
University of Huddersfield Repository

Tan, Feng

Development of Subroutine Library and Data Transfer Interface for High Temperature Structural
Integrity-Creep

Original Citation

Tan, Feng (2015) Development of Subroutine Library and Data Transfer Interface for High
Temperature Structural Integrity-Creep. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/26220/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

DEVELOPMENT OF SUBROUTINE LIBRARY AND

DATA TRANSFER INTERFACE FOR HIGH

TEMPERATURE STRUCTURAL INTEGRITY-CREEP

by

Feng Tan

A thesis submitted to the University of Huddersfield

in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

School of Computing and Engineering,

The University of Huddersfield

Augest, 2015

2

DECLARATION

This dissertation is the result of my own work and includes nothing, which is the outcome

of work done in collaboration except where specifically indicated in the text. It has not

been previously submitted, in part or whole, to any university of institution for any degree,

diploma, or other qualification.

In accordance with the Department of Engineering guidelines, this thesis is does not

exceed 40,000 words, and it contains fewer than 150 figures.

Signed: __

Date: ___

Feng Tan

3

COPYRIGHT STATEMENT

1. The author of this thesis (including any appendices and/or schedules to this thesis)

owns any copyright in it (the “Copyright”) and s/he has given The University of

Huddersfield the right to use such Copyright for any administrative, promotional,

educational and/or teaching purposes.

2. Copies of this thesis, either in full or in extracts, may be made only in accordance

with the regulations of the University Library. Details of these regulations may be

obtained from the Librarian. This page must form part of any such copies made.

3. The ownership of any patents, designs, trademarks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Property

Rights”) and any reproductions of copyright works, for example graphs and tables

(“Reproductions”), which may be described in this thesis, may not be owned by

the author and may be owned by third parties. Such Intellectual Property Rights

and Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

Rights and/or Reproductions.

4

ABSTRACT

Creep plays a critical role in the research of high temperature materials because it is the

major failure form of high temperature devices. In the safety assessment of high

temperature devices, creep failure is one of the key factors used to evaluate residual

lifetime of metal components; however, creep analysis in practical applications is still a

great challenge due to the lack of a unified theory of all materials. A number of

researchers are conducting research into creep constitutive model based on either

experimental approaches or computational approaches, but multifarious computational

tools were used because the constitutive model is still in the exploration stage. Traditional

commercial software could reach the required capability based on the development of

user-developed codes; moreover, some in-house codes were proposed, but just used in a

narrow scope. Therefore, the development of a novel universal creep finite element

software needs to be carried out to meet the requirements of future research.

This research aims to develop required subroutines and interface for the proposed elastic-

creep finite element software called High Temperature Structural Integrity-Creep (HITSI).

Basic concepts and situations of creep and its computational tools have been reviewed.

General knowledge of programming of finite element method has also been studied. A

universal subroutine template of creep constitutive equations has been given to enable

users to add their own equations directly. A high order and embedded numerical method

called Runge-Kutta-Fehlberg (RKF) method has been applied and discussed in order to

enhance the accuracy of traditional methods. A mathematical method used to improve the

accuracy and efficiency of constitutive equations subroutine call normalization has been

applied and discussed. Formatted input and output of purchased pre- and post-processor

has been studied to develop the data transfer interface. Some auxiliary modules such as

stress transformation and nodal load arrangement have been developed to satisfy the input

conditions of constitutive equations subroutines and data transfer interface.

5

 Acknowledgements

The author would like to express his sincere gratitude to his major supervisor Dr. Qiang

Xu. Xu sets up the direction and fundamental frame for this research. His enthusiasm,

encouragement and useful guidance make this research smooth and solid.

Moreover, the author also needs to thank co-supervisor Prof. Zhongyu Lu for her support

of required software and devices.

Thanks to my colleague Dezheng Liu and my previous co-supervisor Reader Donglai Xu

because of their useful help.

Finally, profound gratitude to my dear parents for their care and financial support.

6

CONTENTS

ABSTRACT………………………………………………………………………………4

LIST OF FIGURES……………………………………………………………………..12

LIST OF TABLES………………………………………………………………………15

LIST OF ACRONYMS…………………………………………………………………17

1 INTRODUCTION .. 18

1.1 BACKGROUND .. 18

1.2 AIM AND OBJECTIVES ... 21

1.3 THESIS LAYOUT .. 22

2 SURVEY OF RESEARCH DOMAIN .. 23

2.1 PRESENT SITUATION OF HIGH TEMPERATURE INDUSTRY 24

2.2 CREEP AND CREEP DAMAGE ... 25

2.2.1 Concept of creep .. 25

2.2.2 Damage mechanics .. 26

2.2.3 Mechanisms of creep deformation and rupture ... 27

2.2.4 Creep constitutive models .. 29

2.3 RESEARCH APPROACHES OF CREEP DAMAGE ANALYSIS 30

2.4 COMPUTATIONAL TOOLS OF CREEP DAMAGE ANALYSIS 31

2.4.1 Commercial Software ... 31

2.4.2 In-house Software ... 32

2.5 PROGRAMMING OF FINITE ELEMENT METHOD ... 33

2.5.1 HITSI .. 34

2.5.2 Finite element method .. 35

2.5.3 Programming Languages ... 36

2.5.4 General purpose subroutines of HITSI .. 37

2.6 SUMMARY .. 37

3 DEVELOPMENT STRATEGY OF HIGH TEMPERATURE STRUCTURAL

INTEGRITY-CREEP .. 39

3.1 OVERALL STRUCTURE OF HITSI ... 39

3.1.1 The solver ... 41

7

3.1.2 Pre- and Post-processor .. 41

3.1.3 Data transfer interface ... 42

3.1.4 Nodal loads calculator ... 42

3.2 REQUIRED SUBROUTINES OF THE SOLVER ... 43

3.2.1 Constitutive equations subroutine .. 43

3.2.2 Numerical method subroutine .. 44

3.2.3 Stress tensor transformation subroutine .. 45

3.2.4 Time-step control procedure subroutine .. 45

3.2.5 Normalization technique subroutine .. 46

3.3 RESEARCH METHODOLOGY ... 46

3.3.1 Software development life cycle and activities ... 46

3.3.2 Software development model .. 46

3.3.3 Requirements analysis .. 48

3.3.4 Algorithm Design ... 48

3.3.5 Testing and verification .. 49

3.4 SUMMARY .. 49

4 RELATIVE THEORIES AND KNOWLEDGE APPLICATION 51

4.1 CONSTITUTIVE EQUATIONS .. 51

4.1.1 Kachanov-Rabotnov constitutive equations ... 52

4.1.2 Perrin-Hayhurst constitutive equations ... 53

4.1.3 Qiang Xu’s constitutive equations ... 54

4.2 TRANSFORMATION OF STRESS TENSOR .. 55

4.2.1 Deviatoric stress tensor .. 55

4.2.2 Principal stress ... 55

4.2.3 Equivalent stress .. 56

4.3 NUMERICAL METHODS ... 57

4.3.1 Euler’s method ... 57

4.3.2 Classical 4th order Runge-Kutta method .. 58

4.3.3 Runge-Kutta-Merson method ... 58

4.3.4 Runge-Kutta-Fehlberg method ... 59

4.4 TIME-STEP CONTROL PROCEDURE .. 60

4.4.1 Time-step selection ... 60

4.4.2 Time-step acceptance ... 60

8

4.5 NORMALIZATION TECHNIQUE... 61

4.6 NODAL LOADS CONDITIONS ... 63

4.7 FILE FORMAT OF FEMGV AND THE SOLVER .. 64

4.7.1 File format of FEMGV ... 65

4.7.2 File format of the solver ... 68

4.8 SUMMARY .. 69

5 DESIGN OF ALGORITHM AND STRUCTURE .. 70

5.1 TRANSFORMATION OF STRESS TENSOR .. 71

5.1.1 Algorithm of TRS .. 71

5.1.2 Variables Definition ... 73

5.1.3 Subroutine Structure .. 74

5.2 CONSTITUTIVE EQUATIONS .. 74

5.2.1 Algorithm of CES ... 75

5.2.2 Variables Definition ... 76

5.2.3 Subroutine Structure .. 77

5.3 NUMERICAL INTEGRATION METHOD .. 78

5.3.1 Algorithm of NMS .. 78

5.3.2 Variables Definition ... 79

5.3.3 Subroutine Structure .. 80

5.4 TIME-STEP CONTROL PROCEDURE .. 80

5.4.1 Algorithm of TSC and self-adaptive approach ... 81

5.4.2 Variables Definition ... 82

5.4.3 Subroutine Structure .. 83

5.5 NORMALIZATION SCHEME .. 84

5.5.1 Algorithm of NOR_KR ... 84

5.5.2 Variables Definition ... 84

5.5.3 Subroutine Structure .. 85

5.6 BOUNDARY CONDITIONS OF NODAL LOADS ... 86

5.6.1 Algorithm of NLC ... 86

5.6.2 Variables Definition ... 87

5.6.3 Subroutine Structure .. 87

5.7 PRE- AND POST-PROCESSING .. 88

5.7.1 Algorithm of DTI .. 88

9

5.7.2 Variables Definition ... 90

5.7.3 Subroutine Structure .. 93

5.8 SUMMARY ... 94

6 TESTING AND VERIFICATION .. 95

6.1 SUBROUTINE OF TRANSFORMATION OF STRESS TENSOR 96

6.1.1 Instruction of TRScheck ... 96

6.1.2 Statement of testing cases ... 97

6.1.3 Result and verification ... 98

6.2 SUBROUTINES OF NUMERICAL INTEGRATION METHOD 101

6.2.1 Instruction of NMScheck .. 101

6.2.2 Statement of testing cases ... 102

6.2.3 Result and verification ... 102

6.3 SUBROUTINES OF CONSTITUTIVE EQUATIONS .. 103

6.3.1 Instruction of CEScheck ... 103

6.3.2 Statement of testing cases ... 105

6.3.3 Result and verification ... 107

6.4 SUBROUTINE OF TIME-STEP CONTROL PROCEDUREERROR! BOOKMARK NOT

DEFINED.

6.4.1 Instruction of TSCcheck ... 113

6.4.2 Statement of testing cases ... 115

6.4.3 Result and verification ... 115

6.5 SUBROUTINE OF NORMALISATION TECHNIQUE ... 118

6.5.1 Instruction of NORcheck .. 118

6.5.2 Statement of testing cases ... 119

6.5.3 Result and verification ... 120

6.6 NODAL LOADS CALCULATOR ... 122

6.6.1 Instruction of NLC .. 122

6.6.2 Statement testing cases ... 123

6.6.3 Result and verification ... 123

6.7 DATA TRANSFER INTERFACE .. 124

6.7.1 Instruction of DTI ... 124

6.7.2 Statement of testing cases ... 125

6.7.3 Result and verification ... 125

10

6.8 SUMMARY .. 130

7 EXPLORATION OF THE PERFORMANCE OF NUMERICAL METHODS,

TIME-STEP CONTROL PROCEDURE AND NORMALIZATION SCHEME 132

7.1 PERFORMANCE OF NUMERICAL INTEGRATION METHODS 133

7.1.1 Experiments design .. 133

7.1.2 Result and discussion ... 134

7.2 SELF-ADAPTIVE APPROACH OF RUNGE-KUTTA-FEHLBERG METHOD 137

7.2.1 Experiments design .. 137

7.2.2 Result and discussion ... 138

7.3 NORMALIZATION TECHNIQUE... 139

7.3.1 Experiments design .. 139

7.3.2 Results and discussion .. 140

7.4 SUMMARY .. 142

8 CONCLUSION AND FURTHER WORK ... 143

8.1 CONTRIBUTIONS ... 143

8.2 CONCLUSION .. 144

8.3 FURTHER WORK ... 145

9 REFERENCE .. 147

10 APPENDICES ... 152

10.1 PUBLICATION LIST OF THIS RESEARCH .. 153

10.2 SOURCE CODE OF TAN_LIBRARY，NLC AND DTI... 154

10.3 SOURCE CODE OF VALIDATION PROGRAMMES ... 172

10.3.1 Stress Transformation Subroutine .. 172

10.3.2 Numerical Method Subroutines .. 172

10.3.3 Constitutive Equations Subroutines ... 173

10.3.4 Time-step Control Subroutines .. 175

10.3.5 Normalization subroutine ... 176

10.4 INPUT FILE OF VALIDATION CASES .. 178

10.4.1 Stress Transformation Subroutine .. 178

10.4.2 Numerical Method Subroutines .. 178

10.4.3 Constitutive Equations Subroutines ... 179

11

10.4.4 Time-step Control Subroutines .. 184

10.4.5 Normalization Subroutine .. 184

10.4.6 Nodal Loads Calculator ... 186

10.4.7 Data Transfer Interface .. 186

10.5 SOURCE CODE OF PERFORMANCE EXPLORATION PROGRAMME 193

10.5.1 Performance of numerical method ... 193

10.5.2 Performance of time-step control ... 194

Word count: in total 36786 words which excludes the appendices

12

LIST OF FIGURES

Figure 2-1 Relationship overview of theoretical knowledge of creep research domain 23

Figure 2-2 Temperature change tendency of operation of power plants (Tu, 2007) 24

Figure 2-3 Evolution of creep deformation .. 26

Figure 2-4 Definition of damage (Voyiadjis and Kattan, 2002) .. 27

Figure 2-5 Typical deformation map of dislocation creep and diffusional creep (Skrzypek

and Hetnarski, 1993) .. 28

Figure 2-6 Typical effect of temperature and stress on mechanism of creep rupture

(Skrzypek and Hetnarski, 1993) ... 29

Figure 2-7 Operation process of HITSI ... 34

Figure 3-1 Overall structure of HITSI ... 40

Figure 3-2 Typical activities of waterfall model .. 47

Figure 3-3 Typical activities of spiral model ... 47

Figure 4-1 Nodal force distribution of 3-nodes triangle and 4-nodes quadrilateral planar

element (Smith and Griffiths, 2004) .. 64

Figure 4-2 Nodal force distribution and formula of 3-nodes triangle and 4-nodes

quadrilateral axisymmetric element (Smith and Griffiths, 2004) 64

Figure 4-3 Overall structure of FEMGV (Manie and Wolthers, 2013) 65

Figure 5-1 Algorithm of stress tensor transformation subroutine 72

Figure 5-2 Algorithm of constitutive equaitons subroutines .. 75

Figure 5-3 Algorithm of numerical method subroutines .. 78

Figure 5-4 Algorithm of time-step control in the solver .. 81

Figure 5-5 Algorithm of time-step selection subroutine .. 82

Figure 5-6 Algorithm of nodal loads calculator ... 86

Figure 5-7 Overall algorithm of data transfer interface ... 89

Figure 6-1 Algorithm of programme TRScheck .. 97

Figure 6-2 Results obtained from stress tensor components 80, -30, 0, -32 98

Figure 6-3 Results obtained from stress tensor components -10, 0, 7, 9, 0, 5 99

Figure 6-4 Algorithm of programme NMScheck ... 101

Figure 6-5 Results obtained from EULER, RK4, RKM and RKF 102

Figure 6-6 Algorithm of programme CEScheck .. 104

Figure 6-7 Creep strain curve of KR and PH based on single stress 107

13

Figure 6-8 Creep strain curve obtained by Hyde; a) for KR, b) for PH (Hyde et al., 2006)

 .. 108

Figure 6-9 Creep strain curve of KR based on the stresses obtained from Mohr’s circle in

x-direction .. 109

Figure 6-10 Creep strain curve of PH based on the stresses obtained from Mohr’s circle in

x-direction .. 109

Figure 6-11 Creep strain curve obtained by Qiang Xu (Xu, 2001) 110

Figure 6-12 Creep strain curve of QX based on the stresses obtained from Mohr’s circle in

x-direction .. 110

Figure 6-13 Creep strain curve of KR based on the uni-axial tensile load in x-direction, y-

direction and z-direction .. 111

Figure 6-14 Creep strain curve of PH based on the uni-axial tensile load in x-direction, y-

direction and z-direction .. 112

Figure 6-15 Creep strain curve of QX based on the uni-axial tensile load in x-direction, y-

direction and z-direction .. 112

Figure 6-16 Algorithm of programme TSCcheck .. 114

Figure 6-17 Creep strain and damage, time-step obtained from RKM method 116

Figure 6-18 Creep strain and damage, time-step obtained from RKF method 117

Figure 6-19 Creep strain curve comparison based on RKM method and RKF method .. 117

Figure 6-20 Error between RKM and RKF .. 118

Figure 6-21 Algorithm of programme NORcheck ... 119

Figure 6-22 Creep strain curve of normalized constitutive equations based on the stresses

obtained from Mohr’s circle in x-direction .. 121

Figure 6-23 Creep strain curve of normalized constitutive equations based on the uni-axial

tensile load in x-direction, y-direction and z-direction .. 122

Figure 6-24 Nodal forces depend on axisymmetric case and planar case 123

Figure 6-25 Geometry model used for pre-processing transfer test 125

Figure 6-26 Result file of pre-processing transfer ... 126

Figure 6-27 Displacement shape in y-direction ... 128

Figure 6-28 Contour of elastic stress y-direction ... 128

Figure 6-29 Contour of elastic strain y-direction ... 129

Figure 6-30 Contour of creep strain y-direction .. 129

Figure 6-31 Contour of creep damage ... 130

14

Figure 7-1 Relative error curves of Euler’s method using time-step of 0.1 hour, 0.01 hour,

0.001 hour and 0.0001 hour, only displayed from 0 hour to 800 hours 135

Figure 7-2 Relative error curve of Euler’s method using time-step of 0.1 hour, 0.01 hour,

0.001 hour and 0.0001 hour, only displayed from 975 hours to 980 hours 135

Figure 7-3 Relative error curves of RK4 method, RKM method and RKF method, which

based on the Euler’s method using time-step of 0.0001 hour, only displayed from 0 hours

to 800 hours .. 136

Figure 7-4 Relative error curves of RK4 method, RKM method and RKF method, which

based on the Euler’s method using time-step of 0.0001 hour, only displayed from 960

hours to 980 hours .. 137

Figure 7-5 Results of subroutine NTEST based on the initial time-step of 0.2 and 0.4 .. 138

Figure 7-6 Results of subroutine PH based on the initial time-step of 1 hour and 2 hour

 .. 139

Figure 7-7 Equivalent real times of normalized method .. 141

Figure 7-8 Creep strain curve using normalized approach and non-normalized approach

 .. 142

15

LIST OF TABLES

Table 2-1 Description of subset of new_library (Smith and Griffiths, 2004) 37

Table 4-1 Data categories of Neutral file in design environment 66

Table 4-2 Data categories of Neutral file in result environment .. 66

Table 4-3 Specific data format of Neutral file in design environment 67

Table 4-4 Specific data format of Neutral file in result environment 67

Table 5-1 Relative theories and knowledge of each subroutine and programme 71

Table 5-2 Variables dictionary of TRS .. 73

Table 5-3 Variables dictionary of CES .. 76

Table 5-4 Variables dictionary of NMS ... 79

Table 5-5 Variables dictionary of TSC .. 82

Table 5-6 Unique variables dictionary of self-adaptive approach in NMS 83

Table 5-7 Unique variables dictionary of NOR_KR .. 85

Table 5-8 Variables dictionary of NLC ... 87

Table 5-9 Variables dictionary of DTI ... 91

Table 5-10 Purpose statement of developed subroutines and programmes 94

Table 6-1 Description of subroutine’s testing .. 96

Table 6-2 Stress tensor components used in testing (unit/MPa) .. 97

Table 6-3 Comparison of computer results and hand calculation results 99

Table 6-4 Comparison of computer results and hand calculation results 100

Table 6-5 Exact solution and numerical solution of numerical method of Euler’s, RK4,

RKM and RKF (Faires and Burden, 2013) .. 103

Table 6-6 Material properties for each creep constitutive equations 106

Table 6-7 Stress for each test of each creep constitutive equations 106

Table 6-8 Summary information of each input file .. 106

Table 6-9 Material properties of Perrin-Hayhurst constitutive equations 115

Table 6-10 Material properties used to the test of normalized creep constitutive equations

subroutine ... 120

Table 6-11 Stress for each test of normalized creep constitutive equations 120

Table 6-12 Coordinates of geometry used for pre-processing transfer 126

Table 6-13 Elastic stress in y-direction .. 127

Table 6-14 Summary of each tests ... 131

16

Table 7-1 Material properties of Perrin-Hayhurst constitutive equations 133

Table 7-2 Running time and rupture strain based on Euler’s method using time-step size

of 1 hour, 0.1 hour, 0.01 hour, 0.001 hour and 0.0001 hour .. 134

Table 7-3 Material properties of Perrin-Hayhurst constitutive equations 138

Table 7-4 Material properties used for the performance investigation of normalized

subroutine ... 140

17

LIST OF ACRONYMS

CDM Continuum Damage Mechanics

CES Constitutive Equations Subroutine

CGM Cavity Growth Mechanism

CPT Classical Plastic Theory

DTI Data Transfer Interface

FEA Finite Element Analysis

FEM Finite Element Method

HAZ Heat Affect Zone

KR Kachanov-Rabotnov

NLC Nodal Load Calculator

NMS Numerical Method Subroutine

NOR_KR Normalized Kachanov-Rabotnov

ODEs Ordinary differential equations

PH Perrin-Hayhurst

QX Qiang Xu’s

RK Runge-Kutta

RK4 4th order classical Runge-Kutta

RKM Runge-Kutta-Merson

RKF Runge-Kutta-Fehlberg

TRS Transformation of Stress

TSC Time Step Control

UMIST University of Manchester Institute of Science and Technology

18

1 INTRODUCTION

1.1 Background

The earliest creep phenomenon of metal wire was observed in 1900s, when Andrade

(1910) firstly identified the creep characteristics of several pure metals via a set of

experiments in 1910. A few years later, people realised the metal components always

have creep deformation when loaded in high temperature environment even though the

loaded stress is much smaller than yield strength of material during the same temperature

condition. The high temperature and high-pressure process industry was developed

rapidly after 1920s, see (Lai, 1990, Boyer, 1996, Eason et al., 2015), in the same time, the

research of creep has been paid more and more attention. In recent years, the issues of

creep and creep damage are becoming more and more serious in high temperature

industries. For example, in the catalytic cracking device of petroleum industry

(Sadeghbeigi, 2012), the manufacturing materials of pressure vessels normally are carbon

steel or carbon-molybdenum steel in which working temperature of carbon steel and

carbon-molybdenum steel could reach 510 ℃ and 540 ℃ respectively. The major failure

form of this type of device is creep. The weldments of steam pipework of power

generation plant are extremely sensitive to creep because of the different metallurgical

regions between the weld and base material (Wang et al., 2015). During welding, the

heating and subsequent cooling of the weldments is the major factor to form different

metallurgical regions between the weld and base material.

Finite element method (FEM) was introduced into creep damage research to validate the

tentative constitutive model or to intuitively observe the visualized evolution process of

19

creep strain and damage. For example, finite element analysis (FEA) with a modified

form of Kachanov-Rabotnov (KR) constitutive equations was carried out to simulate the

damage evolution of modelling a specimen with cooling holes, its FEM results revealed

that the existence of cooling holes causes the concentration of stress and strain (Yu et al.,

2008). However, the existing situation of computational tools is not optimistic due to the

lack of a unified theory of creep. The mainstream computational tools can be classified

into two categories, one is commercial software and the other is in-house software. The

present commercial FEA software such as ABAQUS (Jiang et al., 2015) or ANSYS (Ni et

al., 2015) allows the customer to develop a user’s subroutine to conduct creep damage

analysis simulation. Although the development of in-house software is difficult, the

controllability is much better than commercial software.

In order to obtain a useful computational tool, High Temperature Structural Integrity-

Creep (HITSI), which is an elastic-creep finite element analysis system, was proposed

during this research. HITSI consists of three parts, which are a) pre- and post-processor, b)

solver and c) data transfer programme. FEMGV, a set of purchased software, was selected

to be the pre- and post-processor. The solver was developed by the author and his

colleague Dezheng Liu1 (2015), in which case, the author makes contribution to the

development of a series of subroutines such as constitutive equations subroutines, time-

step control subroutine and numerical method subroutines. The author built the data

transfer programme, which used to convert the files of FEMGV and the solver because of

their different file format, independently.

This thesis starts with a detailed survey of the creep research domain. The knowledge of

high temperature structural integrity theory is reviewed to understand the significances of

creep failure in high temperature industry. The basic concepts of creep and creep damage,

which include the mechanisms of creep deformation and rupture, constitutive models and

the major research approaches, are reviewed in order to have a general understanding of

creep damage analysis itself. The present situation of computation tools is introduced to

assess the advantages and disadvantages of existing finite element software. Finally, basic

knowledge of programming of FEM and a number of adopted general-purpose

subroutines are studied to start this research.

1 Dezheng Liu undertakes the work of overall structure design, assembly of subroutines and practical case

test.

20

General computing science methodology, software development life cycle, is adopted in

this research. Spiral model will be applied to the development of HITSI due to the

author’s research and Dezheng Liu’s researches are interactive; however, for those

subroutines and data transfer programme, the waterfall model is much better. A number of

development processes such as requirements analysis, design, coding and testing were

reported.

The relative theories, which are used to develop subroutines and programmes, will be

studied and discussed in order to clear the requirements and framework of each subroutine

and programme. A number of subroutines need to be developed, which are a) constitutive

equations subroutines, b) numerical method subroutines, c) time-step control subroutine, d)

normalization technique subroutine, and e) stress tensor transformation subroutine. All

subroutines were held in a subroutine library called Tan_library. Due to the missing

capability of nodal loads conversion, a simple calculation tool called Nodal Loads

Calculator (NLC) was developed to assist the data transfer programme, which is named

Data Transfer Interface (DTI).

Each subroutine and programme is reported through analysing goals, defining arguments

and drawing flowchart. The goals analysis analysed the working environment of those

subroutines and programmes in order to clarify their structures. Argument definitions

present the size and type of each variable whatever it is a global variable or a local

variable. The flowchart was converted to write the pseudo code for coding.

Due to the development of HITSI adopted a lot of existing code resources, which are

written by Fortran, the programing language of this thesis is Fortran as well. Compared

with C++, Python, Matlab, S-Plus etc. which all often used for scientific computing, the

advantages of Fortran is obvious such as its portability and array handling, and Fortran is

also the best for shared memory in parallelism.

Static verification and dynamic verification2 are both performed for all subroutines and

programmes. The static testing is performed through Code::Blocks platform to guarantee

no coding mistake in this research. Some testing programmes are designed for those

2 Static verification means the proofreading of the code itself, and dynamic verification means the execution

of code.

21

developed subroutines. Only some classical testing cases are reported in this thesis due to

the large amount of random testing data are restricted by the space.

The performances of numerical method subroutines, time-step control subroutine and

normalization technique subroutine will be discussed in order to identify the accuracy and

efficiency of these subroutines to guide the potential users. The implications of this

research are summarized in the end.

1.2 Aim and Objectives

The overall project, of which this thesis forms a part, aims to establish a set of software

system (HITSI) to handle complex geometric simulation of creep damage analysis for

industrial requirements. HITSI focuses on offering expert advising to enhance the relative

researches such as prediction of residual lifetime, determination of design code and

development of constitutive equations. It intends to could be widely used for industrial

producing such as to evaluate operating state of the steam pipework of power generation

plant.

As a significant part of development of HITSI, this thesis aims to research and devise a

series of indispensable components such as constitutive equations subroutines, time-step

control procedure and data transfer interface for HITSI. The research objectives of this

project are classified as follows:

1. Structural analysis of HITSI, which is used to understand what kinds of subroutine

or programme are required;

2. Development of constitutive equations subroutine class, which is used to enable

the capacity of creep damage analysis of the solver;

3. Development of numerical method subroutine class, which is used to assist

constitutive equations subroutine class, and to quantitatively analyse applied novel

numerical method;

4. Development of modular stress conversion subroutine, which is used to satisfy the

input conditions of constitutive equations subroutine class;

5. Exploration of time-step control procedures and normalization technique, which is

used to enhance the accurate and efficient performance of numerical integration;

6. Development of data transfer interface, which is used to connect pre- and post-

processor and the solver.

22

1.3 Thesis Layout

The structure of this thesis is summarised below:

The second chapter presents a review of the context knowledge of this research, which

includes a) a brief introduction of high temperature structural integrity theory; b) basic

concepts of creep, continuum damage mechanics and creep constitutive models; c) the

present research approaches and their tools; and d) basic knowledge of programming of

FEM and adopted general purpose subroutines.

The third chapter presents the development strategy of this research, which includes

development targets and development methodology. The development targets discuss the

properties and functions of the developed subroutines and programmes. The development

methodology briefly introduces the knowledge of general programme development

methodology, and reports the adopted development model and activities.

The fourth chapter presents the understanding of the theories and knowledge used to

develop those subroutines and programmes. These theories and knowledge involve

mechanical engineering, numerical analysis and computing science, which are a) creep

constitutive equations, b) stress transformation, c) numerical methods, d) time-step

control procedures, e) normalization technique, f) nodal loads arrangement, and formatted

input and output of pre- and post-processor and the solver.

The fifth chapter presents the created processes of required subroutines and programmes,

which includes algorithm design, variables definitions and structural display. The

algorithm is presented through a flowchart and the structure is explained via a pseudo

code. Detailed source codes are not shown in text, but are attached in the appendix.

The sixth chapter presents the implementation of testing and verification, which includes

descriptions of testing tools and cases, test results and discussions of the results.

The seventh chapter presents the exploration of the performance of numerical method

subroutines, time-step control subroutines and normalization subroutines. The accuracy

and efficiency of them will be quantitatively analysed.

The eighth chapter is conclusion, which presents the summaries of the contributions and

outcomes of this research. The discussion of future works is also presented.

23

2 SURVEY OF RESEARCH

DOMAIN

This chapter reviews the context knowledge of creep research domain. The inverted

triangle narrative method was used to report the understanding of creep research. Figure

2-1 presents the relationship of each knowledge range from wide to narrow. Initial

research of high temperature structural integrity was launched to redesign, remanufacture

and extend lifetime of the active high temperature process equipment. In the high

temperature failure, creep is one of the major failure factors. Normally, people understood

the constitutive relation of creep through experiment and numerical simulation. An FE

package is often used to perform such numerical simulation. Compared with commercial

FE package, the in-house FE package has its own advantages.

Figure 2-1 Relationship overview of theoretical knowledge of creep research domain

Theory of high temperature structural integrity: high
temperature failure

One of the major failure forms: creep

Research appraches: experiment/FEM

Computational tools: FE
packages

In-house code

24

The concept and theory of high temperature structural integrity includes high temperature

process and its materials, failure mechanisms and assessment standards. A brief

introduction is displayed below.

2.1 Present Situation of High Temperature Industry

Modern industrial processes were developed toward the direction of high temperature and

high pressure; however, the rise of corresponding knowledge lags the requirement of the

processes. Many problems cannot be answered exactly and clearly according to the

existing theories (Tu, 2003); for example, the steam pipework of power generation plant

normally operating above 560 ℃, and its residual lifetime is still uncertain.

Creep, fatigue and corrosion are major factors affecting the high temperature structural

integrity of metal. Compared with fatigue and corrosion, creep is especially serious in a

high temperature working environment (Tu, 2007). Figure 2-2 indicates the operating

temperature of plants since 1796s to 2000s. The structural integrity has been widely used

with great success for the design, manufacture and failure prevention of modern

constructions.

Figure 2-2 Temperature change tendency of operation of power plants (Tu, 2007)

The needs of structural integrity technology are influenced by the increase of service

temperature of the structures. Besides the raised needs from high temperature plants, the

development of high technology provides new challenges to the structural integrity

technology (Tu, 2005). The risks of high pressure can be less worrying due to the

development of modern design methods and computer technology; however, compared

25

with the high-pressure technology, the problems caused by the high temperature are more

complex.

There is a lack of knowledge of high temperature equipment design either strength theory

or process industry; actually, many problems could not be answered in the framework of

existing disciplines, see (Berto et al., 2014, Islam et al., 2014, Quayyum et al., 2014, Zhu

et al., 2014).

Creep research is significant and valuable; for example, Wen et al. (2014) presented a

creep damage model from the micromechanics viewpoint. In order to mitigate the

difficulty of calibrating many parameters in the existing damage evolution models, creep

ductility exhaustion approach is employed to account for the accumulation of the creep

damage.

As one of the major failure forms of high temperature structures, creep has two research

branches; one is based on the classical plasticity theory and the other is based on the

continuum damage mechanics. The application of continuum damage mechanics in creep

research could be understood through some brief introductions of creep, damage, creep

damage mechanisms and creep constitutive models.

2.2 Creep and Creep Damage

The concept of creep and continuum damage mechanics is briefly introduced in order to

indicate the difference between creep and creep damage. This difference could be

presented from the aspect of micro-mechanisms of creep deformation and creep rupture.

As the core issues of this research, the constitutive models whether based on the classical

plastic theory or the continuum damage mechanics were both studied.

2.2.1 Concept of creep

Creep is a type of deformation, which is a slow plastic deformation of metal caused by

sustained stress at a certain temperature (Kassner, 2009). It is invisible in a relatively

short time (counted by year) under room temperature; however, when the temperature

exceeds one third of absolute melting temperature of metal, creep deformation will be

exacerbated and can be measured. In order to distinguish the difference in creep

deformation progress, it has been divided as three stages (Kassner, 2009). Figure 2-3

shows a typical creep curve. In the primary creep stage, the strain rate is relatively high,

26

but slows with increasing time. The secondary stage, which is known as steady state creep

stage, is the most understood. The term “creep strain rate” typically refers to the

secondary stage. The tertiary stage, creep deformation will be accelerated in a short time

relative to previous stages. Both the primary and secondary stages are similar to the “pure”

plastic deformations problem, but the tertiary stage is not. The damage-accumulation

occurs due to accelerating creep because of grain boundaries defects.

Figure 2-3 Evolution of creep deformation

2.2.2 Damage mechanics

A brief specification of continuum damage mechanics was addressed by Voyiadjis and

Kattan (2002), assuming an axial pressure on a cylinder bar which is shown on the left of

Figure 2-4, and a lot of voids and cracks appear on the bar. Voids and cracks represent the

damage. Two different models were obtained if envisage removing all the damages out of

the bar. As follows:

 P = σA (2-1)

P = σ̅A̅ (2-2)

Where P is pressure, A is true area, A̅ is theoretical area, σ is true stress and σ̅ is nominal

stress. Using the damage variable Φ =
A−A̅

A
 defined by Kachanov (1999),

27

σ̅ =
σ

1 − Φ
 (2-3)

Obviously, the value of damage variable must less than 1, because it is in the denominator.

In addition, if the damage variable is equal to 1, that means the component has completely

ruptured.

Figure 2-4 Definition of damage (Voyiadjis and Kattan, 2002)

2.2.3 Mechanisms of creep deformation and rupture

2.2.3.1 Mechanisms of creep deformation

The creep deformation may be influenced by temperature in two ways, which are a)

dependence of the material constants on temperature and b) structural changes of the

material. Generally, as temperature increases the creep strain rate goes up due to the

increasing activation of the structural elements, in spite of the slip influenced strain

hardening of the material (Skrzypek and Hetnarski, 1993, Gittus, 1975). When the

temperature of the creep test is relatively low, the predominance of the slip type creep

mechanism characteristic for the primary creep is observed. The various deformation

mechanism regimes could be visualized versus stress and the holonomic temperature

ranges in the universal deformation map, see Figure 2-5.

An increasing temperature causes the thermal activity of the dislocations in the crystalline

lattice structure of the metal to rise. Hence, the dislocations can overcome the natural

stiffness of the crystal and obstacles, to move through the lattice. The dislocation creep

mechanism diminishes the strain hardening effect in the material although the cross-slip

mechanism, which mainly characterizes the primary creep, still dominates. The higher

temperature causes the dislocation creep to overpass the hardening mechanism; hence, the

secondary creep phase may occur (Skrzypek and Hetnarski, 1993).

28

Figure 2-5 Typical deformation map of dislocation creep and diffusional creep (Skrzypek and

Hetnarski, 1993)

It is worth to note that the dislocation creep, which in the fundamental creep mechanism

in engineering structures, is strongly affected by stress. When the stress level is relatively

low, the dislocation motion may slow down. However, if the test temperature is

sufficiently high, the other diffusional creep mechanism allows continuing the creep

process. The diffusional creep results in the drastic increase in the strain rate observed at

the tertiary phase, preceding the creep rupture (Skrzypek and Hetnarski, 1993).

2.2.3.2 Mechanisms of creep rupture

The effect of temperature and stress level on the mechanism of rupture is shown in Figure

2-6. A ductile rupture is preceded by a reduction of the cross-sectional area due to the

large creep strains essentially caused by slip deformations within the grains. This effect

results in the fracture mechanism via the propagation of cracks nucleated at the grain

boundaries and spread inwards from the surface. The ductile rupture mechanism occurs at

high stress levels and low temperature regimes (Skrzypek and Hetnarski, 1993).

A brittle rupture is caused by the deterioration of the material due to the formation of

voids and the corresponding reduction of the effective cross-sectional area below a critical

value. The brittle rupture mechanism occurs at low stress levels and high temperatures.

The overall geometric effect is not observed, since creep strains are small (Skrzypek and

Hetnarski, 1993).

29

Figure 2-6 Typical effect of temperature and stress on mechanism of creep rupture (Skrzypek and

Hetnarski, 1993)

2.2.4 Creep constitutive models

Higher operating temperature and stresses were adopted in chemical and petrochemical

plants, power generation systems and so on; hence, the concern of strength design of

components was moved to the viscoplastic performance of materials due to the prevention

of creep failure. Different researchers proposed large amounts of creep constitutive

equations.

The phenomenon of multi-axial creep behaviour is very close to classical plasticity; hence,

classical plastic theory (CPT) was directly used in the multi-axial creep analysis during

the first half of the 20th century. Taking into account the major factor of creep failure is

the nucleation, growth and coalescence of cavities on the grain boundaries, see (Hayhurst

and Leckie, 1984, Huddleston, 1985, Kassner and Hayes, 2003, Goodall and Skelton,

2004); the CPT-based model is limited since its derivation does not consider the physical

damage factors.

Multi-axial creep design criteria using the models based on cavity growth mechanisms

(CGM) was innovated by Hull and Rimmer (1959). The CGM-based models were

improved by a lot of researchers from 1970s to 1980s, see (Rice and Tracey, 1969,

Hayhurst, 1972, Gurson, 1977, Manjoine, 1975, Raj and Ashby, 1975, Ashby et al., 1978,

Cocks and Ashby, 1980, Cocks and Ashby, 1981, Cocks and Ashby, 1982, Edward and

Ashby, 1979, Cane, 2013, Cane, 1981, Cane, 1982, Tvergaard and Needleman, 1984). In

recent years, further development has been made, see (Hales, 1994, Spindler, 2004,

30

Spindler, 1994, Kowalewski et al., 1994a, Spindler et al., 2001, Margolin et al., 1998,

Ragab, 2002). Some of these models were applied in high temperature strength

assessment procedures.

Kachanov (1958) initially developed a continuum damage mechanics (CDM) based

model. The CDM-based model is developed on the phenomenological theory and

mechanics theory contrasted with the CGM-based model. CDM-based method has been

widely used during recent years due to the rapid development of modern computer

technology and finite element analysis method, see (Othman et al., 1993, Hayhurst et al.,

1994, Kowalewski et al., 1994a, Kowalewski et al., 1994b, Perrin and Hayhurst, 1996,

Perrin and Hayhurst, 1999, Hyde et al., 1996, Hyde et al., 2004, Hyde et al., 2006, Xu,

2004, Xu, 2001, Ju-Shin and Gibbons, 1999, Jing et al., 2001a, Jing et al., 2003, Jing et al.,

2001b). Three creep constitutive equations based on CDM-based model were selected in

this research.

Creep and its deformation are widely applied in industry; for example, people predicted

the residual lifetime of components through understanding the relationship of stress and

strain. The availability of a procedure able to predict the residual life of plant devices is

necessary to assist the management decisions about power plants’ operation and

maintenance scheduling. The major research approaches were reviewed to present some

recent research situations.

2.3 Research Approaches of Creep Damage Analysis

Experimental and computational approaches are the major research approaches used to

predict residual lifetime, and most time, people use them together. Some specific

application examples of experimental and computational approaches are reviewed below.

Wang et al. (2014) proposed the creep test method of Babbitt and analysed the factors

influencing the results of creep test according to the creep deformation of oil film bearing

Babbitt in operation process. Based on this test, the creep characteristics of SnSb11Cu6

and SnSb8Cu4 were understood and the relationship between creep coefficients and stress

has been obtained.

Yuan et al. (2014) proposed a modified method for attenuation coefficient calculation,

and new parameters were calculated with inspecting signal acquired from creep specimen.

31

A uni-axial tension creep experiment with pure lead to verify the detecting ability of this

new parameter has been conducted, and another creep inspecting experiment with P91

steel weldment was conducted to verify the practicability of the new parameter of a good

distinguishing ability for different creep status. Moreover, Wang et al. (2014) verified the

accuracy and reliability of creep deformation of Babbitt through finite element numerical

simulation on the test specimens based on ANSYS, and carried out the creep

characteristics of Babbitt of oil film bearing.

Zhang et al. (2015) carried out a uni-axial creep tensile tests using round bar specimens

with a diameter of 10 mm at different stress levels at 566 °C. Moreover, Zhang et al.

(2015) implemented the stress-regime dependent creep model and ductility in a ductility

exhaustion based damage model, and analysed their influence on creep crack growth

(CCG) behaviour of materials, and the CCG rate in a Cr–Mo–V steel over a wide range of

C* was predicted by finite element analyses.

The experimental approach can display the whole process of creep evolution; however, it

will spend a lot of financial resource and time for purchasing experiment equipment and

awaiting experimental results. FEM as a computational approach greatly improved this

defect, but it is seriously depending on the theoretical knowledge. A general

computational tool does not exist; moreover, the traditional computational tools include

the commercial software that need a user-defined subroutine, and the in-house software

that has a narrow application scope.

2.4 Computational Tools of Creep Damage Analysis

The existing situation of FE packages for creep damage analysis has been reviewed by the

author, see (Tan et al., 2012a). The creep analysis capability of commercial FE packages

is unavailable. Users need to programme a user-defined subroutine to expand this

capability. Moreover, some researchers chose to code their own in-house code to conduct

the numerical simulation. A number of application examples of commercial software and

in-house software are reviewed below.

2.4.1 Commercial Software

Becker et al. (2002) developed and used ABAQUS UMAT to implement benchmark tests

against creep damage; they deemed creep rupture life could be predicted using continuum

32

damage mechanics. Geng et al. (2009) incorporated the modified KR creep damage

constitutive equation into finite element program ABAQUS through its user subroutine to

predict the creep damage and service life of a serviced steam pipeline made of

10CrMo910 heat resistance steel. Colombo et al. (1996) said that the creep analysis has

been performed by the computer code ABAQUS and the damage evaluation has been

carried out by means of in-house developed user’s subroutine and post processor in his

paper. Zhao et al. (2012) compiled the UMAT for ABAQUS to research factors affecting

creep damage accumulation in ASME P92 steel welded joint is a typical example of

coding user’s subroutine.

Continuing damage mechanics has not been integrated in the commercial FE package.

The primary and secondary creep stages can be analysed using the traditional plasticity

theory, but the tertiary creep stage is unable to be simulated because the significant

damage occurred. Users need to develop a user-defined subroutine, which is called

UMAT to help ABAQUS for the analysis of creep damage. The commercial FE package

can use a wide range of element types, material models and other facilities; for example,

the efficient equation solvers that are not normally available in in-house FE package.

Moreover, the commercial FE package does not currently allow the removal of failed

elements from the boundary-value problem during the solution process.

2.4.2 In-house Software

DAMAGE XX (Hall, 1990) is an early in- house creep damage analysis solver developed

at The University of Manchester Institute of Science and Technology (UMIST). This

software is written based on Fortran 77, and the failed elements could be removed from

the stiffness matrix. Runge-Kutta-Merson (RKM) method is applied. It is an important

tool for the production of significant publications; these publications are not listed here

for brevity. FEMGV is used as the pre- and post-processor.

DAMAGE XXX (Hayhurst, 2006) is a new advanced version of DAMAGE XX, which

was also developed at UMIST. This package is not only added a 3D FEA function, but

was also applied on a parallel computer. Hayhurst (2006) reported its validation via

analysing creep failure in the heat affected zone (HAZ) region of Cr-Mo-V cross-welds

and its application. FEMGV is also used as the pre- and post-processor.

33

FE-DAMAGE (Becker et al., 2002) is another in-house code developed at University of

Nottingham. It has been used in research; for example, Becker et al. (2002) used the FE-

DAMAGE program to present four different creep damage results in his paper. It is

interesting to note that those results were compared with the result produced by ABAQUS

for benchmarking. FEMGV is used as the pre- and post-processor.

HT∑ is an in-house FE package used for creep damage analysis. Ling et al. (2000)

developed a subroutine based on RKM method for this programme. As an in-house code,

the accuracy and efficiency of this programme had been proved through a thick cylinder

problem.

An in-house code was developed at Tsing Hua University (Wang and Wang, 1996). The

Euler’s method has been used in this code. A critical time-step which small enough was

used to reduce the errors caused by highly non-linear behaviour.

Haigihara and Miyazaki (2008) developed an in-house code, which used FEA for creep

failure of coolant pipe in light water reactor due to local heating under severs accident

condition. This result was also compared with the result of ABAQUS in this paper.

Commercial software and in-house software have their own advantages in practical

applications. The commercial software has rich resource support such as element type,

material parameters and advanced topological technique; however, it does not allow the

failure element to be removed during the solving processing. Moreover, the required user-

defined subroutine is also difficult to be programmed. The in-house software looks

rudimentary, but the capability of removable failure element is allowed. Moreover, to

programme in-house software is easier than to code a user-defined subroutine for

commercial FE package. On the above observation, the author prefers and advocates the

approach of developing in-house FE software.

2.5 Programming of Finite Element Method

In order to develop an in-house FEA software, some basic problems should be cleared

firstly. The specific working targets need to be understood; the supervisor allocated the

initial workloads directly, but the arrangement was modified in the following research.

The background, basic equilibrium equations, programming language of developed in-

34

house software were reviewed below. A number of general-purpose subroutines were

adopted in order to build this in-house software.

2.5.1 HITSI

Dr. Qiang Xu has established his own research group since Oct. 2011. The research

projects include the development of in-house FEA software and the development of creep

constitutive equations. Such in-house FEA software is the original conception of HITSI,

and a primary literature review was addressed by Tan et al. (2012a).

The initial design scheme only focusses on the development of the solver, and the work of

pre- and post-processing was arranged to the purchased software FEMGV; hence, in the

earliest stage, the name of HITSI belongs to the solver. At the same time, the data transfer

between the solver and FEMGV was considered which is to develop a text process

programme. Later, the HITSI is defined a complete system include pre- and post-

processor, the solver and data transfer interface, Figure 2-7 indicates processing sequence

of HITSI.

Figure 2-7 Operation process of HITSI

Due to the workload of programming, Xu allocated the task to two PhD candidates; the

author’s colleague Dezheng Liu undertakes the design and development of overall

structure of the solver, and the author undertakes the development of subroutines and data

transfer tool. The author has relative programming experience of data transfer tool

because of his undergraduate final project.

FEMGV: create geometry model

Transfer the file from FEMGV to the solver

Solver: compute the stress, strain and damage

Transfer the file from solver to FEMGV

FEMGV: post-processing

35

In the beginning, the research was proposed based on a large amount of general purpose

subroutines; for example, NAG (2009) subroutine library provides various type

subroutine of numerical method, and Smith and Griffiths (2004) offer subroutines to

handle global stiffness matrix, nodal freedom array and elastic stress-strain matrix.

Following the pace of progress of the research, the situation has changed. The author

found that it is not worth paying more attention to couple NAG subroutine library3 and

other general-purpose subroutines. At the same time, the author was suggested to promote

the small data transfer tool.

2.5.2 Finite element method

The operation flow of the solver was proposed by Liu et al. (2012a), and the equilibrium

equation of FEM for the solver can be expressed as:

U = K−1(Fe + Fc) (2-4)

where U is nodal displacement; K is global stiffness matrix; Fe and Fc are nodal elastic

force and nodal creep force respectively. Initially, the fc is zero, and strain can be derived

by (2-5);

ϵ = BU (2-5)

where ϵ is total strain, B is strain-displacement matrix, and the elastic strain is one part of

total strain;

ϵe = ϵ − ϵc (2-6)

where ϵe, ϵc are elastic strain and plastic strain respectively, the elastic stress is;

σe = Dϵe (2-7)

where σe is elastic stress, D is stress-strain matrix. Here, the creep strain was produced by

creep constitutive equations f(σe, Δt);

3 Numerical method subroutine library, which allowed users to define their own ordinary differential

equations; however, it does not suit the author’s research due to the material parameters have to be set as

constants.

36

ϵc = f(σe, Δt) (2-8)

where Δt is time interval; the virtual creep stress can be derived by (2-9)

σc = Dϵc (2-9)

where σc is creep stress, and finally, the nodal creep force equal to:

Fc = BTσc (2-10)

Based on the discussion above, the tasks of this research are clarified.

2.5.3 Programming Languages

Fortran is widely used for scientific/numerical computing purposes, and it is only used for

such requirements. For example, it is still used for such tasks in embedded programming

things like aircraft controllers, chemical plants (Sebesta, 2010). Compared with C++,

Python, Matlab and S--Plus etc., which are all often used for scientific computing, a

comparison of executive can be summarised as (Kupferschmid, 2009):

 Ease of use: Python, Matlab, then Fortran

 Debuggability: Python, Matlab, then NAG Fortran

 Portability: Fortran is the best , and over-elaborate C++ is the worst

 Software engineering: Fortran is the best, then Python

 Performance: Fortran or C++ (no overall difference), then Python and Matlab

 Parallelism: Fortran is the best for shared memory, few times be chosen for

distributed memory

 Array handling: Fortran is the best, then Matlab and Python

 Text handling: Python is the best, then C++, then Fortran

 ‘Computer science’ : C++, then Python and Fortran

 ‘System interfaces’ : Pytho , then C++, then Fortran

Fortran 2003 is adopted in this research because the existing general-purpose subroutines,

which are adopted by Dezheng Liu, were written by Fortran. It avoids the need to rewrite

those adopted subroutines because Fortran 2003 is compatible with previous version even

Fortran 66. This research involves a lot of computation of matrices; hence, using Fortran

is easy to programme.

37

2.5.4 General purpose subroutines of HITSI

The development work of FEA software is really complex and difficult; however, a lot of

existing theories and subroutines make this problem much easier than decades ago. Smith

and Griffiths (2004) offered general purpose subroutines and functions held in a library

called new_library. Some general-purpose subroutines and functions from new_library

were adopted in a new library, which is called HITSI_library, in the development

process of the solver. Table 2-1 indicates the subroutines and functions in alphabetical

order, together with the meaning of their arguments. Arguments in bold are those returned

by the subroutine.

Table 2-1 Description subset of new_library (Smith and Griffiths, 2004)

Name Arguments Description

bacsub bk, loads Return the complete Gaussian back substitution on displacement array

loads from global stiffness matrix bk.

bandwidth g Function returns the maximum bandwidth for an element with steering

vector g.

banred bk, n Return the Gaussian reduction on global stiffness matrix bk itself from

number of degrees of freedom in the mesh n.

beemat bee, deriv Returns bee matrix for shape function derivatives derive.

bmataxi
bee, radius,

coord, deriv,

fun

Returns bee matrix and radius from element nodal coordinates coord,

shape function derivatives derive and shape function fun.

deemat dee, e, v Returns elastic stress-strain dee matrix in 2D (plane strain) or 3D. e and v

are Young’s modulus and Poisson’s ratio.

determinant jac Function returns the determinant of 2D or 3D square matrix jac.

formkv bk, km, g, n Returns global stiffness matrix bk from element stiffness matrix km and

number of degrees of freedom in the mesh n. g is element steering vector.

formnf nf Returns nodal freedom array nf from boundary conditions input of 0 s and

1 s.

invert matrix Return the inverse of a small matrix called matrix onto itself.

num_to_g num, nf, g Returns the element steering vector g from the element node numbering

num and the nodal freedom array nf.

sample element, s, wt Returns the local coordinates s and weighting coefficients wt for

numerical integration of a finite element of type element.

shape_der der, points, i Returns the shape function derivatives der at the ith integration point.

points holds the local coordinates of the integration points.

shape_fun fun, points, i Returns the shape function fun at the ith integration point. points holds the

local coordinates of the integration points.

2.6 Summary

The present situation of high temperature industry has been reviewed, which the safety

assessment and residual lifetime prediction are issues in high temperature devices, and

creep is one of the major failure factors. General knowledge of creep such as creep

deformation, creep failure mechanisms and creep constitutive models has been reviewed.

38

Experimental and computational approaches have their own advantages, but this research

focusses on the computational approach. The present situation of computational tools has

been reviewed, where multifarious computational tools were used due to the general finite

element software could not be employed directly. The way to develop a universal finite

element software has been proposed and the adopted programming method and general-

purpose subroutine have been reviewed.

39

3 DEVELOPMENT STRATEGY

OF HIGH TEMPERATURE

STRUCTURAL INTEGRITY-

CREEP

This chapter explains the development strategy of HITSI, which includes structure

analysis, function definition and the development methodology. The structure analysis

involves the understanding of overall structure of HITSI, and includes the understanding

of overall algorithm of the solver; it aims to identify the specific research sub-tasks of this

research. Based on the structure analysis, the type, function and compatibility of required

subroutines and programmes will be discussed. The unique development methodology is

introduced, which includes the stand-alone work of the author and the co-operation work

with the author’s colleague Dezheng Liu.

3.1 Overall structure of HITSI

HITSI includes four components, which are a) the solver, b) pre- and post-processor, c)

data transfer programme and d) nodal loads calculator. Figure 3-1 presents the general

operation model of HITSI, which could identify that the author’s development work has

two branches. The first branch is the development of independent programmes which are

used to connect the solver and pre- and post-processor. The second branch is the

development of dependent subroutines, which are used to realize the capability of creep

40

analysis of the solver. FEMGV was chosen to be the pre- and post-processor, which is

shown in the Figure 3-1. The detailed responsibilities of each component are introduced

separately.

 i = 1
 i ≤ nip
 i = i+1

.TRUE.

Update body
force bdylds

.FALSE.

 iel = 1

 iel ≤ nel
iel = iel+1

Material
parameters

assembly
.TRUE.

Compute
displacement

loads

Write output
file xx.res

.FALSE.

.TRUE.

.FALSE.

Δε/ε ≥
tolerance

ω ≤ critical
value

StartEnter file
name
xx.dat

Input file xx.dat

Initialization
Compute

bandwidth
nband

Stiffness matrix
assembly kv

Pre-processing
transfer

Create geometry
model by FEMGV

Convert
stiffness matrix

kv

Compute stress
tensor sigma

Numerical
method

Transform
stress tensor

sigma to stress

Constitutive
equations

Output file
xx.fvi

Post-
processing

transfer

Display the result
by shape and

contour on FEMGV

Stop
Select new
time-step

dt

.TRUE.

.FALSE.

Check
element
failure

.FALSE.

Remove failed
element

.TRUE.

Figure 3-1 Overall structure of HITSI

41

3.1.1 The solver

The solver is the core of HITSI, which undertakes the major analysis work of creep

research. It is an elastic-creep finite element method programme, which is developed by

the author and his colleague Dezheng Liu. Dezheng Liu et al. (2012b, 2012a, 2013d,

2013c, 2013a, 2013e, 2013b) reviewed the programming knowledge of finite element

method; conducted the overall algorithm design of the solver; and validated the solver.

Liu is the major developer who undertakes the work of overall algorithm design, coding

and validation of the solver, in which case, the author undertakes the development work

of subroutines. The solver was coded based on a number of existing general-purpose

subroutines; thus, the author is required to not only develop the subroutines, which are

needed but could not be found from literatures directly, but also keep the compatibility of

the developed subroutines and those general purpose subroutines. All subroutines were

developed based on the Fortran language.

3.1.2 Pre- and Post-processor

The solver is a programme without any geometrical and topological capability; hence,

obtaining geometric models and visualized results is required. The solver has to work

with a pre- and post-processor together in practical case, and FEMGV was selected to be

the pre- and post-processor in this research. FEMGV (Manie and Wolthers, 2013) is a

professional pre- and post-processor, which works in conjunction with two databases

which both comprise an index file and a data file in binary format. One database applies

for the Design environment and another one for the Results environment. The contents of

both databases can also be represented as a so-called ‘Neutral file’ in ASCII text format.

As commercial software, unfortunately, FEMGV will not offer a specialized interface for

the solver; therefore, formatted input and output of FEMGV should be researched due to

the gap between FEMGV and HITSI (Tan et al., 2012b). The file format of Neutral file is

very complex; hence, the understanding of formatted input and output was independent in

order to reduce the development workload of the solver.

42

3.1.3 Data transfer interface

Due to a specialized interface not being offered by FEMGV, a data transfer programme

was developed to fill this gap. The structures of both Neutral files based on the design

environment and result environment are essentially the same but the contents of included

data may vary by their very nature (Manie and Wolthers, 2013). For instance the Neutral

file based on the design environment could not contain analysis results data which appears

in the database (and the Neutral file) based on the results environment only; therefore, the

data transfer processes of pre-processing transfer and post-processing transfer should be

distinguished through two different branches.

In the pre-processing transfer, some problems could not be solved based on the present

situation, which leads to the data transfer interface not being integrated into the solver.

For example, a number of parameters used to describe the characteristics of creep could

be defined through FEMGV directly; hence, these parameters have to be entered into the

input file of the solver artificially. Moreover, the allocation of a concentrated force to

each loaded node could not be supported by FEMGV, and this capability could not be

realized yet through the data transfer interface itself due to this problem involving

advanced topological algorithms.

In the post-processing transfer, a number of control parameters were defined by FEMGV;

however, the solver will not produce these parameters directly because these are

parameters depending on FEMGV only, but not involving any activities of creep damage

analysis. Identification of the value of each control parameter is a challenge due to these

parameters being required to not only to be analysed qualitatively based on theoretical

knowledge, but also to be tested through real data.

3.1.4 Nodal loads calculator

In the setting of boundary conditions, a concentrated force should be represented by the

equivalent nodal loads because of the nature of the solver (Liu et al., 2012a). The

allocation of a concentrated force to each loaded node is a problem, which could not be

solved by FEMGV or the data transfer programme; thus, a small calculator was proposed

to obtain the converted value of each nodal load based on a concentrated force. Figure 3-1

does not display the position of nodal loads calculator since it is included in the process of

43

pre-processing transfer. Actually, the nodal loads calculator is used to avoid hand-

calculation only.

3.2 Required subroutines of the solver

Figure 3-1 also presents the overall algorithm of the solver. The solver starts with

parameter initialization such as the allocation of node coordinates, element definitions and

constraint information. All of the work such as bandwidth calculation, stiffness matrix

assembly and displacement calculation could be solved by those general-purpose

subroutines; however, some works such as stress tensor transformation, constitutive

equations integration and time-step control need to be satisfied through a number of self-

developed subroutines.

The general-purpose subroutines make programme development much easier, but they

could not cover everything. For example, a class of constitutive equations subroutines

should be developed to return the creep strain and creep damage; however, the

constitutive equations subroutine could not exist independently due to the solving process

being dependent on numerical methods. Moreover, the stress tensor could not be applied

to constitutive equations directly, which is also a significant problem.

It could be clearly seen from Figure 3-1; the time-step control method based on self-

adaptive technique was used in the solver to enhance the accuracy of integration.

Furthermore, a mathematical approach called normalization was considered to improve

the accuracy and efficiency of constitutive equations. The detailed responsibilities of each

subroutine were introduced separately.

3.2.1 Constitutive equations subroutine

Creep constitutive equations undertake the task to return creep strain and damage in the

overall operation of the solver. The creep strain is used for the redistribution of elastic

stress; and the creep damage is used for the determination of failure element. Generally,

creep constitutive equations are ordinary differential equations based on the initial-value

problem; hence, the numerical methods such as Euler’s method, Runge-Kutta (RK)

method were required to find its estimated solutions. Furthermore, complex description of

stress state was introduced into the constitutive equations such as deviatoric stress tensor,

principal stress and equivalent stress.

44

In the solver, the computing of stress and strain of each integration point and element was

conducted one by one; hence, the arguments used to hold creep strain and damage should

be stated as a three-dimensional deferred-shape real array which contains the data of

strain and damage components, integration points and elements. Moreover, due to the

factor of temperature is normally integrated into the material properties, the argument

used to describe the temperature will be included in the array that is used to hold material

properties. This research only includes three types of constitutive equations subroutines,

which are Kachanov-Rabotnov (KR) equations, Perrin-Hayhurst (PH) equations and

Qiang Xu’s (QX) equations. KR equations are the typical version in creep damage

mechanics, and many researchers developed their own constitutive equations based on

this version. Compared with KR equations, PH equations were introduced more damage

factors. It is also a widely used creep constitutive equations. QX equations are new

version of PH equations, which the stress state functions have been reconsidered.

3.2.2 Numerical method subroutine

The solutions to the creep constitutive equations itself are creep strain rate and creep

damage rate. Obtaining creep strain and damage is dependents on the numerical methods.

A class of numerical method subroutines undertake the work to find estimated creep strain

and damage according to a specific time-step. The time-step will affect the result based on

its size due to all solutions produced by the numerical method being not exact solutions.

Explicit-shape arrays were recommended in order to avoid the mismatch of the

transmission between constitutive equations subroutine and numerical method subroutine

because the constitutive equations subroutine is executed inside the numerical method

subroutine.

The major arguments statement of the numerical method subroutine should follow the

constitutive equations subroutine. Four single-step, explicit numerical methods, which are

Euler’s method, classical 4th order Runge-Kutta (RK4) method, RKM method and RKF

method, were selected in this research. The Euler’s method is the easiest integration

method. The family of RK methods are typical integration methods that be used for

ordinary differential equations, and they are developed based on the Euler’s method. RK4

method is the typical version of RK method family. RKM method is the classical version,

which is already used in creep damage analysis area. RKF method is the embedded

version that has more advantages of precision.

45

3.2.3 Stress tensor transformation subroutine

An equivalent creep strain was allocated to each coordinate through the deviatoric stress

tensor components; this is the derivation of multi-axial constitutive equations. On the

other hand, principal stress, equivalent stress and some self-defined stress were used to

describe the stress state of creep deformation; hence, the understanding of those stresses is

significant.

Deviatoric stress tensor, principal stress or equivalent stress could be obtained via the

stress tensor, and may be produced through some separate existing subroutines; however,

the efficiency will not be guaranteed because those subroutines have single and discrete

features. A modular processed concept of those stresses was proposed in order to not only

reduce the memory requirements of the solver, but also enhance the computing efficiency

of the solver.

A subroutine, which is used to return the values of deviatoric stress tensor, principal stress

and equivalent stress according to the present stress tensor components, is the stress

transformation subroutine. Its operation process could be divided into three stages that in

the first stage, stress tensor components were allocated to the local arguments; secondly,

target functions were computed; finally, the results were updated into a global array. In

here, deviatoric stress tensor, principal stress and equivalent stress will be obtained in

sequence. This subroutine was designed based on three-dimensional stress system; hence,

the two-dimensional stress system was realized through reducing the number of stress

tensor components4.

3.2.4 Time-step control procedure subroutine

Creep deformation of metals is a time-depending problem; moreover, the time-step

dependence of the numerical method is high. Hence, the time-step control is extremely

important in practical computational analysis. The time-step control procedure was

divided into two parts, which are time-step acceptance and time-step selection. The time-

step acceptance was integrated into the subroutine of numerical method due to it being the

self-adaptive technique of numerical method; and, the time-step selection was coded as an

independent subroutine. Figure 3-1 shows the overall time-step control method.

4 It means 𝜏𝑦𝑧 , 𝜏𝑧𝑥 will be forced to zero in two-dimensional stress system.

46

3.2.5 Normalization technique subroutine

The normalization technique is used to promote the computing capability through

reducing the stress and strain proportionally. A normalization scheme, which included the

normalization of equilibrium equation of finite element method and the normalization of

creep constitutive equations, was firstly proposed by Hayhurst et al. (1984). The

normalization procedure improved the accuracy of numerical solution due to reducing the

effect of numerical rounding errors (Hall, 1990). The advantages were not mentioned

clearly in those papers; however, it is still worth researching the potential power of

normalization in creep damage area even though nowadays the computational power has a

huge improvement. The normalization subroutine is a special constitutive equation.

3.3 Research methodology

The definition and application of each research sub-task were given respectively to deeply

understand how to organise the required programmes and subroutines. A unique research

methodology was adopted depending on our research environment. Software development

life cycle as the general software development methodology was used in this research.

3.3.1 Software development life cycle and activities

The software development life cycle consists of a number of distinct work phases, and

each of those distinct work phases was called software development process or activity.

Wallis (1985) identified what might now be termed the ‘traditional’ software development

life cycle: requirements analysis, functional specification, design, coding, testing and

maintenance. Almost one and half decades later, Jacobson et al. (1999) addressed their

core workflow of the unified software development process: requirements, analysis,

design, implementation and test. It is obviously; those two definitions did not have

essential difference except the process of maintenance.

3.3.2 Software development model

Bell (2000) introduced a series of development models such as 1) seat-of-the-pants, do-it-

yourself, or ad hoc, 2) waterfall, 3) prototyping, 4) formal methods and 5) spiral. The

waterfall model is a sequential development approach that looks like a waterfall, and its

typical form can be presented by Figure 3-2. Prototyping is a development approach,

which builds a programme through repeated updating the prototype, and the first

prototype is an incomplete version of the developed programme. However, prototyping is

47

not only a standalone development methodology, but also a selected parts of a larger

development methodology such as incremental and spiral. The spiral model guides a team

to adopt elements of one or more process models such as incremental, waterfall or

evolutionary prototyping, and its typical model could be seen Figure 3-3. Spiral combines

some key aspects of the waterfall model and the prototyping model in order to enhance

the advantages of top-down and bottom-up concepts.

Figure 3-2 Typical activities of waterfall model

Figure 3-3 Typical activities of spiral model

This research adopted the spiral model due to its unique nature. The first prototype5 of the

solver is an elastic analysis programme, which is built through general-purpose

5 In this thesis, this prototype named Prototype I.

Requirements

Design

Coding

Testing

Maintenance

48

subroutines. The programmer of Prototype I is my colleague Dezheng Liu, and his work

offers a number of key conditions for this research. For example, a) Prototype I offered a

set of unified input and output format, and this form will be used to design data transfer

interface; b) Prototype I defined the data type of some key arguments such as stress and

strain, and these data types will affect the framework of those subroutines developed by

this research. According to the Prototype I, the author developed the constitutive

equations subroutine, numerical method subroutine, stress tensor transformation

subroutine, time-step control subroutine and normalization technique subroutine. These

subroutines will be delivered to Prototype I to create the second Prototype6. Dezheng Liu

will use prototype II to test the elastic-creep analysis capability in plane stress case, plane

strain case and axisymmetric case.

Based on the feedback of Prototype II, data transfer interface and the author developed

nodal loads calculator, and those subroutines will be optimized as well. Finally, all of

these works will be delivered to Dezheng Liu to test the final version via a weldment case

(Liu, 2015).

3.3.3 Requirements analysis

General requirements analysis of software development is determining the conditions to

satisfy the new subroutines and programmes, and is taking account of the possibly

conflicting requirements of the various stakeholders. According to the proposed flowchart

of HITSI, a number of theories and knowledge need to be collected, understood and

researched in order to develop relative subroutines and programmes. This work will be

reported in detail in the Chapter 4. Liu (2015) gave feedback when he complete the

Prototype I. The input and output file format, arguments definition and overall structure of

Prototype I has been confirmed through his feedback.

3.3.4 Algorithm Design

The algorithms were designed based on the nature of theoretical knowledge and the

position on the solver. The theoretical knowledge should be studied, and be analysed in

order to identify those key arguments. A flowchart will be sketched to display the overall

algorithm clearly. The structure will be presented through pseudo code.

6 In this thesis, this prototype named Prototype II.

49

3.3.5 Testing and verification

The quality assessment of a software product includes either dynamic verification, i.e.

testing, or static verification, i.e. review and inspections. The following issues must be

highlighted in the validation of software (Olsen et al., 2001):

 Correct identification and expression of user requirements

 Correct implementation of the specified requirements

 Absence of problems with the code and the data

 Usability, completeness and level of updating of the documentation given to

customers

 Maintainability of the product

The validation approach of this research contains both static validation and dynamic

validation.

3.4 Summary

The overall structure and algorithm of HITSI has been identified. Spiral model and

waterfall model will be used in this research. The sub-tasks fulfilled by this research could

be summarised below:

 Data transfer interface, which used to fill the gap caused by formatted input and

output of two different software;

 Nodal loads calculator, which is proposed to be the temporary solution of nodal

loads arrangement module;

 Constitutive equations subroutine, which is a subroutine class used to return creep

strain and damage for the main programme of the solver; moreover, it could

enable the potential users to add their own constitutive equations directly;

 Numerical method subroutine, which is a subroutine class used to assist

constitutive equations subroutine;

 Stress tensor transformation, which is used to obtain deviatoric stress tensor,

principal stress and equivalent stress;

 Time-step control subroutine, which is used to assist numerical method subroutine

to implement self-adaptive approach;

50

 Normalization subroutine, which is a special constitutive equations subroutine

used to enhance the accuracy and efficiency of numerical integration.

51

4 RELATIVE THEORIES AND

KNOWLEDGE APPLICATION

This chapter studies and analyses the relative theories and knowledge used to develop the

required subroutines and programmes. These theories involve constitutive theory of creep

deformation, numerical methods of engineering, classical plastic theory and computing

science. Based on the definition of required subroutine/programme of this research, the

knowledge could be specific to a) constitutive equations based on continuum damage

mechanics; b) derivation of deviatoric stress tensor, principal stress and equivalent stress

based on stress tensor; c) single-step explicit numerical methods of initial-value problem;

d) self-adaptive approach of time-step and its control procedure; e) normalization

technique; f) boundary conditions of nodal loads based on planar and axisymmetric

element type; and g) formatted input and output of FEMGV and the solver.

4.1 Constitutive Equations

Knowledge of constitutive equations was used to develop the subroutine of constitutive

equations. The equations itself and the definitions of dependent variables, independent

variables and constants were introduced specifically in order to design arguments of this

class of subroutine. Based on the analysis of constitutive equations, the input conditions

of constitutive equations could be summarised as a) stress, b) material properties and c)

initial creep strain and damage. Only stress needs to be discussed because material

properties, initial creep strain and damage are constants.

52

A set of ordinary differential equations, which are used to describe the constitutive

relation between material and deformation, is known as creep constitutive equations. The

metal creep research has been researched almost since 100 years ago, Yao et al. (2007)

reviewed a large amount of existing creep constitutive equations, and suggested such

equations can be grouped into three categories, i.e. 1) CPT-based approach, 2) CGM-

based approach, and 3) CDM-based approach.

In this research, three sets of constitutive equations, KR constitutive equations, PH

constitutive equations and QX constitutive equations, which based on CDM, were

selected to develop the class of constitutive equations subroutine.

4.1.1 Kachanov-Rabotnov constitutive equations

Based on the classical plasticity theory, Kachanov (1999) introduced a new concept

named damage into creep research in 1958, and firstly proposed a uni-axial form of his

creep damage constitutive equations. The modified form according to the theories of

Rabotnov and Andrade was addressed by Hayhurst et al. (1984). The uni-axial form of

modified equations is expressed as:

ϵ̇ = A (
σ

1 − ω
)

n

tm (4-1)

ω̇ = B
σχ

(1 − ω)ϕ
tm (4-2)

where ϵ̇, ω̇ are creep strain rate and creep damage rate respectively; A, B, n, m, χ, ϕ are

creep material properties; σ is stress; and t is time function.

Odqivst (1974) proposed the multi-axial stress state form of Norton’s equations, and (4-1)

and (4-2) were revised by Hayhurst et al. (1984) according to the theory of Odqivst. The

multi-axial form of equations is expressed as:

ϵij̇ =
3Sij

2σe
A (

σe

1 − ω
)

n

tm (4-3)

ω̇ = B
σr

χ

(1 − ω)ϕ
tm (4-4)

σr = ασ1 + (1 − α)σe (4-5)

53

where Sij is deviatoric stress tensor; σe is effective stress which is equal to Von Mises

stress; σr is rupture stress which represents stress state function; σ1 is the first principal

stress; and α is coefficient of stress state function.

4.1.2 Perrin-Hayhurst constitutive equations

Perrin and Hayhurst (1996) suggested a set of constitutive equations to describe the creep

constitutive relation of a 0.5Cr-0.5Mo-0.25V ferritic steel over the temperature range 600-

675℃. Three types of creep damage variables, i.e. cavitation damage (Cane, 1981),

carbide precipitates (Othman et al., 1993) and primary creep (Kowalewski et al., 1994a)

were introduced into this constitutive equations. The uni-axial form of his constitutive

equations is expressed as:

ϵ̇ = Asinh [
Bσ(1 − H)

(1 − ϕ)(1 − ω)
] (4-6)

Ḣ =
h

σ
(1 −

H

H∗
) ϵ̇ (4-7)

ϕ̇ = (
Kc

3
) (1 − ϕ)4 (4-8)

ω̇ = Cϵ̇ (4-9)

where ϵ̇, Ḣ, ϕ̇, ω̇ are creep strain rate and variables of damage rate respectively;

A, B, C, h, H∗, Kc are creep material properties; and 𝜎 is stress.

It was expanded to multi-axial form by Perrin and Hayhurst (1996):

ϵij̇ =
3Sij

2σe
Asinh [

Bσe(1 − H)

(1 − ϕ)(1 − ω)
] (4-10)

Ḣ = (
hϵė

σe
) (1 −

H

H∗
) (4-11)

ϕ̇ = (
Kc

3
) (1 − ϕ)4 (4-12)

ω̇ = CNϵė (
σ1

σe
)

v

 (4-13)

where Sij is deviatoric stress tensor; σe is effective stress which equal to Von Mises stress;

σ1 is the first principal stress; ϵė is equivalent strain rate; and N = 0, if σ1 < 0, else N =1.

54

4.1.3 Qiang Xu’s constitutive equations

Xu (2001, 2004) modified the stress state functions of PH equations. Based on his

investigations and considerations, the researches of Huddleston (1993) and Spindler (2004)

were introduced into his research. The uni-axial form of his equations is the same with PH

equations, and the multi-axial form of his equations is expressed as:

ϵij̇ =
3Sij

2σe
Asinh [

Bσe(1 − H)

(1 − ϕ)(1 − ωd)
] (4-14)

Ḣ = (
hϵė

σe
) (1 −

H

H∗
) (4-15)

ϕ̇ = (
Kc

3
) (1 − ϕ)4 (4-16)

ω̇ = CNϵė {exp [p (1 −
σ1

σe
) + q (

1

2
−

3σm

2σe
)]}

−1

 (4-17)

ωḋ = ω̇ (
2σe

3S1
)

a

exp [b (
3σm

Ss
− 1)] (4-18)

σm =
1

3
(σ1 + σ2 + σ3) (4-19)

σm = σ1 − σm (4-20)

σm = √σ1
2 + σ2

2 + σ3
2 (4-21)

where ϵij̇ , Ḣ, ϕ̇, ω̇, ωḋ are creep strain rate and variables of damage rate respectively;

A, B, C, h, H∗, Kc are creep material properties; Sij is deviatoric stress tensor; σe is effective

stress which equal to Von Mises stress; σ1, σ2, σ3 are principal stress; σm is hydrostatic

stress; ϵė is equivalent strain rate; N = 0, if σ1 < 0, else N =1; and a, b, p, q are stress

state index.

Based on these discussions, creep constitutive equations could be considered simply to

consist of derivatives, solutions, stress and coefficients. It might be appropriate to

consider creep strain rate and damage rate as the derivative, to consider creep strain and

damage as the solution, to consider deviatoric stress tensor, principal stress and equivalent

stress as the stress, and to consider material properties as the coefficients.

55

4.2 Transformation of Stress Tensor

A series of stresses are involved in the operation of constitutive equations such as

deviatoric stress tensor, principal stress and equivalent stress; furthermore, some self-

defining stress states were also applied depending on the specific creep constitutive

equations. For programming convenience, an independent subroutine with deviatoric

stress tensor, principal stress and equivalent stress should be developed, and such self-

defining stress states will be put in their corresponding subroutine of constitutive

equations.

The concept of stress and stress tensor can be found in many books, see (Richards, 2001,

Gere and Goodno, 2009); however, the challenge is how to arrange the computing order

of each in order to save computing power. A appropriate sequence of computing was

suggested by Chen (2007), and detailed formulas is expressed below.

4.2.1 Deviatoric stress tensor

A stress called hydrostatic stress is simply the average of the three normal stresses:

σ0 =
1

3
(σx + σy + σz) (4-22)

where 𝜎0 is the hydrostatic stress; σx, σy, σz are stress tensor components in x-direction,

y-direction and z-direction respectively.

The deviatoric stress tensor is equal to the stress tensor minus the hydrostatic stress:

[sij] = [

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

] (4-23)

where [sij] is the deviatoric stress tensor; [

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

] is the deviatoric

stress tensor components.

4.2.2 Principal stress

Like the stress tensor, the deviatoric stress tensor also has three invariants:

J1 = σx − σ0 + σy − σ0 + σz − σ0 = 0 (4-24)

56

J2 =
1

6
[(σx − σy)

2
+ (σy − σz)

2
+ (σz − σx)2

+ 6(τxy
2 + τyz

2 + τzx
2)]

(4-25)

J3 = |

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

| (4-26)

where J1, J2, J3 are the invariants of deviatoric stress tensor.

The load angle was derived from the second invariant and the third invariant of deviatoric

stress tensor:

θσ =
1

3
sin−1 [

−√27J3

2J2

3
2

] (4-27)

where θσ is the load angle.

Principal stress was derived by the second invariant of stress tensor, load angle and

hydrostatic stress:

σ1 =
2√J2

√3
sin (θσ +

2π

3
) + σ0 (4-28)

σ2 =
2√J2

√3
sin(θσ) + σ0 (4-29)

σ3 =
2√J2

√3
sin (θσ −

2π

3
) + σ0 (4-30)

where σ1, σ2, σ3 are the first principal stress, the second principal stress and the third

principal stress respectively.

4.2.3 Equivalent stress

The first, the second and the third principal stress can express the equivalent stress (von

Mises stress):

σ̅ =
1

√2
√(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 (4-31)

where σ̅ is the equivalent stress.

57

In summary, the compute steps has been reduced to the minimum requirements according

to the sequence of a) hydrostatic stress; b) second and third invariant of deviatoric stress

tensor; c) load angle; d) principal stress; and e) equivalent stress.

4.3 Numerical Methods

Differential equations are used to model problems that involve the change of some

variable with respect to another. These problems require the solution to an initial-value

problem—that is, the solution to a differential equation that satisfies a given initial

condition (Chapra and Canale, 1998). The numerical methods of initial-value problem,

which are used in creep damage analysis, are different with its mathematical instruction

due to its integration process is not consecutive. The derivation of stress and the

derivation of creep strain are carried out alternately; thus, the numerical integration of

each element will be executed only once in each loop in order to keep the unity of time.

Ling et al (2000) and Hayhurst et al. (1984) both suggested that RKM method is the most

suitable numerical method in creep damage analysis. However, a researcher (Wang and

Wang, 1996) addressed that Euler’s method could also be used for creep damage analysis

if the time interval is small enough. In addition, RKF method was also mentioned by both

Ling et al. (2000) and Hayhurst et al. (1984), and they think this method could improve

the accuracy of integration but consume more computing power.

Four types of numerical method, Euler’s method, RK4 method, RKM method and RKF

method, were selected to develop the class of numerical method subroutine. Detailed

formulas were presented in (Faires and Burden, 2013, Chapra and Canale, 1998, Hayhurst

et al., 1984).

4.3.1 Euler’s method

In computational science, the Euler’s method is used for solving ordinary differential

equations (ODEs) with a given initial value. It is the most basic explicit method for

numerical integration of ODEs, and it is the simplest RK method. The Euler’s method is a

first order method, and it often serves as the basis to construct methods that are more

complex.

The initial value problem of ODEs could be expressed as:

58

dy

dt
= f(t, y), for a ≤ t ≤ b (4-32)

where the initial condition is y(a) = α.

The estimating equation of Euler’s method is,

yi+1 = yi + f(xi, yi)h (4-33)

4.3.2 Classical 4th order Runge-Kutta method

The RK methods are an important family of implicit and explicit iterative methods, which

are used for the approximation of solutions of ordinary differential equations. One

member of the family of RK methods is often referred to as RK4.

The estimating equation of RK4 method is,

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)h (4-34)

where the coefficient could be estimated as:

k1 = f(xi, yi) (4-35)

k2 = f (xi +
1

2
h, yi +

1

2
k1) (4-36)

k3 = f (xi +
1

2
h, yi +

1

2
k2) (4-37)

k4 = f(xi + h, yi + k3) (4-38)

4.3.3 Runge-Kutta-Merson method

RKM method was developed by Merson (1957), and it is based on the large family of RK

methods. A Fortran code of the RKM method is available in the NAG library. The RKM

method is the earliest proposed method belonging to the family of imbedded methods.

The estimating equation of RKM method is,

yi+1 = yi +
1

6
(k1 + 4k4 + k5)h (4-39)

59

where the coefficient could be estimated as:

k1 = f(xi, yi) (4-40)

k2 = f (xi +
1

3
h, yi +

1

3
k1) (4-41)

k3 = f (xi +
1

3
h, yi +

1

6
(k1 + k2)) (4-42)

k4 = f (xi +
1

2
h, yi +

1

8
(k1 + 3k3)) (4-43)

k5 = f (xi + h, yi +
1

2
(k1 − 3k3 + 4k4)) (4-44)

4.3.4 Runge-Kutta-Fehlberg method

RKF method was developed by the German mathematician Erwin Fehlberg (1968, 1969),

and it is based on the large family of RK methods. The novelty of Fehlberg's form is that

the error in the solution can be estimated by using the higher-order embedded method to

enhance the integration accuracy by performing one extra calculation.

The estimating equation of RKF method is,

yi+1 = yi + (
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5) h (4-45)

where the coefficients could be estimated as:

k1 = f(xi, yi) (4-46)

k2 = f (xi +
1

4
h, yi +

1

4
k1) (4-47)

k3 = f (xi +
3

8
h, yi +

3

32
k1 +

9

32
k2) (4-48)

k4 = f (xi +
12

13
h, yi +

1932

2197
k1 −

7200

2179
k2 +

7296

2179
k3) (4-49)

k5 = f (xi + h, yi +
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4) (4-50)

k6 = f (xi +
1

2
h, yi −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5) (4-51)

60

4.4 Time-step Control Procedure

Because of the discontinuities of numerical integration, the time-control approach should

be discussed individually. The time-control approach includes time-step selection and

time-step acceptance. The time-step acceptance was undertaken by the self-adaptive

approach of numerical method, and the time-step selection will be designed according to

the main programme of the solver. Due to the structure of the solver, the general self-

adaptive approach should be applied through some appropriate amendment. Several time-

step selection criteria and time-step acceptance criteria were introduced here, but only one

of each was selected.

4.4.1 Time-step selection

Wang (1996) suggested a simple time-step selection method; once the time-step

dissatisfies the requirement of accuracy; it will be reduced to half in the next iteration.

Hayhurst research group addressed their approach, see (Hayhurst et al., 1984, Hall, 1990,

Hayhurst, 2006), which can be summarized as:

1) The first time-step was selected in user-specified;

2) The subsequent time-steps are δ = min [∆Τp
, ∆Τa

, ∆Τr
].

where ∆Τp
 is the previous time-step; ∆Τa

=
0.1

ω̇a max
 (ω < 0.8), the ω̇a max is the maximum

damage rate of all elements; ∆Τr
=

0.05

ωr max
 (ω ≥ 0.8), ωr max = max |

ω̇

ω
|.

Ling et al. (2000) suggested the approach by a new consideration; they intend to increase

the time-step when it was too small. Their approach can be expressed as: ∆t =

min[∆𝑡𝑎, ∆𝑡𝑏], where ∆𝑡𝑎 = ∆𝑡𝑛+1 = 𝛿1∆𝑡𝑛; ∆𝑡𝑏 =
𝛿2

𝜔𝑚𝑎𝑥̇
.

4.4.2 Time-step acceptance

For the self-adaptive technique, a variable called local truncation error was introduced

into the RKM method (Hayhurst et al., 1984, Ling et al., 2000). The local truncation can

be expressed as:

Local truncation error =
1

30
(2k1 − 9k3 + 8k4 − k5) (4-52)

61

A criteria θ =
𝐸𝜖

𝜖𝑐
< 0.001 was suggested by Hayhurst et al. (1984), where, 𝐸𝜖 is local

truncation error, and 𝜖𝑐 creep strain. The tolerance of 0.001 is a recommended value, and

it could be changed depending on the application’s target tolerance.

Faires and Burden (2013) introduced the self-adaptive technique of RKF method. The 4th

order function (4-45) was used for the result and 5th order function (4-53) was used to

estimate the error.

ỹi+1 = yi + (
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6) h (4-53)

The time-step acceptance criterion is,

q = (
𝜀ℎ

2|𝑤̅𝑖+1 − 𝑤𝑖+1|
)

1
4
 (4-54)

where, 𝑤̅𝑖+1 is 5th order function, 𝑤𝑖+1 is 4th order function; when q ≥ 1, the integration

process will continue, else the integration process will be re-executed.

This research adopted Wang’s time-step selection method and Ling’s time-step

acceptance procedure. This combination was selected because it is very easy to be

programmed; moreover, it also avoids the repetitive checking of time-step. However,

whether a constant time-step may affect the accumulation of damage is still an uncertain

issue.

4.5 Normalization Technique

The normalization technique was used to enhance the accuracy and efficiency of

numerical integration. Its specific method was introduced here to develop the normalized

constitutive equations subroutine and to revise the main programme of the solver.

In order to reduce the numerical error, Hayhurst et al (1984) and Hall (1990) utilised a

technique called normalization to modify the creep constitutive equations. In their

approach, the stress, strain and time are divided by fixed proportion and are represented

by new notations. All the new notations such as Σij =
σij

σ0
, Εij =

ϵij

ϵ0
, Sij =

sij

σ0
, ϵ0 =

σ0

e
 are

substituted to the creep constitutive equation, and the new obtained equations are used in

the finite element programme.

62

For example, the Kachanov-Rabotnov constitutive equation can be expressed as:

ϵij̇ =
3

2
sijA

σe
n−1

(1 − ω)n
tm (4-55)

ω̇ = B
σr

χ

(1 − ω)ϕ
tm (4-56)

To enable the time scale of (4-55) and (4-56) to be normalized in the same way and

conveniently, a new constant was introduced:

B =
B′

(1 + ϕ)
 (4-57)

To substitute the new notations mentioned above, (4-55) and (4-56) can be rewritten as:

dΕij

dt
=

ϵij̇

ϵ0
=

1

ϵ0
×

3

2
×

sij

σ0
× σ0 × A ×

σe
n−1

σ0
n−1 × σ0

n−1

(1 − ω)n
tm

=
3

2
SijA

eΣe
n−1σ0

n−1

(1 − ω)n
tm

(4-58)

dω

dt
=

B′

(1 + ϕ)
×

σr
χ

σ0
χ × σ0

χ

(1 − ω)ϕ
tm = B′

Σr
χ

(1 + ϕ)(1 − ω)ϕ
tmσ0

χ
(4-59)

A normalized time increment has been defined depending on the specific constitutive

equations, and now is:

dτ = Aeσ0
n−1tmdt (4-60)

To substitute the normalized time increment, (4-58) and (4-59) can be rewritten as:

Εij
̇ =

dΕij

dτ
=

3

2
Sij

Σe
n−1

(1 − ω)n
 (4-61)

ω̇ =
dω

dτ
= B′

Σr
χ

(1 + ϕ)(1 − ω)ϕ
×

σ0
χ

Aeσ0
n−1

 (4-62)

In order to simplify (4-62) and to understand its physical significance, a concept called

normalized creep failure strain has been introduced (Hall, 1990):

Εu =
Ae

B′
σ0

n−χ−1 (4-63)

63

Hayhurst et al (1984) addressed the value of Eu equal to the normalized creep strain

computed from the uni-axial form of (4-55) after the rupture life at the stress σ0. In

addition, the normalized rupture stress Σr can be obtained from

σr = [ασ1 + (1 − α)σe] (4-64)

The final equation form was written as:

Εij
̇ =

3

2
Sij

Σe
n−1

(1 − ω)n
 (4-65)

ω̇ =
Σr

χ

Εu(1 + ϕ)(1 − ω)ϕ
 (4-66)

Additionally, Hall (1990) suggested that (4-60) and (4-63) should be divided by 100 for

creep strains measured in percent strain. This is not adopted here because the author’s

subroutine is based on engineer strain system. The main programme of the solver also

needs to be revised due to the stresses and strains used in normalized constitutive

equations are normalized, see (Hall, 1990).

4.6 Nodal Loads Conditions

Boundary conditions of nodal loads could not be produced by FEMGV directly because

of its limited capability. At the same time, the nodal loads distribution method of the

solver is not simple; hence, a small calculator of nodal loads was proposed to reduce the

calculation of nodal loads arrangements.

Smith and Griffiths (2004) suggested the algorithms of nodal loads, where the

axisymmetric elements are different from planar elements and three dimensional elements.

Figure 4-1 indicates the nodal force distribution of 3-nodes triangle planar element and 4-

nodes quadrilateral planar element. Figure 4-2 indicates the nodal force distribution of 3-

nodes triangle axisymmetric element and 4-nodes quadrilateral axisymmetric element. It

also presented the formula to calculate each force, in which F1 and F2 are nodal forces of

each node; r0 and r1 are inner radius and outer radius respectively. The equivalent nodal

loads of both planar elements and three-dimensional elements depend on the length of

loaded side of planar elements or the area of loaded surface of three-dimensional elements,

64

and it has a fixed proportion on each node. However, the equivalent nodal loads of

axisymmetric elements are depending on the position of the element7.

Figure 4-1 Nodal force distribution of 3-nodes triangle and 4-nodes quadrilateral planar element

(Smith and Griffiths, 2004)

Figure 4-2 Nodal force distribution and formula of 3-nodes triangle and 4-nodes quadrilateral

axisymmetric element (Smith and Griffiths, 2004)

Although this thesis does not involve the linear element type, its advantages in damage

mechanics are still worth to mention. Compared with quadratic elements, using the linear

elements will lose some precision; however, it is easy to remove the failure elements8.

4.7 File Format of FEMGV and the solver

The file format of FEMGV and the solver is mismatched because of the formatted input

and output. Not only the data format of FEMGV need to be understood, but also the data

7 It means the distance from the axis not rotational symmetry to each loaded node of each loaded element.
8 This is the knowledge about failure element remove, further discussion can be seen in my colleague’s

thesis (Liu, 2015).

65

structure need to be discussed due to the data accepted/produced by the solver could not

cover all data types of FEMGV. Synchronization of formatted input and output between

FEMGV and the solver is very important. The data types and data format of FEMGV

were analysed, and only the data type of the solver was introduced because the solver has

free data format. Selective understanding of the file format of FEMGV makes the

research more efficient.

4.7.1 File format of FEMGV

FEMGV has two databases, one is for the design environment and the other is for the

result environment. All of them can be recorded in ASCII text format called neutral file,

and the overall structure of neutral file is shown in Figure 4-3. It could be summarised

that each neutral file must include model set, data set and data record. Figure 4-3 shows

that the model set includes model header and data set, the data set includes data set header

and data record. The data set delimiter9 is ‘-3’ and the file delimiter is ‘9999’.

Figure 4-3 Overall structure of FEMGV (Manie and Wolthers, 2013)

Table 4-1 shows data categories of the Neutral file in the design environment. In this

research, only node coordinates, part definition, element definition, constrains and

concentrated forces were considered due to the data structure of the solver. Table 4-2

shows data categories of the Neutral file in the result environment. In this research, only

9 Delimiter is a FEMGV defined characteristic, which used to recognise data type. It appears on the start of

each recording line. Especially, a delimiter ‘9999’ must be added on the end of each neutral file; the infinite

loop will occur if it is never encountered.

66

node coordinates, element definition, and user-defined results were considered due to the

data structure of the solver.

Table 4-1 Data categories of Neutral file in design environment

Record type KEY OPCODE Name

Model header 1 C Model name

Node coordinates 2 C

Part definition 101 C

Element definition 3 C

Material properties 20 C

Physical properties 102 C

Constraints

103 C

Generalized constraints 104 C

Elastic supports 105 C

Coordinate systems 107 C

Concentrated forces 110 C

Prescribed displacements 111 C

Pressure load 112 C

Temperature load 113 C

Gravity load 114 C

Centrifugal load 115 C

Table 4-2 Data categories of Neutral file in result environment

Record type KEY OPCODE Name

User header 111 U User key

Project header 111 P Project name

Model header 111 C, A, B Model name

Node coordinates 2 C

Element definition 3 C

Node sets 18 C

Element sets 19 C

Material properties 20 C

Integration point coordinates 30 C

Nodal results local systems 32 C

Element results local systems 33 C

Integration point results local

systems

34 C

Nodal constraints 41 C

Local coordinate systems 43 C

Transformations 50 C

Symbols 53 C

User defined results 100 C, I, R Load case name

Table 4-3 indicates the specific syntax of node coordinates, part definition, element

definition, material properties, constraints and concentrated forces. Through the

observation of these syntaxes, it is easy to find that the data types do not need a fixed

67

position in the file because a logic control algorithm could be designed based on the ‘key’

and ‘opcode’.

Table 4-3 Specific data format of Neutral file in design environment

Data set header

__ KEY OPCODE Name ______ IFORMT __ MAXOUT
1X I4 A1 6A1 61X I2 1X I2
Data records

Node coordinates

__ 2 C Name ______ IFORMT __ MAXOUT
1X I4 A1 6A1 61X I2 1X I2
__ -1 NODE X Y Z
1X I2 I10 3E14.7

Part definition

__ 101 C Name ______ IFORMT __ MAXOUT
1X I4 A1 6A1 61X I2 1X I2
__ -1 __ ANAME LPNR TYPE NE0 NE1 NANT
1X I2 1X 8A1 I10 I10 I10 I10 I10
__ -2 NODES
1X I2 10I10

Element definition

__ 3 C Name ______ IFORMT __ MAXOUT
1X I4 A1 6A1 61X I2 1X I2
__ -1 NUMBER TYPE GROUP MATERIAL _____ VARIANT PHYSICAL
1X I2 I10 I5 I5 I5 5X I5 I5
__ -2 NODES
1X I2 10I10

Constraints

__ 103 C Name ______ IFORMT __ MAXOUT
1X I4 A1 6A1 61X I2 1X I2
__ -1 __ ANAME LPNR __ NANT __ DOFS
1X I2 1X 8A1 I5 1X I5 1X 6I1
__ -2 NODES
1X I2 10I10

Concentrated forces

__ 110 C Name ______ IFORMT __ MAXOUT
1X I4 A1 6A1 61X I2 1X I2
__ -1 LCASE NODE DOF VALUE
1X I2 I5 I10 I5 E15.5

Table 4-4 indicates the specific syntax of node coordinates, element definition, and user

defined results.

Table 4-4 Specific data format of Neutral file in result environment

Data set header

__ KEY OPCODE Name STPVAL _____ Text ICTYPE NUMSTP Analysis IFORMT
1X I4 A1 6A1 E12.5 12X 20A1 I2 I5 10A1 I2
Data records

Node coordinates

__ 2 C Name STPVAL _____ Text ICTYPE NUMSTP Analysis IFORMT
1X I4 A1 6A1 E12.5 12X 20A1 I2 I5 10A1 I2
__ -1 NODE X Y Z SYSID
1X I2 I10 3E12.5 I15

68

Element definition

__ 3 C Name STPVAL _____ Text ICTYPE NUMSTP Analysis IFORMT
1X I4 A1 6A1 E12.5 12X 20A1 I2 I5 10A1 I2
__ -1 NUMBER TYPE GROUP MATERIAL SYSID VARIANT
1X I2 I10 I5 I5 I5 I5 I5
__ -2 NODES
1X I2 10I10

User defined result

__ 100 C Name STPVAL _____ Text ICTYPE NUMSTP Analysis IFORMT
1X I4 A1 6A1 E12.5 12X 20A1 I2 I5 10A1 I2
Attribute header
Component definition
[Attribute variant] · · ·

Attribute header

__ -4 __ Name NCOMPS IRTYPE NORCTY _____ Orig
1X I2 2X 8A1 I5 I5 I5 10X 8A1

Component definition

__ -5 __ Name MENU ICTYPE ICIND1 ICIND2 IEXIST ICNAME ICDATA
1X I2 2X 8A1 I5 I5 I5 I5 I5 8A1 8A1

Entity header of element at node

__ -1 ELEM TYPE GROUP IRECTY NODAL NSRF _____ ISYSTM
1X I2 I5 I5 I5 I5 I5 I5 5X I5
Data records

Entity header of element at integration point

__ -1 ELEM TYPE GROUP IRECTY NODAL NSRF INTEG ISYSTM
1X I2 I5 I5 I5 I5 I5 I5 I5 I5
__ -2 IPNT X Y Z
1X I2 I5 3E12.5
Data records

Entity data

__ -2 NUMB COMP1 COMP2 COMP3 COMP4 COMP5 COMP6

1X I2 I5 E12.5 E12.5 E12.5 E12.5 E12.5 E12.5

4.7.2 File format of the solver

The data structure of the solver in input environment follows the sequence displayed

below:

1. Element type, number of element, number of nodes, material properties

2. Coordinates definition

3. Element definition

4. Constraint

5. Nodal loads

The data structure of the solver in output environment follows the sequence displayed

below:

1. Element type, number of element, number of nodes, material properties

2. Coordinates definition

69

3. Element definition

4. Displacement

5. Body loads

6. Coordinates of integration point

7. Elastic stress

8. Elastic strain

9. Creep strain

10. Creep damage

4.8 Summary

The knowledge presented in this chapter involves a) constitutive equations based on

continuum damage mechanics; b) derivation of deviatoric stress, principal stress and

equivalent stress based on stress tensor; c) single-step explicit numerical method of initial

value problem; d) self-adaptive approach of time-step and its control scheme; e)

normalization technique; f) boundary conditions of nodal loads based on planar and

axisymmetric element type; and g) formatted input and output of FEMGV and the solver

has been studied and analysed.

KR constitutive equations, PH constitutive equations and QX constitutive equations were

selected to develop the subroutine of constitutive equations. A critical computing

sequence of a) hydrostatic stress, b) second and third invariants of deviatoric stress tensor,

c) load angle, d) principal stress, and e) equivalent stress was chosen to develop the stress

tensor transformation subroutine. Euler’s method, RK4 method, RKM method and RKF

method were selected to develop the class of numerical method subroutine. Wang’s time-

step selection method and Ling’s time-step acceptance procedure were adopted as the

time-step control procedure. The normalization technique used to normalize the

constitutive equations was introduced. The nodal force distributions of 3-nodes triangle

element and 4-nodes quadrilateral element were reported to develop the nodal load

calculator. The file format of FEMGV and the solver were analysed to develop the data

transfer interface.

70

5 DESIGN OF ALGORITHM AND

STRUCTURE

This chapter presents the algorithm, arguments and structure of all developed subroutines

and programmes of this research. The algorithm was designed based on the theories and

knowledge, which are used to achieve the required function of each subroutine and

programme; moreover, the structure was designed based on the structure of Prototype I. A

number of variables were defined according to the variables of Prototype I due to the

consideration of subroutine interface.

Table 5-1 presents brief summary descriptions of the involved theories of each subroutine

and programme. The developing sequence of subroutines depends on their position in the

solver from top to bottom, and depends on the priority of prototype version; hence, its

order is a) stress tensor transformation subroutine; b) numerical method subroutine; c)

constitutive equations subroutine; d) time-step control subroutine; e) normalization

subroutine.

71

Table 5-1 Relative theories and knowledge of each subroutine and programme

Subroutine/Programme Relative theories and knowledge

Constitutive equations

subroutines

 Kachanov-Rabotnov constitutive equations

 Perrin-Hayhurst constitutive equations

 Qiang Xu's constitutive equations

Stress tensor transformation

subroutine

 Conversion between stress tensor and deviatoric stress tensor

 The derivation approach of principal stress, based on the

invariants of deviatoric stress tensor

 The derivation approach of equivalent stress, based on the

principal stress

Numerical method subroutines

 Euler's method

 4th order classical Runge-Kutta method

 Runge-Kutta-Merson method

 Runge-Kutta-Fehlberg method

Time-step control subroutine

 Time-step acceptance approach

 Time-step selection approach

 Self-adaptive technique of Runge-Kutta-Merson method

 Self-adaptive technique of Runge-Kutta-Fehlberg method

Normalization technique

subroutine

 Normalized Kachanov-Rabotnov constitutive equation

 Normalized equilibrium equation of finite element method

Boundary conditions calculator
 The nodal loads equation of 3-nodes triangle element

 The nodal loads equation of 4-nodes quadrilateral element

Data transfer programme

 File format of FEMGV

 File format of the solver

 Arguments arrangement of the solver

5.1 Transformation of Stress Tensor

The computing of constitutive equations involved a series of distinct stress forms; hence,

a number of classical stress forms such as deviatoric stress tensor, principal stress and

equivalent stress were integrated into a conversion subroutine called stress tensor

transformation subroutine due to the consideration of efficiency and convenience.

5.1.1 Algorithm of TRS

A subroutine called Transformation of Stress (TRS) was required to convert the

deviatoric stress tensor, the principal stress and the equivalent stress based on the normal

72

stress tensor. According to the theoretical analysis, the computing sequence is a)

hydrostatic stress; b) second and third invariant of deviatoric stress tensor; c) load angle; d)

principal stress; and e) equivalent stress in TRS.

Figure 5-1 shows the process of TRS, where it is obvious to see that the equations are the

same for two-dimensional problem or three-dimensional problem, because TRS solves

two-dimensional problem through reducing the three-dimensional equations. cas_sel_4

represents two-dimensional problem and cas_sel_6 represents two-dimensional problem.

The key point is that only local variables are involved in the computations, and the stress

components that are not required can be set as zero in the allocation of global variables10.

Figure 5-1 also shows that when the process move into the first selection branch, if the

selection reference is incorrect, a warning statement will be printed on screen, then the

process move into the next statement. This can be seen as a self-checking function to help

user to identify the error of input data. It does not affect the execution of subroutine itself.

The same situation, which occurs on the later sections, will not be explained repeatedly.

Start
Read
sigma

cas_sel_4

cas_sel_6

No

Assignment of
sx, sy, sz, txy

Yes

Assignment of
sx, sy, sz, txy,

tyz, tzx
Yes

Compute
hydrostatic sig0

Compute
equivalent
stress es

cas_sel_4

cas_sel_6

No

Write stress,
the size of
stress is 8

Yes

Write stress,
the size of
stress is 10

Yes

Stop

Print ‘error on
stress

rearrangement

in TRS’

Print ‘wrong
size for nos in

TRS’

No

No

Compute
invariants j2, j3

Compute load
angle loang

Compute
principal stress

ps

Figure 5-1 Algorithm of stress tensor transformation subroutine

10 In FEM, the number of stress terms in 2D environment and 3D environment is different, two unrequired

shear stress will be force to zero when the plane elements are applied.

73

TRS was called after the completion of elastic stress derivation; hence, the array stored

elastic stress tensor will be delivered to TRS from the main programme of the solver. The

number of stress components is changed after the conversion; therefore, a new array

should be designed to store the deviatoric stress tensor, the principal stress and the

equivalent stress. For the consideration of convenient debugging and maintenance, TRS

used two sets of variable systems, one is a global variable, which is used to deliver data

between main programme and subroutine; one is a local variable, which is used to prevent

the memory mistakes. At the start of TRS, the global variable is allocated to a local

variable, and the local variable will be allocated back to the global variable at the end of

TRS.

5.1.2 Variables Definition

Table 5-2 presents the definition of all local variables, which is used for the local

computations only. The deviatoric stress tensor components were not defined because

their value can be represented by the component of stress tensor and the hydrostatic stress.

Table 5-2 Variables dictionary of TRS

Variables Descriptions

Global variables

sigma
Input data, which stored the normal and shear stress tensor. Its size and type should

synchronize with the main programme of the solver. It is a deferred-shape array in order to

ignore the number of stress component.

stress
Output data, which stored the deviatoric stress tensor, the principal stress and the equivalent

stress. Its size and type should synchronize with the main programme of the solver. It is a

deferred-shape array in order to ignore the number of stress component.

Local variables

sx, sy, sz,

txy, tyz, tzx

It is real, which means the components of stress tensor.

pi It is real, which means the constant π.

j2, j3 It is real, which means the second and third stress invariants.

sig0 It is real, which means the hydrostatic stress.

loang It is real, which means the load angle.

es It is real, which means the equivalent stress.

ps(3) It is real array, which stores the principal stress.

nos It is integer, which means the number of stress terms.

The activity of deriving the unknown deviatoric stress tensor, principal stress and

equivalent stress is a stress transformation process; hence, only two real arrays were

needed in this subroutine, one is known stress and the other is unknown stress. The known

stress was obtained from the main programme of the solver, so its setting can follow the

74

main programme to name it as sigma. The size of sigma depends on the specific problem,

two-dimensional problem is 4 and the three-dimensional problem is 6.

The array of unknown stress was named stress in order to distinguish the known stress

and unknown stress. Array stress stored deviatoric stress tensor, principal stress and

equivalent stress; hence, its size equals to the sum of the number of deviatoric stress

tensor components, the number of principal stress and the number of equivalent stress.

The number of deviatoric stress tensor components depends on the specific problem, two-

dimensional problem is 4 and the three-dimensional problem is 6. The number of

principal stresses is 3 and the number of equivalent stresses is 1, so the size of stress is 8

in two-dimensional problem and 10 in three-dimensional problem.

5.1.3 Subroutine Structure

TRS consists of two parts, variable declaration and execution; its pseudo code was

obtained through Figure 5-1 and Table 5-2. The detailed code is attached in appendix 10.2,

and the pseudo code is displayed below.

1 Subroutine TRS (sigma, stress)

Execution section:

2 obtain (sigma) from the main programme

3 nos ← ubound(sigma,1)

4 pi ← 3.1415926

5 allocate (sigma) of (sx, sy, sz, txy, tyz, tzx)

6 sig0 ← (sx+sy+sz)/3.

7 j2 ← ((sx-sy)**2+(sy-sz)**2+(sz-sx)**2)/6.+txy**2+tyz**2+ tzx**2

8 j3 ← (sx-sig0)*(sy-sig0)*(sz-sig0)+2*txy*tyz*tzx-(sx-sig0)*tyz**2-(sz-

sig0)*txy**2-(sy-sig0)*tzx**2

9 loang ← asin((-sqrt(27.)*j3)/(2*sqrt(j2**3)))/3

10 ps(1) ← 2*sqrt(j2)/sqrt(3.)*sin(loang+2*pi/3)+sig0

11 ps(2) ← 2*sqrt(j2)/sqrt(3.)*sin(loang)+sig0

12 ps(3) ← 2*sqrt(j2)/sqrt(3.)*sin(loang-2*pi/3)+sig0

13 es ← 1/sqrt(2.)*sqrt((ps(1)-ps(2))**2+(ps(2)-ps(3))**2+ (ps(3)-ps(1))**2)

14 update (stress)

15 return (stress) to main programme

5.2 Constitutive Equations

Constitutive equations subroutine is a class of subroutines, which has a unified template

of subroutine structure and algorithm; and, three kinds of constitutive equations were

selected in this research based on continuum damage mechanics.

75

5.2.1 Algorithm of CES

A class of subroutines called Constitutive Equations Subroutine (CES) was required to

find the solution of creep constitutive equations, which includes creep strain rate and

creep damage rate. According to the theoretical analysis, the computing sequence is a)

creep strain rate of each direction; and b) creep damage rate in CES.

Figure 5-2 shows the process of CES, it is obvious to see that specific constitutive

equations were divided into three cases, which are a) uni-axial case; b) two-dimensional

case; and c) three-dimensional case. The subroutine will select the correct case according

the variable representing the number of equations. cas_sel_1 represents uni-axial form of

constitutive equations, cas_sel_8 represents multi-axial form of constitutive equations

(four equations for strain components) and cas_sel_10 represents multi-axial form of

constitutive equations (six equations for strain components). cas_sel_x, cas_sel_xx and

cas_sel_xxx are user-defined which recommend using the number of constitutive

equations as the selection reference.

Start
Read x, t, stress,
mat, nos, nom,

noe

cas_sel_1

cas_sel_8

No

cas_sel_10

No

Assignment of
sx

Yes

Assignment of
sx, sy, sz, txy,

mps, esYes

Assignment of
sx, sy, sz, txy,

tyz, tzx, mps, esYes

Assignment of
material

properties

cas_sel_x

cas_sel_xx

No

cas_sel_xxx

No

Print ‘error on
stress

rearrangement

in func’
Compute creep strain

and damage rate f, the
size of f is depending on

the uni-axial form of
constitutive equations

Yes

Compute creep strain
and damage rate f, the
size of f is depending

on the 2D form of
constitutive equations

Yes

Compute creep strain
and damage rate f, the
size of f is depending

on the 3D form of
constitutive equations

Yes

Print ‘error on
constitutive
equations in

func’

Stop

Compute self-
defined stress if

required

No

No

Figure 5-2 Algorithm of constitutive equaitons subroutines

76

CES was called in the numerical method subroutine; hence, the array stored converted

stresses, material properties and the initial value of creep strain and damage will be

delivered to CES from the numerical method subroutine. At the same time, the creep

strain rate and creep damage rate will be returned to numerical method subroutine from

CES as well.

In order to distinguish the problems of two-dimensions and three-dimensions, CES used

two sets of variable systems, one is a global variable, which is used to deliver data

between the main programme and subroutine; one is a local variable, which is used to

offer required parameters depending on the number of equations. At the start of CES, the

global variable will be allocated to a local variable to prepare the case selection of two-

dimensional problem and three-dimensional problem. KR constitutive equations, PH

constitutive equations and QX constitutive equations were selected to code in this

research. CES has a template, which enables users to build their own constitutive

equations subroutines11.

5.2.2 Variables Definition

Table 5-3 presented the definition of all local variables, which is used to distinguish the

two-dimensional problem and three-dimensional problem, and to prevent coding mistakes.

The descriptions of the relationship of creep strain and stress are the constitutive

equations; hence, the consideration of variables definition should contain all dependent

variables, independent variables and parameters of creep constitutive equations.

Table 5-3 Variables dictionary of CES

Variables Descriptions

Global variables

f Output data, which is an explicit-shape array used to store the creep strain rate and creep

damage rate. Its size and type should synchronize with the variable of noe.

x Input data, which is an explicit-shape array used to store the creep strain damage. Its size

and type should synchronize with the variable of noe.

stress

Input data, which is an explicit-shape array used to store the deviatoric stress tensor, the

principal stress and the equivalent stress. Its size and type should synchronize with the

variable of nos, which point out the operation environment is two dimensional problem or

three-dimensional problem.

mat Input data, which is an explicit-shape array used to store the material property parameters.

Its size and type should synchronize with the variable of nom.

t Input data, which is a real used to store the value of present time.

nos Control variables, which is a real used to represent the number of stress terms.

11 The users must be familiar with some understanding of FEA and Fortran coding. Once the user completes

their own constitutive equations subroutine, it is very easy to integrate their subroutine into HITSI.

77

nom Control variables, which is a real used to represent the number of material properties.

noe Control variables, which is a real used to represent the number of equations.

Local variables

sx, sy, sz, txy,

tyz, tzx

It is real, which means the components of deviatoric stress tensor.

mps It is real, which means the first principal stress.

es It is real, which means the equivalent stress.

A, n, m, B, phi,

chi, alpha

Samples, which are real, and means material property parameters

A real array named x used to store the value of creep strain and damage were needed in

this subroutine. The initial value of x was obtained from main programme of the solver, in

which the size of x depends on the number of equations called noe.

A real array named f used to store the value of creep strain rate and creep damage rate

were stated in this subroutine. The value of f will be returned to the numerical method

subroutine, in which the size of f depends on noe as well. A real array variable called t is

used to hold the variable of time is also reserved due to some constitutive equations

having integrated into time functions. Material properties were stored in the real array

named mat. The initial value of mat was obtained from main programme of the solver,

which the size of mat is depending on the number of material properties. A real array

called stress was obtained from the main programme of the solver, and was derived by

the subroutine of TRS.

5.2.3 Subroutine Structure

CES consists of two parts, variable declaration and execution; its pseudo code was

obtained through Figure 5-2 and Table 5-3. The detailed code is attached in appendix 10.2,

and the pseudo code sample of subroutine KR (using KR equations) is displayed below.

The other two is subroutine PH (using PH equations) and QX (using QX equations).

1 Subroutine KR (f, x, t, stress, mat, nos, nom, noe)

Execution section:

2 obtain (nos, noe, nom, mat(nom), t, x(noe), stress(nos)) from numerical method

subroutine

3 allocate the stress terms which stored in global variable to local variables

4 allocate the material properties which stored in global variable to local variables

5 rs ← alpha*mps+(1.-alpha)*es

6 select case (problem type)

7 case (uni-axial)

8 f(1) ← A*((sx/(1-x(2)))**n)*(t**m)

9 f(2) ← B*(sx**chi)/((1-x(2))**phi)*(t**m)

10 case (2D problem)

11 f(1) ← (3./2.)*(sx/es)*A*((es/(1-x(5)))**n)*(t**m)

12 f(2) ← (3./2.)*(sy/es)*A*((es/(1-x(5)))**n)*(t**m)

78

13 f(3) ← (3./2.)*(txy/es)*A*((es/(1-x(5)))**n)*(t**m)

14 f(4) ← (3./2.)*(sz/es)*A*((es/(1-x(5)))**n)*(t**m)

15 f(5) ← B*(rs**chi)/((1-x(5))**phi)*(t**m)

16 case (3D problem)

17 f(1) ← (3./2.)*(sx/es)*A*((es/(1-x(7)))**n)*(t**m)

18 f(2) ← (3./2.)*(sy/es)*A*((es/(1-x(7)))**n)*(t**m)

19 f(3) ← (3./2.)*(sz/es)*A*((es/(1-x(7)))**n)*(t**m)

20 f(4) ← (3./2.)*(txy/es)*A*((es/(1-x(7)))**n)*(t**m)

21 f(5) ← (3./2.)*(tyz/es)*A*((es/(1-x(7)))**n)*(t**m)

22 f(6) ← (3./2.)*(tzx/es)*A*((es/(1-x(7)))**n)*(t**m)

23 f(7) ← B*(rs**chi)/((1-x(7))**phi)*(t**m)

24 end select

25 return (f) to numerical method subroutine

5.3 Numerical Integration Method

Like the constitutive equations subroutine, the numerical method subroutine is also a class

of subroutines, and has a unified template. Four kinds of numerical methods were selected

in this research based on the single step method of ordinary differential equations.

5.3.1 Algorithm of NMS

A class of subroutine called Numerical Method Subroutine (NMS) was required to

integrate the constitutive equations, which includes computing of functions’ slope and

updating of functions’ solution. According to the theoretical analysis, the computing

sequence is 1) estimates of slope depending on different time-steps; 2) mean slope; 3)

solution updating in NMS. The self-adaptive approach will be discussed in section 5.4.

Figure 5-3 shows the process of NMS, where it is obvious to see that the functions’ slopes

will be derived through the constitutive equations subroutine; hence, the dummy

arguments list of NMS should consider the nature of constitutive equations subroutine.

NMS solves two-dimensional problem and three-dimensional equations depending on the

argument of the number of equations.

Start

Call constitutive equations
subroutine func to return

the value of k1, k2, k3,…, kn

Compute the
mean slope mfs

Update the
creep strain and

damage y
Stop

Read y, t, dt,
stress, mat, nos,

nom, noe

Figure 5-3 Algorithm of numerical method subroutines

79

NMS was called after the completion of stress conversion; hence, the array stored

converted stresses will be delivered to NMS from the main programme of the solver. At

the same time, the material properties, time-step size and the initial value of creep strain

and damage will be delivered to NMS from the main programme of the solver as well.

NMS will not distinguish local variables and global variables since the major execution

part will be done by external subroutines.

In this research, four types of numerical method subroutine were included in NMS, which

are Euler’s method, RK4 method, RKM method and RKF method. NMS has a template,

which enables users to build their own numerical method subroutines as well.

5.3.2 Variables Definition

The activity of finding the solution of constitutive equations is the numerical integration

process; hence, the consideration of variables definition should involve the numerical

method itself and constitutive equations. The numerical method aims to find the solution

of constitutive equations; therefore, a real array named y used to store the value of creep

strain and damage were needed in this subroutine. The initial value of y was obtained

from the main programme of the solver, so its setting can follow the main programme,

where the size of y depends on the number of equations.

Table 5-4 presents the definition of all local variables, which is used to derive the mean

slope of constitutive equations and to return the value of creep strain and damage.

Table 5-4 Variables dictionary of NMS

Variables Descriptions

Global variables

func Name of constitutive equations subroutine.

y Input and output data, which is an explicit-shape array used to store the creep strain damage.

Its size and type should synchronize with the variable of noe.

stress

Input data, which is an explicit-shape array used to store the deviatoric stress tensor, the

principal stress and the equivalent stress. Its size and type should synchronize with the

variable of nos, which point out the operation environment is two dimensional problem or

three-dimensional problem.

mat Input data, which is an explicit-shape array used to store the material property parameters.

Its size and type should synchronize with the variable of nom.

t Input data, which is a real used to store the value of present time.

dt Input data, which is a real used to store the time-step.

nos Control variables, which is a real used to represent the number of stress terms.

nom Control variables, which is a real used to represent the number of material properties.

noe Control variables, which is a real used to represent the number of equations.

80

Local variables

k1, k2,

k3…kn

They are explicit-shape array used to store slopes of functions obtained using different time-

step. Its size and type should synchronize with the variable of noe.

mfs It is an explicit-shape array used to store mean slopes of functions. Its size and type should

synchronize with the variable of noe.

External subroutine func, which represents the constitutive equations subroutine was used

to find the creep strain rates and creep damage rates. All of these rates will be stored in

the local variables named kn., which kn are a series of variables. Due to the like with the

external subroutine, the corresponding dummy arguments of the external subroutine must

be included; for example, variables of stress, mat, t, nos, nom and noe have the same

setting as the constitutive equations subroutine.

The time-step was stored in the real variable dt, and the value of dt was updated from the

main programme of the solver during every iteration loops of constitutive equations.

5.3.3 Subroutine Structure

NMS consists of two parts, variable declaration and execution; its pseudo code was

obtained through Figure 5-3 and Table 5-4. The detailed code is attached in appendix 10.2,

and the pseudo code sample of subroutine RK4 (using RK4 method) is displayed below.

The other three is subroutine EULER (using Euler’s method), RKM (using RKM method)

and RKF (using RKF method).

1 Subroutine RK4 (func, y, t, dt, stress, mat, nos, nom, noe)

external :: func [name of constitutive equations subroutine]

Execution section:

2 obtain (nos, noe, nom, mat(nom), t, dt, y(noe), stress(nos)) from the main

programme

3 call func(k1,y,t,stress,mat,nos,nom,noe)

4 call func(k2,y+dt/2*k1,t+dt/2,stress,mat,nos,nom,noe)

5 call func(k3,y+dt/2*k2,t+dt/2,stress,mat,nos,nom,noe)

6 call func(k4,y+dt*k3,t+dt,stress,mat,nos,nom,noe)

7 mfs ← (k1+2*k2+2*k3+k4)/6

8 y ← y+mfs*dt

9 return (y) to main programme

5.4 Time-step Control Procedure

The solution of time-step control consists of time-step acceptance and time-step selection.

Especially, the part of time-step acceptance was integrated into the numerical method

subroutine. The time-step control is also reflected in the structure of the solver, which

81

means the new creep strain and damage will not be updated if the current integration is

unaccepted.

5.4.1 Algorithm of TSC and self-adaptive approach

A subroutine called Time-Step Control (TSC) was required to give a new time-step for

every iteration loop of constitutive equations. The new time-step selection criteria depend

on the self-adaptive approach of the numerical method. The standard of self-adaptive

technique was integrated into the numerical method subroutine. Figure 5-4 shows the co-

operation of TSC and NMS, where the important controller of time-step control scheme

was produced after the integration process and then go to the branch of stress updating

decision. The only termination criterion is that the value of creep damage exceeds its

critical value. Figure 5-5 shows the specific determination process of a new time-step.

When the last integration process satisfies the standard of the self-adaptive technique, the

new time-step equals to the old time-step; however, when the last integration process does

not satisfy the standard of the self-adaptive technique, the new time-step equals to the half

of the old time-step.

Start

Read
time-step

dt

Return
argument rcv

maxval (g_rcv) = 1

maxval (g_rcv) = 0

.FALSE.

Call
subroutine

TSC

.TRUE.
Constitutive

equations and
its integration

 i = 1
 i ≤ nip
 i = i+1

.TRUE.

.FALSE.

 iel = 1

 iel ≤ nel
iel = iel+1

.TRUE..FALSE.

Stop

g_rcv(iel,i,:) = rcv

.TRUE.

Update creep
strain and
damage

Do not update
creep strain and

damage

.FALSE.

Damage ≤
critical value

.TRUE. .FALSE.

Call
subroutine

TSC

Figure 5-4 Algorithm of time-step control in the solver

82

Start

Read
g_rcv, dt

drcv = maxval (g_rcv)

drcv = 1 drcv = 0.FALSE.

dt = dt/2

.TRUE.

dt = dt

.TRUE.

Stop

.FALSE.

Figure 5-5 Algorithm of time-step selection subroutine

5.4.2 Variables Definition

The activity of determining a new time-step based on the controller of self-adaptive is

time-step selection; hence, the consideration of variables definition should involve the

controller and time-step itself. A three-dimensional deferred-shape real array named

g_rcv used to store global controller of self-adaptive were needed in this subroutine. The

value of each controller is 0 or 1 only, where ‘1’ indicates that the present loop is not

accepted and ‘0’ indicates that the present loop is accepted.

The present time-step was stored in the real variable dt; however, in order to reduce the

memory requirement, the new time-step will be returned to dt as well. Table 5-5 shows

the definition of local variables drcv, which is used to find the maximum controller of

self-adaptive time-step approach of all equations.

Table 5-5 Variables dictionary of TSC

Variables Descriptions

Global variables

g_rcv
Input data, which is a deferred-shape array used to store the global controller of self-

adaptive time-step approach. Its size and type should synchronize with the main

programme of the solver.

dt Input and output data, which is a real used to store the time-step.

Local variables

drcv It is integer, which means the maximum controller of self-adaptive time-step approach.

The local variables, which were shown in Table 5-6, should be added to NMS. In order to

determine the acceptance of self-adaptive approach, a real array aoi, whose size depends

on the number of equations, was designed to hold all values of acceptance criteria. Due to

83

the nature of the acceptance criteria, the maximum value was chosen to be stored in the

real variable maoi. Once the present iteration satisfies the acceptance criteria, the

controller will be defined as ‘0’, else the controller is ‘1’; hence, an integer variable called

rcv was proposed to hold the controller of self-adaptive approach.

Table 5-6 Unique variables dictionary of self-adaptive approach in NMS

Variables Descriptions

Local variables

aoi It is an explicit-shape array used to hold the acceptance of integration

maoi It is a real, which means the maximum acceptance of integration

rcv It is an integer, which means the controller produced by self-adaptive approach. Its value

is 0 or 1 only.

5.4.3 Subroutine Structure

TSC consists of two parts, variable declaration and execution; its pseudo code was

obtained through Figure 5-5 and Table 5-5. The detailed code is attached in appendix 10.2,

and the pseudo code sample of subroutine TSC is displayed below:

1 Subroutine TSC (dt, g_rcv)

Execution section:

2 obtain (dt, g_rcv) from the main programme

3 drcv ← maxval(g_rcv)

4 if drcv = 1

5 dt ← dt/2

6 else if drcv = 0

7 dt ← dt

8 end if
9 return (dt) to main programme

New NMS consists of two parts, variable declaration and execution; its pseudo code was

obtained through Figure 5-3, Table 5-4 and Table 5-6. The detailed code is attached in

appendix 10.2, and the pseudo code sample of subroutine RKM is displayed below:

1 Subroutine RKM (func, y, t, dt, stress, mat, nos, nom, noe)

external :: func [name of constitutive equations subroutine]

Execution section:

2 obtain (nos, noe, nom, mat(nom), t, dt, y(noe), stress(nos)) from the main

programme

3 call func(k1,y,t,stress,mat,nos,nom,noe)

4 call func(k2,y+dt/3.*k1,t+dt/3.,stress,mat,nos,nom,noe)

5 call func(k3,y+dt/6.*(k1+k2),t+dt/3.,stress,mat,nos,nom,noe)

6 call func(k4,y+dt/8.*(k1+3*k3),t+dt/2.,stress,mat,nos,nom,noe)

7 call func(k5,y+dt/2.*(k1-3.*k3+4.*k4),t+dt,stress,mat,nos,nom, noe)

84

8 mfs ← (k1+4.*k4+k5)/6.

9 y ← y+mfs*dt

10 loer ← (2*k1-9*k3+8*k4-k5)/30.

11 aoi ← loer/mfs

12 maoi ← maxval(aoi)

13 if maoi<0.001

14 rcv ← 0

15 else

16 rcv ← 1

17 return (y, rcv) to main programme

5.5 Normalization Scheme

The normalization technique contains a set of normalized constitutive equations and

normalized equilibrium equations of the finite element method. The normalized

constitutive equations can be coded based on constitutive equation subroutines template

mentioned above. The normalized equilibrium equations of the finite element method

were reflected in the structure of the solver, which means the elastic stress and Young’s

modulus will be 1 at the start of constitutive equations integration.

5.5.1 Algorithm of NOR_KR

A subroutine called Normalized KR (NOR_KR) was required to find the solution of

normalized KR constitutive equations, which includes creep strain rate and creep damage

rate. According to the theoretical analysis, the computing sequence is a) creep strain rate

of each direction; and b) creep damage rate in NOR_KR. NOR_KR is also a kind of

constitutive equations subroutine; hence, all settings of CES were followed in here except

some unique variable definition.

5.5.2 Variables Definition

The major difference of variables definition of CES and NOR_KR is shown in Table 5-7.

The definition of variable stress not only includes the deviatoric stress tensor, the

principal stress and the equivalent stress, but also includes the internal pressure used for

the normalization. Additionally, a number of new local variables were introduced; for

example, a concept of rupture stress and creep fracture strain was used to reduce the

computing workload. They were stored in real variables rs and cfs respectively. Young’s

modulus was included into the argument of material prooerties, and its value will be

allocated to the real variable e.

85

Table 5-7 Unique variables dictionary of NOR_KR

Variables Descriptions

Global variables

stress
Input data, which is an explicit-shape array used to store the deviatoric stress tensor, the

principal stress, the equivalent stress and the internal pressure. Its size and type should

synchronize with the variable of nos plus 1.

Local variables

A, n, m, B, phi,

chi, alpha
They are real, which mean material property parameters.

ip It is real, which means the internal pressure used for the normalization.

e It is real, which means Young’s modulus

rs It is real, which means rupture stress

cfs It is real, which means creep fracture strain

5.5.3 Subroutine Structure

NOR_KR consists of two parts, variable declaration and execution; its pseudo code was

obtained through Figure 5-2, Table 5-3 and Table 5-7. The detailed code is attached in

appendix 10.2, and the pseudo code is displayed below:

1 Subroutine NOR_KR (f, x, t, stress, mat, nos, nom, noe)

Execution section:

2 passing (nos, noe, nom, mat(nom), t, x(noe), stress(nos)) from the main

programme to subroutine XX

3 allocate (stress(nos)) to (sx, sy, sz, txy, tyz, tzx, mps, es, ip)

4 allocate (mat(nom)) to (A, n, m, B, phi, chi, alpha)

5 rs ← alpha*mps+(1.-alpha)*es

6 cfs ← (A*e/B)*(ip**(n-chi-1.))

7 select case (problem type)

8 case (2D problem)

9 f(1) ← (3./2.)*(sx/es)*((es/(1-x(5)))**n)

10 f(2) ← (3./2.)*(sy/es)*((es/(1-x(5)))**n)

11 f(3) ← (3./2.)*(txy/es)*((es/(1-x(5)))**n)

12 f(4) ← (3./2.)*(sz/es)*((es/(1-x(5)))**n)

13 f(5) ← (rs**chi)/(cfs*(1.+phi)*((1.-x(5))**phi))

14 case (3D problem)

15 f(1) ← (3./2.)*(sx/es)*((es/(1-x(7)))**n)

16 f(2) ← (3./2.)*(sy/es)*((es/(1-x(7)))**n)

17 f(3) ← (3./2.)*(sz/es)*((es/(1-x(7)))**n)

18 f(4) ← (3./2.)*(txy/es)*((es/(1-x(7)))**n)

19 f(5) ← (3./2.)*(tyz/es)*((es/(1-x(7)))**n)

20 f(6) ← (3./2.)*(tzx/es)*((es/(1-x(7)))**n)

21 f(7) ← (rs**chi)/(cfs*(1.+phi)*((1.-x(7))**phi))

22 end select

23 return (f) to numerical method subroutine

86

5.6 Boundary Conditions of Nodal Loads

Boundary conditions calculator was used to obtain the boundary condition of nodal loads

when conducting a practical case. It is a primary solution of nodal loads conversion

subroutine.

5.6.1 Algorithm of NLC

A programme called Nodal Load Calculator (NLC) was required to give the arrangement

of nodal loads distribution. FEMGV does not give the specific value of nodal load to each

node, only a uniform load was recorded in the Neutral file of design environment. The

unique conversion formulas of nodal loads were obtained from Smith and Griffiths (2004).

3-nodes triangle planar element, 4-nodes quadrilateral planar element, 3-nodes triangle

axisymmetric element, 4-nodes quadrilateral axisymmetric element were considered in

here.

Figure 5-6 shows the computing flow of nodal loads calculator. All input data were

written into the input file, which is ending with the suffix ‘.dat’. The input file records the

type of problem, number of loaded elements, uniform loads and the relative position of

each node.

StartEnter file
name
xx.dat

cas_sel_axi cas_sel_plaNo

Compute f1, f2

Yes

Compute f1, f2

Yes

Print "wrong
number of

nodes in NLC"

No

i = 1
 i ≤ nn
i = i+1

 f(i) = f1(i).TRUE.

i = 1
 i ≤ nn
i = i+1

.FALSE.

 f(i+1) = f(i+1)+f2(i)

.TRUE.

cas_sel_axi

cas_sel_pla

No

Write "Nodal
Force From

Inner to Outer:"

Yes

Write "Nodal
Force From First

to Last:"Yes

Write i, f on
output file

xx.res

No

.FALSE.

Stop

Input file xx.dat

Read
Protype,

nn, p, r0, r1

Figure 5-6 Algorithm of nodal loads calculator

87

The relative positions of the first node of each loaded element were processed and held

firstly, and then the relative positions of the second node of each loaded element were

processed and held.

5.6.2 Variables Definition

Two deferred-shape arrays called r0 and r1 were designed to hold the relative positions of

the first and second node of each loaded element due to some nodes are corner nodes.

Table 5-8 shows that, two deferred-shape arrays called f1 and f2, which were used to store

the first and second component of nodal loads of each node, were introduced due to the

relative positions bring processed separately. Real array f was used to hold the result of

nodal loads.

Table 5-8 Variables dictionary of NLC

Variables Descriptions

filename1 It is character string, which means the name of input file.

protype It is character string, which means the problem type.

p It is real, which means the uniform loads.

f
Output data, which is a deferred-shape array used to store the nodal loads of each loaded node.

Its size is depending on the argument of loaded nodes, which equals to the number of loaded

elements nn plus one due to the nature of 3-nodes and 4-nodes element.

f1 It is a deferred-shape array used to store the first component of nodal loads of each node. Its

size should synchronize with the variable of nn.

f2 It is a deferred-shape array used to store the second component of nodal loads of each node. Its

size should synchronize with the variable of nn.

r0 It is a deferred-shape array used to store the relative position of first node of each element. Its

size should synchronize with the variable of nn.

r1 It is a deferred-shape array used to store the relative position of second node of each element.

Its size should synchronize with the variable of nn.

nn It is integer, which means the number of loaded elements.

i It is integer, which means the loops counter.

ierror It is integer, which means the value of iostat statement.

5.6.3 Subroutine Structure

DTI consists of two parts, pre-processing transfer and post-processing transfer; its pseudo

code was obtained through Figure 5-7 and Table 5-9. The detailed code is attached in

appendix 10.2, and the pseudo code is displayed below:

1 Programme NLC

Execution section:

2 read input file name (filename1)

3 open input and output file

4 read the type of problem (protype)

88

5 read the number of loaded elements (nn)

6 read the uniform loads (p)

7 allocate (f, f1, f2, r0, r1)

8 read the relative position of each node (r0, r1)

9 select case (protype)

10 case ('axisymmetric')

11 starting of counted-loops with (nn)

12 f1(i) ← (r1(i)**2+r0(i)*r1(i)-2*r0(i)**2)/6

13 f2(i) ← (2*r1(i)**2-r0(i)*r1(i)-r0(i)**2)/6

14 end loops

15 case ('planar')

16 starting of counted-loops with (nn)

17 f1(i) ← (r1(i)-r0(i))/2

18 f2(i) ← f1(i)

19 end loops

20 end select

21 starting of counted-loops with (nn)

22 f(i) ← f1(i)

23 end loops

24 starting of counted-loops with (nn)

25 f(i+1) ← f(i+1)+f2(i)

26 end loops

27 f ← f*p

28 write (f) into output file

29 end programme

5.7 Pre- and Post-processing

Data transfer programme is the solution to unify the file format. It is an independent

programme due to this unique research environment; however, it can be integrated into

the solver in future research.

5.7.1 Algorithm of DTI

A programme called Data Transfer Interface (DTI) was required to transfer the data

between FEMGV and the solver. Both the pre-processing transfer and post-processing

transfer are integrated into one programme. The pre-processing transfer includes five

basic data types, which are 1) node coordinates, 2) element definition, 3) part definition, 4)

constraint and 5) concentrated force. The post-processing transfer includes nine data types,

which are 1) node coordinates, 2) element definition, 3) material properties, 4)

displacement, 5) body loads, 6) elastic stress, 7) elastic strain, 8) creep strain and 9)

damage. Figure 5-7 shows the overall algorithm of DTI, where the left side is pre-

processing transfer and the right side is post-processing transfer.

89

Start
cas_sel_pre-
processing

cas_sel_post-
processing

cas_sel_1

cas_sel_2

No

cas_sel_101

No

cas_sel_3

No

cas_sel_103

No

cas_sel_110

No

Read model
header

model_name Yes

Read node
coordinates
coordinate

Yes

Read part
definition nodes Yes

Read element
definition num Yes

Read
constraints nf Yes

Read
concentrated

force loadnode Yes

Print 'Wrong
data set of
neutral file'

Read key

key=9999

.FALSE.

No

Write
parameters

etype, nels, nn

.TRUE.

Read key

Yes

No

Read
transfer

type

Yes

key=9999

cas_sel_1

.FALSE.

cas_sel_2

No

cas_sel_3

No

cas_sel_4

No

cas_sel_5
No

cas_sel_6

No

cas_sel_7
No

cas_sel_8

No

cas_sel_9
No

Read
parameters

ndim, nn, nod,
nels, element,
nst, nip, time,

e, v, mid
Yes

Read node
coordinates

g_coord
Yes

Read element
definition

g_num

Yes

Read
displacement

g_dispmt
Yes

Read body force
g_reforce

Yes

Read gauss
point g_points

Yes

Read stress
g_sigma

Yes

Read elastic
strain g_eps

Yes

Read creep
strain g_evp

Yes

cas_sel_10

No

Read creep
damage

g_damage
Yes

Write model
header

modelname

.TRUE.

Print 'Wrong
load case'

No

Print 'Wrong
transfer

processing'

No

Write node
coordinates

g_coord

Write element
definition

g_num

Write
constraints nf

Write
concentrated

force loadnode

Write node
coordinates

g_coord

Write elastic
strain g_eps

Write stress
g_sigma

Write material
parameters e, v

Write
displacement

g_dispmt

Write element
definition

g_num

Write body
force g_reforce

Write creep
strain g_evp

Stop

Write creep
damage

g_damage

Figure 5-7 Overall algorithm of data transfer interface

90

The number of node and the number of element will not be offered through FEMGV

directly; hence, in order to control the reading process of Neutral file of FEMGV logically,

simple reading way of line by line is not enough because the loops is impossible to be

controlled. However, a number of identifiers listed on the starting position of each line of

the Neutral file guaranteed the possibility of logical reading.

The conversion of concentrated force was taken out to the previous section due to it

involves the topological theory; the concentrated force could be converted automatically

until a new algorithm to be proposed. The writing of Neutral file is a challenge because

the solver will not offer a number of parameters required by FEMGV. The specific value

of those parameters should be tested one by one according to the output data types of the

solver.

5.7.2 Variables Definition

Table 5-9 indicates the definition of all variables used in DTI, and these variables were

reported in order of appearance in the code from top to bottom. A character string

transfertype was designed to distinguish the pre-processing transfer and post-processing

transfer through the case selection. Both pre-processing transfer and post-processing

transfer use the same character string filename1 and filename2 to represent the name of

input file and output file. The logical reading was controlled through an integer variable

key, and the value of key is dynamic because its value will be updated in every line.

The data records could be de defined according to the file format guidance of FEMGV.

For examples, a) a real array coordinate is used to indicate the coordinate components

and its size is 3; b) an integer array nodes size is 10, which was used to store the node

number on the part; and c) three integer variables called dof1, dof2 and dof3 indicate

which of the three degrees of freedom are constrained: 0 for not affected, 1 for affected.

Those obtained data mentioned above will not be written in file directly because of the

restriction of the algorithm, but those defined variables will be updated during every loop;

thus, a series of variables were proposed to hold the obtained data of every loop. For

example, a two-dimensional real array g_coord is used to indicate the global coordinates,

and its size of the first rank is 3 and the size of second rank should synchronize with the

variable of number of nodes. The number of nodes was counted through the algorithm

developed by the author.

91

A number of parameters should be tested before programming, and they are designed as

integer variables such as iformt1, ncomps1 and irtype. These variables were used to write

the Neutral file according to the structure of user defined results.

Table 5-9 Variables dictionary of DTI

Variables Descriptions

transfertype
It is a character string used to indicate the transfer process type, which only has two

value; value of ‘pre-processing’ represented the transfer process of FEMGV file, and

value of ‘post-processing’ represented the transfer process of the solver file.

filename1,

filename2

They are character string used to indicate the name of input files and the name of output

files respectively; and their size are restricted to 30.

key
It is an integer variable used to identify the data type of FEMGV file; for example, ‘2’

represented the definition of coordinate, ‘-1’ represented the data itself and ‘9999’

represented the termination of file.

opcode It is a character used to assist key, and its value is always ‘C’.

model_name,

modelname

They are character string used to indicate the geometry model name of design

environment and the geometry model name of result environment respectively in

FEMGV; and their size are restricted to 30.

n1, n2, n3,… ,n8 They are character variables, which represent an alphabet used to compose a random

name.

iformt
It is an integer variable used to represent the format indicator of data; for example, ‘0’

for a five digit format, ‘1’ for a ten digit format, ‘2’ for a ten digit with high precision

nodal coordinates

maxout It is an integer variable used to indicate the maximum number of data per line.

nn It is an integer variable used to indicate the number of node.

coordinate It is a real array used to indicate the coordinate components. Its size is 3.

g_coord It is a two-dimensional real array used to indicate the global coordinates. The size of

first rank is 3 and the size of second rank should synchronize with the variable of nn.

lpnr It is an integer variable used to indicate the sequence number of the line, surface or

body.

types It is an integer variable used to indicates the type of the part; for example, ‘2’ for a line,

‘3’ for a surface and ‘4’ for a body.

ne0, ne1 They are an integer variable used to indicate the number of the first element on the part

and the number of the last element on the part respectively.

nant It is an integer variable used to indicate the number nodes in the subsequent data

continuation records.

nodes It is an integer array and the size is 10, which used to store the node number on the part

(for all parts except bodies).

nels It is an integer variable used to indicate number of element

group It is integer which used to indicate the element group number.

material It is integer which used to indicate the material property number.

variant It is integer which used to indicate the element variant number.

physical It is integer which used to indicate the physical property number.

nod It is an integer variable used to indicate the number of node in per element

num It is a real array used to indicate the element definition. Its size is ‘3’ or ‘4’.

g_num
It is a two-dimensional real array used to indicate the element definition. The size of

first rank is 3 or 4 and the size of second rank should synchronize with the variable of

nels.

g_mat It is a real array used to indicate the global material type. Its size should synchronize

with the variable of nels.

aname It is character string, which represent the name of a point, line, surface, or body.

92

dof1, dof2, dof3 They are integer, which indicate which of the three degrees of freedom are constrained:

0 for not affected, 1 for affected

nf It is a two-dimensional real array used to indicate the constraint. The size of first rank is

2 or 3 and the size of second rank should synchronize with the variable of nn.

k It is an integer variable used to indicate the node number.

lcase It is an integer variable used to indicate the load case number.

elem It is an integer variable used to indicate the node number

dof It is an integer variable used to indicates the degree of freedom: 1 for FX, 2 for FY, 3

for FZ, 4 for MX, 5 for MY, 6 for MZ.

value1 It is a real variable used to indicate the magnitude of the concentrated load.

loadnode It is a real array used to indicate the nodal loads. Its size should synchronize with the

variable of j.

etype It is character string, which represent the type of element.

g_num1
It is a two-dimensional real array used to indicate the element definition after

conversion. The size of first rank is 3 or 4 and the size of second rank should

synchronize with the variable of nels.

i, j They are real variables used to be the counters.

ndim It is an integer variable used to indicate the number of dimension.

element It is character string, which represent the type of element.

nst It is integer which used to indicate the number of stress components of stress tensor.

nip It is integer which used to indicate the number of integration point.

time It is a real variable used to indicate the time moment.

e It is an integer variable used to indicate the Young’s modulus.

v It is an integer variable used to indicate the Poisson’s ratio.

mid It is integer which used to indicate the number of material types.

node It is an integer variable used to indicate node number.

elemt It is an integer variable used to indicate element number.

material1 It is a real array used to indicate the material type. The size of first rank is 1 and the size

of second rank should synchronize with the variable of nels.

g_dispmt
It is a two-dimensional real array used to indicate the global displacement. The size of

first rank is 2 or 3 and the size of second rank should synchronize with the variable of

nels.

g_reforce It is a two-dimensional real array used to indicate the global body loads. The size of first

rank is 2 or 3 and the size of second rank should synchronize with the variable of nels.

g_points

It is a three-dimensional real array used to indicate the global integration points

coordinates. The size of first rank is 2, the size of second rank should synchronize with

the variable of nip and the size of third rank should synchronize with the variable of

nels.

point It is an integer variable used to indicate the integration point number.

g_sigma
It is a three-dimensional real array used to indicate the global elastic stress. The size of

first rank is 4 or 6, the size of second rank should synchronize with the variable of nip

and the size of third rank should synchronize with the variable of nels.

g_eps
It is a three-dimensional real array used to indicate the global elastic strain. The size of

first rank is 4 or 6, the size of second rank should synchronize with the variable of nip

and the size of third rank should synchronize with the variable of nels.

g_evp
It is a three-dimensional real array used to indicate the global creep strain. The size of

first rank is 4 or 6, the size of second rank should synchronize with the variable of nip

and the size of third rank should synchronize with the variable of nels.

g_damage
It is a three-dimensional real array used to indicate the global creep damage. The size of

first rank is 1, the size of second rank should synchronize with the variable of nip and

the size of third rank should synchronize with the variable of nels.

opcode1 It is a character variable used to assist key, and its value is always ‘C’.

93

key1, key2,

key3,…,key11

They are integer variable used to identify the data type of result environment of

FEMGV file only; for example, ‘2’ represented the definition of coordinate, ‘-1’

represented the data itself and ‘9999’ represented the termination of file.

The arguments of (iformt1, ncomps1, irtype, norcty, menu, ictype, icind1, icind2, iexist, ncomps2, icind3,

group1, nsc, nlc) are integer, which used to give the fixed constant to the file of result environment of

FEMGV. They do not have any real meaning.

ierror It is integer, which means the value of iostat statement.

5.7.3 Subroutine Structure

DTI consists of two parts, pre-processing transfer and post-processing transfer; its pseudo

code was obtained through Figure 5-7 and Table 5-9. The detailed code is attached in

appendix 10.2, and the pseudo code is displayed below:

1 Programme DTI

Execution section:

2 read the transfer process type (transfertype)

3 select case (transfertype)

4 case (pre-processing)

5 open input file

6 open output file

7 read model

8 start until-loops

9 read the controller of (key)

10 select case (key)

11 case (1, 2, 3, …, n; all case include the following until-loops)

12 start until-loops

13 read data set header

14 read data record

15 end until-loops

16 end select

17 end until-loops

18 write data in output file

19 case (post-processing)

20 open input file

21 open output file

22 start until-loops

23 read the controller of (key)

24 select case (key)

25 cases (include reading of parameters, coordinate, element definition, displacement,

body force, integration point coordinate, elastic stress, elastic strain, creep strain

and damage)

26 end select

27 write data in output file

28 end select

29 end programme

94

5.8 summary

Table 5-10 indicated the purpose of all subroutines and programmes that developed in this

research. They could be specific to that 1) constitutive equations subroutines include KR,

PH and QX; 2) stress transformation subroutine includes TRS; 3) numerical method

subroutines include EULER, RK4, RKM and RKF; 4) Time-step control subroutine

includes TSC; 5) normalization subroutine includes NOR_KR; 6) Nodal loads calculator

is a programme named NLC; and 7) Data transfer interface is a programme as well called

DTI. All subroutines developed in this research were held in a library called Tan_library.

Table 5-10 Purpose statement of developed subroutines and programmes

Name Description

KR KR returns the solution of Kachanov-Rabotnov constitutive equations under any environment

such as uni-axial, 2D problem and 3D problem.

PH PH returns the solution of Perrin-Hayhurst constitutive equations under any environment such

as uni-axial, 2D problem and 3D problem.

QX QX returns the solution of Qiang Xu’s constitutive equations under any environment such as

2D problem and 3D problem.

TRS TRS returns varies type of stress include: 1) deviatoric stress tensor, 2) principal stress, and 3)

equivalent stress.

EULER EULER returns the integration value of constitutive equations within a specific time interval

according to Euler’s method.

RK4 RK4 returns the integration value of constitutive equations within a specific time interval

according to 4th order classical Runge-Kutta method.

RKM RKM returns the integration value of constitutive equations within a specific time interval

according to Runge-Kutta-Merson method. It includes self-adaptive technique.

RKF RKF returns the integration value of constitutive equations within a specific time interval

according to Runge-Kutta-Felhberg method. It includes self-adaptive technique.

TSC TSC returns the next time interval when present iteration is over. It associated with KRM and

RKF

NOR_KR NOR_KR returns the solution of Kachanov-Rabotnov constitutive equation within

normalization technique under any environment such as uni-axial, 2D problem and 3D

problem. NLC NLC output a data file saved the value of loads on each nodal.

DTI DTI offers the correct input files for both the solver and FEMGV.

The algorithm of subroutines and programmes were designed based on the analysis of

knowledge presented in Table 5-1. The flowcharts of each code were presented to show

the detailed structure clearly. A number of important variables, which affected the input

or output, were introduced specifically in order to serve the maintenance and

enhancement of future. Except that, all variables were summarised into the tables for the

convenience of reader. The order of development of subroutine and programme was

arranged according to the timeline. The core part is creep constitutive equations; therefore,

the first stage of research was launched around creep constitutive equations.

95

6 TESTING AND VERIFICATION

This chapter presents the testing and verification of all developed subroutines and

programmes of this research. Proofreading and debug of code was implemented through

Code::Blocks platform. The testing has two categories, one is for subroutines testing and

the other is for programmes testing. Since the subroutine could not be executed by itself, a

series of testing programmes were developed. Detailed user guidance of each testing

programme was reported and future users can repeat those tests reported in this thesis.

Some subroutines such as numerical method subroutines or stress transformation

subroutines were developed to assist constitutive equations subroutines; hence, the testing

sequence is important. The testing sequence of subroutines depends on their position in

the solver from top to bottom; hence, its testing order is a) stress tensor transformation

subroutine; b) numerical method subroutine; c) constitutive equations subroutine; d) time-

step control subroutine; e) normalization subroutine.

Table 6-1 indicates the intentions of those tests to explain the reasons and significances to

conduct these testing. The testing of nodal loads calculator and data transfer interface will

be demonstrated through the verification of the output result.

96

Table 6-1 Description of subroutine’s testing

Objectives of Test Description

Accuracy test of stress

transformation subroutine

Unit test, in order to guarantee that the values of deviatoric stress

components, principal stress and equivalent stress are correct in both

two-dimensional and three-dimensional environment

Accuracy test of numerical method

subroutine

Unit test, in order to guarantee that no coding error in each numerical

method, and prove that the argument passing process is correct

Coupling test of stress

transformation subroutine,

numerical method subroutine and

constitutive equations subroutines

Accuracy test of constitutive

equations subroutines

Integration test, in order to guarantee that the co-operation of stress

transformation subroutine, numerical method subroutine and

constitutive equations subroutines is smoothly, and prove that the

output values of both two-dimensional and three-dimensional forms

are qualified

Accuracy test of time-step selection

subroutine

Accuracy test of time-step

acceptance part of numerical

method subroutine

Co-operation test of time-step

selection and acceptance

Integration test, in order to guarantee that the co-operation test of

time-step selection and acceptance is qualified, and to check the

output value of time-step selection subroutine and acceptance part of

numerical method subroutine

Accuracy test of normalization

subroutine

Integration test, in order to guarantee that output values of both two-

dimensional and three-dimensional forms are qualified

6.1 Subroutine of Transformation of Stress Tensor

6.1.1 Instruction of TRScheck

Programme TRScheck was developed in order to test the stress transformation subroutine.

Figure 6-1 indicates the programme structure, and it could be found that the two-

dimensional and three-dimensional environments were distinguished through a branch

structure of nos; ‘4’ represented two-dimensional environment and ‘6’ represented three-

dimensional environment. Those results will be written into a file named by the user. The

user instruction is summarised below:

1. Create a new file named xx.dat;

2. The first line of input file is the number of stress components, whose value was

restricted in ‘4’ or ‘6’;

3. The second line of input file is stress tensor components value;

4. Execute programme TRScheck

5. Enter xx.dat following the prompts;

6. Enter any output file name following the prompts;

7. Open the result file and see the result.

97

Start
Enter test file name
and result file name:

xx.dat and xx.res

Test file: xx.dat

Read stress
tensor sigma

Call
subroutine

TRS

nos = 4nos = 6

.FALSE.

Write sx, sy, sz,
txy, ps1, ps2,

ps3, es

.TRUE.

Write sx, sy, sz,
txy, tyz, tzx,

ps1, ps2, ps3, es

.TRUE.

Result file:
xx.res

Stop

.FALSE.

Figure 6-1 Algorithm of programme TRScheck

6.1.2 Statement of testing cases

Two sets of stress tensor, which include four components and six components

respectively, were applied in this testing; the case of four components was used to test

the two-dimensional environment, and the case of six components was used to test the

two-dimensional environment. Table 6-2 shows the specific value of each stress

tensor components.

Table 6-2 Stress tensor components used in testing (unit/MPa)

 𝛔𝐱/𝛔𝐫 𝛔𝐲/𝛔𝐳 𝛔𝐳/𝛔𝛉 𝛕𝐱𝐲/𝛕𝐫𝐳 𝛕𝐲𝐳 𝛕𝐳𝐱

Test 1 84 -30 0 -32 ----- -----

Test 2 -10 0 7 9 0 5

These two sets of data will be implemented separately, and their computing results will be

compared with the results obtained by hand calculation. The error was expected in

following situations:

1. If the error occurred on the stress tensor allocation unit; a) the final result will be

wrong when subroutine arranged a wrong value, and b) a warning text of "Error

on stress rearrangement in TRS" will be presented on screen when the wrong size

of stress tensor array was used;

2. If the error occurred on the functions computing unit, the corresponding value will

be wrong;

3. If the error occurred on the result updating unit; a) the characteristic is the same

with functions error, and static validation should be utilized in here, and b) a

warning text of "wrong size for nos in TRS" will be presented on screen when the

wrong size of stress tensor array was used.

98

6.1.3 Result and verification

6.1.3.1 Test 1

The test 1 used the input file TRS1.dat, this file was attached in appendix 10.4.1. Figure

6-2 shows the results of the first testing, which the deviatoric stress components are

66MPa in x-direction, -48MPa in y-direction, -32MPa in xy-direction and -18MPa in z-

direction; the principal stresses are 92.368MPa of maximum principal stress and -

38.368MPa of minimum principal stress; and the equivalent stress is 116.395MPa. The

second principal stress is too small, and can be ignored as 0. This situation is suited for

the theory of plane stress.

Figure 6-2 Results obtained from stress tensor components 80, -30, 0, -32

In order to verify those results, a hand calculation was conducted:

σ0 =
1

3
(σx + σy + σz) = (84 − 30 + 0) ÷ 3 = 18

[sij] = [

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

] = [
66 −32 0

−32 −48 0
0 0 −18

]

J2 =
1

6
[(σx − σy)

2
+ (σy − σz)

2
+ (σz − σx)2 + 6(τxy

2 + τyz
2 + τzx

2)]

= (1142 + 302 + 842 + 6 × 322) ÷ 6 = 4516

J3 = |

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

| = |
66 −32 0

−32 −48 0
0 0 −18

| = 75456

θσ =
1

3
sin−1 [

−√27J3

2J2

3
2

] = sin−1 [
−√27 × 75456

2 × 4516
3
2

] ÷ 3 = −0.2341

σ1 =
2√J2

√3
sin (θσ +

2π

3
) + σ0 =

2√4516

√3
sin (−0.2341 +

2π

3
) + 18 = 92.3682

σ2 =
2√J2

√3
sin(θσ) + σ0 =

2√4516

√3
sin(−0.2341) + 18 = −5.02426 × 10−5 ≈ 0

99

σ3 =
2√J2

√3
sin (θσ −

2π

3
) + σ0 =

2√4516

√3
sin (−0.2341 −

2π

3
) + 18 = −38.3682

σ̅ =
1

√2
√(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = √130.73642 + 38.36822 + 92.36822 ÷ √2

= 116.3959

It is obvious to see from Table 6-3 that the subroutine returned a correct value in two-

dimensional environment.

Table 6-3 Comparison of computer results and hand calculation results

Result Computer Hand calculation

Deviatoric stress in x-direction 6.6000000E+01 66

Deviatoric stress in y-direction -4.8000000E+01 -48

Deviatoric stress in xy-direction -3.2000000E+01 -32

Deviatoric stress in z-direction -1.8000000E+01 -18

First principal stress 9.2368191E+01 92.3682

Second principal stress 5.4753034E-07 0

Third principal stress -3.8368195E+01 -38.3682

Equivalent stress 1.1639588E+02 116.3959

6.1.3.1 Test 2

The test 2 used the input file TRS2.dat, this file was attached in appendix 10.4.1. Figure

6-3 shows the results of the second testing, which the deviatoric stress components are -

9MPa in x-direction, 1MPa in y-direction, 8MPa in z-direction, 9MPa in xy-direction,

0MPa in yz-direction and 5MPa in zx-direction. The principal stresses are 9.342MPa of

the first principal stress, 3.767MPa of the second principal stress and -16.109MPa of the

third principal stress; and the equivalent stress is 23.173MPa.

Figure 6-3 Results obtained from stress tensor components -10, 0, 7, 9, 0, 5

In order to verify those results, a hand calculation was conducted:

σ0 =
1

3
(σx + σy + σz) = (−10 + 0 + 7) ÷ 3 = −1

100

[sij] = [

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

] = [
−9 9 5
9 1 0
5 0 8

]

J2 =
1

6
[(σx − σy)

2
+ (σy − σz)

2
+ (σz − σx)2 + 6(τxy

2 + τyz
2 + τzx

2)]

= (102 + 72 + 172 + 6 × (92 + 52)) ÷ 6 = 179

J3 = |

σx − σ0 τxy τxz

τyx σy − σ0 τyz

τzx τzy σz − σ0

| = |
−9 9 5
9 1 0
5 0 8

| = −745

θσ =
1

3
sin−1 [

−√27J3

2J2

3
2

] = sin−1 [
−√27 × −745

2 × 179
3
2

] ÷ 3 = 0.3137

σ1 =
2√J2

√3
sin (θσ +

2π

3
) + σ0 =

2√179

√3
sin (0.3137 +

2π

3
) − 1 = 9.3426

σ2 =
2√J2

√3
sin(θσ) + σ0 =

2√179

√3
sin(0.3137) − 1 = 3.7672

σ3 =
2√J2

√3
sin (θσ −

2π

3
) + σ0 =

2√179

√3
sin (0.3137 −

2π

3
) − 1 = −16.1098

σ̅ =
1

√2
√(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = √5.57542 + 19.8772 + 25.45242 ÷ √2 = 23.1733

It is obvious to see from Table 6-4 that the subroutine returned a correct value in three-

dimensional environment.

Table 6-4 Comparison of computer results and hand calculation results

Result Computer Hand calculation

Deviatoric stress in x-direction -9.0000000E+00 -9

Deviatoric stress in y-direction 1.0000000E+00 1

Deviatoric stress in z-direction 8.0000000E+00 8

Deviatoric stress in xy-direction 9.0000000E+00 9

Deviatoric stress in yz-direction 0.0000000E+00 0

Deviatoric stress in zx-direction 5.0000000E+00 5

First principal stress 9.3424884E+00 9.3426

Second principal stress 3.7673038E+00 3.7672

Third principal stress -1.6109791E+01 -16.1098

Equivalent stress 2.3173262E+01 23.1733

101

6.2 Subroutines of Numerical Integration Method

6.2.1 Instruction of NMScheck

Programme NMScheck was developed in order to test the numerical method subroutines.

Figure 6-4 indicates the programme structure, and it could be found that the Euler's

method, RK4 method, RKM method, and RKF method were distinguished through a case

selection of cas_sel_x. For example, ‘cas_sel_1’ called the subroutine EULER,

‘cas_sel_2’ called the subroutine RK4, ‘cas_sel_3’ called the subroutine RKM and

‘cas_sel_4’ called the subroutine RKF. Those results will be written into a file named by

the user. The user instruction is summarised below:

1. Create a new file named xx.dat;

2. The first line of input file is the type identifier of numerical method and loops

counter, and the value of type identifier was restricted to ‘1’ , ‘2’ , ‘3’ or ‘4’;

3. The second line of input file is the initial value;

4. The third line of input file is the time-step;

5. Execute programme NMScheck

6. Enter xx.dat following the prompts;

7. Enter any output file name following the prompts;

8. Open the result file and see the result.

Start Enter test file name
and result file name:

xx.dat and xx.res

Test file: xx.dat

Read initial
value y and
time-step dt

Result file:
xx.res

Stop

 i = 1
 i ≤ n
 i = i+1

cas_sel_1

.TRUE.

cas_sel_2

No

cas_sel_3

No

cas_sel_4

No

Call
subroutine

EULER

Yes

Call
subroutine

RK4

Yes

Call
subroutine

RKM

Yes

Call
subroutine

RKF

YesUpdate time t

Write t, y, rcv
on file xx.res

No

.FALSE.

Figure 6-4 Algorithm of programme NMScheck

102

6.2.2 Statement of testing cases

The function 𝑦′ = y − 𝑡2 + 1 adopted from existing literature (Faires and Burden, 2013)

was given to test numerical method subroutines. Such function was coded as a subroutine

called NTEST according to the structure of constitutive equations subroutine. This

testing was launched with given initial value Y0 = 0.5 and time interval dt = 0.2. The

result can present the preliminary understanding of accuracy of those numerical methods.

Subroutines EULER, RK4, RKM and RKF were tested separately, but the tested

function is the same. Their computing results will be compared with the results obtained

by existing literature (Faires and Burden, 2013). The used input files, which are

EULER.dat, RK4.dat, RKM.dat and RKF.dat, are attached in appendix 10.4.2. The error

was expected in the following situations:

1. If the error occurred on calling of an external function, then NMScheck will be

aborted;

2. If the error occurred on the computing of slopes of function, then the final result

will be wrong;

3. If the error occurred on the solution update, then the result will be wrong.

6.2.3 Result and verification

Figure 6-5 shows the result of each time moment of each numerical method. The result

obtained from Euler’s method is different with other three methods since the first step.

The Euler’s method has the error of almost 3.67% compared with the other methods. The

results of other three numerical methods are very similar.

Figure 6-5 Results obtained from EULER, RK4, RKM and RKF

The solutions of the testing function, which include exact solution and numerical

solutions obtained from numerical methods, were given in Table 6-5. It is easy to find that,

103

all results are hundred percent correct through compare the Figure 6-5 with Table 6-5.

Until now, the correctness of subroutine EULER, RK4, RKM and RKF were proved.

Table 6-5 Exact solution and numerical solution of numerical method of Euler’s, RK4, RKM and

RKF (Faires and Burden, 2013)

Time Exact Solution Euler’s RK4 RKM RKF

0.0 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000

0.2 0.8292986 0.8000000 0.8292933 0.8292987 0.8292985

0.4 1.2140877 1.1520000 1.2140762 1.2140880 1.2140875

0.6 1.6489406 1.5504000 1.6489220 1.6489412 1.6489403

0.8 2.1272295 1.9884800 2.1272027 2.1272307 2.1272291

1.0 2.6408591 2.4581760 2.6408227 2.6408609 2.6408586

1.2 3.1799415 2.9498112 3.1798942 3.1799444 3.1799409

1.4 3.7324000 3.4517734 3.7323401 3.7324042 3.7323992

1.6 4.2834838 3.9501281 4.2834095 4.2834898 4.2834828

1.8 4.8151763 4.4281538 4.8150857 4.8151848 4.8151751

2.0 5.3054720 4.8657845 5.3053630 5.3054839 5.3054705

6.3 Subroutines of Constitutive Equations

6.3.1 Instruction of CEScheck

Programme CEScheck was developed in order to test the constitutive equations

subroutines. Figure 6-6 indicates the programme structure, and it could be found that the

KR equations, PH equations and QX equations were distinguished through a case

selection of cas_sel_x, where ‘cas_sel_1’ called the subroutine KR, ‘cas_sel_2’ called the

subroutine PH and ‘cas_sel_3’ called the subroutine QX. Only subroutine RK4 is used in

these tests because it does not include the part of self-adaptive approach but the accuracy

is higher than subroutine EULER. Those results will be written into a file named by the

user. The user instruction was summarised below:

1. Create a new file named xx.dat;

2. The first line of input file includes a) the type of constitutive equations, which ‘1’

represented KR constitutive equations, ‘2’ represented PH constitutive equations

and ‘3’ represented QX constitutive equations; b) the number of creep material

property; c) the number of equations; d) number of stress terms; e) time-step; f)

output loops; and g) output item;

3. The second line of input file is material properties;

4. The third line of input file is stress tensor components;

5. Execute programme CEScheck; Enter xx.dat following the prompts;

104

6. Enter any output file name following the prompts;

7. Open the result file and see the result.

Start
Enter test file name:

xx.dat
and result file name:
xx.res, timedata.txt
and straindata.txt

Test file: xx.dat

Read num,
nom, noe, nos,

dt, loop, ops

Result file:
xx.res

Stop

 i = 1
 i ≤ loop
 i = i+1

cas_sel_1

cas_sel_2

cas_sel_3

No

Yes

Yes

cas_sel_1

cas_sel_4

cas_sel_6

Arrays
allocation
nos1 = nos

Arrays
allocation

nos1 = nos+4

Arrays
allocation

nos1 = nos+4

Yes

Yes

Yes

No

No

Read material
properties mat

Read stress
tensor sigma

No

cas_sel_1

cas_sel_4
cas_sel_6

stress = sigma

Yes
Yes

Yes

No

No

Call
subroutine

TRS

Call
subroutine

TRS

 j = 1
 j ≤ 100
 j = i+1

.TRUE.

Update time
t = t+dt

Call
subroutine

RK4
External

subroutine
KR

.TRUE.

.FALSE.

Write t, y on
file xx.res

Write t on file
timedata.txt

Write y(ops)
on file

straindata.txt

 i = 1
 i ≤ loop
 i = i+1

 j = 1
 j ≤ 100
 j = i+1

.TRUE.

Update time
t = t+dt

Call
subroutine

RK4
External

subroutine
PH

.TRUE.

.FALSE.

Write t, y on file
xx.res

Write t on file
timedata.txt

Write y(ops) on
file

straindata.txt

 i = 1
 i ≤ loop
 i = i+1

 j = 1
 j ≤ 100
 j = i+1

.TRUE.

Update time
t = t+dt

Call
subroutine

RK4
External

subroutine
QX.TRUE.

.FALSE.

Write t, y on file
xx.res

Write t on file
timedata.txt

Write y(ops) on
file

straindata.txt

No

No

.FALSE.

.FALSE.

Yes

.FALSE.

No

Figure 6-6 Algorithm of programme CEScheck

105

6.3.2 Statement of testing cases

Constitutive equations subroutines include both solutions of two-dimensional problem

and three-dimensional problem; thus, the test of constitutive equations subroutines should

be divided into three stages, which are uni-axial form testing, two-dimensional problem

testing and three-dimensional problem testing12. All material properties used in these tests

were adopted from the existing literature (Xu, 2001, Hyde et al., 2006). Table 6-6

indicates the detailed material properties for each creep constitutive equation.

Firstly, a single stress was given to test the performance of uni-axial equations of each

subroutine (if applicable). Secondly, three sets of stresses included four components,

which were obtained from Mohr’s circle, were given to test each subroutine separately for

two-dimensional problem. Finally, a set of stresses included six components, which

direction will be changed according to the order of x-direction, y-direction and z-direction,

were given to test each subroutine for three-dimensional problem.

Table 6-7 indicates the detailed value of stresses for each test of each creep constitutive

equations. Due to this testing includes too much input files, a summary is given. Table 6-8

indicates the specific information of each input file to explain which test they have

performed. Detailed input files are attached in appendix 10.4.3.

These files will be implemented separately, and their computing results will be compared

with the creep strain curves obtained from existing literature. The error was expected in

the following situations:

1. If the error occurred on the uni-axial form of constitutive equations; a) the result

of creep strain and damage will be wrong when integration terminated, and b) the

life time will have an obvious difference with the curves obtained from existing

literature;

2. If the error occurred on the two-dimensional form of constitutive equations; a) the

result of creep strain and damage based on the first set of stress will be wrong

when integration terminated, and b) the their life time will not be the same;

12 In here, the concepts of plane stress problem, plane strain problem and axisymmetric problem are not

adopted due to all of them are considered as two-dimensional problem. For the subroutines of this research,

those problems are the same because of the same number of stress terms (this research does not involve

other more FEM knowledge unless otherwise stated).

106

3. If the error occurred on the three-dimensional form of constitutive equations, the

three creep strain curves will not coincide.

Table 6-6 Material properties for each creep constitutive equations

Kachanov-Rabotnov constitutive equations

A n m B φ χ α

1.092×10−20 8.462 −4.754×10−4 3.537×10−17 7.346 6.789 0.215

Perrin-Hayhurst constitutive equations

A B h Kc H* C ν

6.216×10−8 0.15 1.0×104 4.998×10−4 0.35 2.0 1.32

Qiang Xu's constitutive equations

A B h H* C ν a

2.1618×10−9 0.20524 2.4326×105 0.5929 1.8537 2.8 2

Kc b p q

9.2273×10−5 2 2.5 1

Table 6-7 Stress for each test of each creep constitutive equations

Uni-axial form

KR PH

70MPa

Two-dimensional problem

 KR/PH QX

0 degrees on the Mohr’s circle 70MPa; 0MPa; 0MPa; 0MPa 60MPa; 0MPa; 0MPa; 0MPa

45 degrees on the Mohr’s circle 59.74873734 MPa; 10.25126266

MPa; 24.74873734 MPa; 0MPa

51.21320344MPa;

8.78679656MPa; 21.21320344

MPa; 0MPa
90 degrees on the Mohr’s circle 35MPa; 35MPa; 35MPa; 0MPa 30MPa; 30MPa; 30MPa; 0MPa

Three dimensional problem

 KR/PH QX

Uni-axial on x-direction 70MPa; 0MPa; 0MPa; 0MPa;

0MPa; 0MPa

60MPa; 0MPa; 0MPa; 0MPa;

0MPa; 0MPa Uni-axial on y-direction 0MPa; 70MPa; 0MPa; 0MPa;

0MPa; 0MPa

0MPa; 60MPa; 0MPa; 0MPa;

0MPa; 0MPa Uni-axial on z-direction 0MPa; 0MPa; 70MPa; 0MPa;

0MPa; 0MPa

0MPa; 0MPa; 60MPa; 0MPa;

0MPa; 0MPa

Table 6-8 Summary information of each input file

File name Description

KR1.dat; PH1.dat Uni-axial creep constitutive equation test.

KR2.dat; KR3.dat; KR4.dat Two-dimensional problem, included uni-axial case,

biaxial case and pure shear case PH2.dat; PH3.dat; PH4.dat

QX1.dat; QX2.dat; QX3.dat

KR5.dat; KR6.dat; KR7.dat Three-dimensional problem, included x-direction uni-

axial tensile, y-direction uni-axial tensile and z-

direction uni-axial tensile
PH5.dat; PH6.dat; PH7.dat

QX4.dat; QX5.dat; QX6.dat

107

6.3.3 Result and verification

6.3.3.1 Testing of uni-axial form

The integration of constitutive equations will be terminated depending on a parameter that

is named critical damage value. The theoretical critical damage value of KR equations is 1;

however, when this value was employed by programme CEScheck, the result of damage

is infinity. Through large amount of practices, a value of 0.85 was recommended, which

is more suitable for the author’s programme. Moreover, the value of 0.85 also has a

limitation that the time-step must be less than 2 hours. Because the critical damage value

and time-step is user-defined, the rupture strains obtained by this research are different

with to that found in literature.

Figure 6-7 shows the result of uni-axial form of KR and PH. The lifetime of KR is almost

990 hours and the rupture strain is 0.18; and, the lifetime of PH is almost 980 hours and

the rupture strain is 0.184. It is obvious to see that, these two kinds of constitutive

equations have small distinction in the tendency of creep deformation.

Figure 6-7 Creep strain curve of KR and PH based on single stress

Figure 6-8 presents the creep strain curves of KR and PH equations obtained from

existing literature. Only the curves under 70MPa were used for the verification, and these

two curves matched Figure 6-7 perfectly; for example, on KR curve, the creep strain was

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 100 200 300 400 500 600 700 800 900 1000

C
r
e
e
p

 S
tr

a
in

Time/h

PH/QX uni-axial KR uni-axial

108

accumulated to 0.1 after 900 hours, but on PH curve, the creep strain was accumulated to

0.1 after 920 hours. It could be said that the uni-axial forms of subroutine KR and PH are

correct due to the outputted creep strain and damage being correct.

Figure 6-813 Creep strain curve obtained by Hyde; a) for KR, b) for PH (Hyde et al., 2006)

Testing of two-dimensional problem

Table 6-7 shows that, the stress tensor component on the x-direction is reduced according

to the order of 0 degrees, 45 degrees and 90 degrees; hence, the corresponding creep

strain in x-direction should be reduced according to the same sequence. To compare with

the three curves shown on Figure 6-9, Figure 6-10 and Figure 6-12, it is easy to find that

not only the creep strain was reduced but also the rupture time is the same. This

phenomenon is correct because the loaded stresses are from the same Mohr’s circle that

has the same maximum principal stress and equivalent stress.

Due to the load of 0 degrees, Mohr’s circle could be simply considered as a uni-axial

tensile; hence the creep strain curve of 0 degrees on Mohr’s circle should match the curve

of uni-axial form. To compare with Figure 6-9 and Figure 6-8, Figure 6-10 and Figure 6-8,

and Figure 6-12 and Figure 6-8, all curves of 0 degrees on Mohr’s circle are matched with

the curves of uni-axial form.

Figure 6-11 presents the creep strain curves of QX equations obtained from existing

literature. Only the curve under the 60MPa was used for the verification, and the lifetime

and creep strain of this curve are nearly 37000 hours and 0.18.

13 In figure 6-8, the curve is fitted line, only the data under 70MPa both of a) and b) are used to verify the

corresponding curve presented on figure 6-7.

109

It could be said that the two-dimensional forms of subroutine KR, PH and QX are correct

due to not only the outputted creep strain and damage based on 0 degrees on Mohr’s

circle being correct, but also the reducing tendency of creep strain is matched.

Figure 6-9 Creep strain curve of KR based on the stresses obtained from Mohr’s circle in x-direction

Figure 6-10 Creep strain curve of PH based on the stresses obtained from Mohr’s circle in x-direction

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 100 200 300 400 500 600 700 800 900 1000

C
re

ep
 S

tr
a
in

Time/h

0 degrees 45 degrees 90 degrees

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 100 200 300 400 500 600 700 800 900 1000

C
re

ep
 S

tr
a
in

Time/h

0 degrees 45 degrees 90 degrees

110

Figure 6-11 Creep strain curve obtained by Qiang Xu (Xu, 2001)

Figure 6-12 Creep strain curve of QX based on the stresses obtained from Mohr’s circle in x-direction

Testing of three-dimensional problem

Table 6-7 shows that, the loaded stresses could be considered as the uni-axial tensile on x-

direction, y-direction and z-direction respectively; hence, the corresponding creep strain

in x-direction, y-direction and z-direction should be the same.

To compare with the three curves shown on Figure 6-13, Figure 6-14 and Figure 6-15, it

is easy to find that those creep strain curves of x-direction, y-direction and z-direction are

0

0.05

0.1

0.15

0.2

0 5000 10000 15000 20000 25000 30000 35000

C
re

ep
 S

tr
a
in

Time/h

0 degrees 45 degrees 90 degrees

111

hundred percent matched. This phenomenon is correct because the loaded stresses could

be seen as the same, which only direction is different.

Due to the loads of x-direction, y-direction and z-direction could be simply considered as

the same uni-axial tensile; hence, their creep strain curves of each direction should match

the curve of uni-axial form. Compared with Figure 6-13 and Figure 6-8, all curves of x-

direction, y-direction and z-direction are matched with the corresponding curves of uni-

axial form. The same comparison can be used for Figure 6-14 and Figure 6-8; Figure 6-15

and Figure 6-8.

It could be said that the three-dimensional forms of subroutine KR, PH and QX are

correct due to not only the outputted creep strain and damage based on x-direction, y-

direction and z-direction is correct, but also the creep strain curves were coincided with

each other.

Figure 6-13 Creep strain curve of KR based on the uni-axial tensile load in x-direction, y-direction

and z-direction

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 100 200 300 400 500 600 700 800 900 1000

C
re

ep
 S

tr
a
in

Time/h

x-direction y-direction z-direction

112

Figure 6-14 Creep strain curve of PH based on the uni-axial tensile load in x-direction, y-direction

and z-direction

Figure 6-15 Creep strain curve of QX based on the uni-axial tensile load in x-direction, y-direction

and z-direction

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 100 200 300 400 500 600 700 800 900 1000

C
re

ep
 S

tr
a
in

Time/h

x-direction y-direction z-dirction

0

0.05

0.1

0.15

0.2

0 5000 10000 15000 20000 25000 30000 35000

C
re

ep
 S

tr
a
in

Time/h

x-dirction y-direction z-dirction

113

6.4 Subroutine of Time-step Control Procedure

6.4.1 Instruction of TSCcheck

Programme TSCcheck was developed in order to test the time-step control subroutines.

Figure 6-16 indicated the programme structure, and it could be found that the RKM

method and RKF method were distinguished through a case selection of cas_sel_x;

‘cas_sel_1’ called the subroutine RKM and ‘cas_sel_2’ called the subroutine RKF. PH is

the only constitutive equations subroutine used in these tests in order to keep the same

integrand. Those results will be written into a file named by the user. The user instruction

is summarised below:

1. Create a new file named xx.dat;

2. The first line of input file includes a) the type of numerical method, which ‘1’

represented Runge-Kutta-Merson method and ‘2’ represented Runge-Kutta-

Fehlberg method; b) the number of creep material property; c) the number of

equations; d) number of stress terms; e) time-step; and f) output loops;

3. The second line of input file is material properties;

4. The third line of input file is stress tensor components;

5. Execute programme TSCcheck

6. Enter xx.dat following the prompts;

7. Enter any output file name following the prompts;

8. Open the result file and see the result.

114

Start

Enter test file name:
xx.dat

and result file name:
xx.res, timedata.txt
and straindata.txt

Test file: xx.dat

Result file:
xx.res

Stop

cas_sel_2

No

Yes
Yes

Yes

Yes

Yes

No

No

 i = 1
 i ≤ loop
 i = i+1

 j = 1
 j ≤ 100
 j = i+1

.TRUE.

Update time
t = t+dt

Call
subroutine

RKM
External

subroutine
PH

.TRUE.

.FALSE.

No

No

.FALSE.

Write 'time', 'creep strain',
'damage', 'control value',
 'time-step' on file xx.res

Read num,
nom, noe, nos,

dt, loop

Arrays
allocation

nos1 = nos+4

Read stress
tensor sigma

Read material
properties mat

stress = sigma

cas_sel_1

cas_sel_4

cas_sel_6

Call
subroutine

TRS

Call
subroutine

TRS

cas_sel_1

Write y(ops) on
file

straindata.txt

Write t on file
timedata.txt

Write t, y on file
xx.res

y = y1

 i = 1
 i ≤ loop
 i = i+1

 j = 1
 j ≤ 100
 j = i+1

.TRUE.

Update time
t = t+dt

Call
subroutine

RKF
External

subroutine
PH

.TRUE.

.FALSE.

.FALSE.

Write y(ops) on
file

straindata.txt

Write t on file
timedata.txt

Write t, y on file
xx.res

y = y1

maxval(g_rcv) = 0

y1 = y1

g_rcv = rcv

.FALSE.

Call
subroutine

TSC
y1 = y

.TRUE.
maxval(g_rcv) = 0

y1 = y1

g_rcv = rcv

.FALSE.

Call
subroutine

TSC
y1 = y

.TRUE.

Figure 6-16 Algorithm of programme TSCcheck

115

6.4.2 Statement of testing cases

Two tests based on subroutine RKM and subroutine RKF were executed separately. The

testing of time-step control module includes the test of performance of subroutine TSC

and the test of self-adaptive function of subroutine RKM and RKF. The subroutine PH

was adopted here to assist the numerical method subroutine.

The loaded stress is 70MPa and time-step is 0.1 hour. All material properties used in these

tests were adopted from the existing literature (Xu, 2001, Hyde et al., 2006). Table 6-9

indicated the detailed material properties for each creep constitutive equation.

These two sets of data will be implemented separately, and their computing results will be

compared by each other. The error was expected in the following situations:

1. If the error occurred on the subroutine TSC, the time-step will not be changed;

2. If the error occurred on the self-adaptive part of subroutine RKM and RKF, the

time-step will not be changed as well.

Table 6-9 Material properties of Perrin-Hayhurst constitutive equations

Perrin-Hayhurst constitutive equations

A B h Kc H* C ν

6.216×10−8 0.15 1.0×104 4.998×10−4 0.35 2.0 1.32

6.4.3 Result and verification

6.4.3.1 Testing of subroutine TSC and RKM

Figure 6-17 and Figure 6-18 indicates creep strain, creep damage and time-step obtained

from RKM method and RKF method respectively. It could be observed from Figure 6-17,

the change of time-step is obvious based on the RKM method; however, it is easy to see

that, all changes were happened after 860 hours. Through the Figure 6-7, the time of 860

hours is almost the starting of tertiary stage of creep deformation due to the creep strain

has a rapid accumulation. This change tendency of time-step satisfies the basic physical

and mathematical theories.

116

Figure 6-17 Creep strain and damage, time-step obtained from RKM method

6.4.3.2 Testing of subroutine TSC and RKF

It could be observed from Figure 6-18, the change of time-step did not happen based on

the RKF method; however, it is easy to see that, the final creep strain, creep damage and

lifetime are correct. This reason is investigated in Chapter 7.

Figure 6-19 presents the creep strain curves obtained from this testing, which are based on

RKM method and RKF method, coincided with each other. To compare with the PH

curve shown in Figure 6-7, both the results obtained from this testing are correct.

Therefore, the accuracy of RKF method was proved.

Figure 6-20 shows error between RKM method and RKF method, the error increased

following the time increasing, but the absolute value of error is very small, and could be

ignored.

Until now, the correctness of subroutine TSC and the self-adaptive function of subroutine

RKM and RKF were proved. Figure 6-20 provides the primary understanding of the

performance of two self-adaptive approaches.

117

Figure 6-18 Creep strain and damage, time-step obtained from RKF method

Figure 6-19 Creep strain curve comparison based on RKM method and RKF method

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 100 200 300 400 500 600 700 800 900 1000

C
re

ep
 S

tr
a

in

Time/h

RKM method RKF method

118

Figure 6-20 Error between RKM and RKF

6.5 Subroutine of Normalisation technique

6.5.1 Instruction of NORcheck

Programme NORcheck was developed in order to test the constitutive equations

subroutines. Figure 6-21 indicated the programme structure, and it could be found that the

two-dimensional problem and three-dimensional problem were distinguished through a

case selection of cas_sel_x; ‘cas_sel_9’ is two-dimensional problem and ‘cas_sel_11’ is

three-dimensional problem. RK4 is the only numerical method subroutine used in these

tests because it does not include the part of self-adaptive approach but the accuracy is

higher than EULER is. Those results will be written into a file named by the user.

The user instruction was summarised below:

1. Create a new file named xx.dat;

2. The first line of input file includes a) the number of creep material property; b) the

number of equations; c) number of stress terms; d) time-step; e) output loops; f)

output item; and g) stress used for normalization;

3. The second line of input file is material properties;

4. The third line of input file is stress tensor components;

-2E-09

0

2E-09

4E-09

6E-09

8E-09

1E-08

0 100 200 300 400 500 600 700 800 900

E
rr

o
r

Time/t

error

119

5. Execute programme NORcheck

6. Enter xx.dat following the prompts;

7. Enter any output file name following the prompts;

8. Open the result file and see the result.

Start
Enter test file name:

xx.dat
and result file name:
xx.res, timedata.txt
and straindata.txtTest file: xx.dat

Result file:
xx.res Stop

 i = 1
 i ≤ loop
 i = i+1

YesYes

No

No

 j = 1
 j ≤ 100
 j = i+1

.TRUE.

.TRUE.

.FALSE.

.FALSE.

Read num,
nom, noe, nos,
dt, loop, ops, ip

Arrays
allocation

nos1 = nos+5

Read material
properties mat

Read stress
tensor sigma

Call
subroutine

TRS
cas_sel_9cas_sel_11

stress(9) = ipstress(11) = ip
Print 'Wrong

size for stress'

write 'time', 'strain in (x)/(x,y,xy,z)/
(x,y,z,xy,yz,zx)', 'damage' on file xx.res

Update time
t = t+dt

Call
subroutine

RK4
External

subroutine
NOR_KR

Write y(ops) on
file

straindata.txt

Write t on file
timedata.txt

Write t, y on file
xx.res

Figure 6-21 Algorithm of programme NORcheck

6.5.2 Statement of testing cases

Normalization subroutine includes both solutions of two-dimensional problem and three-

dimensional problem; thus, the test of normalization subroutine should be divided into

two stages, which are two-dimensional problem testing and three-dimensional problem

testing. All material properties used in these tests were adopted from the existing

literature (Xu, 2001, Hyde et al., 2006). Table 6-10 indicates the detailed material

properties for normalized creep constitutive equations.

Firstly, three sets of stresses included four components, which were obtained from Mohr’s

circle, were used to test each subroutine separately for the two-dimensional problem.

120

Secondly, a set of stresses included six components, whose direction will be changed

according to the order of x-direction, y-direction and z-direction, were given to test each

subroutine for the three-dimensional problem. Table 6-11 indicates the detailed value of

stresses for each test of each creep constitutive equations.

The error was expected in following situations:

1. If the error occurred on the two-dimensional form of constitutive equations; a) the

result of creep strain and damage based on the first set of stress will be wrong

when integration terminated, and b) the their life time will not be same;

2. If the error occurred on the three-dimensional form of constitutive equations, the

three creep strain curves will not coincide.

Table 6-10 Material properties used to the test of normalized creep constitutive equations subroutine

NOR_KR

A n m B

1.092×10−20 8.462 −4.754×10−4 3.537×10−17

α φ χ E

0.215 7.346 6.789 170×103

Table 6-11 Stress for each test of normalized creep constitutive equations

Two-dimensional problem

0 degrees on the Mohr’s circle 70MPa; 0MPa; 0MPa; 0MPa

45 degrees on the Mohr’s circle 59.74873734 MPa; 10.25126266 MPa; 24.74873734 MPa; 0MPa

90 degrees on the Mohr’s circle 35MPa; 35MPa; 35MPa; 0MPa

Three dimensional problem

Uni-axial on x-direction 70MPa; 0MPa; 0MPa; 0MPa; 0MPa; 0MPa

Uni-axial on y-direction 0MPa; 70MPa; 0MPa; 0MPa; 0MPa; 0MPa

Uni-axial on z-direction 0MPa; 0MPa; 70MPa; 0MPa; 0MPa; 0MPa

Result and verification

Table 6-7 shows that, the stress tensor component on the x-direction is reduced according

to the order of 0 degrees, 45 degrees and 90 degrees; hence, the corresponding creep

strain in x-direction should be reduced according to the same sequence. To compare with

the three curves shown on Figure 6-22, it is easy to find that not only the creep strain was

reduced but also the rupture time is the same. This phenomenon is correct because the

loaded stresses are from the same Mohr’s circle that has the same maximum principal

stress and equivalent stress.

121

Table 6-7 shows that, the loaded stresses could be considered as the uni-axial tensile on x-

direction, y-direction and z-direction respectively; hence, the corresponding creep strain

in x-direction, y-direction and z-direction should be the same. To compare with the three

curves shown on Figure 6-23, it is easy to find that those creep strain curves of x-direction,

y-direction and z-direction are exactly matched. This phenomenon is correct because the

loaded stresses could be seen as the same, in which only the direction is different.

Figure 6-22 Creep strain curve of normalized constitutive equations based on the stresses obtained

from Mohr’s circle in x-direction

0

200

400

600

800

1000

0 20 40 60 80 100 120

N
o
rm

a
li

ze
d

 S
tr

a
in

Normalized Time

0 degrees 45 degrees 90 degrees

122

Figure 6-23 Creep strain curve of normalized constitutive equations based on the uni-axial tensile

load in x-direction, y-direction and z-direction

6.6 Nodal Loads Calculator

6.6.1 Instruction of NLC

The nodal loads calculator is an independent programme; hence, it does not need to

design a specific testing programme. The user instruction was summarised below:

1. Create a new file named xx.dat;

2. The first line of input file is the number of element;

3. The second line of input file is the expected pressure;

4. The third line of input file is the coordinates of loaded direction of the first loaded

node of each loaded element;

5. The fourth line of input file is the coordinates of loaded direction of the second

loaded node of each loaded element;

6. Execute programme NLC;

7. Enter xx.dat following the prompts;

8. Enter any output file name following the prompts;

9. Open the result file and see the result.

0

200

400

600

800

1000

0 20 40 60 80 100 120

N
o
rm

a
li

ze
d

 S
tr

a
in

Normalized Time

x-direction y-direction z-direction

123

6.6.2 Statement testing cases

NLC has its restriction of element type. Only 3-nodes triangle element and 4-nodes

quadrilateral element can be resolved within general planar and axisymmetric cases;

hence, a 700N uniform force was set as the expected load. Two elements and three loaded

nodes were supposed and the coordinates of loaded node are (0, 60), (20, 60) and (40, 60).

6.6.3 Result and verification

Figure 6-24 shows nodal forces loaded on axisymmetric and planar elements. The nodal

forces of axisymmetric element are 4666.6N, 28000N and 23333N respectively. The

nodal forces of planar element are 700N, 1400N and 700N respectively.

Figure 6-24 Nodal forces depend on axisymmetric case and planar case

In order to verify those results, a hand calculation was conducted:

6.6.3.1 Planar problem

The nodal force loaded on first node of each element can be derived as,

f1 node1 =
(20 − 0) × 70

2
= 700

f1 node2 =
(40 − 20) × 70

2
= 700

The nodal force loaded on second node of each element can be derived as,

f2 node1 =
(40 − 20) × 70

2
= 700

f 2 node2 =
(60 − 40) × 70

2
= 700

124

Since the first node of second element and second node of first element is the same node;

fshared node = f1 node2 + f2 node1 = 1400

These three nodal forces can be summarised in the sequence 700N, 1400N and 700N.

6.6.3.2 Axisymmetric problem

The nodal force loaded on first node of each element can be derived as,

f1 node1 =
1

6
(r1

2 + r0r1 − 2r0
2) × P =

1

6
× (202 + 0 × 20 − 2 × 02) × 70 = 4666.669

f1 node2 =
1

6
(2r1

2 − r0r1 − r0
2) × P =

1

6
× (2 × 202 − 0 × 20 − 02) × 70 = 9333.331

The nodal force loaded on second node of each element can be derived as,

f2 node1 =
1

6
(r1

2 + r0r1 − 2r0
2) × P =

1

6
× (402 + 20 × 40 − 2 × 202) × 70 = 18666.669

f2 node2 =
1

6
(2r1

2 − r0r1 − r0
2) × P =

1

6
× (2 × 402 − 20 × 40 − 202) × 70 = 23333.331

Since the first node of second element and second node of first element is the same node;

hence,

fshared node = f1 node2 + f2 node1 = 28000

These three nodal forces can be summarised in the sequence 4666.669N, 28000N and

23333.331N.

To compare the hand calculation results and the results obtained from NLC, those two are

the same; thus, the correctness of programme NLC was proved.

6.7 Data Transfer Interface

6.7.1 Instruction of DTI

The data transfer interface is an independent programme; hence, it does not need to design

a specific testing programme. The input files of DTI include the Neutral file produced by

FEMGV with the suffix of ‘.anl’ and the data file produced by the solver with the suffix

of ‘.res’. The execution of programme DTI is very simple, requiring just clicking and

125

entering information following the prompts. The required information includes a) the type

of transfer process, which is restricted to the character of ‘pre-processing’ or ‘post-

processing’; and b) the name of input and output file. The output files of DTI include the

Neutral file produced for FEMGV with the suffix of ‘.fvi’ and the data file produced for

the solver with the suffix of ‘.dat’.

6.7.2 Statement of testing cases

Two cases were implemented in this testing, one is for pre-processing transfer and the

other is for post-processing transfer. Six elements geometry was created by FEMGV

shown on the Figure 6-25. This geometry includes twelve nodes, 20mm in width and

60mm in height; its bottom was restricted in y-direction and left side was restricted in x-

direction. A file called DTI.res, which is used to test the post-processing transfer, is

attached in appendix 10.4.7.

Figure 6-25 Geometry model used for pre-processing transfer test

6.7.3 Result and verification

The nodal force was applied on the top. The coordinates of this geometry was shown in

the Table 6-12. Figure 6-26 presented the transfer result of pre-processing. To compare

with Table 6-12, Figure 6-25 and Figure 6-26, it could be observed that, the node

coordinate, element definition and constrains has been transferred directly and correctly;

however, the nodal loads part needs need the help of NLC

126

Table 6-12 Coordinates of geometry used for pre-processing transfer

node x-direction y-direction z-direction

1 0.0000000E+00 0.0000000E+00 0.0000000E+00

2 1.0000000E+01 0.0000000E+00 0.0000000E+00

3 2.0000000E+01 0.0000000E+00 0.0000000E+00

4 0.0000000E+00 2.0000000E+01 0.0000000E+00

5 1.0000000E+01 2.0000004E+01 0.0000000E+00

6 2.0000000E+01 2.0000000E+01 0.0000000E+00

7 0.0000000E+00 4.0000000E+01 0.0000000E+00

8 1.0000000E+01 4.0000000E+01 0.0000000E+00

9 2.0000000E+01 4.0000000E+01 0.0000000E+00

10 0.0000000E+00 6.0000000E+01 0.0000000E+00

11 1.0000000E+01 6.0000000E+01 0.0000000E+00

12 2.0000000E+01 6.0000000E+01 0.0000000E+00

Figure 6-26 Result file of pre-processing transfer

127

Figure 6-27, Figure 6-28, Figure 6-29, Figure 6-30 and Figure 6-31 all show the result of

post-processing transfer. The contour of elastic stress, elastic strain, creep strain and creep

damage look uneven because the actual change of value (result) occurs after the fourth

effective digital. Detailed values could be found in appendix 10.4.7.

In order to understand this problem14, Figure 6-28 is used as the example to show the

details. From 10.4.7, the elastic stress in y-direction could be summarized as:

Table 6-13 Elastic stress in y-direction

Element 1
Integration point 1 39.999982450985883

Integration point 2 39.999982450985883

Integration point 3 39.999982450985883

Element 2
Integration point 1 39.999994616455837

Integration point 2 39.999994616455837

Integration point 3 39.999994616455837

Element 3
Integration point 1 40.000052893418300

Integration point 2 40.000052893418300

Integration point 3 40.000052893418300

Element 4
Integration point 1 39.999965270768499

Integration point 2 39.999965270768499

Integration point 3 39.999965270768499

Element 5
Integration point 1 40.000434237458435

Integration point 2 40.000434237458435

Integration point 3 40.000434237458435

Element 6
Integration point 1 40.000298000417629

Integration point 2 40.000298000417629

Integration point 3 40.000298000417629

Element 7
Integration point 1 40.000358204542437

Integration point 2 40.000358204542437

Integration point 3 40.000358204542437

Element 8
Integration point 1 40.000316568443083

Integration point 2 40.000316568443083

Integration point 3 40.000316568443083

From the scales of Figure 6-28, the stress represented by the dark blue is less than the

stress represented by light blue; moreover, from Figure 6-27, the elements on the above of

square is element 1 to 4 from left side to right side. Compared with Table 6-13, the

observation satisfies the actual values. Use the same method, Figure 6-29, Figure 6-30

and Figure 6-31 can be proved as well.

14 Figure 6-28 to 6-31 are a same problem about meaningless scales. The scales of FEMGV normally

reserves three effective digitals, but the actual change occurs after the fourth effective digital.

128

Figure 6-27 Displacement shape in y-direction

Figure 6-28 Contour of elastic stress y-direction

129

Figure 6-29 Contour of elastic strain y-direction

Figure 6-30 Contour of creep strain y-direction

130

Figure 6-31 Contour of creep damage

6.8 Summary

The tests of subroutines and programmes were designed based on the major concerned

problems. The flowcharts of each test programme were presented to show the detailed

structure clearly. A number of test cases, which include the input and output, were

introduced specifically in order to validate the developed subroutines and programmes in

this research. Most results were summarised into tables and curves for the convenience of

the reader. The order of testing of subroutine and programme was arranged according to

the independence of each subroutine. The core part is creep constitutive equations;

therefore, the first stage of research was launched around creep constitutive equations. In

total, 10 subroutines and 2 programmes were developed, and these subroutines and

programmes could be divided into 7 categories.

Table 6-14 indicates the validation purpose and method of all subroutines and

programmes which developed in this research. They are specific to that 1) constitutive

equations subroutines include KR, PH and QX; 2) stress transformation subroutine TRS;

3) numerical method subroutines include EULER, RK4, RKM and RKF; 4) Time-step

control subroutine TSC; 5) normalization subroutine includes NOR_KR; 6) Nodal loads

calculator is a programme NLC; and 7) Data transfer interface is a programme DTI.

131

Table 6-14 Summary of each tests

Name Description

TRS Two set of supposed stress tensor each have four components and six components were given.

Hand calculation was reported to compare with the results obtained from TRS.

EULER
A supposed function was coded based on CESL for this testing. Its exact solution was given to

compare with the result obtained from each subroutine. It can not only prove the correctness of

each subroutine, but also understand the accuracy of each numerical method.

RK4

RKM

RKF

KR
Three set of material properties were given for each constitutive equation. A single stress state

was implemented firstly to prove the correctness of the uni-axial form of constitutive equations.

The plane stress state, which includes uni-axial tensile, bia-axial, and pure shear, was

implemented secondly to prove the correctness of each subroutine within 2D environment.

The 3D stress state, which contains the uni-axial tensile of each normal stress direction, was

implemented to prove the correctness of each subroutine within 3D environment.

PH

QX

TSC
A supposed time-step control value was given to test the time-step will be reduced when

required. Additionally, TSC was implemented with PH and RKM to present the time-step

control procedure.

NOR_KR

The plane stress state, which includes uni-axial tensile, bia-axial, and pure shear, was

implemented secondly to prove the correctness of each subroutine within 2D environment.

The 3D stress state, which contains the uni-axial tensile of each normal stress direction, was

implemented to prove the correctness of each subroutine within 3D environment.

NLC A simple case was supposed, and its loaded node number, inner radius and outer radius of each

node were given to NLC. Hand calculation was reported to prove the correctness of NLC.

DTI A simple square case was simulated; the pre- and post-processing transfer was proved through

the solver and FEMGV.

132

7 EXPLORATION OF THE

PERFORMANCE OF

NUMERICAL METHODS,

TIME-STEP CONTROL

PROCEDURE AND

NORMALIZATION SCHEME

This chapter explores a series of performance problems of the subroutines developed by

this research. This discussion includes the performance exploration of numerical method

subroutines, time-step control subroutine and normalization subroutine. Numerical

method subroutines, currently includes EULER subroutine, RK4 subroutine, RKM

subroutine and RKF subroutine; however, the quantitative analysis of those numerical

methods is deficient. The sensitivity of self-adaptive method of RKF method is an issue; it

was observed that the self-adaptive method of RKF method is invalid in the testing of

time-step control subroutine. Thus, it will be covered in this chapter. Normalization

approach is suggested to enhance the accuracy and power of computation. It expands (or

shrinks) proportionately the independent variables and dependent variables through

mathematical theory. The quantitative analysis was conducted to show the effects of the

normalization approach through a set of experiments.

133

7.1 Performance of Numerical Integration Methods

The author has addressed application of RKF method for creep damage analysis; however,

its practical performance is uncertain. In order to have an intuitive understanding, some

general approaches were applied to conduct a set of comparative tests. Traditionally,

RKM method is normally suggested in creep damage analysis due to its superiority of

accuracy (Hayhurst et al., 1984, Ling et al., 2000); moreover, Euler’s method is also used

by some researchers based on a critical time-step size (Wang and Wang, 1996). The RK4

method was also discussed. In here, only the performance of numerical method

subroutines was focused on; thus, the mathematical superiorities of the numerical method

itself will not be addressed.

7.1.1 Experiments design

Euler’s method was used to find the closest exact solution since its accuracy could be

improved by constantly reducing the time-step size; it aims to set a basis for comparison.

RK4 method, RKM method and RKF method will be implemented separately, which are

based on the time-step of 0.1 hour to ensure the consistency of the experiments. Due to

the performance of integration accuracy being the only issue concerned in this experiment,

a unified termination time-line was set which is 980 hours.

The uni-axial form of Perrin’s constitutive equations was used to implement these

experiments. The same material and loaded stress will be adopted in order to ensure the

consistency of this experiment. 70MPa uniform stress was applied, and the material

properties are presented in Table 7-1. Only the error of creep strain will be compared to

give a quantitative result of the performance of each numerical method subroutine. A

programme called NMSexp was developed to conduct these experiments and subroutine

EULER, RK4, RKM and RKF were used; its detailed source code was attached in

appendix 10.5.1. For Euler’s method only, five time-steps, which are 1 hour, 0.1 hour,

0.01 hour, 0.001 hour and 0.0001 hour, were used to conduct the continuous reduction of

time-step size.

Table 7-1 Material properties of Perrin-Hayhurst constitutive equations

A B h Kc H* C ν

6.216×10−8 0.15 1.0×104 4.998×10−4 0.35 2.0 1.32

134

7.1.2 Result and discussion

According to the experimental setting, the first discussion was given to the finding of the

closest exact solution. Table 7-2 shows the five sets of running time and final rupture

strain based on Euler’s method. When the time-step reduced until 0.001 hour, the

computing speed of Euler’s method was rapidly decreased; the improvement of rupture

strain almost could be ignored in practical applications once the time-step is less than 0.01

hour. However, because this is an exploratory experiment, the results obtained based on

0.0001 hour were used to be the comparative basis.

Table 7-2 Running time and rupture strain based on Euler’s method using time-step size of 1 hour,

0.1 hour, 0.01 hour, 0.001 hour and 0.0001 hour

Time-step/hours Running

time/second

Increase Rupture strain Improvement

1 3.12×10-2 base 0.160324134 base

0.1 4.68×10-2 50% 0.182306477 13.71%

0.01 9.36×10-2 200% 0.184732961 15.22%

0.001 5.93×10-1 1800.64% 0.184987248 15.38%

0.0001 5.46 17400% 0.185012809 15.40%

Moreover, Figure 7-1 and Figure 7-2 shows an intuitive understanding of the changes

based on the reduction of time-step. The creep strains based on the time-step of 1 hour

were deducted from the creep strains based on the time-step of 0.1 hour, 0.01 hour, 0.001

hour and 0.0001 hour separately according to the corresponding time point; hence, four

relative error curves of creep strain could be plotted. Figure 7-1 shows the relative error

curves of Euler’s method using time-steps of 0.1 hour, 0.01 hour, 0.001 hour and 0.0001

hour, which only displayed the data of 0 hour to 800 hour. It is obvious to see that, the

relative error of time-step 1 hour vs 0.1 hour has an obvious difference with the other

three curves. However, the differences between the relative error of time-step 1 hour vs

0.01 hour, the relative error of time-step 1 hour vs 0.001 hour and the relative error of

time-step 1 hour vs 0.0001 hour are not large.

In order to find the minor difference, those curves were zoomed in the time range of five

hours, and the new curves were display on Figure 7-2. It could be seen that, there is

almost no difference when the time-step is reduced to less than 0.001 hour; however, due

to the critical requirement of accuracy, the creep strain curve of time-step 0.0001 hours

was adopted to be similar to the exact solution.

135

Figure 7-1 Relative error curves of Euler’s method using time-step of 0.1 hour, 0.01 hour, 0.001 hour

and 0.0001 hour, only displayed from 0 hour to 800 hours

Figure 7-2 Relative error curve of Euler’s method using time-step of 0.1 hour, 0.01 hour, 0.001 hour

and 0.0001 hour, only displayed from 975 hours to 980 hours

The second discussion will be given to the accuracy and efficiency comparison of

subroutine RK4, RKM and RKF. Figure 7-3 presents the relative error curves based on

RK4 method, RKM method and RKF method respectively from 0 to 800 hours. The curve

0

0.0002

0.0004

0.0006

0.0008

0.001

0 100 200 300 400 500 600 700 800

C
re

ep
 S

tr
a
in

 E
rr

o
r

Time/h

1h vs 0.1h 1h vs 0.01h 1h vs 0.001h 1h vs 0.0001h

0.014

0.016

0.018

0.02

0.022

0.024

975 975.5 976 976.5 977 977.5 978 978.5 979 979.5 980

C
re

ep
 S

tr
a
in

 E
rr

o
r

Time/h

1h vs 0.1h 1h vs 0.01h 1h vs 0.001h 1h vs 0.0001h

136

of RK4 increased across the curve of RKF; its increased tendency has a change at 400

hours because the default value of time-step is unsuitable from this time moment. The

curves based on RKM and RKF have the same performance in the initial 300 hours;

however, a significant change occurs at this time moment, where the relative error of

RKM increased faster than the value of RKF.

Moreover, the subsequent changes can be observed from Figure 7-4 which presents the

relative error curves based on RK4 method, RKM method and RKF method respectively

from 960 to 980 hours. In summary, subroutine RKF has a poor start but its accuracy

could be guaranteed during whole integration process; subroutine RKM needs the

reduction of time-step size to keep the same accuracy of RKM. Based on the almost same

running time of subroutine RK4, RKM and RKF, it could be identified that subroutine

RKF has the best performance based on constant time-step size in this exploration.

Figure 7-3 Relative error curves of RK4 method, RKM method and RKF method, which based on the

Euler’s method using time-step of 0.0001 hour, only displayed from 0 hours to 800 hours

-1E-09

9E-09

1.9E-08

2.9E-08

3.9E-08

4.9E-08

0 100 200 300 400 500 600 700 800

C
re

ep
 S

tr
a
in

 E
rr

o
r

Time/h

RK4 RKM RKF

137

Figure 7-4 Relative error curves of RK4 method, RKM method and RKF method, which based on the

Euler’s method using time-step of 0.0001 hour, only displayed from 960 hours to 980 hours

7.2 Self-adaptive approach of Runge-Kutta-Fehlberg method

The unexpected performance of self-adaptive method of RKF method was observed in the

testing of time-step control subroutine. The accuracy of RKF method and the acceptance

criteria self-adaptive method of RKF method were questioned. The accuracy of RKF

method has been proved through further discussion in 6.4.3.2 and 7.1.2; however, the

acceptance criteria of RKF method were still suspected. The self-adaptive method of RKF

method will be discussed in order to clear this uncertain factor.

7.2.1 Experiments design

The acceptance of time-step may not be critical enough in creep damage analysis

environment; hence, a set of comparative experiments were conducted to find the answer.

The function 𝑦′ = y − 𝑡2 + 1 was adopted to prove that the time-step acceptance of RKF

method is available. Such function was coded as a subroutine called NTEST according

to the structure of constitutive equations subroutine. Two tests were launched, where the

given initial value is Y0 = 0.5, and time interval are dt = 0.2 and dt = 0.4 respectively.

0.0000003

0.0000008

0.0000013

0.0000018

0.0000023

0.0000028

960 962 964 966 968 970 972 974 976 978 980

C
re

ep
 S

tr
a
in

 E
rr

o
r

Time/h

RK4 RKM RKF

138

The uni-axial form of Perrin’s constitutive equations was selected to implement the

comparative experiments. 70MPa uniform stress was applied, and the material properties

are presented in Table 7-3 and the time-steps are 1 hour and 2 hour respectively.

A programme called TSCexp was developed to conduct these experiments; its detailed

source code is attached in appendix 10.5.2.

Table 7-3 Material properties of Perrin-Hayhurst constitutive equations

A B h Kc H* C ν

6.216×10−8 0.15 1.0×104 4.998×10−4 0.35 2.0 1.32

7.2.2 Result and discussion

The results produced by subroutine NTEST could identify the working status of the self-

adaptive approach of the RKF method. Figure 7-5 presented the results based on

subroutine NTEST using initial time-step of 0.2 and 0.4 respectively. When the initial

time-step of 0.2 was employed, the subsequent time-step size does not change. It could be

said that the time-step of 0.2 satisfies the predict accuracy requirements. When the initial

time-step of 0.4 was employed, the subsequent time-step size was reduced to 0.2, and it

will not change any more until to the end. Obviously, the self-adaptive technique of RKF

method is working.

Figure 7-5 Results of subroutine NTEST based on the initial time-step of 0.2 and 0.4

Further experiments have been conducted. Figure 7-6 presented the results of subroutine

PH based on the initial time-step of 1 hour and 2 hour. The first significant observation is

that the time-step size never changed during the whole integration process whether based

on the initial time-step of 1 hour or 2 hour. This shows that the acceptance criteria should

be identified in order to satisfy the requirements of creep damage analysis. The second

significant observation is that the accuracy has been decreased when the time-step size

139

increased. This shows that the acceptance criteria should be identified in order to satisfy

the requirements of creep damage analysis again.

Figure 7-6 Results of subroutine PH based on the initial time-step of 1 hour and 2 hour

7.3 Normalization Technique

A mathematical approach called normalization was applied in this research in order to

enhance the accuracy and efficiency of integration of constitutive equations; however, the

practical performance of this subroutine should be quantitatively analysed before being

recommended to users. In here, only the performance of normalization subroutine was

focused on; thus, the mathematical superiority of normalization itself will not be

discussed.

7.3.1 Experiments design

In order to test the performance of normalization subroutine, a set of comparative tests

were proposed. The same material and loaded stress will be adopted in order to ensure the

consistency of this experiment. Table 7-4 shows the detailed parameters of material

property; moreover, it could be seen that the argument of B is different between non-

normalized material properties and normalized material properties. This arguments should

be normalized according to Eq. (4-57) before being used. 70MPa was adopted as the

loaded stress and the time-step size is 1 hour. Since the results produced by normalization

subroutine are normalized, they should be converted to the non-normalized value to

perform the final comparison. The running time, creep strain and damage will be

compared to give a quantitative result of the performance of normalization subroutine.

140

Programme CEScheck and NORcheck were used to conduct this experiment, and

Microsoft Excel was use to convert those normalized results and to produce visualized

results.

Table 7-4 Material properties used for the performance investigation of normalized subroutine

Non-normalized material properties

A n m B φ χ α

1.092×10−20 8.462 −4.754×10−

4

3.537×10−17 7.346 6.789 0.215

Normalized material properties

A n m B' φ χ α

1.092×10−20 8.462 −4.754×10−

4

4.238×10−18 7.346 6.789 0.215

7.3.2 Results and discussion

The normalization technique enhances the integration of the creep constitutive equations

through redefinition of time, stress and strain15; hence, this first discussion was given to

the changing scope of time-step size. According to the time scale conversion formula

(7-1), the real time could be obtained.

t = [
τ(m + 1)

AEσ0
n−1

]

(
1

m+1
)

 (7-1)

where, t is real time; 𝜏 is normalized time; σ0 is the stress used for normalization; and, E

is the Young’s modulus;

Figure 7-7 presents converted results of normalized time of the whole integration process.

The phenomenon was observed, where the equivalent real time rapidly changed during

the first 200 hours then going into the steady state in the rest. It means the critical

requirement of time-steps of creep tertiary stage based on non-normalized method was

ameliorated. The changing scope of equivalent real time is between 0.9183 hour and

0.9219 hour; only 0.36% change occurred during almost 1200 hours. Compared with

time-step used for non-normalized method, the mean error will not exceed 8%; therefore,

15 The redefined time, stress and strain are called normalized time, stress and strain; hence, the time-step

used for integrating normalized constitutive equations is different with the real time-step. The normalized

time-step does not use the unit such as seconds, minute or hour, and each normalized time-step does not

represent a fixed real time-step. Generally, a normalized time-step can be seen as a solution of an ungiven

function of real time-step.

141

this exploration could continue since the consistency of experiment was essentially

ensured.

Figure 7-7 Equivalent real times of normalized method

The normal creep strain and lifetime based on both the normalization method and non-

normalization method are shown on Figure 7-8. The enhancements of the normalization

technique could be summarised according to lifetime, creep strain and running time. The

lifetime obtained by the normalized technique is almost 1200 hours, but the result from

the non-normalized method is just over 1000 hours; thus, the lifetime has 17.14%

improvement through the normalized approach. The creep strain obtained by the

normalized technique is over 0.37, but the result from the non-normalized method is 0.33;

hence, the creep rupture strain has 14.24% improvement through the normalized approach.

The normalized time-step was set as 0.1 and the non-normalized time-step was set as 1

hour; however, the running time based on the normalization subroutine is only 27.13%

more than the normal constitutive equations subroutine. Therefore, the efficiency of

subroutine has been greatly improved.

0.918

0.9185

0.919

0.9195

0.92

0.9205

0.921

0.9215

0.922

0 200 400 600 800 1000 1200

ti
m

e-
st

ep

iteration

142

Figure 7-8 Creep strain curve using normalized approach and non-normalized approach

7.4 Summary

The performance exploration of numerical method subroutines, time-step control

subroutine and normalization subroutine has been conducted. Based on the constant time-

step size, subroutine RKF has the best performance of accuracy and efficiency; however,

there is an issue with its self-adaptive technique. The existing acceptance criteria of time-

step size do not satisfy the accuracy requirements of creep damage analysis. The

normalization technique could enhance the accuracy and efficiency of numerical

integration of creep constitutive equations a lot; however, it should be studied first since it

involves the modification of the original constitutive equations.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000 1200

C
re

ep
 S

tr
a
in

Time/h

normalized non-normalized

143

8 CONCLUSION AND FURTHER

WORK

This chapter summarizes the major contributions of this research. Some novel methods

and techniques have been used and explored. A number of theoretical analysis process,

subroutine/programme development process and subroutine/programme validation

process are presented. The major outcomes of this research are summarized. In the end,

further development of HITSI is also discussed.

8.1 Contributions

This research contributed to develop a novel in-house finite element solver for the

research of creep damage analysis. A unified finite element software does not exist in

present creep research domain due to the lack of unified constitutive model that could be

applied in all materials. In view of this situation, this in-house code was developed based

on these superiorities listed below.

 General models, whether plane stress, plane strain, axisymmetric or three-

dimension are considered;

 Its scalability is guaranteed due to the standardized programming applied. It

enables the potential user to apply their own constitutive equations directly

without any understanding of programming of finite element method;

 Diversified numerical methods are available, enables more advanced and accurate

integration methods to be introduced into creep damage analysis.

144

The second contribution of this research is the development of prototype of the data

transfer interface that called DTI. All of the traditional commercial finite element

software such as ABAQUS, ANSYS and FEMGV have their own data transfer interface

to keep their compatibility and versatility. DTI not only fills the gap between the solver

and FEMGV, but also enables the solver to be commercialized based on the platform of

FEMGV in the future. Moreover, the DTI will not restricted to FEMGV only, it can be

interfaced (through a formatted neutral text file) with any commercial FE package.

8.2 Conclusion

In order to fulfil the aim and objectives of this research, a number of issues have been

studied and investigated, which include modular conversion of applied stress,

standardized programming of constitutive equations and numerical methods, accuracy

enhancement through self-adaptive method and normalization method. Moreover,

formatted input and output has also been studied in order to build a useful logical control

data transfer interface. General software development processes including requirement

analysis, design and testing have been performed. The major outcomes of this research are

summarised below.

A unified programming standard of the subroutine of constitutive equations has been

identified. The key parts of the constitutive equations such as stress functions, time

functions and temperature functions have been classified. Three explicit-shape real arrays

were used to hold the arguments of creep strain and damage, stress and material properties.

Due to the argument of time is a dynamic variable, an independent real variable was

arranged to it. Normally, the temperature is a constant, so it was included as a function in

the material properties.

The matched numerical method subroutines have been developed. Based on the present

structure of these numerical method subroutines, the arguments of creep strain rate and

creep damage rate will never appear on the main programme of the solver; hence, the

memory of those arguments will be released when the present integration process is

complete.

A modular conversion subroutine of stress has been developed. Compared with using the

existing subroutines, its advantages are obvious; for example, the memory requirement of

the main programme of the solver was reduced. Due to the embedded design, the system

145

of two-dimensions and three-dimensions do not need to be distinguished. The dimensions

could be changed automatically.

The research of accuracy and efficiency based on numerical methods has been done. The

instability during serving the constitutive equations of RK4 method was observed;

moreover, the sensitivity of the self-adaptive technique of RKF method has been

discussed. In summary, the attempt of introducing new numerical methods does not

achieve the expectation.

The improvement of efficiency and accuracy has been tried from a mathematical aspect.

A significant result was obtained, and could be summarized as:

 No more than 8% reduction of time-step leads to an increase of 27.13% in

computational speed;

 The lifetime and rupture strain have the increases of 17.4% and 14.24% based on

this method.

The boundary conditions of nodal loads and element definition have been solved. The

general algorithm used to allocate a concentrated force to loaded nodes has been studied;

however, the method of allocation itself is a challenge that leads to the pre-processing

transfer being not perfect. A temporary solution, called nodal loads calculator has been

developed in view of this situation.

8.3 Further Work

The research work presented in this thesis is a primary stage of the development of HITSI

since this system has been developed three years ago from nothing. Further research could

be conducted based on HITSI to enhance its capability.

The further works related to this research are listed below:

1. The capability of the data transfer interface should be enhanced. Especially, the

conversion of nodal loads should be integrated into the data transfer interface to

enable the pre-processing transfer to be accomplished automatically. Furthermore,

based on the present algorithm developed by the author, a number of data types

could be included such as more element types, more constraint types and more

146

load types. To enable the data transfer interface to be visualized is another

research direction.

2. More creep constitutive equations and numerical methods could be collected and

coded based on the standardized subroutine template developed by the author.

This enhancement of constitutive equations subroutine library and numerical

method subroutine library enables HITSI to be commercialized.

147

9 REFERENCE

ANDRADE, E. D. C. 1910. On the viscous flow in metals, and allied phenomena. Proceedings of the Royal

Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1-12.

ASHBY, M. F., EDWARD, G. H., DAVENPORT, J. & VERRALL, R. A. 1978. Application of bound

theorems for creeping solids and their application to large strain diffusional flow. Acta

Metallurgica, 26, 1379-1388.

BECKER, A. A., HYDE, T. H., SUN, W. & ANDERSSON, P. 2002. Benchmarks for finite element

analysis of creep continuum damage mechanics. Computational Materials Science, 25, 34-41.

BELL, D. 2000. Software engineering: a programming approach, New York; Harlow, England, Addison

Wesley.

BERTO, F., GALLO, P. & LAZZARIN, P. 2014. High temperature fatigue tests of un-notched and notched

specimens made of 40CrMoV13. 9 steel. Materials & Design, 63, 609-619.

BOYER, R. R. 1996. An overview on the use of titanium in the aerospace industry. Materials Science and

Engineering: A, 213, 103-114.

CANE, B. J. 1981. Creep fracture of dispersion strengthened low alloy ferritic steels. Acta Metallurgica, 29,

1581-1591.

CANE, B. J. Creep damage accumulation and failure criteria increep brittle ferritic weldment structures.

Proceedings of International Conference on Welding Technology for Energy Applications.

American Welding Society, Gatlingburg Tennessee, 1982. 623.

CANE, B. J. Creep damage accumulation and fracture under multiaxial stresses. ICF5, Cannes (France)

1981, 2013.

CHAPRA, S. C. & CANALE, R. P. 1998. Numerical methods for engineers: with programming and

software applications, Boston, WCB/McGraw-Hill.

CHEN, M. 2007. Elasticity and Plasticity, Beijing, Science Press

COCKS, A. C. F. & ASHBY, M. F. 1980. Intergranular fracture during power-law creep under multiaxial

stresses. Metal science, 14, 395-402.

COCKS, A. C. F. & ASHBY, M. F. 1981. Creep fracture by void growth, Springer.

COCKS, A. C. F. & ASHBY, M. F. 1982. Creep fracture by coupled power-law creep and diffusion under

multiaxial stress. Metal Science, 16, 465-474.

COLOMBO, P. P., GARZILLO, A., MERIGGI, M., PONZONI, C. & SAMPIETRI, C. 1996. Creep and

damage analysis of a serviced tee intersection in a boiler header: comparison between numerical

and experimental results. International journal of pressure vessels and piping, 66, 243-251.

EASON, T. J., BOND, L. J. & LOZEV, M. G. Structural health monitoring of localized internal corrosion

in high temperature piping for oil industry. Volume 34, 2015. AIP Publishing, 863-873.

EDWARD, G. H. & ASHBY, M. F. 1979. Intergranular fracture during power-law creep. Acta Metallurgica,

27, 1505-1518.

FAIRES, J. D. & BURDEN, R. L. 2013. Numerical methods, Pacific Grove, Calif.?, Brooks/Cole.

FEHLBERG, E. 1968. Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with

stepsize control. NASA TR R-287.

148

FEHLBERG, E. 1969. Low-order classical Runge-Kutta formulas with stepsize control and their application

to some heat transfer problems. NASA TR R-315.

GENG, L. Y., GONG, J. M., LIU, D. & JIANG, Y. 2009. Damage analysis and life prediction of a main

steam pipeline at elevated temperature based on creep damage mechanics. Sustainable Power

Generation and Supply. IEEE.

GERE, J. M. & GOODNO, B. J. 2009. Mechanics of materials, Stamford, Conn, Cengage Learning.

GITTUS, J. 1975. Creep, viscoelasticity and creep fracture in solids, London, Applied Science Publishers.

GOODALL, I. W. & SKELTON, R. P. 2004. The importance of multiaxial stress in creep deformation and

rupture. Fatigue & Fracture of Engineering Materials & Structures, 27, 267-272.

GURSON, A. L. 1977. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield

criteria and flow rules for porous ductile media. Journal of engineering materials and technology,

99, 2-15.

HAGIHARA, S. & MIYAZAKI, N. 2008. Finite element analysis for creep failure of coolant pipe in light

water reactor due to local heating under severe accident condition. Nuclear Engineering and

Design, 238, 33-40.

HALES, R. 1994. The role of cavity growth mechanisms in determining creep rupture under multiaxial

stresses. Fatigue & Fracture of Engineering Materials & Structures, 17, 579-591.

HALL, F. R. 1990. Development of continuum damage mechanics models to predict the creep deformation

and failure of high temperature structures. Doctoral Thesis (Ph.D.) University of Sheffield.

HAYHURST, D. R. 1972. Creep rupture under multi-axial states of stress. Journal of the Mechanics and

Physics of Solids, 20, 381-382.

HAYHURST, D. R., DIMMER, P. R. & MORRISON, C. J. 1984. Development of Continuum Damage in

the Creep Rupture of Notched Bars. Philosophical Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 311, 103-129.

HAYHURST, D. R., DYSON, B. F. & LIN, J. 1994. Breakdown of the skeletal stress technique for lifetime

prediction of notched tension bars due to creep crack growth. Engineering fracture mechanics, 49,

711-726.

HAYHURST, D. R. & LECKIE, F. A. 1984. Behaviour of materials at high temperatures. Mechanical

behaviour of materials- IV, 1195-1211.

HAYHURST, J. 2006 Creep lifetime predictions of welded structures using parallel processing algorithms.

Doctoral Thesis (Ph.D.) University of Manchester.

HUDDLESTON, R. L. 1985. An Improved Multiaxial Creep--Rupture Strength Criterion. J. Pressure

Vessel Technol.(Trans. ASME), 107, 421-429.

HUDDLESTON, R. L. 1993. Assessment of an Improved Multiaxial Strength Theory Based on Creep-

Rupture Data for Type 316 Stainless Steel. Journal of Pressure Vessel Technology, 115, 177-184.

HULL, D. & RIMMER, D. E. 1959. The growth of grain-boundary voids under stress. Philosophical

Magazine, 4, 673-687.

HYDE, T. H., BECKER, A. A., SUN, W. & WILLIAMS, J. A. 2006. Finite-element creep damage analyses

of P91 pipes. International Journal of Pressure Vessels and Piping, 83, 853-863.

HYDE, T. H., SUN, W. & BECKER, A. A. 2004. Effect of geometry change on the creep failure life of a

thick-walled CrMoV pipe with a circumferential weldment. International journal of pressure

vessels and piping, 81, 363-371.

HYDE, T. H., XIA, L. & BECKER, A. A. 1996. Prediction of creep failure in aeroengine materials under

multi-axial stress states. International journal of mechanical sciences, 38, 385-403.

ISLAM, N., QUAYYUM, S. & HASSAN, T. A Unified Constitutive Model for High Temperature

Multiaxial Creep-Fatigue and Ratcheting Response Simulation of Alloy 617. ASME 2014

Pressure Vessels and Piping Conference, 2014. American Society of Mechanical Engineers,

V005T11A026-V005T11A026.

JACOBSON, I., BOOCH, G. & RUMBAUGH, J. 1999. The unified software development process, Harlow;

Reading, Mass, Addison-Wesley.

JIANG, W., ZHANG, W., ZHANG, G., LUO, Y., ZHANG, Y. C., WOO, W. & TU, S. 2015. Creep damage

and crack initiation in P92–BNi2 brazed joint. Materials & Design, 72, 63-71.

JING, J., MENG, G., SUN, Y. & XIA, S. 2003. An effective continuum damage mechanics model for

creep–fatigue life assessment of a steam turbine rotor. International Journal of Pressure Vessels

and Piping, 80, 389-396.

JING, J., SUN, Y., XIA, S. & FENG, G. 2001a. A continuum damage mechanics model on low cycle

fatigue life assessment of steam turbine rotor. International journal of pressure vessels and piping,

78, 59-64.

JING, J., XIA, S. & SUN, Y. 2001b. Nonlinear continuum damage mechanics model on high temperature

creep analysis. JOURNAL OF PROPULSION TECHNOLOGY-BEIJING-, 22, 139-141.

149

JU-SHIN, H. & GIBBONS, T. B. 1999. The Prediction of Creep Failure in Notched Tubes Using

Continuum Damage Mechanics. ASME-PUBLICATIONS-PVP, 388, 171-176.

KACHANOV, L. M. 1958. On creep rupture time. Izv. Acad. Nauk SSSR, Otd. Techn. Nauk, 8, 26-31.

KACHANOV, L. M. 1999. Rupture time under creep conditions. International journal of fracture, 97, 11-

18.

KASSNER, M. E. 2009. Fundamentals of Creep in Metals and Alloys, GB, Elsevier Science.

KASSNER, M. E. & HAYES, T. A. 2003. Creep cavitation in metals. International Journal of Plasticity, 19,

1715-1748.

KOWALEWSKI, Z. L., HAYHURST, D. R. & DYSON, B. F. 1994a. Mechanisms-based creep constitutive

equations for an aluminium alloy. The Journal of Strain Analysis for Engineering Design, 29, 309-

316.

KOWALEWSKI, Z. L., LIN, J. & HAYHURST, D. R. 1994b. Experimental and theoretical evaluation of a

high-accuracy uni-axial creep testpiece with slit extensometer ridges. International journal of

mechanical sciences, 36, 751-769.

KUPFERSCHMID, M. 2009. Classical Fortran: programming for engineering and scientific applications,

Boca Raton, Fla; London, CRC.

LAI, G. Y. 1990. High temperature corrosion of engineering alloys.

LING, X., TU, S. & GONG, J. 2000. Application of Runge–Kutta–Merson algorithm for creep damage

analysis. International Journal of Pressure Vessels and Piping, 77, 243-248.

LIU, D. 2015. The development of finite element software for creep damage analysis. Ph.D. Ph.D. thesis,

University of Huddersfield.

LIU, D., XU, Q. & LU, Z. 2013a. Research in the development of finite element software for creep damage

analysis. Journal of communication and computer, 2013.

LIU, D., XU, Q., LU, Z., BARRANS, S. & GLOVER, I. 2013b. The development of finite element

software for creep deformation and damage analysis of weldment. 6th International ‘HIDA’

Conference: Life/Defect Assessment & Failures in High Temperature Plant. Nagasaki, Japan.

LIU, D., XU, Q., LU, Z. & XU, D. 2012a. Research in the development of computational FE software for

creep damage mechanics. 18th International Conference on Automation and Computing.

loughborough, UK: IEEE.

LIU, D., XU, Q., LU, Z. & XU, D. 2012b. The review of computational FE software for creep damage

mechanics. Advanced Materials Research, 510, 495-499.

LIU, D., XU, Q., LU, Z., XU, D. & TAN, F. 2013c. The development of finite element analysis software for

creep damage analysis. The 2013 World Congress in Computer Science, Computer Engineering,

and Applied Computing. Nevada, USA.

LIU, D., XU, Q., LU, Z., XU, D. & TAN, F. 2013d. The validation of computational FE software for creep

damage mechanics. Advanced Materials Research, 744, 205-210.

LIU, D., XU, Q., LU, Z., XU, D. & XU, Q. 2013e. The techniques in developing finite element software for

creep damage analysis. Advanced Materials Research, 744, 199-204.

MANIE, J. & WOLTHERS, A. 2013. User's Manual - Pre- and Postprocessing. In: MANIE, J. &

WOLTHERS, A. (eds.). Netherlands: TNO DIANA bv.

MANJOINE, M. J. 1975. Ductility indices at elevated temperature. Journal of Engineering Materials and

Technology, 97, 156-161.

MARGOLIN, B. Z., KARZOV, G. P., SHVETSOVA, V. A. & KOSTYLEV, V. I. 1998. Modelling for

transcrystalline and intercrystalline fracture by void nucleation and growth. Fatigue & Fracture of

Engineering Materials & Structures, 21, 123-137.

MERSON, R. H. An operational method for the study of integration processes. Proc. Symp. Data

Processing, 1957. 1-25.

NAG 2009. NAG Library Manual, Mark 22.

NI, Y. Z., LAN, X., XU, H. & MAO, X. P. 2015. Study on creep mechanical behaviour of P92 steel under

multiaxial stress state. Materials at High Temperatures.

ODQVIST, F. K. G. 1974. Mathematical theory of creep and creep rupture, Clarendon Press Oxford.

OLSEN, E. W., CONSOLINI, L. & HAUG, M. 2001. Software quality approaches: testing, verification,

and validation, New York, Springer.

OTHMAN, A. M., HAYHURST, D. R. & DYSON, B. F. 1993. Skeletal point stresses in circumferentially

notched tension bars undergoing tertiary creep modelled with physically based constitutive

equations. Proceedings of the Royal Society of London. Series A: Mathematical and Physical

Sciences, 441, 343-358.

PERRIN, I. J. & HAYHURST, D. R. 1996. Creep constitutive equations for a 0.5 Cr–0.5 Mo–0.25 V

ferritic steel in the temperature range 600–675 C. The Journal of Strain Analysis for Engineering

Design, 31, 299-314.

150

PERRIN, I. J. & HAYHURST, D. R. 1999. Continuum damage mechanics analyses of type IV creep failure

in ferritic steel crossweld specimens. International journal of pressure vessels and piping, 76, 599-

617.

QUAYYUM, S., SENGUPTA, M., CHOI, G., LISSENDEN, C. J. & HASSAN, T. 2014. High Temperature

Multiaxial Creep-Fatigue and Creep-Ratcheting Behavior of Alloy 617. Challenges In Mechanics

of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials,

Volume 2. Springer.

RAGAB, A. R. 2002. Creep rupture due to material damage by cavitation. Journal of engineering materials

and technology, 124, 199-205.

RAJ, R. & ASHBY, M. F. 1975. Intergranular fracture at elevated temperature. Acta Metallurgica, 23, 653-

666.

RICE, J. R. & TRACEY, D. M. 1969. On the ductile enlargement of voids in triaxial stress fields∗. Journal

of the Mechanics and Physics of Solids, 17, 201-217.

RICHARDS, R. 2001. Principles of solid mechanics, Boca Raton, Fla; London, CRC.

SADEGHBEIGI, R. 2012. Fluid catalytic cracking handbook: an expert guide to the practical operation,

design, and optimization of FCC units, Elsevier.

SEBESTA, R. W. 2010. Concepts of programming languages, Upper Saddle River, N.J; London, Pearson.

SKRZYPEK, J. J. & HETNARSKI, R. B. 1993. Plasticity and creep: theory, examples, and problems, Boca

Raton,Fla, Begell House.

SMITH, I. M. & GRIFFITHS, D. V. 2004. Programming the finite element method, Hoboken, NJ, Wiley.

SPINDLER, M. W. 1994. The Multi-axial Creep of Austenitic Stainless Steels, Nuclear Electric Report

TIGM. REP/0014/94.

SPINDLER, M. W. 2004. The multiaxial and uniaxial creep ductility of Type 304 steel as a function of

stress and strain rate. Materials at high Temperatures, 21, 47-54.

SPINDLER, M. W., HALES, R. & SKELTON, R. P. 2001. The multiaxial creep ductility of an ex-service

Type 316H stainless steel. BOOK-INSTITUTE OF MATERIALS, 769, 679-690.

TAN, F., XU, Q., LU, Z., BARRANS, S. 2013a. The development of computational FE system for creep

damage analysis of weldment. 6th International ‘HIDA’ Conference: Life/Defect Assessment &

Failures in High Temperature Plant. Nagasaki, Japan.

TAN, F., XU, Q., LU, Z. & LIU, D. 2013b. Practical guidance on the application of RK integration method

in finite element analysis of creep damage problem. The 2013 World Congress in Computer

Science, Computer Engineering, and Applied Computing. Nevada, USA.

TAN, F., XU, Q., LU, Z. & XU, D. 2012a. Literature review on the development of computational software

system for creep damage analysis for weldment. Advanced Materials Research, 510, 490-494.

TAN, F., XU, Q., LU, Z. & XU, D. 2012b. The preliminary development of computational software system

for creep damage analysis in weldment. 18th International Conference on Automation and

Computing. loughborough, UK: IEEE.

TAN, F., XU, Q., LU, Z., XU, D. & LIU, D. 2013c. The Validation of Computational Software System for

Creep Damage Analysis. Advanced Materials Research, 744, 449-454.

TU, S. 2003. High temperature structural integrity, Beijing, Scientific press.

TU, S. 2005. New Need of structural integrity technology for high temperature applications. Journal of

Pressure Equipment and Systems, 3, 26-39.

TU, S. 2007. Emerging challenges to structural integrity technology for high-temperature applications.

Frontiers of Mechanical Engineering in China, 2, 375-387.

TVERGAARD, V. & NEEDLEMAN, A. 1984. Analysis of the cup-cone fracture in a round tensile bar.

Acta metallurgica, 32, 157-169.

VOYIADJIS, G. Z. & KATTAN, P. I. 2002. Damage mechanics with finite elements: practical applications

with computer tools, New York, Springer.

WALLIS, P. J. L. 1985. The Software development process, Maidenhead, Pergamon Infotech.

WANG, J. M., XUE, Y. W., LI, W. H., WEI, A. Z. & CAO, Y. F. 2014. Study on creep characteristics of

oil film bearing Babbitt. Materials Research Innovations, 18, S2-16-S2-21.

WANG, X. & WANG, X. 1996. Finite element analysis on creep damage. Computers & Structures, 60,

781-786.

WANG, X., XU, Q., YU, S., LIU, H., HU, L. & REN, Y. 2015. Laves-phase evolution during aging in fine

grained heat-affected zone of a tungsten-strengthened 9% Cr steel weldment. Journal of Materials

Processing Technology, 219, 60-69.

WEN, J., TU, S., GAO, X. & REDDY, J. N. 2014. New model for creep damage analysis and its application

to creep crack growth simulations. Materials Science and Technology, 30, 32-37.

XU, Q. 2001. Creep damage constitutive equations for multi-axial states of stress for 0.5Cr0.5Mo0.25V

ferritic steel at 590°C. Theoretical and Applied Fracture Mechanics, 36, 99-107.

151

XU, Q. 2004. The development of validation methodology of multi-axial creep damage constitutive

equations and its application to 0.5Cr0.5Mo0.25V ferritic steel at 590 °C. Nuclear

Engineering and Design, 228, 97-106.

YAO, H., XUAN, F., WANG, Z. & TU, S. 2007. A review of creep analysis and design under multi-axial

stress states. Nuclear Engineering and Design, 237, 1969-1986.

YU, Q., YUE, Z. & WEN, Z. 2008. Creep damage evolution in a modeling specimen of nickel-based single

crystal superalloys air-cooled blades. Materials Science and Engineering: A, 477, 319-327.

YUAN, K., HAN, Z., ZHOU, H. & ZHONG, Y. 2014. Ultrasonic Inspection for Metal Creep Based on

Flight-Time-Attenuation. Applied Mechanics and Materials, 599, 164-168.

ZHANG, J., WANG, G., XUAN, F. & TU, S. 2015. The influence of stress-regime dependent creep model

and ductility in the prediction of creep crack growth rate in Cr–Mo–V steel. Materials & Design,

65, 644-651.

ZHAO, L., JING, H., XU, L., AN, J. & XIAO, G. 2012. Numerical investigation of factors affecting creep

damage accumulation in ASME P92 steel welded joint. Materials & Design, 34, 566-575.

ZHU, H., WEI, T., CARR, D., HARRISON, R., EDWARDS, L., SEO, D., MARUYAMA, K. &

DARGUSCH, M. S. 2014. Microstructural design for thermal creep and radiation damage

resistance of titanium aluminide alloys for high-temperature nuclear structural applications.

Current Opinion in Solid State and Materials Science, 18, 269-278.

152

10 APPENDICES

153

10.1 Publication list of this research

Seven papers were published during this research, only five is the first author:

1) Tan, F., Xu, Q., Lu, Z. Y., & Xu, D. L. (2012). Literature review on the development of

computational software system for creep damage analysis for weldment. Advanced Materials

Research, 510, 490-494.

2) Tan, F., Xu, Q., Lu, Z., & Xu, D. (2012). The preliminary development of computational software

system for creep damage analysis in weldment. Paper presented at the 18th International

Conference on Automation and Computing, loughborough, UK.

3) Tan, F., Xu, Q., Lu, Z. Y., Xu, D. L., & Liu, D. Z. (2013). The Validation of Computational

Software System for Creep Damage Analysis. Advanced Materials Research, 744, 449-454.

4) Tan, F., Xu, Q., Lu, Z., Xu, D., & Liu, D. (2013). Practical guidance on the application of RK

integration method in finite element analysis of creep damage problem. Paper presented at the The

2013 World Congress in Computer Science, Computer Engineering, and Applied Computing,

Nevada, USA.

5) Tan, F., Xu, Q., Lu, Z., Barrans, S. (2013). The development of computational FE system for creep

damage analysis of weldment. Paper presented at the 6th International ‘HIDA’ Conference:

Life/Defect Assessment & Failures in High Temperature Plant, Nagasaki, Japan.

6) Liu, D. Z., Xu, Q., Lu, Z. Y., Xu, D. L., & Tan, F. (2013). The validation of computational FE

software for creep damage mechanics. Advanced Materials Research, 744, 205-210.

7) Liu, D., Xu, Q., Lu, Z., Xu, D., & Tan, F. (2013). The development of finite element analysis

software for creep damage analysis. Paper presented at the The 2013 World Congress in Computer

Science, Computer Engineering, and Applied Computing, Nevada,USA. Reference

154

10.2 Source Code of Tan_library，NLC and DTI

 module tan_library

 contains

 !

 ! Purpose:

 ! Coded for the develpment of HITSI, and it includes:

 ! 1. KR, PH, QX (constitutive equations)

 ! 2. EULER, RK4, RKM, RKF (numerical integration method)

 ! 3. TRS (transformation of stress tensor)

 ! 4. TSC (time-step control procedure)

 ! 5. NOR_KR (normalization scheme)

 ! Record of revisions:

 ! Date Programmer Description of change

 ! ==== ========== =====================

 ! 21/09/2014 F. Tan Original code

 !

 subroutine TRS (sigma,stress)

 implicit none

 doubleprecision, intent(in) :: sigma(:)

 doubleprecision, intent(out) :: stress(:)

 doubleprecision :: sx, sy, sz, txy, tyz, tzx, pi, j2, j3,

 & sig0, loang, es

 doubleprecision, dimension(3) :: ps

 integer :: nos

 nos = ubound(sigma,1)

 pi = 3.1415926

!---------------------stress terms rearrangement---------------------

 select case (nos)

 case (4)

 sx = sigma(1); sy = sigma(2); sz = sigma(4)

 txy = sigma(3); tyz = 0.0; tzx = 0.0

 case (6)

 sx = sigma(1); sy = sigma(2); sz = sigma(3)

 txy = sigma(4); tyz = sigma(5); tzx = sigma(6)

 case default

 print*, "Error on stress rearrangement in TRS"

 end select

!----------------------------hydrostatic-----------------------------

 sig0 = (sx+sy+sz)/3.

!----------------------------invariants------------------------------

 j2 = ((sx-sy)**2+(sy-sz)**2+(sz-sx)**2)/6.+txy**2+tyz**2+

 & tzx**2

 j3 = (sx-sig0)*(sy-sig0)*(sz-sig0)+2*txy*tyz*tzx-

 & (sx-sig0)*tyz**2-(sz-sig0)*txy**2-(sy-sig0)*tzx**2

!----------------------------load angle------------------------------

 loang = asin((-sqrt(27.)*j3)/(2.*sqrt(j2**3)))/3.

!-------------------------principal stress---------------------------

 ps(1) = 2.*sqrt(j2)/sqrt(3.)*sin(loang+2.*pi/3.)+sig0

 ps(2) = 2.*sqrt(j2)/sqrt(3.)*sin(loang)+sig0

 ps(3) = 2.*sqrt(j2)/sqrt(3.)*sin(loang-2.*pi/3.)+sig0

!-------------------------equivalent stress--------------------------

 es = 1/sqrt(2.)*

 & sqrt((ps(1)-ps(2))**2+(ps(2)-ps(3))**2+(ps(3)-ps(1))**2)

!-------------------------result updatiing---------------------------

 select case (nos)

 case (4)

 stress(1) = sx-sig0; stress(2) = sy-sig0; stress(3) = txy

 stress(4) = sz-sig0; stress(5) = ps(1); stress(6) = ps(2)

 stress(7) = ps(3); stress(8) = es

 case (6)

155

 stress(1) = sx-sig0; stress(2) = sy-sig0; stress(4) = txy

 stress(3) = sz-sig0; stress(5) = tyz; stress(6) = tzx

 stress(7) = ps(1); stress(8) = ps(2); stress(9) = ps(3)

 stress(10) = es

 case default

 print*, "wrong size for nos in TRS"

 end select

 return

 end subroutine TRS

 subroutine EULER (func,y,t,dt,stress,mat,nos,nom,noe)

 implicit none

 external :: func

 integer, intent(in) :: nos, nom, noe

 doubleprecision, intent(inout) :: y(noe)

 doubleprecision, intent(in) :: stress(nos), mat(nom)

 doubleprecision, intent(in) :: t, dt

 doubleprecision :: k(noe)

!-------------------------derivative solving-------------------------

 call func(k,y,t,stress,mat,nos,nom,noe)

!--------------------------increment update--------------------------

 y = y+k*dt

 return

 end subroutine EULER

 subroutine RK4 (func,y,t,dt,stress,mat,nos,nom,noe)

 implicit none

 external :: func

 integer, intent(in) :: nos, nom, noe

 doubleprecision, intent(inout) :: y(noe)

 doubleprecision, intent(in) :: stress(nos), mat(nom)

 doubleprecision, intent(in) :: t, dt

 doubleprecision :: k1(noe), k2(noe), k3(noe), k4(noe),

 & mfs(noe)

!-------------------------derivative solving-------------------------

 call func(k1,y,t,stress,mat,nos,nom,noe)

 call func(k2,y+dt/2*k1,t+dt/2,stress,mat,nos,nom,noe)

 call func(k3,y+dt/2*k2,t+dt/2,stress,mat,nos,nom,noe)

 call func(k4,y+dt*k3,t+dt,stress,mat,nos,nom,noe)

!--------------------------increment update--------------------------

 mfs = (k1+2*k2+2*k3+k4)/6

 y = y+mfs*dt

 return

 end subroutine RK4

 subroutine RKM (func,y,t,dt,stress,mat,nos,nom,noe,rcv)

 implicit none

 external :: func

 integer, intent(in) :: nos, nom, noe

 doubleprecision, intent(inout) :: y(noe)

 doubleprecision, intent(in) :: stress(nos), mat(nom)

 doubleprecision, intent(in) :: t, dt

 integer, intent(out) :: rcv

 doubleprecision :: maoi

 doubleprecision :: k1(noe), k2(noe), k3(noe), k4(noe),

 & k5(noe), mfs(noe), loer(noe), aoi(noe)

!-------------------------derivative solving-------------------------

 call func(k1,y,t,stress,mat,nos,nom,noe)

 call func(k2,y+dt/3.*k1,t+dt/3.,stress,mat,nos,nom,noe)

 call func(k3,y+dt/6.*(k1+k2),t+dt/3.,stress,mat,nos,nom,

 & noe)

156

 call func(k4,y+dt/8.*(k1+3*k3),t+dt/2.,stress,mat,nos,nom,

 & noe)

 call func(k5,y+dt/2.*(k1-3.*k3+4.*k4),t+dt,stress,mat,nos,

 & nom,noe)

!--------------------------increment update--------------------------

 mfs = (k1+4.*k4+k5)/6.

 y = y+mfs*dt

!-----------------------self-adaptive technique----------------------

 loer = (2*k1-9*k3+8*k4-k5)/30.

 aoi = loer/mfs

 maoi = maxval(aoi)

 if (maoi<0.001) then

 rcv = 0

 else

 rcv = 1

 end if

 return

 end subroutine RKM

 subroutine RKF (func,y,t,dt,stress,mat,nos,nom,noe,rcv)

 implicit none

 external :: func

 integer, intent(in) :: nos, nom, noe

 doubleprecision, intent(inout) :: y(noe)

 doubleprecision, intent(in) :: stress(nos), mat(nom)

 doubleprecision, intent(in) :: t, dt

 integer, intent(out) :: rcv

 doubleprecision :: maoi

 doubleprecision :: k1(noe), k2(noe), k3(noe), k4(noe),

 & k5(noe), k6(noe), mfs4(noe), mfs5(noe),

 & aoi(noe), ybar(noe)

!-------------------------derivative solving-------------------------

 call func(k1,y,t,stress,mat,nos,nom,noe)

 call func(k2,y+dt/4.*k1,t+dt/4.,stress,mat,nos,nom,noe)

 call func(k3,y+dt/32.*(3.*k1+9.*k2),t+3.*dt/8.,stress,mat,

 & nos,nom,noe)

 call func(k4,y+dt/2197.*(1932.*k1-7200.*k2+7296.*k3),

 & t+12.*dt/13.,stress,mat,nos,nom,noe)

 call func(k5,y+dt/4104.*(8341.*k1-32832.*k2+29440.*k3-

 & 845.*k4),t+dt,stress,mat,nos,nom,noe)

 call func(k6,y+dt*(-(8./27.)*k1+2*k2-(3544./2565.)*k3+(1859./

 & 4104.)*k4-(11./40.)*k5),t+dt/2.,stress,mat,nos,nom,

 & noe)

 mfs4 = (25./216.)*k1+(1408./2565.)*k3+(2197./4104.)*k4-

 & (1./5.)*k5

 mfs5 = (16./135.)*k1+(6656./12825.)*k3+(28561./56430.)*k4-

 & (9./50.)*k5+(2./55.)*k6

!--------------------------increment update--------------------------

 ybar = y+mfs4*dt

 y = y+mfs5*dt

!-----------------------self-adaptive technique----------------------

 aoi = (dt*1e-5/(2.*abs(y-ybar)))**0.25

 maoi = maxval(aoi)

 if (maoi<1) then

 rcv = 1

 else

 rcv = 0

 end if

 return

 end subroutine RKF

157

 subroutine KR (f,x,t,stress,mat,nos,nom,noe)

 implicit none

 integer, intent(in) :: nos, nom, noe

 doubleprecision, intent(in) :: stress(nos), mat(nom), x(noe)

 doubleprecision, intent(in) :: t

 doubleprecision, intent(out) :: f(noe)

 doubleprecision :: sx, sy, sz, txy, tyz, tzx, mps, es

 doubleprecision :: A, n, m, B, phi, chi, alpha, rs

!---------------------stress terms rearrangement---------------------

 select case (nos)

 case (1)

 sx = stress(1); sy = 0.0; sz = 0.0; txy = 0.0

 tyz = 0.0; tzx = 0.0; mps = 0.0; es = 0.0

 case (8)

 sx = stress(1); sy = stress(2); txy = stress(3)

 sz = stress(4); mps = stress(5); es = stress(8)

 tyz = 0.0; tzx = 0.0

 case (10)

 sx = stress(1); sy = stress(2); sz = stress(3)

 txy = stress(4); tyz = stress(5); tzx = stress(6)

 mps = stress(7); es = stress(10)

 case default

 print*, "Error on stress rearrangement in KR"

 end select

!------------------material properties rearrangement-----------------

 A=mat(1); n=mat(2); m=mat(3); B=mat(4); phi=mat(5); chi=mat(6)

 alpha=mat(7); rs=alpha*mps+(1.-alpha)*es

!--------------------creep constitutive equations--------------------

 select case (noe)

 case (2)

 f(1)=A*((sx/(1-x(2)))**n)*(t**m)

 f(2)=B*(sx**chi)/((1-x(2))**phi)*(t**m)

 case (5)

 f(1)=(3./2.)*(sx/es)*A*((es/(1-x(5)))**n)*(t**m)

 f(2)=(3./2.)*(sy/es)*A*((es/(1-x(5)))**n)*(t**m)

 f(3)=(3./2.)*(txy/es)*A*((es/(1-x(5)))**n)*(t**m)

 f(4)=(3./2.)*(sz/es)*A*((es/(1-x(5)))**n)*(t**m)

 f(5)=B*(rs**chi)/((1-x(5))**phi)*(t**m)

 case (7)

 f(1)=(3./2.)*(sx/es)*A*((es/(1-x(7)))**n)*(t**m)

 f(2)=(3./2.)*(sy/es)*A*((es/(1-x(7)))**n)*(t**m)

 f(3)=(3./2.)*(sz/es)*A*((es/(1-x(7)))**n)*(t**m)

 f(4)=(3./2.)*(txy/es)*A*((es/(1-x(7)))**n)*(t**m)

 f(5)=(3./2.)*(tyz/es)*A*((es/(1-x(7)))**n)*(t**m)

 f(6)=(3./2.)*(tzx/es)*A*((es/(1-x(7)))**n)*(t**m)

 f(7)=B*(rs**chi)/((1-x(7))**phi)*(t**m)

 case default

 print*, "Error on constitutive equations in KR"

 end select

 return

 end subroutine KR

 subroutine PH (f,x,t,stress,mat,nos,nom,noe)

 implicit none

 integer, intent(in) :: nos, nom, noe

 doubleprecision, intent(in) :: stress(nos), mat(nom), x(noe)

 doubleprecision, intent(in) :: t

 doubleprecision, intent(out) :: f(noe)

 doubleprecision :: sx, sy, sz, txy, tyz, tzx, mps, es

 doubleprecision :: A, B, C, h, Hstar, Kc, v

 integer :: N

158

!---------------------stress terms rearrangement---------------------

 select case (nos)

 case (1)

 sx = stress(1); sy = 0.0; sz = 0.0; txy = 0.0

 tyz = 0.0; tzx = 0.0; mps = 0.0; es = 0.0

 case (8)

 sx = stress(1); sy = stress(2); txy = stress(3)

 sz = stress(4); mps = stress(5); es = stress(8)

 tyz = 0.0; tzx = 0.0

 case (10)

 sx = stress(1); sy = stress(2); sz = stress(3)

 txy = stress(4); tyz = stress(5); tzx = stress(6)

 mps = stress(7); es = stress(10)

 case default

 print*, "Error on stress rearrangement in PH"

 end select

!------------------material properties rearrangement-----------------

 A=mat(1); B=mat(2); C=mat(3); h=mat(4); Hstar=mat(5)

 Kc=mat(6); v=mat(7)

 if (mps>0) then

 N=1

 else if (mps<=0) then

 N=0

 end if

!--------------------creep constitutive equations--------------------

 select case (noe)

 case (4)

 f(1) = A*sinh((B*sx*(1-x(2)))/((1-x(3))*(1-x(4))))

 f(2) = h*f(1)/sx*(1.-(x(2)/Hstar))

 f(3) = Kc/3.*(1-x(3))**4

 f(4) = C*f(1)

 case (8)

 f(1) = (3./2.)*(sx/es)*A*

 & sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8))))

 f(2) = (3./2.)*(sy/es)*A*

 & sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8))))

 f(3) = (3./2.)*(txy/es)*A*

 & sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8))))

 f(4) = (3./2.)*(sz/es)*A*

 & sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(8))))

 f(5) = sqrt((2./3.)*(f(1)**2+f(2)**2+2*f(3)**2+f(4)**2))

 f(6) = h*f(5)/es*(1.-(x(6)/Hstar))

 f(7) = Kc/3.*(1.-x(7))**4

 f(8) = C*N*f(5)*(mps/es)**v

 case (10)

 f(1) = (3./2.)*(sx/es)*A*

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10))))

 f(2) = (3./2.)*(sy/es)*A*

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10))))

 f(3) = (3./2.)*(sz/es)*A*

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10))))

 f(4) = (3./2.)*(txy/es)*A*

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10))))

 f(5) = (3./2.)*(tyz/es)*A*

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10))))

 f(6) = (3./2.)*(tzx/es)*A*

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(10))))

 f(7) = sqrt((2./3.)*(f(1)**2+f(2)**2+f(3)**2+

 & 2*f(4)**2+2.*f(5)**2+2*f(6)**2))

 f(8)=h*f(7)/es*(1.-(x(8)/Hstar))

 f(9)=Kc/3.*(1-x(9))**4

159

 f(10)=C*N*f(7)*(mps/es)**v

 case default

 print*, "Error on constitutive equations in PH"

 end select

 return

 end subroutine PH

 subroutine QX (f,x,t,stress,mat,nos,nom,noe)

 implicit none

 integer, intent(in) :: nos, nom, noe

 doubleprecision, intent(in) :: stress(nos), mat(nom), x(noe)

 doubleprecision, intent(in) :: t

 doubleprecision, intent(out) :: f(noe)

 doubleprecision :: sx, sy, sz, txy, tyz, tzx, ps1, ps2, ps3,

 & es, Ss, sm, S1

 doubleprecision :: A, B, C, h, Hstar, Kc, v, a1, b1, p, q

 integer :: N

!---------------------stress terms rearrangement---------------------

 select case (nos)

 case (8)

 sx = stress(1); sy = stress(2); txy = stress(3)

 sz = stress(4); ps1 = stress(5); ps2 = stress(6)

 ps3 = stress(7); es = stress(8); tyz = 0.0; tzx = 0.0

 case (10)

 sx = stress(1); sy = stress(2); sz = stress(3)

 txy = stress(4); tyz = stress(5); tzx = stress(6)

 ps1 = stress(7); ps2 = stress(8); ps3 = stress(9)

 es = stress(10)

 case default

 print*, "Error on stress rearrangement in QX"

 end select

!------------------material properties rearrangement-----------------

 A = mat(1); B = mat(2); C = mat(3); h = mat(4);

 Hstar = mat(5); Kc = mat(6); v = mat(7); a1 = mat(8);

 b1 = mat(9); p = mat(10); q = mat(11)

 sm = (ps1+ps2+ps3)/3; Ss = sqrt(ps1**2+ps2**2+ps3**2)

 S1 = ps1-sm

 if (ps1>0) then

 N=1

 else if (ps1<=0) then

 N=0

 end if

!--------------------creep constitutive equations--------------------

 select case (noe)

 case (9)

 f(1) = (3./2.)*(sx/es)*A*

 & sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(9))))

 f(2) = (3./2.)*(sy/es)*A*

 & sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(9))))

 f(3) = (3./2.)*(txy/es)*A*

 & sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(9))))

 f(4) = (3./2.)*(sz/es)*A*

 & sinh((B*es*(1-x(6)))/((1-x(7))*(1-x(9))))

 f(5) = sqrt((2./3.)*(f(1)**2+f(2)**2+2*f(3)**2+f(4)**2))

 f(6) = h*f(5)/es*(1.-(x(6)/Hstar))

 f(7) = Kc/3.*(1.-x(7))**4

 f(8) = C*N*f(5)*

 & (exp(p*(1-(ps1/es))+q*(0.5-1.5*(sm/es))))**(-1)

 f(9) = f(8)*((2./3.)*(es/S1))**a1*exp(b1*(3.*sm/Ss-1.))

 case (11)

 f(1) = (3./2.)*(sx/es)*A*

160

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11))))

 f(2) = (3./2.)*(sy/es)*A*

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11))))

 f(3) = (3./2.)*(sz/es)*A*

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11))))

 f(4) = (3./2.)*(txy/es)*A*

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11))))

 f(5) = (3./2.)*(tyz/es)*A*

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11))))

 f(6) = (3./2.)*(tzx/es)*A*

 & sinh((B*es*(1-x(8)))/((1-x(9))*(1-x(11))))

 f(7) = sqrt((2./3.)*(f(1)**2+f(2)**2+f(3)**2+

 & 2*f(4)**2+2.*f(5)**2+2*f(6)**2))

 f(8) = h*f(7)/es*(1.-(x(8)/Hstar))

 f(9) = Kc/3.*(1-x(9))**4

 f(10) = C*N*f(7)*

 & (exp(p*(1-(ps1/es))+q*(0.5-1.5*(sm/es))))**(-1)

 f(11) =f(10)*((2./3.)*(es/S1))**a1*

 & exp(b1*(3.*sm/Ss-1.))

 case default

 print*, "Error on constitutive equations in QX"

 end select

 return

 end subroutine QX

 subroutine TSC (dt,g_rcv)

 implicit none

 integer, intent(in) :: g_rcv(:,:,:)

 doubleprecision, intent(inout) :: dt

 doubleprecision :: drcv

 drcv = maxval(g_rcv)

!--------------------------reduce time-step--------------------------

 if (drcv == 1) then

 dt = dt/2

 else if (drcv == 0) then

 dt = dt

 end if

 end subroutine TSC

 subroutine NOR_KR (f,x,t,stress,mat,nos,nom,noe)

 implicit none

 integer, intent(in) :: nos, nom, noe

 doubleprecision, intent(in) :: stress(nos), mat(nom),

 & x(noe)

 doubleprecision, intent(in) :: t

 doubleprecision, intent(out) :: f(noe)

 doubleprecision :: sx, sy, sz, txy, tyz, tzx, mps, es, cfs

 doubleprecision :: A, n, m, B, phi, chi, alpha, rs, e, ip

!---------------------stress terms rearrangement---------------------

 select case (nos)

 case (9)

 sx = stress(1); sy = stress(2); txy = stress(3)

 sz = stress(4); mps = stress(5); es = stress(8)

 tyz = 0.0; tzx = 0.0; ip = stress(9)

 case (11)

 sx = stress(1); sy = stress(2); sz = stress(3)

 txy = stress(4); tyz = stress(5); tzx = stress(6)

 mps = stress(7); es = stress(10); ip = stress(11)

 case default

 print*, "Error on stress rearrangement in NOR_KR"

 end select

161

!------------------material properties rearrangement-----------------

 A = mat(1); n = mat(2); m = mat(3); B = mat(4); phi = mat(5)

 chi = mat(6); alpha = mat(7); e = mat(8)

 rs = alpha*mps+(1.-alpha)*es; cfs = (A*e/B)*(ip**(n-chi-1.))

!--------------------creep constitutive equations--------------------

 select case (noe)

 case (5)

 f(1)=(3./2.)*(sx/es)*((es/(1-x(5)))**n)

 f(2)=(3./2.)*(sy/es)*((es/(1-x(5)))**n)

 f(3)=(3./2.)*(txy/es)*((es/(1-x(5)))**n)

 f(4)=(3./2.)*(sz/es)*((es/(1-x(5)))**n)

 f(5) = (rs**chi)/(cfs*(1.+phi)*((1.-x(5))**phi))

 case (7)

 f(1)=(3./2.)*(sx/es)*((es/(1-x(7)))**n)

 f(2)=(3./2.)*(sy/es)*((es/(1-x(7)))**n)

 f(3)=(3./2.)*(sz/es)*((es/(1-x(7)))**n)

 f(4)=(3./2.)*(txy/es)*((es/(1-x(7)))**n)

 f(5)=(3./2.)*(tyz/es)*((es/(1-x(7)))**n)

 f(6)=(3./2.)*(tzx/es)*((es/(1-x(7)))**n)

 f(7) = (rs**chi)/(cfs*(1.+phi)*((1.-x(7))**phi))

 case default

 print*, "Error on constitutive equations in KR"

 end select

 return

 end subroutine NOR_KR

 end module tan_library

 program NLC

 !

 ! Purpose:

 ! To calculate the nodal force of each loaded node

 !

 ! Record of revisions:

 ! Date Programmer Description of change

 ! ==== ========== =====================

 ! 21/09/2014 F. Tan Original code

 !

 implicit none

 character(len=16) :: filename1, protype

 integer :: nn, i, ierror

 doubleprecision :: p

 doubleprecision, allocatable :: f1(:),f2(:),r1(:),r0(:),f(:)

 write(*,*) 'Please Enter The Input File Name: '

 read (*,*) filename1

 open(10,file=filename1,status='old',action='read',

 & iostat=ierror)

 open(11,file='loadsdata.res',status='replace',action='write',

 & iostat=ierror)

!---------------------------read input file--------------------------

 read (10,*) protype

 read (10,*) nn, p

 allocate (f1(nn), f2(nn), r0(nn), r1(nn), f(nn+1))

 read (10,*) (r0(i), i=1,nn)

 read (10,*) (r1(i), i=1,nn)

!------------------assemble nodal loads of each node-----------------

 select case (protype)

 case ('axisymmetric')

 do i = 1, nn

 f1(i) = (r1(i)**2+r0(i)*r1(i)-2*r0(i)**2)/6

 f2(i) = (2*r1(i)**2-r0(i)*r1(i)-r0(i)**2)/6

 end do

162

 case ('planar')

 do i = 1, nn

 f1(i) = (r1(i)-r0(i))/2

 f2(i) = f1(i)

 end do

 case default

 print*, "wrong number of nodes in NLC"

 end select

!-----------------assemble nodal loads of each elememt---------------

 f = 0.

 do i = 1, nn

 f(i) = f1(i)

 end do

 do i = 1, nn

 f(i+1) = f(i+1)+f2(i)

 end do

 f=f*p

!-----------------output nodal loads of loaded nodes-----------------

 select case (protype)

 case ('axisymmetric')

 write(11,*) "Nodal Force From Inner to Outer:"

 case ('planar')

 write(11,*) "Nodal Force From First to Last:"

 end select

 do i = 1, nn+1

 write (11,'(i5,es14.7)') i, f(i)

 end do

 end program NLC

 program DTI

 !

 ! Purpose:

 ! To transfer the data from neutral file of FEMGV to HITSI,

 ! and to transfer the data from result file of HITSI to

 ! FEMGV

 !

 ! Record of revisions:

 ! Date Programmer Description of change

 ! ==== ========== =====================

 ! 21/09/2014 F. Tan Original code

 !

 implicit none

 integer :: ierror

 character (len=30) :: filename1, filename2, model_name

 integer :: key, iformt, maxout, nn, i, lpnr, types, ne0, ne1,

 & nant, nels, group, material, variant, physical, nod, k,

 & nant1, dof1, dof2, dof3, lcase, elem, dof, j

 character :: opcode, n1, n2, n3, n4, n5, n6, n7, n8

 doubleprecision, dimension(3) :: coordinate

 integer, dimension(10) :: nodes

 doubleprecision, allocatable :: g_coord(:,:)

 integer, allocatable :: num(:), g_num1(:,:), g_num(:,:),

 & g_mat(:), nf(:,:), loadnode(:)

 character (len=15) :: etype, aname

 character (len=30) :: modelname,transfertype

 integer :: nst, nip, node, elemt, point, ndim,

 & mid

 doubleprecision :: time,e,v, value1

 character (len=15) :: element

 doubleprecision, allocatable :: g_dispmt(:,:),

 & g_reforce(:,:), g_points(:,:,:), g_sigma(:,:,:), g_eps(:,:,:)

163

 & , g_evp(:,:,:), g_damage(:,:)

 integer, allocatable :: material1(:)

 integer :: key1=111, key2=2, key3=3, key4=20, key5=100,

 & key6=-1, key7=-2, key8=-3, group1=1, nsc=0, nlc=0, key9=-4,

 & key10=-5, key11=9999, iformt1=2

 integer :: ncomps1=2,irtype=1,norcty=0,menu=1,ictype=2,

 & icind1=1, icind2=1, iexist=0, ncomps2=4, icind3=3

 character :: opcode1='C'

 write (*,*) 'Please Enter The Transfer Processing'

 read (*,*) transfertype

 select case (transfertype)

!-----------------------pre-processing transfer----------------------

 case ('pre-processing')

 write (*,*) 'Please Enter The Input File Name: '

 read (*,*) filename1

 write (*,*) 'Please Enter The Output File Name: '

 read (*,*) filename2

 open (unit=10, file=filename1, status='old', action='read',

 & iostat=ierror)

 open (unit=11, file=filename2, status='replace',

 & action='write', iostat=ierror)

 do

 read (10,99990) key

 if (key==9999) exit

 select case (key)

 case (1)

 backspace (unit=10)

 read (10,99999) key, opcode, model_name

 case (2)

 open (unit=12, file='temp.txt')

 backspace (unit=10)

 read (10,99998) key, opcode, n1, n2, n3, n4, n5, n6,

 & iformt, maxout

 do

 read (10,99989) key

 if (key==-3) exit

 backspace (unit=10)

 read (10,99997) key, nn, coordinate(:)

 write(12,99988) coordinate(:)

 end do

 allocate (g_coord(3,nn))

 rewind (unit=12)

 do i=1,nn

 read (12,99988) g_coord(:,i)

 end do

 close (unit=12, status='delete')

 case (101)

 backspace (unit=10)

 read (10,99998) key, opcode, n1, n2, n3, n4, n5, n6,

 & iformt, maxout

 read (10,99996) key, n1, n2, n3, n4, n5, n6, n7, n8,

 & lpnr, types, ne0, ne1, nant

 do

 read (10,99989) key

 if (key==-3) exit

 backspace (unit=10)

 read (10,99995) key, nodes(:)

 end do

 case (3)

 open (unit=12, file='temp.dat')

 open (unit=13, file='temp1.dat')

164

 backspace (unit=10)

 read (10,99998) key, opcode, n1, n2, n3, n4, n5, n6,

 & iformt, maxout

 do

 read (10,99989) key

 if (key==-3) exit

 backspace (unit=10)

 read (10,99994) key, nels, types, group,

 & material, variant, physical

 if (types==3) then

 nod = 3

 else if (types==5) then

 nod = 4

 else if (types==13) then

 nod = 8

 else

 write (*,*) 'Wrong element type'

 end if

 allocate (num(nod))

 read (10,99995) key, num(:)

 write (12,99987) num(:)

 write (13,99986) material

 deallocate (num)

 end do

 allocate (g_num(nod,nels),g_mat(nels))

 rewind (unit=12)

 rewind (unit=13)

 do i=1,nels

 read (12,99987) g_num(:,i)

 read (13,99986) g_mat(i)

 end do

 close (unit=12, status='delete')

 close (unit=13, status='delete')

 case (103)

 backspace (unit=10)

 read (10,99998) key, opcode, n1, n2, n3, n4, n5, n6,

 & iformt, maxout

 allocate (nf(3,nn))

 nf = 1; nant1 = 0

 do

 read (10,99989) key

 if (key==-3) exit

 backspace (unit=10)

 nodes = 0

 read (10,99985) key,aname,lpnr,nant,dof1,dof2,dof3

 read (10,99995) key, nodes(:)

 nant1=nant1+nant

 if (dof1 == 0) then

 nf = nf

 else if (dof1 == 1) then

 open (unit=12, file='temp.txt')

 do i = 1, nant

 write (12,99993) nodes(i),dof1-1

 end do

 rewind (unit=12)

 do i = 1, nant

 read (12,99993)k, nf(1,k)

 end do

 close (unit=12, status='delete')

 end if

 if (dof2 == 0) then

165

 nf = nf

 else if (dof2 == 1) then

 open (unit=12, file='temp.txt')

 do i = 1, nant

 write (12,99993) nodes(i),dof2-1

 end do

 rewind (unit=12)

 do i = 1, nant

 read (12,99993)k, nf(2,k)

 end do

 close (unit=12, status='delete')

 end if

 if (dof3 == 0) then

 nf = nf

 else if (dof3 == 1) then

 open (unit=12, file='temp.txt')

 do i = 1, nant

 write (12,99993) nodes(i),dof3-1

 end do

 rewind (unit=12)

 do i = 1, nant

 read (12,99993)k, nf(3,k)

 end do

 close (unit=12, status='delete')

 end if

 end do

 close (unit=12, status='delete')

 case (110)

 j = 0

 open (unit=12, file='temp.txt')

 backspace (unit=10)

 read (10,99998) key, opcode, n1, n2, n3, n4, n5, n6,

 & iformt, maxout

 do

 j=j+1

 read (10,99989) key

 if (key==-3) exit

 backspace (unit=10)

 read (10,99992) key, lcase, elem, dof, value1

 write (12,99991) elem

 end do

 rewind (unit=12)

 j = j-1

 allocate (loadnode(j))

 loadnode = 0

 do i=1, j

 read (12,99991) loadnode(i)

 end do

 close (unit=12, status='delete')

 case default

 write (*,*) 'Wrong data set of neutral file'

 end select

 end do

99999 format (1X,I4,A1,A30)

99998 format (1X,I4,A1,6A1,61X,I2,1X,I2)

99997 format (1X,I2,I10,3E14.7)

99996 format (1X,I2,1X,8A1,I10,I10,I10,I10,I10)

99995 format (1X,I2,10I10)

99994 format (1X,I2,I10,I5,I5,I5,5X,I5,I5)

99993 format (1X,4I10)

99992 format (1X,I2,I5,I10,I5,E15.5)

166

99991 format (1X,I10)

99990 format (1X,I4)

99989 format (1X,I2)

99988 format (3ES14.7)

99987 format (10I10)

99986 format (I5)

99985 format (1X,I2,1X,A8,I5,1X,I5,1X,3I1)

!--------------------translation of element type---------------------

 if (nod==3) then

 etype = 'triangle'

 else if (nod==4) then

 etype = 'quadrilateral'

 else if (nod==8) then

 etype = 'hexahedron'

 else

 write (*,*) 'Cannot translate element type'

 end if

!--------------------the input data file of HITSI--------------------

 write (11,*) etype, nels, nn

 if (etype == 'triangle') then

 do i=1,nn

 write(11,*) i, g_coord(1,i), g_coord(2,i)

 end do

 else if (etype == 'quadrilateral') then

 do i=1,nn

 write(11,*) i, g_coord(1,i), g_coord(2,i)

 end do

 else if (etype == 'hexahedron') then

 do i=1,nn

 write(11,*) i, g_coord(:,i)

 end do

 else

 write (*,*) 'Error occurs on rewrite of coordinate'

 end if

 allocate (g_num1(nod,nels))

 g_num1 = 0

 if (etype == 'triangle') then

 do i=1,nels

 if (mod(i,2)==0) then

 g_num1(1,i) = g_num(2,i)

 g_num1(2,i) = g_num(3,i)

 g_num1(3,i) = g_num(1,i)

 else

 g_num1(:,i) = g_num(:,i)

 end if

 write(11,*) i, g_num1(:,i)

 end do

 else if (etype == 'quadrilateral') then

 do i=1,nels

 g_num1(1,i) = g_num(1,i)

 g_num1(2,i) = g_num(4,i)

 g_num1(3,i) = g_num(3,i)

 g_num1(4,i) = g_num(2,i)

 write(11,*) i, g_num1(:,i)

 end do

 else if (etype == 'hexahedron') then

 do i=1,nels

 write(11,*) i, g_num(:,i)

 end do

 else

 write(*,*)'Error occurs on rewrite of element definition'

167

 end if

 if (nod == 3) then

 do i = 1,nn

 write(11,*) i, nf(1,i), nf(2,i)

 end do

 else if (nod == 4) then

 do i = 1,nn

 write(11,*) i, nf(1,i), nf(2,i)

 end do

 else if (nod == 8) then

 do i = 1,nn

 write(11,*) i, nf(:,i)

 end do

 end if

 write (11,*)j

 do i =1,j

 write(11,*) loadnode(i)

 end do

!----------------------post-processing transfer----------------------

 case ('post-processing')

 write (*,*) 'Please Enter The model Name: '

 read (*,*) modelname

 write (*,*) 'Please Enter The Input File Name: '

 read (*,*) filename1

 write (*,*) 'Please Enter The Output File Name: '

 read (*,*) filename2

 open (unit=10, file=filename1, status='old', action='read',

 & iostat=ierror)

 open (unit=11, file=filename2, status='replace',

 & action='write', iostat=ierror)

 do

 read (10,99969) key

99969 format(1X,I4)

 if (key==9999) exit

 select case (key)

 case (1)

 read (10,*)ndim, nn, nod, nels, element, nst,

 & nip, time,e,v,mid

 case (2)

 allocate (g_coord(ndim,nn))

 do i=1,nn

 read (10,*)node, g_coord(:,i)

 end do

 case (3)

 allocate (g_num(nod,nels), material1(nels))

 do i=1,nels

 read (10,*)elemt, g_num(:,i),material1(i)

 end do

 case (4)

 allocate (g_dispmt(ndim,nn))

 do i=1,nn

 read (10,*)node, g_dispmt(:,i)

 end do

 case (5)

 allocate (g_reforce(ndim,nn))

 do i=1,nn

 read (10,*)node, g_reforce(:,i)

 end do

 case (6)

 allocate (g_points(ndim,nip,nels))

 do i=1,nels

168

 read (10,*) node

 do k=1,nip

 read (10,*)point,g_points(:,k,i)

 end do

 end do

 case (7)

 allocate (g_sigma(nst,nip,nels))

 do i=1,nels

 read (10,*) node

 do k=1,nip

 read (10,*)point,g_sigma(:,k,i)

 end do

 end do

 case (8)

 allocate (g_eps(nst,nip,nels))

 do i=1,nels

 read (10,*) node

 do k=1,nip

 read (10,*)point,g_eps(:,k,i)

 end do

 end do

 case (9)

 allocate (g_evp(nst,nip,nels))

 do i=1,nels

 read (10,*) node

 do k=1,nip

 read (10,*)point,g_evp(:,k,i)

 end do

 end do

 case (10)

 allocate (g_damage(nip,nels))

 do i=1,nels

 read (10,*) node

 do k=1,nip

 read (10,*)point,g_damage(k,i)

 end do

 end do

 case default

 write (*,*) 'Wrong load case'

 end select

 end do

!----------------------the input data of FEMGV-----------------------

 if (element=='triangle') then

 types=7

 else if (element=='quadrilateral') then

 types=9

 else if (element=='hexahedron') then

 types=1

 else

 write(*,*)'Wrong element type'

 end if

 write (11,99968) key1,opcode1,modelname

 write (11,99967) key2,opcode1,iformt1

 do i=1,nn

 write (11,99966) key6,i,g_coord(:,i)

 end do

 write (11,99965) key8

 write (11,99967) key3,opcode1,iformt1

 do i=1,nels

 write (11,99964) key6,i,types,group1,material1(i)

 write (11,99963) key7,g_num(:,i)

169

 end do

 write (11,99965) key8

 write (11,99967) key4,opcode1

 do i=1,mid

 write (11,99962) key6,group1,nsc,nlc,i,e,v

 end do

 write (11,99965) key8

 write (11,99961) key5,opcode1,'LC01 ',time

 write (11,99960) key9,'DISPL ',ncomps1,irtype,norcty

 write (11,99959) key10,'U1 ',menu,ictype,icind1,icind2,

 & iexist

 write (11,99959) key10,'U2 ',menu,ictype,ictype,icind2,

 & iexist

 do i=1,nn

 write (11,99958) key6,i,g_dispmt(:,i)

 end do

 write (11,99965) key8

 write (11,99961) key5,opcode1,'LC02 ',time

 write (11,99960) key9,'R-FORCE ',ncomps1,irtype,norcty

 write (11,99959) key10,'R1 ',menu,ictype,icind1,icind2,

 & iexist

 write (11,99959) key10,'R2 ',menu,ictype,ictype,icind2,

 & iexist

 do i=1,nn

 write (11,99958) key6,i,g_reforce(:,i)

 end do

 write (11,99965) key8

 write (11,99956) key5,opcode1,'LC03 ',time,

 & 'STATIC,DIRECT ',irtype,irtype,nsc

 write (11,99960) key9,'STRESS ',ncomps2,ncomps2,norcty

 write (11,99959) key10,'S11 ',menu,ncomps2,icind1,icind2,

 & iexist

 write (11,99959) key10,'S22 ',menu,ncomps2,ncomps1,

 & ncomps1,iexist

 write (11,99959) key10,'S12 ',menu,ncomps2,icind1,

 & ncomps1,iexist

 write (11,99959) key10,'S33 ',menu,ncomps2,icind3,

 & icind3,iexist

 do i=1,nels

 write(11,99955)key6,i,types,icind1,icind2,iexist,icind1,

 & nip,nsc

 do k=1,nip

 write (11,99958) key7,k,g_points(:,k,i)

 write (11,99958) key7,k,g_sigma(:,k,i)

 end do

 end do

 write (11,99965) key8

 write (11,99956) key5,opcode1,'LC04 ',time,

 & 'STATIC,DIRECT ',irtype,irtype,nsc

 write (11,99960) key9,'STRAIN ',ncomps2,ncomps2,norcty

 write (11,99959) key10,'SXX ',menu,ncomps2,icind1,icind2,

 & iexist

 write (11,99959) key10,'SYY ',menu,ncomps2,ncomps1,

 & ncomps1,iexist

 write (11,99959) key10,'SXY ',menu,ncomps2,icind1,

 & ncomps1,iexist

 write (11,99959) key10,'SZZ ',menu,ncomps2,icind3,

 & icind3,iexist

 do i=1,nels

 write(11,99955)key6,i,types,icind1,icind2,iexist,icind1,

 & nip,nsc

170

 do k=1,nip

 write (11,99958) key7,k,g_points(:,k,i)

 write (11,99958) key7,k,g_eps(:,k,i)

 end do

 end do

 write (11,99965) key8

 write (11,99956) key5,opcode1,'LC05 ',time,

 & 'STATIC,DIRECT ',irtype,irtype,nsc

 write (11,99960) key9,'CSTRAIN ',ncomps2,ncomps2,norcty

 write (11,99959) key10,'CS11 ',menu,ncomps2,icind1,icind2,

 & iexist

 write (11,99959) key10,'CS22 ',menu,ncomps2,ncomps1,

 & ncomps1,iexist

 write (11,99959) key10,'CS12 ',menu,ncomps2,icind1,

 & ncomps1,iexist

 write (11,99959) key10,'CS33 ',menu,ncomps2,icind3,

 & icind3,iexist

 do i=1,nels

 write(11,99955)key6,i,types,icind1,icind2,iexist,icind1,

 & nip,nsc

 do k=1,nip

 write (11,99958) key7,k,g_points(:,k,i)

 write (11,99958) key7,k,g_evp(:,k,i)

 end do

 end do

 write (11,99965) key8

 write (11,99956) key5,opcode1,'LC06 ',time,

 & 'STATIC,DIRECT ',irtype,irtype,nsc

 write (11,99960) key9,'DAMAGE ',ncomps2,ncomps2,norcty

 write (11,99959) key10,'S11 ',menu,ncomps2,icind1,icind2,

 & iexist

 write (11,99959) key10,'S22 ',menu,ncomps2,ncomps1,

 & ncomps1,iexist

 write (11,99959) key10,'S12 ',menu,ncomps2,icind1,

 & ncomps1,iexist

 write (11,99959) key10,'S33 ',menu,ncomps2,icind3,

 & icind3,iexist

 do i=1,nels

 write(11,99955)key6,i,types,icind1,icind2,iexist,icind1,

 & nip,nsc

 do k=1,nip

 write (11,99958) key7,k,g_points(:,k,i)

 write (11,99958) key7,k,g_damage(k,i)

 end do

 end do

 write (11,99965) key8

 write (11,99957) key11

99968 format(1X,I4,A1,A30)

99967 format(1X,I4,A1,67X,I2)

99966 format(1X,I2,I10,3ES14.7)

99965 format(1X,I2)

99964 format(1X,I2,I10,I5,I5,I5)

99963 format(1X,I2,10I10)

99962 format(1X,I2,I2,I2,I2,I5,ES12.5,ES12.5)

99961 format(1X,I4,A1,A6,ES12.5)

99960 format(1X,I2,2X,A8,I5,I5,I5)

99959 format(1X,I2,2X,A8,I5,I5,I5,I5,I5)

99958 format(1X,I2,I5,6ES12.5)

99957 format(1X,I4)

99956 format(1X,I4,A1,A6,ES12.5,12X,A20,I2,I5,10X,I2)

99955 format(1X,I2,I5,I5,I5,I5,I5,I5,I5,I5)

171

 case default

 write (*,*) 'Wrong transfer processing'

 end select

 end program DTI

172

10.3 Source Code of Validation Programmes

10.3.1 Stress Transformation Subroutine

 program TRScheck

 use validation

 implicit none

 character(len=16) :: filename1, filename2

 doubleprecision, allocatable :: sigma(:), stress(:)

 integer :: nos, i, ierror

 write(*,*) 'Please Enter The Input File Name: '

 read (*,*) filename1

 write(*,*) 'Please Enter The Output File Name: '

 read (*,*) filename2

 open(10,file=filename1,status='old',action='read',iostat=ierror)

 open(11,file=filename2,status='replace',action='write',

 & iostat=ierror)

 read (10,*) nos

 allocate (sigma(nos), stress(nos+4))

 read (10,*) (sigma(i), i=1,nos)

 call TRS(sigma,stress)

 if (nos==4) then

 write (11,99999) 'Deviator Stress Tensor:', 'XX','YY'

 write (11,99998) stress(1), stress(2)

 write (11,99999) 'Deviator Stress Tensor:', 'XY','ZZ'

 write (11,99998) stress(3), stress(4)

 write (11,99997) 'Principal Stress:', '1st', '2nd', '3rd'

 write (11,99996) stress(5), stress(6), stress(7)

 write (11,99995) 'Equivalent Stress:', stress(8)

 else if (nos==6) then

 write (11,99994) 'Deviator Stress Tensor:', 'XX', 'YY',

 & 'ZZ'

 write (11,99998) stress(1), stress(2), stress(3)

 write (11,99994) 'Deviator Stress Tensor:', 'XY', 'YZ',

 & 'ZX'

 write (11,99998) stress(4), stress(5), stress(6)

 write (11,99997) 'Principal Stress:','1st', '2nd', '3rd'

 write (11,99996) stress(7), stress(8), stress(9)

 write (11,99995) 'Equivalent Stress:', stress(10)

 end if

99999 format(a23,6x,a2,12x,a2)

99998 format(23x,3es14.7)

99997 format(a17,6x,a3,12x,a3,12x,a3)

99996 format(17x,3es14.7)

99995 format(a18,1x,es14.7)

99994 format(a23,6x,a2,12x,a2,12x,a2)

 end program TRScheck

10.3.2 Numerical Method Subroutines

Main programme

 program NMScheck

 use validation

 implicit none

 character(len=16) :: filename1, filename2

 integer :: nos, nom, noe, num, rcv, i, n, ierror

 doubleprecision, allocatable :: y(:), stress(:), mat(:)

 doubleprecision :: t, dt

173

 write(*,*) 'Please Enter The Input File Name: '

 read (*,*) filename1

 write(*,*) 'Please Enter The Output File Name: '

 read (*,*) filename2

 open(10,file=filename1,status='old',action='read',iostat=ierror)

 open(11,file=filename2,status='replace',action='write',

 & iostat=ierror)

 nos = 1; nom = 1; noe = 1

 read(10,*) num, n

 allocate (y(noe), stress(nos), mat(nom))

 read(10,*) y

 read(10,*) dt

 t = 0.

 write(11,'(1x,a4,5x,a1,5x,a10)')'time', 'y', 'acceptance'

 do i = 1, n

 select case (num)

 case (1)

 call EULER (ntest,y,t,dt,stress,mat,nos,nom,noe)

 case (2)

 call RK4 (ntest,y,t,dt,stress,mat,nos,nom,noe)

 case (3)

 call RKM (ntest,y,t,dt,stress,mat,nos,nom,noe,rcv)

 case (4)

 call RKF (ntest,y,t,dt,stress,mat,nos,nom,noe,rcv)

 end select

 t = t+dt

 write(11,'(f5.2,f10.7,1x,I5)')t, y, rcv

 end do

 end program NMScheck

Test formulation

 subroutine ntest (f,x,t,stress,mat,nos,nom,noe)

 implicit none

 integer, intent(in) :: nos, nom, noe

 doubleprecision, intent(in) :: stress(nos), mat(nom),

 & x(noe)

 doubleprecision, intent(in) :: t

 doubleprecision, intent(out) :: f(noe)

 f = x-t**2+1

 return

 end subroutine ntest

10.3.3 Constitutive Equations Subroutines

 program CEScheck

 use validation

 implicit none

 character(len=16) :: filename1, filename2

 integer :: nos, nom, noe, i, num, loop, j, ops, ierror

 doubleprecision, allocatable ::sigma(:),stress(:),mat(:),y(:)

 doubleprecision :: t,dt

 open(10,file=filename1,status='old',action='read',iostat=ierror)

 open(11,file=filename2,status='replace',action='write',

 & iostat=ierror)

 open(12,file='timedata',status='replace',action='write',

 & iostat=ierror)

 open(13,file='straindata',status='replace',action='write',

 & iostat=ierror)

 read (10,*) num, nom, noe, nos, dt, loop, ops

174

 select case (nos)

 case (1)

 allocate(sigma(nos), stress(nos), mat(nom), y(noe))

 case (4)

 allocate(sigma(nos), stress(nos+4), mat(nom), y(noe))

 case (6)

 allocate(sigma(nos), stress(nos+4), mat(nom),y(noe))

 end select

 read(10,*) mat

 read(10,*) sigma

 t = 0.

 y = 0.

 select case (nos)

 case(1)

 stress = sigma

 case(4)

 call TRS(sigma,stress)

 case(6)

 call TRS(sigma,stress)

 end select

 select case (num)

 case (1)

 write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)',

 & 'damage'

 do i = 1, loop

 do j = 1, 100

 t = t+dt

 call RK4(KR,y,t,dt,stress,mat,nos,nom,noe)

 end do

 write(11,'(f9.2,7es12.5)') t,y

 write(12,*) t

 write(13,*) y(ops)

 end do

 case (2)

 write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)',

 & 'hardening','coarsening','damage'

 do i = 1, loop

 do j = 1, 100

 t = t+dt

 call RK4(PH,y,t,dt,stress,mat,nos,nom,noe)

 end do

 write(11,'(f9.2,10es12.5)') t,y

 write(12,*) t

 write(13,*) y(ops)

 end do

 case (3)

 write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)',

 & 'hardening','coarsening','damage1','damage2'

 do i = 1, loop

 do j = 1, 100

 t = t+dt

 call RK4(QX,y,t,dt,stress,mat,nos,nom,noe)

 end do

 write(11,'(f9.2,11es12.5)') t,y

 write(12,*) t

 write(13,*) y(ops)

 end do

 end select

 end program CEScheck

175

10.3.4 Time-step Control Subroutines

 program TSCcheck

 use validation

 implicit none

 character(len=16) :: filename1, filename2

 integer :: nos, nos1, nom, noe, i, num, loop, j, rcv, ierror

 doubleprecision, allocatable ::sigma(:),stress(:),mat(:),y(:)

 & ,y1(:)

 integer :: g_rcv(1,1,1)

 doubleprecision :: t,dt

 write(*,*) 'Please Enter The Input File Name: '

 read (*,*) filename1

 write(*,*) 'Please Enter The Output File Name: '

 read (*,*) filename2

 open(10,file=filename1,status='old',action='read',iostat=ierror)

 open(11,file=filename2,status='replace',action='write',

 & iostat=ierror)

 open(12,file='timedata.txt',status='replace',action='write',

 & iostat=ierror)

 open(13,file='straindata.txt',status='replace',action='write',

 & iostat=ierror)

 write(11,*) 'time','creep strain','damage','control value',

 & 'time-step'

 read (10,*) num, nom, noe, nos, dt, loop

 nos1 = nos+4

 allocate(sigma(nos), stress(nos1), mat(nom), y(noe), y1(noe))

 read(10,*) mat

 read(10,*) sigma

 t = 0.

 y1 = 0.

 select case (nos)

 case(1)

 stress = sigma

 case(4)

 call TRS(sigma,stress)

 case(6)

 call TRS(sigma,stress)

 end select

 select case (num)

 case (1)

 do i = 1, loop

 do j = 1, 100

 y=y1

 t = t+dt

 call RKM(PH,y,t,dt,stress,mat,nos1,nom,noe,rcv)

 g_rcv = rcv

 if (maxval(g_rcv)==0) then

 y1 = y

 else

 y1 = y1

 end if

 call TSC(dt,g_rcv)

 end do

 write(11,'(f9.2,2es14.7,i5,es14.7)') t, y(1), y(8), g_rcv,dt

 write(12,*) t

 write(13,*) y(1)

 end do

 case (2)

 do i = 1, loop

 do j = 1, 100

176

 y=y1

 t = t+dt

 call RKF(PH,y,t,dt,stress,mat,nos1,nom,noe,rcv)

 g_rcv = rcv

 if (maxval(g_rcv)==0) then

 y1 = y

 else

 y1 = y1

 end if

 call TSS(dt,g_rcv)

 end do

 write(11,'(f9.2,2es14.7,i5,es14.7)') t, y(1), y(8), g_rcv,dt

 write(12,*) t

 write(13,*) y(1)

 end do

 case default

 write(*,*)'Wrong case in this testing'

 end select

 end program TSCcheck

10.3.5 Normalization subroutine

 program NORcheck

 use validation

 implicit none

 character(len=16) :: filename1, filename2

 integer :: nos, nos1, nom, noe, i, loop, j, ops, ierror

 doubleprecision, allocatable ::sigma(:),stress(:),mat(:),y(:)

 doubleprecision :: t, dt, ip

 write(*,*) 'Please Enter The Input File Name: '

 read (*,*) filename1

 write(*,*) 'Please Enter The Output File Name: '

 read (*,*) filename2

 open(10,file=filename1,status='old',action='read',iostat=ierror)

 open(11,file=filename2,status='replace',action='write',

 & iostat=ierror)

 open(12,file='timedata.txt',status='replace',action='write',

 & iostat=ierror)

 open(13,file='straindata.txt',status='replace',action='write',

 & iostat=ierror)

 read (10,*) nom, noe, nos, dt, loop, ops, ip

 nos1 = nos+5

 allocate(sigma(nos), stress(nos1), mat(nom), y(noe))

 read(10,*) mat

 read(10,*) sigma

 t = 0.

 y = 0.

 stress = 0

 call TRS(sigma,stress)

 select case (nos1)

 case (9)

 stress(9) = ip

 case (11)

 stress(11) = ip

 case default

 write(*,*) 'Wrong size for stress'

 end select

 write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)',

 & 'damage'

 do i = 1, loop

 do j = 1, 100

177

 t = t+dt

 call RK4(NOR_KR,y,t,dt,stress,mat,nos1,nom,noe)

 end do

 write(11,'(f9.5,7es12.5)') t,y

 write(12,*) t

 write(13,*) y(ops)

 end do

 end program NORcheck

178

10.4 Input file of validation cases

10.4.1 Stress Transformation Subroutine

TRS1.dat

number of stress tensor component

4

component in x-direction; y-direction; xy-direction; z-direction

80 -30 -32 0

TRS2.dat

number of stress tensor component

6

component in x-direction; y-direction; z-direction;

 xy-direction; yz-direction; zx-direction

-10 0 7 9 0 5

10.4.2 Numerical Method Subroutines

EULER.dat

type of numerical method; number of iteration

1, 10

initial value of y

0.5

Time interval

0.2

RK4.dat

type of numerical method; number of iteration

2, 10

initial value of y

0.5

Time interval

0.2

RKM.dat

type of numerical method; number of iteration

3, 10

initial value of y

0.5

Time interval

0.2

RKF.dat

179

type of numerical method; number of iteration

4, 10

initial value of y

0.5

Time interval

0.2

10.4.3 Constitutive Equations Subroutines

KR1.dat

type of equations; number of material properties; number of

equations

1, 7, 2

number of stress terms; time interval; number of iteration;

output strain

1, 0.1, 101, 1

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215

Stress tensor component

70

PH1.dat

type of equations; number of material properties; number of

equations

2, 7, 4

number of stress terms; time interval; number of iteration;

output strain

1, 0.1, 100, 1

material property

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32

Stress tensor component

70

KR2.dat

type of equations; number of material properties; number of

equations

1, 7, 5

number of stress terms; time interval; number of iteration;

output strain

4, 0.1, 101, 1

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215

Stress tensor component

70, 0, 0, 0

KR3.dat

180

type of equations; number of material properties; number of

equations

1, 7, 5

number of stress terms; time interval; number of iteration;

output strain

4, 0.1, 101, 1

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215

Stress tensor component

59.74873734, 10.25126266, 24.74873734, 0

KR4.dat

type of equations; number of material properties; number of

equations

1, 7, 5

number of stress terms; time interval; number of iteration;

output strain

4, 0.1, 101, 1

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215

Stress tensor component

35, 35, 35, 0

PH2.dat

type of equations; number of material properties; number of

equations

2, 7, 8

number of stress terms; time interval; number of iteration;

output strain

4, 0.1, 100, 1

material property

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32

Stress tensor component

70, 0, 0, 0

PH3.dat

type of equations; number of material properties; number of

equations

2, 7, 8

number of stress terms; time interval; number of iteration;

output strain

4, 0.1, 100, 1

material property

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32

Stress tensor component

59.74873734, 10.25126266, 24.74873734, 0

PH4.dat

181

type of equations; number of material properties; number of

equations

2, 7, 8

number of stress terms; time interval; number of iteration;

output strain

4, 0.1, 100, 1

material property

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32

Stress tensor component

35, 35, 35, 0

QX1.dat

type of equations; number of material properties; number of

equations

3, 11, 9

number of stress terms; time interval; number of iteration;

output strain

4, 0.1, 370, 1

material property

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2 2,

2.5, 1,

Stress tensor component

60, 0, 0, 0

QX2.dat

type of equations; number of material properties; number of

equations

3, 11, 9

number of stress terms; time interval; number of iteration;

output strain

4, 0.1, 370, 1

material property

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2 2,

2.5, 1

Stress tensor component

51.21320344, 8.78679656, 21.21320344, 0

QX3.dat

type of equations; number of material properties; number of

equations

3, 11, 9

number of stress terms; time interval; number of iteration;

output strain

4, 0.1, 370, 1

material property

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2,

2, 2.5, 1

Stress tensor component

30, 30, 30, 0

182

KR5.dat

type of equations; number of material properties; number of

equations

1, 7, 7

number of stress terms; time interval; number of iteration;

output strain

6, 0.1, 101, 1

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215

Stress tensor component

70, 0, 0, 0, 0, 0

KR6.dat

type of equations; number of material properties; number of

equations

1, 7, 7

number of stress terms; time interval; number of iteration;

output strain

6, 0.1, 101, 2

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215

Stress tensor component

0, 70, 0, 0, 0, 0

KR7.dat

type of equations; number of material properties; number of

equations

1, 7, 7

number of stress terms; time interval; number of iteration;

output strain

6, 0.1, 101, 3

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215

Stress tensor component

0, 0, 70, 0, 0, 0

PH5.dat

type of equations; number of material properties; number of

equations

2, 7, 10

number of stress terms; time interval; number of iteration;

output strain

6, 0.1, 100, 1

material property

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32

Stress tensor component

70, 0, 0, 0, 0, 0

PH6.dat

183

type of equations; number of material properties; number of

equations

2, 7, 10

number of stress terms; time interval; number of iteration;

output strain

6, 0.1, 100, 2

material property

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32

Stress tensor component

0, 70, 0, 0, 0, 0

PH7.dat

type of equations; number of material properties; number of

equations

2, 7, 10

number of stress terms; time interval; number of iteration;

output strain

6, 0.1, 100, 3

material property

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32

Stress tensor component

0, 0, 70, 0, 0, 0

QX4.dat

type of equations; number of material properties; number of

equations

3, 11, 11

number of stress terms; time interval; number of iteration;

output strain

6, 0.1, 370, 1

material property

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2 2,

2.5, 1,

Stress tensor component

60, 0, 0, 0, 0, 0

QX5.dat

type of equations; number of material properties; number of

equations

3, 11, 11

number of stress terms; time interval; number of iteration;

output strain

6, 0.1, 370, 2

material property

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2 2,

2.5, 1,

Stress tensor component

0, 60, 0, 0, 0

QX6.dat

184

type of equations; number of material properties; number of

equations

3, 11, 11

number of stress terms; time interval; number of iteration;

output strain

6, 0.1, 370, 3

material property

2.1618e-9, 0.20524, 1.8537, 2.4326e5, 0.5929, 9.2273e-5, 2.8, 2 2,

2.5, 1,

Stress tensor component

0, 0, 60, 0, 0, 0

10.4.4 Time-step Control Subroutines

TSC1.dat

type of numerical method; number of material properties; number

of equations

1, 7, 8

number of stress terms; time interval; number of iteration

4, 0.1, 135

material property

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32

Stress tensor component

70, 0, 0, 0

TSC2.dat

type of numerical method; number of material properties; number

of equations

2, 7, 8

number of stress terms; time interval; number of iteration

4, 0.1, 100

material property

6.216e-8, 0.15, 2.0, 1.0e4, 0.35, 4.998e-4, 1.32

Stress tensor component

70, 0, 0, 0

10.4.5 Normalization Subroutine

NOR1.dat

number of material properties; number of equations

8, 5

number of stress terms; time interval; number of iteration;

output strain; stress used to normalize

4, 0.001, 1285, 1, 70

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215,

170e3

Stress tensor component

1, 0, 0, 0

185

NOR2.dat

number of material properties; number of equations

8, 5

number of stress terms; time interval; number of iteration;

output strain; stress used to normalize

4, 0.001, 1285, 1, 70

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215,

170e3

Stress tensor component

0.8535339, 0.1464466, 0.3535534, 0

NOR3.dat

number of material properties; number of equations

8, 5

number of stress terms; time interval; number of iteration;

output strain; stress used to normalize

4, 0.001, 1285, 1, 70

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215,

170e3

Stress tensor component

0.5, 0.5, 0.5, 0

NOR4.dat

number of material properties; number of equations

8, 7

number of stress terms; time interval; number of iteration;

output strain; stress used to normalize

6, 0.001, 1285, 1, 70

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215,

170e3

Stress tensor component

1, 0, 0, 0, 0, 0

NOR5.dat

number of material properties; number of equations

8, 7

number of stress terms; time interval; number of iteration;

output strain; stress used to normalize

6, 0.001, 1285, 2, 70

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215,

170e3

Stress tensor component

0, 1, 0, 0, 0, 0

NOR6.dat

186

number of material properties; number of equations

8, 7

number of stress terms; time interval; number of iteration;

output strain; stress used to normalize

6, 0.001, 1285, 3, 70

material property

1.092e-20, 8.462, -4.754e-4, 3.537e-17, 7.346, 6.789, 0.215,

170e3

Stress tensor component

0, 0, 1, 0, 0, 0

10.4.6 Nodal Loads Calculator

NLC1.dat

case type

axisymmetric

the number of element; expected pressure

2, 70

the coordinate of first loaded node of each element

0, 20

the coordinate of second loaded node of each element

20, 40

NLC2.dat

case type

axisymmetric

the number of element; expected pressure

2, 70

the coordinate of first loaded node of each element

0, 20

the coordinate of second loaded node of each element

20, 40

10.4.7 Data Transfer Interface

DTI.anl

 1CCHAPTER6CASE1

 2CNODES

2

 -1 1 0.0000000E+00 0.0000000E+00 0.0000000E+00

 -1 2 1.0000000E+01 0.0000000E+00 0.0000000E+00

 -1 3 2.0000000E+01 0.0000000E+00 0.0000000E+00

 -1 4 0.0000000E+00 2.0000000E+01 0.0000000E+00

 -1 5 1.0000000E+01 2.0000004E+01 0.0000000E+00

 -1 6 2.0000000E+01 2.0000000E+01 0.0000000E+00

 -1 7 0.0000000E+00 4.0000000E+01 0.0000000E+00

 -1 8 1.0000000E+01 4.0000000E+01 0.0000000E+00

 -1 9 2.0000000E+01 4.0000000E+01 0.0000000E+00

 -1 10 0.0000000E+00 6.0000000E+01 0.0000000E+00

 -1 11 1.0000000E+01 6.0000000E+01 0.0000000E+00

187

 -1 12 2.0000000E+01 6.0000000E+01 0.0000000E+00

 -3

 101CPARTS

2 10

 -1 S1 1 3 1 6 12

 -2 1 2 3 4 5 6

7 8 9 10

 -2 11 12

 -3

 3CELEM

2 10

 -1 1 5 1 0 1 0

 -2 1 2 5 4

 -1 2 5 1 0 1 0

 -2 2 3 6 5

 -1 3 5 1 0 1 0

 -2 4 5 8 7

 -1 4 5 1 0 1 0

 -2 5 6 9 8

 -1 5 5 1 0 1 0

 -2 7 8 11 10

 -1 6 5 1 0 1 0

 -2 8 9 12 11

 -3

 103CCONS

2 10

 -1 CO1 1 3 010000

 -2 1 2 3

 -1 CO2 2 4 100000

 -2 1 4 7 10

 -3

 110CFORCE

2

 -1 1 10 2 4.00000E+01

 -1 1 11 2 4.00000E+01

 -1 1 12 2 4.00000E+01

 -3

 9999

DTI.res

 1

 2 9 3 8 triangle

4 3 4.0000000000000000 170000.00000000000

0.29999999999999999 1

 2

 1 0.0000000000000000 0.0000000000000000

 2 0.50000000000000000 0.0000000000000000

 3 1.0000000000000000 0.0000000000000000

 4 0.0000000000000000 -0.50000000000000000

 5 0.50000000000000000 -0.50000000000000000

 6 1.0000000000000000 -0.50000000000000000

 7 0.0000000000000000 -1.0000000000000000

 8 0.50000000000000000 -1.0000000000000000

 9 1.0000000000000000 -1.0000000000000000

 3

 1 1 2 4 1

 2 5 4 2 1

 3 2 3 5 1

 4 6 5 3 1

188

 5 4 5 7 1

 6 8 7 5 1

 7 5 6 8 1

 8 9 8 6 1

 4

 1 0.0000000000000000 2.3529559699592964E-004

 2 -3.5294510140535674E-005 2.3529547191359065E-004

 3 -7.0588929020547932E-005 2.3529529971266598E-004

 4 0.0000000000000000 1.1764846739377730E-004

 5 -3.5294938801932329E-005 1.1764818115249679E-004

 6 -7.0589601799141090E-005 1.1764817023585826E-004

 7 0.0000000000000000 0.0000000000000000

 8 -3.5295200112439891E-005 0.0000000000000000

 9 -7.0590198180171275E-005 0.0000000000000000

 5

 1 0.0000000000000000 14.026700958263500

 2 2.2449187546680349E-005 28.053553235984012

 3 -3.3004068692148731 14.026720532648463

 4 0.0000000000000000 7.0721646593341347E-004

 5 -1.0795115519224296E-004 8.6553111922960113E-004

 6 -6.6010202122043777 5.9565404199979355E-004

 7 0.0000000000000000 0.0000000000000000

 8 -5.8657859545174773E-005 0.0000000000000000

 9 -3.3006308926241514 0.0000000000000000

 6

 1

 1 0.0000000000000000 -0.25000000000000000

 2 0.25000000000000000 0.0000000000000000

 3 0.25000000000000000 -0.25000000000000000

 2

 1 0.50000000000000000 -0.25000000000000000

 2 0.25000000000000000 -0.50000000000000000

 3 0.25000000000000000 -0.25000000000000000

 3

 1 0.50000000000000000 -0.25000000000000000

 2 0.75000000000000000 0.0000000000000000

 3 0.75000000000000000 -0.25000000000000000

 4

 1 1.0000000000000000 -0.25000000000000000

 2 0.75000000000000000 -0.50000000000000000

 3 0.75000000000000000 -0.25000000000000000

 5

 1 0.0000000000000000 -0.75000000000000000

 2 0.25000000000000000 -0.50000000000000000

 3 0.25000000000000000 -0.75000000000000000

 6

 1 0.50000000000000000 -0.75000000000000000

 2 0.25000000000000000 -1.0000000000000000

 3 0.25000000000000000 -0.75000000000000000

 7

 1 0.50000000000000000 -0.75000000000000000

 2 0.75000000000000000 -0.50000000000000000

 3 0.75000000000000000 -0.75000000000000000

 8

 1 1.0000000000000000 -0.75000000000000000

 2 0.75000000000000000 -1.0000000000000000

 3 0.75000000000000000 -0.75000000000000000

 7

 1

 1 -1.3871248636299072E-004 39.999982450985883

 -1.6356921252612814E-005 0.0000000000000000

189

 2 -1.3871248636299072E-004 39.999982450985883

 -1.6356921252612814E-005 0.0000000000000000

 3 -1.3871248636299072E-004 39.999982450985883

 -1.6356921252612814E-005 0.0000000000000000

 2

 1 -2.8080772024097200E-004 39.999994616455837

 1.8624169035410889E-005 0.0000000000000000

 2 -2.8080772024097200E-004 39.999994616455837

 1.8624169035410889E-005 0.0000000000000000

 3 -2.8080772024097200E-004 39.999994616455837

 1.8624169035410889E-005 0.0000000000000000

 3

 1 -8.6551178675620122E-005 40.000052893418300

 3.3537138642561455E-005 0.0000000000000000

 2 -8.6551178675620122E-005 40.000052893418300

 3.3537138642561455E-005 0.0000000000000000

 3 -8.6551178675620122E-005 40.000052893418300

 3.3537138642561455E-005 0.0000000000000000

 4

 1 -1.9583782042964515E-004 39.999965270768499

 8.6551178682847007E-005 0.0000000000000000

 2 -1.9583782042964515E-004 39.999965270768499

 8.6551178682847007E-005 0.0000000000000000

 3 -1.9583782042964515E-004 39.999965270768499

 8.6551178682847007E-005 0.0000000000000000

 5

 1 -1.4892141945921367E-004 40.000434237458435

 -3.7431552065636927E-005 0.0000000000000000

 2 -1.4892141945921367E-004 40.000434237458435

 -3.7431552065636927E-005 0.0000000000000000

 3 -1.4892141945921367E-004 40.000434237458435

 -3.7431552065636927E-005 0.0000000000000000

 6

 1 -2.7863810427497526E-004 40.000298000417629

 3.4171374065676948E-005 0.0000000000000000

 2 -2.7863810427497526E-004 40.000298000417629

 3.4171374065676948E-005 0.0000000000000000

 3 -2.7863810427497526E-004 40.000298000417629

 3.4171374065676948E-005 0.0000000000000000

 7

 1 -7.7957688247920487E-005 40.000358204542437

 3.2743813641517213E-005 0.0000000000000000

 2 -7.7957688247920487E-005 40.000358204542437

 3.2743813641517213E-005 0.0000000000000000

 3 -7.7957688247920487E-005 40.000358204542437

 3.2743813641517213E-005 0.0000000000000000

 8

 1 -2.0437249574634109E-004 40.000316568443083

 7.7988288562739295E-005 0.0000000000000000

 2 -2.0437249574634109E-004 40.000316568443083

 7.7988288562739295E-005 0.0000000000000000

 3 -2.0437249574634109E-004 40.000316568443083

 7.7988288562739295E-005 0.0000000000000000

 8

 1

 1 -7.0589020281071349E-005 2.3529425920430468E-004

 -2.5016467798113715E-010 0.0000000000000000

 2 -7.0589020281071349E-005 2.3529425920430468E-004

 -2.5016467798113715E-010 0.0000000000000000

 3 -7.0589020281071349E-005 2.3529425920430468E-004

 -2.5016467798113715E-010 0.0000000000000000

190

 2

 1 -7.0589877603864659E-005 2.3529458152218770E-004

 2.8484023230628420E-010 0.0000000000000000

 2 -7.0589877603864659E-005 2.3529458152218770E-004

 2.8484023230628420E-010 0.0000000000000000

 3 -7.0589877603864659E-005 2.3529458152218770E-004

 2.8484023230628420E-010 0.0000000000000000

 3

 1 -7.0588837760024515E-005 2.3529458152218770E-004

 5.1292094394505758E-010 0.0000000000000000

 2 -7.0588837760024515E-005 2.3529458152218770E-004

 5.1292094394505758E-010 0.0000000000000000

 3 -7.0588837760024515E-005 2.3529458152218770E-004

 5.1292094394505758E-010 0.0000000000000000

 4

 1 -7.0589325994417521E-005 2.3529425895361546E-004

 1.3237239092670720E-009 0.0000000000000000

 2 -7.0589325994417521E-005 2.3529425895361546E-004

 1.3237239092670720E-009 0.0000000000000000

 3 -7.0589325994417521E-005 2.3529425895361546E-004

 1.3237239092670720E-009 0.0000000000000000

 5

 1 -7.0589877603864659E-005 2.3529693478755459E-004

 -5.7248256100385884E-010 0.0000000000000000

 2 -7.0589877603864659E-005 2.3529693478755459E-004

 -5.7248256100385884E-010 0.0000000000000000

 3 -7.0589877603864659E-005 2.3529693478755459E-004

 -5.7248256100385884E-010 0.0000000000000000

 6

 1 -7.0590400224879781E-005 2.3529636230499359E-004

 5.2262101512211799E-010 0.0000000000000000

 2 -7.0590400224879781E-005 2.3529636230499359E-004

 5.2262101512211799E-010 0.0000000000000000

 3 -7.0590400224879781E-005 2.3529636230499359E-004

 5.2262101512211799E-010 0.0000000000000000

 7

 1 -7.0589325994417521E-005 2.3529636230499359E-004

 5.0078773804673390E-010 0.0000000000000000

 2 -7.0589325994417521E-005 2.3529636230499359E-004

 5.0078773804673390E-010 0.0000000000000000

 3 -7.0589325994417521E-005 2.3529636230499359E-004

 5.0078773804673390E-010 0.0000000000000000

 8

 1 -7.0589996135462770E-005 2.3529634047171651E-004

 1.1927620603713069E-009 0.0000000000000000

 2 -7.0589996135462770E-005 2.3529634047171651E-004

 1.1927620603713069E-009 0.0000000000000000

 3 -7.0589996135462770E-005 2.3529634047171651E-004

 1.1927620603713069E-009 0.0000000000000000

 9

 1

 1 -1.1041841831367080E-005 2.2083568790380394E-005

 -2.7091404587803183E-011 -1.1041726959013309E-005

 2 -1.1041841831367080E-005 2.2083568790380394E-005

 -2.7091404587803183E-011 -1.1041726959013309E-005

 3 -1.1041841831367080E-005 2.2083568790380394E-005

 -2.7091404587803183E-011 -1.1041726959013309E-005

 2

 1 -1.1042001021190423E-005 2.2083769494679590E-005

 3.0846785077030556E-011 -1.1041768473489160E-005

 2 -1.1042001021190423E-005 2.2083769494679590E-005

191

 3.0846785077030556E-011 -1.1041768473489160E-005

 3 -1.1042001021190423E-005 2.2083769494679590E-005

 3.0846785077030556E-011 -1.1041768473489160E-005

 3

 1 -1.1041873740043404E-005 2.2083675803952752E-005

 5.5546613741522707E-011 -1.1041802063909341E-005

 2 -1.1041873740043404E-005 2.2083675803952752E-005

 5.5546613741522707E-011 -1.1041802063909341E-005

 3 -1.1041873740043404E-005 2.2083675803952752E-005

 5.5546613741522707E-011 -1.1041802063909341E-005

 4

 1 -1.1041879209793359E-005 2.2083596239717113E-005

 1.4335186984880532E-010 -1.1041717029923754E-005

 2 -1.1041879209793359E-005 2.2083596239717113E-005

 1.4335186984880532E-010 -1.1041717029923754E-005

 3 -1.1041879209793359E-005 2.2083596239717113E-005

 1.4335186984880532E-010 -1.1041717029923754E-005

 5

 1 -1.1042397112448653E-005 2.2084670893445599E-005

 -6.1998974660913957E-011 -1.1042273780996950E-005

 2 -1.1042397112448653E-005 2.2084670893445599E-005

 -6.1998974660913957E-011 -1.1042273780996950E-005

 3 -1.1042397112448653E-005 2.2084670893445599E-005

 -6.1998974660913957E-011 -1.1042273780996950E-005

 6

 1 -1.1042364726447949E-005 2.2084498696061860E-005

 5.6598706156802205E-011 -1.1042133969613915E-005

 2 -1.1042364726447949E-005 2.2084498696061860E-005

 5.6598706156802205E-011 -1.1042133969613915E-005

 3 -1.1042364726447949E-005 2.2084498696061860E-005

 5.6598706156802205E-011 -1.1042133969613915E-005

 7

 1 -1.1042233232891617E-005 2.2084401904589847E-005

 5.4234027004756503E-011 -1.1042168671698227E-005

 2 -1.1042233232891617E-005 2.2084401904589847E-005

 5.4234027004756503E-011 -1.1042168671698227E-005

 3 -1.1042233232891617E-005 2.2084401904589847E-005

 5.4234027004756503E-011 -1.1042168671698227E-005

 8

 1 -1.1042311588084041E-005 2.2084453923378754E-005

 1.2917330510133722E-010 -1.1042142335294716E-005

 2 -1.1042311588084041E-005 2.2084453923378754E-005

 1.2917330510133722E-010 -1.1042142335294716E-005

 3 -1.1042311588084041E-005 2.2084453923378754E-005

 1.2917330510133722E-010 -1.1042142335294716E-005

 10

 1

 1 1.4898054512460445E-004

 2 1.4898054512460445E-004

 3 1.4898054512460445E-004

 2

 1 1.4898094184059548E-004

 2 1.4898094184059548E-004

 3 1.4898094184059548E-004

 3

 1 1.4898096363601544E-004

 2 1.4898096363601544E-004

 3 1.4898096363601544E-004

 4

 1 1.4898053839544465E-004

 2 1.4898053839544465E-004

192

 3 1.4898053839544465E-004

 5

 1 1.4898396952228488E-004

 2 1.4898396952228488E-004

 3 1.4898396952228488E-004

 6

 1 1.4898322201493304E-004

 2 1.4898322201493304E-004

 3 1.4898322201493304E-004

 7

 1 1.4898324453124583E-004

 2 1.4898324453124583E-004

 3 1.4898324453124583E-004

 8

 1 1.4898320239903099E-004

 2 1.4898320239903099E-004

 3 1.4898320239903099E-004

 9999

193

10.5 Source code of performance exploration Programme

10.5.1 Performance of numerical method

 program NMSexp

 use validation

 implicit none

 character(len=16) :: filename1, filename2

 integer :: nos, nos1, nom, noe, i, num, loop, j, ierror, loop1,

 & rcv

 doubleprecision, allocatable ::sigma(:),stress(:),mat(:),y(:)

 doubleprecision :: t,dt,start,finish

 write(*,*) 'Please Enter The Input File Name: '

 read (*,*) filename1

 write(*,*) 'Please Enter The Output File Name: '

 read (*,*) filename2

 open(10,file=filename1,status='old',action='read',iostat=ierror)

 open(11,file=filename2,status='replace',action='write',

 & iostat=ierror)

 open(12,file='timedata.txt',status='replace',action='write',

 & iostat=ierror)

 open(13,file='straindata.txt',status='replace',action='write',

 & iostat=ierror)

 open(14,file='damagedata.txt',status='replace',action='write',

 & iostat=ierror)

 call cpu_time(start)

 read (10,*) num, nom, noe, nos, dt, loop, loop1

 nos1 = nos+4

 allocate(sigma(nos), stress(nos1), mat(nom), y(noe))

 read(10,*) mat

 read(10,*) sigma

 t = 0.

 y = 0.

 call TRS(sigma,stress)

 select case (num)

 case (1)

 write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)',

 & 'hardening','coarsening','damage'

 do i = 1, loop

 do j = 1, loop1

 t = t+dt

 call EULER(PH,y,t,dt,stress,mat,nos1,nom,noe)

 end do

 write(11,'(f9.2,10es12.5)') t,y

 write(12,*) t

 write(13,*) y(1)

 write(14,*) y(8)

 end do

 case (2)

 write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)',

 & 'hardening','coarsening','damage'

 do i = 1, loop

 do j = 1, 100

 t = t+dt

 call RK4(PH,y,t,dt,stress,mat,nos1,nom,noe)

 end do

 write(11,'(f9.2,10es12.5)') t,y

 write(12,*) t

 write(13,*) y(1)

 write(14,*) y(8)

194

 end do

 case (3)

 write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)',

 & 'hardening','coarsening','damage'

 do i = 1, loop

 do j = 1, 100

 t = t+dt

 call RKM(PH,y,t,dt,stress,mat,nos1,nom,noe,rcv)

 end do

 write(11,'(f9.2,10es12.5)') t,y

 write(12,*) t

 write(13,*) y(1)

 write(14,*) y(8)

 end do

 case (4)

 write (11,*) 'time','strain in (x)/(x,y,xy,z)/(x,y,z,xy,yz,zx)',

 & 'hardening','coarsening','damage'

 do i = 1, loop

 do j = 1, 100

 t = t+dt

 call RKF(PH,y,t,dt,stress,mat,nos1,nom,noe,rcv)

 end do

 write(11,'(f9.2,10es12.5)') t,y

 write(12,*) t

 write(13,*) y(1)

 write(14,*) y(8)

 end do

 end select

 call cpu_time(finish)

 print '("Time = ",es14.7," seconds.")',finish-start

 end program NMSexp

10.5.2 Performance of time-step control

 program TSCexp

 use validation

 implicit none

 character(len=16) :: filename1, filename2

 integer :: nos, nos1, nom, noe, i, num, loop, j, rcv, ierror,

 & loop1

 doubleprecision, allocatable ::sigma(:),stress(:),mat(:),y(:)

 & ,y1(:)

 integer :: g_rcv(1,1,1)

 doubleprecision :: t,dt

 write(*,*) 'Please Enter The Input File Name: '

 read (*,*) filename1

 write(*,*) 'Please Enter The Output File Name: '

 read (*,*) filename2

open(10,file=filename1,status='old',action='read',iostat=ierror)

 open(11,file=filename2,status='replace',action='write',

 & iostat=ierror)

 open(12,file='timedata.txt',status='replace',action='write',

 & iostat=ierror)

 open(13,file='straindata.txt',status='replace',action='write',

 & iostat=ierror)

 write(11,*) 'time',' strain',' control value',' time-step'

 read (10,*) num, nom, noe, nos, dt, loop, loop1

 nos1 = nos+4

 allocate(sigma(nos), stress(nos1), mat(nom), y(noe), y1(noe))

 read (10,*) y1

195

 read (10,*) mat

 read (10,*) sigma

 t = 0.

 select case (nos)

 case(1)

 stress = sigma

 case(4)

 call TRS(sigma,stress)

 case(6)

 call TRS(sigma,stress)

 end select

 select case (num)

 case (1)

 do i = 1, loop

 y=y1

 call RKF(ntest,y,t,dt,stress,mat,nos1,nom,noe,rcv)

 g_rcv = rcv

 call TSC(dt,g_rcv)

 if (maxval(g_rcv)==0) then

 y1 = y

 t = t+dt

 else

 y1 = y1

 t = t

 end if

 write(11,'(f9.2,es14.7,i5,es14.7)') t, y1, g_rcv,dt

 write(12,*) dt

 write(13,*) y(1)

 end do

 case (2)

 do i = 1, loop

 do j = 1, loop1

 y=y1

 t = t+dt

 call RKF(PH,y,t,dt,stress,mat,nos1,nom,noe,rcv)

 g_rcv = rcv

 if (maxval(g_rcv)==0) then

 y1 = y

 else

 y1 = y1

 end if

 call TSC(dt,g_rcv)

 end do

 write(11,'(f9.2,es14.7,i5,es14.7)') t, y(1), g_rcv,dt

 write(12,*) t

 write(13,*) y(1)

 end do

 case default

 write(*,*)'Wrong case in this testing'

 end select

 end program TSCexp

