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ABSTRACT 

Creep plays a critical role in the research of high temperature materials because it is the 

major failure form of high temperature devices. In the safety assessment of high 

temperature devices, creep failure is one of the key factors used to evaluate residual 

lifetime of metal components; however, creep analysis in practical applications is still a 

great challenge due to the lack of a unified theory of all materials. A number of 

researchers are conducting research into creep constitutive model based on either 

experimental approaches or computational approaches, but multifarious computational 

tools were used because the constitutive model is still in the exploration stage. Traditional 

commercial software could reach the required capability based on the development of 

user-developed codes; moreover, some in-house codes were proposed, but just used in a 

narrow scope. Therefore, the development of a novel universal creep finite element 

software needs to be carried out to meet the requirements of future research.  

This research aims to develop required subroutines and interface for the proposed elastic-

creep finite element software called High Temperature Structural Integrity-Creep (HITSI). 

Basic concepts and situations of creep and its computational tools have been reviewed. 

General knowledge of programming of finite element method has also been studied. A 

universal subroutine template of creep constitutive equations has been given to enable 

users to add their own equations directly. A high order and embedded numerical method 

called Runge-Kutta-Fehlberg (RKF) method has been applied and discussed in order to 

enhance the accuracy of traditional methods. A mathematical method used to improve the 

accuracy and efficiency of constitutive equations subroutine call normalization has been 

applied and discussed. Formatted input and output of purchased pre- and post-processor 

has been studied to develop the data transfer interface. Some auxiliary modules such as 

stress transformation and nodal load arrangement have been developed to satisfy the input 

conditions of constitutive equations subroutines and data transfer interface.  
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1 INTRODUCTION 

1.1 Background 

The earliest creep phenomenon of metal wire was observed in 1900s, when Andrade 

(1910) firstly identified the creep characteristics of several pure metals via a set of 

experiments in 1910. A few years later, people realised the metal components always 

have creep deformation when loaded in high temperature environment even though the 

loaded stress is much smaller than yield strength of material during the same temperature 

condition. The high temperature and high-pressure process industry was developed 

rapidly after 1920s, see (Lai, 1990, Boyer, 1996, Eason et al., 2015), in the same time, the 

research of creep has been paid more and more attention. In recent years, the issues of 

creep and creep damage are becoming more and more serious in high temperature 

industries. For example, in the catalytic cracking device of petroleum industry 

(Sadeghbeigi, 2012), the manufacturing materials of pressure vessels normally are carbon 

steel or carbon-molybdenum steel in which working temperature of carbon steel and 

carbon-molybdenum steel could reach 510 ℃ and 540 ℃ respectively. The major failure 

form of this type of device is creep. The weldments of steam pipework of power 

generation plant are extremely sensitive to creep because of the different metallurgical 

regions between the weld and base material (Wang et al., 2015). During welding, the 

heating and subsequent cooling of the weldments is the major factor to form different 

metallurgical regions between the weld and base material. 

Finite element method (FEM) was introduced into creep damage research to validate the 

tentative constitutive model or to intuitively observe the visualized evolution process of 
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creep strain and damage. For example, finite element analysis (FEA) with a modified 

form of Kachanov-Rabotnov (KR) constitutive equations was carried out to simulate the 

damage evolution of modelling a specimen with cooling holes, its FEM results revealed 

that the existence of cooling holes causes the concentration of stress and strain (Yu et al., 

2008). However, the existing situation of computational tools is not optimistic due to the 

lack of a unified theory of creep. The mainstream computational tools can be classified 

into two categories, one is commercial software and the other is in-house software. The 

present commercial FEA software such as ABAQUS (Jiang et al., 2015) or ANSYS (Ni et 

al., 2015) allows the customer to develop a user’s subroutine to conduct creep damage 

analysis simulation. Although the development of in-house software is difficult, the 

controllability is much better than commercial software. 

In order to obtain a useful computational tool, High Temperature Structural Integrity-

Creep (HITSI), which is an elastic-creep finite element analysis system, was proposed 

during this research. HITSI consists of three parts, which are a) pre- and post-processor, b) 

solver and c) data transfer programme. FEMGV, a set of purchased software, was selected 

to be the pre- and post-processor. The solver was developed by the author and his 

colleague Dezheng Liu1  (2015), in which case, the author makes contribution to the 

development of a series of subroutines such as constitutive equations subroutines, time-

step control subroutine and numerical method subroutines. The author built the data 

transfer programme, which used to convert the files of FEMGV and the solver because of 

their different file format, independently. 

This thesis starts with a detailed survey of the creep research domain. The knowledge of 

high temperature structural integrity theory is reviewed to understand the significances of 

creep failure in high temperature industry. The basic concepts of creep and creep damage, 

which include the mechanisms of creep deformation and rupture, constitutive models and 

the major research approaches, are reviewed in order to have a general understanding of 

creep damage analysis itself. The present situation of computation tools is introduced to 

assess the advantages and disadvantages of existing finite element software. Finally, basic 

knowledge of programming of FEM and a number of adopted general-purpose 

subroutines are studied to start this research. 

                                                 
1 Dezheng Liu undertakes the work of overall structure design, assembly of subroutines and practical case 

test. 



20 

 

General computing science methodology, software development life cycle, is adopted in 

this research. Spiral model will be applied to the development of HITSI due to the 

author’s research and Dezheng Liu’s researches are interactive; however, for those 

subroutines and data transfer programme, the waterfall model is much better. A number of 

development processes such as requirements analysis, design, coding and testing were 

reported.  

The relative theories, which are used to develop subroutines and programmes, will be 

studied and discussed in order to clear the requirements and framework of each subroutine 

and programme. A number of subroutines need to be developed, which are a) constitutive 

equations subroutines, b) numerical method subroutines, c) time-step control subroutine, d) 

normalization technique subroutine, and e) stress tensor transformation subroutine. All 

subroutines were held in a subroutine library called Tan_library. Due to the missing 

capability of nodal loads conversion, a simple calculation tool called Nodal Loads 

Calculator (NLC) was developed to assist the data transfer programme, which is named 

Data Transfer Interface (DTI). 

Each subroutine and programme is reported through analysing goals, defining arguments 

and drawing flowchart. The goals analysis analysed the working environment of those 

subroutines and programmes in order to clarify their structures. Argument definitions 

present the size and type of each variable whatever it is a global variable or a local 

variable. The flowchart was converted to write the pseudo code for coding.  

Due to the development of HITSI adopted a lot of existing code resources, which are 

written by Fortran, the programing language of this thesis is Fortran as well. Compared 

with C++, Python, Matlab, S-Plus etc. which all often used for scientific computing, the 

advantages of Fortran is obvious such as its portability and array handling, and Fortran is 

also the best for shared memory in parallelism.  

Static verification and dynamic verification2 are both performed for all subroutines and 

programmes. The static testing is performed through Code::Blocks platform to guarantee 

no coding mistake in this research. Some testing programmes are designed for those 

                                                 
2 Static verification means the proofreading of the code itself, and dynamic verification means the execution 

of code. 
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developed subroutines. Only some classical testing cases are reported in this thesis due to 

the large amount of random testing data are restricted by the space. 

The performances of numerical method subroutines, time-step control subroutine and 

normalization technique subroutine will be discussed in order to identify the accuracy and 

efficiency of these subroutines to guide the potential users. The implications of this 

research are summarized in the end. 

1.2 Aim and Objectives  

The overall project, of which this thesis forms a part, aims to establish a set of software 

system (HITSI) to handle complex geometric simulation of creep damage analysis for 

industrial requirements. HITSI focuses on offering expert advising to enhance the relative 

researches such as prediction of residual lifetime, determination of design code and 

development of constitutive equations. It intends to could be widely used for industrial 

producing such as to evaluate operating state of the steam pipework of power generation 

plant.  

As a significant part of development of HITSI, this thesis aims to research and devise a 

series of indispensable components such as constitutive equations subroutines, time-step 

control procedure and data transfer interface for HITSI. The research objectives of this 

project are classified as follows: 

1. Structural analysis of HITSI, which is used to understand what kinds of subroutine 

or programme are required; 

2. Development of constitutive equations subroutine class, which is used to enable 

the capacity of creep damage analysis of the solver; 

3. Development of numerical method subroutine class, which is used to assist 

constitutive equations subroutine class, and to quantitatively analyse applied novel 

numerical method; 

4. Development of modular stress conversion subroutine, which is used to satisfy the 

input conditions of constitutive equations subroutine class; 

5. Exploration of time-step control procedures and normalization technique, which is 

used to enhance the accurate and efficient performance of numerical integration; 

6. Development of data transfer interface, which is used to connect pre- and post-

processor and the solver. 
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1.3 Thesis Layout 

The structure of this thesis is summarised below: 

The second chapter presents a review of the context knowledge of this research, which 

includes a) a brief introduction of high temperature structural integrity theory; b) basic 

concepts of creep, continuum damage mechanics and creep constitutive models; c) the 

present research approaches and their tools; and d) basic knowledge of programming of 

FEM and adopted general purpose subroutines. 

The third chapter presents the development strategy of this research, which includes 

development targets and development methodology. The development targets discuss the 

properties and functions of the developed subroutines and programmes. The development 

methodology briefly introduces the knowledge of general programme development 

methodology, and reports the adopted development model and activities. 

The fourth chapter presents the understanding of the theories and knowledge used to 

develop those subroutines and programmes. These theories and knowledge involve 

mechanical engineering, numerical analysis and computing science, which are a) creep 

constitutive equations, b) stress transformation, c) numerical methods, d) time-step 

control procedures, e) normalization technique, f) nodal loads arrangement, and formatted 

input and output of pre- and post-processor and the solver. 

The fifth chapter presents the created processes of required subroutines and programmes, 

which includes algorithm design, variables definitions and structural display. The 

algorithm is presented through a flowchart and the structure is explained via a pseudo 

code. Detailed source codes are not shown in text, but are attached in the appendix. 

The sixth chapter presents the implementation of testing and verification, which includes 

descriptions of testing tools and cases, test results and discussions of the results.  

The seventh chapter presents the exploration of the performance of numerical method 

subroutines, time-step control subroutines and normalization subroutines. The accuracy 

and efficiency of them will be quantitatively analysed.  

The eighth chapter is conclusion, which presents the summaries of the contributions and 

outcomes of this research. The discussion of future works is also presented. 
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2 SURVEY OF RESEARCH 

DOMAIN  

This chapter reviews the context knowledge of creep research domain. The inverted 

triangle narrative method was used to report the understanding of creep research. Figure 

2-1 presents the relationship of each knowledge range from wide to narrow. Initial 

research of high temperature structural integrity was launched to redesign, remanufacture 

and extend lifetime of the active high temperature process equipment. In the high 

temperature failure, creep is one of the major failure factors. Normally, people understood 

the constitutive relation of creep through experiment and numerical simulation. An FE 

package is often used to perform such numerical simulation. Compared with commercial 

FE package, the in-house FE package has its own advantages.  

 

Figure 2-1 Relationship overview of theoretical knowledge of creep research domain 

Theory of high temperature structural integrity: high 
temperature failure

One of the major failure forms: creep

Research appraches: experiment/FEM

Computational tools: FE 
packages

In-house code
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The concept and theory of high temperature structural integrity includes high temperature 

process and its materials, failure mechanisms and assessment standards. A brief 

introduction is displayed below. 

2.1 Present Situation of High Temperature Industry 

Modern industrial processes were developed toward the direction of high temperature and 

high pressure; however, the rise of corresponding knowledge lags the requirement of the 

processes. Many problems cannot be answered exactly and clearly according to the 

existing theories (Tu, 2003); for example, the steam pipework of power generation plant 

normally operating above 560 ℃, and its residual lifetime is still uncertain.  

Creep, fatigue and corrosion are major factors affecting the high temperature structural 

integrity of metal. Compared with fatigue and corrosion, creep is especially serious in a 

high temperature working environment (Tu, 2007). Figure 2-2 indicates the operating 

temperature of plants since 1796s to 2000s. The structural integrity has been widely used 

with great success for the design, manufacture and failure prevention of modern 

constructions.  

 

Figure 2-2 Temperature change tendency of operation of power plants (Tu, 2007) 

The needs of structural integrity technology are influenced by the increase of service 

temperature of the structures. Besides the raised needs from high temperature plants, the 

development of high technology provides new challenges to the structural integrity 

technology (Tu, 2005). The risks of high pressure can be less worrying due to the 

development of modern design methods and computer technology; however, compared 
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with the high-pressure technology, the problems caused by the high temperature are more 

complex. 

There is a lack of knowledge of high temperature equipment design either strength theory 

or process industry; actually, many problems could not be answered in the framework of 

existing disciplines, see (Berto et al., 2014, Islam et al., 2014, Quayyum et al., 2014, Zhu 

et al., 2014). 

Creep research is significant and valuable; for example, Wen et al. (2014) presented a 

creep damage model from the micromechanics viewpoint. In order to mitigate the 

difficulty of calibrating many parameters in the existing damage evolution models, creep 

ductility exhaustion approach is employed to account for the accumulation of the creep 

damage. 

As one of the major failure forms of high temperature structures, creep has two research 

branches; one is based on the classical plasticity theory and the other is based on the 

continuum damage mechanics. The application of continuum damage mechanics in creep 

research could be understood through some brief introductions of creep, damage, creep 

damage mechanisms and creep constitutive models. 

2.2 Creep and Creep Damage 

The concept of creep and continuum damage mechanics is briefly introduced in order to 

indicate the difference between creep and creep damage. This difference could be 

presented from the aspect of micro-mechanisms of creep deformation and creep rupture. 

As the core issues of this research, the constitutive models whether based on the classical 

plastic theory or the continuum damage mechanics were both studied. 

2.2.1 Concept of creep 

Creep is a type of deformation, which is a slow plastic deformation of metal caused by 

sustained stress at a certain temperature (Kassner, 2009). It is invisible in a relatively 

short time (counted by year) under room temperature; however, when the temperature 

exceeds one third of absolute melting temperature of metal, creep deformation will be 

exacerbated and can be measured. In order to distinguish the difference in creep 

deformation progress, it has been divided as three stages (Kassner, 2009). Figure 2-3 

shows a typical creep curve. In the primary creep stage, the strain rate is relatively high, 
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but slows with increasing time. The secondary stage, which is known as steady state creep 

stage, is the most understood. The term “creep strain rate” typically refers to the 

secondary stage. The tertiary stage, creep deformation will be accelerated in a short time 

relative to previous stages. Both the primary and secondary stages are similar to the “pure” 

plastic deformations problem, but the tertiary stage is not. The damage-accumulation 

occurs due to accelerating creep because of grain boundaries defects. 

 

Figure 2-3 Evolution of creep deformation 

2.2.2 Damage mechanics 

A brief specification of continuum damage mechanics was addressed by Voyiadjis and 

Kattan (2002), assuming an axial pressure on a cylinder bar which is shown on the left of 

Figure 2-4, and a lot of voids and cracks appear on the bar. Voids and cracks represent the 

damage. Two different models were obtained if envisage removing all the damages out of 

the bar. As follows: 

 P = σA  ( 2-1 ) 

P = σ̅A̅ ( 2-2 ) 

Where P is pressure, A is true area, A̅ is theoretical area, σ is true stress and σ̅ is nominal 

stress. Using the damage variable Φ =
A−A̅

A
 defined by Kachanov (1999), 
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σ̅ =
σ

1 − Φ
 ( 2-3 ) 

Obviously, the value of damage variable must less than 1, because it is in the denominator. 

In addition, if the damage variable is equal to 1, that means the component has completely 

ruptured. 

 

Figure 2-4 Definition of damage (Voyiadjis and Kattan, 2002) 

2.2.3 Mechanisms of creep deformation and rupture  

2.2.3.1 Mechanisms of creep deformation 

The creep deformation may be influenced by temperature in two ways, which are a) 

dependence of the material constants on temperature and b) structural changes of the 

material. Generally, as temperature increases the creep strain rate goes up due to the 

increasing activation of the structural elements, in spite of the slip influenced strain 

hardening of the material (Skrzypek and Hetnarski, 1993, Gittus, 1975). When the 

temperature of the creep test is relatively low, the predominance of the slip type creep 

mechanism characteristic for the primary creep is observed. The various deformation 

mechanism regimes could be visualized versus stress and the holonomic temperature 

ranges in the universal deformation map, see Figure 2-5. 

An increasing temperature causes the thermal activity of the dislocations in the crystalline 

lattice structure of the metal to rise. Hence, the dislocations can overcome the natural 

stiffness of the crystal and obstacles, to move through the lattice. The dislocation creep 

mechanism diminishes the strain hardening effect in the material although the cross-slip 

mechanism, which mainly characterizes the primary creep, still dominates. The higher 

temperature causes the dislocation creep to overpass the hardening mechanism; hence, the 

secondary creep phase may occur (Skrzypek and Hetnarski, 1993). 
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Figure 2-5 Typical deformation map of dislocation creep and diffusional creep (Skrzypek and 

Hetnarski, 1993) 

It is worth to note that the dislocation creep, which in the fundamental creep mechanism 

in engineering structures, is strongly affected by stress. When the stress level is relatively 

low, the dislocation motion may slow down. However, if the test temperature is 

sufficiently high, the other diffusional creep mechanism allows continuing the creep 

process. The diffusional creep results in the drastic increase in the strain rate observed at 

the tertiary phase, preceding the creep rupture (Skrzypek and Hetnarski, 1993). 

2.2.3.2 Mechanisms of creep rupture 

The effect of temperature and stress level on the mechanism of rupture is shown in Figure 

2-6. A ductile rupture is preceded by a reduction of the cross-sectional area due to the 

large creep strains essentially caused by slip deformations within the grains. This effect 

results in the fracture mechanism via the propagation of cracks nucleated at the grain 

boundaries and spread inwards from the surface. The ductile rupture mechanism occurs at 

high stress levels and low temperature regimes (Skrzypek and Hetnarski, 1993). 

A brittle rupture is caused by the deterioration of the material due to the formation of 

voids and the corresponding reduction of the effective cross-sectional area below a critical 

value. The brittle rupture mechanism occurs at low stress levels and high temperatures. 

The overall geometric effect is not observed, since creep strains are small (Skrzypek and 

Hetnarski, 1993). 
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Figure 2-6 Typical effect of temperature and stress on mechanism of creep rupture (Skrzypek and 

Hetnarski, 1993) 

2.2.4 Creep constitutive models 

Higher operating temperature and stresses were adopted in chemical and petrochemical 

plants, power generation systems and so on; hence, the concern of strength design of 

components was moved to the viscoplastic performance of materials due to the prevention 

of creep failure. Different researchers proposed large amounts of creep constitutive 

equations. 

The phenomenon of multi-axial creep behaviour is very close to classical plasticity; hence, 

classical plastic theory (CPT) was directly used in the multi-axial creep analysis during 

the first half of the 20th century. Taking into account the major factor of creep failure is 

the nucleation, growth and coalescence of cavities on the grain boundaries, see (Hayhurst 

and Leckie, 1984, Huddleston, 1985, Kassner and Hayes, 2003, Goodall and Skelton, 

2004); the CPT-based model is limited since its derivation does not consider the physical 

damage factors.  

Multi-axial creep design criteria using the models based on cavity growth mechanisms 

(CGM) was innovated by Hull and Rimmer (1959). The CGM-based models were 

improved by a lot of researchers from 1970s to 1980s, see (Rice and Tracey, 1969, 

Hayhurst, 1972, Gurson, 1977, Manjoine, 1975, Raj and Ashby, 1975, Ashby et al., 1978, 

Cocks and Ashby, 1980, Cocks and Ashby, 1981, Cocks and Ashby, 1982, Edward and 

Ashby, 1979, Cane, 2013, Cane, 1981, Cane, 1982, Tvergaard and Needleman, 1984). In 

recent years, further development has been made, see (Hales, 1994, Spindler, 2004, 
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Spindler, 1994, Kowalewski et al., 1994a, Spindler et al., 2001, Margolin et al., 1998, 

Ragab, 2002). Some of these models were applied in high temperature strength 

assessment procedures. 

Kachanov (1958) initially developed a continuum damage mechanics (CDM) based 

model. The CDM-based model is developed on the phenomenological theory and 

mechanics theory contrasted with the CGM-based model. CDM-based method has been 

widely used during recent years due to the rapid development of modern computer 

technology and finite element analysis method, see (Othman et al., 1993, Hayhurst et al., 

1994, Kowalewski et al., 1994a, Kowalewski et al., 1994b, Perrin and Hayhurst, 1996, 

Perrin and Hayhurst, 1999, Hyde et al., 1996, Hyde et al., 2004, Hyde et al., 2006, Xu, 

2004, Xu, 2001, Ju-Shin and Gibbons, 1999, Jing et al., 2001a, Jing et al., 2003, Jing et al., 

2001b). Three creep constitutive equations based on CDM-based model were selected in 

this research. 

Creep and its deformation are widely applied in industry; for example, people predicted 

the residual lifetime of components through understanding the relationship of stress and 

strain. The availability of a procedure able to predict the residual life of plant devices is 

necessary to assist the management decisions about power plants’ operation and 

maintenance scheduling. The major research approaches were reviewed to present some 

recent research situations. 

2.3 Research Approaches of Creep Damage Analysis 

Experimental and computational approaches are the major research approaches used to 

predict residual lifetime, and most time, people use them together. Some specific 

application examples of experimental and computational approaches are reviewed below. 

Wang et al. (2014) proposed the creep test method of Babbitt and analysed the factors 

influencing the results of creep test according to the creep deformation of oil film bearing 

Babbitt in operation process. Based on this test, the creep characteristics of SnSb11Cu6 

and SnSb8Cu4 were understood and the relationship between creep coefficients and stress 

has been obtained. 

Yuan et al. (2014) proposed a modified method for attenuation coefficient calculation, 

and new parameters were calculated with inspecting signal acquired from creep specimen. 
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A uni-axial tension creep experiment with pure lead to verify the detecting ability of this 

new parameter has been conducted, and another creep inspecting experiment with P91 

steel weldment was conducted to verify the practicability of the new parameter of a good 

distinguishing ability for different creep status. Moreover, Wang et al. (2014) verified the 

accuracy and reliability of creep deformation of Babbitt through finite element numerical 

simulation on the test specimens based on ANSYS, and carried out the creep 

characteristics of Babbitt of oil film bearing. 

Zhang et al. (2015) carried out a uni-axial creep tensile tests using round bar specimens 

with a diameter of 10 mm at different stress levels at 566 °C. Moreover, Zhang et al. 

(2015) implemented the stress-regime dependent creep model and ductility in a ductility 

exhaustion based damage model, and analysed their influence on creep crack growth 

(CCG) behaviour of materials, and the CCG rate in a Cr–Mo–V steel over a wide range of 

C* was predicted by finite element analyses. 

The experimental approach can display the whole process of creep evolution; however, it 

will spend a lot of financial resource and time for purchasing experiment equipment and 

awaiting experimental results. FEM as a computational approach greatly improved this 

defect, but it is seriously depending on the theoretical knowledge. A general 

computational tool does not exist; moreover, the traditional computational tools include 

the commercial software that need a user-defined subroutine, and the in-house software 

that has a narrow application scope.  

2.4 Computational Tools of Creep Damage Analysis  

The existing situation of FE packages for creep damage analysis has been reviewed by the 

author, see (Tan et al., 2012a). The creep analysis capability of commercial FE packages 

is unavailable. Users need to programme a user-defined subroutine to expand this 

capability. Moreover, some researchers chose to code their own in-house code to conduct 

the numerical simulation. A number of application examples of commercial software and 

in-house software are reviewed below. 

2.4.1 Commercial Software 

Becker et al. (2002) developed and used ABAQUS UMAT to implement benchmark tests 

against creep damage; they deemed creep rupture life could be predicted using continuum 
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damage mechanics. Geng et al. (2009) incorporated the modified KR creep damage 

constitutive equation into finite element program ABAQUS through its user subroutine to 

predict the creep damage and service life of a serviced steam pipeline made of 

10CrMo910 heat resistance steel. Colombo et al. (1996) said that the creep analysis has 

been performed by the computer code ABAQUS and the damage evaluation has been 

carried out by means of in-house developed user’s subroutine and post processor in his 

paper. Zhao et al. (2012) compiled the UMAT for ABAQUS to research factors affecting 

creep damage accumulation in ASME P92 steel welded joint is a typical example of 

coding user’s subroutine.  

Continuing damage mechanics has not been integrated in the commercial FE package. 

The primary and secondary creep stages can be analysed using the traditional plasticity 

theory, but the tertiary creep stage is unable to be simulated because the significant 

damage occurred. Users need to develop a user-defined subroutine, which is called 

UMAT to help ABAQUS for the analysis of creep damage. The commercial FE package 

can use a wide range of element types, material models and other facilities; for example, 

the efficient equation solvers that are not normally available in in-house FE package. 

Moreover, the commercial FE package does not currently allow the removal of failed 

elements from the boundary-value problem during the solution process.  

2.4.2 In-house Software 

DAMAGE XX (Hall, 1990) is an early in- house creep damage analysis solver developed 

at The University of Manchester Institute of Science and Technology (UMIST). This 

software is written based on Fortran 77, and the failed elements could be removed from 

the stiffness matrix. Runge-Kutta-Merson (RKM) method is applied. It is an important 

tool for the production of significant publications; these publications are not listed here 

for brevity. FEMGV is used as the pre- and post-processor.  

DAMAGE XXX (Hayhurst, 2006 ) is a new advanced version of DAMAGE XX, which 

was also developed at UMIST. This package is not only added a 3D FEA function, but 

was also applied on a parallel computer. Hayhurst (2006 ) reported its validation via 

analysing creep failure in the heat affected zone (HAZ) region of Cr-Mo-V cross-welds 

and its application. FEMGV is also used as the pre- and post-processor. 
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FE-DAMAGE (Becker et al., 2002) is another in-house code developed at University of 

Nottingham. It has been used in research; for example, Becker et al. (2002) used the FE-

DAMAGE program to present four different creep damage results in his paper. It is 

interesting to note that those results were compared with the result produced by ABAQUS 

for benchmarking. FEMGV is used as the pre- and post-processor. 

HT∑ is an in-house FE package used for creep damage analysis. Ling et al. (2000) 

developed a subroutine based on RKM method for this programme. As an in-house code, 

the accuracy and efficiency of this programme had been proved through a thick cylinder 

problem.  

An in-house code was developed at Tsing Hua University (Wang and Wang, 1996). The 

Euler’s method has been used in this code. A critical time-step which small enough was 

used to reduce the errors caused by highly non-linear behaviour.  

Haigihara and Miyazaki (2008) developed an in-house code, which used FEA for creep 

failure of coolant pipe in light water reactor due to local heating under severs accident 

condition. This result was also compared with the result of ABAQUS in this paper.  

Commercial software and in-house software have their own advantages in practical 

applications. The commercial software has rich resource support such as element type, 

material parameters and advanced topological technique; however, it does not allow the 

failure element to be removed during the solving processing. Moreover, the required user-

defined subroutine is also difficult to be programmed. The in-house software looks 

rudimentary, but the capability of removable failure element is allowed. Moreover, to 

programme in-house software is easier than to code a user-defined subroutine for 

commercial FE package. On the above observation, the author prefers and advocates the 

approach of developing in-house FE software. 

2.5 Programming of Finite Element Method 

In order to develop an in-house FEA software, some basic problems should be cleared 

firstly. The specific working targets need to be understood; the supervisor allocated the 

initial workloads directly, but the arrangement was modified in the following research. 

The background, basic equilibrium equations, programming language of developed in-
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house software were reviewed below. A number of general-purpose subroutines were 

adopted in order to build this in-house software. 

2.5.1 HITSI 

Dr. Qiang Xu has established his own research group since Oct. 2011. The research 

projects include the development of in-house FEA software and the development of creep 

constitutive equations. Such in-house FEA software is the original conception of HITSI, 

and a primary literature review was addressed by Tan et al. (2012a). 

The initial design scheme only focusses on the development of the solver, and the work of 

pre- and post-processing was arranged to the purchased software FEMGV; hence, in the 

earliest stage, the name of HITSI belongs to the solver. At the same time, the data transfer 

between the solver and FEMGV was considered which is to develop a text process 

programme. Later, the HITSI is defined a complete system include pre- and post-

processor, the solver and data transfer interface, Figure 2-7 indicates processing sequence 

of HITSI. 

 

Figure 2-7 Operation process of HITSI 

Due to the workload of programming, Xu allocated the task to two PhD candidates; the 

author’s colleague Dezheng Liu undertakes the design and development of overall 

structure of the solver, and the author undertakes the development of subroutines and data 

transfer tool. The author has relative programming experience of data transfer tool 

because of his undergraduate final project. 

FEMGV: create geometry model

Transfer the file from FEMGV to the solver

Solver: compute the stress, strain and damage

Transfer the file from solver to FEMGV

FEMGV: post-processing
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In the beginning, the research was proposed based on a large amount of general purpose 

subroutines; for example, NAG (2009) subroutine library provides various type 

subroutine of numerical method, and Smith and Griffiths (2004) offer subroutines to 

handle global stiffness matrix, nodal freedom array and elastic stress-strain matrix. 

Following the pace of progress of the research, the situation has changed. The author 

found that it is not worth paying more attention to couple NAG subroutine library3 and 

other general-purpose subroutines. At the same time, the author was suggested to promote 

the small data transfer tool.  

2.5.2 Finite element method 

The operation flow of the solver was proposed by Liu et al. (2012a), and the equilibrium 

equation of FEM for the solver can be expressed as: 

U = K−1(Fe + Fc) ( 2-4 ) 

where U is nodal displacement; K is global stiffness matrix; Fe and Fc are nodal elastic 

force and nodal creep force respectively. Initially, the fc is zero, and strain can be derived 

by ( 2-5 ); 

ϵ = BU ( 2-5 ) 

where ϵ is total strain, B is strain-displacement matrix, and the elastic strain is one part of 

total strain; 

ϵe = ϵ − ϵc ( 2-6 ) 

where ϵe, ϵc are elastic strain and plastic strain respectively, the elastic stress is; 

σe = Dϵe ( 2-7 ) 

where σe is elastic stress, D is stress-strain matrix. Here, the creep strain was produced by 

creep constitutive equations f(σe, Δt); 

                                                 
3  Numerical method subroutine library, which allowed users to define their own ordinary differential 

equations; however, it does not suit the author’s research due to the material parameters have to be set as 

constants.  
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ϵc = f(σe, Δt) ( 2-8 ) 

where Δt is time interval; the virtual creep stress can be derived by ( 2-9 ) 

σc = Dϵc ( 2-9 ) 

where σc is creep stress, and finally, the nodal creep force equal to: 

Fc = BTσc ( 2-10 ) 

Based on the discussion above, the tasks of this research are clarified. 

2.5.3 Programming Languages 

Fortran is widely used for scientific/numerical computing purposes, and it is only used for 

such requirements. For example, it is still used for such tasks in embedded programming 

things like aircraft controllers, chemical plants (Sebesta, 2010). Compared with C++, 

Python, Matlab and S--Plus etc., which are all often used for scientific computing, a 

comparison of executive can be summarised as (Kupferschmid, 2009):  

 Ease of use: Python, Matlab, then Fortran  

 Debuggability: Python, Matlab, then NAG Fortran 

 Portability: Fortran is the best , and over-elaborate C++ is the worst  

 Software engineering: Fortran is the best, then Python  

 Performance: Fortran or C++ (no overall difference), then Python and Matlab  

 Parallelism: Fortran is the best for shared memory, few times be chosen for 

distributed memory 

 Array handling: Fortran is the best, then Matlab and Python 

 Text handling: Python is the best, then C++, then Fortran 

 ‘Computer science’ : C++, then Python and Fortran 

 ‘System interfaces’ : Pytho , then C++, then Fortran 

Fortran 2003 is adopted in this research because the existing general-purpose subroutines, 

which are adopted by Dezheng Liu, were written by Fortran. It avoids the need to rewrite 

those adopted subroutines because Fortran 2003 is compatible with previous version even 

Fortran 66. This research involves a lot of computation of matrices; hence, using Fortran 

is easy to programme. 
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2.5.4 General purpose subroutines of HITSI 

The development work of FEA software is really complex and difficult; however, a lot of 

existing theories and subroutines make this problem much easier than decades ago. Smith 

and Griffiths (2004) offered general purpose subroutines and functions held in a library 

called new_library. Some general-purpose subroutines and functions from new_library 

were adopted in a new library, which is called HITSI_library, in the development 

process of the solver. Table 2-1 indicates the subroutines and functions in alphabetical 

order, together with the meaning of their arguments. Arguments in bold are those returned 

by the subroutine. 

Table 2-1 Description subset of new_library (Smith and Griffiths, 2004) 

Name Arguments Description 

bacsub bk, loads Return the complete Gaussian back substitution on displacement array 

loads from global stiffness matrix bk. 

bandwidth g Function returns the maximum bandwidth for an element with steering 

vector g. 

banred bk, n Return the Gaussian reduction on global stiffness matrix bk itself from 

number of degrees of freedom in the mesh n. 

beemat bee, deriv Returns bee matrix for shape function derivatives derive. 

bmataxi 
bee, radius, 

coord, deriv, 

fun 

Returns bee matrix and radius from element nodal coordinates coord, 

shape function derivatives derive and shape function fun. 

deemat dee, e, v Returns elastic stress-strain dee matrix in 2D (plane strain) or 3D. e and v 

are Young’s modulus and Poisson’s ratio. 

determinant jac Function returns the determinant of 2D or 3D square matrix jac. 

formkv bk, km, g, n Returns global stiffness matrix bk from element stiffness matrix km and 

number of degrees of freedom in the mesh n. g is element steering vector. 

formnf nf Returns nodal freedom array nf from boundary conditions input of 0 s and 

1 s. 

invert matrix Return the inverse of a small matrix called matrix onto itself. 

num_to_g num, nf, g Returns the element steering vector g from the element node numbering 

num and the nodal freedom array nf. 

sample element, s, wt Returns the local coordinates s and weighting coefficients wt for 

numerical integration of a finite element of type element. 

shape_der der, points, i Returns the shape function derivatives der at the ith integration point. 

points holds the local coordinates of the integration points. 

shape_fun fun, points, i Returns the shape function fun at the ith integration point. points holds the 

local coordinates of the integration points. 

2.6 Summary 

The present situation of high temperature industry has been reviewed, which the safety 

assessment and residual lifetime prediction are issues in high temperature devices, and 

creep is one of the major failure factors. General knowledge of creep such as creep 

deformation, creep failure mechanisms and creep constitutive models has been reviewed. 
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Experimental and computational approaches have their own advantages, but this research 

focusses on the computational approach. The present situation of computational tools has 

been reviewed, where multifarious computational tools were used due to the general finite 

element software could not be employed directly. The way to develop a universal finite 

element software has been proposed and the adopted programming method and general-

purpose subroutine have been reviewed. 
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3 DEVELOPMENT STRATEGY 

OF HIGH TEMPERATURE 

STRUCTURAL INTEGRITY-

CREEP 

This chapter explains the development strategy of HITSI, which includes structure 

analysis, function definition and the development methodology. The structure analysis 

involves the understanding of overall structure of HITSI, and includes the understanding 

of overall algorithm of the solver; it aims to identify the specific research sub-tasks of this 

research. Based on the structure analysis, the type, function and compatibility of required 

subroutines and programmes will be discussed. The unique development methodology is 

introduced, which includes the stand-alone work of the author and the co-operation work 

with the author’s colleague Dezheng Liu.  

3.1 Overall structure of HITSI 

HITSI includes four components, which are a) the solver, b) pre- and post-processor, c) 

data transfer programme and d) nodal loads calculator. Figure 3-1 presents the general 

operation model of HITSI, which could identify that the author’s development work has 

two branches. The first branch is the development of independent programmes which are 

used to connect the solver and pre- and post-processor. The second branch is the 

development of dependent subroutines, which are used to realize the capability of creep 
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analysis of the solver. FEMGV was chosen to be the pre- and post-processor, which is 

shown in the Figure 3-1. The detailed responsibilities of each component are introduced 

separately.  
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Figure 3-1 Overall structure of HITSI 
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3.1.1 The solver 

The solver is the core of HITSI, which undertakes the major analysis work of creep 

research. It is an elastic-creep finite element method programme, which is developed by 

the author and his colleague Dezheng Liu. Dezheng Liu et al. (2012b, 2012a, 2013d, 

2013c, 2013a, 2013e, 2013b) reviewed the programming knowledge of finite element 

method; conducted the overall algorithm design of the solver; and validated the solver.  

Liu is the major developer who undertakes the work of overall algorithm design, coding 

and validation of the solver, in which case, the author undertakes the development work 

of subroutines. The solver was coded based on a number of existing general-purpose 

subroutines; thus, the author is required to not only develop the subroutines, which are 

needed but could not be found from literatures directly, but also keep the compatibility of 

the developed subroutines and those general purpose subroutines. All subroutines were 

developed based on the Fortran language.  

3.1.2 Pre- and Post-processor 

The solver is a programme without any geometrical and topological capability; hence, 

obtaining geometric models and visualized results is required. The solver has to work 

with a pre- and post-processor together in practical case, and FEMGV was selected to be 

the pre- and post-processor in this research. FEMGV (Manie and Wolthers, 2013) is a 

professional pre- and post-processor, which works in conjunction with two databases 

which both comprise an index file and a data file in binary format. One database applies 

for the Design environment and another one for the Results environment. The contents of 

both databases can also be represented as a so-called ‘Neutral file’ in ASCII text format.  

As commercial software, unfortunately, FEMGV will not offer a specialized interface for 

the solver; therefore, formatted input and output of FEMGV should be researched due to 

the gap between FEMGV and HITSI (Tan et al., 2012b). The file format of Neutral file is 

very complex; hence, the understanding of formatted input and output was independent in 

order to reduce the development workload of the solver. 
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3.1.3 Data transfer interface 

Due to a specialized interface not being offered by FEMGV, a data transfer programme 

was developed to fill this gap. The structures of both Neutral files based on the design 

environment and result environment are essentially the same but the contents of included 

data may vary by their very nature (Manie and Wolthers, 2013). For instance the Neutral 

file based on the design environment could not contain analysis results data which appears 

in the database (and the Neutral file) based on the results environment only; therefore, the 

data transfer processes of pre-processing transfer and post-processing transfer should be 

distinguished through two different branches. 

In the pre-processing transfer, some problems could not be solved based on the present 

situation, which leads to the data transfer interface not being integrated into the solver. 

For example, a number of parameters used to describe the characteristics of creep could 

be defined through FEMGV directly; hence, these parameters have to be entered into the 

input file of the solver artificially. Moreover, the allocation of a concentrated force to 

each loaded node could not be supported by FEMGV, and this capability could not be 

realized yet through the data transfer interface itself due to this problem involving 

advanced topological algorithms.  

In the post-processing transfer, a number of control parameters were defined by FEMGV; 

however, the solver will not produce these parameters directly because these are 

parameters depending on FEMGV only, but not involving any activities of creep damage 

analysis. Identification of the value of each control parameter is a challenge due to these 

parameters being required to not only to be analysed qualitatively based on theoretical 

knowledge, but also to be tested through real data. 

3.1.4 Nodal loads calculator 

In the setting of boundary conditions, a concentrated force should be represented by the 

equivalent nodal loads because of the nature of the solver (Liu et al., 2012a). The 

allocation of a concentrated force to each loaded node is a problem, which could not be 

solved by FEMGV or the data transfer programme; thus, a small calculator was proposed 

to obtain the converted value of each nodal load based on a concentrated force. Figure 3-1 

does not display the position of nodal loads calculator since it is included in the process of 
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pre-processing transfer. Actually, the nodal loads calculator is used to avoid hand-

calculation only.  

3.2 Required subroutines of the solver 

Figure 3-1 also presents the overall algorithm of the solver. The solver starts with 

parameter initialization such as the allocation of node coordinates, element definitions and 

constraint information. All of the work such as bandwidth calculation, stiffness matrix 

assembly and displacement calculation could be solved by those general-purpose 

subroutines; however, some works such as stress tensor transformation, constitutive 

equations integration and time-step control need to be satisfied through a number of self-

developed subroutines.  

The general-purpose subroutines make programme development much easier, but they 

could not cover everything. For example, a class of constitutive equations subroutines 

should be developed to return the creep strain and creep damage; however, the 

constitutive equations subroutine could not exist independently due to the solving process 

being dependent on numerical methods. Moreover, the stress tensor could not be applied 

to constitutive equations directly, which is also a significant problem. 

It could be clearly seen from Figure 3-1; the time-step control method based on self-

adaptive technique was used in the solver to enhance the accuracy of integration. 

Furthermore, a mathematical approach called normalization was considered to improve 

the accuracy and efficiency of constitutive equations. The detailed responsibilities of each 

subroutine were introduced separately.  

3.2.1 Constitutive equations subroutine 

Creep constitutive equations undertake the task to return creep strain and damage in the 

overall operation of the solver. The creep strain is used for the redistribution of elastic 

stress; and the creep damage is used for the determination of failure element. Generally, 

creep constitutive equations are ordinary differential equations based on the initial-value 

problem; hence, the numerical methods such as Euler’s method, Runge-Kutta (RK) 

method were required to find its estimated solutions. Furthermore, complex description of 

stress state was introduced into the constitutive equations such as deviatoric stress tensor, 

principal stress and equivalent stress. 
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In the solver, the computing of stress and strain of each integration point and element was 

conducted one by one; hence, the arguments used to hold creep strain and damage should 

be stated as a three-dimensional deferred-shape real array which contains the data of 

strain and damage components, integration points and elements. Moreover, due to the 

factor of temperature is normally integrated into the material properties, the argument 

used to describe the temperature will be included in the array that is used to hold material 

properties. This research only includes three types of constitutive equations subroutines, 

which are Kachanov-Rabotnov (KR) equations, Perrin-Hayhurst (PH) equations and 

Qiang Xu’s (QX) equations. KR equations are the typical version in creep damage 

mechanics, and many researchers developed their own constitutive equations based on 

this version. Compared with KR equations, PH equations were introduced more damage 

factors. It is also a widely used creep constitutive equations. QX equations are new 

version of PH equations, which the stress state functions have been reconsidered. 

3.2.2 Numerical method subroutine 

The solutions to the creep constitutive equations itself are creep strain rate and creep 

damage rate. Obtaining creep strain and damage is dependents on the numerical methods. 

A class of numerical method subroutines undertake the work to find estimated creep strain 

and damage according to a specific time-step. The time-step will affect the result based on 

its size due to all solutions produced by the numerical method being not exact solutions. 

Explicit-shape arrays were recommended in order to avoid the mismatch of the 

transmission between constitutive equations subroutine and numerical method subroutine 

because the constitutive equations subroutine is executed inside the numerical method 

subroutine. 

The major arguments statement of the numerical method subroutine should follow the 

constitutive equations subroutine. Four single-step, explicit numerical methods, which are 

Euler’s method, classical 4th order Runge-Kutta (RK4) method, RKM method and RKF 

method, were selected in this research. The Euler’s method is the easiest integration 

method. The family of RK methods are typical integration methods that be used for 

ordinary differential equations, and they are developed based on the Euler’s method. RK4 

method is the typical version of RK method family. RKM method is the classical version, 

which is already used in creep damage analysis area. RKF method is the embedded 

version that has more advantages of precision. 
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3.2.3 Stress tensor transformation subroutine 

An equivalent creep strain was allocated to each coordinate through the deviatoric stress 

tensor components; this is the derivation of multi-axial constitutive equations. On the 

other hand, principal stress, equivalent stress and some self-defined stress were used to 

describe the stress state of creep deformation; hence, the understanding of those stresses is 

significant.  

Deviatoric stress tensor, principal stress or equivalent stress could be obtained via the 

stress tensor, and may be produced through some separate existing subroutines; however, 

the efficiency will not be guaranteed because those subroutines have single and discrete 

features. A modular processed concept of those stresses was proposed in order to not only 

reduce the memory requirements of the solver, but also enhance the computing efficiency 

of the solver.   

A subroutine, which is used to return the values of deviatoric stress tensor, principal stress 

and equivalent stress according to the present stress tensor components, is the stress 

transformation subroutine. Its operation process could be divided into three stages that in 

the first stage, stress tensor components were allocated to the local arguments; secondly, 

target functions were computed; finally, the results were updated into a global array. In 

here, deviatoric stress tensor, principal stress and equivalent stress will be obtained in 

sequence. This subroutine was designed based on three-dimensional stress system; hence, 

the two-dimensional stress system was realized through reducing the number of stress 

tensor components4.  

3.2.4 Time-step control procedure subroutine 

Creep deformation of metals is a time-depending problem; moreover, the time-step 

dependence of the numerical method is high. Hence, the time-step control is extremely 

important in practical computational analysis. The time-step control procedure was 

divided into two parts, which are time-step acceptance and time-step selection. The time-

step acceptance was integrated into the subroutine of numerical method due to it being the 

self-adaptive technique of numerical method; and, the time-step selection was coded as an 

independent subroutine. Figure 3-1 shows the overall time-step control method. 

                                                 
4 It means 𝜏𝑦𝑧 , 𝜏𝑧𝑥 will be forced to zero in two-dimensional stress system.  
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3.2.5 Normalization technique subroutine 

The normalization technique is used to promote the computing capability through 

reducing the stress and strain proportionally. A normalization scheme, which included the 

normalization of equilibrium equation of finite element method and the normalization of 

creep constitutive equations, was firstly proposed by Hayhurst et al. (1984). The 

normalization procedure improved the accuracy of numerical solution due to reducing the 

effect of numerical rounding errors (Hall, 1990). The advantages were not mentioned 

clearly in those papers; however, it is still worth researching the potential power of 

normalization in creep damage area even though nowadays the computational power has a 

huge improvement. The normalization subroutine is a special constitutive equation. 

3.3 Research methodology 

The definition and application of each research sub-task were given respectively to deeply 

understand how to organise the required programmes and subroutines. A unique research 

methodology was adopted depending on our research environment. Software development 

life cycle as the general software development methodology was used in this research. 

3.3.1 Software development life cycle and activities 

The software development life cycle consists of a number of distinct work phases, and 

each of those distinct work phases was called software development process or activity. 

Wallis (1985) identified what might now be termed the ‘traditional’ software development 

life cycle: requirements analysis, functional specification, design, coding, testing and 

maintenance. Almost one and half decades later, Jacobson et al. (1999) addressed their 

core workflow of the unified software development process: requirements, analysis, 

design, implementation and test. It is obviously; those two definitions did not have 

essential difference except the process of maintenance. 

3.3.2 Software development model 

Bell (2000) introduced a series of development models such as 1) seat-of-the-pants, do-it-

yourself, or ad hoc, 2) waterfall, 3) prototyping, 4) formal methods and 5) spiral. The 

waterfall model is a sequential development approach that looks like a waterfall, and its 

typical form can be presented by Figure 3-2. Prototyping is a development approach, 

which builds a programme through repeated updating the prototype, and the first 

prototype is an incomplete version of the developed programme. However, prototyping is 
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not only a standalone development methodology, but also a selected parts of a larger 

development methodology such as incremental and spiral. The spiral model guides a team 

to adopt elements of one or more process models such as incremental, waterfall or 

evolutionary prototyping, and its typical model could be seen Figure 3-3. Spiral combines 

some key aspects of the waterfall model and the prototyping model in order to enhance 

the advantages of top-down and bottom-up concepts. 

 

Figure 3-2 Typical activities of waterfall model 

 

Figure 3-3 Typical activities of spiral model 

This research adopted the spiral model due to its unique nature. The first prototype5 of the 

solver is an elastic analysis programme, which is built through general-purpose 

                                                 
5 In this thesis, this prototype named Prototype I. 
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subroutines. The programmer of Prototype I is my colleague Dezheng Liu, and his work 

offers a number of key conditions for this research. For example, a) Prototype I offered a 

set of unified input and output format, and this form will be used to design data transfer 

interface; b) Prototype I defined the data type of some key arguments such as stress and 

strain, and these data types will affect the framework of those subroutines developed by 

this research. According to the Prototype I, the author developed the constitutive 

equations subroutine, numerical method subroutine, stress tensor transformation 

subroutine, time-step control subroutine and normalization technique subroutine. These 

subroutines will be delivered to Prototype I to create the second Prototype6. Dezheng Liu 

will use prototype II to test the elastic-creep analysis capability in plane stress case, plane 

strain case and axisymmetric case. 

Based on the feedback of Prototype II, data transfer interface and the author developed 

nodal loads calculator, and those subroutines will be optimized as well. Finally, all of 

these works will be delivered to Dezheng Liu to test the final version via a weldment case 

(Liu, 2015). 

3.3.3 Requirements analysis 

General requirements analysis of software development is determining the conditions to 

satisfy the new subroutines and programmes, and is taking account of the possibly 

conflicting requirements of the various stakeholders. According to the proposed flowchart 

of HITSI, a number of theories and knowledge need to be collected, understood and 

researched in order to develop relative subroutines and programmes. This work will be 

reported in detail in the Chapter 4. Liu (2015) gave feedback when he complete the 

Prototype I. The input and output file format, arguments definition and overall structure of 

Prototype I has been confirmed through his feedback. 

3.3.4 Algorithm Design 

The algorithms were designed based on the nature of theoretical knowledge and the 

position on the solver. The theoretical knowledge should be studied, and be analysed in 

order to identify those key arguments. A flowchart will be sketched to display the overall 

algorithm clearly. The structure will be presented through pseudo code. 

                                                 
6 In this thesis, this prototype named Prototype II. 
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3.3.5 Testing and verification 

The quality assessment of a software product includes either dynamic verification, i.e. 

testing, or static verification, i.e. review and inspections. The following issues must be 

highlighted in the validation of software (Olsen et al., 2001): 

 Correct identification and expression of user requirements 

 Correct implementation of the specified requirements 

 Absence of problems with the code and the data 

 Usability, completeness and level of updating of the documentation given to 

customers 

 Maintainability of the product 

The validation approach of this research contains both static validation and dynamic 

validation. 

3.4 Summary 

The overall structure and algorithm of HITSI has been identified. Spiral model and 

waterfall model will be used in this research. The sub-tasks fulfilled by this research could 

be summarised below: 

 Data transfer interface, which used to fill the gap caused by formatted input and 

output of two different software; 

 Nodal loads calculator, which is proposed to be the temporary solution of nodal 

loads arrangement module;  

 Constitutive equations subroutine, which is a subroutine class used to return creep 

strain and damage for the main programme of the solver; moreover, it could 

enable the potential users to add their own constitutive equations directly; 

 Numerical method subroutine, which is a subroutine class used to assist 

constitutive equations subroutine; 

 Stress tensor transformation, which is used to obtain deviatoric stress tensor, 

principal stress and equivalent stress; 

 Time-step control subroutine, which is used to assist numerical method subroutine 

to implement self-adaptive approach; 
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 Normalization subroutine, which is a special constitutive equations subroutine 

used to enhance the accuracy and efficiency of numerical integration. 
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4 RELATIVE THEORIES AND 

KNOWLEDGE APPLICATION 

This chapter studies and analyses the relative theories and knowledge used to develop the 

required subroutines and programmes. These theories involve constitutive theory of creep 

deformation, numerical methods of engineering, classical plastic theory and computing 

science. Based on the definition of required subroutine/programme of this research, the 

knowledge could be specific to a) constitutive equations based on continuum damage 

mechanics; b) derivation of deviatoric stress tensor, principal stress and equivalent stress 

based on stress tensor; c) single-step explicit numerical methods of initial-value problem; 

d) self-adaptive approach of time-step and its control procedure; e) normalization 

technique; f) boundary conditions of nodal loads based on planar and axisymmetric 

element type; and g) formatted input and output of FEMGV and the solver. 

4.1 Constitutive Equations 

Knowledge of constitutive equations was used to develop the subroutine of constitutive 

equations. The equations itself and the definitions of dependent variables, independent 

variables and constants were introduced specifically in order to design arguments of this 

class of subroutine. Based on the analysis of constitutive equations, the input conditions 

of constitutive equations could be summarised as a) stress, b) material properties and c) 

initial creep strain and damage. Only stress needs to be discussed because material 

properties, initial creep strain and damage are constants.  
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A set of ordinary differential equations, which are used to describe the constitutive 

relation between material and deformation, is known as creep constitutive equations. The 

metal creep research has been researched almost since 100 years ago, Yao et al. (2007) 

reviewed a large amount of existing creep constitutive equations, and suggested such 

equations can be grouped into three categories, i.e. 1) CPT-based approach, 2) CGM-

based approach, and 3) CDM-based approach. 

In this research, three sets of constitutive equations, KR constitutive equations, PH 

constitutive equations and QX constitutive equations, which based on CDM, were 

selected to develop the class of constitutive equations subroutine.  

4.1.1 Kachanov-Rabotnov constitutive equations 

Based on the classical plasticity theory, Kachanov (1999) introduced a new concept 

named damage into creep research in 1958, and firstly proposed a uni-axial form of his 

creep damage constitutive equations. The modified form according to the theories of 

Rabotnov and Andrade was addressed by Hayhurst et al. (1984). The uni-axial form of 

modified equations is expressed as: 

ϵ̇ = A (
σ

1 − ω
)

n

tm ( 4-1 ) 

ω̇ = B
σχ

(1 − ω)ϕ
tm ( 4-2 ) 

where ϵ̇, ω̇ are creep strain rate and creep damage rate respectively; A, B, n, m, χ, ϕ are 

creep material properties; σ is stress; and t is time function. 

Odqivst (1974) proposed the multi-axial stress state form of Norton’s equations, and ( 4-1 ) 

and ( 4-2 ) were revised by Hayhurst et al. (1984) according to the theory of Odqivst. The 

multi-axial form of equations is expressed as: 

ϵij̇ =
3Sij

2σe
A (

σe

1 − ω
)

n

tm ( 4-3 ) 

ω̇ = B
σr

χ

(1 − ω)ϕ
tm ( 4-4 ) 

σr = ασ1 + (1 − α)σe ( 4-5 ) 
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where Sij is deviatoric stress tensor; σe is effective stress which is equal to Von Mises 

stress; σr is rupture stress which represents stress state function; σ1 is the first principal 

stress; and α is coefficient of stress state function. 

4.1.2 Perrin-Hayhurst constitutive equations 

Perrin and Hayhurst (1996) suggested a set of constitutive equations to describe the creep 

constitutive relation of a 0.5Cr-0.5Mo-0.25V ferritic steel over the temperature range 600-

675℃. Three types of creep damage variables, i.e. cavitation damage (Cane, 1981), 

carbide precipitates (Othman et al., 1993) and primary creep (Kowalewski et al., 1994a) 

were introduced into this constitutive equations. The uni-axial form of his constitutive 

equations is expressed as: 

ϵ̇ = Asinh [
Bσ(1 − H)

(1 − ϕ)(1 − ω)
] ( 4-6 ) 

Ḣ =
h

σ
(1 −

H

H∗
) ϵ̇ ( 4-7 ) 

ϕ̇ = (
Kc

3
) (1 − ϕ)4 ( 4-8 ) 

ω̇ = Cϵ̇ ( 4-9 ) 

where ϵ̇, Ḣ, ϕ̇, ω̇  are creep strain rate and variables of damage rate respectively; 

A, B, C, h, H∗, Kc are creep material properties; and 𝜎 is stress.  

It was expanded to multi-axial form by Perrin and Hayhurst (1996): 

ϵij̇ =
3Sij

2σe
Asinh [

Bσe(1 − H)

(1 − ϕ)(1 − ω)
] ( 4-10 ) 

Ḣ = (
hϵė

σe
) (1 −

H

H∗
) ( 4-11 ) 

ϕ̇ = (
Kc

3
) (1 − ϕ)4 ( 4-12 ) 

ω̇ = CNϵė (
σ1

σe
)

v

 ( 4-13 ) 

where Sij is deviatoric stress tensor; σe is effective stress which equal to Von Mises stress; 

σ1 is the first principal stress; ϵė is equivalent strain rate; and N = 0, if σ1 < 0, else N =1. 
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4.1.3 Qiang Xu’s constitutive equations 

Xu (2001, 2004) modified the stress state functions of PH equations. Based on his 

investigations and considerations, the researches of Huddleston (1993) and Spindler (2004) 

were introduced into his research. The uni-axial form of his equations is the same with PH 

equations, and the multi-axial form of his equations is expressed as: 

ϵij̇ =
3Sij

2σe
Asinh [

Bσe(1 − H)

(1 − ϕ)(1 − ωd)
] ( 4-14 ) 

Ḣ = (
hϵė

σe
) (1 −

H

H∗
) ( 4-15 ) 

ϕ̇ = (
Kc

3
) (1 − ϕ)4 ( 4-16 ) 

ω̇ = CNϵė {exp [p (1 −
σ1

σe
) + q (

1

2
−

3σm

2σe
)]}

−1

 ( 4-17 ) 

ωḋ = ω̇ (
2σe

3S1
)

a

exp [b (
3σm

Ss
− 1)] ( 4-18 ) 

σm =
1

3
(σ1 + σ2 + σ3) ( 4-19 ) 

σm = σ1 − σm ( 4-20 ) 

σm = √σ1
2 + σ2

2 + σ3
2 ( 4-21 ) 

where ϵij̇ , Ḣ, ϕ̇, ω̇, ωḋ  are creep strain rate and variables of damage rate respectively; 

A, B, C, h, H∗, Kc are creep material properties; Sij is deviatoric stress tensor; σe is effective 

stress which equal to Von Mises stress; σ1, σ2, σ3 are principal stress; σm is hydrostatic 

stress;  ϵė is equivalent strain rate; N = 0, if σ1 < 0, else N =1; and a, b, p, q are stress 

state index. 

Based on these discussions, creep constitutive equations could be considered simply to 

consist of derivatives, solutions, stress and coefficients. It might be appropriate to 

consider creep strain rate and damage rate as the derivative, to consider creep strain and 

damage as the solution, to consider deviatoric stress tensor, principal stress and equivalent 

stress as the stress, and to consider material properties as the coefficients. 



55 

 

4.2 Transformation of Stress Tensor 

A series of stresses are involved in the operation of constitutive equations such as 

deviatoric stress tensor, principal stress and equivalent stress; furthermore, some self-

defining stress states were also applied depending on the specific creep constitutive 

equations. For programming convenience, an independent subroutine with deviatoric 

stress tensor, principal stress and equivalent stress should be developed, and such self-

defining stress states will be put in their corresponding subroutine of constitutive 

equations. 

The concept of stress and stress tensor can be found in many books, see (Richards, 2001, 

Gere and Goodno, 2009); however, the challenge is how to arrange the computing order 

of each in order to save computing power. A appropriate sequence of computing was 

suggested by Chen (2007), and detailed formulas is expressed below. 

4.2.1 Deviatoric stress tensor 

A stress called hydrostatic stress is simply the average of the three normal stresses: 

σ0 =
1

3
(σx + σy + σz) ( 4-22 ) 

where 𝜎0 is the hydrostatic stress; σx, σy, σz are stress tensor components in x-direction, 

y-direction and z-direction respectively.  

The deviatoric stress tensor is equal to the stress tensor minus the hydrostatic stress: 

[sij] = [

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

] ( 4-23 ) 

where [sij] is the deviatoric stress tensor; [

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

] is the deviatoric 

stress tensor components.  

4.2.2 Principal stress 

Like the stress tensor, the deviatoric stress tensor also has three invariants: 

J1 = σx − σ0 + σy − σ0 + σz − σ0 = 0 ( 4-24 ) 
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J2 =
1

6
[(σx − σy)

2
+ (σy − σz)

2
+ (σz − σx)2

+ 6(τxy
2 + τyz

2 + τzx
2)] 

( 4-25 ) 

J3 = |

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

| ( 4-26 ) 

where J1, J2, J3 are the invariants of deviatoric stress tensor. 

The load angle was derived from the second invariant and the third invariant of deviatoric 

stress tensor: 

θσ =
1

3
sin−1 [

−√27J3

2J2

3
2

] ( 4-27 ) 

where θσ is the load angle. 

Principal stress was derived by the second invariant of stress tensor, load angle and 

hydrostatic stress: 

σ1 =
2√J2

√3
sin (θσ +

2π

3
) + σ0 ( 4-28 ) 

σ2 =
2√J2

√3
sin(θσ) + σ0 ( 4-29 ) 

σ3 =
2√J2

√3
sin (θσ −

2π

3
) + σ0 ( 4-30 ) 

where σ1, σ2, σ3 are the first principal stress, the second principal stress and the third 

principal stress respectively. 

4.2.3 Equivalent stress 

The first, the second and the third principal stress can express the equivalent stress (von 

Mises stress): 

σ̅ =
1

√2
√(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 ( 4-31 ) 

where σ̅ is the equivalent stress. 
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In summary, the compute steps has been reduced to the minimum requirements according 

to the sequence of a) hydrostatic stress; b) second and third invariant of deviatoric stress 

tensor; c) load angle; d) principal stress; and e) equivalent stress.  

4.3 Numerical Methods 

Differential equations are used to model problems that involve the change of some 

variable with respect to another. These problems require the solution to an initial-value 

problem—that is, the solution to a differential equation that satisfies a given initial 

condition (Chapra and Canale, 1998). The numerical methods of initial-value problem, 

which are used in creep damage analysis, are different with its mathematical instruction 

due to its integration process is not consecutive. The derivation of stress and the 

derivation of creep strain are carried out alternately; thus, the numerical integration of 

each element will be executed only once in each loop in order to keep the unity of time. 

Ling et al (2000) and Hayhurst et al. (1984) both suggested that RKM method is the most 

suitable numerical method in creep damage analysis. However, a researcher (Wang and 

Wang, 1996) addressed that Euler’s method could also be used for creep damage analysis 

if the time interval is small enough. In addition, RKF method was also mentioned by both 

Ling et al. (2000) and Hayhurst et al. (1984), and they think this method could improve 

the accuracy of integration but consume more computing power.  

Four types of numerical method, Euler’s method, RK4 method, RKM method and RKF 

method, were selected to develop the class of numerical method subroutine. Detailed 

formulas were presented in (Faires and Burden, 2013, Chapra and Canale, 1998, Hayhurst 

et al., 1984). 

4.3.1 Euler’s method 

In computational science, the Euler’s method is used for solving ordinary differential 

equations (ODEs) with a given initial value. It is the most basic explicit method for 

numerical integration of ODEs, and it is the simplest RK method. The Euler’s method is a 

first order method, and it often serves as the basis to construct methods that are more 

complex. 

The initial value problem of ODEs could be expressed as: 
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dy

dt
= f(t, y), for a ≤ t ≤ b ( 4-32 ) 

where the initial condition is y(a) =  α. 

The estimating equation of Euler’s method is, 

yi+1 = yi + f(xi, yi)h ( 4-33 ) 

 

4.3.2 Classical 4th order Runge-Kutta method 

The RK methods are an important family of implicit and explicit iterative methods, which 

are used for the approximation of solutions of ordinary differential equations. One 

member of the family of RK methods is often referred to as RK4. 

The estimating equation of RK4 method is, 

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)h ( 4-34 ) 

where the coefficient could be estimated as:  

k1 = f(xi, yi) ( 4-35 ) 

k2 = f (xi +
1

2
h, yi +

1

2
k1) ( 4-36 ) 

k3 = f (xi +
1

2
h, yi +

1

2
k2) ( 4-37 ) 

k4 = f(xi + h, yi + k3) ( 4-38 ) 

4.3.3 Runge-Kutta-Merson method 

RKM method was developed by Merson (1957), and it is based on the large family of RK 

methods. A Fortran code of the RKM method is available in the NAG library. The RKM 

method is the earliest proposed method belonging to the family of imbedded methods. 

The estimating equation of RKM method is, 

yi+1 = yi +
1

6
(k1 + 4k4 + k5)h ( 4-39 ) 
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where the coefficient could be estimated as:  

k1 = f(xi, yi) ( 4-40 ) 

k2 = f (xi +
1

3
h, yi +

1

3
k1) ( 4-41 ) 

k3 = f (xi +
1

3
h, yi +

1

6
(k1 + k2)) ( 4-42 ) 

k4 = f (xi +
1

2
h, yi +

1

8
(k1 + 3k3)) ( 4-43 ) 

k5 = f (xi + h, yi +
1

2
(k1 − 3k3 + 4k4)) ( 4-44 ) 

4.3.4 Runge-Kutta-Fehlberg method 

RKF method was developed by the German mathematician Erwin Fehlberg (1968, 1969), 

and it is based on the large family of RK methods. The novelty of Fehlberg's form is that 

the error in the solution can be estimated by using the higher-order embedded method to 

enhance the integration accuracy by performing one extra calculation. 

The estimating equation of RKF method is, 

yi+1 = yi + (
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5) h ( 4-45 ) 

where the coefficients could be estimated as:  

k1 = f(xi, yi) ( 4-46 ) 

k2 = f (xi +
1

4
h, yi +

1

4
k1) ( 4-47 ) 

k3 = f (xi +
3

8
h, yi +

3

32
k1 +

9

32
k2) ( 4-48 ) 

k4 = f (xi +
12

13
h, yi +

1932

2197
k1 −

7200

2179
k2 +

7296

2179
k3) ( 4-49 ) 

k5 = f (xi + h, yi +
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4) ( 4-50 ) 

k6 = f (xi +
1

2
h, yi −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5) ( 4-51 ) 
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4.4 Time-step Control Procedure 

Because of the discontinuities of numerical integration, the time-control approach should 

be discussed individually. The time-control approach includes time-step selection and 

time-step acceptance. The time-step acceptance was undertaken by the self-adaptive 

approach of numerical method, and the time-step selection will be designed according to 

the main programme of the solver. Due to the structure of the solver, the general self-

adaptive approach should be applied through some appropriate amendment. Several time-

step selection criteria and time-step acceptance criteria were introduced here, but only one 

of each was selected.  

4.4.1 Time-step selection 

Wang (1996) suggested a simple time-step selection method; once the time-step 

dissatisfies the requirement of accuracy; it will be reduced to half in the next iteration.  

Hayhurst research group addressed their approach, see (Hayhurst et al., 1984, Hall, 1990, 

Hayhurst, 2006 ), which can be summarized as: 

1) The first time-step was selected in user-specified; 

2) The subsequent time-steps are δ = min [∆Τp
, ∆Τa

, ∆Τr
]. 

where ∆Τp
 is the previous time-step; ∆Τa

=
0.1

ω̇a max
 (ω < 0.8), the ω̇a max is the maximum 

damage rate of all elements; ∆Τr
=

0.05

ωr max
 (ω ≥ 0.8), ωr max = max |

ω̇

ω
|. 

Ling et al. (2000) suggested the approach by a new consideration; they intend to increase 

the time-step when it was too small. Their approach can be expressed as: ∆t =

min[∆𝑡𝑎, ∆𝑡𝑏], where ∆𝑡𝑎 = ∆𝑡𝑛+1 = 𝛿1∆𝑡𝑛; ∆𝑡𝑏 =
𝛿2

𝜔𝑚𝑎𝑥̇
. 

4.4.2 Time-step acceptance 

For the self-adaptive technique, a variable called local truncation error was introduced 

into the RKM method (Hayhurst et al., 1984, Ling et al., 2000). The local truncation can 

be expressed as: 

Local truncation error =  
1

30
(2k1 − 9k3 + 8k4 − k5) ( 4-52 ) 
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A criteria θ =
𝐸𝜖

𝜖𝑐
< 0.001 was suggested by Hayhurst et al. (1984), where, 𝐸𝜖  is local 

truncation error, and 𝜖𝑐 creep strain. The tolerance of 0.001 is a recommended value, and 

it could be changed depending on the application’s target tolerance. 

Faires and Burden (2013) introduced the self-adaptive technique of RKF method. The 4th 

order function ( 4-45 ) was used for the result and 5th order function ( 4-53 ) was used to 

estimate the error.  

ỹi+1 = yi + (
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6) h ( 4-53 ) 

The time-step acceptance criterion is, 

q = (
𝜀ℎ

2|𝑤̅𝑖+1 − 𝑤𝑖+1|
)

1
4
 ( 4-54 ) 

where, 𝑤̅𝑖+1 is 5th order function, 𝑤𝑖+1 is 4th order function; when q ≥ 1, the integration 

process will continue, else the integration process will be re-executed.  

This research adopted Wang’s time-step selection method and Ling’s time-step 

acceptance procedure. This combination was selected because it is very easy to be 

programmed; moreover, it also avoids the repetitive checking of time-step. However, 

whether a constant time-step may affect the accumulation of damage is still an uncertain 

issue. 

4.5 Normalization Technique 

The normalization technique was used to enhance the accuracy and efficiency of 

numerical integration. Its specific method was introduced here to develop the normalized 

constitutive equations subroutine and to revise the main programme of the solver.  

In order to reduce the numerical error, Hayhurst et al (1984) and Hall (1990) utilised a 

technique called normalization to modify the creep constitutive equations. In their 

approach, the stress, strain and time are divided by fixed proportion and are represented 

by new notations. All the new notations such as Σij =
σij

σ0
, Εij =

ϵij

ϵ0
, Sij =

sij

σ0
, ϵ0 =

σ0

e
 are 

substituted to the creep constitutive equation, and the new obtained equations are used in 

the finite element programme.  
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For example, the Kachanov-Rabotnov constitutive equation can be expressed as: 

ϵij̇ =
3

2
sijA

σe
n−1

(1 − ω)n
tm ( 4-55 ) 

ω̇ = B
σr

χ

(1 − ω)ϕ
tm ( 4-56 ) 

To enable the time scale of ( 4-55 ) and ( 4-56 ) to be normalized in the same way and 

conveniently, a new constant was introduced: 

B =
B′

(1 + ϕ)
 ( 4-57 ) 

To substitute the new notations mentioned above, ( 4-55 ) and ( 4-56 ) can be rewritten as: 

dΕij

dt
=

ϵij̇

ϵ0
=

1

ϵ0
×

3

2
×

sij

σ0
× σ0 × A ×

σe
n−1

σ0
n−1 × σ0

n−1

(1 − ω)n
tm

=
3

2
SijA

eΣe
n−1σ0

n−1

(1 − ω)n
tm 

( 4-58 ) 

dω

dt
=  

B′

(1 + ϕ)
×

σr
χ

σ0
χ × σ0

χ

(1 − ω)ϕ
tm = B′

Σr
χ

(1 + ϕ)(1 − ω)ϕ
tmσ0

χ 
( 4-59 ) 

A normalized time increment has been defined depending on the specific constitutive 

equations, and now is: 

dτ = Aeσ0
n−1tmdt ( 4-60 ) 

To substitute the normalized time increment, ( 4-58 ) and ( 4-59 ) can be rewritten as: 

Εij
̇ =

dΕij

dτ
=

3

2
Sij

Σe
n−1

(1 − ω)n
 ( 4-61 ) 

ω̇ =
dω

dτ
= B′

Σr
χ

(1 + ϕ)(1 − ω)ϕ
×

σ0
χ

Aeσ0
n−1

 ( 4-62 ) 

In order to simplify ( 4-62 ) and to understand its physical significance, a concept called 

normalized creep failure strain has been introduced (Hall, 1990): 

Εu =
Ae

B′
σ0

n−χ−1 ( 4-63 ) 
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Hayhurst et al (1984) addressed the value of Eu equal to the normalized creep strain 

computed from the uni-axial form of ( 4-55 ) after the rupture life at the stress σ0. In 

addition, the normalized rupture stress Σr can be obtained from 

σr = [ασ1 + (1 − α)σe] ( 4-64 ) 

The final equation form was written as: 

Εij
̇ =

3

2
Sij

Σe
n−1

(1 − ω)n
 ( 4-65 ) 

ω̇ =
Σr

χ

Εu(1 + ϕ)(1 − ω)ϕ
 ( 4-66 ) 

Additionally, Hall (1990) suggested that ( 4-60 ) and ( 4-63 ) should be divided by 100 for 

creep strains measured in percent strain. This is not adopted here because the author’s 

subroutine is based on engineer strain system. The main programme of the solver also 

needs to be revised due to the stresses and strains used in normalized constitutive 

equations are normalized, see (Hall, 1990). 

4.6 Nodal Loads Conditions 

Boundary conditions of nodal loads could not be produced by FEMGV directly because 

of its limited capability. At the same time, the nodal loads distribution method of the 

solver is not simple; hence, a small calculator of nodal loads was proposed to reduce the 

calculation of nodal loads arrangements. 

Smith and Griffiths (2004) suggested the algorithms of nodal loads, where the 

axisymmetric elements are different from planar elements and three dimensional elements. 

Figure 4-1 indicates the nodal force distribution of 3-nodes triangle planar element and 4-

nodes quadrilateral planar element. Figure 4-2 indicates the nodal force distribution of 3-

nodes triangle axisymmetric element and 4-nodes quadrilateral axisymmetric element. It 

also presented the formula to calculate each force, in which F1 and F2 are nodal forces of 

each node; r0 and r1 are inner radius and outer radius respectively. The equivalent nodal 

loads of both planar elements and three-dimensional elements depend on the length of 

loaded side of planar elements or the area of loaded surface of three-dimensional elements, 
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and it has a fixed proportion on each node. However, the equivalent nodal loads of 

axisymmetric elements are depending on the position of the element7.  

 

Figure 4-1 Nodal force distribution of 3-nodes triangle and 4-nodes quadrilateral planar element 

(Smith and Griffiths, 2004) 

 

Figure 4-2 Nodal force distribution and formula of 3-nodes triangle and 4-nodes quadrilateral 

axisymmetric element (Smith and Griffiths, 2004) 

Although this thesis does not involve the linear element type, its advantages in damage 

mechanics are still worth to mention. Compared with quadratic elements, using the linear 

elements will lose some precision; however, it is easy to remove the failure elements8. 

4.7 File Format of FEMGV and the solver 

The file format of FEMGV and the solver is mismatched because of the formatted input 

and output. Not only the data format of FEMGV need to be understood, but also the data 

                                                 
7 It means the distance from the axis not rotational symmetry to each loaded node of each loaded element. 
8 This is the knowledge about failure element remove, further discussion can be seen in my colleague’s 

thesis (Liu, 2015). 
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structure need to be discussed due to the data accepted/produced by the solver could not 

cover all data types of FEMGV. Synchronization of formatted input and output between 

FEMGV and the solver is very important. The data types and data format of FEMGV 

were analysed, and only the data type of the solver was introduced because the solver has 

free data format. Selective understanding of the file format of FEMGV makes the 

research more efficient. 

4.7.1 File format of FEMGV 

FEMGV has two databases, one is for the design environment and the other is for the 

result environment. All of them can be recorded in ASCII text format called neutral file, 

and the overall structure of neutral file is shown in Figure 4-3. It could be summarised 

that each neutral file must include model set, data set and data record. Figure 4-3 shows 

that the model set includes model header and data set, the data set includes data set header 

and data record. The data set delimiter9 is ‘-3’ and the file delimiter is ‘9999’. 

 

Figure 4-3 Overall structure of FEMGV (Manie and Wolthers, 2013) 

Table 4-1 shows data categories of the Neutral file in the design environment. In this 

research, only node coordinates, part definition, element definition, constrains and 

concentrated forces were considered due to the data structure of the solver. Table 4-2 

shows data categories of the Neutral file in the result environment. In this research, only 

                                                 
9 Delimiter is a FEMGV defined characteristic, which used to recognise data type. It appears on the start of 

each recording line. Especially, a delimiter ‘9999’ must be added on the end of each neutral file; the infinite 

loop will occur if it is never encountered. 
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node coordinates, element definition, and user-defined results were considered due to the 

data structure of the solver.  

Table 4-1 Data categories of Neutral file in design environment 

Record type KEY OPCODE Name 

Model header 1 C Model name 

Node coordinates 2 C  

Part definition 101 C  

Element definition 3 C  

Material properties 20 C  

Physical properties 102 C  

Constraints 

 

103 C  

Generalized constraints 104 C  

Elastic supports 105 C  

Coordinate systems 107 C  

Concentrated forces 110 C  

Prescribed displacements 111 C  

Pressure load 112 C  

Temperature load 113 C  

Gravity load 114 C  

Centrifugal load 115 C  

 

Table 4-2 Data categories of Neutral file in result environment 

Record type KEY OPCODE Name 

User header 111 U User key 

Project header 111 P Project name 

Model header 111 C, A, B Model name 

Node coordinates 2 C  

Element definition 3 C  

Node sets 18 C  

Element sets 19 C  

Material properties 20 C  

Integration point coordinates 30 C  

Nodal results local systems 32 C  

Element results local systems 33 C  

Integration point results local 

systems 

34 C  

Nodal constraints 41 C  

Local coordinate systems 43 C  

Transformations 50 C  

Symbols 53 C  

User defined results 100 C, I, R Load case name 

Table 4-3 indicates the specific syntax of node coordinates, part definition, element 

definition, material properties, constraints and concentrated forces. Through the 

observation of these syntaxes, it is easy to find that the data types do not need a fixed 
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position in the file because a logic control algorithm could be designed based on the ‘key’ 

and ‘opcode’. 

Table 4-3 Specific data format of Neutral file in design environment 

Data set header 

__ KEY OPCODE Name ______ IFORMT __ MAXOUT 
1X  I4     A1  6A1    61X     I2 1X     I2 
Data records 

Node coordinates 

__  2  C Name ______ IFORMT __ MAXOUT 
1X I4 A1  6A1    61X     I2 1X     I2 
__ -1 NODE   X Y Z 
1X I2  I10  3E14.7 

Part definition 

__ 101  C Name ______ IFORMT __ MAXOUT 
1X  I4 A1  6A1    61X     I2 1X     I2 
__ -1 __ ANAME LPNR TYPE NE0 NE1 NANT 
1X I2 1X   8A1  I10  I10 I10 I10  I10 
__ -2 NODES 
1X I2 10I10 

Element definition 

__  3  C Name ______ IFORMT __ MAXOUT 
1X I4 A1  6A1    61X     I2 1X     I2 
__ -1 NUMBER TYPE GROUP MATERIAL _____ VARIANT PHYSICAL 
1X I2    I10   I5    I5       I5    5X      I5       I5 
__ -2 NODES 
1X I2 10I10 

Constraints 

__ 103  C Name ______ IFORMT __ MAXOUT 
1X  I4 A1  6A1    61X     I2 1X     I2 
__ -1 __ ANAME LPNR __ NANT __ DOFS 
1X I2 1X   8A1   I5 1X   I5 1X  6I1 
__ -2 NODES 
1X I2 10I10 

Concentrated forces 

__ 110  C Name ______ IFORMT __ MAXOUT 
1X  I4 A1  6A1    61X     I2 1X     I2 
__ -1 LCASE NODE DOF VALUE 
1X I2    I5  I10  I5 E15.5 

 

Table 4-4 indicates the specific syntax of node coordinates, element definition, and user 

defined results. 

Table 4-4 Specific data format of Neutral file in result environment 

Data set header 

__ KEY OPCODE Name STPVAL _____ Text ICTYPE NUMSTP Analysis IFORMT 
1X  I4     A1  6A1  E12.5   12X 20A1     I2     I5     10A1     I2 
Data records 

Node coordinates 

__  2  C Name STPVAL _____ Text ICTYPE NUMSTP Analysis IFORMT 
1X I4 A1  6A1  E12.5   12X 20A1     I2     I5     10A1     I2 
__ -1 NODE   X Y Z  SYSID 
1X I2  I10  3E12.5   I15 
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Element definition 

__  3  C Name STPVAL _____ Text ICTYPE NUMSTP Analysis IFORMT  
1X I4 A1  6A1  E12.5   12X 20A1     I2     I5     10A1     I2 
__ -1 NUMBER TYPE GROUP MATERIAL SYSID VARIANT 
1X I2    I10   I5    I5       I5    I5      I5 
__ -2 NODES 
1X I2 10I10 

User defined result 

__ 100  C Name STPVAL _____ Text ICTYPE NUMSTP Analysis IFORMT 
1X  I4 A1  6A1  E12.5   12X 20A1     I2     I5     10A1     I2 
Attribute header 
Component definition 
[Attribute variant ] · · · 

Attribute header 

__ -4 __ Name NCOMPS IRTYPE NORCTY _____ Orig 
1X I2 2X  8A1     I5     I5     I5   10X  8A1 

Component definition 

__ -5 __ Name MENU ICTYPE ICIND1 ICIND2 IEXIST ICNAME ICDATA 
1X I2 2X  8A1   I5     I5     I5     I5     I5    8A1    8A1 

Entity header of element at node 

__ -1 ELEM TYPE GROUP IRECTY NODAL NSRF _____ ISYSTM 
1X I2   I5   I5    I5     I5    I5   I5    5X     I5 
Data records 

Entity header of element at integration point 

__ -1 ELEM TYPE GROUP IRECTY NODAL NSRF INTEG ISYSTM 
1X I2   I5   I5    I5     I5    I5   I5    I5     I5 
__ -2 IPNT  X Y Z 
1X I2   I5 3E12.5 
Data records 

Entity data 

__ -2 NUMB COMP1 COMP2 COMP3 COMP4 COMP5 COMP6 

1X I2   I5 E12.5 E12.5 E12.5 E12.5 E12.5 E12.5 

4.7.2 File format of the solver 

The data structure of the solver in input environment follows the sequence displayed 

below: 

1. Element type, number of element, number of nodes, material properties  

2. Coordinates definition 

3. Element definition 

4. Constraint 

5. Nodal loads 

The data structure of the solver in output environment follows the sequence displayed 

below: 

1. Element type, number of element, number of nodes, material properties  

2. Coordinates definition 
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3. Element definition 

4. Displacement 

5. Body loads 

6. Coordinates of integration point 

7. Elastic stress 

8. Elastic strain 

9. Creep strain 

10. Creep damage 

4.8 Summary 

The knowledge presented in this chapter involves a) constitutive equations based on 

continuum damage mechanics; b) derivation of deviatoric stress, principal stress and 

equivalent stress based on stress tensor; c) single-step explicit numerical method of initial 

value problem; d) self-adaptive approach of time-step and its control scheme; e) 

normalization technique; f) boundary conditions of nodal loads based on planar and 

axisymmetric element type; and g) formatted input and output of FEMGV and the solver 

has been studied and analysed.  

KR constitutive equations, PH constitutive equations and QX constitutive equations were 

selected to develop the subroutine of constitutive equations. A critical computing 

sequence of a) hydrostatic stress, b) second and third invariants of deviatoric stress tensor, 

c) load angle, d) principal stress, and e) equivalent stress was chosen to develop the stress 

tensor transformation subroutine. Euler’s method, RK4 method, RKM method and RKF 

method were selected to develop the class of numerical method subroutine. Wang’s time-

step selection method and Ling’s time-step acceptance procedure were adopted as the 

time-step control procedure. The normalization technique used to normalize the 

constitutive equations was introduced. The nodal force distributions of 3-nodes triangle 

element and 4-nodes quadrilateral element were reported to develop the nodal load 

calculator. The file format of FEMGV and the solver were analysed to develop the data 

transfer interface. 
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5 DESIGN OF ALGORITHM AND 

STRUCTURE 

This chapter presents the algorithm, arguments and structure of all developed subroutines 

and programmes of this research. The algorithm was designed based on the theories and 

knowledge, which are used to achieve the required function of each subroutine and 

programme; moreover, the structure was designed based on the structure of Prototype I. A 

number of variables were defined according to the variables of Prototype I due to the 

consideration of subroutine interface.  

Table 5-1 presents brief summary descriptions of the involved theories of each subroutine 

and programme. The developing sequence of subroutines depends on their position in the 

solver from top to bottom, and depends on the priority of prototype version; hence, its 

order is a) stress tensor transformation subroutine; b) numerical method subroutine; c) 

constitutive equations subroutine; d) time-step control subroutine; e) normalization 

subroutine. 

 

 

 



71 

 

Table 5-1 Relative theories and knowledge of each subroutine and programme 

Subroutine/Programme Relative theories and knowledge 

Constitutive equations 

subroutines 

 Kachanov-Rabotnov constitutive equations 

 Perrin-Hayhurst constitutive equations 

 Qiang Xu's constitutive equations 

Stress tensor transformation 

subroutine 

 Conversion between stress tensor and deviatoric stress tensor 

 The derivation approach of principal stress, based on the 

invariants of deviatoric stress tensor 

 The derivation approach of equivalent stress, based on the 

principal stress 

Numerical method subroutines 

 Euler's method 

 4th order classical Runge-Kutta method 

 Runge-Kutta-Merson method 

 Runge-Kutta-Fehlberg method 

Time-step control subroutine 

 Time-step acceptance approach 

 Time-step selection approach 

 Self-adaptive technique of Runge-Kutta-Merson method 

 Self-adaptive technique of Runge-Kutta-Fehlberg method 

Normalization technique 

subroutine 

 Normalized Kachanov-Rabotnov constitutive equation 

 Normalized equilibrium equation of finite element method 

Boundary conditions calculator 
 The nodal loads equation of 3-nodes triangle element 

 The nodal loads equation of 4-nodes quadrilateral element 

Data transfer programme 

 File format of FEMGV 

 File format of the solver 

 Arguments arrangement of the solver 

5.1 Transformation of Stress Tensor  

The computing of constitutive equations involved a series of distinct stress forms; hence, 

a number of classical stress forms such as deviatoric stress tensor, principal stress and 

equivalent stress were integrated into a conversion subroutine called stress tensor 

transformation subroutine due to the consideration of efficiency and convenience. 

5.1.1 Algorithm of TRS 

A subroutine called Transformation of Stress (TRS) was required to convert the 

deviatoric stress tensor, the principal stress and the equivalent stress based on the normal 
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stress tensor. According to the theoretical analysis, the computing sequence is a) 

hydrostatic stress; b) second and third invariant of deviatoric stress tensor; c) load angle; d) 

principal stress; and e) equivalent stress in TRS. 

Figure 5-1 shows the process of TRS, where it is obvious to see that the equations are the 

same for two-dimensional problem or three-dimensional problem, because TRS solves 

two-dimensional problem through reducing the three-dimensional equations. cas_sel_4 

represents two-dimensional problem and cas_sel_6 represents two-dimensional problem. 

The key point is that only local variables are involved in the computations, and the stress 

components that are not required can be set as zero in the allocation of global variables10. 

Figure 5-1 also shows that when the process move into the first selection branch, if the 

selection reference is incorrect, a warning statement will be printed on screen, then the 

process move into the next statement. This can be seen as a self-checking function to help 

user to identify the error of input data. It does not affect the execution of subroutine itself. 

The same situation, which occurs on the later sections, will not be explained repeatedly.  

Start
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cas_sel_6

No

Assignment of 
sx, sy, sz, txy

Yes

Assignment of 
sx, sy, sz, txy, 
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Compute 
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stress es
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the size of 
stress is 8
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Write stress, 
the size of 
stress is 10

Yes

Stop

Print ‘error on 
stress 

rearrangement 

in TRS’

Print ‘wrong 
size for nos in 

TRS’

No
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Compute 
invariants j2, j3

Compute load 
angle loang

Compute 
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Figure 5-1 Algorithm of stress tensor transformation subroutine 

                                                 
10 In FEM, the number of stress terms in 2D environment and 3D environment is different, two unrequired 

shear stress will be force to zero when the plane elements are applied.  
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TRS was called after the completion of elastic stress derivation; hence, the array stored 

elastic stress tensor will be delivered to TRS from the main programme of the solver. The 

number of stress components is changed after the conversion; therefore, a new array 

should be designed to store the deviatoric stress tensor, the principal stress and the 

equivalent stress. For the consideration of convenient debugging and maintenance, TRS 

used two sets of variable systems, one is a global variable, which is used to deliver data 

between main programme and subroutine; one is a local variable, which is used to prevent 

the memory mistakes. At the start of TRS, the global variable is allocated to a local 

variable, and the local variable will be allocated back to the global variable at the end of 

TRS. 

5.1.2 Variables Definition 

Table 5-2 presents the definition of all local variables, which is used for the local 

computations only. The deviatoric stress tensor components were not defined because 

their value can be represented by the component of stress tensor and the hydrostatic stress. 

Table 5-2 Variables dictionary of TRS 

Variables Descriptions 

Global variables 

sigma 
Input data, which stored the normal and shear stress tensor. Its size and type should 

synchronize with the main programme of the solver. It is a deferred-shape array in order to 

ignore the number of stress component. 

stress 
Output data, which stored the deviatoric stress tensor, the principal stress and the equivalent 

stress. Its size and type should synchronize with the main programme of the solver. It is a 

deferred-shape array in order to ignore the number of stress component. 

Local variables 

sx, sy, sz, 

txy, tyz, tzx 

It is real, which means the components of stress tensor. 

pi It is real, which means the constant π. 

j2, j3 It is real, which means the second and third stress invariants. 

sig0 It is real, which means the hydrostatic stress. 

loang It is real, which means the load angle. 

es It is real, which means the equivalent stress. 

ps(3) It is real array, which stores the principal stress. 

nos It is integer, which means the number of stress terms. 

The activity of deriving the unknown deviatoric stress tensor, principal stress and 

equivalent stress is a stress transformation process; hence, only two real arrays were 

needed in this subroutine, one is known stress and the other is unknown stress. The known 

stress was obtained from the main programme of the solver, so its setting can follow the 
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main programme to name it as sigma. The size of sigma depends on the specific problem, 

two-dimensional problem is 4 and the three-dimensional problem is 6. 

The array of unknown stress was named stress in order to distinguish the known stress 

and unknown stress. Array stress stored deviatoric stress tensor, principal stress and 

equivalent stress; hence, its size equals to the sum of the number of deviatoric stress 

tensor components, the number of principal stress and the number of equivalent stress. 

The number of deviatoric stress tensor components depends on the specific problem, two-

dimensional problem is 4 and the three-dimensional problem is 6. The number of 

principal stresses is 3 and the number of equivalent stresses is 1, so the size of stress is 8 

in two-dimensional problem and 10 in three-dimensional problem. 

5.1.3 Subroutine Structure 

TRS consists of two parts, variable declaration and execution; its pseudo code was 

obtained through Figure 5-1 and Table 5-2. The detailed code is attached in appendix 10.2, 

and the pseudo code is displayed below. 

1 Subroutine TRS (sigma, stress)                 

Execution section: 

2 obtain (sigma) from the main programme 

3 nos ← ubound( sigma,1 ) 

4 pi ← 3.1415926 

5 allocate (sigma) of (sx, sy, sz, txy, tyz, tzx) 

6 sig0 ← (sx+sy+sz)/3. 

7 j2 ← ((sx-sy)**2+(sy-sz)**2+(sz-sx)**2)/6.+txy**2+tyz**2+ tzx**2 

8 j3 ← (sx-sig0)*(sy-sig0)*(sz-sig0)+2*txy*tyz*tzx-(sx-sig0)*tyz**2-(sz-

sig0)*txy**2-(sy-sig0)*tzx**2 

9 loang ← asin((-sqrt(27.)*j3)/(2*sqrt(j2**3)))/3 

10 ps(1) ← 2*sqrt(j2)/sqrt(3.)*sin(loang+2*pi/3)+sig0 

11 ps(2) ← 2*sqrt(j2)/sqrt(3.)*sin(loang)+sig0 

12 ps(3) ← 2*sqrt(j2)/sqrt(3.)*sin(loang-2*pi/3)+sig0 

13 es ← 1/sqrt(2.)*sqrt((ps(1)-ps(2))**2+(ps(2)-ps(3))**2+ (ps(3)-ps(1))**2) 

14 update (stress) 

15 return (stress) to main programme 

5.2 Constitutive Equations 

Constitutive equations subroutine is a class of subroutines, which has a unified template 

of subroutine structure and algorithm; and, three kinds of constitutive equations were 

selected in this research based on continuum damage mechanics.  
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5.2.1 Algorithm of CES 

A class of subroutines called Constitutive Equations Subroutine (CES) was required to 

find the solution of creep constitutive equations, which includes creep strain rate and 

creep damage rate. According to the theoretical analysis, the computing sequence is a) 

creep strain rate of each direction; and b) creep damage rate in CES.   

Figure 5-2 shows the process of CES, it is obvious to see that specific constitutive 

equations were divided into three cases, which are a) uni-axial case; b) two-dimensional 

case; and c) three-dimensional case. The subroutine will select the correct case according 

the variable representing the number of equations. cas_sel_1 represents uni-axial form of 

constitutive equations, cas_sel_8 represents multi-axial form of constitutive equations 

(four equations for strain components) and cas_sel_10 represents multi-axial form of 

constitutive equations (six equations for strain components). cas_sel_x, cas_sel_xx and 

cas_sel_xxx are user-defined which recommend using the number of constitutive 

equations as the selection reference. 
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Figure 5-2 Algorithm of constitutive equaitons subroutines 
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CES was called in the numerical method subroutine; hence, the array stored converted 

stresses, material properties and the initial value of creep strain and damage will be 

delivered to CES from the numerical method subroutine. At the same time, the creep 

strain rate and creep damage rate will be returned to numerical method subroutine from 

CES as well.  

In order to distinguish the problems of two-dimensions and three-dimensions, CES used 

two sets of variable systems, one is a global variable, which is used to deliver data 

between the main programme and subroutine; one is a local variable, which is used to 

offer required parameters depending on the number of equations. At the start of CES, the 

global variable will be allocated to a local variable to prepare the case selection of two-

dimensional problem and three-dimensional problem. KR constitutive equations, PH 

constitutive equations and QX constitutive equations were selected to code in this 

research. CES has a template, which enables users to build their own constitutive 

equations subroutines11.  

5.2.2 Variables Definition 

Table 5-3 presented the definition of all local variables, which is used to distinguish the 

two-dimensional problem and three-dimensional problem, and to prevent coding mistakes. 

The descriptions of the relationship of creep strain and stress are the constitutive 

equations; hence, the consideration of variables definition should contain all dependent 

variables, independent variables and parameters of creep constitutive equations.  

Table 5-3 Variables dictionary of CES 

Variables Descriptions 

Global variables 

f Output data, which is an explicit-shape array used to store the creep strain rate and creep 

damage rate. Its size and type should synchronize with the variable of noe. 

x Input data, which is an explicit-shape array used to store the creep strain damage. Its size 

and type should synchronize with the variable of noe. 

stress 

Input data, which is an explicit-shape array used to store the deviatoric stress tensor, the 

principal stress and the equivalent stress. Its size and type should synchronize with the 

variable of nos, which point out the operation environment is two dimensional problem or 

three-dimensional problem. 

mat Input data, which is an explicit-shape array used to store the material property parameters. 

Its size and type should synchronize with the variable of nom. 

t Input data, which is a real used to store the value of present time. 

nos Control variables, which is a real used to represent the number of stress terms. 

                                                 
11 The users must be familiar with some understanding of FEA and Fortran coding. Once the user completes 

their own constitutive equations subroutine, it is very easy to integrate their subroutine into HITSI. 
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nom Control variables, which is a real used to represent the number of material properties. 

noe Control variables, which is a real used to represent the number of equations. 

Local variables 

sx, sy, sz, txy, 

tyz, tzx 

It is real, which means the components of deviatoric stress tensor. 

mps It is real, which means the first principal stress. 

es It is real, which means the equivalent stress. 

A, n, m, B, phi, 

chi, alpha 

Samples, which are real, and means material property parameters 

A real array named x used to store the value of creep strain and damage were needed in 

this subroutine. The initial value of x was obtained from main programme of the solver, in 

which the size of x depends on the number of equations called noe. 

A real array named f used to store the value of creep strain rate and creep damage rate 

were stated in this subroutine. The value of f will be returned to the numerical method 

subroutine, in which the size of f depends on noe as well. A real array variable called t is 

used to hold the variable of time is also reserved due to some constitutive equations 

having integrated into time functions. Material properties were stored in the real array 

named mat. The initial value of mat was obtained from main programme of the solver, 

which the size of mat is depending on the number of material properties. A real array 

called stress was obtained from the main programme of the solver, and was derived by 

the subroutine of TRS. 

5.2.3 Subroutine Structure 

CES consists of two parts, variable declaration and execution; its pseudo code was 

obtained through Figure 5-2 and Table 5-3. The detailed code is attached in appendix 10.2, 

and the pseudo code sample of subroutine KR (using KR equations) is displayed below. 

The other two is subroutine PH (using PH equations) and QX (using QX equations). 

1 Subroutine KR  (f, x, t, stress, mat, nos, nom, noe) 

Execution section: 

2 obtain (nos, noe, nom, mat(nom), t, x(noe), stress(nos)) from numerical method 

subroutine 

3 allocate the stress terms which stored in global variable to local variables 

4 allocate the material properties which stored in global variable to local variables 

5 rs ← alpha*mps+(1.-alpha)*es 

6 select case ( problem type ) 

7 case ( uni-axial ) 

8 f(1) ← A*((sx/(1-x(2)))**n)*(t**m) 

9 f(2) ← B*(sx**chi)/((1-x(2))**phi)*(t**m) 

10 case ( 2D problem ) 

11 f(1) ← (3./2.)*(sx/es)*A*((es/(1-x(5)))**n)*(t**m) 

12 f(2) ← (3./2.)*(sy/es)*A*((es/(1-x(5)))**n)*(t**m) 
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13 f(3) ← (3./2.)*(txy/es)*A*((es/(1-x(5)))**n)*(t**m) 

14 f(4) ← (3./2.)*(sz/es)*A*((es/(1-x(5)))**n)*(t**m) 

15 f(5) ← B*(rs**chi)/((1-x(5))**phi)*(t**m) 

16 case ( 3D problem ) 

17 f(1) ← (3./2.)*(sx/es)*A*((es/(1-x(7)))**n)*(t**m) 

18 f(2) ← (3./2.)*(sy/es)*A*((es/(1-x(7)))**n)*(t**m) 

19 f(3) ← (3./2.)*(sz/es)*A*((es/(1-x(7)))**n)*(t**m) 

20 f(4) ← (3./2.)*(txy/es)*A*((es/(1-x(7)))**n)*(t**m) 

21 f(5) ← (3./2.)*(tyz/es)*A*((es/(1-x(7)))**n)*(t**m) 

22 f(6) ← (3./2.)*(tzx/es)*A*((es/(1-x(7)))**n)*(t**m) 

23 f(7) ← B*(rs**chi)/((1-x(7))**phi)*(t**m) 

24 end select 

25 return (f) to numerical method subroutine 

5.3 Numerical Integration Method 

Like the constitutive equations subroutine, the numerical method subroutine is also a class 

of subroutines, and has a unified template. Four kinds of numerical methods were selected 

in this research based on the single step method of ordinary differential equations. 

5.3.1 Algorithm of NMS 

A class of subroutine called Numerical Method Subroutine (NMS) was required to 

integrate the constitutive equations, which includes computing of functions’ slope and 

updating of functions’ solution. According to the theoretical analysis, the computing 

sequence is 1) estimates of slope depending on different time-steps; 2) mean slope; 3) 

solution updating in NMS. The self-adaptive approach will be discussed in section 5.4. 

Figure 5-3 shows the process of NMS, where it is obvious to see that the functions’ slopes 

will be derived through the constitutive equations subroutine; hence, the dummy 

arguments list of NMS should consider the nature of constitutive equations subroutine. 

NMS solves two-dimensional problem and three-dimensional equations depending on the 

argument of the number of equations. 

Start
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the value of k1, k2, k3,…, kn 

Compute the 
mean slope mfs

Update the 
creep strain and 

damage y
Stop

Read y, t, dt, 
stress, mat, nos, 

nom, noe

 

Figure 5-3 Algorithm of numerical method subroutines 
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NMS was called after the completion of stress conversion; hence, the array stored 

converted stresses will be delivered to NMS from the main programme of the solver. At 

the same time, the material properties, time-step size and the initial value of creep strain 

and damage will be delivered to NMS from the main programme of the solver as well.  

NMS will not distinguish local variables and global variables since the major execution 

part will be done by external subroutines.  

In this research, four types of numerical method subroutine were included in NMS, which 

are Euler’s method, RK4 method, RKM method and RKF method. NMS has a template, 

which enables users to build their own numerical method subroutines as well. 

5.3.2 Variables Definition 

The activity of finding the solution of constitutive equations is the numerical integration 

process; hence, the consideration of variables definition should involve the numerical 

method itself and constitutive equations. The numerical method aims to find the solution 

of constitutive equations; therefore, a real array named y used to store the value of creep 

strain and damage were needed in this subroutine. The initial value of y was obtained 

from the main programme of the solver, so its setting can follow the main programme, 

where the size of y depends on the number of equations. 

Table 5-4 presents the definition of all local variables, which is used to derive the mean 

slope of constitutive equations and to return the value of creep strain and damage.  

Table 5-4 Variables dictionary of NMS 

Variables Descriptions 

Global variables 

func Name of constitutive equations subroutine. 

y Input and output data, which is an explicit-shape array used to store the creep strain damage. 

Its size and type should synchronize with the variable of noe. 

stress 

Input data, which is an explicit-shape array used to store the deviatoric stress tensor, the 

principal stress and the equivalent stress. Its size and type should synchronize with the 

variable of nos, which point out the operation environment is two dimensional problem or 

three-dimensional problem. 

mat Input data, which is an explicit-shape array used to store the material property parameters. 

Its size and type should synchronize with the variable of nom. 

t Input data, which is a real used to store the value of present time. 

dt Input data, which is a real used to store the time-step. 

nos Control variables, which is a real used to represent the number of stress terms. 

nom Control variables, which is a real used to represent the number of material properties. 

noe Control variables, which is a real used to represent the number of equations. 
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Local variables 

k1, k2, 

k3…kn 

They are explicit-shape array used to store slopes of functions obtained using different time-

step. Its size and type should synchronize with the variable of noe. 

mfs It is an explicit-shape array used to store mean slopes of functions. Its size and type should 

synchronize with the variable of noe. 

External subroutine func, which represents the constitutive equations subroutine was used 

to find the creep strain rates and creep damage rates. All of these rates will be stored in 

the local variables named kn., which kn are a series of variables. Due to the like with the 

external subroutine, the corresponding dummy arguments of the external subroutine must 

be included; for example, variables of stress, mat, t, nos, nom and noe have the same 

setting as the constitutive equations subroutine. 

The time-step was stored in the real variable dt, and the value of dt was updated from the 

main programme of the solver during every iteration loops of constitutive equations. 

5.3.3 Subroutine Structure 

NMS consists of two parts, variable declaration and execution; its pseudo code was 

obtained through Figure 5-3 and Table 5-4. The detailed code is attached in appendix 10.2, 

and the pseudo code sample of subroutine RK4 (using RK4 method) is displayed below. 

The other three is subroutine EULER (using Euler’s method), RKM (using RKM method) 

and RKF (using RKF method). 

1 Subroutine RK4 (func, y, t, dt, stress, mat, nos, nom, noe)                                         

external :: func  [name of constitutive equations subroutine] 

Execution section: 

2 obtain ( nos, noe, nom, mat(nom), t, dt, y(noe), stress(nos) ) from the main 

programme 

3 call func(k1,y,t,stress,mat,nos,nom,noe) 

4 call func(k2,y+dt/2*k1,t+dt/2,stress,mat,nos,nom,noe) 

5 call func(k3,y+dt/2*k2,t+dt/2,stress,mat,nos,nom,noe) 

6 call func(k4,y+dt*k3,t+dt,stress,mat,nos,nom,noe) 

7 mfs ← (k1+2*k2+2*k3+k4)/6 

8 y ← y+mfs*dt  

9 return (y) to main programme 

5.4 Time-step Control Procedure 

The solution of time-step control consists of time-step acceptance and time-step selection. 

Especially, the part of time-step acceptance was integrated into the numerical method 

subroutine. The time-step control is also reflected in the structure of the solver, which 
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means the new creep strain and damage will not be updated if the current integration is 

unaccepted. 

5.4.1 Algorithm of TSC and self-adaptive approach 

A subroutine called Time-Step Control (TSC) was required to give a new time-step for 

every iteration loop of constitutive equations. The new time-step selection criteria depend 

on the self-adaptive approach of the numerical method. The standard of self-adaptive 

technique was integrated into the numerical method subroutine. Figure 5-4 shows the co-

operation of TSC and NMS, where the important controller of time-step control scheme 

was produced after the integration process and then go to the branch of stress updating 

decision. The only termination criterion is that the value of creep damage exceeds its 

critical value. Figure 5-5 shows the specific determination process of a new time-step. 

When the last integration process satisfies the standard of the self-adaptive technique, the 

new time-step equals to the old time-step; however, when the last integration process does 

not satisfy the standard of the self-adaptive technique, the new time-step equals to the half 

of the old time-step. 
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Figure 5-4 Algorithm of time-step control in the solver 
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Figure 5-5 Algorithm of time-step selection subroutine 

5.4.2 Variables Definition 

The activity of determining a new time-step based on the controller of self-adaptive is 

time-step selection; hence, the consideration of variables definition should involve the 

controller and time-step itself. A three-dimensional deferred-shape real array named 

g_rcv used to store global controller of self-adaptive were needed in this subroutine. The 

value of each controller is 0 or 1 only, where ‘1’ indicates that the present loop is not 

accepted and ‘0’ indicates that the present loop is accepted. 

The present time-step was stored in the real variable dt; however, in order to reduce the 

memory requirement, the new time-step will be returned to dt as well. Table 5-5 shows 

the definition of local variables drcv, which is used to find the maximum controller of 

self-adaptive time-step approach of all equations.  

Table 5-5 Variables dictionary of TSC 

Variables Descriptions 

Global variables 

g_rcv 
Input data, which is a deferred-shape array used to store the global controller of self-

adaptive time-step approach. Its size and type should synchronize with the main 

programme of the solver. 

dt Input and output data, which is a real used to store the time-step. 

Local variables 

drcv It is integer, which means the maximum controller of self-adaptive time-step approach. 

The local variables, which were shown in Table 5-6, should be added to NMS. In order to 

determine the acceptance of self-adaptive approach, a real array aoi, whose size depends 

on the number of equations, was designed to hold all values of acceptance criteria. Due to 
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the nature of the acceptance criteria, the maximum value was chosen to be stored in the 

real variable maoi. Once the present iteration satisfies the acceptance criteria, the 

controller will be defined as ‘0’, else the controller is ‘1’; hence, an integer variable called 

rcv was proposed to hold the controller of self-adaptive approach. 

Table 5-6 Unique variables dictionary of self-adaptive approach in NMS 

Variables Descriptions 

Local variables 

aoi It is an explicit-shape array used to hold the acceptance of integration 

maoi It is a real, which means the maximum acceptance of integration 

rcv It is an integer, which means the controller produced by self-adaptive approach. Its value 

is 0 or 1 only. 

5.4.3 Subroutine Structure 

TSC consists of two parts, variable declaration and execution; its pseudo code was 

obtained through Figure 5-5 and Table 5-5. The detailed code is attached in appendix 10.2, 

and the pseudo code sample of subroutine TSC is displayed below: 

1 Subroutine TSC (dt, g_rcv)                     

Execution section: 

2 obtain (dt, g_rcv) from the main programme 

3 drcv ← maxval(g_rcv) 

4 if drcv = 1 

5 dt ← dt/2 

6 else if  drcv = 0 

7 dt ← dt 

8 end if 
9 return (dt) to main programme 

New NMS consists of two parts, variable declaration and execution; its pseudo code was 

obtained through Figure 5-3, Table 5-4 and Table 5-6. The detailed code is attached in 

appendix 10.2, and the pseudo code sample of subroutine RKM is displayed below: 

1 Subroutine RKM (func, y, t, dt, stress, mat, nos, nom, noe)                                         

external :: func  [name of constitutive equations subroutine] 

Execution section: 

2 obtain ( nos, noe, nom, mat(nom), t, dt, y(noe), stress(nos) ) from the main 

programme 

3 call func(k1,y,t,stress,mat,nos,nom,noe) 

4 call func(k2,y+dt/3.*k1,t+dt/3.,stress,mat,nos,nom,noe) 

5 call func(k3,y+dt/6.*(k1+k2),t+dt/3.,stress,mat,nos,nom,noe)  

6 call func(k4,y+dt/8.*(k1+3*k3),t+dt/2.,stress,mat,nos,nom,noe) 

7 call func(k5,y+dt/2.*(k1-3.*k3+4.*k4),t+dt,stress,mat,nos,nom, noe) 
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8 mfs ← (k1+4.*k4+k5)/6. 

9 y ← y+mfs*dt  

10 loer ← (2*k1-9*k3+8*k4-k5)/30. 

11 aoi ← loer/mfs 

12 maoi ← maxval(aoi) 

13 if  maoi<0.001 

14 rcv ← 0 

15 else 

16 rcv ← 1 

17 return (y, rcv) to main programme 

5.5 Normalization Scheme 

The normalization technique contains a set of normalized constitutive equations and 

normalized equilibrium equations of the finite element method. The normalized 

constitutive equations can be coded based on constitutive equation subroutines template 

mentioned above. The normalized equilibrium equations of the finite element method 

were reflected in the structure of the solver, which means the elastic stress and Young’s 

modulus will be 1 at the start of constitutive equations integration. 

5.5.1 Algorithm of NOR_KR 

A subroutine called Normalized KR (NOR_KR) was required to find the solution of 

normalized KR constitutive equations, which includes creep strain rate and creep damage 

rate. According to the theoretical analysis, the computing sequence is a) creep strain rate 

of each direction; and b) creep damage rate in NOR_KR. NOR_KR is also a kind of 

constitutive equations subroutine; hence, all settings of CES were followed in here except 

some unique variable definition. 

5.5.2 Variables Definition 

The major difference of variables definition of CES and NOR_KR is shown in Table 5-7. 

The definition of variable stress not only includes the deviatoric stress tensor, the 

principal stress and the equivalent stress, but also includes the internal pressure used for 

the normalization. Additionally, a number of new local variables were introduced; for 

example, a concept of rupture stress and creep fracture strain was used to reduce the 

computing workload. They were stored in real variables rs and cfs respectively. Young’s 

modulus was included into the argument of material prooerties, and its value will be 

allocated to the real variable e. 
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Table 5-7 Unique variables dictionary of NOR_KR 

Variables Descriptions 

Global variables 

stress 
Input data, which is an explicit-shape array used to store the deviatoric stress tensor, the 

principal stress, the equivalent stress and the internal pressure. Its size and type should 

synchronize with the variable of nos plus 1. 

Local variables 

A, n, m, B, phi, 

chi, alpha 
They are real, which mean material property parameters. 

ip It is real, which means the internal pressure used for the normalization. 

e It is real, which means Young’s modulus 

rs It is real, which means rupture stress 

cfs It is real, which means creep fracture strain 

5.5.3 Subroutine Structure 

NOR_KR consists of two parts, variable declaration and execution; its pseudo code was 

obtained through Figure 5-2, Table 5-3 and Table 5-7. The detailed code is attached in 

appendix 10.2, and the pseudo code is displayed below: 

1 Subroutine NOR_KR (f, x, t, stress, mat, nos, nom, noe) 

Execution section: 

2 passing (nos, noe, nom, mat(nom), t, x(noe), stress(nos)) from the main 

programme to subroutine XX 

3 allocate ( stress(nos) ) to (sx, sy, sz, txy, tyz, tzx, mps, es, ip) 

4 allocate ( mat(nom) ) to (A, n, m, B, phi, chi, alpha) 

5 rs ← alpha*mps+(1.-alpha)*es 

6 cfs ← (A*e/B)*(ip**(n-chi-1.)) 

7 select case ( problem type ) 

8 case ( 2D problem ) 

9 f(1) ← (3./2.)*(sx/es)*((es/(1-x(5)))**n) 

10 f(2) ← (3./2.)*(sy/es)*((es/(1-x(5)))**n) 

11 f(3) ← (3./2.)*(txy/es)*((es/(1-x(5)))**n) 

12 f(4) ← (3./2.)*(sz/es)*((es/(1-x(5)))**n) 

13 f(5) ← (rs**chi)/(cfs*(1.+phi)*((1.-x(5))**phi)) 

14 case ( 3D problem ) 

15 f(1) ← (3./2.)*(sx/es)*((es/(1-x(7)))**n) 

16 f(2) ← (3./2.)*(sy/es)*((es/(1-x(7)))**n) 

17 f(3) ← (3./2.)*(sz/es)*((es/(1-x(7)))**n) 

18 f(4) ← (3./2.)*(txy/es)*((es/(1-x(7)))**n) 

19 f(5) ← (3./2.)*(tyz/es)*((es/(1-x(7)))**n) 

20 f(6) ← (3./2.)*(tzx/es)*((es/(1-x(7)))**n) 

21 f(7) ← (rs**chi)/(cfs*(1.+phi)*((1.-x(7))**phi)) 

22 end select 

23 return (f) to numerical method subroutine 
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5.6 Boundary Conditions of Nodal Loads 

Boundary conditions calculator was used to obtain the boundary condition of nodal loads 

when conducting a practical case. It is a primary solution of nodal loads conversion 

subroutine. 

5.6.1 Algorithm of NLC 

A programme called Nodal Load Calculator (NLC) was required to give the arrangement 

of nodal loads distribution. FEMGV does not give the specific value of nodal load to each 

node, only a uniform load was recorded in the Neutral file of design environment. The 

unique conversion formulas of nodal loads were obtained from Smith and Griffiths (2004). 

3-nodes triangle planar element, 4-nodes quadrilateral planar element, 3-nodes triangle 

axisymmetric element, 4-nodes quadrilateral axisymmetric element were considered in 

here.  

Figure 5-6 shows the computing flow of nodal loads calculator. All input data were 

written into the input file, which is ending with the suffix ‘.dat’. The input file records the 

type of problem, number of loaded elements, uniform loads and the relative position of 

each node.   

StartEnter file 
name 
xx.dat

cas_sel_axi cas_sel_plaNo

Compute f1, f2

Yes

Compute f1, f2

Yes

Print "wrong 
number of 

nodes in NLC"

No

i = 1
                   i ≤ nn
i = i+1

 f(i) = f1(i).TRUE.

i = 1
                   i ≤ nn
i = i+1

.FALSE.

 f(i+1) = f(i+1)+f2(i)

.TRUE.

cas_sel_axi

cas_sel_pla

No

Write "Nodal 
Force From 

Inner to Outer:"

Yes

Write "Nodal 
Force From First 

to Last:"Yes

Write i, f on 
output file 

xx.res

No

.FALSE.

Stop

Input file xx.dat

Read 
Protype, 

nn, p, r0, r1

 

Figure 5-6 Algorithm of nodal loads calculator 
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The relative positions of the first node of each loaded element were processed and held 

firstly, and then the relative positions of the second node of each loaded element were 

processed and held. 

5.6.2 Variables Definition 

Two deferred-shape arrays called r0 and r1 were designed to hold the relative positions of 

the first and second node of each loaded element due to some nodes are corner nodes. 

Table 5-8 shows that, two deferred-shape arrays called f1 and f2, which were used to store 

the first and second component of nodal loads of each node, were introduced due to the 

relative positions bring processed separately. Real array f was used to hold the result of 

nodal loads.  

Table 5-8 Variables dictionary of NLC 

Variables Descriptions 

filename1 It is character string, which means the name of input file. 

protype It is character string, which means the problem type. 

p It is real, which means the uniform loads. 

f 
Output data, which is a deferred-shape array used to store the nodal loads of each loaded node. 

Its size is depending on the argument of loaded nodes, which equals to the number of loaded 

elements nn plus one due to the nature of 3-nodes and 4-nodes element. 

f1 It is a deferred-shape array used to store the first component of nodal loads of each node. Its 

size should synchronize with the variable of nn. 

f2 It is a deferred-shape array used to store the second component of nodal loads of each node. Its 

size should synchronize with the variable of nn. 

r0 It is a deferred-shape array used to store the relative position of first node of each element. Its 

size should synchronize with the variable of nn. 

r1 It is a deferred-shape array used to store the relative position of second node of each element. 

Its size should synchronize with the variable of nn. 

nn It is integer, which means the number of loaded elements. 

i It is integer, which means the loops counter. 

ierror It is integer, which means the value of iostat statement. 

5.6.3 Subroutine Structure 

DTI consists of two parts, pre-processing transfer and post-processing transfer; its pseudo 

code was obtained through Figure 5-7 and Table 5-9. The detailed code is attached in 

appendix 10.2, and the pseudo code is displayed below: 

1 Programme NLC 

Execution section: 

2 read input file name (filename1) 

3 open input and output file 

4 read the type of problem (protype) 
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5 read the number of loaded elements (nn) 

6 read the uniform loads (p) 

7 allocate (f, f1, f2, r0, r1) 

8 read the relative position of each node (r0, r1) 

9 select case ( protype )  

10 case ( 'axisymmetric' ) 

11 starting of counted-loops with (nn) 

12 f1(i) ← (r1(i)**2+r0(i)*r1(i)-2*r0(i)**2)/6 

13 f2(i) ← (2*r1(i)**2-r0(i)*r1(i)-r0(i)**2)/6 

14 end loops 

15 case ( 'planar' ) 

16 starting of counted-loops with (nn) 

17 f1(i) ← (r1(i)-r0(i))/2 

18 f2(i) ← f1(i) 

19 end loops 

20 end select 

21 starting of counted-loops with (nn) 

22 f(i) ← f1(i) 

23 end loops 

24 starting of counted-loops with (nn) 

25 f(i+1) ← f(i+1)+f2(i) 

26 end loops 

27 f ← f*p 

28 write (f) into output file 

29 end programme 

5.7 Pre- and Post-processing 

Data transfer programme is the solution to unify the file format. It is an independent 

programme due to this unique research environment; however, it can be integrated into 

the solver in future research. 

5.7.1 Algorithm of DTI 

A programme called Data Transfer Interface (DTI) was required to transfer the data 

between FEMGV and the solver. Both the pre-processing transfer and post-processing 

transfer are integrated into one programme. The pre-processing transfer includes five 

basic data types, which are 1) node coordinates, 2) element definition, 3) part definition, 4) 

constraint and 5) concentrated force. The post-processing transfer includes nine data types, 

which are 1) node coordinates, 2) element definition, 3) material properties, 4) 

displacement, 5) body loads, 6) elastic stress, 7) elastic strain, 8) creep strain and 9) 

damage. Figure 5-7 shows the overall algorithm of DTI, where the left side is pre-

processing transfer and the right side is post-processing transfer.  
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Figure 5-7 Overall algorithm of data transfer interface 
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The number of node and the number of element will not be offered through FEMGV 

directly; hence, in order to control the reading process of Neutral file of FEMGV logically, 

simple reading way of line by line is not enough because the loops is impossible to be 

controlled. However, a number of identifiers listed on the starting position of each line of 

the Neutral file guaranteed the possibility of logical reading. 

The conversion of concentrated force was taken out to the previous section due to it 

involves the topological theory; the concentrated force could be converted automatically 

until a new algorithm to be proposed. The writing of Neutral file is a challenge because 

the solver will not offer a number of parameters required by FEMGV. The specific value 

of those parameters should be tested one by one according to the output data types of the 

solver.  

5.7.2 Variables Definition 

Table 5-9 indicates the definition of all variables used in DTI, and these variables were 

reported in order of appearance in the code from top to bottom. A character string 

transfertype was designed to distinguish the pre-processing transfer and post-processing 

transfer through the case selection. Both pre-processing transfer and post-processing 

transfer use the same character string filename1 and filename2 to represent the name of 

input file and output file. The logical reading was controlled through an integer variable 

key, and the value of key is dynamic because its value will be updated in every line. 

The data records could be de defined according to the file format guidance of FEMGV. 

For examples, a) a real array coordinate is used to indicate the coordinate components 

and its size is 3; b) an integer array nodes size is 10, which was used to store the node 

number on the part; and c) three integer variables called dof1, dof2 and dof3 indicate 

which of the three degrees of freedom are constrained: 0 for not affected, 1 for affected. 

Those obtained data mentioned above will not be written in file directly because of the 

restriction of the algorithm, but those defined variables will be updated during every loop; 

thus, a series of variables were proposed to hold the obtained data of every loop. For 

example, a two-dimensional real array g_coord is used to indicate the global coordinates, 

and its size of the first rank is 3 and the size of second rank should synchronize with the 

variable of number of nodes. The number of nodes was counted through the algorithm 

developed by the author.  
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A number of parameters should be tested before programming, and they are designed as 

integer variables such as iformt1, ncomps1 and irtype. These variables were used to write 

the Neutral file according to the structure of user defined results.  

Table 5-9 Variables dictionary of DTI 

Variables Descriptions 

transfertype 
It is a character string used to indicate the transfer process type, which only has two 

value; value of ‘pre-processing’ represented the transfer process of FEMGV file, and 

value of ‘post-processing’ represented the transfer process of the solver file. 

filename1, 

filename2 

They are character string used to indicate the name of input files and the name of output 

files respectively; and their size are restricted to 30. 

key 
It is an integer variable used to identify the data type of FEMGV file; for example, ‘2’ 

represented the definition of coordinate, ‘-1’ represented the data itself and ‘9999’  

represented the termination of file. 

opcode It is a character used to assist key, and its value is always ‘C’. 

model_name, 

modelname 

They are character string used to indicate the geometry model name of design 

environment and the geometry model name of result environment respectively in 

FEMGV; and their size are restricted to 30. 

n1, n2, n3,… ,n8 They are character variables, which represent an alphabet used to compose a random 

name. 

iformt 
It is an integer variable used to represent the format indicator of data; for example, ‘0’ 

for a five digit format, ‘1’ for a ten digit format, ‘2’ for a ten digit with high precision 

nodal coordinates 

maxout It is an integer variable used to indicate the maximum number of data per line. 

nn It is an integer variable used to indicate the number of node. 

coordinate It is a real array used to indicate the coordinate components. Its size is 3. 

g_coord It is a two-dimensional real array used to indicate the global coordinates. The size of 

first rank is 3 and the size of second rank should synchronize with the variable of nn. 

lpnr It is an integer variable used to indicate the sequence number of the line, surface or 

body. 

types It is an integer variable used to indicates the type of the part; for example, ‘2’ for a line, 

‘3’ for a surface and ‘4’ for a body. 

ne0, ne1 They are an integer variable used to indicate the number of the first element on the part 

and the number of the last element on the part respectively. 

nant It is an integer variable used to indicate the number nodes in the subsequent data 

continuation records. 

nodes It is an integer array and the size is 10, which used to store the node number on the part 

(for all parts except bodies). 

nels It is an integer variable used to indicate number of element 

group It is integer which used to indicate the element group number. 

material It is integer which used to indicate the material property number. 

variant It is integer which used to indicate the element variant number. 

physical It is integer which used to indicate the physical property number. 

nod It is an integer variable used to indicate the number of node in per element 

num It is a real array used to indicate the element definition. Its size is ‘3’ or ‘4’. 

g_num 
It is a two-dimensional real array used to indicate the element definition. The size of 

first rank is 3 or 4 and the size of second rank should synchronize with the variable of 

nels. 

g_mat It is a real array used to indicate the global material type. Its size should synchronize 

with the variable of nels. 

aname It is character string, which represent the name of a point, line, surface, or body. 
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dof1, dof2, dof3 They are integer, which indicate which of the three degrees of freedom are constrained: 

0 for not affected, 1 for affected 

nf It is a two-dimensional real array used to indicate the constraint. The size of first rank is 

2 or 3 and the size of second rank should synchronize with the variable of nn. 

k It is an integer variable used to indicate the node number. 

lcase It is an integer variable used to indicate the load case number. 

elem It is an integer variable used to indicate the node number 

dof It is an integer variable used to indicates the degree of freedom: 1 for FX, 2 for FY, 3 

for FZ, 4 for MX, 5 for MY, 6 for MZ. 

value1 It is a real variable used to indicate the magnitude of the concentrated load. 

loadnode It is a real array used to indicate the nodal loads. Its size should synchronize with the 

variable of j. 

etype It is character string, which represent the type of element. 

g_num1 
It is a two-dimensional real array used to indicate the element definition after 

conversion. The size of first rank is 3 or 4 and the size of second rank should 

synchronize with the variable of nels. 

i,  j They are real variables used to be the counters. 

ndim It is an integer variable used to indicate the number of dimension. 

element It is character string, which represent the type of element. 

nst It is integer which used to indicate the number of stress components of stress tensor. 

nip It is integer which used to indicate the number of integration point. 

time It is a real variable used to indicate the time moment. 

e It is an integer variable used to indicate the Young’s modulus. 

v It is an integer variable used to indicate the Poisson’s ratio. 

mid It is integer which used to indicate the number of material types. 

node It is an integer variable used to indicate node number. 

elemt It is an integer variable used to indicate element number. 

material1 It is a real array used to indicate the material type. The size of first rank is 1 and the size 

of second rank should synchronize with the variable of nels. 

g_dispmt 
It is a two-dimensional real array used to indicate the global displacement. The size of 

first rank is 2 or 3 and the size of second rank should synchronize with the variable of 

nels. 

g_reforce It is a two-dimensional real array used to indicate the global body loads. The size of first 

rank is 2 or 3 and the size of second rank should synchronize with the variable of nels. 

g_points 

It is a three-dimensional real array used to indicate the global integration points 

coordinates. The size of first rank is 2, the size of second rank should synchronize with 

the variable of nip and the size of third rank should synchronize with the variable of 

nels. 

point It is an integer variable used to indicate the integration point number. 

g_sigma 
It is a three-dimensional real array used to indicate the global elastic stress. The size of 

first rank is 4 or 6, the size of second rank should synchronize with the variable of nip 

and the size of third rank should synchronize with the variable of nels. 

g_eps 
It is a three-dimensional real array used to indicate the global elastic strain. The size of 

first rank is 4 or 6, the size of second rank should synchronize with the variable of nip 

and the size of third rank should synchronize with the variable of nels. 

g_evp 
It is a three-dimensional real array used to indicate the global creep strain. The size of 

first rank is 4 or 6, the size of second rank should synchronize with the variable of nip 

and the size of third rank should synchronize with the variable of nels. 

g_damage 
It is a three-dimensional real array used to indicate the global creep damage. The size of 

first rank is 1, the size of second rank should synchronize with the variable of nip and 

the size of third rank should synchronize with the variable of nels. 

opcode1 It is a character variable used to assist key, and its value is always ‘C’. 
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key1,  key2, 

key3,…,key11 

They are integer variable used to identify the data type of result environment of 

FEMGV file only; for example, ‘2’ represented the definition of coordinate, ‘-1’ 

represented the data itself and ‘9999’  represented the termination of file. 

The arguments of (iformt1, ncomps1, irtype, norcty, menu, ictype, icind1, icind2, iexist, ncomps2, icind3, 

group1, nsc, nlc) are integer, which used to give the fixed constant to the file of result environment of 

FEMGV. They do not have any real meaning. 

ierror It is integer, which means the value of iostat statement. 

5.7.3 Subroutine Structure 

DTI consists of two parts, pre-processing transfer and post-processing transfer; its pseudo 

code was obtained through Figure 5-7 and Table 5-9. The detailed code is attached in 

appendix 10.2, and the pseudo code is displayed below: 

1 Programme DTI 

Execution section: 

2 read the transfer process type (transfertype) 

3 select case (transfertype) 

4 case (pre-processing) 

5 open input file 

6 open output file 

7 read model 

8 start until-loops 

9 read the controller of (key)  

10 select case (key) 

11 case (1, 2, 3, …, n; all case include the following until-loops) 

12 start until-loops 

13 read data set header 

14 read data record 

15 end until-loops 

16 end select 

17 end until-loops 

18 write data in output file 

19 case (post-processing) 

20 open input file 

21 open output file 

22 start until-loops 

23 read the controller of (key)  

24 select case (key) 

25 cases (include reading of parameters, coordinate, element definition, displacement, 

body force, integration point coordinate, elastic stress, elastic strain, creep strain 

and damage) 

26 end select 

27 write data in output file 

28 end select 

29 end programme 

 



94 

 

5.8 summary 

Table 5-10 indicated the purpose of all subroutines and programmes that developed in this 

research. They could be specific to that 1) constitutive equations subroutines include KR, 

PH and QX; 2) stress transformation subroutine includes TRS; 3) numerical method 

subroutines include EULER, RK4, RKM and RKF; 4) Time-step control subroutine 

includes TSC; 5) normalization subroutine includes NOR_KR; 6) Nodal loads calculator 

is a programme named NLC; and 7) Data transfer interface is a programme as well called 

DTI. All subroutines developed in this research were held in a library called Tan_library.  

Table 5-10 Purpose statement of developed subroutines and programmes 

Name Description 

KR KR returns the solution of Kachanov-Rabotnov constitutive equations under any environment 

such as uni-axial, 2D problem and 3D problem. 

PH PH returns the solution of Perrin-Hayhurst constitutive equations under any environment such 

as uni-axial, 2D problem and 3D problem. 

QX QX returns the solution of Qiang Xu’s constitutive equations under any environment such as 

2D problem and 3D problem. 

TRS TRS returns varies type of stress include: 1) deviatoric stress tensor, 2) principal stress, and 3) 

equivalent stress. 

EULER EULER returns the integration value of constitutive equations within a specific time interval 

according to Euler’s method. 

RK4 RK4 returns the integration value of constitutive equations within a specific time interval 

according to 4th order classical Runge-Kutta method. 

RKM RKM returns the integration value of constitutive equations within a specific time interval 

according to Runge-Kutta-Merson method. It includes self-adaptive technique. 

RKF RKF returns the integration value of constitutive equations within a specific time interval 

according to Runge-Kutta-Felhberg method. It includes self-adaptive technique. 

TSC TSC returns the next time interval when present iteration is over. It associated with KRM and 

RKF 

NOR_KR NOR_KR returns the solution of Kachanov-Rabotnov constitutive equation within 

normalization technique under any environment such as uni-axial, 2D problem and 3D 

problem. NLC NLC output a data file saved the value of loads on each nodal. 

DTI DTI offers the correct input files for both the solver and FEMGV. 

The algorithm of subroutines and programmes were designed based on the analysis of 

knowledge presented in Table 5-1. The flowcharts of each code were presented to show 

the detailed structure clearly. A number of important variables, which affected the input 

or output, were introduced specifically in order to serve the maintenance and 

enhancement of future. Except that, all variables were summarised into the tables for the 

convenience of reader. The order of development of subroutine and programme was 

arranged according to the timeline. The core part is creep constitutive equations; therefore, 

the first stage of research was launched around creep constitutive equations. 
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6 TESTING AND VERIFICATION 

This chapter presents the testing and verification of all developed subroutines and 

programmes of this research. Proofreading and debug of code was implemented through 

Code::Blocks platform. The testing has two categories, one is for subroutines testing and 

the other is for programmes testing. Since the subroutine could not be executed by itself, a 

series of testing programmes were developed. Detailed user guidance of each testing 

programme was reported and future users can repeat those tests reported in this thesis. 

Some subroutines such as numerical method subroutines or stress transformation 

subroutines were developed to assist constitutive equations subroutines; hence, the testing 

sequence is important. The testing sequence of subroutines depends on their position in 

the solver from top to bottom; hence, its testing order is a) stress tensor transformation 

subroutine; b) numerical method subroutine; c) constitutive equations subroutine; d) time-

step control subroutine; e) normalization subroutine.  

Table 6-1 indicates the intentions of those tests to explain the reasons and significances to 

conduct these testing. The testing of nodal loads calculator and data transfer interface will 

be demonstrated through the verification of the output result. 
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Table 6-1 Description of subroutine’s testing  

Objectives of Test Description 

Accuracy test of stress 

transformation subroutine 

Unit test, in order to guarantee that the values of deviatoric stress 

components, principal stress and equivalent stress are correct in both 

two-dimensional and three-dimensional environment 

Accuracy test of numerical method 

subroutine 

Unit test, in order to guarantee that no coding error in each numerical 

method, and prove that the argument passing process is correct 

Coupling test of stress 

transformation subroutine, 

numerical method subroutine and 

constitutive equations subroutines 

Accuracy test of constitutive 

equations subroutines 

Integration test, in order to guarantee that the co-operation of stress 

transformation subroutine, numerical method subroutine and 

constitutive equations subroutines is smoothly, and prove that the 

output values of both two-dimensional and three-dimensional forms 

are qualified 

Accuracy test of time-step selection 

subroutine 

Accuracy test of time-step 

acceptance part of numerical 

method subroutine 

Co-operation test of time-step 

selection and acceptance 

Integration test, in order to guarantee that the co-operation test of 

time-step selection and acceptance is qualified, and to check the 

output value of time-step selection subroutine and acceptance part of 

numerical method subroutine 

Accuracy test of normalization 

subroutine 

Integration test, in order to guarantee that output values of both two-

dimensional and three-dimensional forms are qualified 

6.1 Subroutine of Transformation of Stress Tensor 

6.1.1 Instruction of TRScheck 

Programme TRScheck was developed in order to test the stress transformation subroutine. 

Figure 6-1 indicates the programme structure, and it could be found that the two-

dimensional and three-dimensional environments were distinguished through a branch 

structure of nos; ‘4’ represented two-dimensional environment and ‘6’ represented three-

dimensional environment. Those results will be written into a file named by the user. The 

user instruction is summarised below: 

1. Create a new file named xx.dat; 

2. The first line of input file is the number of stress components, whose value was 

restricted in ‘4’ or ‘6’;  

3. The second line of input file is stress tensor components value; 

4. Execute programme TRScheck 

5. Enter xx.dat following the prompts; 

6. Enter any output file name following the prompts; 

7. Open the result file and see the result. 
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Start
Enter test file name 
and result file name: 

xx.dat and xx.res

Test file: xx.dat

Read stress 
tensor sigma

Call 
subroutine 

TRS

nos = 4nos = 6

.FALSE.

Write sx, sy, sz, 
txy,  ps1, ps2, 

ps3, es

.TRUE.

Write sx, sy, sz, 
txy, tyz, tzx, 

ps1, ps2, ps3, es

.TRUE.

Result file: 
xx.res

Stop

.FALSE.

 

Figure 6-1 Algorithm of programme TRScheck 

6.1.2 Statement of testing cases  

Two sets of stress tensor, which include four components and six components 

respectively, were applied in this testing; the case of four components was used to test 

the two-dimensional environment, and the case of six components was used to test the 

two-dimensional environment. Table 6-2 shows the specific value of each stress 

tensor components. 

Table 6-2 Stress tensor components used in testing (unit/MPa) 

 𝛔𝐱/𝛔𝐫 𝛔𝐲/𝛔𝐳 𝛔𝐳/𝛔𝛉 𝛕𝐱𝐲/𝛕𝐫𝐳 𝛕𝐲𝐳 𝛕𝐳𝐱 

Test 1 84 -30 0 -32 ----- ----- 

Test 2 -10 0 7 9 0 5 

These two sets of data will be implemented separately, and their computing results will be 

compared with the results obtained by hand calculation. The error was expected in 

following situations: 

1. If the error occurred on the stress tensor allocation unit; a) the final result will be 

wrong when subroutine arranged a wrong value, and b) a warning text of "Error 

on stress rearrangement in TRS" will be presented on screen when the wrong size 

of stress tensor array was used; 

2. If the error occurred on the functions computing unit, the corresponding value will 

be wrong; 

3. If the error occurred on the result updating unit; a) the characteristic is the same 

with functions error, and static validation should be utilized in here, and b) a 

warning text of "wrong size for nos in TRS" will be presented on screen when the 

wrong size of stress tensor array was used. 
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6.1.3 Result and verification 

6.1.3.1 Test 1 

The test 1 used the input file TRS1.dat, this file was attached in appendix 10.4.1. Figure 

6-2 shows the results of the first testing, which the deviatoric stress components are 

66MPa in x-direction, -48MPa in y-direction, -32MPa in xy-direction and -18MPa in z-

direction; the principal stresses are 92.368MPa of maximum principal stress and -

38.368MPa of minimum principal stress; and the equivalent stress is 116.395MPa. The 

second principal stress is too small, and can be ignored as 0. This situation is suited for 

the theory of plane stress. 

 

Figure 6-2 Results obtained from stress tensor components 80, -30, 0, -32 

In order to verify those results, a hand calculation was conducted: 

σ0 =
1

3
(σx + σy + σz) = (84 − 30 + 0) ÷ 3 = 18 

[sij] = [

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

] = [
66 −32 0

−32 −48 0
0 0 −18

] 

J2 =
1

6
[(σx − σy)

2
+ (σy − σz)

2
+ (σz − σx)2 + 6(τxy

2 + τyz
2 + τzx

2)]

= (1142 + 302 + 842 + 6 × 322) ÷ 6 = 4516 

J3 = |

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

| = |
66 −32 0

−32 −48 0
0 0 −18

| = 75456 

θσ =
1

3
sin−1 [

−√27J3

2J2

3
2

] = sin−1 [
−√27 × 75456

2 × 4516
3
2

] ÷ 3 = −0.2341 

σ1 =
2√J2

√3
sin (θσ +

2π

3
) + σ0 =

2√4516

√3
sin (−0.2341 +

2π

3
) + 18 = 92.3682 

σ2 =
2√J2

√3
sin(θσ) + σ0 =

2√4516

√3
sin(−0.2341) + 18 = −5.02426 × 10−5 ≈ 0 
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σ3 =
2√J2

√3
sin (θσ −

2π

3
) + σ0 =

2√4516

√3
sin (−0.2341 −

2π

3
) + 18 = −38.3682 

σ̅ =
1

√2
√(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = √130.73642 + 38.36822 + 92.36822 ÷ √2

= 116.3959 

It is obvious to see from Table 6-3 that the subroutine returned a correct value in two-

dimensional environment. 

Table 6-3 Comparison of computer results and hand calculation results 

Result Computer Hand calculation 

Deviatoric stress in x-direction 6.6000000E+01 66 

Deviatoric stress in y-direction -4.8000000E+01 -48 

Deviatoric stress in xy-direction -3.2000000E+01 -32 

Deviatoric stress in z-direction -1.8000000E+01 -18 

First principal stress 9.2368191E+01 92.3682 

Second principal stress 5.4753034E-07 0 

Third principal stress -3.8368195E+01 -38.3682 

Equivalent stress 1.1639588E+02 116.3959 

6.1.3.1 Test 2 

The test 2 used the input file TRS2.dat, this file was attached in appendix 10.4.1. Figure 

6-3 shows the results of the second testing, which the deviatoric stress components are -

9MPa in x-direction, 1MPa in y-direction, 8MPa in z-direction, 9MPa in xy-direction, 

0MPa in yz-direction and 5MPa in zx-direction. The principal stresses are 9.342MPa of 

the first principal stress, 3.767MPa of the second principal stress and -16.109MPa of the 

third principal stress; and the equivalent stress is 23.173MPa. 

 

Figure 6-3 Results obtained from stress tensor components -10, 0, 7, 9, 0, 5 

In order to verify those results, a hand calculation was conducted: 

σ0 =
1

3
(σx + σy + σz) = (−10 + 0 + 7) ÷ 3 = −1 
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[sij] = [

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

] = [
−9 9 5
9 1 0
5 0 8

] 

J2 =
1

6
[(σx − σy)

2
+ (σy − σz)

2
+ (σz − σx)2 + 6(τxy

2 + τyz
2 + τzx

2)]

= (102 + 72 + 172 + 6 × (92 + 52)) ÷ 6 = 179 

J3 = |

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

| = |
−9 9 5
9 1 0
5 0 8

| = −745 

θσ =
1

3
sin−1 [

−√27J3

2J2

3
2

] = sin−1 [
−√27 × −745

2 × 179
3
2

] ÷ 3 = 0.3137 

σ1 =
2√J2

√3
sin (θσ +

2π

3
) + σ0 =

2√179

√3
sin (0.3137 +

2π

3
) − 1 = 9.3426 

σ2 =
2√J2

√3
sin(θσ) + σ0 =

2√179

√3
sin(0.3137) − 1 = 3.7672 

σ3 =
2√J2

√3
sin (θσ −

2π

3
) + σ0 =

2√179

√3
sin (0.3137 −

2π

3
) − 1 = −16.1098 

σ̅ =
1

√2
√(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = √5.57542 + 19.8772 + 25.45242 ÷ √2 = 23.1733 

It is obvious to see from Table 6-4 that the subroutine returned a correct value in three-

dimensional environment. 

Table 6-4 Comparison of computer results and hand calculation results 

Result Computer Hand calculation 

Deviatoric stress in x-direction -9.0000000E+00 -9 

Deviatoric stress in y-direction 1.0000000E+00 1 

Deviatoric stress in z-direction 8.0000000E+00 8 

Deviatoric stress in xy-direction 9.0000000E+00 9 

Deviatoric stress in yz-direction 0.0000000E+00 0 

Deviatoric stress in zx-direction 5.0000000E+00 5 

First principal stress 9.3424884E+00 9.3426 

Second principal stress 3.7673038E+00 3.7672 

Third principal stress -1.6109791E+01 -16.1098 

Equivalent stress 2.3173262E+01 23.1733 
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6.2 Subroutines of Numerical Integration Method 

6.2.1 Instruction of NMScheck 

Programme NMScheck was developed in order to test the numerical method subroutines. 

Figure 6-4 indicates the programme structure, and it could be found that the Euler's 

method, RK4 method, RKM method, and RKF method were distinguished through a case 

selection of cas_sel_x. For example, ‘cas_sel_1’ called the subroutine EULER, 

‘cas_sel_2’ called the subroutine RK4, ‘cas_sel_3’ called the subroutine RKM and 

‘cas_sel_4’ called the subroutine RKF. Those results will be written into a file named by 

the user. The user instruction is summarised below: 

1. Create a new file named xx.dat; 

2. The first line of input file is the type identifier of numerical method and loops 

counter, and the value of type identifier was restricted to ‘1’ , ‘2’ , ‘3’ or ‘4’;  

3. The second line of input file is the initial value; 

4. The third line of input file is the time-step; 

5. Execute programme NMScheck 

6. Enter xx.dat following the prompts; 

7. Enter any output file name following the prompts; 

8. Open the result file and see the result. 

Start Enter test file name 
and result file name: 

xx.dat and xx.res

Test file: xx.dat

Read initial 
value y and 
time-step dt

Result file: 
xx.res

Stop

   i = 1
                   i ≤ n
  i = i+1

cas_sel_1

.TRUE.

cas_sel_2

No

cas_sel_3

No

cas_sel_4

No

Call 
subroutine 

EULER

Yes

Call 
subroutine 

RK4

Yes

Call 
subroutine 

RKM

Yes

Call 
subroutine 

RKF

YesUpdate time t

Write t, y, rcv 
on file xx.res

No

.FALSE.

 

Figure 6-4 Algorithm of programme NMScheck 
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6.2.2 Statement of testing cases  

The function 𝑦′ = y − 𝑡2 + 1 adopted from existing literature (Faires and Burden, 2013) 

was given to test numerical method subroutines. Such function was coded as a subroutine 

called NTEST according to the structure of constitutive equations subroutine. This 

testing was launched with given initial value Y0 = 0.5 and time interval dt = 0.2. The 

result can present the preliminary understanding of accuracy of those numerical methods.  

Subroutines EULER, RK4, RKM and RKF were tested separately, but the tested 

function is the same. Their computing results will be compared with the results obtained 

by existing literature (Faires and Burden, 2013). The used input files, which are 

EULER.dat, RK4.dat, RKM.dat and RKF.dat, are attached in appendix 10.4.2. The error 

was expected in the following situations: 

1. If the error occurred on calling of an external function, then NMScheck will be 

aborted; 

2.  If the error occurred on the computing of slopes of function, then the final result 

will be wrong; 

3. If the error occurred on the solution update, then the result will be wrong. 

6.2.3 Result and verification 

Figure 6-5 shows the result of each time moment of each numerical method. The result 

obtained from Euler’s method is different with other three methods since the first step. 

The Euler’s method has the error of almost 3.67% compared with the other methods. The 

results of other three numerical methods are very similar.  

 
Figure 6-5 Results obtained from EULER, RK4, RKM and RKF 

The solutions of the testing function, which include exact solution and numerical 

solutions obtained from numerical methods, were given in Table 6-5. It is easy to find that, 
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all results are hundred percent correct through compare the Figure 6-5 with Table 6-5. 

Until now, the correctness of subroutine EULER, RK4, RKM and RKF were proved.  

Table 6-5 Exact solution and numerical solution of numerical method of Euler’s, RK4, RKM and 

RKF (Faires and Burden, 2013) 

Time Exact Solution Euler’s RK4 RKM RKF 

0.0 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 

0.2 0.8292986 0.8000000 0.8292933 0.8292987 0.8292985 

0.4 1.2140877 1.1520000 1.2140762 1.2140880 1.2140875 

0.6 1.6489406 1.5504000 1.6489220 1.6489412 1.6489403 

0.8 2.1272295 1.9884800 2.1272027 2.1272307 2.1272291 

1.0 2.6408591 2.4581760 2.6408227 2.6408609 2.6408586 

1.2 3.1799415 2.9498112 3.1798942 3.1799444 3.1799409 

1.4 3.7324000 3.4517734 3.7323401 3.7324042 3.7323992 

1.6 4.2834838 3.9501281 4.2834095 4.2834898 4.2834828 

1.8 4.8151763 4.4281538 4.8150857 4.8151848 4.8151751 

2.0 5.3054720 4.8657845 5.3053630 5.3054839 5.3054705 

6.3 Subroutines of Constitutive Equations 

6.3.1 Instruction of CEScheck 

Programme CEScheck was developed in order to test the constitutive equations 

subroutines.  Figure 6-6 indicates the programme structure, and it could be found that the 

KR equations, PH equations and QX equations were distinguished through a case 

selection of cas_sel_x, where ‘cas_sel_1’ called the subroutine KR, ‘cas_sel_2’ called the 

subroutine PH and ‘cas_sel_3’ called the subroutine QX. Only subroutine RK4 is used in 

these tests because it does not include the part of self-adaptive approach but the accuracy 

is higher than subroutine EULER. Those results will be written into a file named by the 

user. The user instruction was summarised below: 

1. Create a new file named xx.dat; 

2. The first line of input file includes a) the type of constitutive equations, which ‘1’ 

represented KR constitutive equations, ‘2’ represented PH constitutive equations 

and ‘3’ represented QX constitutive equations; b) the number of creep material 

property; c) the number of equations; d) number of stress terms; e) time-step; f) 

output loops; and g) output item; 

3. The second line of input file is material properties; 

4. The third line of input file is stress tensor components; 

5. Execute programme CEScheck; Enter xx.dat following the prompts; 
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6. Enter any output file name following the prompts; 

7. Open the result file and see the result. 

Start
Enter test file name: 

xx.dat 
and result file name:  
xx.res, timedata.txt 
and straindata.txt

Test file: xx.dat

Read num, 
nom, noe, nos, 

dt, loop, ops 

Result file: 
xx.res

Stop

   i = 1
                   i ≤ loop
  i = i+1

cas_sel_1

cas_sel_2

cas_sel_3

No

Yes

Yes

cas_sel_1

cas_sel_4

cas_sel_6

Arrays 
allocation
nos1 = nos

Arrays 
allocation

nos1 = nos+4

Arrays 
allocation

nos1 = nos+4

Yes

Yes

Yes

No

No

Read material 
properties mat

Read stress 
tensor sigma

No

cas_sel_1

cas_sel_4
cas_sel_6

stress = sigma

Yes
Yes

Yes

No

No

Call 
subroutine 

TRS

Call 
subroutine 

TRS

   j = 1
                   j ≤ 100
  j = i+1

.TRUE.

Update time 
t = t+dt

Call 
subroutine 

RK4
External 

subroutine 
KR

.TRUE.

.FALSE.

Write t, y on 
file xx.res

Write t on file 
timedata.txt

Write y(ops) 
on file 

straindata.txt

   i = 1
                   i ≤ loop
  i = i+1

   j = 1
                   j ≤ 100
  j = i+1

.TRUE.

Update time 
t = t+dt

Call 
subroutine 

RK4
External 

subroutine 
PH

.TRUE.

.FALSE.

Write t, y on file 
xx.res

Write t on file 
timedata.txt

Write y(ops) on 
file 

straindata.txt

   i = 1
                   i ≤ loop
  i = i+1

   j = 1
                   j ≤ 100
  j = i+1

.TRUE.

Update time 
t = t+dt

Call 
subroutine 

RK4
External 

subroutine 
QX.TRUE.

.FALSE.

Write t, y on file 
xx.res

Write t on file 
timedata.txt

Write y(ops) on 
file 

straindata.txt

No

No

.FALSE.

.FALSE.

Yes

.FALSE.

No

 

Figure 6-6 Algorithm of programme CEScheck 
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6.3.2 Statement of testing cases  

Constitutive equations subroutines include both solutions of two-dimensional problem 

and three-dimensional problem; thus, the test of constitutive equations subroutines should 

be divided into three stages, which are uni-axial form testing, two-dimensional problem 

testing and three-dimensional problem testing12. All material properties used in these tests 

were adopted from the existing literature (Xu, 2001, Hyde et al., 2006). Table 6-6 

indicates the detailed material properties for each creep constitutive equation. 

Firstly, a single stress was given to test the performance of uni-axial equations of each 

subroutine (if applicable). Secondly, three sets of stresses included four components, 

which were obtained from Mohr’s circle, were given to test each subroutine separately for 

two-dimensional problem. Finally, a set of stresses included six components, which 

direction will be changed according to the order of x-direction, y-direction and z-direction, 

were given to test each subroutine for three-dimensional problem.  

Table 6-7 indicates the detailed value of stresses for each test of each creep constitutive 

equations. Due to this testing includes too much input files, a summary is given. Table 6-8 

indicates the specific information of each input file to explain which test they have 

performed. Detailed input files are attached in appendix 10.4.3. 

These files will be implemented separately, and their computing results will be compared 

with the creep strain curves obtained from existing literature. The error was expected in 

the following situations: 

1. If the error occurred on the uni-axial form of constitutive equations; a) the result 

of creep strain and damage will be wrong when integration terminated, and b) the 

life time will have an obvious difference with the curves obtained from existing 

literature; 

2. If the error occurred on the two-dimensional form of constitutive equations; a) the 

result of creep strain and damage based on the first set of stress will be wrong 

when integration terminated, and b) the their life time will not be the same; 

                                                 
12 In here, the concepts of plane stress problem, plane strain problem and axisymmetric problem are not 

adopted due to all of them are considered as two-dimensional problem. For the subroutines of this research, 

those problems are the same because of the same number of stress terms (this research does not involve 

other more FEM knowledge unless otherwise stated). 
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3. If the error occurred on the three-dimensional form of constitutive equations, the 

three creep strain curves will not coincide. 

Table 6-6 Material properties for each creep constitutive equations 

Kachanov-Rabotnov constitutive equations 

A n m B φ χ α 

1.092×10−20 8.462 −4.754×10−4 3.537×10−17 7.346 6.789 0.215 

Perrin-Hayhurst constitutive equations 

A B h Kc H* C ν 

6.216×10−8 0.15 1.0×104 4.998×10−4 0.35 2.0 1.32 

Qiang Xu's constitutive equations 

A B h H* C ν a 

2.1618×10−9 0.20524 2.4326×105 0.5929 1.8537 2.8 2 

Kc b p q    

9.2273×10−5 2 2.5 1    

 

Table 6-7 Stress for each test of each creep constitutive equations 

Uni-axial form 

KR PH 

70MPa 

Two-dimensional problem 

 KR/PH QX 

0 degrees on the Mohr’s circle 70MPa; 0MPa; 0MPa; 0MPa 60MPa; 0MPa; 0MPa; 0MPa 

45 degrees on the Mohr’s circle 59.74873734 MPa; 10.25126266 

MPa; 24.74873734 MPa; 0MPa 

51.21320344MPa; 

8.78679656MPa; 21.21320344 

MPa; 0MPa 
90 degrees on the Mohr’s circle 35MPa; 35MPa; 35MPa; 0MPa 30MPa; 30MPa; 30MPa; 0MPa 

Three dimensional problem 

 KR/PH QX 

Uni-axial on x-direction 70MPa; 0MPa; 0MPa; 0MPa; 

0MPa; 0MPa 

60MPa; 0MPa; 0MPa; 0MPa; 

0MPa; 0MPa Uni-axial on y-direction 0MPa; 70MPa; 0MPa; 0MPa; 

0MPa; 0MPa 

0MPa; 60MPa; 0MPa; 0MPa; 

0MPa; 0MPa Uni-axial on z-direction 0MPa; 0MPa; 70MPa; 0MPa; 

0MPa; 0MPa 

0MPa; 0MPa; 60MPa; 0MPa; 

0MPa; 0MPa  

Table 6-8 Summary information of each input file 

File name Description 

KR1.dat; PH1.dat Uni-axial creep constitutive equation test. 

KR2.dat; KR3.dat; KR4.dat Two-dimensional problem, included uni-axial case, 

biaxial case and pure shear case PH2.dat; PH3.dat; PH4.dat 

QX1.dat; QX2.dat; QX3.dat 

KR5.dat; KR6.dat; KR7.dat Three-dimensional problem, included x-direction uni-

axial tensile, y-direction uni-axial tensile and z-

direction uni-axial tensile 
PH5.dat; PH6.dat; PH7.dat 

QX4.dat; QX5.dat; QX6.dat 
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6.3.3 Result and verification 

6.3.3.1 Testing of uni-axial form 

The integration of constitutive equations will be terminated depending on a parameter that 

is named critical damage value. The theoretical critical damage value of KR equations is 1; 

however, when this value was employed by programme CEScheck, the result of damage 

is infinity. Through large amount of practices, a value of 0.85 was recommended, which 

is more suitable for the author’s programme. Moreover, the value of 0.85 also has a 

limitation that the time-step must be less than 2 hours. Because the critical damage value 

and time-step is user-defined, the rupture strains obtained by this research are different 

with to that found in literature.  

Figure 6-7 shows the result of uni-axial form of KR and PH. The lifetime of KR is almost 

990 hours and the rupture strain is 0.18; and, the lifetime of PH is almost 980 hours and 

the rupture strain is 0.184. It is obvious to see that, these two kinds of constitutive 

equations have small distinction in the tendency of creep deformation.  

 

Figure 6-7 Creep strain curve of KR and PH based on single stress  

Figure 6-8 presents the creep strain curves of KR and PH equations obtained from 

existing literature. Only the curves under 70MPa were used for the verification, and these 

two curves matched Figure 6-7 perfectly; for example, on KR curve, the creep strain was 
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accumulated to 0.1 after 900 hours, but on PH curve, the creep strain was accumulated to 

0.1 after 920 hours. It could be said that the uni-axial forms of subroutine KR and PH are 

correct due to the outputted creep strain and damage being correct.  

 

Figure 6-813 Creep strain curve obtained by Hyde; a) for KR, b) for PH (Hyde et al., 2006)  

Testing of two-dimensional problem 

Table 6-7 shows that, the stress tensor component on the x-direction is reduced according 

to the order of 0 degrees, 45 degrees and 90 degrees; hence, the corresponding creep 

strain in x-direction should be reduced according to the same sequence. To compare with 

the three curves shown on Figure 6-9, Figure 6-10 and Figure 6-12, it is easy to find that 

not only the creep strain was reduced but also the rupture time is the same. This 

phenomenon is correct because the loaded stresses are from the same Mohr’s circle that 

has the same maximum principal stress and equivalent stress. 

Due to the load of 0 degrees, Mohr’s circle could be simply considered as a uni-axial 

tensile; hence the creep strain curve of 0 degrees on Mohr’s circle should match the curve 

of uni-axial form. To compare with Figure 6-9 and Figure 6-8, Figure 6-10 and Figure 6-8, 

and Figure 6-12 and Figure 6-8, all curves of 0 degrees on Mohr’s circle are matched with 

the curves of uni-axial form. 

Figure 6-11 presents the creep strain curves of QX equations obtained from existing 

literature. Only the curve under the 60MPa was used for the verification, and the lifetime 

and creep strain of this curve are nearly 37000 hours and 0.18.  

                                                 
13 In figure 6-8, the curve is fitted line, only the data under 70MPa both of a) and b) are used to verify the 

corresponding curve presented on figure 6-7. 



109 

 

It could be said that the two-dimensional forms of subroutine KR, PH and QX are correct 

due to not only the outputted creep strain and damage based on 0 degrees on Mohr’s 

circle being correct, but also the reducing tendency of creep strain is matched. 

 

Figure 6-9 Creep strain curve of KR based on the stresses obtained from Mohr’s circle in x-direction 

 

Figure 6-10 Creep strain curve of PH based on the stresses obtained from Mohr’s circle in x-direction 
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Figure 6-11 Creep strain curve obtained by Qiang Xu (Xu, 2001) 

 

Figure 6-12 Creep strain curve of QX based on the stresses obtained from Mohr’s circle in x-direction 

Testing of three-dimensional problem 

Table 6-7 shows that, the loaded stresses could be considered as the uni-axial tensile on x-

direction, y-direction and z-direction respectively; hence, the corresponding creep strain 

in x-direction, y-direction and z-direction should be the same. 

To compare with the three curves shown on Figure 6-13, Figure 6-14 and Figure 6-15, it 

is easy to find that those creep strain curves of x-direction, y-direction and z-direction are 
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hundred percent matched. This phenomenon is correct because the loaded stresses could 

be seen as the same, which only direction is different. 

Due to the loads of x-direction, y-direction and z-direction could be simply considered as 

the same uni-axial tensile; hence, their creep strain curves of each direction should match 

the curve of uni-axial form. Compared with Figure 6-13 and Figure 6-8, all curves of x-

direction, y-direction and z-direction are matched with the corresponding curves of uni-

axial form. The same comparison can be used for Figure 6-14 and Figure 6-8; Figure 6-15 

and Figure 6-8. 

It could be said that the three-dimensional forms of subroutine KR, PH and QX are 

correct due to not only the outputted creep strain and damage based on x-direction, y-

direction and z-direction is correct, but also the creep strain curves were coincided with 

each other.  

 

Figure 6-13 Creep strain curve of KR based on the uni-axial tensile load in x-direction, y-direction 

and z-direction 
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Figure 6-14 Creep strain curve of PH based on the uni-axial tensile load in x-direction, y-direction 

and z-direction 

 

Figure 6-15 Creep strain curve of QX based on the uni-axial tensile load in x-direction, y-direction 

and z-direction 
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6.4 Subroutine of Time-step Control Procedure 

6.4.1 Instruction of TSCcheck 

Programme TSCcheck was developed in order to test the time-step control subroutines. 

Figure 6-16 indicated the programme structure, and it could be found that the RKM 

method and RKF method were distinguished through a case selection of cas_sel_x; 

‘cas_sel_1’ called the subroutine RKM and ‘cas_sel_2’ called the subroutine RKF. PH is 

the only constitutive equations subroutine used in these tests in order to keep the same 

integrand. Those results will be written into a file named by the user. The user instruction 

is summarised below: 

1. Create a new file named xx.dat; 

2. The first line of input file includes a) the type of numerical method, which ‘1’ 

represented Runge-Kutta-Merson method and ‘2’ represented Runge-Kutta-

Fehlberg method; b) the number of creep material property; c) the number of 

equations; d) number of stress terms; e) time-step; and f) output loops;  

3. The second line of input file is material properties; 

4. The third line of input file is stress tensor components; 

5. Execute programme TSCcheck 

6. Enter xx.dat following the prompts; 

7. Enter any output file name following the prompts; 

8. Open the result file and see the result. 
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Start

Enter test file name: 
xx.dat 

and result file name:  
xx.res, timedata.txt 
and straindata.txt

Test file: xx.dat

Result file: 
xx.res

Stop

cas_sel_2

No

Yes
Yes

Yes

Yes

Yes

No

No

   i = 1
                   i ≤ loop
  i = i+1

   j = 1
                   j ≤ 100
  j = i+1

.TRUE.

Update time 
t = t+dt

Call 
subroutine 

RKM
External 

subroutine 
PH

.TRUE.

.FALSE.

No

No

.FALSE.

Write 'time', 'creep strain', 
'damage', 'control value',
  'time-step' on file xx.res

Read num, 
nom, noe, nos, 

dt, loop 

Arrays 
allocation

nos1 = nos+4

Read stress 
tensor sigma

Read material 
properties mat

stress = sigma

cas_sel_1

cas_sel_4

cas_sel_6

Call 
subroutine 

TRS

Call 
subroutine 

TRS

cas_sel_1

Write y(ops) on 
file 

straindata.txt

Write t on file 
timedata.txt

Write t, y on file 
xx.res

y = y1

   i = 1
                   i ≤ loop
  i = i+1

   j = 1
                   j ≤ 100
  j = i+1

.TRUE.

Update time 
t = t+dt

Call 
subroutine 

RKF
External 

subroutine 
PH

.TRUE.

.FALSE.

.FALSE.

Write y(ops) on 
file 

straindata.txt

Write t on file 
timedata.txt

Write t, y on file 
xx.res

y = y1

maxval(g_rcv) = 0

y1 = y1

g_rcv = rcv

.FALSE.

Call 
subroutine 

TSC
y1 = y

.TRUE.
maxval(g_rcv) = 0

y1 = y1

g_rcv = rcv

.FALSE.

Call 
subroutine 

TSC
y1 = y

.TRUE.

 

Figure 6-16 Algorithm of programme TSCcheck 
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6.4.2 Statement of testing cases  

Two tests based on subroutine RKM and subroutine RKF were executed separately. The 

testing of time-step control module includes the test of performance of subroutine TSC 

and the test of self-adaptive function of subroutine RKM and RKF. The subroutine PH 

was adopted here to assist the numerical method subroutine.  

The loaded stress is 70MPa and time-step is 0.1 hour. All material properties used in these 

tests were adopted from the existing literature (Xu, 2001, Hyde et al., 2006). Table 6-9 

indicated the detailed material properties for each creep constitutive equation.   

These two sets of data will be implemented separately, and their computing results will be 

compared by each other. The error was expected in the following situations: 

1. If the error occurred on the subroutine TSC, the time-step will not be changed; 

2. If the error occurred on the self-adaptive part of subroutine RKM and RKF, the 

time-step will not be changed as well. 

Table 6-9 Material properties of Perrin-Hayhurst constitutive equations 

Perrin-Hayhurst constitutive equations 

A B h Kc H* C ν 

6.216×10−8 0.15 1.0×104 4.998×10−4 0.35 2.0 1.32 

 

6.4.3 Result and verification 

6.4.3.1 Testing of subroutine TSC and RKM 

Figure 6-17 and Figure 6-18 indicates creep strain, creep damage and time-step obtained 

from RKM method and RKF method respectively. It could be observed from Figure 6-17, 

the change of time-step is obvious based on the RKM method; however, it is easy to see 

that, all changes were happened after 860 hours. Through the Figure 6-7, the time of 860 

hours is almost the starting of tertiary stage of creep deformation due to the creep strain 

has a rapid accumulation. This change tendency of time-step satisfies the basic physical 

and mathematical theories. 
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Figure 6-17 Creep strain and damage, time-step obtained from RKM method 

6.4.3.2 Testing of subroutine TSC and RKF 

It could be observed from Figure 6-18, the change of time-step did not happen based on 

the RKF method; however, it is easy to see that, the final creep strain, creep damage and 

lifetime are correct. This reason is investigated in Chapter 7. 

Figure 6-19 presents the creep strain curves obtained from this testing, which are based on 

RKM method and RKF method, coincided with each other. To compare with the PH 

curve shown in Figure 6-7, both the results obtained from this testing are correct. 

Therefore, the accuracy of RKF method was proved. 

Figure 6-20 shows error between RKM method and RKF method, the error increased 

following the time increasing, but the absolute value of error is very small, and could be 

ignored.   

Until now, the correctness of subroutine TSC and the self-adaptive function of subroutine 

RKM and RKF were proved. Figure 6-20 provides the primary understanding of the 

performance of two self-adaptive approaches. 
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Figure 6-18 Creep strain and damage, time-step obtained from RKF method 

 

 

Figure 6-19 Creep strain curve comparison based on RKM method and RKF method 
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Figure 6-20 Error between RKM and RKF  

6.5 Subroutine of Normalisation technique 

6.5.1 Instruction of NORcheck 

Programme NORcheck was developed in order to test the constitutive equations 

subroutines. Figure 6-21 indicated the programme structure, and it could be found that the 

two-dimensional problem and three-dimensional problem were distinguished through a 

case selection of cas_sel_x; ‘cas_sel_9’ is two-dimensional problem and ‘cas_sel_11’ is 

three-dimensional problem. RK4 is the only numerical method subroutine used in these 

tests because it does not include the part of self-adaptive approach but the accuracy is 

higher than EULER is. Those results will be written into a file named by the user. 

The user instruction was summarised below: 

1. Create a new file named xx.dat; 

2. The first line of input file includes a) the number of creep material property; b) the 

number of equations; c) number of stress terms; d) time-step; e) output loops; f) 

output item; and g) stress used for normalization; 

3. The second line of input file is material properties; 

4. The third line of input file is stress tensor components; 
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5. Execute programme NORcheck 

6. Enter xx.dat following the prompts; 

7. Enter any output file name following the prompts; 

8. Open the result file and see the result. 

Start
Enter test file name: 

xx.dat 
and result file name:  
xx.res, timedata.txt 
and straindata.txtTest file: xx.dat

Result file: 
xx.res Stop

   i = 1
                   i ≤ loop
  i = i+1

YesYes

No

No

   j = 1
                   j ≤ 100
  j = i+1

.TRUE.

.TRUE.

.FALSE.

.FALSE.

Read num, 
nom, noe, nos, 
dt, loop, ops, ip 

Arrays 
allocation

nos1 = nos+5

Read material 
properties mat

Read stress 
tensor sigma

Call 
subroutine 

TRS
cas_sel_9cas_sel_11

stress(9) = ipstress(11) = ip
Print 'Wrong 

size for stress'

write 'time', 'strain in (x)/(x,y,xy,z)/
(x,y,z,xy,yz,zx)', 'damage' on file xx.res

Update time 
t = t+dt

Call 
subroutine 

RK4
External 

subroutine 
NOR_KR

Write y(ops) on 
file 

straindata.txt

Write t on file 
timedata.txt

Write t, y on file 
xx.res

 

Figure 6-21 Algorithm of programme NORcheck 

6.5.2 Statement of testing cases  

Normalization subroutine includes both solutions of two-dimensional problem and three-

dimensional problem; thus, the test of normalization subroutine should be divided into 

two stages, which are two-dimensional problem testing and three-dimensional problem 

testing. All material properties used in these tests were adopted from the existing 

literature (Xu, 2001, Hyde et al., 2006). Table 6-10 indicates the detailed material 

properties for normalized creep constitutive equations. 

Firstly, three sets of stresses included four components, which were obtained from Mohr’s 

circle, were used to test each subroutine separately for the two-dimensional problem. 



120 

 

Secondly, a set of stresses included six components, whose direction will be changed 

according to the order of x-direction, y-direction and z-direction, were given to test each 

subroutine for the three-dimensional problem. Table 6-11 indicates the detailed value of 

stresses for each test of each creep constitutive equations. 

The error was expected in following situations: 

1. If the error occurred on the two-dimensional form of constitutive equations; a) the 

result of creep strain and damage based on the first set of stress will be wrong 

when integration terminated, and b) the their life time will not be same; 

2. If the error occurred on the three-dimensional form of constitutive equations, the 

three creep strain curves will not coincide. 

Table 6-10 Material properties used to the test of normalized creep constitutive equations subroutine 

NOR_KR 

A n m B 

1.092×10−20 8.462 −4.754×10−4 3.537×10−17 

α φ χ E 

0.215 7.346 6.789 170×103 

 

Table 6-11 Stress for each test of normalized creep constitutive equations 

Two-dimensional problem 

0 degrees on the Mohr’s circle 70MPa; 0MPa; 0MPa; 0MPa 

45 degrees on the Mohr’s circle 59.74873734 MPa; 10.25126266 MPa; 24.74873734 MPa; 0MPa 

90 degrees on the Mohr’s circle 35MPa; 35MPa; 35MPa; 0MPa 

Three dimensional problem 

Uni-axial on x-direction 70MPa; 0MPa; 0MPa; 0MPa; 0MPa; 0MPa 

Uni-axial on y-direction 0MPa; 70MPa; 0MPa; 0MPa; 0MPa; 0MPa 

Uni-axial on z-direction 0MPa; 0MPa; 70MPa; 0MPa; 0MPa; 0MPa 

Result and verification 

Table 6-7 shows that, the stress tensor component on the x-direction is reduced according 

to the order of 0 degrees, 45 degrees and 90 degrees; hence, the corresponding creep 

strain in x-direction should be reduced according to the same sequence. To compare with 

the three curves shown on Figure 6-22, it is easy to find that not only the creep strain was 

reduced but also the rupture time is the same. This phenomenon is correct because the 

loaded stresses are from the same Mohr’s circle that has the same maximum principal 

stress and equivalent stress. 
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Table 6-7 shows that, the loaded stresses could be considered as the uni-axial tensile on x-

direction, y-direction and z-direction respectively; hence, the corresponding creep strain 

in x-direction, y-direction and z-direction should be the same. To compare with the three 

curves shown on Figure 6-23, it is easy to find that those creep strain curves of x-direction, 

y-direction and z-direction are exactly matched. This phenomenon is correct because the 

loaded stresses could be seen as the same, in which only the direction is different. 

 

Figure 6-22 Creep strain curve of normalized constitutive equations based on the stresses obtained 

from Mohr’s circle in x-direction 
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Figure 6-23 Creep strain curve of normalized constitutive equations based on the uni-axial tensile 

load in x-direction, y-direction and z-direction 

6.6 Nodal Loads Calculator 

6.6.1 Instruction of NLC 

The nodal loads calculator is an independent programme; hence, it does not need to 

design a specific testing programme. The user instruction was summarised below: 

1. Create a new file named xx.dat; 

2. The first line of input file is the number of element;  

3. The second line of input file is the expected pressure;  

4. The third line of input file is the coordinates of loaded direction of the first loaded 

node of each loaded element; 

5. The fourth line of input file is the coordinates of loaded direction of the second 

loaded node of each loaded element; 

6. Execute programme NLC; 

7. Enter xx.dat following the prompts; 

8. Enter any output file name following the prompts; 

9. Open the result file and see the result. 
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6.6.2 Statement testing cases  

NLC has its restriction of element type. Only 3-nodes triangle element and 4-nodes 

quadrilateral element can be resolved within general planar and axisymmetric cases; 

hence, a 700N uniform force was set as the expected load. Two elements and three loaded 

nodes were supposed and the coordinates of loaded node are (0, 60), (20, 60) and (40, 60).  

6.6.3 Result and verification 

Figure 6-24 shows nodal forces loaded on axisymmetric and planar elements. The nodal 

forces of axisymmetric element are 4666.6N, 28000N and 23333N respectively. The 

nodal forces of planar element are 700N, 1400N and 700N respectively.  

 

Figure 6-24 Nodal forces depend on axisymmetric case and planar case 

In order to verify those results, a hand calculation was conducted: 

6.6.3.1 Planar problem 

The nodal force loaded on first node of each element can be derived as, 

f1 node1 =
(20 − 0) × 70

2
= 700 

f1 node2 =
(40 − 20) × 70

2
= 700 

The nodal force loaded on second node of each element can be derived as, 

f2 node1 =
(40 − 20) × 70

2
= 700 

f 2 node2 =
(60 − 40) × 70

2
= 700 
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Since the first node of second element and second node of first element is the same node; 

fshared node = f1 node2 + f2 node1 = 1400  

These three nodal forces can be summarised in the sequence 700N, 1400N and 700N.  

6.6.3.2 Axisymmetric problem 

The nodal force loaded on first node of each element can be derived as, 

f1 node1 =
1

6
(r1

2 + r0r1 − 2r0
2) × P =

1

6
× (202 + 0 × 20 − 2 × 02) × 70 = 4666.669 

f1 node2 =
1

6
(2r1

2 − r0r1 − r0
2) × P =

1

6
× (2 × 202 − 0 × 20 − 02) × 70 = 9333.331 

The nodal force loaded on second node of each element can be derived as, 

f2 node1 =
1

6
(r1

2 + r0r1 − 2r0
2) × P =

1

6
× (402 + 20 × 40 − 2 × 202) × 70 = 18666.669 

f2 node2 =
1

6
(2r1

2 − r0r1 − r0
2) × P =

1

6
× (2 × 402 − 20 × 40 − 202) × 70 = 23333.331 

Since the first node of second element and second node of first element is the same node; 

hence, 

fshared node = f1 node2 + f2 node1 = 28000  

These three nodal forces can be summarised in the sequence 4666.669N, 28000N and 

23333.331N.  

To compare the hand calculation results and the results obtained from NLC, those two are 

the same; thus, the correctness of programme NLC was proved. 

6.7 Data Transfer Interface 

6.7.1 Instruction of DTI 

The data transfer interface is an independent programme; hence, it does not need to design 

a specific testing programme. The input files of DTI include the Neutral file produced by 

FEMGV with the suffix of ‘.anl’ and the data file produced by the solver with the suffix 

of ‘.res’. The execution of programme DTI is very simple, requiring just clicking and 
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entering information following the prompts. The required information includes a) the type 

of transfer process, which is restricted to the character of ‘pre-processing’ or ‘post-

processing’; and b) the name of input and output file. The output files of DTI include the 

Neutral file produced for FEMGV with the suffix of ‘.fvi’ and the data file produced for 

the solver with the suffix of ‘.dat’. 

6.7.2 Statement of testing cases  

Two cases were implemented in this testing, one is for pre-processing transfer and the 

other is for post-processing transfer. Six elements geometry was created by FEMGV 

shown on the Figure 6-25. This geometry includes twelve nodes, 20mm in width and 

60mm in height; its bottom was restricted in y-direction and left side was restricted in x-

direction. A file called DTI.res, which is used to test the post-processing transfer, is 

attached in appendix 10.4.7.  

 

Figure 6-25 Geometry model used for pre-processing transfer test 

6.7.3 Result and verification 

The nodal force was applied on the top. The coordinates of this geometry was shown in 

the Table 6-12. Figure 6-26 presented the transfer result of pre-processing. To compare 

with Table 6-12, Figure 6-25 and Figure 6-26, it could be observed that, the node 

coordinate, element definition and constrains has been transferred directly and correctly; 

however, the nodal loads part needs need the help of NLC 
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Table 6-12 Coordinates of geometry used for pre-processing transfer 

node x-direction y-direction z-direction 

1 0.0000000E+00 0.0000000E+00 0.0000000E+00 

2 1.0000000E+01 0.0000000E+00 0.0000000E+00 

3 2.0000000E+01 0.0000000E+00 0.0000000E+00 

4 0.0000000E+00 2.0000000E+01 0.0000000E+00 

5 1.0000000E+01 2.0000004E+01 0.0000000E+00 

6 2.0000000E+01 2.0000000E+01 0.0000000E+00 

7 0.0000000E+00 4.0000000E+01 0.0000000E+00 

8 1.0000000E+01 4.0000000E+01 0.0000000E+00 

9 2.0000000E+01 4.0000000E+01 0.0000000E+00 

10 0.0000000E+00 6.0000000E+01 0.0000000E+00 

11 1.0000000E+01 6.0000000E+01 0.0000000E+00 

12 2.0000000E+01 6.0000000E+01 0.0000000E+00 

 

 

Figure 6-26 Result file of pre-processing transfer 
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Figure 6-27, Figure 6-28, Figure 6-29, Figure 6-30 and Figure 6-31 all show the result of 

post-processing transfer. The contour of elastic stress, elastic strain, creep strain and creep 

damage look uneven because the actual change of value (result) occurs after the fourth 

effective digital. Detailed values could be found in appendix 10.4.7. 

In order to understand this problem14, Figure 6-28 is used as the example to show the 

details. From 10.4.7, the elastic stress in y-direction could be summarized as: 

Table 6-13 Elastic stress in y-direction 

Element 1 
Integration point 1 39.999982450985883 

Integration point 2 39.999982450985883 

Integration point 3 39.999982450985883 

Element 2 
Integration point 1 39.999994616455837 

Integration point 2 39.999994616455837 

Integration point 3 39.999994616455837 

Element 3 
Integration point 1 40.000052893418300 

Integration point 2 40.000052893418300 

Integration point 3 40.000052893418300 

Element 4 
Integration point 1 39.999965270768499 

Integration point 2 39.999965270768499 

Integration point 3 39.999965270768499 

Element 5 
Integration point 1 40.000434237458435 

Integration point 2 40.000434237458435 

Integration point 3 40.000434237458435 

Element 6 
Integration point 1 40.000298000417629 

Integration point 2 40.000298000417629 

Integration point 3 40.000298000417629 

Element 7 
Integration point 1 40.000358204542437 

Integration point 2 40.000358204542437 

Integration point 3 40.000358204542437 

Element 8 
Integration point 1 40.000316568443083 

Integration point 2 40.000316568443083 

Integration point 3 40.000316568443083 

                       

From the scales of Figure 6-28, the stress represented by the dark blue is less than the 

stress represented by light blue; moreover, from Figure 6-27, the elements on the above of 

square is element 1 to 4 from left side to right side. Compared with Table 6-13, the 

observation satisfies the actual values. Use the same method, Figure 6-29, Figure 6-30 

and Figure 6-31 can be proved as well.  

                                                 
14 Figure 6-28 to 6-31 are a same problem about meaningless scales. The scales of FEMGV normally 

reserves three effective digitals, but the actual change occurs after the fourth effective digital.  
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Figure 6-27 Displacement shape in y-direction 

 

Figure 6-28 Contour of elastic stress y-direction 
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Figure 6-29 Contour of elastic strain y-direction 

 

Figure 6-30 Contour of creep strain y-direction 
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Figure 6-31 Contour of creep damage 

6.8 Summary 

The tests of subroutines and programmes were designed based on the major concerned 

problems. The flowcharts of each test programme were presented to show the detailed 

structure clearly. A number of test cases, which include the input and output, were 

introduced specifically in order to validate the developed subroutines and programmes in 

this research. Most results were summarised into tables and curves for the convenience of 

the reader. The order of testing of subroutine and programme was arranged according to 

the independence of each subroutine. The core part is creep constitutive equations; 

therefore, the first stage of research was launched around creep constitutive equations. In 

total, 10 subroutines and 2 programmes were developed, and these subroutines and 

programmes could be divided into 7 categories. 

Table 6-14 indicates the validation purpose and method of all subroutines and 

programmes which developed in this research. They are specific to that 1) constitutive 

equations subroutines include KR, PH and QX; 2) stress transformation subroutine TRS; 

3) numerical method subroutines include EULER, RK4, RKM and RKF; 4) Time-step 

control subroutine TSC; 5) normalization subroutine includes NOR_KR; 6) Nodal loads 

calculator is a programme NLC; and 7) Data transfer interface is a programme DTI.  



131 

 

Table 6-14 Summary of each tests 

Name Description 

TRS Two set of supposed stress tensor each have four components and six components were given. 

Hand calculation was reported to compare with the results obtained from TRS. 

EULER 
A supposed function was coded based on CESL for this testing. Its exact solution was given to 

compare with the result obtained from each subroutine. It can not only prove the correctness of 

each subroutine, but also understand the accuracy of each numerical method. 

RK4 

RKM 

RKF 

KR 
Three set of material properties were given for each constitutive equation. A single stress state 

was implemented firstly to prove the correctness of the uni-axial form of constitutive equations. 

The plane stress state, which includes uni-axial tensile, bia-axial, and pure shear, was 

implemented secondly to prove the correctness of each subroutine within 2D environment. 

The 3D stress state, which contains the uni-axial tensile of each normal stress direction, was 

implemented to prove the correctness of each subroutine within 3D environment. 

PH 

QX 

TSC 
A supposed time-step control value was given to test the time-step will be reduced when 

required. Additionally, TSC was implemented with PH and RKM to present the time-step 

control procedure. 

NOR_KR 

The plane stress state, which includes uni-axial tensile, bia-axial, and pure shear, was 

implemented secondly to prove the correctness of each subroutine within 2D environment. 

The 3D stress state, which contains the uni-axial tensile of each normal stress direction, was 

implemented to prove the correctness of each subroutine within 3D environment. 

NLC A simple case was supposed, and its loaded node number, inner radius and outer radius of each 

node were given to NLC. Hand calculation was reported to prove the correctness of NLC. 

DTI A simple square case was simulated; the pre- and post-processing transfer was proved through 

the solver and FEMGV. 
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7 EXPLORATION OF THE 

PERFORMANCE OF 

NUMERICAL METHODS, 

TIME-STEP CONTROL 

PROCEDURE AND 

NORMALIZATION SCHEME 

This chapter explores a series of performance problems of the subroutines developed by 

this research. This discussion includes the performance exploration of numerical method 

subroutines, time-step control subroutine and normalization subroutine. Numerical 

method subroutines, currently includes EULER subroutine, RK4 subroutine, RKM 

subroutine and RKF subroutine; however, the quantitative analysis of those numerical 

methods is deficient. The sensitivity of self-adaptive method of RKF method is an issue; it 

was observed that the self-adaptive method of RKF method is invalid in the testing of 

time-step control subroutine. Thus, it will be covered in this chapter. Normalization 

approach is suggested to enhance the accuracy and power of computation. It expands (or 

shrinks) proportionately the independent variables and dependent variables through 

mathematical theory. The quantitative analysis was conducted to show the effects of the 

normalization approach through a set of experiments. 
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7.1 Performance of Numerical Integration Methods  

The author has addressed application of RKF method for creep damage analysis; however, 

its practical performance is uncertain. In order to have an intuitive understanding, some 

general approaches were applied to conduct a set of comparative tests. Traditionally, 

RKM method is normally suggested in creep damage analysis due to its superiority of 

accuracy (Hayhurst et al., 1984, Ling et al., 2000); moreover, Euler’s method is also used 

by some researchers based on a critical time-step size (Wang and Wang, 1996). The RK4 

method was also discussed. In here, only the performance of numerical method 

subroutines was focused on; thus, the mathematical superiorities of the numerical method 

itself will not be addressed. 

7.1.1 Experiments design 

Euler’s method was used to find the closest exact solution since its accuracy could be 

improved by constantly reducing the time-step size; it aims to set a basis for comparison. 

RK4 method, RKM method and RKF method will be implemented separately, which are 

based on the time-step of 0.1 hour to ensure the consistency of the experiments. Due to 

the performance of integration accuracy being the only issue concerned in this experiment, 

a unified termination time-line was set which is 980 hours.   

The uni-axial form of Perrin’s constitutive equations was used to implement these 

experiments. The same material and loaded stress will be adopted in order to ensure the 

consistency of this experiment. 70MPa uniform stress was applied, and the material 

properties are presented in Table 7-1. Only the error of creep strain will be compared to 

give a quantitative result of the performance of each numerical method subroutine. A 

programme called NMSexp was developed to conduct these experiments and subroutine 

EULER, RK4, RKM and RKF were used; its detailed source code was attached in 

appendix 10.5.1. For Euler’s method only, five time-steps, which are 1 hour, 0.1 hour, 

0.01 hour, 0.001 hour and 0.0001 hour, were used to conduct the continuous reduction of 

time-step size. 

Table 7-1 Material properties of Perrin-Hayhurst constitutive equations 

A B h Kc H* C ν 

6.216×10−8 0.15 1.0×104 4.998×10−4 0.35 2.0 1.32 
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7.1.2 Result and discussion 

According to the experimental setting, the first discussion was given to the finding of the 

closest exact solution. Table 7-2 shows the five sets of running time and final rupture 

strain based on Euler’s method. When the time-step reduced until 0.001 hour, the 

computing speed of Euler’s method was rapidly decreased; the improvement of rupture 

strain almost could be ignored in practical applications once the time-step is less than 0.01 

hour. However, because this is an exploratory experiment, the results obtained based on 

0.0001 hour were used to be the comparative basis. 

Table 7-2 Running time and rupture strain based on Euler’s method using time-step size of 1 hour, 

0.1 hour, 0.01 hour, 0.001 hour and 0.0001 hour 

Time-step/hours Running 

time/second 

Increase Rupture strain Improvement 

1 3.12×10-2 base 0.160324134 base 

0.1 4.68×10-2 50% 0.182306477 13.71% 

0.01 9.36×10-2 200% 0.184732961 15.22% 

0.001 5.93×10-1 1800.64% 0.184987248 15.38% 

0.0001 5.46 17400% 0.185012809 15.40% 

 

Moreover, Figure 7-1 and Figure 7-2 shows an intuitive understanding of the changes 

based on the reduction of time-step. The creep strains based on the time-step of 1 hour 

were deducted from the creep strains based on the time-step of 0.1 hour, 0.01 hour, 0.001 

hour and 0.0001 hour separately according to the corresponding time point; hence, four 

relative error curves of creep strain could be plotted. Figure 7-1 shows the relative error 

curves of Euler’s method using time-steps of 0.1 hour, 0.01 hour, 0.001 hour and 0.0001 

hour, which only displayed the data of 0 hour to 800 hour. It is obvious to see that, the 

relative error of time-step 1 hour vs 0.1 hour has an obvious difference with the other 

three curves. However, the differences between the relative error of time-step 1 hour vs 

0.01 hour, the relative error of time-step 1 hour vs 0.001 hour and the relative error of 

time-step 1 hour vs 0.0001 hour are not large. 

In order to find the minor difference, those curves were zoomed in the time range of five 

hours, and the new curves were display on Figure 7-2. It could be seen that, there is 

almost no difference when the time-step is reduced to less than 0.001 hour; however, due 

to the critical requirement of accuracy, the creep strain curve of time-step 0.0001 hours 

was adopted to be similar to the exact solution. 
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Figure 7-1 Relative error curves of Euler’s method using time-step of 0.1 hour, 0.01 hour, 0.001 hour 

and 0.0001 hour, only displayed from 0 hour to 800 hours  

 

Figure 7-2 Relative error curve of Euler’s method using time-step of 0.1 hour, 0.01 hour, 0.001 hour 

and 0.0001 hour, only displayed from 975 hours to 980 hours 

The second discussion will be given to the accuracy and efficiency comparison of 

subroutine RK4, RKM and RKF. Figure 7-3 presents the relative error curves based on 
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of RK4 increased across the curve of RKF; its increased tendency has a change at 400 

hours because the default value of time-step is unsuitable from this time moment. The 

curves based on RKM and RKF have the same performance in the initial 300 hours; 

however, a significant change occurs at this time moment, where the relative error of 

RKM increased faster than the value of RKF.  

Moreover, the subsequent changes can be observed from Figure 7-4 which presents the 

relative error curves based on RK4 method, RKM method and RKF method respectively 

from 960 to 980 hours. In summary, subroutine RKF has a poor start but its accuracy 

could be guaranteed during whole integration process; subroutine RKM needs the 

reduction of time-step size to keep the same accuracy of RKM. Based on the almost same 

running time of subroutine RK4, RKM and RKF, it could be identified that subroutine 

RKF has the best performance based on constant time-step size in this exploration. 

 

Figure 7-3 Relative error curves of RK4 method, RKM method and RKF method, which based on the 

Euler’s method using time-step of 0.0001 hour, only displayed from 0 hours to 800 hours 
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Figure 7-4 Relative error curves of RK4 method, RKM method and RKF method, which based on the 

Euler’s method using time-step of 0.0001 hour, only displayed from 960 hours to 980 hours 

7.2 Self-adaptive approach of Runge-Kutta-Fehlberg method 

The unexpected performance of self-adaptive method of RKF method was observed in the 

testing of time-step control subroutine. The accuracy of RKF method and the acceptance 

criteria self-adaptive method of RKF method were questioned. The accuracy of RKF 

method has been proved through further discussion in 6.4.3.2 and 7.1.2; however, the 

acceptance criteria of RKF method were still suspected. The self-adaptive method of RKF 

method will be discussed in order to clear this uncertain factor.  

7.2.1 Experiments design 

The acceptance of time-step may not be critical enough in creep damage analysis 

environment; hence, a set of comparative experiments were conducted to find the answer. 

The function 𝑦′ = y − 𝑡2 + 1 was adopted to prove that the time-step acceptance of RKF 

method is available. Such function was coded as a subroutine called NTEST according 
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The uni-axial form of Perrin’s constitutive equations was selected to implement the 

comparative experiments. 70MPa uniform stress was applied, and the material properties 

are presented in Table 7-3 and the time-steps are 1 hour and 2 hour respectively.  

A programme called TSCexp was developed to conduct these experiments; its detailed 

source code is attached in appendix 10.5.2. 

Table 7-3 Material properties of Perrin-Hayhurst constitutive equations 

A B h Kc H* C ν 

6.216×10−8 0.15 1.0×104 4.998×10−4 0.35 2.0 1.32 

 

7.2.2 Result and discussion 

The results produced by subroutine NTEST could identify the working status of the self-

adaptive approach of the RKF method. Figure 7-5 presented the results based on 

subroutine NTEST using initial time-step of 0.2 and 0.4 respectively. When the initial 

time-step of 0.2 was employed, the subsequent time-step size does not change. It could be 

said that the time-step of 0.2 satisfies the predict accuracy requirements. When the initial 

time-step of 0.4 was employed, the subsequent time-step size was reduced to 0.2, and it 

will not change any more until to the end. Obviously, the self-adaptive technique of RKF 

method is working. 

 

Figure 7-5 Results of subroutine NTEST based on the initial time-step of 0.2 and 0.4 

Further experiments have been conducted. Figure 7-6 presented the results of subroutine 

PH based on the initial time-step of 1 hour and 2 hour. The first significant observation is 

that the time-step size never changed during the whole integration process whether based 

on the initial time-step of 1 hour or 2 hour. This shows that the acceptance criteria should 

be identified in order to satisfy the requirements of creep damage analysis. The second 

significant observation is that the accuracy has been decreased when the time-step size 
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increased. This shows that the acceptance criteria should be identified in order to satisfy 

the requirements of creep damage analysis again. 

 

Figure 7-6 Results of subroutine PH based on the initial time-step of 1 hour and 2 hour 

7.3 Normalization Technique 

A mathematical approach called normalization was applied in this research in order to 

enhance the accuracy and efficiency of integration of constitutive equations; however, the 

practical performance of this subroutine should be quantitatively analysed before being 

recommended to users. In here, only the performance of normalization subroutine was 

focused on; thus, the mathematical superiority of normalization itself will not be 

discussed. 

7.3.1 Experiments design 

In order to test the performance of normalization subroutine, a set of comparative tests 

were proposed. The same material and loaded stress will be adopted in order to ensure the 

consistency of this experiment. Table 7-4 shows the detailed parameters of material 

property; moreover, it could be seen that the argument of B is different between non-

normalized material properties and normalized material properties. This arguments should 

be normalized according to Eq. ( 4-57 ) before being used. 70MPa was adopted as the 

loaded stress and the time-step size is 1 hour. Since the results produced by normalization 

subroutine are normalized, they should be converted to the non-normalized value to 

perform the final comparison. The running time, creep strain and damage will be 

compared to give a quantitative result of the performance of normalization subroutine. 
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Programme CEScheck and NORcheck were used to conduct this experiment, and 

Microsoft Excel was use to convert those normalized results and to produce visualized 

results. 

Table 7-4 Material properties used for the performance investigation of normalized subroutine 

Non-normalized material properties 

A n m B φ χ α 

1.092×10−20 8.462 −4.754×10−

4 

3.537×10−17 7.346 6.789 0.215 

Normalized material properties 

A n m B' φ χ α 

1.092×10−20 8.462 −4.754×10−

4 

4.238×10−18 7.346 6.789 0.215 

 

7.3.2 Results and discussion 

The normalization technique enhances the integration of the creep constitutive equations 

through redefinition of time, stress and strain15; hence, this first discussion was given to 

the changing scope of time-step size. According to the time scale conversion formula 

( 7-1 ), the real time could be obtained. 

t = [
τ(m + 1)

AEσ0
n−1

]

(
1

m+1
)

 ( 7-1 ) 

where, t is real time; 𝜏 is normalized time; σ0 is the stress used for normalization; and, E 

is the Young’s modulus; 

Figure 7-7 presents converted results of normalized time of the whole integration process. 

The phenomenon was observed, where the equivalent real time rapidly changed during 

the first 200 hours then going into the steady state in the rest. It means the critical 

requirement of time-steps of creep tertiary stage based on non-normalized method was 

ameliorated. The changing scope of equivalent real time is between 0.9183 hour and 

0.9219 hour; only 0.36% change occurred during almost 1200 hours. Compared with 

time-step used for non-normalized method, the mean error will not exceed 8%; therefore, 

                                                 
15 The redefined time, stress and strain are called normalized time, stress and strain; hence, the time-step 

used for integrating normalized constitutive equations is different with the real time-step. The normalized 

time-step does not use the unit such as seconds, minute or hour, and each normalized time-step does not 

represent a fixed real time-step. Generally, a normalized time-step can be seen as a solution of an ungiven 

function of real time-step. 
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this exploration could continue since the consistency of experiment was essentially 

ensured. 

 

Figure 7-7 Equivalent real times of normalized method 

The normal creep strain and lifetime based on both the normalization method and non-

normalization method are shown on Figure 7-8. The enhancements of the normalization 

technique could be summarised according to lifetime, creep strain and running time. The 

lifetime obtained by the normalized technique is almost 1200 hours, but the result from 

the non-normalized method is just over 1000 hours; thus, the lifetime has 17.14% 

improvement through the normalized approach. The creep strain obtained by the 

normalized technique is over 0.37, but the result from the non-normalized method is 0.33; 

hence, the creep rupture strain has 14.24% improvement through the normalized approach. 

The normalized time-step was set as 0.1 and the non-normalized time-step was set as 1 

hour; however, the running time based on the normalization subroutine is only 27.13% 

more than the normal constitutive equations subroutine. Therefore, the efficiency of 

subroutine has been greatly improved. 
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Figure 7-8 Creep strain curve using normalized approach and non-normalized approach 

7.4 Summary  

The performance exploration of numerical method subroutines, time-step control 

subroutine and normalization subroutine has been conducted. Based on the constant time-

step size, subroutine RKF has the best performance of accuracy and efficiency; however, 

there is an issue with its self-adaptive technique. The existing acceptance criteria of time-

step size do not satisfy the accuracy requirements of creep damage analysis. The 

normalization technique could enhance the accuracy and efficiency of numerical 

integration of creep constitutive equations a lot; however, it should be studied first since it 

involves the modification of the original constitutive equations.   
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8 CONCLUSION AND FURTHER 

WORK 

This chapter summarizes the major contributions of this research. Some novel methods 

and techniques have been used and explored. A number of theoretical analysis process, 

subroutine/programme development process and subroutine/programme validation 

process are presented. The major outcomes of this research are summarized. In the end, 

further development of HITSI is also discussed. 

8.1 Contributions 

This research contributed to develop a novel in-house finite element solver for the 

research of creep damage analysis. A unified finite element software does not exist in 

present creep research domain due to the lack of unified constitutive model that could be 

applied in all materials. In view of this situation, this in-house code was developed based 

on these superiorities listed below. 

 General models, whether plane stress, plane strain, axisymmetric or three-

dimension are considered; 

 Its scalability is guaranteed due to the standardized programming applied. It 

enables the potential user to apply their own constitutive equations directly 

without any understanding of programming of finite element method; 

 Diversified numerical methods are available, enables more advanced and accurate 

integration methods to be introduced into creep damage analysis. 
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The second contribution of this research is the development of prototype of the data 

transfer interface that called DTI. All of the traditional commercial finite element 

software such as ABAQUS, ANSYS and FEMGV have their own data transfer interface 

to keep their compatibility and versatility. DTI not only fills the gap between the solver 

and FEMGV, but also enables the solver to be commercialized based on the platform of 

FEMGV in the future. Moreover, the DTI will not restricted to FEMGV only, it can be 

interfaced (through a formatted neutral text file) with any commercial FE package. 

8.2 Conclusion 

In order to fulfil the aim and objectives of this research, a number of issues have been 

studied and investigated, which include modular conversion of applied stress, 

standardized programming of constitutive equations and numerical methods, accuracy 

enhancement through self-adaptive method and normalization method. Moreover, 

formatted input and output has also been studied in order to build a useful logical control 

data transfer interface. General software development processes including requirement 

analysis, design and testing have been performed. The major outcomes of this research are 

summarised below. 

A unified programming standard of the subroutine of constitutive equations has been 

identified. The key parts of the constitutive equations such as stress functions, time 

functions and temperature functions have been classified. Three explicit-shape real arrays 

were used to hold the arguments of creep strain and damage, stress and material properties. 

Due to the argument of time is a dynamic variable, an independent real variable was 

arranged to it. Normally, the temperature is a constant, so it was included as a function in 

the material properties. 

The matched numerical method subroutines have been developed. Based on the present 

structure of these numerical method subroutines, the arguments of creep strain rate and 

creep damage rate will never appear on the main programme of the solver; hence, the 

memory of those arguments will be released when the present integration process is 

complete. 

A modular conversion subroutine of stress has been developed. Compared with using the 

existing subroutines, its advantages are obvious; for example, the memory requirement of 

the main programme of the solver was reduced. Due to the embedded design, the system 
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of two-dimensions and three-dimensions do not need to be distinguished. The dimensions 

could be changed automatically. 

The research of accuracy and efficiency based on numerical methods has been done. The 

instability during serving the constitutive equations of RK4 method was observed; 

moreover, the sensitivity of the self-adaptive technique of RKF method has been 

discussed. In summary, the attempt of introducing new numerical methods does not 

achieve the expectation. 

The improvement of efficiency and accuracy has been tried from a mathematical aspect. 

A significant result was obtained, and could be summarized as: 

 No more than 8% reduction of time-step leads to an increase of 27.13% in 

computational speed; 

 The lifetime and rupture strain have the increases of 17.4% and 14.24% based on 

this method. 

The boundary conditions of nodal loads and element definition have been solved. The 

general algorithm used to allocate a concentrated force to loaded nodes has been studied; 

however, the method of allocation itself is a challenge that leads to the pre-processing 

transfer being not perfect. A temporary solution, called nodal loads calculator has been 

developed in view of this situation. 

8.3 Further Work 

The research work presented in this thesis is a primary stage of the development of HITSI 

since this system has been developed three years ago from nothing. Further research could 

be conducted based on HITSI to enhance its capability.  

The further works related to this research are listed below: 

1. The capability of the data transfer interface should be enhanced. Especially, the 

conversion of nodal loads should be integrated into the data transfer interface to 

enable the pre-processing transfer to be accomplished automatically. Furthermore, 

based on the present algorithm developed by the author, a number of data types 

could be included such as more element types, more constraint types and more 
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load types. To enable the data transfer interface to be visualized is another 

research direction. 

2. More creep constitutive equations and numerical methods could be collected and 

coded based on the standardized subroutine template developed by the author. 

This enhancement of constitutive equations subroutine library and numerical 

method subroutine library enables HITSI to be commercialized.  
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10.2 Source Code of Tan_library，NLC and DTI 

      module tan_library 

        contains 

        ! 

        ! Purpose: 

        !   Coded for the develpment of HITSI, and it includes: 

        !     1. KR, PH, QX (constitutive equations) 

        !     2. EULER, RK4, RKM, RKF (numerical integration method) 

        !     3. TRS (transformation of stress tensor) 

        !     4. TSC (time-step control procedure) 

        !     5. NOR_KR (normalization scheme) 

        ! Record of revisions: 

        !     Date           Programmer         Description of change 

        !     ====           ==========         ===================== 

        !  21/09/2014          F. Tan               Original code 

        ! 

      subroutine TRS (sigma,stress) 

        implicit none 

        doubleprecision, intent(in) :: sigma(:) 

        doubleprecision, intent(out) :: stress(:) 

        doubleprecision :: sx, sy, sz, txy, tyz, tzx, pi, j2, j3,  

     &  sig0, loang, es 

        doubleprecision, dimension(3) :: ps 

        integer :: nos 

        nos = ubound(sigma,1) 

        pi = 3.1415926 

!---------------------stress terms rearrangement--------------------- 

        select case (nos) 

        case (4) 

            sx = sigma(1); sy = sigma(2); sz = sigma(4) 

            txy = sigma(3); tyz = 0.0; tzx = 0.0 

            case (6) 

                sx = sigma(1); sy = sigma(2); sz = sigma(3) 

                txy = sigma(4); tyz = sigma(5); tzx = sigma(6) 

                case default 

                    print*, "Error on stress rearrangement in TRS" 

                    end select 

!----------------------------hydrostatic----------------------------- 

        sig0 = (sx+sy+sz)/3. 

!----------------------------invariants------------------------------ 

        j2 = ((sx-sy)**2+(sy-sz)**2+(sz-sx)**2)/6.+txy**2+tyz**2+ 

     &        tzx**2 

        j3 = (sx-sig0)*(sy-sig0)*(sz-sig0)+2*txy*tyz*tzx- 

     &       (sx-sig0)*tyz**2-(sz-sig0)*txy**2-(sy-sig0)*tzx**2 

!----------------------------load angle------------------------------ 

        loang = asin((-sqrt(27.)*j3)/(2.*sqrt(j2**3)))/3. 

!-------------------------principal stress--------------------------- 

        ps(1) = 2.*sqrt(j2)/sqrt(3.)*sin(loang+2.*pi/3.)+sig0 

        ps(2) = 2.*sqrt(j2)/sqrt(3.)*sin(loang)+sig0 

        ps(3) = 2.*sqrt(j2)/sqrt(3.)*sin(loang-2.*pi/3.)+sig0 

!-------------------------equivalent stress-------------------------- 

        es = 1/sqrt(2.)* 

     &       sqrt((ps(1)-ps(2))**2+(ps(2)-ps(3))**2+(ps(3)-ps(1))**2) 

!-------------------------result updatiing--------------------------- 

        select case (nos) 

        case (4) 

            stress(1) = sx-sig0; stress(2) = sy-sig0; stress(3) = txy 

            stress(4) = sz-sig0; stress(5) = ps(1); stress(6) = ps(2) 

            stress(7) = ps(3); stress(8) = es 

        case (6) 
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            stress(1) = sx-sig0; stress(2) = sy-sig0; stress(4) = txy 

            stress(3) = sz-sig0; stress(5) = tyz; stress(6) = tzx 

            stress(7) = ps(1); stress(8) = ps(2); stress(9) = ps(3) 

            stress(10) = es 

            case default 

                print*, "wrong size for nos in TRS" 

                end select 

                return 

                end subroutine TRS 

                 

      subroutine EULER (func,y,t,dt,stress,mat,nos,nom,noe) 

        implicit none 

        external :: func 

        integer, intent(in) :: nos, nom, noe 

        doubleprecision, intent(inout) :: y(noe) 

        doubleprecision, intent(in) :: stress(nos), mat(nom) 

        doubleprecision, intent(in) :: t, dt 

        doubleprecision :: k(noe) 

!-------------------------derivative solving------------------------- 

        call func(k,y,t,stress,mat,nos,nom,noe) 

!--------------------------increment update-------------------------- 

        y = y+k*dt 

        return 

        end subroutine EULER 

  

      subroutine RK4 (func,y,t,dt,stress,mat,nos,nom,noe) 

        implicit none 

        external :: func 

        integer, intent(in) :: nos, nom, noe 

        doubleprecision, intent(inout) :: y(noe) 

        doubleprecision, intent(in) :: stress(nos), mat(nom) 

        doubleprecision, intent(in) :: t, dt 

          doubleprecision :: k1(noe), k2(noe), k3(noe), k4(noe), 

     &                       mfs(noe) 

!-------------------------derivative solving------------------------- 

          call func(k1,y,t,stress,mat,nos,nom,noe) 

          call func(k2,y+dt/2*k1,t+dt/2,stress,mat,nos,nom,noe) 

          call func(k3,y+dt/2*k2,t+dt/2,stress,mat,nos,nom,noe) 

          call func(k4,y+dt*k3,t+dt,stress,mat,nos,nom,noe) 

!--------------------------increment update-------------------------- 

          mfs = (k1+2*k2+2*k3+k4)/6 

          y = y+mfs*dt 

          return 

          end subroutine RK4 

  

      subroutine RKM (func,y,t,dt,stress,mat,nos,nom,noe,rcv) 

        implicit none 

        external :: func 

        integer, intent(in) :: nos, nom, noe 

        doubleprecision, intent(inout) :: y(noe) 

        doubleprecision, intent(in) :: stress(nos), mat(nom) 

        doubleprecision, intent(in) :: t, dt 

        integer, intent(out) :: rcv 

        doubleprecision :: maoi 

        doubleprecision :: k1(noe), k2(noe), k3(noe), k4(noe), 

     &                     k5(noe), mfs(noe), loer(noe), aoi(noe) 

!-------------------------derivative solving------------------------- 

          call func(k1,y,t,stress,mat,nos,nom,noe) 

          call func(k2,y+dt/3.*k1,t+dt/3.,stress,mat,nos,nom,noe) 

          call func(k3,y+dt/6.*(k1+k2),t+dt/3.,stress,mat,nos,nom, 

     &              noe) 
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          call func(k4,y+dt/8.*(k1+3*k3),t+dt/2.,stress,mat,nos,nom, 

     &              noe) 

          call func(k5,y+dt/2.*(k1-3.*k3+4.*k4),t+dt,stress,mat,nos, 

     &              nom,noe) 

!--------------------------increment update-------------------------- 

          mfs = (k1+4.*k4+k5)/6. 

          y = y+mfs*dt 

!-----------------------self-adaptive technique---------------------- 

          loer = (2*k1-9*k3+8*k4-k5)/30. 

          aoi = loer/mfs 

          maoi = maxval(aoi) 

          if (maoi<0.001) then 

            rcv = 0 

            else 

                rcv = 1 

                end if 

                return 

                end subroutine RKM 

  

      subroutine RKF (func,y,t,dt,stress,mat,nos,nom,noe,rcv) 

        implicit none 

        external :: func 

        integer, intent(in) :: nos, nom, noe 

        doubleprecision, intent(inout) :: y(noe) 

        doubleprecision, intent(in) :: stress(nos), mat(nom) 

        doubleprecision, intent(in) :: t, dt 

        integer, intent(out) :: rcv 

        doubleprecision :: maoi 

        doubleprecision :: k1(noe), k2(noe), k3(noe), k4(noe),  

     &                     k5(noe), k6(noe), mfs4(noe), mfs5(noe),  

     &                     aoi(noe), ybar(noe) 

!-------------------------derivative solving------------------------- 

        call func(k1,y,t,stress,mat,nos,nom,noe) 

        call func(k2,y+dt/4.*k1,t+dt/4.,stress,mat,nos,nom,noe) 

        call func(k3,y+dt/32.*(3.*k1+9.*k2),t+3.*dt/8.,stress,mat, 

     &            nos,nom,noe) 

        call func(k4,y+dt/2197.*(1932.*k1-7200.*k2+7296.*k3), 

     &            t+12.*dt/13.,stress,mat,nos,nom,noe) 

        call func(k5,y+dt/4104.*(8341.*k1-32832.*k2+29440.*k3- 

     &            845.*k4),t+dt,stress,mat,nos,nom,noe) 

        call func(k6,y+dt*(-(8./27.)*k1+2*k2-(3544./2565.)*k3+(1859./ 

     &           4104.)*k4-(11./40.)*k5),t+dt/2.,stress,mat,nos,nom, 

     &           noe) 

        mfs4 = (25./216.)*k1+(1408./2565.)*k3+(2197./4104.)*k4- 

     &         (1./5.)*k5 

        mfs5 = (16./135.)*k1+(6656./12825.)*k3+(28561./56430.)*k4- 

     &         (9./50.)*k5+(2./55.)*k6 

!--------------------------increment update-------------------------- 

        ybar = y+mfs4*dt 

        y = y+mfs5*dt 

!-----------------------self-adaptive technique---------------------- 

        aoi = (dt*1e-5/(2.*abs(y-ybar)))**0.25 

        maoi = maxval(aoi) 

        if (maoi<1) then 

            rcv = 1 

            else 

                rcv = 0 

                end if 

                return 

                end subroutine RKF 
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      subroutine KR (f,x,t,stress,mat,nos,nom,noe) 

        implicit none 

        integer, intent(in) :: nos, nom, noe 

        doubleprecision, intent(in) :: stress(nos), mat(nom), x(noe) 

        doubleprecision, intent(in) :: t 

        doubleprecision, intent(out) :: f(noe) 

        doubleprecision :: sx, sy, sz, txy, tyz, tzx, mps, es 

        doubleprecision :: A, n, m, B, phi, chi, alpha, rs 

!---------------------stress terms rearrangement--------------------- 

        select case (nos) 

        case (1) 

            sx = stress(1); sy = 0.0; sz = 0.0; txy = 0.0 

            tyz = 0.0; tzx = 0.0; mps = 0.0; es = 0.0 

            case (8) 

                sx = stress(1); sy = stress(2); txy = stress(3) 

                sz = stress(4); mps = stress(5); es = stress(8) 

                tyz = 0.0; tzx = 0.0 

                case (10) 

                    sx = stress(1); sy = stress(2); sz = stress(3) 

                    txy = stress(4); tyz = stress(5); tzx = stress(6) 

                    mps = stress(7); es = stress(10) 

                    case default 

                        print*, "Error on stress rearrangement in KR" 

                        end select 

!------------------material properties rearrangement----------------- 

        A=mat(1); n=mat(2); m=mat(3); B=mat(4); phi=mat(5); chi=mat(6) 

        alpha=mat(7); rs=alpha*mps+(1.-alpha)*es 

!--------------------creep constitutive equations-------------------- 

        select case (noe) 

        case (2) 

            f(1)=A*((sx/(1-x(2)))**n)*(t**m) 

            f(2)=B*(sx**chi)/((1-x(2))**phi)*(t**m) 

            case (5) 

                f(1)=(3./2.)*(sx/es)*A*((es/(1-x(5)))**n)*(t**m) 

                f(2)=(3./2.)*(sy/es)*A*((es/(1-x(5)))**n)*(t**m) 

                f(3)=(3./2.)*(txy/es)*A*((es/(1-x(5)))**n)*(t**m) 

                f(4)=(3./2.)*(sz/es)*A*((es/(1-x(5)))**n)*(t**m) 

                f(5)=B*(rs**chi)/((1-x(5))**phi)*(t**m) 

                case (7) 

                    f(1)=(3./2.)*(sx/es)*A*((es/(1-x(7)))**n)*(t**m) 

                    f(2)=(3./2.)*(sy/es)*A*((es/(1-x(7)))**n)*(t**m) 

                    f(3)=(3./2.)*(sz/es)*A*((es/(1-x(7)))**n)*(t**m) 

                    f(4)=(3./2.)*(txy/es)*A*((es/(1-x(7)))**n)*(t**m) 

                    f(5)=(3./2.)*(tyz/es)*A*((es/(1-x(7)))**n)*(t**m) 

                    f(6)=(3./2.)*(tzx/es)*A*((es/(1-x(7)))**n)*(t**m) 

                    f(7)=B*(rs**chi)/((1-x(7))**phi)*(t**m) 

                    case default 

                    print*, "Error on constitutive equations in KR" 

                        end select 

                        return 

                        end subroutine KR 

  

      subroutine PH (f,x,t,stress,mat,nos,nom,noe) 

        implicit none 

        integer, intent(in) :: nos, nom, noe 

        doubleprecision, intent(in) :: stress(nos), mat(nom), x(noe) 

        doubleprecision, intent(in) :: t 

        doubleprecision, intent(out) :: f(noe) 

        doubleprecision :: sx, sy, sz, txy, tyz, tzx, mps, es 

        doubleprecision :: A, B, C, h, Hstar, Kc, v 

        integer :: N 
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!---------------------stress terms rearrangement--------------------- 

        select case (nos) 

        case (1) 

            sx = stress(1); sy = 0.0; sz = 0.0; txy = 0.0 

            tyz = 0.0; tzx = 0.0; mps = 0.0; es = 0.0 

            case (8) 

                sx = stress(1); sy = stress(2); txy = stress(3) 

                sz = stress(4); mps = stress(5); es = stress(8) 

                tyz = 0.0; tzx = 0.0 

                case (10) 

                    sx = stress(1); sy = stress(2); sz = stress(3) 

                    txy = stress(4); tyz = stress(5); tzx = stress(6) 

                    mps = stress(7); es = stress(10) 

                    case default 

                        print*, "Error on stress rearrangement in PH" 

                        end select 

!------------------material properties rearrangement----------------- 

        A=mat(1); B=mat(2); C=mat(3); h=mat(4); Hstar=mat(5) 

         Kc=mat(6); v=mat(7) 

        if (mps>0) then 

            N=1 

            else if (mps<=0) then 

                N=0 

                end if 

!--------------------creep constitutive equations-------------------- 

        select case (noe) 

        case (4) 

            f(1) = A*sinh((B*sx*(1-x(2)))/((1-x(3))*(1-x(4)))) 

            f(2) = h*f(1)/sx*(1.-(x(2)/Hstar)) 

            f(3) = Kc/3.*(1-x(3))**4 

            f(4) = C*f(1) 

        case (8) 

            f(1) = (3./2.)*(sx/es)*A* 

     &             sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8)))) 

            f(2) = (3./2.)*(sy/es)*A* 

     &             sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8)))) 

            f(3) = (3./2.)*(txy/es)*A* 

     &             sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8)))) 

            f(4) = (3./2.)*(sz/es)*A* 

     &             sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8)))) 

            f(5) = sqrt((2./3.)*(f(1)**2+f(2)**2+2*f(3)**2+f(4)**2)) 

            f(6) = h*f(5)/es*(1.-(x(6)/Hstar)) 

            f(7) = Kc/3.*(1.-x(7))**4 

            f(8) = C*N*f(5)*(mps/es)**v 

            case (10) 

                f(1) = (3./2.)*(sx/es)*A* 

     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                f(2) = (3./2.)*(sy/es)*A* 

     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                f(3) = (3./2.)*(sz/es)*A* 

     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                f(4) = (3./2.)*(txy/es)*A* 

     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                f(5) = (3./2.)*(tyz/es)*A* 

     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                f(6) = (3./2.)*(tzx/es)*A* 

     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10)))) 

                f(7) = sqrt((2./3.)*(f(1)**2+f(2)**2+f(3)**2+ 

     &                   2*f(4)**2+2.*f(5)**2+2*f(6)**2)) 

                f(8)=h*f(7)/es*(1.-(x(8)/Hstar)) 

                f(9)=Kc/3.*(1-x(9))**4 
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                f(10)=C*N*f(7)*(mps/es)**v 

                case default 

                    print*, "Error on constitutive equations in PH" 

                    end select 

                    return 

                    end subroutine PH 

  

      subroutine QX (f,x,t,stress,mat,nos,nom,noe) 

        implicit none 

        integer, intent(in) :: nos, nom, noe 

        doubleprecision, intent(in) :: stress(nos), mat(nom), x(noe) 

        doubleprecision, intent(in) :: t 

        doubleprecision, intent(out) :: f(noe) 

        doubleprecision :: sx, sy, sz, txy, tyz, tzx, ps1, ps2, ps3, 

     &                     es, Ss, sm, S1 

        doubleprecision :: A, B, C, h, Hstar, Kc, v, a1, b1, p, q 

        integer :: N 

!---------------------stress terms rearrangement--------------------- 

        select case (nos) 

        case (8) 

            sx = stress(1); sy = stress(2); txy = stress(3) 

            sz = stress(4); ps1 = stress(5); ps2 = stress(6) 

            ps3 = stress(7); es = stress(8); tyz = 0.0; tzx = 0.0 

            case (10) 

                sx = stress(1); sy = stress(2); sz = stress(3) 

                txy = stress(4); tyz = stress(5); tzx = stress(6) 

                ps1 = stress(7); ps2 = stress(8); ps3 = stress(9) 

                es = stress(10) 

                case default 

                    print*, "Error on stress rearrangement in QX" 

                    end select 

!------------------material properties rearrangement----------------- 

        A = mat(1); B = mat(2); C = mat(3); h = mat(4);  

        Hstar = mat(5); Kc = mat(6); v = mat(7); a1 = mat(8);  

        b1 = mat(9); p = mat(10); q = mat(11) 

        sm = (ps1+ps2+ps3)/3; Ss = sqrt(ps1**2+ps2**2+ps3**2) 

        S1 = ps1-sm 

        if (ps1>0) then 

            N=1 

            else if (ps1<=0) then 

                N=0 

                end if 

!--------------------creep constitutive equations-------------------- 

        select case (noe) 

        case (9) 

            f(1) = (3./2.)*(sx/es)*A* 

     &             sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(9)))) 

            f(2) = (3./2.)*(sy/es)*A* 

     &             sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(9)))) 

            f(3) = (3./2.)*(txy/es)*A* 

     &             sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(9)))) 

            f(4) = (3./2.)*(sz/es)*A* 

     &             sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(9)))) 

            f(5) = sqrt((2./3.)*(f(1)**2+f(2)**2+2*f(3)**2+f(4)**2)) 

            f(6) = h*f(5)/es*(1.-(x(6)/Hstar)) 

            f(7) = Kc/3.*(1.-x(7))**4 

            f(8) = C*N*f(5)* 

     &             (exp(p*(1-(ps1/es))+q*(0.5-1.5*(sm/es))))**(-1) 

            f(9) = f(8)*((2./3.)*(es/S1))**a1*exp(b1*(3.*sm/Ss-1.)) 

            case (11) 

                f(1) = (3./2.)*(sx/es)*A* 
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     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11)))) 

                f(2) = (3./2.)*(sy/es)*A* 

     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11)))) 

                f(3) = (3./2.)*(sz/es)*A* 

     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11)))) 

                f(4) = (3./2.)*(txy/es)*A* 

     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11)))) 

                f(5) = (3./2.)*(tyz/es)*A* 

     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11)))) 

                f(6) = (3./2.)*(tzx/es)*A* 

     &                 sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11)))) 

                f(7) = sqrt((2./3.)*(f(1)**2+f(2)**2+f(3)**2+ 

     &                   2*f(4)**2+2.*f(5)**2+2*f(6)**2)) 

                f(8) = h*f(7)/es*(1.-(x(8)/Hstar)) 

                f(9) = Kc/3.*(1-x(9))**4 

                f(10) = C*N*f(7)* 

     &                (exp(p*(1-(ps1/es))+q*(0.5-1.5*(sm/es))))**(-1) 

                f(11) =f(10)*((2./3.)*(es/S1))**a1* 

     &                 exp(b1*(3.*sm/Ss-1.)) 

                case default 

                    print*, "Error on constitutive equations in QX" 

                    end select 

                    return 

                    end subroutine QX 

  

      subroutine TSC (dt,g_rcv) 

        implicit none 

        integer, intent(in) :: g_rcv(:,:,:) 

        doubleprecision, intent(inout) :: dt 

        doubleprecision :: drcv 

        drcv = maxval(g_rcv) 

!--------------------------reduce time-step-------------------------- 

        if (drcv == 1) then 

            dt = dt/2 

            else if (drcv == 0) then 

                dt = dt 

                end if 

                end subroutine TSC 

  

      subroutine NOR_KR (f,x,t,stress,mat,nos,nom,noe) 

        implicit none 

        integer, intent(in) :: nos, nom, noe 

        doubleprecision, intent(in) :: stress(nos), mat(nom), 

     &                                 x(noe) 

        doubleprecision, intent(in) :: t 

        doubleprecision, intent(out) ::  f(noe) 

        doubleprecision :: sx, sy, sz, txy, tyz, tzx, mps, es, cfs 

        doubleprecision :: A, n, m, B, phi, chi, alpha, rs, e, ip 

!---------------------stress terms rearrangement--------------------- 

        select case (nos) 

        case (9) 

            sx = stress(1); sy = stress(2); txy = stress(3) 

            sz = stress(4); mps = stress(5); es = stress(8) 

            tyz = 0.0; tzx = 0.0; ip = stress(9) 

            case (11) 

                sx = stress(1); sy = stress(2); sz = stress(3) 

                txy = stress(4); tyz = stress(5); tzx = stress(6) 

                mps = stress(7); es = stress(10); ip = stress(11) 

                case default 

                    print*, "Error on stress rearrangement in NOR_KR" 

                       end select 



161 

 

!------------------material properties rearrangement----------------- 

        A = mat(1); n = mat(2); m = mat(3); B = mat(4); phi = mat(5) 

        chi = mat(6); alpha = mat(7); e =  mat(8) 

        rs = alpha*mps+(1.-alpha)*es; cfs = (A*e/B)*(ip**(n-chi-1.)) 

!--------------------creep constitutive equations-------------------- 

        select case (noe) 

        case (5) 

            f(1)=(3./2.)*(sx/es)*((es/(1-x(5)))**n) 

            f(2)=(3./2.)*(sy/es)*((es/(1-x(5)))**n) 

            f(3)=(3./2.)*(txy/es)*((es/(1-x(5)))**n) 

            f(4)=(3./2.)*(sz/es)*((es/(1-x(5)))**n) 

            f(5) = (rs**chi)/(cfs*(1.+phi)*((1.-x(5))**phi)) 

            case (7) 

                f(1)=(3./2.)*(sx/es)*((es/(1-x(7)))**n) 

                f(2)=(3./2.)*(sy/es)*((es/(1-x(7)))**n) 

                f(3)=(3./2.)*(sz/es)*((es/(1-x(7)))**n) 

                f(4)=(3./2.)*(txy/es)*((es/(1-x(7)))**n) 

                f(5)=(3./2.)*(tyz/es)*((es/(1-x(7)))**n) 

                f(6)=(3./2.)*(tzx/es)*((es/(1-x(7)))**n) 

                f(7) = (rs**chi)/(cfs*(1.+phi)*((1.-x(7))**phi)) 

                case default 

                    print*, "Error on constitutive equations in KR" 

                    end select 

                    return 

                    end subroutine NOR_KR 

        end module tan_library 

 

      program NLC 

        ! 

        ! Purpose: 

        !   To calculate the nodal force of each loaded node 

        ! 

        ! Record of revisions: 

        !     Date           Programmer         Description of change 

        !     ====           ==========         ===================== 

        !  21/09/2014          F. Tan               Original code 

        ! 

        implicit none 

        character(len=16) :: filename1, protype 

        integer :: nn, i, ierror 

        doubleprecision :: p 

        doubleprecision, allocatable :: f1(:),f2(:),r1(:),r0(:),f(:) 

        write(*,*) 'Please Enter The Input File Name: ' 

        read (*,*) filename1 

        open(10,file=filename1,status='old',action='read', 

     &       iostat=ierror) 

        open(11,file='loadsdata.res',status='replace',action='write', 

     &       iostat=ierror) 

!---------------------------read input file-------------------------- 

        read (10,*) protype 

        read (10,*) nn, p 

        allocate (f1(nn), f2(nn), r0(nn), r1(nn), f(nn+1)) 

        read (10,*) (r0(i), i=1,nn) 

        read (10,*) (r1(i), i=1,nn) 

!------------------assemble nodal loads of each node----------------- 

        select case (protype) 

        case ('axisymmetric') 

        do i = 1, nn 

            f1(i) = (r1(i)**2+r0(i)*r1(i)-2*r0(i)**2)/6 

            f2(i) = (2*r1(i)**2-r0(i)*r1(i)-r0(i)**2)/6 

            end do 
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            case ('planar') 

                do i = 1, nn 

                    f1(i) = (r1(i)-r0(i))/2 

                    f2(i) = f1(i) 

                    end do 

                    case default 

                        print*, "wrong number of nodes in NLC" 

                        end select 

!-----------------assemble nodal loads of each elememt--------------- 

        f = 0. 

        do i = 1, nn 

            f(i) = f1(i) 

            end do 

            do i = 1, nn 

                f(i+1) = f(i+1)+f2(i) 

                end do 

                f=f*p 

!-----------------output nodal loads of loaded nodes----------------- 

                select case (protype) 

                case ('axisymmetric') 

                    write(11,*) "Nodal Force From Inner to Outer:" 

                    case ('planar') 

                        write(11,*) "Nodal Force From First to Last:" 

                        end select 

                        do i = 1, nn+1 

                            write (11,'(i5,es14.7)') i, f(i) 

                            end do 

                            end program NLC 

 

      program DTI 

        ! 

        ! Purpose: 

        !   To transfer the data from neutral file of FEMGV to HITSI, 

        !   and to transfer the data from result file of HITSI to  

        !   FEMGV 

        ! 

        ! Record of revisions: 

        !     Date           Programmer         Description of change 

        !     ====           ==========         ===================== 

        !  21/09/2014          F. Tan               Original code 

        ! 

        implicit none 

        integer :: ierror 

        character (len=30) :: filename1, filename2, model_name 

        integer :: key, iformt, maxout, nn, i, lpnr, types, ne0, ne1, 

     &    nant, nels, group, material, variant, physical, nod, k,  

     &    nant1, dof1, dof2, dof3, lcase, elem, dof, j 

        character :: opcode, n1, n2, n3, n4, n5, n6, n7, n8 

        doubleprecision, dimension(3) :: coordinate 

        integer, dimension(10) :: nodes 

        doubleprecision, allocatable :: g_coord(:,:) 

        integer, allocatable :: num(:), g_num1(:,:), g_num(:,:), 

     &    g_mat(:), nf(:,:), loadnode(:) 

        character (len=15) :: etype, aname 

        character (len=30) :: modelname,transfertype 

        integer ::   nst, nip, node, elemt, point, ndim, 

     &     mid 

        doubleprecision :: time,e,v, value1 

        character (len=15) :: element 

        doubleprecision, allocatable ::  g_dispmt(:,:), 

     &  g_reforce(:,:), g_points(:,:,:), g_sigma(:,:,:), g_eps(:,:,:) 
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     &  , g_evp(:,:,:), g_damage(:,:) 

        integer, allocatable :: material1(:) 

        integer :: key1=111, key2=2, key3=3, key4=20, key5=100,  

     &  key6=-1, key7=-2, key8=-3, group1=1, nsc=0, nlc=0, key9=-4,  

     &  key10=-5, key11=9999, iformt1=2 

        integer :: ncomps1=2,irtype=1,norcty=0,menu=1,ictype=2, 

     &  icind1=1, icind2=1, iexist=0, ncomps2=4, icind3=3 

        character :: opcode1='C' 

        write (*,*) 'Please Enter The Transfer Processing' 

        read (*,*) transfertype 

        select case (transfertype) 

!-----------------------pre-processing transfer---------------------- 

        case ('pre-processing') 

        write (*,*) 'Please Enter The Input File Name: ' 

        read (*,*) filename1 

        write (*,*) 'Please Enter The Output File Name: ' 

        read (*,*) filename2 

        open (unit=10, file=filename1, status='old', action='read', 

     &  iostat=ierror) 

        open (unit=11, file=filename2, status='replace',  

     &  action='write', iostat=ierror) 

        do 

            read (10,99990) key 

            if (key==9999) exit 

            select case (key) 

            case (1) 

                backspace (unit=10) 

                read (10,99999) key, opcode, model_name 

            case (2) 

                open (unit=12, file='temp.txt') 

                backspace (unit=10) 

                read (10,99998) key, opcode, n1, n2, n3, n4, n5, n6, 

     &          iformt, maxout 

                do 

                    read (10,99989) key 

                    if (key==-3) exit 

                    backspace (unit=10) 

                    read (10,99997) key, nn, coordinate(:) 

                    write(12,99988) coordinate(:) 

                    end do 

                    allocate (g_coord(3,nn)) 

                    rewind (unit=12) 

                    do i=1,nn 

                        read (12,99988) g_coord(:,i) 

                        end do 

                        close (unit=12, status='delete') 

            case (101) 

                backspace (unit=10) 

                read (10,99998) key, opcode, n1, n2, n3, n4, n5, n6, 

     &          iformt, maxout 

                read (10,99996) key, n1, n2, n3, n4, n5, n6, n7, n8, 

     &          lpnr, types, ne0, ne1, nant 

                do 

                    read (10,99989) key 

                    if (key==-3) exit 

                    backspace (unit=10) 

                    read (10,99995) key, nodes(:) 

                    end do 

            case (3) 

                open (unit=12, file='temp.dat') 

                open (unit=13, file='temp1.dat') 
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                backspace (unit=10) 

                read (10,99998) key, opcode, n1, n2, n3, n4, n5, n6, 

     &          iformt, maxout 

                do 

                    read (10,99989) key 

                    if (key==-3) exit 

                    backspace (unit=10) 

                    read (10,99994) key, nels, types, group,  

     &              material, variant, physical 

                    if (types==3) then 

                        nod = 3 

                        else if (types==5) then 

                            nod = 4 

                            else if (types==13) then 

                                nod = 8 

                                else 

                                    write (*,*) 'Wrong element type' 

                                    end if 

                    allocate (num(nod)) 

                    read (10,99995) key, num(:) 

                    write (12,99987) num(:) 

                    write (13,99986) material 

                    deallocate (num) 

                    end do 

                    allocate (g_num(nod,nels),g_mat(nels)) 

                    rewind (unit=12) 

                    rewind (unit=13) 

                    do i=1,nels 

                        read (12,99987) g_num(:,i) 

                        read (13,99986) g_mat(i) 

                        end do 

                        close (unit=12, status='delete') 

                        close (unit=13, status='delete') 

            case (103) 

            backspace (unit=10) 

            read (10,99998) key, opcode, n1, n2, n3, n4, n5, n6, 

     &      iformt, maxout 

            allocate (nf(3,nn)) 

            nf = 1; nant1 = 0 

            do 

                read (10,99989) key 

                if (key==-3) exit 

                backspace (unit=10) 

                nodes = 0 

                read (10,99985) key,aname,lpnr,nant,dof1,dof2,dof3 

                read (10,99995) key, nodes(:) 

                nant1=nant1+nant 

                if (dof1 == 0) then 

                    nf = nf 

                    else if (dof1 == 1) then 

                        open (unit=12, file='temp.txt') 

                        do i = 1, nant 

                            write (12,99993) nodes(i),dof1-1 

                            end do 

                            rewind (unit=12) 

                            do i = 1, nant 

                                read (12,99993)k, nf(1,k) 

                                end do 

                                close (unit=12, status='delete') 

                                end if 

                if (dof2 == 0) then 
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                    nf = nf 

                    else if (dof2 == 1) then 

                        open (unit=12, file='temp.txt') 

                        do i = 1, nant 

                            write (12,99993) nodes(i),dof2-1 

                            end do 

                            rewind (unit=12) 

                            do i = 1, nant 

                                read (12,99993)k, nf(2,k) 

                                end do 

                                close (unit=12, status='delete') 

                                end if 

                if (dof3 == 0) then 

                    nf = nf 

                    else if (dof3 == 1) then 

                        open (unit=12, file='temp.txt') 

                        do i = 1, nant 

                            write (12,99993) nodes(i),dof3-1 

                            end do 

                            rewind (unit=12) 

                            do i = 1, nant 

                                read (12,99993)k, nf(3,k) 

                                end do 

                                close (unit=12, status='delete') 

                                end if 

                    end do 

                    close (unit=12, status='delete') 

            case (110) 

                j = 0 

                open (unit=12, file='temp.txt') 

                backspace (unit=10) 

                read (10,99998) key, opcode, n1, n2, n3, n4, n5, n6, 

     &          iformt, maxout 

                do 

                    j=j+1 

                    read (10,99989) key 

                    if (key==-3) exit 

                    backspace (unit=10) 

                    read (10,99992) key, lcase, elem, dof, value1 

                    write (12,99991) elem 

                    end do 

                    rewind (unit=12) 

                    j = j-1 

                    allocate (loadnode(j)) 

                    loadnode = 0 

                    do i=1, j 

                        read (12,99991) loadnode(i) 

                        end do 

                    close (unit=12, status='delete') 

                case default 

                    write (*,*) 'Wrong data set of neutral file' 

                    end select 

                    end do 

99999 format (1X,I4,A1,A30) 

99998 format (1X,I4,A1,6A1,61X,I2,1X,I2) 

99997 format (1X,I2,I10,3E14.7) 

99996 format (1X,I2,1X,8A1,I10,I10,I10,I10,I10) 

99995 format (1X,I2,10I10) 

99994 format (1X,I2,I10,I5,I5,I5,5X,I5,I5) 

99993 format (1X,4I10) 

99992 format (1X,I2,I5,I10,I5,E15.5) 
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99991 format (1X,I10) 

99990 format (1X,I4) 

99989 format (1X,I2) 

99988 format (3ES14.7) 

99987 format (10I10) 

99986 format (I5) 

99985 format (1X,I2,1X,A8,I5,1X,I5,1X,3I1) 

!--------------------translation of element type--------------------- 

      if (nod==3) then 

        etype = 'triangle' 

        else if (nod==4) then 

            etype = 'quadrilateral' 

            else if (nod==8) then 

                etype = 'hexahedron' 

                else 

                    write (*,*) 'Cannot translate element type' 

                    end if 

!--------------------the input data file of HITSI-------------------- 

      write (11,*) etype, nels, nn 

      if (etype == 'triangle') then 

        do i=1,nn 

            write(11,*) i, g_coord(1,i), g_coord(2,i) 

            end do 

            else if (etype == 'quadrilateral') then 

                do i=1,nn 

                    write(11,*) i, g_coord(1,i), g_coord(2,i) 

                    end do 

                    else if (etype == 'hexahedron') then 

                        do i=1,nn 

                            write(11,*) i, g_coord(:,i) 

                            end do 

                            else 

                write (*,*) 'Error occurs on rewrite of coordinate' 

                            end if 

      allocate (g_num1(nod,nels)) 

      g_num1 = 0 

      if (etype == 'triangle') then 

        do i=1,nels 

            if (mod(i,2)==0) then 

                g_num1(1,i) = g_num(2,i) 

                g_num1(2,i) = g_num(3,i) 

                g_num1(3,i) = g_num(1,i) 

                else 

                    g_num1(:,i) = g_num(:,i) 

                    end if 

            write(11,*) i, g_num1(:,i) 

            end do 

            else if (etype == 'quadrilateral') then 

                do i=1,nels 

                g_num1(1,i) = g_num(1,i) 

                g_num1(2,i) = g_num(4,i) 

                g_num1(3,i) = g_num(3,i) 

                g_num1(4,i) = g_num(2,i) 

                    write(11,*) i, g_num1(:,i) 

                    end do 

                    else if (etype == 'hexahedron') then 

                        do i=1,nels 

                            write(11,*) i, g_num(:,i) 

                            end do 

                            else 

            write(*,*)'Error occurs on rewrite of element definition' 
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                            end if 

            if (nod == 3) then 

            do i = 1,nn 

                write(11,*) i, nf(1,i), nf(2,i) 

                end do 

                else if (nod == 4) then 

                    do i = 1,nn 

                        write(11,*) i, nf(1,i), nf(2,i) 

                        end do 

                        else if (nod == 8) then 

                            do i = 1,nn 

                                write(11,*) i, nf(:,i) 

                                end do 

                                end if 

            write (11,*)j 

            do i =1,j 

                write(11,*) loadnode(i) 

                end do 

!----------------------post-processing transfer---------------------- 

        case ('post-processing') 

        write (*,*) 'Please Enter The model Name: ' 

        read (*,*) modelname 

        write (*,*) 'Please Enter The Input File Name: ' 

        read (*,*) filename1 

        write (*,*) 'Please Enter The Output File Name: ' 

        read (*,*) filename2 

        open (unit=10, file=filename1, status='old', action='read', 

     &  iostat=ierror) 

        open (unit=11, file=filename2, status='replace',  

     &  action='write', iostat=ierror) 

        do 

            read (10,99969) key 

99969 format(1X,I4) 

            if (key==9999) exit 

            select case (key) 

                case (1) 

                    read (10,*)ndim, nn, nod, nels, element, nst,  

     &              nip, time,e,v,mid 

                case (2) 

                    allocate (g_coord(ndim,nn)) 

                    do i=1,nn 

                        read (10,*)node, g_coord(:,i) 

                        end do 

                case (3) 

                    allocate (g_num(nod,nels), material1(nels)) 

                    do i=1,nels 

                        read (10,*)elemt, g_num(:,i),material1(i) 

                        end do 

                case (4) 

                    allocate (g_dispmt(ndim,nn)) 

                    do i=1,nn 

                        read (10,*)node, g_dispmt(:,i) 

                        end do 

                case (5) 

                    allocate (g_reforce(ndim,nn)) 

                    do i=1,nn 

                        read (10,*)node, g_reforce(:,i) 

                        end do 

                case (6) 

                    allocate (g_points(ndim,nip,nels)) 

                    do i=1,nels 
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                        read (10,*) node 

                        do k=1,nip 

                        read (10,*)point,g_points(:,k,i) 

                        end do 

                        end do 

                case (7) 

                    allocate (g_sigma(nst,nip,nels)) 

                    do i=1,nels 

                        read (10,*) node 

                        do k=1,nip 

                        read (10,*)point,g_sigma(:,k,i) 

                        end do 

                        end do 

                case (8) 

                    allocate (g_eps(nst,nip,nels)) 

                    do i=1,nels 

                        read (10,*) node 

                        do k=1,nip 

                        read (10,*)point,g_eps(:,k,i) 

                        end do 

                        end do 

                case (9) 

                    allocate (g_evp(nst,nip,nels)) 

                    do i=1,nels 

                        read (10,*) node 

                        do k=1,nip 

                        read (10,*)point,g_evp(:,k,i) 

                        end do 

                        end do 

                case (10) 

                    allocate (g_damage(nip,nels)) 

                    do i=1,nels 

                        read (10,*) node 

                        do k=1,nip 

                        read (10,*)point,g_damage(k,i) 

                        end do 

                        end do 

                        case default 

                            write (*,*) 'Wrong load case' 

                            end select 

                            end do 

!----------------------the input data of FEMGV----------------------- 

        if (element=='triangle') then 

            types=7 

            else if (element=='quadrilateral') then 

                types=9 

                else if (element=='hexahedron') then 

                    types=1 

                    else 

                        write(*,*)'Wrong element type' 

                        end if 

        write (11,99968) key1,opcode1,modelname 

        write (11,99967) key2,opcode1,iformt1 

        do i=1,nn 

        write (11,99966) key6,i,g_coord(:,i) 

        end do 

        write (11,99965) key8 

        write (11,99967) key3,opcode1,iformt1 

        do i=1,nels 

            write (11,99964) key6,i,types,group1,material1(i) 

            write (11,99963) key7,g_num(:,i) 
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            end do 

        write (11,99965) key8 

        write (11,99967) key4,opcode1 

        do i=1,mid 

            write (11,99962) key6,group1,nsc,nlc,i,e,v 

            end do 

        write (11,99965) key8 

        write (11,99961) key5,opcode1,'LC01  ',time 

        write (11,99960) key9,'DISPL   ',ncomps1,irtype,norcty 

        write (11,99959) key10,'U1      ',menu,ictype,icind1,icind2, 

     &  iexist 

        write (11,99959) key10,'U2      ',menu,ictype,ictype,icind2, 

     &  iexist 

        do i=1,nn 

            write (11,99958) key6,i,g_dispmt(:,i) 

            end do 

        write (11,99965) key8 

        write (11,99961) key5,opcode1,'LC02  ',time 

        write (11,99960) key9,'R-FORCE ',ncomps1,irtype,norcty 

        write (11,99959) key10,'R1      ',menu,ictype,icind1,icind2, 

     &  iexist 

        write (11,99959) key10,'R2      ',menu,ictype,ictype,icind2, 

     &  iexist 

        do i=1,nn 

            write (11,99958) key6,i,g_reforce(:,i) 

            end do 

        write (11,99965) key8 

        write (11,99956) key5,opcode1,'LC03  ',time, 

     &  'STATIC,DIRECT       ',irtype,irtype,nsc 

        write (11,99960) key9,'STRESS  ',ncomps2,ncomps2,norcty 

        write (11,99959) key10,'S11     ',menu,ncomps2,icind1,icind2, 

     &  iexist 

        write (11,99959) key10,'S22     ',menu,ncomps2,ncomps1, 

     &  ncomps1,iexist 

        write (11,99959) key10,'S12     ',menu,ncomps2,icind1, 

     &  ncomps1,iexist 

        write (11,99959) key10,'S33      ',menu,ncomps2,icind3, 

     &  icind3,iexist 

        do i=1,nels 

            write(11,99955)key6,i,types,icind1,icind2,iexist,icind1, 

     &      nip,nsc 

            do k=1,nip 

                write (11,99958) key7,k,g_points(:,k,i) 

                write (11,99958) key7,k,g_sigma(:,k,i) 

                end do 

                end do 

        write (11,99965) key8 

        write (11,99956) key5,opcode1,'LC04  ',time, 

     &  'STATIC,DIRECT       ',irtype,irtype,nsc 

        write (11,99960) key9,'STRAIN  ',ncomps2,ncomps2,norcty 

        write (11,99959) key10,'SXX     ',menu,ncomps2,icind1,icind2, 

     &  iexist 

        write (11,99959) key10,'SYY     ',menu,ncomps2,ncomps1, 

     &  ncomps1,iexist 

        write (11,99959) key10,'SXY     ',menu,ncomps2,icind1, 

     &  ncomps1,iexist 

        write (11,99959) key10,'SZZ      ',menu,ncomps2,icind3, 

     &  icind3,iexist 

        do i=1,nels 

            write(11,99955)key6,i,types,icind1,icind2,iexist,icind1, 

     &      nip,nsc 
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            do k=1,nip 

                write (11,99958) key7,k,g_points(:,k,i) 

                write (11,99958) key7,k,g_eps(:,k,i) 

                end do 

                end do 

        write (11,99965) key8 

        write (11,99956) key5,opcode1,'LC05  ',time, 

     &  'STATIC,DIRECT       ',irtype,irtype,nsc 

        write (11,99960) key9,'CSTRAIN ',ncomps2,ncomps2,norcty 

        write (11,99959) key10,'CS11    ',menu,ncomps2,icind1,icind2, 

     &  iexist 

        write (11,99959) key10,'CS22    ',menu,ncomps2,ncomps1, 

     &  ncomps1,iexist 

        write (11,99959) key10,'CS12    ',menu,ncomps2,icind1, 

     &  ncomps1,iexist 

        write (11,99959) key10,'CS33    ',menu,ncomps2,icind3, 

     &  icind3,iexist 

        do i=1,nels 

            write(11,99955)key6,i,types,icind1,icind2,iexist,icind1, 

     &      nip,nsc 

            do k=1,nip 

                write (11,99958) key7,k,g_points(:,k,i) 

                write (11,99958) key7,k,g_evp(:,k,i) 

                end do 

                end do 

        write (11,99965) key8 

        write (11,99956) key5,opcode1,'LC06  ',time, 

     &  'STATIC,DIRECT       ',irtype,irtype,nsc 

        write (11,99960) key9,'DAMAGE  ',ncomps2,ncomps2,norcty 

        write (11,99959) key10,'S11     ',menu,ncomps2,icind1,icind2, 

     &  iexist 

        write (11,99959) key10,'S22     ',menu,ncomps2,ncomps1, 

     &  ncomps1,iexist 

        write (11,99959) key10,'S12     ',menu,ncomps2,icind1, 

     &  ncomps1,iexist 

        write (11,99959) key10,'S33      ',menu,ncomps2,icind3, 

     &  icind3,iexist 

        do i=1,nels 

            write(11,99955)key6,i,types,icind1,icind2,iexist,icind1, 

     &      nip,nsc 

            do k=1,nip 

                write (11,99958) key7,k,g_points(:,k,i) 

                write (11,99958) key7,k,g_damage(k,i) 

                end do 

                end do 

        write (11,99965) key8 

        write (11,99957) key11 

99968 format(1X,I4,A1,A30) 

99967 format(1X,I4,A1,67X,I2) 

99966 format(1X,I2,I10,3ES14.7) 

99965 format(1X,I2) 

99964 format(1X,I2,I10,I5,I5,I5) 

99963 format(1X,I2,10I10) 

99962 format(1X,I2,I2,I2,I2,I5,ES12.5,ES12.5) 

99961 format(1X,I4,A1,A6,ES12.5) 

99960 format(1X,I2,2X,A8,I5,I5,I5) 

99959 format(1X,I2,2X,A8,I5,I5,I5,I5,I5) 

99958 format(1X,I2,I5,6ES12.5) 

99957 format(1X,I4) 

99956 format(1X,I4,A1,A6,ES12.5,12X,A20,I2,I5,10X,I2) 

99955 format(1X,I2,I5,I5,I5,I5,I5,I5,I5,I5) 
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        case default 

            write (*,*) 'Wrong transfer processing' 

            end select 

        end program DTI 
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10.3 Source Code of Validation Programmes  

10.3.1 Stress Transformation Subroutine 

      program TRScheck 

        use validation 

        implicit none 

        character(len=16) :: filename1, filename2 

        doubleprecision, allocatable :: sigma(:), stress(:) 

        integer :: nos, i, ierror 

        write(*,*) 'Please Enter The Input File Name: ' 

        read (*,*) filename1 

        write(*,*) 'Please Enter The Output File Name: ' 

        read (*,*) filename2 

        open(10,file=filename1,status='old',action='read',iostat=ierror) 

        open(11,file=filename2,status='replace',action='write', 

     &       iostat=ierror) 

        read (10,*) nos 

        allocate (sigma(nos), stress(nos+4)) 

        read (10,*) (sigma(i), i=1,nos) 

        call TRS(sigma,stress) 

        if (nos==4) then 

            write (11,99999) 'Deviator Stress Tensor:', 'XX','YY' 

            write (11,99998) stress(1), stress(2) 

            write (11,99999) 'Deviator Stress Tensor:', 'XY','ZZ' 

            write (11,99998) stress(3), stress(4) 

            write (11,99997) 'Principal Stress:', '1st', '2nd', '3rd' 

            write (11,99996) stress(5), stress(6), stress(7) 

            write (11,99995) 'Equivalent Stress:', stress(8) 

            else if (nos==6) then 

                write (11,99994) 'Deviator Stress Tensor:', 'XX', 'YY', 

     &                           'ZZ' 

                write (11,99998) stress(1), stress(2), stress(3) 

                write (11,99994) 'Deviator Stress Tensor:', 'XY', 'YZ', 

     &                           'ZX' 

                write (11,99998) stress(4), stress(5), stress(6) 

                write (11,99997) 'Principal Stress:','1st', '2nd', '3rd' 

                write (11,99996) stress(7), stress(8), stress(9) 

                write (11,99995) 'Equivalent Stress:', stress(10) 

                end if 

99999  format(a23,6x,a2,12x,a2) 

99998  format(23x,3es14.7) 

99997  format(a17,6x,a3,12x,a3,12x,a3) 

99996  format(17x,3es14.7) 

99995  format(a18,1x,es14.7) 

99994  format(a23,6x,a2,12x,a2,12x,a2) 

                end program TRScheck 

10.3.2 Numerical Method Subroutines 

Main programme 

      program NMScheck 

        use validation 

        implicit none 

        character(len=16) :: filename1, filename2 

        integer :: nos, nom, noe, num, rcv, i, n, ierror 

        doubleprecision, allocatable :: y(:), stress(:), mat(:) 

        doubleprecision :: t, dt 
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        write(*,*) 'Please Enter The Input File Name: ' 

        read (*,*) filename1 

        write(*,*) 'Please Enter The Output File Name: ' 

        read (*,*) filename2 

        open(10,file=filename1,status='old',action='read',iostat=ierror) 

        open(11,file=filename2,status='replace',action='write', 

     &       iostat=ierror) 

        nos = 1; nom = 1; noe = 1 

        read(10,*) num, n 

        allocate (y(noe), stress(nos), mat(nom)) 

        read(10,*) y 

        read(10,*) dt 

        t = 0. 

        write(11,'(1x,a4,5x,a1,5x,a10)')'time', 'y', 'acceptance' 

        do i = 1, n 

        select case (num) 

        case (1) 

            call EULER (ntest,y,t,dt,stress,mat,nos,nom,noe) 

        case (2) 

            call RK4 (ntest,y,t,dt,stress,mat,nos,nom,noe) 

        case (3) 

            call RKM (ntest,y,t,dt,stress,mat,nos,nom,noe,rcv) 

        case (4) 

            call RKF (ntest,y,t,dt,stress,mat,nos,nom,noe,rcv) 

            end select 

            t = t+dt 

            write(11,'(f5.2,f10.7,1x,I5)')t, y, rcv 

            end do 

      end program NMScheck 

 

Test formulation  

        subroutine ntest (f,x,t,stress,mat,nos,nom,noe) 

          implicit none 

          integer, intent(in) :: nos, nom, noe 

          doubleprecision, intent(in) :: stress(nos), mat(nom), 

     &                                   x(noe) 

          doubleprecision, intent(in) :: t 

          doubleprecision, intent(out) ::  f(noe) 

          f = x-t**2+1 

          return 

          end subroutine ntest 

10.3.3 Constitutive Equations Subroutines 

      program CEScheck 

        use validation 

        implicit none 

        character(len=16) :: filename1, filename2 

        integer :: nos, nom, noe, i, num, loop, j, ops, ierror 

        doubleprecision, allocatable ::sigma(:),stress(:),mat(:),y(:) 

        doubleprecision :: t,dt 

        open(10,file=filename1,status='old',action='read',iostat=ierror) 

        open(11,file=filename2,status='replace',action='write', 

     &       iostat=ierror) 

        open(12,file='timedata',status='replace',action='write', 

     &       iostat=ierror) 

        open(13,file='straindata',status='replace',action='write', 

     &       iostat=ierror) 

        read (10,*) num, nom, noe, nos, dt, loop, ops 
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        select case (nos) 

        case (1) 

            allocate(sigma(nos), stress(nos), mat(nom), y(noe)) 

            case (4) 

                allocate(sigma(nos), stress(nos+4), mat(nom), y(noe)) 

                case (6) 

                    allocate(sigma(nos), stress(nos+4), mat(nom),y(noe)) 

                    end select 

        read(10,*) mat 

        read(10,*) sigma 

        t = 0. 

        y = 0. 

        select case (nos) 

        case(1) 

            stress = sigma 

            case(4) 

                call TRS(sigma,stress) 

                case(6) 

                    call TRS(sigma,stress) 

                    end select 

        select case (num) 

        case (1) 

        write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)', 

     &               'damage' 

        do i = 1, loop 

            do j = 1, 100 

                t = t+dt 

                call RK4(KR,y,t,dt,stress,mat,nos,nom,noe) 

                end do 

            write(11,'(f9.2,7es12.5)') t,y 

            write(12,*) t 

            write(13,*) y(ops) 

            end do 

        case (2) 

        write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)', 

     &               'hardening','coarsening','damage' 

        do i = 1, loop 

            do j = 1, 100 

            t = t+dt 

            call RK4(PH,y,t,dt,stress,mat,nos,nom,noe) 

            end do 

            write(11,'(f9.2,10es12.5)') t,y 

            write(12,*) t 

            write(13,*) y(ops) 

            end do 

        case (3) 

        write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)', 

     &               'hardening','coarsening','damage1','damage2' 

        do i = 1, loop 

            do j = 1, 100 

            t = t+dt 

            call RK4(QX,y,t,dt,stress,mat,nos,nom,noe) 

            end do 

            write(11,'(f9.2,11es12.5)') t,y 

            write(12,*) t 

            write(13,*) y(ops) 

            end do 

            end select 

      end program CEScheck 
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10.3.4 Time-step Control Subroutines 

      program TSCcheck 

        use validation 

        implicit none 

        character(len=16) :: filename1, filename2 

        integer :: nos, nos1, nom, noe, i, num, loop, j, rcv, ierror 

        doubleprecision, allocatable ::sigma(:),stress(:),mat(:),y(:) 

     &    ,y1(:) 

        integer :: g_rcv(1,1,1) 

        doubleprecision :: t,dt 

        write(*,*) 'Please Enter The Input File Name: ' 

        read (*,*) filename1 

        write(*,*) 'Please Enter The Output File Name: ' 

        read (*,*) filename2 

        open(10,file=filename1,status='old',action='read',iostat=ierror) 

        open(11,file=filename2,status='replace',action='write', 

     &       iostat=ierror) 

        open(12,file='timedata.txt',status='replace',action='write', 

     &       iostat=ierror) 

        open(13,file='straindata.txt',status='replace',action='write', 

     &       iostat=ierror) 

        write(11,*) 'time','creep strain','damage','control value', 

     &   'time-step' 

        read (10,*) num, nom, noe, nos, dt, loop 

        nos1 = nos+4 

        allocate(sigma(nos), stress(nos1), mat(nom), y(noe), y1(noe)) 

        read(10,*) mat 

        read(10,*) sigma 

        t = 0. 

        y1 = 0. 

        select case (nos) 

        case(1) 

            stress = sigma 

            case(4) 

                call TRS(sigma,stress) 

                case(6) 

                    call TRS(sigma,stress) 

                    end select 

        select case (num) 

        case (1) 

        do i = 1, loop 

            do j = 1, 100 

                y=y1 

            t = t+dt 

            call RKM(PH,y,t,dt,stress,mat,nos1,nom,noe,rcv) 

            g_rcv = rcv 

            if (maxval(g_rcv)==0) then 

                y1 = y 

                else 

                    y1 = y1 

                    end if 

            call TSC(dt,g_rcv) 

            end do 

            write(11,'(f9.2,2es14.7,i5,es14.7)') t, y(1), y(8), g_rcv,dt 

            write(12,*) t 

            write(13,*) y(1) 

            end do 

        case (2) 

            do i = 1, loop 

            do j = 1, 100 



176 

 

                y=y1 

            t = t+dt 

            call RKF(PH,y,t,dt,stress,mat,nos1,nom,noe,rcv) 

            g_rcv = rcv 

            if (maxval(g_rcv)==0) then 

                y1 = y 

                else 

                    y1 = y1 

                    end if 

            call TSS(dt,g_rcv) 

            end do 

            write(11,'(f9.2,2es14.7,i5,es14.7)') t, y(1), y(8), g_rcv,dt 

            write(12,*) t 

            write(13,*) y(1) 

            end do 

            case default 

                write(*,*)'Wrong case in this testing' 

            end select 

      end program TSCcheck 

10.3.5 Normalization subroutine 

      program NORcheck 

        use validation 

        implicit none 

        character(len=16) :: filename1, filename2 

        integer :: nos, nos1, nom, noe, i, loop, j, ops, ierror 

        doubleprecision, allocatable ::sigma(:),stress(:),mat(:),y(:) 

        doubleprecision :: t, dt, ip 

        write(*,*) 'Please Enter The Input File Name: ' 

        read (*,*) filename1 

        write(*,*) 'Please Enter The Output File Name: ' 

        read (*,*) filename2 

        open(10,file=filename1,status='old',action='read',iostat=ierror) 

        open(11,file=filename2,status='replace',action='write', 

     &       iostat=ierror) 

        open(12,file='timedata.txt',status='replace',action='write', 

     &       iostat=ierror) 

        open(13,file='straindata.txt',status='replace',action='write', 

     &       iostat=ierror) 

        read (10,*) nom, noe, nos, dt, loop, ops, ip 

        nos1 = nos+5 

        allocate(sigma(nos), stress(nos1), mat(nom), y(noe)) 

        read(10,*) mat 

        read(10,*) sigma 

        t = 0. 

        y = 0. 

        stress = 0 

        call TRS(sigma,stress) 

        select case (nos1) 

        case (9) 

            stress(9) = ip 

            case (11) 

                stress(11) = ip 

                case default 

                    write(*,*) 'Wrong size for stress' 

                    end select 

        write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)', 

     &               'damage' 

        do i = 1, loop 

            do j = 1, 100 
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                t = t+dt 

                call RK4(NOR_KR,y,t,dt,stress,mat,nos1,nom,noe) 

                end do 

            write(11,'(f9.5,7es12.5)') t,y 

            write(12,*) t 

            write(13,*) y(ops) 

            end do 

      end program NORcheck 
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10.4 Input file of validation cases 

10.4.1 Stress Transformation Subroutine 

TRS1.dat 

number of stress tensor component 

4 

component in x-direction; y-direction; xy-direction; z-direction 

80 -30 -32 0 

 

TRS2.dat 

number of stress tensor component 

6 

component in x-direction; y-direction; z-direction; 

             xy-direction; yz-direction; zx-direction 

-10 0 7 9 0 5 

 

10.4.2 Numerical Method Subroutines 

EULER.dat 

type of numerical method; number of iteration 

1, 10 

initial value of y 

0.5 

Time interval 

0.2 

 

RK4.dat 

type of numerical method; number of iteration 

2, 10 

initial value of y 

0.5 

Time interval 

0.2 

 

RKM.dat 

type of numerical method; number of iteration 

3, 10 

initial value of y 

0.5 

Time interval 

0.2 

 

RKF.dat 
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type of numerical method; number of iteration 

4, 10 

initial value of y 

0.5 

Time interval 

0.2 

 

10.4.3 Constitutive Equations Subroutines 

KR1.dat 

type of equations; number of material properties; number of 

equations 

1, 7, 2  

number of stress terms; time interval; number of iteration; 

output strain 

1, 0.1, 101, 1 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215 

Stress tensor component 

70 

 

PH1.dat 

type of equations; number of material properties; number of 

equations 

2, 7, 4  

number of stress terms; time interval; number of iteration; 

output strain 

1, 0.1, 100, 1 

material property 

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32 

Stress tensor component 

70 

 

KR2.dat 

type of equations; number of material properties; number of 

equations 

1, 7, 5  

number of stress terms; time interval; number of iteration; 

output strain 

4, 0.1, 101, 1 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215 

Stress tensor component 

70, 0, 0, 0 

 

KR3.dat 
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type of equations; number of material properties; number of 

equations 

1, 7, 5  

number of stress terms; time interval; number of iteration; 

output strain 

4, 0.1, 101, 1 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215 

Stress tensor component 

59.74873734, 10.25126266, 24.74873734, 0 

 

KR4.dat 

type of equations; number of material properties; number of 

equations 

1, 7, 5  

number of stress terms; time interval; number of iteration; 

output strain 

4, 0.1, 101, 1 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215 

Stress tensor component 

35, 35, 35, 0 

 

PH2.dat 

type of equations; number of material properties; number of 

equations 

2, 7, 8  

number of stress terms; time interval; number of iteration; 

output strain 

4, 0.1, 100, 1 

material property 

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32 

Stress tensor component 

70, 0, 0, 0 

 

PH3.dat 

type of equations; number of material properties; number of 

equations 

2, 7, 8  

number of stress terms; time interval; number of iteration; 

output strain 

4, 0.1, 100, 1 

material property 

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32 

Stress tensor component 

59.74873734, 10.25126266, 24.74873734, 0 

 

PH4.dat 



181 

 

type of equations; number of material properties; number of 

equations 

2, 7, 8  

number of stress terms; time interval; number of iteration; 

output strain 

4, 0.1, 100, 1 

material property 

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32 

Stress tensor component 

35, 35, 35, 0 

 

QX1.dat 

type of equations; number of material properties; number of 

equations 

3, 11, 9  

number of stress terms; time interval; number of iteration; 

output strain 

4, 0.1, 370, 1 

material property 

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2 2, 

2.5, 1,  

Stress tensor component 

60, 0, 0, 0 

 

QX2.dat 

type of equations; number of material properties; number of 

equations 

3, 11, 9  

number of stress terms; time interval; number of iteration; 

output strain 

4, 0.1, 370, 1 

material property 

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2 2, 

2.5, 1 

Stress tensor component 

51.21320344, 8.78679656, 21.21320344, 0 

 

QX3.dat 

type of equations; number of material properties; number of 

equations 

3, 11, 9  

number of stress terms; time interval; number of iteration; 

output strain 

4, 0.1, 370, 1 

material property 

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2, 

2, 2.5, 1 

Stress tensor component 

30, 30, 30, 0 
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KR5.dat 

type of equations; number of material properties; number of 

equations 

1, 7, 7  

number of stress terms; time interval; number of iteration; 

output strain 

6, 0.1, 101, 1 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215 

Stress tensor component 

70, 0, 0, 0, 0, 0 

 

KR6.dat 

type of equations; number of material properties; number of 

equations 

1, 7, 7  

number of stress terms; time interval; number of iteration; 

output strain 

6, 0.1, 101, 2 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215 

Stress tensor component 

0, 70, 0, 0, 0, 0 

 

KR7.dat 

type of equations; number of material properties; number of 

equations 

1, 7, 7  

number of stress terms; time interval; number of iteration; 

output strain 

6, 0.1, 101, 3 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215 

Stress tensor component 

0, 0, 70, 0, 0, 0 

 

PH5.dat 

type of equations; number of material properties; number of 

equations 

2, 7, 10  

number of stress terms; time interval; number of iteration; 

output strain 

6, 0.1, 100, 1 

material property 

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32 

Stress tensor component 

70, 0, 0, 0, 0, 0 

 

PH6.dat 
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type of equations; number of material properties; number of 

equations 

2, 7, 10  

number of stress terms; time interval; number of iteration; 

output strain 

6, 0.1, 100, 2 

material property 

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32 

Stress tensor component 

0, 70, 0, 0, 0, 0 

 

PH7.dat 

type of equations; number of material properties; number of 

equations 

2, 7, 10  

number of stress terms; time interval; number of iteration; 

output strain 

6, 0.1, 100, 3 

material property 

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32 

Stress tensor component 

0, 0, 70, 0, 0, 0 

 

QX4.dat 

type of equations; number of material properties; number of 

equations 

3, 11, 11  

number of stress terms; time interval; number of iteration; 

output strain 

6, 0.1, 370, 1 

material property 

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2 2, 

2.5, 1,  

Stress tensor component 

60, 0, 0, 0, 0, 0 

 

QX5.dat 

type of equations; number of material properties; number of 

equations 

3, 11, 11  

number of stress terms; time interval; number of iteration; 

output strain 

6, 0.1, 370, 2 

material property 

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2 2, 

2.5, 1,  

Stress tensor component 

0, 60, 0, 0, 0 

 

QX6.dat 
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type of equations; number of material properties; number of 

equations 

3, 11, 11  

number of stress terms; time interval; number of iteration; 

output strain 

6, 0.1, 370, 3 

material property 

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2 2, 

2.5, 1,  

Stress tensor component 

0, 0, 60, 0, 0, 0 

10.4.4 Time-step Control Subroutines 

TSC1.dat 

type of numerical method; number of material properties; number 

of equations 

1, 7, 8  

number of stress terms; time interval; number of iteration 

4, 0.1, 135 

material property 

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32 

Stress tensor component 

70, 0, 0, 0 

 

TSC2.dat 

type of numerical method; number of material properties; number 

of equations 

2, 7, 8  

number of stress terms; time interval; number of iteration 

4, 0.1, 100 

material property 

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32 

Stress tensor component 

70, 0, 0, 0 

10.4.5 Normalization Subroutine 

NOR1.dat 

number of material properties; number of equations 

8, 5   

number of stress terms; time interval; number of iteration; 

output strain; stress used to normalize 

4, 0.001, 1285, 1, 70 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215, 

170e3 

Stress tensor component 

1, 0, 0, 0 
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NOR2.dat 

number of material properties; number of equations 

8, 5  

number of stress terms; time interval; number of iteration; 

output strain; stress used to normalize 

4, 0.001, 1285, 1, 70 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215, 

170e3 

Stress tensor component 

0.8535339, 0.1464466, 0.3535534, 0 

  

NOR3.dat 

number of material properties; number of equations 

8, 5  

number of stress terms; time interval; number of iteration; 

output strain; stress used to normalize 

4, 0.001, 1285, 1, 70 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215, 

170e3 

Stress tensor component 

0.5, 0.5, 0.5, 0 

 

NOR4.dat 

number of material properties; number of equations 

8, 7   

number of stress terms; time interval; number of iteration; 

output strain; stress used to normalize 

6, 0.001, 1285, 1, 70 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215, 

170e3 

Stress tensor component 

1, 0, 0, 0, 0, 0 

 

NOR5.dat 

number of material properties; number of equations 

8, 7  

number of stress terms; time interval; number of iteration; 

output strain; stress used to normalize 

6, 0.001, 1285, 2, 70 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215, 

170e3 

Stress tensor component 

0, 1, 0, 0, 0, 0 

  

NOR6.dat 
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number of material properties; number of equations 

8, 7  

number of stress terms; time interval; number of iteration; 

output strain; stress used to normalize 

6, 0.001, 1285, 3, 70 

material property 

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215, 

170e3 

Stress tensor component 

0, 0, 1, 0, 0, 0 

10.4.6 Nodal Loads Calculator 

NLC1.dat 

case type 

axisymmetric 

the number of element; expected pressure 

2, 70 

the coordinate of first loaded node of each element 

0, 20 

the coordinate of second loaded node of each element 

20, 40 

 

NLC2.dat 

case type 

axisymmetric 

the number of element; expected pressure 

2, 70 

the coordinate of first loaded node of each element 

0, 20 

the coordinate of second loaded node of each element 

20, 40 

10.4.7 Data Transfer Interface 

DTI.anl 

    1CCHAPTER6CASE1        

    2CNODES                                                               

2 

 -1         1 0.0000000E+00 0.0000000E+00 0.0000000E+00 

 -1         2 1.0000000E+01 0.0000000E+00 0.0000000E+00 

 -1         3 2.0000000E+01 0.0000000E+00 0.0000000E+00 

 -1         4 0.0000000E+00 2.0000000E+01 0.0000000E+00 

 -1         5 1.0000000E+01 2.0000004E+01 0.0000000E+00 

 -1         6 2.0000000E+01 2.0000000E+01 0.0000000E+00 

 -1         7 0.0000000E+00 4.0000000E+01 0.0000000E+00 

 -1         8 1.0000000E+01 4.0000000E+01 0.0000000E+00 

 -1         9 2.0000000E+01 4.0000000E+01 0.0000000E+00 

 -1        10 0.0000000E+00 6.0000000E+01 0.0000000E+00 

 -1        11 1.0000000E+01 6.0000000E+01 0.0000000E+00 
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 -1        12 2.0000000E+01 6.0000000E+01 0.0000000E+00 

 -3 

  101CPARTS                                                               

2 10 

 -1 S1               1         3         1         6        12 

 -2         1         2         3         4         5         6         

7         8         9        10 

 -2        11        12 

 -3 

    3CELEM                                                                

2 10 

 -1         1    5    1    0         1    0 

 -2         1         2         5         4 

 -1         2    5    1    0         1    0 

 -2         2         3         6         5 

 -1         3    5    1    0         1    0 

 -2         4         5         8         7 

 -1         4    5    1    0         1    0 

 -2         5         6         9         8 

 -1         5    5    1    0         1    0 

 -2         7         8        11        10 

 -1         6    5    1    0         1    0 

 -2         8         9        12        11 

 -3 

  103CCONS                                                                

2 10 

 -1 CO1         1     3 010000 

 -2         1         2         3 

 -1 CO2         2     4 100000 

 -2         1         4         7        10 

 -3 

  110CFORCE                                                               

2 

 -1    1        10    2    4.00000E+01 

 -1    1        11    2    4.00000E+01 

 -1    1        12    2    4.00000E+01 

 -3 

 9999 

 

DTI.res 

    1 

           2           9           3           8 triangle                  

4           3   4.0000000000000000        170000.00000000000       

0.29999999999999999   1     

    2 

           1   0.0000000000000000        0.0000000000000000      

           2  0.50000000000000000        0.0000000000000000      

           3   1.0000000000000000        0.0000000000000000      

           4   0.0000000000000000      -0.50000000000000000      

           5  0.50000000000000000      -0.50000000000000000      

           6   1.0000000000000000      -0.50000000000000000      

           7   0.0000000000000000       -1.0000000000000000      

           8  0.50000000000000000       -1.0000000000000000      

           9   1.0000000000000000       -1.0000000000000000      

    3 

           1           1           2           4           1 

           2           5           4           2           1 

           3           2           3           5           1 

           4           6           5           3           1 
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           5           4           5           7           1 

           6           8           7           5           1 

           7           5           6           8           1 

           8           9           8           6           1 

    4 

           1   0.0000000000000000        2.3529559699592964E-004 

           2  -3.5294510140535674E-005   2.3529547191359065E-004 

           3  -7.0588929020547932E-005   2.3529529971266598E-004 

           4   0.0000000000000000        1.1764846739377730E-004 

           5  -3.5294938801932329E-005   1.1764818115249679E-004 

           6  -7.0589601799141090E-005   1.1764817023585826E-004 

           7   0.0000000000000000        0.0000000000000000      

           8  -3.5295200112439891E-005   0.0000000000000000      

           9  -7.0590198180171275E-005   0.0000000000000000      

    5 

           1   0.0000000000000000        14.026700958263500      

           2   2.2449187546680349E-005   28.053553235984012      

           3  -3.3004068692148731        14.026720532648463      

           4   0.0000000000000000        7.0721646593341347E-004 

           5  -1.0795115519224296E-004   8.6553111922960113E-004 

           6  -6.6010202122043777        5.9565404199979355E-004 

           7   0.0000000000000000        0.0000000000000000      

           8  -5.8657859545174773E-005   0.0000000000000000      

           9  -3.3006308926241514        0.0000000000000000      

    6 

           1 

           1   0.0000000000000000      -0.25000000000000000      

           2  0.25000000000000000        0.0000000000000000      

           3  0.25000000000000000      -0.25000000000000000      

           2 

           1  0.50000000000000000      -0.25000000000000000      

           2  0.25000000000000000      -0.50000000000000000      

           3  0.25000000000000000      -0.25000000000000000      

           3 

           1  0.50000000000000000      -0.25000000000000000      

           2  0.75000000000000000        0.0000000000000000      

           3  0.75000000000000000      -0.25000000000000000      

           4 

           1   1.0000000000000000      -0.25000000000000000      

           2  0.75000000000000000      -0.50000000000000000      

           3  0.75000000000000000      -0.25000000000000000      

           5 

           1   0.0000000000000000      -0.75000000000000000      

           2  0.25000000000000000      -0.50000000000000000      

           3  0.25000000000000000      -0.75000000000000000      

           6 

           1  0.50000000000000000      -0.75000000000000000      

           2  0.25000000000000000       -1.0000000000000000      

           3  0.25000000000000000      -0.75000000000000000      

           7 

           1  0.50000000000000000      -0.75000000000000000      

           2  0.75000000000000000      -0.50000000000000000      

           3  0.75000000000000000      -0.75000000000000000      

           8 

           1   1.0000000000000000      -0.75000000000000000      

           2  0.75000000000000000       -1.0000000000000000      

           3  0.75000000000000000      -0.75000000000000000      

    7 

           1 

           1  -1.3871248636299072E-004   39.999982450985883        

              -1.6356921252612814E-005   0.0000000000000000      
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           2  -1.3871248636299072E-004   39.999982450985883        

              -1.6356921252612814E-005   0.0000000000000000      

           3  -1.3871248636299072E-004   39.999982450985883        

              -1.6356921252612814E-005   0.0000000000000000      

           2 

           1  -2.8080772024097200E-004   39.999994616455837 

               1.8624169035410889E-005   0.0000000000000000      

           2  -2.8080772024097200E-004   39.999994616455837 

               1.8624169035410889E-005   0.0000000000000000      

           3  -2.8080772024097200E-004   39.999994616455837 

               1.8624169035410889E-005   0.0000000000000000      

           3 

           1  -8.6551178675620122E-005   40.000052893418300 

               3.3537138642561455E-005   0.0000000000000000      

           2  -8.6551178675620122E-005   40.000052893418300 

               3.3537138642561455E-005   0.0000000000000000      

           3  -8.6551178675620122E-005   40.000052893418300 

               3.3537138642561455E-005   0.0000000000000000      

           4 

           1  -1.9583782042964515E-004   39.999965270768499 

               8.6551178682847007E-005   0.0000000000000000      

           2  -1.9583782042964515E-004   39.999965270768499 

               8.6551178682847007E-005   0.0000000000000000      

           3  -1.9583782042964515E-004   39.999965270768499 

               8.6551178682847007E-005   0.0000000000000000      

           5 

           1  -1.4892141945921367E-004   40.000434237458435        

              -3.7431552065636927E-005   0.0000000000000000      

           2  -1.4892141945921367E-004   40.000434237458435        

              -3.7431552065636927E-005   0.0000000000000000      

           3  -1.4892141945921367E-004   40.000434237458435        

              -3.7431552065636927E-005   0.0000000000000000      

           6 

           1  -2.7863810427497526E-004   40.000298000417629 

               3.4171374065676948E-005   0.0000000000000000      

           2  -2.7863810427497526E-004   40.000298000417629 

               3.4171374065676948E-005   0.0000000000000000      

           3  -2.7863810427497526E-004   40.000298000417629 

               3.4171374065676948E-005   0.0000000000000000      

           7 

           1  -7.7957688247920487E-005   40.000358204542437 

               3.2743813641517213E-005   0.0000000000000000      

           2  -7.7957688247920487E-005   40.000358204542437 

               3.2743813641517213E-005   0.0000000000000000      

           3  -7.7957688247920487E-005   40.000358204542437 

               3.2743813641517213E-005   0.0000000000000000      

           8 

           1  -2.0437249574634109E-004   40.000316568443083 

               7.7988288562739295E-005   0.0000000000000000      

           2  -2.0437249574634109E-004   40.000316568443083 

               7.7988288562739295E-005   0.0000000000000000      

           3  -2.0437249574634109E-004   40.000316568443083 

               7.7988288562739295E-005   0.0000000000000000      

    8 

           1 

           1  -7.0589020281071349E-005   2.3529425920430468E-004   

              -2.5016467798113715E-010   0.0000000000000000      

           2  -7.0589020281071349E-005   2.3529425920430468E-004   

              -2.5016467798113715E-010   0.0000000000000000      

           3  -7.0589020281071349E-005   2.3529425920430468E-004   

              -2.5016467798113715E-010   0.0000000000000000      
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           2 

           1  -7.0589877603864659E-005   2.3529458152218770E-004 

               2.8484023230628420E-010   0.0000000000000000      

           2  -7.0589877603864659E-005   2.3529458152218770E-004 

               2.8484023230628420E-010   0.0000000000000000      

           3  -7.0589877603864659E-005   2.3529458152218770E-004 

               2.8484023230628420E-010   0.0000000000000000      

           3 

           1  -7.0588837760024515E-005   2.3529458152218770E-004 

               5.1292094394505758E-010   0.0000000000000000      

           2  -7.0588837760024515E-005   2.3529458152218770E-004 

               5.1292094394505758E-010   0.0000000000000000      

           3  -7.0588837760024515E-005   2.3529458152218770E-004 

               5.1292094394505758E-010   0.0000000000000000      

           4 

           1  -7.0589325994417521E-005   2.3529425895361546E-004 

               1.3237239092670720E-009   0.0000000000000000      

           2  -7.0589325994417521E-005   2.3529425895361546E-004  

               1.3237239092670720E-009   0.0000000000000000      

           3  -7.0589325994417521E-005   2.3529425895361546E-004 

               1.3237239092670720E-009   0.0000000000000000      

           5 

           1  -7.0589877603864659E-005   2.3529693478755459E-004   

              -5.7248256100385884E-010   0.0000000000000000      

           2  -7.0589877603864659E-005   2.3529693478755459E-004   

              -5.7248256100385884E-010   0.0000000000000000      

           3  -7.0589877603864659E-005   2.3529693478755459E-004   

              -5.7248256100385884E-010   0.0000000000000000      

           6 

           1  -7.0590400224879781E-005   2.3529636230499359E-004 

               5.2262101512211799E-010   0.0000000000000000      

           2  -7.0590400224879781E-005   2.3529636230499359E-004 

               5.2262101512211799E-010   0.0000000000000000      

           3  -7.0590400224879781E-005   2.3529636230499359E-004 

               5.2262101512211799E-010   0.0000000000000000      

           7 

           1  -7.0589325994417521E-005   2.3529636230499359E-004 

               5.0078773804673390E-010   0.0000000000000000      

           2  -7.0589325994417521E-005   2.3529636230499359E-004 

               5.0078773804673390E-010   0.0000000000000000      

           3  -7.0589325994417521E-005   2.3529636230499359E-004 

               5.0078773804673390E-010   0.0000000000000000      

           8 

           1  -7.0589996135462770E-005   2.3529634047171651E-004 

               1.1927620603713069E-009   0.0000000000000000      

           2  -7.0589996135462770E-005   2.3529634047171651E-004 

               1.1927620603713069E-009   0.0000000000000000      

           3  -7.0589996135462770E-005   2.3529634047171651E-004 

               1.1927620603713069E-009   0.0000000000000000      

    9 

           1 

           1  -1.1041841831367080E-005   2.2083568790380394E-005   

              -2.7091404587803183E-011  -1.1041726959013309E-005 

           2  -1.1041841831367080E-005   2.2083568790380394E-005   

              -2.7091404587803183E-011  -1.1041726959013309E-005 

           3  -1.1041841831367080E-005   2.2083568790380394E-005   

              -2.7091404587803183E-011  -1.1041726959013309E-005 

           2 

           1  -1.1042001021190423E-005   2.2083769494679590E-005 

               3.0846785077030556E-011  -1.1041768473489160E-005 

           2  -1.1042001021190423E-005   2.2083769494679590E-005 
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               3.0846785077030556E-011  -1.1041768473489160E-005 

           3  -1.1042001021190423E-005   2.2083769494679590E-005 

               3.0846785077030556E-011  -1.1041768473489160E-005 

           3 

           1  -1.1041873740043404E-005   2.2083675803952752E-005 

               5.5546613741522707E-011  -1.1041802063909341E-005 

           2  -1.1041873740043404E-005   2.2083675803952752E-005 

               5.5546613741522707E-011  -1.1041802063909341E-005 

           3  -1.1041873740043404E-005   2.2083675803952752E-005 

               5.5546613741522707E-011  -1.1041802063909341E-005 

           4 

           1  -1.1041879209793359E-005   2.2083596239717113E-005  

               1.4335186984880532E-010  -1.1041717029923754E-005 

           2  -1.1041879209793359E-005   2.2083596239717113E-005 

               1.4335186984880532E-010  -1.1041717029923754E-005 

           3  -1.1041879209793359E-005   2.2083596239717113E-005 

               1.4335186984880532E-010  -1.1041717029923754E-005 

           5 

           1  -1.1042397112448653E-005   2.2084670893445599E-005   

              -6.1998974660913957E-011  -1.1042273780996950E-005 

           2  -1.1042397112448653E-005   2.2084670893445599E-005   

              -6.1998974660913957E-011  -1.1042273780996950E-005 

           3  -1.1042397112448653E-005   2.2084670893445599E-005   

              -6.1998974660913957E-011  -1.1042273780996950E-005 

           6 

           1  -1.1042364726447949E-005   2.2084498696061860E-005 

               5.6598706156802205E-011  -1.1042133969613915E-005 

           2  -1.1042364726447949E-005   2.2084498696061860E-005 

               5.6598706156802205E-011  -1.1042133969613915E-005 

           3  -1.1042364726447949E-005   2.2084498696061860E-005 

               5.6598706156802205E-011  -1.1042133969613915E-005 

           7 

           1  -1.1042233232891617E-005   2.2084401904589847E-005 

               5.4234027004756503E-011  -1.1042168671698227E-005 

           2  -1.1042233232891617E-005   2.2084401904589847E-005 

               5.4234027004756503E-011  -1.1042168671698227E-005 

           3  -1.1042233232891617E-005   2.2084401904589847E-005 

               5.4234027004756503E-011  -1.1042168671698227E-005 

           8 

           1  -1.1042311588084041E-005   2.2084453923378754E-005 

               1.2917330510133722E-010  -1.1042142335294716E-005 

           2  -1.1042311588084041E-005   2.2084453923378754E-005 

               1.2917330510133722E-010  -1.1042142335294716E-005 

           3  -1.1042311588084041E-005   2.2084453923378754E-005 

               1.2917330510133722E-010  -1.1042142335294716E-005 

   10 

           1 

           1   1.4898054512460445E-004 

           2   1.4898054512460445E-004 

           3   1.4898054512460445E-004 

           2 

           1   1.4898094184059548E-004 

           2   1.4898094184059548E-004 

           3   1.4898094184059548E-004 

           3 

           1   1.4898096363601544E-004 

           2   1.4898096363601544E-004 

           3   1.4898096363601544E-004 

           4 

           1   1.4898053839544465E-004 

           2   1.4898053839544465E-004 
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           3   1.4898053839544465E-004 

           5 

           1   1.4898396952228488E-004 

           2   1.4898396952228488E-004 

           3   1.4898396952228488E-004 

           6 

           1   1.4898322201493304E-004 

           2   1.4898322201493304E-004 

           3   1.4898322201493304E-004 

           7 

           1   1.4898324453124583E-004 

           2   1.4898324453124583E-004 

           3   1.4898324453124583E-004 

           8 

           1   1.4898320239903099E-004 

           2   1.4898320239903099E-004 

           3   1.4898320239903099E-004 

 9999 
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10.5 Source code of performance exploration Programme 

10.5.1 Performance of numerical method 

      program NMSexp 

        use validation 

        implicit none 

        character(len=16) :: filename1, filename2 

        integer :: nos, nos1, nom, noe, i, num, loop, j, ierror, loop1, 

     &    rcv 

        doubleprecision, allocatable ::sigma(:),stress(:),mat(:),y(:) 

        doubleprecision :: t,dt,start,finish 

        write(*,*) 'Please Enter The Input File Name: ' 

        read (*,*) filename1 

        write(*,*) 'Please Enter The Output File Name: ' 

        read (*,*) filename2 

        open(10,file=filename1,status='old',action='read',iostat=ierror) 

        open(11,file=filename2,status='replace',action='write', 

     &       iostat=ierror) 

        open(12,file='timedata.txt',status='replace',action='write', 

     &       iostat=ierror) 

        open(13,file='straindata.txt',status='replace',action='write', 

     &       iostat=ierror) 

        open(14,file='damagedata.txt',status='replace',action='write', 

     &       iostat=ierror) 

              call cpu_time(start) 

        read (10,*) num, nom, noe, nos, dt, loop, loop1 

        nos1 = nos+4 

        allocate(sigma(nos), stress(nos1), mat(nom), y(noe)) 

        read(10,*) mat 

        read(10,*) sigma 

        t = 0. 

        y = 0. 

        call TRS(sigma,stress) 

        select case (num) 

        case (1) 

        write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)', 

     &               'hardening','coarsening','damage' 

        do i = 1, loop 

            do j = 1, loop1 

            t = t+dt 

            call EULER(PH,y,t,dt,stress,mat,nos1,nom,noe) 

            end do 

            write(11,'(f9.2,10es12.5)') t,y 

            write(12,*) t 

            write(13,*) y(1) 

            write(14,*) y(8) 

            end do 

        case (2) 

        write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)', 

     &               'hardening','coarsening','damage' 

        do i = 1, loop 

            do j = 1, 100 

            t = t+dt 

            call RK4(PH,y,t,dt,stress,mat,nos1,nom,noe) 

            end do 

            write(11,'(f9.2,10es12.5)') t,y 

            write(12,*) t 

            write(13,*) y(1) 

            write(14,*) y(8) 
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            end do 

        case (3) 

        write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)', 

     &               'hardening','coarsening','damage' 

        do i = 1, loop 

            do j = 1, 100 

            t = t+dt 

            call RKM(PH,y,t,dt,stress,mat,nos1,nom,noe,rcv) 

            end do 

            write(11,'(f9.2,10es12.5)') t,y 

            write(12,*) t 

            write(13,*) y(1) 

            write(14,*) y(8) 

            end do 

        case (4) 

        write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)', 

     &               'hardening','coarsening','damage' 

        do i = 1, loop 

            do j = 1, 100 

            t = t+dt 

            call RKF(PH,y,t,dt,stress,mat,nos1,nom,noe,rcv) 

            end do 

            write(11,'(f9.2,10es12.5)') t,y 

            write(12,*) t 

            write(13,*) y(1) 

            write(14,*) y(8) 

            end do 

            end select 

            call cpu_time(finish) 

            print '("Time = ",es14.7," seconds.")',finish-start 

      end program NMSexp 

 

10.5.2 Performance of time-step control 

      program TSCexp 

        use validation 

        implicit none 

        character(len=16) :: filename1, filename2 

        integer :: nos, nos1, nom, noe, i, num, loop, j, rcv, ierror, 

     &  loop1 

        doubleprecision, allocatable ::sigma(:),stress(:),mat(:),y(:) 

     &    ,y1(:) 

        integer :: g_rcv(1,1,1) 

        doubleprecision :: t,dt 

        write(*,*) 'Please Enter The Input File Name: ' 

        read (*,*) filename1 

        write(*,*) 'Please Enter The Output File Name: ' 

        read (*,*) filename2 

open(10,file=filename1,status='old',action='read',iostat=ierror) 

        open(11,file=filename2,status='replace',action='write', 

     &       iostat=ierror) 

        open(12,file='timedata.txt',status='replace',action='write', 

     &       iostat=ierror) 

        open(13,file='straindata.txt',status='replace',action='write', 

     &       iostat=ierror) 

        write(11,*) 'time','  strain','  control value','  time-step' 

        read (10,*) num, nom, noe, nos, dt, loop, loop1 

        nos1 = nos+4 

        allocate(sigma(nos), stress(nos1), mat(nom), y(noe), y1(noe)) 

        read (10,*) y1 
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        read (10,*) mat 

        read (10,*) sigma 

        t = 0. 

        select case (nos) 

        case(1) 

            stress = sigma 

            case(4) 

                call TRS(sigma,stress) 

                case(6) 

                    call TRS(sigma,stress) 

                    end select 

        select case (num) 

        case (1) 

        do i = 1, loop 

            y=y1 

            call RKF(ntest,y,t,dt,stress,mat,nos1,nom,noe,rcv) 

            g_rcv = rcv 

            call TSC(dt,g_rcv) 

            if (maxval(g_rcv)==0) then 

                y1 = y 

                t = t+dt 

                else 

                    y1 = y1 

                    t = t 

                    end if 

            write(11,'(f9.2,es14.7,i5,es14.7)') t, y1, g_rcv,dt 

            write(12,*) dt 

            write(13,*) y(1) 

            end do 

        case (2) 

            do i = 1, loop 

            do j = 1, loop1 

                y=y1 

            t = t+dt 

            call RKF(PH,y,t,dt,stress,mat,nos1,nom,noe,rcv) 

            g_rcv = rcv 

            if (maxval(g_rcv)==0) then 

                y1 = y 

                else 

                    y1 = y1 

                    end if 

            call TSC(dt,g_rcv) 

            end do 

            write(11,'(f9.2,es14.7,i5,es14.7)') t, y(1), g_rcv,dt 

            write(12,*) t 

            write(13,*) y(1) 

            end do 

            case default 

                write(*,*)'Wrong case in this testing' 

            end select 

      end program TSCexp 

 


