time interval ?, (sec?) 
%  xx          supress plots (1), plot (otherwise) 
% 
% Other variables 
%  Abf         bearing mounting face area, (m^2) 
%  AbSection   area of bearing transverse cross section, (m^2) 
%  AbSurface   surface area of outer half bearing, (m^2) 
%  Ah()        bearing housing surface area, [1 × 2], (m^2), rough (not used) 
%  Ahs()       surface area of housing section, [1 × 2], (m^2) 
%  Ahsf()      area of housing FE face, [1 × 2], (m^2) 
%  AnfSurface  surface area of nut flange, (m^2) 
%  AnSection   area of nut section, (m^2) 
%  AnSurface   nut surface area, (m^2) 
%  AnhSection  nut housing cross section area, (m^2) 
%  AnhSurface  nut housing element surface area, (m^2) 
%  AnsbContact estimated surface contact between nut and screw via oil film, 
               (m^2?) 
%  AnutMount   nut mounting flange area, (m^2) 
%  AsSection   cross-sectional area of screw, (m^2) 
%  AsSurface   outer surface area of screw FE, (m^2) 
%  AsVolume    volume of screw FE, (m^3), (not used) 
%  AtblMount   nut housing to table mounting surface contact area, (m^2) 
%  AtblSection area of table cross section, (m^2) 
%  AtblSurface surface area of table element, (m^2) 
%  A1          area of a surface 38 mm diameter and length of nut, (m^2) 
%  A2          area of a surface 44 mm diameter and length of nut, (m^2) 
% 
%  Ballnum     number of balls in nut, (not used) 
%  B1ss        index of screw element under bearing 1, [1 × 2] 
%  B2ss        index of screw element under bearing 2, [1 × 2] 
%  b           for loop counter on bearing housings 
%  barh        handle to waitbar 
%  bhs         number of bearing housing elements 
%  brgArrange  '0'=PT and axial, '1'=PT no axial, '2'=free-ended 
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%  brgDis      distance between bearings, (m) 
% 
%  cd          current directory as a string, MATLAB special function 
%  cSteel      specific heat capacity of steel, (J/kg/K), 
%              (approx. from various sources) 
% 
%  DensitySteel 
%              density of steel, (kg/m^3) 
%  Dist        traverse distance, (m) 
%  DnInner     nut inner diameter, (m) 
%  DnOuter     nut outer diameter, (m) 
%  DnutFlange  diameter of nut flange, (m) 
%  dv()        'average' velocity, d'y()'/d'x()', [? × 1], (m/sec) 
% 
%  E_err()     error due to strain at 'y = 0.' and 'y = -460.', 
               [1 × 2], (micron) 
%  ErrPos1ss() front of position 1 
%  ErrPos2ss() front of position 2 
%  Esteel      Young's modulus of steel, (kN/m^2) 
%  Exp_change  change in thermal expansion of shaft, (micron?) 
%  ExpCoeff    thermal expansion coefficient of shaft 
               (AISI 8620 not exactly known) 
%  ePaint      surface painted white emissivity, (not used) 
%  eSteel      steel emissivity 
%  expansion   total expansion of shaft, (micron?) 
%  extra(,)    column 1, difference in total error of bearings, 
%              column 2, difference in thermal error of bearings, 
               ['nt' × bhs], (W) 
% 
%  F           Feedrate (m/min) CHECK UNITS! 
%  F_change    change in axial force in shaft, (kN) 
%  F_current   current axial force in shaft, (kN) 
%  F_start     axial force in shaft at start, (kN) 
%  f           interchange factor for radiation, (not used) 
%  filename    'det-' ? which file ? 
%  froot       current directory as a string 
% 
%  Hbhs(,)     heat flow - bearing housing elements, [2 × bhs], (W) 
%  Hc          free convective heat transfer coefficient, (W/m^2.K) (2-25) 
%  Hcf         forced convection by screw rotation/axis traverse, 
               (25-250 W/m^2.K) 
%  Hnhs()      heat flow - nut housing elements, [nhs], (W) 
%  Hss()       heat flow - screw elements, [nss], (W) 
%  Htbl()      heat flow - table elements, [nts], (W) 
%  hs          for loop counter on housing elements 
%  h1 - h12    handles for graphs 
% 
%  I           friction torque ?, (Nm?) 
%  Ia          friction torque ? due to ?, (Nm?) 
%  IDb         bearing face inner diameter, (m) 
%  IRb         bearing inner radius, (m) 
%  Im          friction torque ? due to motor, (Nm?) 
%  Ims         screw shaft moment of inertia, (kg m^2), (not used) 
%  i           for loop counter on time 
% 
%  j           counter, but is it used for anything? 
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%  K           coefficient of conductivity of steel, (W/m.K) 
              (45 for nut) (250 from b3??) 
%  Kbrg()      axial (?) stiffness of front and rear bearing assemblies, 
               [1 × 2], (kN/m?) 
%  KbrgJoint   coeff. of conduction across bearing mounting joint, (W/m^2.K), 
%               good surface & pressure 
%  KbrgRace    coeff. of conduction across balls between races, (W/K) 
%  KbrgShaft   coeff. of conduction across bearing/shaft joint, (W/m^2.K), 
                interferance fit. 
%  KnhJoint    coeff. of conduction across nut/nut housing joint, (W/m^2.K) 
%  KnutShaft   coeff. of conduction nut to shaft based on 
                test 'b3nutc1' data, (W/m^2.K) 
%  KtblJoint   coeff. of conduction across nut housing/table joint, (W/m^2.K) 
%  k           time interval counter 
% 
%  Lb          bearing length, (m) 
%  Lhs()       length of each housing FE (conduction calc.), [1 × 2], (m) 
%  Ln          length of nut, (m) 
%  Lnc         length of nut in contact with shaft, (m) 
%  Lnh         length of nut housing, (m) 
%  Lnhs        length of nut housing element, (m) 
%  LnutFlange  length of nut flange, (m) 
%  Lprebrg1    length of screw shaft before bearing 1, (m) 
%  Ls          total shaft length, (m) 
%  Lss         length of screw element, (m) 
%  Ltbl        length of table, (m) 
%  Ltbls       length of table elements, (m) 
% 
%  Mbi         mass of bearing inner race, (kg) 
%  Mbo         mass of bearing outer race, (kg) 
%  Mh()        bearing housing mass, [1 × 2], (kg), (not used) 
%  Mhs()       mass of housing FE, [1 × 2], (kg) 
%  Mn          mass of nut, (kg) 
%  Mnhs        mass of nut housing element, (kg) 
%  MnutFlange  mass of nut flange, (kg) 
%  Mposs       vector of targets corresponding to ??, [? × ?], (?) 
%  Ms          mass of shaft, (kg) 
%  Mss         mass of screw FE, (kg) 
%  MTss        !! is this variable defined ?? 
%  Mtbl        mass of table element, (kg) 
%  m           counter (not used) 
%  meanRs      mean radius of entire screw shaft, (m) 
%  motorc()    something to do with calculating Im, [1 × 2] 
%  motorpars()  - ditto - , [1 × 2] 
% 
%  NumRuns     number of runs in heating cycle 
%  n           for loop counter on nut elements 
%  nargin      number of arguments in input list, MATLAB special variable 
%  newtitle    time in hours : minutes : seconds used when storing images 
%  nhs         number of nut housing elements 
%  nss         number of finite element screw elements 
%  nts         number of table elements 
%  numss       number of screw elements covered by nut 
% 
%  ODb         bearing outer diameter, (m) 
%  ORb         bearing outer radius, (m) 
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%  origPT      pre-tension (microns/m).  If zero, presume free-ended. 
% 
%  Pnut        nut position, (m) 
%  pi          pi, MATLAB special variable 
%  pitch       ballscrew pitch (m) 
%  plottype    graphical display (1) or progress bar (otherwise) 
%  poss        vector of targets corresponding to screw, [? × ?], (?) 
%  ptc()       something to do with calculating Ia, [1 × 2] 
%  ptpars()     - ditto - , [1 × 2] 
% 
%  Req_exp     shaft expansion required (for what?), (micron?) 
%  Rs          outer radius of screw shaft ?, (m) 
%  recrows     row index for recorded data 
%  rectime     time index for recording data 
% 
%  SBC         Stefan Boltzmann Constant, (W/m^2.K^4), (not used) 
%  StopDist    distance from start for stopped nut position, (m) 
%  savename    MATLAB string variable for image file 
%  ss          for loop counter on screw elements 
%  startPos    axis datum position from shaft start (flexible coupling), (m) 
%  startss     screw element index at start of part covered by nut 
%  stop        stop time at traverse limits, (sec) 
%  storeimages to store sequence at 'waittime' intervals (1), not (otherwise) 
% 
%  T           friction torque based on measurement data, (Nm) 
%  Tamb        ambient temperature, (degC) 
%  Tbf()       bearing friction torque, [1 × 2], (Nm) 
%  Tbf2()      bearing friction torque including non-linear friction, [1 × 2], 
(Nm) 
%  Tbrgi()     bearing temperature - inner race, [1 × 2], (degC) 
%  Tbrgo()     bearing temperature - outer race, [1 × 2], (degC) 
%  Tconstant   motor torque constant, (Nm/amp) 
%  TestTime    total time for test, (min) 
%  Th()        bearing housing temperature, [1 × 2], (degC) (not used) 
%  Th_exp()    thermal expansion at 'y = 0.' and 'y = -460.', 
                [1 × 2], (micron) 
%  Ths(,)      bearing housing temperatures, [bhs × 2], (degC) 
%  Tnhs()      nut housing temperatures, [nhs], (degC) 
%  Tnf         nut friction torque (measured), (Nm) 
%  Tnf2        nut friction torque including non-linear friction, (Nm) 
%  Tnut        temperature of nut, (degC) 
%  TnutFlange  temperature of nut flange, (degC) 
%  Tnuthousing temperature of nut housing, (degC) 
%  Tnutshaft   temperature of shaft under nut, (degC) 
%  Total_err(,)total error?, ['nt' × 2], (micron)  
%  Total_exp   total expansion of shaft, (micron?) 
%  Tremain     approx. torque of motor and linear guideways, (Nm) 
%  Tremain2    ? linear guideways at 5% viscous ?, (Nm), (not used) 
%  Trun        time for one return load cycle, (sec) 
%  Tss()       screw element temperature, [nss], (degC) 
%  Tssb        average temperature of bearing housing, (degC) 
%  Ttbl()      temperature of table, [nts], (degC) 
%  Ttrav       time for uni-directional traverse, (sec) 
%  Tvf         non-linear friction torque (needs sharing), (Nm?) 
%  t           time index on trapezoidal position graph 
%  tblnuts     centre element of table over nut 
%  t0(6)       clock time, [6], (yr, mnth, day, hr, min, sec), (not used) 
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% 
%  Vh()        bearing housing volume, [1 × 2], (m^3) 
%  Vhs()       volume of bearing housing FE, [bhs? × 2], (m^3) 
%  Vn          volume of nut, (m^3) 
%  Vnhs        volume of nut housing element, (m^3) 
%  Vtbl        volume of table element, (m^3) 
% 
%  W           current rotational speed, (rad/sec) 
%  waittime    pause between recorded data, (sec) 
%  windage     loss coefficient for cooling due to windage, 
%              20m/min = 130rad/sec = max windage, (4*Hcf), (W/m^2.K) 
% 
%  x()         array of times at 'TI' intervals up to 'Trun', [? × 1], (sec) 
%  x1          position of bearing 1, (m) 
%  x1_start    start position of bearing 1, (m) 
%  x2          position of bearing 2, (m).  Note negative direction 
%  x2_start    start position of bearing 2, (m) 
% 
%  y()         array of positions in a load cycle corresponding to 'x()', [? × 
1], (m) 
% 
%  z           serial date number used when storing images 
% 
% Subroutines used 
% MATLAB - abs ceil cd clock close datenum datestr drawnow eq exp figure floor 
%          gca gcf gradient hold isempty legend mean mktargs not num2str pause 
%          plot print round set size sprintf sum title trapmf waitbar warning 
%          xlabel ylabel 
% UoH    -  
% 
if nargin < 4; xx=1; end; 
% Simulation run details 
plottype=1;    % graphical display (1) or progress bar 
storeimages=0; % set to '1' to store sequence at 'waittime' intervals. 
waittime=0.4;  % pause (sec) between recorded data 
filename='det-'; 
froot=cd; 
 
% General constants 
cSteel=450;        % specific heat capacity of steel (J/kg/K), 
%                    (approx. from various sources) 
DensitySteel=7860; % kg/m^3 
Esteel=210000000;  % Young's modulus of steel (kN/m^2) 
SBC=5.67E-8;       % Stefan Boltzmann constant (W/m^2.K^4) 
pitch=0.016;       % m 
Tamb=20;           % ambient temperature (degC) 
Tconstant=1.27;    % motor torque constant (Nm/Amp) 
 
% Heat transfer coefficients 
Hc=15;  % free convective heat transfer coefficient (W/m^2.K) (2-25) 
Hcf=50; % forced convection by screw rotation/axis traverse (25-250 W/m^2.K) 
K=50;   % coefficient of conductivity of steel (W/m.K) (45 for nut) 
%         (250 from b3??) 
KbrgJoint=8000; % coeff. of conduction across bearing mounting joint 
$                (W/m^2.K),  good surface & pressure 
KnhJoint=5000;  % coeff. of conduction across nut/nut housing joint (W/m^2.K) 
KtblJoint=4000; % coeff. of conduction across nut housing/table joint W/m^2.K) 
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KbrgShaft=2000; % coeff. of conduction across bearing/shaft joint (W/m^2.K), 
                % interferance fit 
KbrgRace=0.2;   % coeff. of conduction across balls between races (W/K) 
KnutShaft=66;   % 66 based on test 'b3nutc1' data (W/m^2.K) 
AnsbContact=0.0027; % estimated surface contact between nut 
                    % and screw via oil film 
 
eSteel=0.70;    % steel emissivity 
ePaint=0.95;    % surface painted white emissivity 
 
% Bearing constants 
ODb=0.08;       % bearing outer diameter (m) 
IDb=0.054;      % bearing face inner diameter (m) 
ORb=ODb/2;      % bearing outer radius (m) 
IRb=0.015;      % bearing inner radius (m) 
Lb=0.028;       % bearing length (m) 
AbSection=(pi*ORb^2)-(pi*IRb^2); % m^2 
AbSurface=(2*pi*ORb*(Lb/2))+AbSection; % m^2 
Abf=(pi/4)*(ODb^2-IDb^2); % bearing mounting face area (m^2) 
Mbo=0.6;        % mass of bearing outer race (kg) 
Mbi=0.18;       % mass of bearing inner race (kg) 
Tbf=[0.5 0.4];  % bearing friction torque (Nm) 
%Tbf=[0 0.04];   % to give symmetric heating 
Kbrg=[0.54 0.47];   % stiffness of front and rear bearing assemblies 
Ah=[0.19 0.08];     % bearing housing surface area (m^2) rough 
Vh=[10E-4 4.95E-4]; % bearing housing volume (m^3) 
Mh=Vh*DensitySteel; % bearing housing mass (kg) 
Tbrgi=[Tamb Tamb];  % bearing temperature (degC) 
Tbrgo=[Tamb Tamb]; 
Th=[Tamb Tamb];     % bearing housing temperature (degC) 
 
% Split bearing housings into n elements. 
bhs=5;              % number of bearing housing elements 
Vhs=Vh./bhs;        % volume of bearing housing FE (m^3) 
Lhs=Vhs.^(1/3);     % length of each housing FE (conduction calc.) (m) 
Ahsf=Lhs.^2;        % area of housing FE face (m^2) 
Ahs=Ahsf*4;         % surface area of housing element 
Mhs=Vhs*DensitySteel; % mass of housing FE 
Ths(1:2,1:bhs)=Tamb; % set initial housing temp. to ambient 
 
% Screw shaft constants 
ExpCoeff=11;        % thermal expansion coefficient of shaft 
                    % (AISI 8620 not exactly known) 
Rs=0.020;           % m 
meanRs=0.0192;      % mean radius of entire screw shaft 
Ls=1.362;           % total shaft length (m) 
Ms=(pi*meanRs^2*Ls)*DensitySteel; 
Ims=0.5*Ms*meanRs^2; % screw shaft moment of inertia 
Lprebrg1=0.11;      % length of screw shaft before bearing 1 (m) 
brgDis=1.182;       % distance between bearings (m) 
nss=100;            % number of finite element screw elements 
Lss=Ls/nss;         % length of screw FE (m) 
Mss=Ms/nss;         % mass of screw FE 
AsSection=pi*meanRs^2;  % m^2 
AsSurface=pi*Rs*2*Lss;  % m^2 
AsVolume=AsSection*Lss; % m^3 
Tss(1:nss)=Tamb;    % set initial screw temp. to ambient 
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% Identify screw elements under bearings 
B1ss=round(Lprebrg1/Lss):round((Lprebrg1+Lb)/Lss); 
B2ss=round((Lprebrg1+brgDis)/Lss):round((Lprebrg1+brgDis+Lb)/Lss); 
 
% Ballnut constants 
Ballnum=118;        % number of balls in nut 
Lnc=0.08;           % length of nut in contact with shaft (m) 
LnutFlange=0.022;   % length of nut flange (m) 
DnutFlange=0.11;    % diameter of nut flange (m) 
AnfSurface=pi*DnutFlange*LnutFlange; % surface area of nut flange (m^2) 
MnutFlange=((pi*DnutFlange^2)/4)*LnutFlange*DensitySteel; 
                    % mass of nut flange (kg) 
Ln=0.146-LnutFlange; % length of nut (m) 
Tnf=1.2;            % nut friction torque (Nm) (measured) 
DnOuter=0.082;      % nut outer diameter (m) 
DnInner=0.050;      % nut inner diameter (m) 
AnSection=(pi/4)*(DnOuter^2-DnInner^2); % area of nut section (m^2) 
AnSurface=(pi*DnOuter*Ln)+AnSection;    % nut surface area (m^2) 
Vn=AnSection*Ln;    % volume of nut (m^3) 
Mn=Vn*DensitySteel; % mass of nut (kg) 
Tnut=Tamb; 
TnutFlange=Tamb; 
 
% Ballnut housing constants 
AnutMount=(pi/4)*(0.110^2-0.088^2); % nut mounting flange area (m^2) 
Lnh=0.14;           % length of nut housing 
AnhSection=0.0044;  % nut housing cross section area (m^2) 
Tnuthousing=Tamb;   % temperature of nut housing 
 
% Split nut housing into elements 
nhs=5;              % number of nut housing elements 
Lnhs=Lnh/nhs;       % length of nut housing element 
AnhSurface=2*(0.09*Lnhs); 
Vnhs=AnhSection*Lnhs;   % volume of nut housing element (m^3) 
Mnhs=Vnhs*DensitySteel; % mass of nut housing element (kg) 
Tnhs(1,1:nhs)=Tamb;     % set initial nut housing temp to ambient 
 
A1=pi*0.038*Ln; A2=pi*0.044*Ln; 
f=(eSteel^2)/(eSteel+((A1/A2)*(eSteel-eSteel^2))); 
                    % interchange factor for radiation 
 
% Table constants 
nts=5;              % number of table elements 
tblnuts=ceil(nts/2); % centre element of table over nut 
Ltbl=1.755;         % length of table 
Ltbls=Ltbl/nts;     % length of table elements (m) 
AtblMount=0.0161;   % nut housing to table mounting surface contact area (m^2) 
AtblSection=0.026;  % area of table cross section (m^2) 
AtblSurface=0.334;  % surface area of table section (m^2) 
Vtbl=AtblSection*Ltbls; % volume of table element (m^3) 
Mtbl=Vtbl*DensitySteel; % mass of table element (kg) 
Ttbl(1,1:nts)=Tamb; 
 
Tremain=0.3;        % approx. torque of motor and linear guideways 
 
%--------------------------------------------------- 
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% Set run parameters 
coolTime=coolTime*60; % sec 
Dist=0.46;          % traverse distance (m) 
StopDist=0.46;      % distance from start for stopped nut position 
startPos=1.079;     % axis datum position (m) from shaft start (flexible 
coupling) 
%startPos=0.931;     % gives 460 traverse symmetric about brg centre 
%startPos=1.17; 
F=20;               % feedrate (m/min) 
stop=2;             % stop time at traverse limits (sec) 
origPT=14;          % pre-tension (microns/m).  If zero, presume free-ended 
brgArrange=0;       % '0'=PT and axial, '1'=PT no axial, '2'=free-ended 
 
% Identify screw elements under error positions (traverse limits) 
ErrPos1ss=[round(Lprebrg1/Lss) round(startPos/Lss)]; % front of position 1 
ErrPos2ss=[round(Lprebrg1/Lss) round((startPos-Dist)/Lss)]; 
                                                     % front of position 2 
 
F_start=(((origPT*brgDis)/1000000*Esteel*AsSection)/brgDis); 
F_current=F_start; 
expansion=0; 
x2_start=(F_start/2)/-Kbrg(2) % negative direction 
x1_start=(F_start/2)/Kbrg(1); 
E_err(1)=((((ErrPos1ss(2)-1)-
ErrPos1ss(1))*Lss)*F_start*1000000)/(AsSection*Esteel); 
E_err(2)=((((ErrPos2ss(2)-1)-
ErrPos2ss(1))*Lss)*F_start*1000000)/(AsSection*Esteel); 
Total_err(1,1)=E_err(1)+x1_start; 
Total_err(1,2)=E_err(2)+x1_start; 
 
Req_exp=x1_start+abs(x2_start)+((F_start*brgDis*1000000)/(AsSection*Esteel)) 
 
%------------------------------------------------------------- 
 
% current and feedrate double exponential parameters. 
 
% Ballscrew 2, no pre-tension 
% noptpars=[0.1368E-3 -0.0079E-3]; noptc=[-1.1632 2.1778]; 
 
% Hollow ballscrew, no pre-tension (parameters relate to feedrate in m/min) 
% noptpars=[0.1104 -0.0074]; noptc=[-1.0502 2.4433]; 
 
% Hollow ballscrew with pre-tension 
ptpars=[0.1879E-3 -0.0091E-3]; ptc=[-1.2431 2.9024]; 
 
% Motor only 
motorpars=[0.300816 -0.009472]; motorc=[-0.325107 0.464454]; 
 
%------------------------------------------------------------- 
 
% Generate trapezoidal axis motion 
Ttrav=Dist/(F/60);  % time for uni-directional traverse (sec) 
Trun=(2*Ttrav)+(2*stop); 
x=(0:TI:Trun)'; 
y=Dist*(trapmf(x,[stop Ttrav+stop Ttrav+(2*stop) Trun])); 
%y=Dist*(dsigmf(x,[stop Ttrav+stop Ttrav+(2*stop) Trun])); 
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dv=gradient(y,x); 
% plot(x,[y,dv]); pause 
% h = plot(460,1,'k*','EraseMode','xor'); 
NumRuns=floor((heatTime*60)/Trun); 
heatTime=NumRuns*Trun; 
 
TestTime=heatTime+coolTime; 
 
if xx~=1 & plottype==1 
   % close all 
   if storeimages~=1; figure; end; 
   poss=mktargs(Tss',0,0,Ls); 
   h1  = plot(poss,Tss','k','EraseMode','xor'); 
   hold on 
   % Nut 
   h2  = plot([startPos-0.069;startPos-0.069],[Tamb;Tnut], 
    '--b','EraseMode','xor'); 
   h3  = plot([startPos+0.077;startPos+0.077],[Tamb;Tnut], 
    '--b','EraseMode','xor'); 
   h4  = plot([startPos-0.069;startPos+0.077],[Tnut+5;Tnut+5], 
    '-r','EraseMode','xor'); 
   % Front bearing 
   h5  = plot([Lprebrg1-(Lb/2);Lprebrg1-(Lb/2)],[20;Tbrgo(1)], 
    '--b','EraseMode','xor'); 
   h6  = plot([Lprebrg1+(Lb/2);Lprebrg1+(Lb/2)],[20;Tbrgo(1)], 
    '--b','EraseMode','xor'); 
   h7  = plot([Lprebrg1-(Lb/2);Lprebrg1+(Lb/2)],[Tbrgo(1);Tbrgo(1)], 
    '--r','EraseMode','xor'); 
   h11 = plot(Lprebrg1,Tbrgi(1),'*g','EraseMode','xor'); 
   % Rear bearing 
   h8  = plot([(Lprebrg1+brgDis)-(Lb/2);(Lprebrg1+brgDis)-(Lb/2)], 
              [20;Tbrgo(2)],'--b','EraseMode','xor'); 
   h9  = plot([(Lprebrg1+brgDis)+(Lb/2);(Lprebrg1+brgDis)+(Lb/2)], 
              [20;Tbrgo(2)],'--b','EraseMode','xor'); 
   h10 = plot([(Lprebrg1+brgDis)-(Lb/2);(Lprebrg1+brgDis)+(Lb/2)], 
              [Tbrgo(2);Tbrgo(2)],'--r','EraseMode','xor'); 
   h12 = plot(Lprebrg1+brgDis,Tbrgi(2),'*g','EraseMode','xor'); 
   set(gca,'YLim',[19 32]); 
    
   % figure resizing 
   set(gca,'FontSize',7);set(gcf,'Position',[324 298 300 230]); 
    
   xlabel('Position along screw (m)'); 
   ylabel('Temperature'); 
   % Measured temperature 
    Mposs=mktargs(MTss,0,0,Ls); % !! is 'MTss' defined ?? 
   pause 
else 
   barh=waitbar(0,'Simulation working ... '); 
end 
 
t0 = clock; 
j=1; 
t=1;                % time index on trapezoidal position graph 
rectime=0;          % time index for recording data 
k=0; 
recrows=1;          % row index for recorded data 
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m=0; 
 
for i=0:TI:TestTime 
   % Calculate nut position 
   if t>size(y,1) t=1; end; 
   if xx~=1 & plottype==1 & k>=60 & storeimages~=1; 
      legend(h1,num2str(floor(i/60))); k=0; 
   else k=k+TI; end; 
   if i<=heatTime 
      Pnut=startPos-y(t); % nut position (m) 
      W=(abs(dv(t))/pitch)*2*pi; % current rotational speed (rad/s) 
   else 
      Pnut=startPos-StopDist; W=0; 
   end 
   windage=Hcf*4*(W/130); % 20m/min = 130rad/s = max windage (4*Hcf) 
   F=(W/(2*pi))*60*16; % convert to feedrate (mm/min) for equation parameters 
   Ia=ptc(1)*exp(-ptpars(1)*(F/1000)) + ptc(2)*exp(-ptpars(2)*(F/1000)); 
   Im=motorc(1)*exp(-motorpars(1)*(F/1000)) + motorc(2)*exp(-
motorpars(2)*(F/1000)); 
   I=Ia-Im;               % subtract motor friction 
   T=I*Tconstant;         % friction torque based on measurement data (Nm) 
   Tvf=T-Tnf-Tbf(1)-Tbf(2)-Tremain; 
                          % non-linear friction torque (needs sharing) 
   if Tvf < 0; Tvf=0; end 
   Tnf2=Tnf+(Tvf*0.8);    % add non-linear friction. 
                          % 75% in nut due to ball behaviour 
   Tbf2(1)=Tbf(1)+(Tvf*0.1); % ball rack system reduces non-linear ball slip 
friction 
   Tbf2(2)=Tbf(2)+(Tvf*0.05); 
   Tremain2=Tremain+(Tvf*0.05); % linear guideways at 5% viscous 
   %set(h,'xdata',y(t)); 
   %drawnow; 
    
   for b=1:2 % calculate temperature of front (1) 
             % and rear (2) bearing housings 
      for hs=1:bhs     % heat entering elements (joules/sec) 
         if hs==1         % element in contact with bearing 
            Hbhs(b,hs) = ((Tbrgo(b)-Ths(b,hs))*KbrgJoint*Abf) -... 
               (((K*Ahsf(b))*(Ths(b,hs)-Ths(b,hs+1)))/Lhs(b)) -... 
               (Hc*Ahs(b)*(Ths(b,hs)-Tamb)); 
         elseif hs==bhs % no conduction from last element, more convection etc 
            Hbhs(b,hs) = (((K*Ahsf(b))/Lhs(b))*(Ths(b,hs-1)-Ths(b,hs))) - ... 
               (Hc*(Ahs(b)+Ahsf(b))*(Ths(b,hs)-Tamb)); 
         else 
            Hbhs(b,hs) = (((K*Ahsf(b))/Lhs(b))*((Ths(b,hs-1)-Ths(b,hs)) - ... 
               (Ths(b,hs)-Ths(b,hs+1)))) - (Hc*Ahs(b)*(Ths(b,hs)-Tamb)); 
         end 
      end 
       
      Ths(b,:) = Ths(b,:) + ((TI * Hbhs(b,:)) / (Mhs(b)*cSteel)); 
       
      Tbrgo(b) = Tbrgo(b) + ((TI * ((Tbf2(b)*0.45*W) -... 
         ((Tbrgo(b)-Tbrgi(b))*KbrgRace) -...      % conduction between races 
         ((Tbrgo(b)-Ths(b,1))*KbrgJoint*Abf) -... % conduction into bearing 
         (Hc*AbSurface*(Tbrgo(b)-Tamb)))) /...    % housing convection 
         (Mbo*cSteel)); 
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      if b==1; Tssb=mean(Tss(B1ss)); else Tssb=mean(Tss(B2ss)); end; 
       
      Tbrgi(b) = Tbrgi(b) + ((TI * ((Tbf2(b)*0.55*W) -... 
         ((Tbrgi(b)-Tbrgo(b))*KbrgRace) -... 
         ((Hc+(windage/10))*(AbSurface/4)*(Tbrgi(b)-Tamb)) -... % convection 
         ((Tbrgi(b)-Tssb)*KbrgShaft*(pi*Rs*2*Lb)))) /... % conduction to shaft 
         (Mbi*cSteel)); 
   end % end of bearing loop 
    
   startss=round((Pnut-(Lnc/2))/Lss); 
   numss=round(Lnc/Lss); 
   Tnutshaft=sum(Tss(startss:(startss+numss-1)))/numss; % temperature of shaft 
under nut 
    
% Calculate temperature of nut housing elements 
   for n=1:nhs         % heat entering/leaving elements (joules/sec) 
      if n==1          % element in contact with nut flange 
         Hnhs(n) = ((TnutFlange-Tnhs(n))*KnhJoint*AnutMount) -...  
                                                  % conduction from nut flange 
            (((K*AnhSection)/Lnhs)*(Tnhs(n)-Tnhs(n+1))) -...  
                                                  % conduction across elements 
            ((Hc+(windage/10))*AnhSurface*(Tnhs(n)-Tamb));        % convection 
      elseif n==nhs 
         Hnhs(n) = (((K*AnhSection)/Lnhs)*(Tnhs(n-1)-Tnhs(n))) -... 
            ((Hc+(windage/10))*(AnhSection+AnhSurface)*(Tnhs(n)-Tamb)); 
      else 
         Hnhs(n) = (((K*AnhSection)/Lnhs)*((Tnhs(n-1)-Tnhs(n))-(Tnhs(n)-
Tnhs(n+1)))) -... 
            ((Hc+(windage/10))*AnhSurface*(Tnhs(n)-Tamb)); 
      end 
   end 
   for n=1:nhs 
      Tnhs(n) = Tnhs(n) + ((TI * (Hnhs(n) -... 
         ((Tnhs(n)-Ttbl(tblnuts))*KtblJoint*(AtblMount/nhs)))) / 
         (Mnhs*cSteel));...                     % conduction - housing > table 
   end 
   Tnuthousing=sum(Tnhs(:))/nhs; 
    
   % Calculate temperature of nut 
   Tnut = Tnut + ((TI * ((Tnf2*0.6*W) -... 
      (((K*AnSection)/LnutFlange)*(Tnut-TnutFlange)) -...  
                                                  % conduction to nut flange 
      ((Tnut-Tnutshaft)*KnutShaft*AnsbContact) - ...  
                                                  % conduction to screw 
      ((Hc+(windage/10))*(AnSurface/3)*(Tnut-Tamb)) )) /... % convection 
      (Mn*cSteel)); 
    
   TnutFlange=TnutFlange + ((TI * ((((K*AnSection)/LnutFlange)*(Tnut-
TnutFlange)) -... 
      ((TnutFlange-Tnhs(1))*KnhJoint*AnutMount) -...          
                                                 % conduction to nut housing 
      ((Hc+(windage/5))*AnfSurface*(TnutFlange-Tamb))))/ ... % convection 
      (MnutFlange*cSteel)); 
    
   % Calculate temperature of table 
   for n=1:nts 
      if n == 1 
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         Htbl(n) = (((K*AtblSection)/Ltbls)*(Ttbl(n+1)-Ttbl(n))) -... 
            ((Hc+(windage/10))*(AtblSurface+AtblSection)*(Ttbl(n)-Tamb)); 
      elseif n == nts 
         Htbl(n) = (((K*AtblSection)/Ltbls)*(Ttbl(n-1)-Ttbl(n))) -... 
            ((Hc+(windage/10))*(AtblSurface+AtblSection)*(Ttbl(n)-Tamb)); 
      elseif n == tblnuts 
         Htbl(n) = ((Tnuthousing-Ttbl(n))*KtblJoint*AtblMount) +... 
            (((K*AtblSection)/Ltbls)*((Ttbl(n-1)-Ttbl(n))-(Ttbl(n)-
Ttbl(n+1)))) -... 
            ((Hc+(windage/10))*AtblSurface*(Ttbl(n)-Tamb)); 
      else 
         Htbl(n) = (((K*AtblSection)/Ltbls)*((Ttbl(n-1)-Ttbl(n))-(Ttbl(n)-
Ttbl(n+1)))) -... 
            ((Hc+(windage/10))*AtblSurface*(Ttbl(n)-Tamb)); 
      end 
   end 
   Ttbl(:) = Ttbl(:) + ((TI * Htbl(:)) / (Mtbl*cSteel)); 
    
   % Calculate temperature of screw shaft 
   for ss=1:nss  
      if ss==1         % no conduction from first screw FE, more convection 
etc 
                       % must consider oil film preventing/aiding heat loss 
from shaft 
         Hss(ss) = (((K*AsSection) * (Tss(ss+1)-Tss(ss)))/Lss) -... 
            ((Hc+windage)*(AsSurface+(AsSection*2))*(Tss(ss)-Tamb)); 
      elseif ss==nss 
         Hss(ss) = (((K*AsSection) * (Tss(ss-1)-Tss(ss)))/Lss) -... 
            ((Hc+windage)*(AsSurface+(AsSection*2))*(Tss(ss)-Tamb)); 
      elseif sum(eq(B1ss,ss))>0 % screw FE under bearing 1 
         Hss(ss) = ((Tbrgi(1)-Tss(ss))*KbrgShaft*AsSurface) +... 
            (((K*AsSection) * ((Tss(ss+1)-Tss(ss)) -... 
            (Tss(ss)-Tss(ss-1)))/Lss)); % joules/sec 
      elseif sum(eq(B2ss,ss))>0 % FE under bearing 2 
         Hss(ss) = ((Tbrgi(2)-Tss(ss))*KbrgShaft*AsSurface) +... 
            (((K*AsSection) * ((Tss(ss+1)-Tss(ss)) -... 
            (Tss(ss)-Tss(ss-1))))/Lss); % joules/sec 
      elseif ss*Lss >= Pnut-(Lnc/2) & ss*Lss <= Pnut+(Lnc/2) 
                                                     % screw FE under nut 
         Hss(ss) = ((Tnf2*0.6*W)/(Lnc/Lss)) + (((K*AsSection) *... 
            ((Tss(ss+1)-Tss(ss)) - (Tss(ss)-Tss(ss-1))))/Lss) +... 
            ((Tnut-Tnutshaft)*KnutShaft*AnsbContact); 
      elseif ss>1 & ss<nss % normal screw FE 
         Hss(ss) = (((K*AsSection) * ((Tss(ss+1)-Tss(ss)) ... 
            - (Tss(ss)-Tss(ss-1))))/Lss) -... 
            ((Hc+windage)*AsSurface*(Tss(ss)-Tamb)); 
      end 
   end % end of screw shaft FE loop 
    
   Tss(:) = Tss(:) + ((TI * Hss(:)) / (Mss*cSteel)); 
    
  % Update graph 
   if xx~=1 & plottype==1 
      set(h1,'ydata',Tss); 
      % Nut 
      set(h2,'xdata',[Pnut-0.069;Pnut-0.069]); set(h2,'ydata',[Tamb;Tnut]); 
      set(h3,'xdata',[Pnut+0.077;Pnut+0.077]); set(h3,'ydata',[Tamb;Tnut]); 
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      set(h4,'xdata',[Pnut-0.069;Pnut+0.077]); set(h4,'ydata',[Tnut;Tnut]); 
      % Front bearing 
      set(h5,'ydata',[20;Tbrgo(1)]); set(h6,'ydata',[20;Tbrgo(1)]); 
      set(h7,'ydata',[Tbrgo(1);Tbrgo(1)]); 
      set(h11,'ydata',Tbrgi(1)); 
      % Rear bearing 
      set(h8,'ydata',[20;Tbrgo(2)]); set(h9,'ydata',[20;Tbrgo(2)]); 
      set(h10,'ydata',[Tbrgo(2);Tbrgo(2)]); 
      set(h12,'ydata',Tbrgi(2)); 
      drawnow 
   elseif xx==1 
      waitbar((i/TI)/(TestTime/TI),barh); 
   end 
    
   t=t+1; 
   warning off 
   if (rectime>(waittime-TI) & rectime<(waittime+TI)) | i==0 
      z1(recrows,:)=Tss; 
      z2(recrows,:)=[Tnut Tbrgo(1) Tbrgo(2)]; 
      Total_exp=((sum(Tss(B1ss:B2ss)-Tamb))*ExpCoeff*Lss); 
      Exp_change=Total_exp-expansion; 
      expansion=Total_exp; 
      F_change=Exp_change 
   /(((1/(2*Kbrg(1)))+(1/(Kbrg(2)*2)))+((brgDis*1000000)/(AsSection*Esteel))); 
      F_current=F_current-F_change; 
      if brgArrange==2 | (brgArrange==1 & (Req_exp-Total_exp) <= 0); 
         Kbrg=[0.54 0]; 
         Tbf=[0.4 0.2];   % rear bearing friction significantly reduced 
      else 
         Kbrg=[0.54 0.47]; 
         Tbf=[0.5 0.4]; 
      end 
       
      if Kbrg(2) == 0; x2=0; else; x2=(F_current/2)/-Kbrg(2); end; 
      x1=(F_current/2)/Kbrg(1); 
      % Kdatum=(-x1*brgDis)/(x2-x1) %should be zero if no axial 
      % Position y = 0. 
      Th_exp(1)=(sum(Tss(ErrPos1ss(1):ErrPos1ss(2)-1)-Tamb))*ExpCoeff*Lss; 
      E_err(1)=((((ErrPos1ss(2)-1)-ErrPos1ss(1))*Lss)*F_current*1000000)/... 
         (AsSection*Esteel); % error due to strain (microns) 
       
      % Position y = -460. 
      Th_exp(2)=(sum(Tss(ErrPos2ss(1):ErrPos2ss(2)-1)-Tamb))*ExpCoeff*Lss; 
      E_err(2)=((((ErrPos2ss(2)-1)-
ErrPos2ss(1))*Lss)*F_current*1000000)/(AsSection*Esteel); 
       
      Total_err(recrows,1)=Th_exp(1)+E_err(1)+x1; 
      Total_err(recrows,2)=Th_exp(2)+E_err(2)+x1; 
       
      extra(recrows,1)=Total_err(recrows,1)-Total_err(recrows,2); 
      extra(recrows,2)=(sum(Tss(ErrPos2ss(2)-1:ErrPos1ss(2)-1)-Tamb)) 
                       *ExpCoeff*Lss; 
       
      % save image 
      if storeimages==1 
         z=datenum(2001,12,19,0,0,i); 
         newtitle=datestr(z,13); 
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         title(newtitle); 
         savename=sprintf('%s\\movie\\%s%.3d.jpg',froot,filename,recrows); 
         print('-djpeg',savename); 
      end 
       
      time(recrows,1)=i; 
      rectime=0; 
      recrows=recrows+1; 
       
   else 
      rectime=rectime+TI; 
   end 
   warning on 
   j=j+1; 
end 
 
if xx==1 & not(isempty(barh)); close(barh); end; 
z3=Total_err-Total_err(1,1); 
z4=extra; 
%elapsedtime=etime(clock,t0) 
%avetmp=sum(Tss(:))/nss 
hold off 
time=time/60; 
figure 
plot(time,[z3 z4]); xlabel('Time (min)'); ylabel('Error (um)'); 
 
legend('Error at 0','Error at y=-460','Difference in error','Expansion 
between'); 
figure 
plot(time,z2); title('Nut & bearings'); xlabel('Time (min)'); 
ylabel('Temperature (deg C)');legend('Nut','Front bearing','Rear bearing'); 
%figure 
%plot(time,z4); legend('1','2','3','4','5'); 
%Title('Temperature of table elements') 
%tilefigs 
Total_exp 
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Appendix 7.4 – Mini TK model “BS_COOL1.TK” 
 
Variable sheet 
 
Symbol Value  Units    Name 
    calculation display 
# 1 A 0.20894 1/m  1/m 
# 2 l 1.182  m  m  length 
# 3 k 0.597  W/(m K) W/(m K) thermal conductivity 
# 4 Nu 3.66      Nusselt number 
# 5 Cp 4183  J/(kg K) kJ/(kg K) specific heat 
# 6 rho 1000  kg/m^3 kg/m^3 density 
# 7 d 10  m  mm  diameter of duct 
# 8 vw 0.1  m/sec  m/sec  velocity of coolant 
# 9 Tw_ave 11.48 K  deg C  average temperature of coolant 
#10 Twi 10  K  deg C  initial temperature of coolant 
#11 Tb 23  K  deg C  temperature of ballscrew metal 
#12 H 8.1138 W/K  W/K  heat transfer rate per degree 
#13 pi 3.14159265     pi 
#14 dq_dt -93.463 W  W  heat transfer rate 
#15 dv_dt 0.4712 m^3/sec l/min  coolant flow rate 
#16 Re 802.14     Reynolds number 
#17 nu 1.2467×10-6 m^2/sec m^2/sec kinematic viscosity 
         of the coolant 
#18 nu0 1.788×10-6 m^2/sec m^2/sec kinematic viscosity at 0 deg C 
#19 nu20 1.006×10-6 m^2/sec m^2/sec kinematic viscosity at 20 deg C 
#20 nu40 0.658×10-6 m^2/sec m^2/sec kinematic viscosity at 40 deg C 
 
Unit sheet 
 calculation display 
# 1 m  mm  ×1000 
# 2 m^3/sec l/min  ×60000 
# 3 K  deg C    -273 
# 4 J/(kg K) kJ/(kg K) ×0.001 
 
Rule sheet 
# 1 pi=4.*atan(1.) 
# 2 A=4.*k*Nu/(Cp*rho*d^2*vw) 
# 3 Tw_ave=(Twi-Tb)/(A*l)*(1.-exp(-A*l))+Tb 
# 4 H=pi*k*Nu*l 
# 5 dq_dt=H*(Tw_ave-Tb) 
# 6 dv_dt=pi/4*d^2*vw 
# 7 Re=vw*d/nu 
# 8 nu=nu20+(nu40-nu0)/40.*(Tw_ave-293.) 
 
 
 

[262] 



Appendix 8.1 - Static deflection theory – zero pre-tension 

The ballscrew is considered as an elastic beam supported at each end by a bearing whose 

radial stiffness is Ki and whose tilt stiffness is Φi being one at the drive end of the screw and 

two at the non-drive end.  The pre-tension T in the ballscrew is considered to be zero. 

  A8.1.1  One element shaft 

Consider a beam of length L along the X axis. 

Bending under moment M gives[129]:- 

EI
M

dx
yd
=2

2
     (8.A1.1) 

where EI is the flexural rigidity of the beam. 

Considering the moment balance of an element of length δx under a shear force Q gives:- 

0. =++= MMxQM δδ     (8.A1.2) 

whence in the limit 

Q
dx

dM
−=       (8.A1.3) 

and so 

EI
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yd

−==
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3

3
    (8.A1.4) 

differentiating 

dx
dQ

EIdx
yd 1
4

4
−=      (8.A1.5) 

If the beam has a mass μ per unit length and is subject to a gravitational field of g the forces 

on the element give 

QQxgQ δδμ +=+ .     (8.A1.6) 

whence in the limit 

g
dx
dQ μ=       (8.A1.7) 

The deflected shape of the beam is therefore subject to the differential equation 

g
EIdx

yd μ1
4

4
=      (8.A1.8) 

The general solution is:- 
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leading to 
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where Ai are constants determined by the boundary conditions. 

Equation (8.A1.1) and equation (8.A1.10b) yield:- 
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   (8.A1.11) 

and equation (8.A1.3) and equation (8.A1.10c) yield:- 
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Considering the support given by the bearings, at end 0=x , 
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and so 

0411 QAKAEI =+      (8.A1.13b) 

and 
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and so 
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and so 
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and so 

3
2

2
32221

2

2 62
)()

2
( L

EI
gLgMAALEIALLEI L

μμ
Φ++=Φ+Φ++Φ+     (8.A1.16b) 

Combining equations (8.A1.48b), (8.60b), (8.61b) and (8.62b) gives 
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from which Ai can be calculated provided 
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 (8.A1.18). 

  A8.1.2  Four element shaft 

In practice the ballscrew carries the nut and two monitoring rings which, to an 

approximation at least, can be considered as giving rise to point loads.  Also the portions of 

the screw which lie outside of the bearing span, for example half of the flexible coupling 

connecting the drive motor to the screw at the drive end, can be considered to be point loads 

acting at the bearing centres.  Thus the ballscrew is considered as a beam in four sections, 

with loads (Q0, M0) at the non-drive end, loads (Qi, Mi) at intermediate points with axial 

coordinates Xi and loads (QL, ML) at the drive end. 
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In section 1, 10 Xx <≤  and 
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In section 4,  and LxX ≤≤3
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Considering the support given by the bearings, at the drive end 0=x , 
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Continuity gives 
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and so 
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Continuity gives 
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and so 
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Considering the support given by the bearings, at the non-drive end , Lx =
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Equations (8.A1.13b), (8.31b) and (8.A1.31b)-(8.A1.44b) can be summarised in matrix 

form as:- 
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where the terms Hij are submatrices of quantities determined by the geometry of the 

ballscrew, Aj are subvectors of the 16 terms used to define the deflected shape of the 

ballscrew by the equation 
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s being the screw section number, and Vi are subvectors of the forces vector given by:- 
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The submatrices are as follows:- 
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For any particular geometrical configuration and loading condition equation (8.A1.45) can 

be solved to give a set {Ai} which can be used to give a predicted set of {yi} to compare with 

the measured ones. 

[273] 



Appendix 8.2 - Static deflection theory – non-zero pre-tension 

The ballscrew is considered as an elastic beam supported at each end by a bearing whose 

radial stiffness is Ki and whose tilt stiffness is Φi being one at the drive end of the screw and 

two at the non-drive end.  The pre-tension T in the ballscrew is considered to be zero. 

  A8.2.1  One element shaft 

Consider a beam of length L along the X axis, the moment balance of an element of length 

δx under a shear force Q and a tensile load T gives:- 

0.. =++=+ MMxQMyT δδδ    (8.A2.1) 

whence in the limit 

dx
dyTQ

dx
dM

+−=     (8.A2.2) 

and so 

dx
dy

EI
T

EI
Q

dx
dM

EIdx
yd

+−==
1

3

3
  (8.A2.3) 

 

differentiating 

2

2

4

4 1
dx

yd
EI
T

dx
dQ

EIdx
yd

+−=    (8.A2.4) 

If the beam is subject to a gravitational field of g 

g
dx
dQ μ=      (8.A1.7) 

The deflected shape of the beam is therefore subject to the differential equation 

g
EIdx

yd
EI
T

dx
yd μ1

2

2

4

4
=−    (8.A2.5) 

The corresponding homogeneous equation is 

02

2

4

4
=−

dx
yd

EI
T

dx
yd     (8.A2.6) 

and the characteristic equation 

024 =− ξξ
EI
T     (8.A2.6a) 

has roots 0=ξ  (8.A2.6b) (two) and 
EI
T

±=ξ  (8.A2.6c) for the case of tensile loading 

( ).  For compressive loading (0>T 0<T ), i
EI
T

±=ξ  (8.A2.6d) 
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Letting 
EI
T

=λ  (8.A2.7), the general solution for the tensile case is 

xAxAxAAy λλ sinhcosh 4321 +++=   (8.A2.8) 

leading to 

xAxAA
dx
dy λλλλ coshsinh 432 ++=   (8.A2.8a) 

xAxA
dx

yd λλλλ sinhcosh 4
2

3
2

2

2
+=   (8.A2.8b) 

xAxA
dx

yd λλλλ coshsinh 4
3

3
3

3

3
+=   (8.A2.8c) 

xAxA
dx

yd λλλλ sinhcosh 4
4

3
4

4

4
+=   (8.A2.8d) 

and letting 
EI

T−
=λ  (8.A2.9),for the compressive case is 

xBxBxBBy λλ sincos 4321 +++=   (8.A2.10) 

leading to 

xBxBB
dx
dy λλλλ cossin 432 +−=    (8.A2.10a) 

xBxB
dx

yd λλλλ sincos 4
2

3
2

2

2
−−=    (8.A2.10b) 

xBxB
dx

yd λλλλ cossin 4
3

3
3

3

3
−=    (8.A2.10c) 

xBxB
dx

yd λλλλ sincos 4
4

3
4

4

4
+=    (8.A2.10d) 

where Ai and BBi are constants determined by the boundary conditions. 

The solutions of the non-homogeneous equation (8.A2.5) are 

xAxAx
T
gxAAy λλμ sinhcosh

2 43
2

21 ++−+=   (8.A2.11) tensile 

and 

xBxBx
T
gxBBy λλμ sincos

2 43
2

21 ++−+=  (8.A2.12) compressive 

Normally a ballscrew is set with pre-tension, that is T is positive.  Therefore concentrating 

on the tensile case, differentiating equation (8.A2.11) gives 
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xAxAx
T

gA
dx
dy λλλλμ coshsinh 432 ++−=   (8.A2.13), 

equation (8.A1.1) and differentiating equation (8.A2.13) yields 

xTAxTA
T

gEI

xEIAxEIA
T

gEI
dx

ydEIM

λλμ

λλλλμ

sinhcosh

sinhcosh

43

4
2

3
2

2

2

++−=

++−=

=

  (8.A2.14) 

and equation (8.A1.3) and differentiating equation (8.A2.14) yields 

xTAxTA
dx

dMQ

λλλλ coshsinh 43 −−=

−=
    (8.A2.15) 

Considering the support given by the bearings, at end 0=x , 

40311

01

)(
)0()0(

TAQAAK
QQyK
λ−=+

+=
        (8.A2.16a) 

and so 

043111 QTAAKAK =++ λ         (8.A2.16b) 

and 

30421

01

)(

)0()0(

TA
T

gEIMAA

MM
dx
dy

++=+Φ

+=Φ

μλ
       (8.A2.17a) 

and so 

T
gEIMATAA μλ +=Φ+−Φ 041321        (8.A2.17b) 

At end , Lx =

L

L

QLALAL
T
gLAAKLTALTA

QLyKLQ

=+++++−−

=+

)sinhcosh
2

(coshsinh

)()(

43
2

21243

2

λλμλλλλ
 

(8.A2.18a) 

and so 

2
242322212 2

)coshsinh()sinhcosh( L
T
gKQALTLKALTLKLAKAK L

μλλλλλλ −=−+−++

 (8.A2.18b) 

and 
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L
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T

gEI

ML
dx
dyLM

=++−Φ+++−

=Φ+

)coshsinh(sinhcosh

)()(

432243

2

λλλλμλλμ
 

(8.A2.19a) 

and so 

)()sinhcosh()coshsinh( 2423222 LEI
T

gMALTLALTLA L Φ++=+Φ++Φ+Φ
μλλλλλλ

 (8.A2.19b) 

Combining equations (8.A2.16b), (8.A2.17b), (8.A2.18b) and (8.A2.19b) gives 
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T
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(8.A2.20) 

from which Ai can be calculated provided 

0

)sinhcosh()coshsinh(0
)coshsinh()sinhcosh(

0
0

222

2222

11

11

≠

+Φ+ΦΦ
−−

Φ−Φ

LTLLTL
LTLKLTLKLKK

T
TKK

λλλλλλ
λλλλλλ

λ
λ

 (8.A2.21). 

  A8.2.2  Four element shaft 

As in the case of no pre-tension, the beam is considered in four sections. 

In section 1, 10 Xx <≤  and 

xAxAxAAy λλ sinhcosh 4321 +++=   (8.A2.22) 

leading to 

xAxAA
dx
dy λλλλ coshsinh 432 ++=   (8.A2.22a) 

xAxA
dx

yd λλλλ sinhcosh 4
2

3
2

2

2
+=   (8.A2.22b) 

xAxA
dx

yd λλλλ coshsinh 4
3

3
3

3

3
+=   (8.A2.22c) 
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xAxA
dx

yd λλλλ sinhcosh 4
4

3
4

4

4
+=   (8.A2.22d) 

and 

xTAxTA
T

gEIM λλμ sinhcosh 43 ++−=   (8.A2.23) 

xTAxTAQ λλλλ coshsinh 43 −−=    (8.A2.24) 

In section 2,  and 21 XxX <≤

xAxAxAAy λλ sinhcosh 8765 +++=   (8.A2.25) 

leading to 

xAxAA
dx
dy λλλλ coshsinh 876 ++=   (8.A2.25a) 

xAxA
dx

yd λλλλ sinhcosh 8
2

7
2

2

2
+=   (8.A2.25b) 

xAxA
dx

yd λλλλ coshsinh 8
3

7
3

3

3
+=   (8.A2.25c) 

xAxA
dx

yd λλλλ sinhcosh 8
4

7
4

4

4
+=   (8.A2.25d) 

and 

xTAxTA
T

gEIM λλμ sinhcosh 87 ++−=   (8.A2.26) 

xTAxTAQ λλλλ coshsinh 87 −−=    (8.A2.27) 

In section 3,  and 32 XxX <≤

xAxAxAAy λλ sinhcosh 1211109 +++=   (8.A2.28) 

leading to 

xAxAA
dx
dy λλλλ coshsinh 121110 ++=   (8.A2.28a) 

xAxA
dx

yd λλλλ sinhcosh 12
2

11
2

2

2
+=   (8.A2.28b) 
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dx

yd λλλλ coshsinh 12
3

11
3

3

3
+=   (8.A2.28c) 
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dx

yd λλλλ sinhcosh 12
4

11
4

4

4
+=   (8.A2.28d) 

and 
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xTAxTA
T

gEIM λλμ sinhcosh 1211 ++−=   (8.A2.29) 

xTAxTAQ λλλλ coshsinh 1211 −−=   (8.A2.30) 

In section 4,  and LxX ≤≤3

xAxAxAAy λλ sinhcosh 16151413 +++=   (8.A2.31) 

leading to 

xAxAA
dx
dy λλλλ coshsinh 161514 ++=   (8.A2.31a) 

xAxA
dx

yd λλλλ sinhcosh 16
2

15
2

2

2
+=   (8.A2.31b) 

xAxA
dx

yd λλλλ coshsinh 16
3

15
3

3

3
+=   (8.A2.31c) 

xAxA
dx

yd λλλλ sinhcosh 16
4

15
4

4

4
+=   (8.A2.31d) 

and 

xTAxTA
T

gEIM λλμ sinhcosh 1615 ++−=   (8.A2.32) 

xTAxTAQ λλλλ coshsinh 1615 −−=   (8.A2.33) 

Considering the support given by the bearings, at the drive end 0=x , 

43110
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)(
)0(0

TAAAKQ
TAyKQ

λ
λ

−+−=
−−=

   (8.A2.34a) 

and so 

043111 QTAAKAK =−+ λ     (8.A2.34b) 

and 

34210

2

2
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)(

)0()0(0

TA
T

gEIAAM

dx
ydEI

dx
dyM

+−+Φ−=

+Φ−=

μλ
  (8.A2.35a) 

and so 

T
gEIMATAA μλ −=Φ+−Φ 041321   (8.A2.35b) 

At , 1Xx =
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181711

coshsinh
coshsinh)(

XTAXTA
XTAXTAQXQ

λλλλ
λλλλ

−−=
−−=+  (8.A2.36a) 

and so 

181714131 coshsinhcoshsinh QAXTAXTAXTAXT =++−− λλλλλλλλ  (8.A2.36b) 

and 

1413

181711

sinhcosh

sinhcosh)(
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T

gEI
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T

gEIMXM

λλμ

λλμ

++−=

++−=+

 (8.A2.37a) 

and so 

181714131 sinhcoshsinhcosh MAXTAXTAXTAXT =−−+ λλλλ  (8.A2.37b) 

Continuity gives 

)(sinhcosh
)(sinhcosh)(
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114131211

XeXAXAXAA
XeXAXAXAAXy
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++++=

λλ
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 (8.A2.38a) 

and so 

0sinhcoshsinhcosh 81716154131211 =−−−−+++ AXAXAXAAXAXAXA λλλλ  

(8.A2.38b) 

and 

)(coshsinh

)(coshsinh)(
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1141321

X
dx
deXAXAA

X
dx
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λλλλ

λλλλ
 (8.A2.39a) 

and so 

0coshsinhcoshsinh 8171641312 =−−−++ AXAXAAXAXA λλλλλλλλ  (8.A2.39b) 

At , 2Xx =

2827

21221122

coshsinh
coshsinh)(
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λλλλ

−−=
−−=+   (8.A2.40a) 

and so 

21221128272 coshsinhcoshsinh QAXTAXTAXTAXT =++−− λλλλλλλλ  (8.A2.40b) 

and 
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sinhcosh)(
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gEI
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T
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λλμ

λλμ
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 (8.A2.41a) 
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and so 

21221128272 sinhcoshsinhcosh MAXTAXTAXTAXT =−−+ λλλλ  (8.A2.41b) 

Continuity gives 

)(sinhcosh
)(sinhcosh)(
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λλ

 (8.A2.42a) 

and so 

0sinhcoshsinhcosh 12211210298272625 =−−−−+++ AXAXAXAAXAXAXA λλλλ  

(8.A2.42b) 

and 

)(coshsinh
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X
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X
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 (8.A2.43a) 

and so 

0coshsinhcoshsinh 1221121082726 =−−−++ AXAXAAXAXA λλλλλλλλ  

(8.A2.43b) 

At , 3Xx =
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31631533

coshsinh
coshsinh)(
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−−=+   (8.A2.44a) 

and so 

3163153123113 coshsinhcoshsinh QAXTAXTAXTAXT =++−− λλλλλλλλ  

(8.A2.44b) 

and 
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 (8.A2.45a) 

and so 

3163153123113 sinhcoshsinhcosh MAXTAXTAXTAXT =−−+ λλλλ  (8.A2.45b) 

Continuity gives 
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 (8.A2.46a) 

and so 
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0sinhcoshsinhcosh 163153143131231131039 =−−−−+++ AXAXAXAAXAXAXA λλλλ
 

(8.A2.46b) 

and 
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)(coshsinh)(
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and so 

0coshsinhcoshsinh 1631531412311310 =−−−++ AXAXAAXAXA λλλλλλλλ  

(8.A2.47b) 

Considering the support given by the bearings, at the non-drive end , Lx =
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(8.A2.48a) 

and so 
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(8.A2.48b) 

and 
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(8.A2.49a) 

and so 

T
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T
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L
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2

162152142 )sinhcosh()coshsinh(
 

(8.A2.49b) 

Equations (8.A2.34b)-(8.A2.49b) can be summarised in matrix form as:- 
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    (8.A1.45) 

where, as in Appendix 8.1, the terms Hij are submatrices of quantities determined by the 

geometry of the ballscrew, Aj are subvectors of the 16 terms used to define the deflected 

shape of the ballscrew by the equation 

41for,sinhcosh
2 4)1(43)1(4

2
2)1(41)1(4 L=++−+= +−+−+−+− sxAxAx

T
gxAAy ssss λλμ  

(8.A2.50) 

s being the screw section number, and Vi are subvectors of the forces vector given by:- 
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(8.A2.51a-d) 

The submatrices are as follows:- 
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(8.A2.52j). 

For any particular geometrical configuration and loading condition equation (8.A1.45) can 

be solved to give a set {Ai} which can be used to give a predicted set of {yi} to compare with 

the measured ones. 
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Appendix 8.3 – Dynamic behaviour of a shaft under centrifugal forces 

Consider a beam of length L along the X axis.  It has already been established that:- 

EI
M

dx
yd
=2

2
     (8.A1.1) 

and that:- 

EI
Q

dx
dM

EIdx
yd

−==
1

3

3
    (8.A1.4). 

Let us assume that the beam, together with its Y and Z axes, is spinning about its X axis at 

ω radians per second and that after a sufficient length of time it settles down to a deflected 

shape y(x) determined by a balance between centrifugal forces and the elastic properties of the 

beam.  In this case, considering the force balance of an element of length δx under the 

centrifugal forces acting on a beam of linear density μ gives:- 

02 =+++− QQyxQ δωδμ    (8.A3.1) 

whence in the limit 

y
dx
dQ 2ωμ−=      (8.A3.2) 

and so 

y
EIdx

dQ
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yd 2

4

4 1 ωμ
=−=     (8.A3.3) 

This can be written as 
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4

4
=− yk

dx
yd     (8.A3.4) 

where 

4
2

EI
k ωμ
=      (8.A3.5) 

For a solution let             (8.A3.6) xeAy α=

whence    xeA
dx
dy αα=           (8.A3.7) 

    xeA
dx

yd αα 2
2

2
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    xeA
dx

yd αα 3
3

3
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    xeA
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yd αα 4
4

4
=        (8.A3.10) 

Putting (8.A3.6) and (8.A3.10) in (8.A3.4) gives:- 
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For the beam to be “spinning” as opposed to “stationary” 0≠ω hence  (8.A3.12).  One 

solution to this equation is that 

40 k<

0=A  (8.A3.13a).  The other is that  (8.A3.13b), 

whence a general solution is of the form 

44 k=α

xikxikxkxk eAeAeAeAy −− +++= 4321    (8.A3.14a) 

or the form 
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The two solutions are related by 
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Differentiating gives the slope 
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and the curvature 
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and the 3rd derivative 
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4
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13

3
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Consider the beam simply supported at both ends.  Then 
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  (8.A3.17) 

which gives  (8.A3.18a), 01 =B 0sinh2 =kLB  (8.A3.18b), 03 =B  (8.A3.18c) and 

 (8.A3.18d).   and so 0sin4 =kLB kLsinh0 < 02 =B  (8.A3.19).   (8.A3.20a) only 04 ≠B
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when  (8.A3.20b), i.e. 0sin =kL πnkL =  (8.A3.20c) where n is a non-zero integer.  In other 

words, a non-zero solution for y is only possible when 

4
442

L
EIn
μ

πω =     (8.A3.21) 

that is at a set of defined speeds. 

Consider the beam built in at both ends.  Then 
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from which can be deduced 
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which leads to 
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or, in matrix form 
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The determinant of the matrix in (8.A3.25) is given by 

)coscosh1(2
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(8.A3.26) 

Since  (8.A3.27a) and kLcosh1≤ 1cos1 ≤≤− kL  (8.A3.27b), 0det =  only when 0=kL  

(8.A3.28).  This does not hold for non-zero length beam spinning at a non-zero speed.  It 

therefore follows that  (8.A3.29a), ⎟⎟
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01 =B  (8.A3.29b) and 02 =B  

(8.A3.29c).  Therefore, if the shaft is built in there is no stable “skipping” mode in the case of 
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a perfectly balanced shaft.  This in turn leads to the conclusion that any transverse vibration of 

the ballscrew is likely to be caused by external forces. 
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Appendix 8.4 – Data extraction and results – Fixed nut, all positions 

Sample of data extraction – Position 1, Speed 3 

B = without excitation weights   O = with excitation weights 
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Figure A8.4.1 – Raw data 
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Figure A8.4.2 – Development of vibration response over time 
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Figure A8.4.3 – Average vibration response 
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Figure A8.4.4 – Effect of excitation weights 
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Table A8.4.1 - Extracted mean vibration levels - Position 1 
 
Speed 1 2 3 4 5 6 
top 0.1 0.1 0.1 0.1 0.1 0.1 
tail 0.9 0.9 0.9 0.9 0.9 0.9 
Ring 1       
a0/2 4.1910 11.0321 9.5450 1.7009 -12.9013 15.9004 
amp1 8.4869 4.7371 9.6341 15.2111 21.6647 13.3961 
 157.2717 -16.3621 -16.3200 -16.2648 -19.3235 7.9638 
amp2 1.5249 0.0316 0.0457 0.1064 0.5636 2.3433 
 -26.8151 158.9314 -176.5315 141.8884 147.7374 39.3129 
amp3 0.3078 0.0044 0.0214 0.0313 0.2976 0.1699 
 56.3450 34.4782 -108.6215 0.8089 130.0082 -6.4777 
amp4 0.2975 0.0055 0.5778 0.0089 0.0244 0.3834 
 147.4322 163.3038 7.7661 112.7908 167.5528 -82.4145 
amp5 0.0502 0.0030 0.0049 0.0019 0.0375 0.0247 
 163.9259 21.1011 -44.7590 44.9435 166.0433 -20.6929 
Ring 2       
a0/2 -13.4319 51.5370 51.0596 -12.3176 -68.5804 83.8246 
amp1 50.3418 26.1541 53.2913 85.2851 118.1917 116.7272 
 120.9508 -16.6694 -16.7699 -16.6387 -18.9519 -3.9027 
amp2 0.9494 0.1300 0.2875 0.7007 2.6500 2.7581 
 48.4523 159.8836 154.0191 129.1613 146.2441 54.3890 
amp3 0.5778 0.0418 0.0873 0.1449 1.5813 0.3232 
 5.7237 97.4000 -71.1011 22.2837 127.0766 140.4804 
amp4 0.1629 0.0148 2.8912 0.0072 0.1102 0.0822 
 -46.9183 94.6104 9.7228 108.7139 -168.1067 -98.0059 
amp5 0.0327 0.0128 0.0164 0.0246 0.0352 0.0367 
 131.0733 162.0896 61.5383 136.2864 -170.1634 99.6144 

A tabulation of the results of the Fourier analysis of the extracted mean data 

“top” is the proportion of the raw data at which extraction starts, and “tail” is the proportion when 

analysis ends. 

a0/2 is the “DC” shift (µm), amp1 – amp5 are the first to fifth order amplitudes (µm), and the 

smaller figures under the amplitude rows are the phase angles (deg) 

As can be seen, the first order dominates showing that the out-of-balance load was the most 

significant forcing term in the tests. 
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Table A8.4.2 - Extracted mean vibration levels - Position 2 
 
Speed 1 2 3 4 5 6 
top 0.1 0.1 0.1 0.1 0.1 0.1 
tail 0.9 0.9 0.9 0.9 0.9 0.9 
Ring 1       
a0/2  -7.8777 -11.3733 -16.0938 4.2525 -15.6233 
amp1  5.3840 11.1827 17.5892 23.7577 30.6115 
  -27.8972 -27.8917 -27.8089 -28.9150 -28.8707 
amp2  0.0249 0.0534 0.1041 0.5279 0.0626 
  -148.3967 133.3716 156.1584 153.2548 100.4677 
amp3  0.0105 0.0171 0.0412 0.6152 0.0864 
  112.9156 -157.7967 -25.9301 136.0491 -63.0190 
amp4  0.0094 0.2231 0.0160 0.0350 0.0070 
  -145.9144 147.6797 65.4653 -101.7995 152.7793 
amp5  0.0014 0.0041 0.0070 0.0658 0.0128 
  136.2639 125.2678 80.3816 -107.3668 -48.3818 
Ring 2       
a0/2  -28.9305 -52.1879 -75.7360 45.0290 -31.5496 
amp1  22.3293 46.5257 76.5703 103.9727 134.5700 
  -28.2859 -28.5908 -27.7233 -29.0885 -28.9540 
amp2  0.0489 0.2413 0.2665 1.6703 0.4714 
  -174.2340 -133.8620 153.3977 155.8023 90.7148 
amp3  0.0884 0.0645 0.1322 2.8759 0.3624 
  175.8745 -63.7732 -25.7134 138.4327 -17.0432 
amp4  0.0122 1.1012 0.0334 0.1224 0.1576 
  117.7808 149.0840 68.4780 -89.1936 143.4308 
amp5  0.0123 0.0246 0.0176 0.1204 0.0152 
  68.8007 78.2687 110.0702 -114.3815 -108.5945 

A tabulation of the results of the Fourier analysis of the extracted mean data 
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Table A8.4.3 - Extracted mean vibration levels - Position 3 
 
Speed 1 2 3 4 5 6 
top 0.1 0.1 0.1 0.1 0.1 0.1 
tail 0.9 0.9 0.9 0.9 0.9 0.9 
Ring 1       
a0/2 0.6683 -11.2527 10.9007 -20.2107 3.0424 12.0696 
amp1 6.0360 5.2846 10.1077 15.9946 20.3326 26.5002 
 -140.9955 0.5147 1.7527 1.6080 4.8812 0.7903 
amp2 2.9351 0.0045 0.0828 0.1184 1.1159 0.2121 
 -82.6578 28.2197 -136.8319 -178.0826 54.6717 -177.1406 
amp3 0.3459 0.0074 0.0218 0.0303 1.7981 0.0520 
 62.8207 88.3890 37.9255 -72.2728 167.7665 -123.9314 
amp4 0.0499 0.0085 0.0357 0.0178 0.3130 0.0055 
 31.9631 134.5015 -157.6599 70.7459 -106.5213 -54.7289 
amp5 0.1069 0.0075 0.0064 0.0036 0.1932 0.0062 
 -70.5120 7.0924 -108.1948 -126.5379 8.1737 131.2005 
Ring 2       
a0/2 -3.5100 -4.8060 14.0010 -46.8298 3.1540 38.4407 
amp1 10.7551 12.4898 24.1299 38.4050 45.9750 64.2591 
 161.6336 0.3830 2.0334 1.6357 4.2401 0.6459 
amp2 3.1828 0.1141 0.0677 0.1626 1.9125 0.4005 
 -39.8200 84.1261 131.4923 162.3007 108.2741 171.7765 
amp3 0.5407 0.0295 0.0238 0.0879 4.7377 0.0355 
 43.6550 -55.1943 36.4149 -29.1239 163.8056 172.1146 
amp4 0.0080 0.0108 0.0812 0.0315 0.2434 0.0804 
 71.5728 -85.8703 -133.4760 -111.4519 -63.5669 -105.5698 
amp5 0.0782 0.0120 0.0145 0.0168 0.2071 0.0193 
 -79.6779 -114.7211 -135.9262 -107.9982 -10.0262 -99.5421 

A tabulation of the results of the Fourier analysis of the extracted mean data 
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Appendix 8.5 – Data extraction and results – Moving nut, all positions 

Sample of data extraction – Position 1, Speed 5 

B = without excitation weights   O = with excitation weights 

top = 0.1000, tail = 0.9000, fname = 'mp1s5' 
[a1_0,a1,b1,amp1,phas1,a2_0,a2,b2,amp2,phas2,trav1,trav2,angl]=geoff5(fname,top,tail); 
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Figure A8.5.1 – Raw data as a function of time 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-500

-400

-300

-200

-100

0

100

Time, (sec)

D
is

pl
ac

em
en

t, 
(m

m
)

Displacement of encoder v. time.  Balance = B

 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-500

-400

-300

-200

-100

0

100

Time, (sec)

D
is

pl
ac

em
en

t, 
(m

m
)

Displacement of encoder v. time.  Balance = O

 
Figure A8.5.2 – Position of nut in controller co-ordinates 
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Figure A8.5.3 – Raw data as a function of angular position 
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Figure A8.5.4 – Development of vibration response over time 
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Difference, balance = B – O 
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Figure A8.5.5 – Effect of excitation weights 
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Table A8.5.1 – Raw data - Moving mass - Position 1 
 
File Pos’n Speed, 

(m/min) 
State Date Start time End time Sample 

time, 
(sec) 

MP1S1B.PEC 1  2 666 bal  9:6:2004 16: 7:28.88 16: 7:53.98 2.5006 
MP1S1O.pec 1  2 666 OOB  9:6:2004 17:30:47.49 17:31:12.59 2.5006 
MP1S2B.PEC 1 25 298 bal 10:6:2004  9:19:52.87  9:19:55.61 0.26353

MP1S2O.pec 1 25 298 OOB 10:6:2004  9: 8:54. 9  9: 8:56.78 0.26353

MP1S3B.PEC 1 30 984 bal 10:6:2004  9:36:13.89  9:36:16.14 0.21516

MP1S3O.pec 1 30 984 OOB 10:6:2004  9:47:22.66  9:47:24.92 0.21516

MP1S4B.PEC 1 35 777 bal 10:6:2004 10:37:27.86 10:37:29.78 0.18634

MP1S4O.pec 1 35 777 OOB 10:6:2004 10:29:54. 1 10:29:55.93 0.18634

MP1S5B.PEC 1 40 000 bal  9:6:2004 15:33:13. 8 15:33:15. 5 0.16667

MP1S5BR 
              .PEC 

1 40 000 bal 
rep 

10:6:2004 10:44:39. 8 10:44:41. 5 0.16667

MP1S5O.PEC 1 40 000 OOB 10:6:2004 10:58:35.76 10:58:37.79 0.16667

MP1S6B.PEC 1 37 947 bal 10:6:2004 11:17:11.84 11:17:13.71 0.17568

MP1S6O.PEC 1 37 947 OOB 10:6:2004 11:10:31.16 11:10:33. 3 0.17568

        
 
Table A8.5.2 - Raw data - Moving mass - Position 2 
 
File Pos’n Speed, 

(m/min) 
State Date Start time End time Sample 

time, 
(sec) 

MP2S1B.PEC 2  2 666 bal 10:6:2004 14:46:12.71 14:46:37.81 2.5006 
MP2S1O.PEC 2  2 666 OOB 10:6:2004 14:32:37. 1 14:33: 2.11 2.5006 
MP2S2B.pec 2 25 298 bal 10:6:2004 14:55:20.15 14:55:22.89 0.26353

MP2S2O.PEC 2 25 298 OOB 10:6:2004 15: 2: 3.85 15: 2: 6.60 0.26353

MP2S3B.PEC 2 30 984 bal 10:6:2004 15:14:26.88 15:14:29.13 0.21516

MP2S3O.PEC 2 30 984 OOB 10:6:2004 15: 9: 2.27 15: 9: 4.52 0.21516

MP2S4B.PEC 2 35 777 bal 10:6:2004 15:22: 5.46 15:22: 7.43 0.18634

MP2S4O.PEC 2 35 777 OOB 10:6:2004 15:29:12.39 15:29:14.31 0.18634

MP2S5B.PEC 2 40 000 bal 10:6:2004 15:48:54.39 15:48:56.37 0.16667

MP2S5O.PEC 2 40 000 OOB 10:6:2004 16: 4:24.66 16: 4:26.64 0.16667

MP2S6B.PEC 2 37 947 bal 10:6:2004 15:41:44.10 15:41:45.97 0.17568

MP2S6O.PEC 2 37 947 OOB 10:6:2004 15:35:41.21 15:35:43. 8 0.17568
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Table A8.5.3 - Raw data - Moving mass - Position 3 
 
File Pos’n Speed, 

(m/min) 
State Date Start time End time Sample 

time, 
(sec) 

MP3S1B.PEC 3  2 666 bal 11:6:2004 10:59:49.14 11: 0:14.24 2.5006 
MP3S1O.PEC 3  2 666 OOB 11:6:2004 11: 6:49.43 11: 7:14.47 2.5006 
MP3S2B.PEC 3 25 298 bal 11:6:2004 10:53:48.22 10:53:50.97 0.26353

MP3S2O.PEC 3 25 298 OOB 11:6:2004 10:48:36.52 10:48:39.27 0.26353

MP3S3B.PEC 3 30 984 bal 11:6:2004 10:35:15.65 10:35:17.90 0.21516

MP3S3O.PEC 3 30 984 OOB 11:6:2004 10:41:51.77 10:41:54. 3 0.21516

MP3S4B.PEC 3 35 777 bal 11:6:2004 10:28:57.71 10:28:59.69 0.18634

MP3S4O.PEC 3 35 777 OOB 11:6:2004 10:22:25.76 10:22:27.74 0.18634

MP3S5B.PEC 3 40 000 bal 10:6:2004 16:47:15.78 16:47:17.76 0.16667

MP3S5O.PEC 3 40 000 OOB 10:6:2004 16:39:35. 6 16:39:37. 4 0.16667

MP3S6B.PEC 3 37 947 bal 11:6:2004 10: 4:20.65 10: 4:22.52 0.17568

MP3S6O.PEC 3 37 947 OOB 11:6:2004 10:15:51.12 10:15:52.99 0.17568
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Appendix 8.6 - Linear Guide rig – Data 

A8.6.1  Drive motor data (including controller parameters) 

Name plate details:- 

     SIEMENS  3 ~ Permanent Magnet Motor    
 MADE IN GERMANY  1FT 6082 – 1AFY1 – 1AG1 
     Nr.E L2904930 04 011 EN 60034 

  Mn = 10.3 Nm  3000 /min Ui(eff.) = 240 V Y 
 (M = 11.7 Nm   1500 /min Ui(eff.) = 120 V Y) 
  M0 = 10.4 / 13 Nm I0(eff.) = 8.2 / 10.65 A 60 / 100 k 

 IMB5  IP 65  Th.CL.F nmax : 4400 /min KTY 84 

 OPTICAL ENCODER B01 2048 S/R      

The resulting data is:- 
 16–digit motor Order No. 1FT 6082 – 1AFY1 – 1AG1 
 Serial number   E L2904930 04 011 EN 60034 
 Rated torque for S1 duty = 10.3 Nm at 3000 rpm rated speed, 
  with an induced phase–to–phase, motor voltage of 240 V. 
 (Additional operating point (for 230V drive converter input voltage) 
         = 11.7 Nm at 1500 rpm rated speed, 
   with an induced phase–to–phase, motor voltage of 120 V.) 
 Stall torque 10.4/13 Nm at a stall current of 8.2/10.65 A with a 60/100 K 
  winding temperature rise 
 Type of construction = IMB5 
 Degree of protection = IP 65 
 Thermal protection = CL.F 

Siemens AG, “Simodrive AC motors for feed and main spindle drives - Planning guide 01 98 
edition”, Manufacturer’s documentation, 6SN1197-0AA20, SIMODRIVE 611 (PJ), 1997 

Sheet 1FT6/3-10:- 

In addition to the data on the name plate, 
 Torsional rotational inertia (without brake) = 30 × 10-4 kg m2

 Winding resistance    = 1.46 Ω 
 Three-phase inductance   = 13.7 × 10-3 H 

This data was up-dated by Veimar Casteneda in an e-mail dated Wednesday 19th July 2007 at 
10:05 hr to:- 

 Winding resistance    = 0.68 Ω 
 Three-phase inductance   = 6.2 × 10-3 H 

The motor obeys the equation (c.f. Appendix 9.1 and [142]) 

eqrefqq iRei
dt
dL λω−−=)(  
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where 
 L = the winding inductance, (= 6.2 × 10-3 H) 
 iq = the nett motor current, (A) 
 t = time, (sec) 
 eq ref = the electric potential given by the current controller, (V) 
 R = the winding resistance, (= 0.68 Ω) 
 λ = the flux, (= 0.7639 V sec/rad) 
 ωe = the electrical velocity, (rad/sec). 

The current controller voltage is given by 
)( qrefqcprefq iiKe −×=  

where 
 Kcp = the proportional gain current control, (= 50 V/A) 
 iq ref = the output current of the velocity controller, (A) 
and the electrical velocity is 

me pωω =  
where 
 p = is the number pairs of poles in the motor (= 4) 
 ωm = the speed of the motor, (rad/sec) 

Re-arranging the differential equation gives 

e
qrefq

q Rdt
di

R
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R
e

i ωλ−−=  

Substituting for iq ref and ωe gives 
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Re-arranging 
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In finite difference terms 
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where δt = the loop time interval, (sec). 

Re-arranging 
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where 
rdenominato

cpK
AA = , 

rdenominato
t

L
BB δ= , 

rdenominato
pCC λ

=  and 

tLKR cp δ/++=rdenominato . 

These equations are coded into subroutines “init_controller” and “controller”.  Including 
definitions this is coded by:- 

static float J_mot=0.0030F; // drive motor inertia, (kg m^2) 
static double K_v=4.*1000./60.; // position controller constant = 4 (m/min)/mm, (1/sec) 
static double K_k1=1./double(pitch); // constant, (1/m) 
static double K_vff=K_k1;  // gain - velocity feed forward, (1/m) 
static double K_vel;  // constant =1./(2.*pi), (rev/rad) 
static double K_aff=0.039;  // gain - acceleration feed forward, (A sec^2/rev) 

 static double K_p=26.;  // proportional gain - velocity control, (A sec/rev) 
static double K_i=6300.;  // integral gain - velocity control, (A/rev) 
static double LA=0.0062;  // motor armature inductance, (H) 
static double RA=0.68;  // motor armature resistance, (ohm) 
static double K_cp=50.;  // proportional gain - current control, (V/A) 
static double lamda=0.7639; // flux, (V sec/rad) 
static signed int N_poles=4; // number of pairs of motor poles 

 denominator=RA+K_cp+LA/dt; 
 AA=K_cp/denominator; 
 BB=(LA/dt)/denominator; 
 CC=lamda*double(N_poles)/denominator; 
 iq_save=0.;   // motor armature current (previous filter cycle), (A) 
 iq=AA*iq_ref + BB*iq_hold - CC*wm_s; // motor drive current 
 iq_hold=iq; 

static double Kt=1.28F;  // motor torque time constant, (N m/A) 

A8.6.2  Motor mechanical losses 

A term is included in the model to account for viscous drag in the motor bearings.  The 
“mechanical time constant” included in the motor data sheets provided by the supplier (AL_S/1-
8) is to do with a theoretical ramp function, rather than giving an indication of damping in the 
motor.  It is therefore estimated as follows:- 

 Rated torque = 10.30 N m 
 Rated speed = 3000 rpm 
 Assume viscous drag is 2% of rated torque at rated speed, then 

sec/radN10656.0
260/3000

30.1002.0 3−×=
×

×
=

πmbrgc  

It is coded by:- 
 static float c_brg_m=0.656e-3F; // equivalent damping coefficient of bearings, (N m sec/rad) 

Further an allowance for Coulomb friction in the motor of 0.01 × the rated motor torque is 
included (Mode 1).  This is coded by:- 
 static double rEnD[M3][M9]; // rate of energy dissipation, (W) 
 static float T_mot_max=42.F; // maximum motor torque, (N m) 
 static float n_mot_max=4700.F; // maximum rated motor speed, (rpm) 
 static float mu_brg=0.01F;  // nominal coefficient of friction of bearings 

signed int mode=0;  // friction mode of operation 
// 0 = "T = A + B*w" 
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// 1 = friction torque based on loading considerations 
double dt1;   // time step, inner loop, (sec) 

 rEnD[j+1][1]+=fric_brg(mu_brg,0.F,T_mot_max,1,double(n_mot_max)*2.*pi/60.,j,dt1,mode); 

Thus it is assumed that at its rated speed, mechanical losses account for some 3% of rated power. 

An alternative option is to use measured data if available (Mode 0).  For the linear guide rig as a 
whole:- 

// "Mode 0" bearing friction model 
//  constant term  speed-dependent  
    Abrg[0]=0.5453; Bbrg[0]=0.001208; // motor bearing 
    Abrg[1]=0.5;  Bbrg[1]=0.;  // ballscrew bearing 1 
    Abrg[2]=0.4;  Bbrg[2]=0.;  // ballscrew bearing 2 
//   (N m)  (N m sec/rad) 

This data is based on work by Dr Simon Fletcher, (see Chapter 7). 

In addition to the data for the motor and controller, the motor shaft is taken into account by the 
following data:- 

static float J_ms=0.0000075F; // drive motor shaft inertia, (kg m^2) 
static float k_ms=5466.F;  // torsional stiffness of motor shaft, (N m/rad) 
static float c_ms=0.01F;  // torsional damping coefficient of motor shaft, (N m sec/rad) 

 
A8.6.3  Coupling 

Information from [142]:- 
 Torsional stiffness – static    4200 N m/rad 
 Torsional stiffness – dynamic  10100 N m/rad 
 Axial stiffness    3500 × 103 N/m 
 Torsional inertia of coupling half 200.3 × 10-6 kg m2

 Mass of coupling half   0.253 kg 

From measurement / observation:- 
 Material    aluminium 
 Outside diameter   65 mm 
 Inside diameter   28 mm (ballscrew drawing) 
 Length to start of “dog teeth”  35 mm 
 Length to end of “dog teeth”  50 mm 

Hence the mass can be estimated to be:- 

kg31012.027002/)050.0035.0()028.0065.0(
4

22
1 =×+×−×=

π
Pm  

the rotational inertia:- 
2644

1 m kg102.19427002/)050.0035.0()028.0065.0(
32

−×=×+×−×=
π

PJ  

and the transverse inertia:- 
26

222

1 m kg108.143
12

)2/)050.0035.0((
16

028.0065.031012.0 −×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+

+
×=PtJ . 

These estimates model the coupling half as a hollow cylinder and it is therefore not surprising 
that the estimated mass is greater than the figures from [142].  Although the estimated torsional 
inertia is very close to the value from [142], it is surprising that it is slightly lower. 
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The driving half of the coupling is modelled using the following data:- 
 static float J_dr1=194.2e-6F; // driving pulley, coupling half etc. inertia, (kg m^2) 
and the coupling characteristics are modelled as follows:- 
 static float k_dr=10100.F;  // torsional stiffness of drive referred to driving shaft, (N m/rad) 
 static float c_dr=0.797F;  // torsional damping coefficient of drive referred to driving shaft, 

(N m sec/rad) 
 static long double u=1.L;  // drive ratio 

The driven half of the coupling is modelled along with the ballscrew. 

A8.6.4  Ballscrew data 

This is given on PGM / THK Group drawing PSM9137.1, issue B, dated 22.6.99.  It is included 
in the C program as follows:- 
 static float m_dr2=0.310F;  // driven pulley, coupling half etc. mass, (kg) 
 static float J_dr2=194.2e-6F; // driven pulley, coupling half etc. rotational inertia, (kg m^2) 
 static float Jt_dr2=143.8e-6F; // driven pulley, coupling half etc. transverse inertia, (kg m^2) 
 (static float d_bsO=40.0e-3F; // outer diameter of ballscrew, (m) – PGM / THK data) 
 static float d_bsO=37.5e-3F; // outer diameter of ballscrew, (m) – see Ch 8, §8.1.3, p 151 
 static float d_bsI=10.0e-3F; // inner diameter of ballscrew, (m) 
 static float dp_bs=42.0e-3F; // pitch diameter of ballscrew, (m) 
 static float d_trace=0.045F; // diameter of bearing thrust race, (m) 
 static float l_bs1=0.109F;  // length of ballscrew pulley to bearing, (m) 
 static float l_bs2=1.183F;  // length of ballscrew between bearings, (m) 
 static float l_bs3=0.052F;  // length of ballscrew bearing to end, (m) 
 static signed int Ns=1;  // number of starts of ballscrew grooves 
 static float pitch=16.0e-3F; // ballscrew pitch, (m) 
 static signed int SignB=+1; // hand of helix, -1 = left hand screw 
     //  +1 = right hand screw 

The ballscrew shaft is made of steel.  The material properties are assumed to be:- 
 static float E=207.0e9F;  // Young's modulus, (N/m^2) 
 static float G=80.0e9F;  // shear modulus, (N/m^2) 
 static float rho=7860.F;  // density, (kg/m^3) 

The stiffness of the ballscrew shaft elements is calculated as explained in Chapters 5 and 6.  In 
addition the damping properties of the shaft are modelled by including viscous damping elements 
whose coefficients of damping are assumed to be a multiple of the respective spring stiffness.  
Light material damping is achieved by assuming a damping ratio as follows:- 

static float drs=0.00002F;  // damping ratio - shaft 

The ballscrew nut axial stiffness for a 40 mm diameter 16 mm pitch ballscrew ranges from 
540 N/µm to 1500 N/µm, see “LM system ball screws”, catalog. no.200-2BE, THK Co. Ltd., 
p 177.  The values used in the version of LG_rig.cpp dated 08/12/07 are:- 
 static float k_ax_nut=1.2e9F; // axial stiffness of nut, (N/m) 

static float ky_nut=1.2e9F; // radial stiffness of nut - "y" direction, (N/m) 
static float kz_nut=1.2e9F;  // radial stiffness of nut - "z" direction, (N/m) 
static float kOy_nut=0.7e5F; // tilt stiffness of nut - "Oy" direction, (N m/rad) 
static float kOz_nut=0.7e5F; // tilt stiffness of nut - "Oz" direction, (N m/rad) 

In addition the damping properties of the ballscrew nut are modelled by including viscous 
damping elements whose coefficients of damping are assumed to be a multiple of the respective 
spring stiffness.  The damping ratio assumed is as follows:- 
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static float drn=0.0005F;  // damping ratio – nut. 

The friction in the nut is represented by treating the ballscrew as an equivalent lead screw using a 
coefficient of friction as follows:- 

static float mu_scr=0.019F; // nominal coefficient of friction of screw nut. 

The following measured data (Mode 0) is also available:- 
static double Absnf=1.44;  // constant term in "Mode 0" ballscrew friction model, (N m) 
static double Bbsnf=0.;  // speed-dependent term in "Mode 0" ballscrew friction model, 
 (N m sec/rad) 

The monitoring rings, fitted to the ballscrew as targets for the non-contacting displacement 
transducers, which also carry the out-of-balance weights, have the following properties:- 

static float m_Mring=1.029F; // mass of monitoring ring, (kg) 
static float Jtor_Mring=0.001289F; // torsional inertia of monitoring ring, (kg m^2) 
static float Jtil_Mring=0.000701F; // tilt inertia of monitoring ring, (kg m^2) 
static float rOoB=40.e-3F;  // radius of out-of-balance weight, (m) 

A8.6.5  Ballscrew support bearings 

A pair of axial angular contact ball bearings is fitted close to each end of the ballscrew.  These 
are:- 
 type    ZKLF 3080.2RS 
 mass    0.78 kg 
 inner diameter   30 mm 
 outer diameter   80 mm 
 length    28 mm 
 bearing frictional torque  0.5 N m 
 axial rigidity   850 N/μm 
 tilting rigidity   300 N m/mrad 

Source – “Bearings for screw drives, Axial angular contact ball bearings, Needle roller/axial 
cylindrical roller bearings”, INA Publication ZAE, Sach-Nr.002-045-869 Δ, pp 40-41 

See also 
http://medias.ina.de/medias/de!hp.ec.br.pr/ZKLF...2RS*ZKLF%203080.2RS;aELuDt9h4_-7 

The stiffness of the ballscrew bearings is modelled in the version of LG_rig.cpp dated 08/12/07 
using the following values:- 

static float k_ax_1=850.e6F; // axial stiffness of bearings, (N/m) 
static float k_ax_2=850.e6F; 
static float ky_rad_1=1275.e6F; // radial stiffness of bearings - "y" direction, (N/m) 
static float ky_rad_2=1275.e6F; 
static float kz_rad_1=1275.e6F; // radial stiffness of bearings - "z" direction, (N/m) 
static float kz_rad_2=1275.e6F; 
static float ky_tilt_1=160.e3F; // tilt stiffness of bearings - "Oy" direction, (N m/rad) 
static float ky_tilt_2=160.e3F; // Note!!  Too much bearing tilt stiffness crashes solution method 
static float kz_tilt_1=160.e3F; // tilt stiffness of bearings - "Oz" direction, (N m/rad) 
static float kz_tilt_2=160.e3F; 

In addition the damping properties of the bearings are modelled by including viscous damping 
elements whose coefficients of damping are assumed to be a multiple of the respective spring 
stiffness.  A damping ratio is included in the C program, a typical value (09/12/07) is:- 

static float drb=0.0005F;  // damping ratio - bearings 
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Terms are included in the model to account for viscous drag in the ballscrew bearings.  They 
were estimated in a similar manner to the corresponding term for the motor bearings and are:- 

static float c_brg_1=0.668e-3F; // equivalent damping coefficient of bearings, (N m sec/rad) 
static float c_brg_2=0.668e-3F; 

When using measured data if available (Mode 0):- 
static float c_brg_1=0.F;   // equivalent damping coefficient of bearings, (N m sec/rad) 
static float c_brg_2=0.F;  // Note:  c_brg_i=0.F when comparing with "bs_model.m" on 08/12/07. 

Further an allowance for Coulomb friction in the ballscrew bearings is included (Mode 1).  In 
addition to the code set out in Section A8.6.2 the following two lines are included for the 
ballscrew bearings:- 
 rEnD[j+1][1]+=fric_brg(mu_brg,0.F,T_mot_max,1,double(n_mot_max)*2.*pi/60.,j,dt1,0,mode); 
  // - ballscrew bearing 1 
 rEnD[j+1][3]+=fric_brg(mu_brg,float(fabs(k_ax_1*float(d[MDR+NFS*B1+1][j]))),float(u)*T_mot_max, 

MDR+NFS*B1+4,-v_max/bs_rat,j,dt1,1,mode); 
  // - ballscrew bearing 2 

A8.6.6  The co-ordinate system 

The origin of the coordinate system is at the motor end of the ballscrew. 

The X axis is horizontal along the axis of the un-deflected ballscrew in the direction of the free 
end. 

The Y axis is horizontal, parallel to the W4 corridor and towards the small offices at the end of 
the W4/03 workshop. 

The Z axis is vertically upwards. 
 
The nodes are numbered from zero upwards starting at the motor end of the ballscrew.  In these 
examples the ballscrew has 25 elements, the drive end bearing being at Node 1 and the non-drive 
end bearing being at Node 24.  The x co-ordinates of the various nodes are thus:- 

Node x co-ordinate, 
(m) 

Remarks  Node x co-ordinate, 
(m) 

Remarks 

0  0   13  0.728217  
1  0.111 B1  14  0.779652  
2  0.162435   15  0.831087  
3  0.21387   16  0.882522  
4  0.265304   17  0.933957  
5  0.316739   18  0.985391  
6  0.368174   19  1.03683  
7  0.419609   20  1.08826  
8  0.471043   21  1.1397  
9  0.522478   22  1.19113  
10  0.573913   23  1.24257  
11  0.625348   24  1.294 B2 
12  0.676783   25  1.346  
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A8.6.7  Other data 

The linear dimensions of the model are based on the ballscrew drawing and bearing data as 
follows:- 

Overall length = 1346 mm, (drawing) 

Distance from drive end to centre of drive end bearing = 125 mm, (drawing, the bearing buts up 
to the ballscrew portion) – 28 mm, (bearing data, bearing length)/2 = 111 mm 

Distance from drive end of ballscrew portion to estimated centre of mass of coupling half = 
28 mm, (bearing data) + 60 mm, (measured from rig, drive end of drive end bearing to non-drive 
end of coupling half) + ((35+50)/2)/2 mm, (measured from rig) = 109.25 mm 

Distance from centre of non-drive end bearing to end of ballscrew = 136 mm, (drawing, non-
drive end to the ballscrew portion) – 98 mm, (measured from rig, non-drive end of non-drive end 
bearing to end of ballscrew portion) + 28 mm, (bearing data)/2 = 52 mm. 

Therefore the lengths of the elements are as follows:- 

 Element 1  l_bs1  0.109 m 
 Elements 2 to 24 l_bs2/23 1.183/23=0.051435 m 
 Element 25  l_bs3  0.052 m 

From data used in the thermal model (Appendix 7.1):- 
 Ltbl=1.755;         % length of table 
 AtblSection=0.026;  % area of table cross section (m^2) 

Therefore 

 Weight of “table” = 1.722 × 0.026 × 7860 = 352 kg 

The load moved by the ballscrew, often referred to as the “table”, is in fact a saddle in the case of 
the linear guide rig.  Its properties are modelled as follows:- 

static float m_tab=352.F;  // mass of saddle/table, (kg) 
static float Jy_tab=0.546F;  // inertia of saddle/table about "y" axis, (kg m^2) 
static float Jz_tab=120.F;  // inertia of saddle/table about "z" axis, (kg m^2) 
static float z_tab=125.e-3F; // height of saddle/table above ballscrew, (m) 
static float z_slid=75.e-3F;  // height of saddle/table above slideway, (m) 
static float z_lenc=155.e-3F; // height of saddle/table above linear encoder, (m), (not used) 
static float mu_tab=0.0341F; // coefficient of friction between saddle and slideways. 

The stiffness of the linear guides on which the saddle is mounted is represented by a set of 
springs with values:- 

static float ky_slide=1.e9F; // stiffness of slides supporting nut - "y" direction, (N/m) 
static float kz_slide=1.e9F; // stiffness of slides supporting nut - "z" direction, (N/m) 
static float kOy_slide=10.4e6F; // stiffness of slides supporting nut - "Oy" direction, (N m/rad) 
static float kOz_slide=10.4e6F; // stiffness of slides supporting nut - "Oz" direction, (N m/rad) 

In addition the damping properties of the slideways are modelled by including viscous damping 
elements whose coefficients of damping are assumed to be a multiple of the respective spring 
stiffness.  The  damping ratio assumed is:- 

static float drsl=0.0005F;    // damping ratio - slide 
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The following data is for the version of the C program used for comparison with the data 
generated by "bs_model.m" on 08/12/07. 
 
G:\PhD_archive_191207\C_drive_1\C_progs\Test_VCpp\LG_rig.cpp, 08/12/07 19:34 
 - Parameters used 
 
// Basic solution parameters 

#define MDR 2  // Number of degrees of freedom in motor drive (in addition to ballscrew) 
#define SMAX 50 // Maximum number of elements in ballscrew 
#define NFS 6  // Number of degrees of freedom per ballscrew node 
#define BWS 12  // Bandwidth of ballscrew 
#define NMAX 0  // Maximum number of elements in ballscrew nut, (0 = 1 node) 
#define NFN 5  // Number of degrees of freedom per nut node 
#define BWN 5  // Bandwidth of nut 
#define KMAX 42 // Maximum number of iterations 
#define NBLOCK 1000 // Maximum number of steps in time history block 
#define SWRIT 100 // Number of time history steps between screen writes 
#define TINY 1.0e-20 // Used in subroutine "ludcmp" 
#define NSOURCE 8 // Number of heat sources 
#define NAVEMAX 250 // Number of terms in "moving average" filter 

//% Common data block 
//% =============== 
//% Fundamental constants 

static float g=9.80665F; // acceleration due to gravity, (m/sec^2) 
static double pi;  // pi 

//% Dimensional data etc. 
//% Motor 
//% -------- 

static float i_mot_max=41.0F; // peak motor current, (A) 

//% Ballscrew 
//% ------------ 

static signed int ij=2; // correction for "jointed track" phenomenon, 0 = none 

//% 
//% Controller constants 

static double a_max=6.; // maximum acceleration, (m/sec^2). 
static double G_in=2.e-3; // input gain for white noise, (m/V) 

//% 
//% Input variables 

signed int S=25;  // number of elements in ballscrew 
signed int N=0;  // number of elements in ballscrew nut, (0 = 1 node) 
signed int B1=1;  // node number at Bearing 1, (node number of first node in ballscrew = 0) 
signed int B2=24;  // node number at Bearing 2 
double xs=1079.e-3F; // "x" coordinate of start point, (m) 
double xf=xs-460.e-3F; // "x" coordinate of end of deceleration, (m) 
double v_max=20./60.; // maximum nut velocity, (m/sec) 
double t1_=0.;  // time of start of acceleration, (sec) 
double tacc=1./9.; // acceleration time, (sec) 
double tdec=1./9.; // deceleration time, (sec) 
float blash=0.F;  // backlash, (m) 
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float PT=14.e-6F;  // pre-tension, (m/m) 
float xMR1=l_bs1+133.e-3F; // “x” coordinate of monitoring ring 1 
float xMR2=l_bs1+276.e-3F; // “x” coordinate of monitoring ring 2 
mOoB1=10.e-3F;  // mass of out-of-balance weight 1, (kg) ** 
phOoB1=0.F;  // phase of out-of-balance weight 1, (deg) 
mOoB2=10.e-3F;  // mass of out-of-balance weight 2, (kg) ** 
phOoB2=0.F;  // phase of out-of-balance weight 2, (deg) 
float dt_in=50.e-6F; // input time step, (sec) 
signed int i_filt=0; // low-pass Butterworth filter between controller velocity loop and power 

amplifier 
// 0 = no filter, 1 = 200 Hz, 2 = 400 Hz, 3 = 2000 Hz 
// -1 = take moving average over 3 msec 

signed int timp=0; // mode of input for demand data 
// 0 = trapezoidal demand 
// 1 = white noise mode 

signed int comp=0; 
double V_in=0.6;  // input signal - mode 1, (V) 
double rms=2.0069; // standard deviation of random signal on file 
double t_int=2.e-3; // sampling time - mode 1, (sec) 
signed int N_int=0; // number of main loops in time t_int 
plst=3.0e-3;  // time step – controller position loop, (sec) 
vlst=0.6e-3;  // time step – controller velocity loop, (sec) 
ilst=0.2e-3;  // time step – controller current loop, (sec) 
// Use zero to trigger end of out-of-balance excitations 

 iOoB[1]=0;  OoBa[1]=0.L;    OoBp[1]=0.; 

//% 
** These levels of out-of-balance were used for comparison with “bs_model.m” which deals with 
situations where the screw is not put out of balance deliberately.  The values used where the 
ballscrew is put out of balance to generate measurable levels of vibration are typically:- 

mOoB1=0.F;  // mass of out-of-balance weight 1, (kg) 
mOoB2=124.e-3F; // mass of out-of-balance weight 2, (kg). 
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Appendix 9.1 - Heidenhain controller theory 

 

Figure A9.1.1  A block diagram of the Heidenhain controller 

Consider a mass m mounted on a ballscrew which is being driven by a Heidenhain controller, 

(see Figure A9.1.1).  This controller has a proportional constant Kp and an integral constant Ki.  

There is an acceleration feed-forward term which is in effect Kvff × Kaff.  The reference current 

feeding into the motor controller is defined by the equation:- 

DKKdtvKvKi affvffeiepref
&&++= ∫ .  

where 

 iref = the motor controller reference current, (A) 

 Kp = the PI controller proportional gain, (A sec/rev) 

 ve = the velocity error, (rev/sec) 

 Ki = the PI controller integral gain, (A/rev) 

 t = time, (sec) 

 Kvff = the velocity fast forward gain, (1/m) 

 D = the demand position of the mass, (m) 
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The velocity error is defined as the difference between the reference velocity and the speed of the 

ballscrew nut as determined at the motor, viz:- 

ωvelrefe Kvv −=  

where 

 vref = the reference velocity, (rev/sec) 

 Kvel = is a constant to convert from rad/sec to rev/sec, (= 1/(2π)) 

 ω = motor speed, (rad/sec) 

The reference velocity is determined from the position error and the velocity demand as follows:- 

DKxDKKv vffvref
&+−×= )(1  

where 

 Kv K1 = a pair of constants which together define a component of the velocity demand 

    in terms of the position error, (rev/(m sec)) 

 x = ballscrew nut movement (sensed at motor), (m) 

whence 
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Current feed-back gives rise to:- 

)( qrevqcprefq iiKe −×=  

where 

 eq ref = the motor applied voltage, (V) 

 Kcp = the motor controller electrical constant, (V/A) 
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 iq = motor current, (A) 

The electrical behaviour of the motor is given by:- 

x
pN

N
iRe

dt
di

L
s

p
qrefq

q &
λπ2

−−=  

where 

 L = the motor inductance, (H=V sec/A) 

 R = the motor resistance, (Ω=V/A) 

 Np = the number of motor pole pairs 

 λ = the motor back e.m.f. constant, (V sec/rad) 

 Ns = the number of starts on the ballscrew 

 p = the ballscrew pitch, (rad) 

The torque applied by the electrical windings to the motor rotor is given by:- 

qt iKF ×=  

where 

 F = electrical torque, (N m) 

 Kt = motor mechanical constant, (N m/A) 

The equation of motion for the motor rotor (and any load rigidly attached to it) in terms of 

motion of the ballscrew nut is:- 

A
s
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π2

&&&  

where 

 m = the motor and ballscrew inertia referred to linear motion plus mass of load, (kg) 

 c = viscous damping on mass movement, (N sec/m) 

 FA = applied force, (N) 

Substituting for the motor voltage gives the electrical differential equation as:- 
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By eliminating the torque, the mechanical equation of motion can be rendered in electrical 

terms as:- 
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Substituting for im in the electrical differential equation gives:- 
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In the absence of a filter iqref = iref.  Substituting for iref gives:- 
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Substituting for ve and :- ∫ dtve .

A
t

cp

s

affvffcp

s

vel
vffv

s

icp

s

vel
vffv

s

pcp

p
stt

cp

tt

cp

tt

F
K

RK
D

pN
KKK

x
pN

KDKdtxdtDKK
pN
KK

x
pN

KDKxDKK
pN
KK

xN
pNK

Rc
K

cK
x

K
Rm

K
mK

K
Lcx

K
Lm

+
++

−+−×+

−+−×=

++++++

∫∫

&&

&&

&&&&&&

π

ππ

ππ

λπ

2

)2)..((
2

)2)((
2

))2(()(

1

1

2

 

[311] 



A
t

cp

s

affvffcp

s

vffpcp

s

vpcp

s

vfficp

s

vicp

s

vicp

s
velicp

s

vpcp

s
velpcpp

stt

cp

tt

cp

tt

F
K

RK
D

pN
KKK

D
pN

KKK
D

pN
KKKK

pN
KKK

dtD
pN

KKKK

dtx
pN

KKKK
x

pN
KKK

pN
KKKK

x
pN

KKKN
pNK

Rc
K

cK
x

K
Rm

K
mK

K
Lcx

K
Lm

×
+

++

+++=

×+++

+++++++

∫

∫

&&

&

&&&&&&

π

ππππ

πππ

πλπ

2

2
)

22
(.

2

.
2

))2(
2

(

))2()2(()(

11

121

22

 

This is a fourth order differential equation in θ=∫ dtx. , say, which can be put in a simpler 

form as:- 

AEFdtDCBDDAedcba +++=++++ ∫× .4 &&&&&&&& θθθθθ  

The homogeneous equation has either a solution of the form:- 
tddtcctbbtaa eeee δγβαθ +++=′  

or a solution of the form:- 
tddicctddicctbbtaa eeee )()( −+ +++=′ δγβαθ  

or a solution of the form:- 
tddicctddicctbbiaatbbiaa eeee )()()()( ++−+ +++=′ γγβαθ  

where aa, bb, cc and dd are solutions of the equation  and α, β, γ and 

δ are determined by the boundary conditions.  The displacement is given by:- 

0234 =++++ edxcxbxax

tddtcctbbtaa eddeccebbeaax δγβαθ +++=′=′ & , 

or similar.  If the system is to be stable and the roots of  are all real, 

they also must all be negative.  If two or four of the roots form complex conjugate pairs, the real 

components must be negative.  This must be the case for a system that works, so let us assume 

that after a while the transient activity that the homogeneous equation represents fades away, and 

let us consider three cases of demand. 

0234 =++++ edxcxbxax

 

Let us consider the response of the system to three different types of demand. 
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1.  A constant position 

Let D = P, a constant, and let , where A is an arbitrary constant of integration.  

Then  and .  Let us try as a solution x = K, a constant and let 

AtPdtD +=∫ .

0=D& 0=D&& α+=∫ tKdtx.  where α 

is a constant.  Then , ,  and:- 0=x& 0=x&& 0=x&&&
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Comparing coefficients of t suggests:- 
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which gives the general solution for x as:- 
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2.  A constant velocity 

Let  where a and b are constants and let batD += GtbtadtD ++=∫ 2
.

2

, where G is an 

arbitrary constant of integration.  Then  and .  Let us try as a solution aD =& 0=D&& βα += tx , 

where α and β are constants, and let γβα ++=∫ ttdtx
2

.
2

 where γ is a constant.  Then α=x& , 

,  and:- 0=x&& 0=x&&&
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Comparing coefficients of t² gives α = a and:- 
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Comparing coefficients of t gives β = b and:- 
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This gives the general solution for x as:- 

xDx ′+= . 

and the general solution for  as:- ∫ dtx.
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3.  A constant acceleration 

Let 2

2
1 tftusD ++=  where s, u and f are constants and let GtstutfdtD +++=∫ 26

.
23

, where 

G is an arbitrary constant of integration.  Then  and .  Let us try as a solution tfuD +=& fD =&&

2

2
1 ttx φυσ ++= , where σ, υ and φ are constants, and let γσυφ +++=∫ tttdtx
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.
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 where γ is 

a constant.  Then tx φυ +=& , φ=x&& , 0=x&&&  and:- 
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Comparing coefficients of t³ gives φ = f and:- 
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Comparing coefficients of t² gives υ = u and:- 
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Comparing coefficients of t gives:- 
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This gives the general solution for x as:- 
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Comments 

Let us consider the behaviour of the controller with a constant position demand and an 

external applied force.  Position is maintained independent of force, which is counter-intuitive 

and suggests an infinite controller stiffness.  Let us consider the situation more carefully.  The 

displacement response, nett of transients, is given by:- 
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This gives rise to the concept of controller jerk stiffness kconj defined by:- 
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Thus, when an external force is applied to the system, there is a response depending on the rate at 

which the force is being applied, but when a steady force is achieved, the system comes back to 

true position.  This analysis neglects transient behaviour predicted by the complementary 
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equation.  In practice, such behaviour may mask completely this phenomenon, but at least the 

apparent "infinite stiffness" has been explained.  In terms of controller jerk stiffness, the position 

time integral is given by:- 

θ ′++= ∫∫
conj

A

k
F

dtDdtx ..  

When a constant velocity is required, after transients have died away, a true value is given 

both for position and velocity.  Rendered in terms of controller jerk stiffness, the position time 

integral is given by:- 
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In addition to the error due to external force, there is an error term dependent on the mechanical 

damping term and the jerk stiffness of the controller, and another term dependent on the back 

e.m.f. of the motor.  Both of these error terms are proportional to the velocity demand. 

When the demand is a constant acceleration, the response settles down to the true value for 

velocity, but a "lagging" error arises for the position.  After transients, the position is given by:- 
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Thus, not surprisingly, the position error contains the same terms as those in the time integral of 

position, but they are proportional to acceleration demand.  The position time integral is given 

by:- 
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This includes a "lagging term", which includes an internal force term due to accelerating the 

inertia and a term proportional to the motor inductance times the load's viscous drag coefficient, 

and a more complex "leading term" which is dependent on the system's mechanical damping, the 

motor's back e.m.f. and the ratio of the proportional and integral terms of the controller. 
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"Quantisation" 

It is common for a controller to operate in part in a step-wise manner, that is, the demand and 

feedback is sampled once in a defined time interval.  In fact, the controller used here as an 

example up-dates its demand and velocity signal every 3 msec, its velocity feedback every 

0.6 msec, and its current feedback every 0.2 msec. 

What effect does this have on errors?  Consider some demand function D(t).  Let it be sampled 

every τ seconds, that is to say, for a set of sample times {0, τ, 2τ, … , nτ, …}, where n is an 

integer, τ×=ntn  and the sampled demand function )()( ns tDtD =  for 1+<≤ nn ttt .  Over every time 

interval the sampled demand varies from being "up-to-date" to being τ old, therefore, to a close 

approximation, at least for mathematically "well-behaved" functions, we can write:- 

),()2()( tPtDtDs ττ +−=  

where P(τ, t) is a periodic function of time with a repeat time of τ.  (Here the meaning of P is not 

as precise as the usual definition of a periodic function, that is that )()( τitPtP +=  for any 

integer i.  Rather that the values of P go up and down over a succession of time intervals τ in a 

broadly similar manner with a mean value over any period which is close to zero.  The amplitude 

can be expected to change over a time scale larger than τ.) 

Leaving aside the fluctuations implied by P, the longer term demand as it affects the controller 

can be approximated as Dm given by:- 

)2()( τ−= tDtDm  

To get a feel for the effects of quantisation let us examine the three cases considered before. 

1.  A constant position.  Here D = P, a constant, which implies  and so no extra 

errors are to be expected. 

PtDm =)(

2.  A constant velocity.  Here batD +=  where a and b are constants.  This means that:- 

2
)()()

2
()( ττ tDtDbtatDm

&−=+−×= . 

Therefore the demand, averaged over the sample time, is reduced by 2τD& .  Since the controller 

settles down to true position under constant velocity demand, a follower error of 2τD&  can be 

expected. 
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3.  A constant acceleration.  Here 2

2
1 tftusD ++=  where s, u and f are constants.  The 

average sampled demand is then close to:- 
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Therefore, in addition to the error arising through constant acceleration which has already been 

evaluated, a lagging error of 2τD&  can be expected together with a much smaller leading error of 

42τD&& . 

In addition to these "steady state" errors, errors fluctuating at the sampling rate of τ will occur.  

The amplitude of these is expected to increase broadly with velocity demand.  However, the 

effect of a periodic "forcing term" like P(τ, t) will stimulate the transient motion predicted by the 

homogeneous equation.  The amplitude of the response will be dependent in part on whether the 

solution of the homogenous equation involves oscillatory behaviour, and if so, how close the 

sample rate 1/τ is to the controller/mechanical system natural frequencies, and how much 

"damping" is involved. 

An example of the effect of sampling on controller response is given in Figures A9.1.2 

and A9.1.3. 
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Effect of sampling in the position loop on a controller with a "velocity feed forward" 
feature 
Ramp up at continuous acceleration with continuous variables 
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Figure A9.1.2  Controller behaviour with continuous variables 
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Ramp up at continuous acceleration sampled position loop 
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Figure A9.1.3  Controller behaviour with a 3 msec time step in the velocity loop 

Note the change from a smooth response in front of demand (which can be tuned to match it), 

to a response which is behind demand and which fluctuates at the sample rate. 
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