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1. Introduction 

This paper describes further developments related to the ongoing efforts  [1-5] to design and 

perfect a 4-sensor conductance probe for measuring the  velocities of individual bubbles in 

bubbly gas-liquid (and liquid-liquid) flows. In the first part of the paper a new design for a 4-

sensor conductance probe is presented which is substantially smaller than previous designs 

and which therefore reduces bubble-probe interaction effects. The paper then goes on to 

recapitulate the mathematical model which enables the bubble velocity vector, relative to the 

probe coordinate system, to be measured in terms of a polar angle  , an azimuthal angle   

and a velocity magnitude v . Next, the paper goes on to describe a reference measurement 

system, comprising two high speed cameras, which enable a reference measurement of the 

bubble velocity vector to be made relative to the  ( zyx ,, ) coordinate system of the water tank 

in which the experiments are carried out. The image processing theory necessary to extract 

both the 3-dimensional bubble velocity vector and the bubble shape from the high speed 

camera images is described in detail. Finally, experimental results are presented for (i) bubble 

velocity vectors measured by the new miniaturised 4-sensor probe and (ii) bubble trajectories 

and shapes measured by the high speed camera system. 

2. Construction of 4-sensor probe and the model for determining the bubble velocity 

vector 

For further scaling down of the 4-sensor probe, PTFE covered stainless steel needles were 

used. These PTFE covered needles have a moderately small width of 0.15mm and since they 

have a protecting PTFE covering there is no requirement for a varnish covering which can 

roughen the needle surface. To position precisely the four needles utilized as a part of the test, 

a bored clay aide was utilized as demonstrated as shown in figure 1. The measurements of the 

 

 

Figure 1 Design of miniaturised 4-sensor 

probe 

 

 

 

Figure 2 Probe coordinate system 
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sensor spacing were achieved utilizing an advanced magnifying lens. Mishra et al [1] and 

Lucas et al [2] have presented a theoretical model which is used to compute various flow 

properties corresponding to the  dispersed phase in typical bubbly air-water flows using the 

time delay measurements from a four-sensor probe. The developed model is based on the 

assumptions that the Mathematical model is valid for spherical bubbles, the impact of a 

bubble on the probe does not affect the bubble‟s velocity vector and the bubbles do not get 

deformed during the process of interaction with sensors. Figure 2 shows a schematic diagram 

of a typical four-sensor probe and the motion of a bubble of radius   moving with velocity 

vector V. The velocity vector can be represented mathematically as:-  

   (                             )        (1) 

where   is velocity magnitude,   is polar angle between velocity vector and probe axis and   

is an azimuthal angle for velocity vector. Lucas et al [2] developed a detailed procedure to 

calculate polar angle α and azimuthal angle β of vertically rising bubble from time delay 

measurements made by the four-sensor probe. The corresponding equations are given below. 
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Velocity magnitude   can be calculated using equation 4, where      represents the time 

interval between the contacts of the front sensor and i
th

 rear sensor with the bubble, 

             are coordinate of i
th 

rear sensor with respect to front sensors. 

 

3. Image processing 

In this section a model is described which enables determination of the reference velocity 

vector of an individual bubble, relative to the coordinate system ( zyx ,, ) of the tank, from 

images from 2 orthogonal high speed cameras. The model also enables mathematical 

expressions to be obtained for the shape of a given bubble. Although the model is able to 

provide a reference velocity vector for any part of the bubble (e.g. the geometric centre of the 

upper or lower surface, the centre of gravity etc.) it was subsequently found that, due to 

oscillations of the bubble surface, the most useful reference velocity vector was that of the 

bubble centre of gravity. The analysis presented in this section is applied to images taken by 

camera 1, which is orthogonal to the zx,  plane of the tank coordinate system, and by camera 

2 which is orthogonal to the zy,  plane of the tank coordinate system. The camera images 

were pre processed such that pixels which correspond to points on the bubble boundary were 

readily identifiable. The analysis given below is for a bubble image from camera 1 only. A 

similar analysis was undertaken for the bubble image from camera 2. It is assumed that the 

bubble image from camera 1 (orthogonal to the zx,  plane) is in the shape of two semi-



ellipses with a common major axis of length Ta . The bubble centre of gravity (COG) is at the 

centre of this major axis which is assumed to be the longest possible chord between any two 

boundary points of the bubble. Assume that points ),( 11 zx  and ),( 22 zx  represent the end 

points of the major axis. The bubble centre of gravity then has coordinates ),( cc zx  where 
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The slope 1m  of the major axis is given by 
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The slope 2m  of the minor axis of the semi-ellipse forming the top half of the bubble is 

obtained from the relationship 121 mm  and from this calculated value of 2m  we can now 

initially assume that the semi-ellipse defining the top half of the bubble passes through point 

  (see figure 3) where the coordinates of   are the intersection of the line of slope 2m  

(which passes through the centre of the major axis) and the upper boundary of the bubble 

image. From the coordinates of   it is now possible to make an initial guess for the length 

Tb  of the minor axis for the semi-ellipse defining the top of the bubble. At this stage it is 

helpful to define a new coordinate system )~,~( zx  such that cxxx ~  and czzz ~ . 

Suppose the major axis of the ellipse makes an angle   with the increasing x~  axis as shown 

in figure 3. We may define another new coordinate system )ˆ,ˆ( zx  such that 

 sin~cos~ˆ zxx   and  cos~sin~ˆ zxz  . In the )ˆ,ˆ( zx  coordinate system the equation 

for the initial guess of the semi-ellipse forming the top half of the bubble is (for positive ẑ  

only) 
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4 Mathematical models of bubble velocity vector using cameras 

The curve of the semi-ellipse created from equation 7 is not necessarily the best fit to the 

boundary points for the top half of the bubble image obtained from camera 1 therefore it is 

necessary to use least squares curve fitting to minimize the distance of the boundary points in 

the bubble image from the calculated bubble boundary. This curve fitting is carried out in the 

zx ˆ,ˆ  coordinate system, where the origin is at the COG of the bubble, where the x̂  axis 

coincides with the bubble major axis and where the ẑ  axis coincides with the minor axis of 

the top part of the bubble. Let us define a point i  with coordinates )ˆ,ˆ( ii zx  which lies on 

the boundary of the upper part of the image of the bubble (figure 3). We may also define a 

line with gradient im̂  from the COG of the ellipse to i . This line intersects the boundary of 

the calculated ellipse at point  i  with coordinates )'ˆ,'ˆ( ii zx  (figure 3).  We may calculate 

ix'ˆ and iz'ˆ as follows. From equation 6, we have  
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But we also have the relationship that iii xmz 'ˆˆ'ˆ   and so we have that  

 22222 ˆ/'ˆ TiTTTi ambbax      and      22222 ˆ/'ˆ TiTTTii ambbamz   (9) 

The distance from the COG to i  is is  and the distance from the COG to i  is ir  where 

  22
)ˆ(ˆ iii zxr      and    22 )'ˆ()'ˆ( iii zxs       (10) 

We may define an error term i  such that  2iii rs      (11) 

A total error term   can now be defined such that  

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where N  is the number of individual points (pixels) on the upper part of the bubble boundary 

in the image from camera 1.  By minimising   we can find the best value for Tb , the length 

of the minor axis of the semi-ellipse which defines the upper part of the bubble boundary in 

the image from camera 1. A similar procedure is followed to find the best value for Bb  the 

length of the minor axis of the semi-ellipse for the bottom part of the bubble image from 

camera 1. The whole procedure is then repeated for the image from camera 2. Once optimum 

values for the major and minor axes of all of the relevant semi-ellipses have been found the 

appropriate ellipse equations are transformed back into the ( zyx ,, ) coordinate system.For 

successive images of the bubble from camera 1, separated by a time interval t , we may 

calculate bubble velocity components xv  and 1,zv  where 
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and where x  and 1z  are the displacements of the bubble COG in the x  and z  directions 

respectively, as viewed by camera 1. Similarly for camera 2 we may define bubble velocity 

components yv  and 2,zv  where 
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We can now define a bubble velocity vector btV  relative to the tank where  

kjiVbt zyx vvv            (15) 

and where 2/)( 2,1, zzz vvv         (16) 

 

 



5. Experimental results 

In figure 4 depicts the trajectory of the centre of gravity of a bubble injected form the base of 

a water tank in which the 4-sensor probe was mounted 500mm above the injection system. 

The figure shows the bubble trajectory in the zx,  plane of the water tank, as measured by 

camera 1, and zy,  plane, as measured by camera 2. Furthermore, figure 4 also shows the 

outline shapes of the bubble as viewed in the zx,  and zy,  planes for each of the bubble 

position. From results, the initial assumption was made that the velocity vector of each 

bubble relative to the tank was purely in the vertical direction.  

 

 

 

 

 

Figure 3 Coordinate systems and notations used in 

processing the bubble images for the cameras. 

 

 

Figure 4  The path of a single bubble as 

measured by camera 1 (x,z) and camera 2 

(y,z).  

 

 

Given this simplifying assumption, the angles 
*  and *  by which the probe is rotated 

relative to the tank coordinate system now represent „reference values‟ for the polar and 

azimuthal angles   and   of the bubble velocity vector . V  relative to the probe coordinate 

system. Thus * ref  and * ref .  The reference velocity magnitude refv  of the bubble 

velocity vector relative to the probe coordinate system is given by zref vv   where zv  is 

obtained from equation 16 using data from cameras 1 and 2.  

 
Table 2 Values of polar angle, azimuthal angle and velocity magnitude measured by the probe, and 

reference values for these quantities 

 ref  ref   
meas  meas  meas  

Test no. (deg) (deg) (ms
-1

) (deg) (deg) (ms
-1

) 

1 0 N/A 0.38 4.44 N/A 0.37 

2 0 N/A 0.38 7.50 N/A .38 

3 0 N/A 0.38 2.73 N/A 0.41 

4 10 0 0.41 9.01 337.66 0.39 

5 10 90 0.41 9.98 82.04 0.44 

6 10 180 0.41 6.13 177.65 0.42 

7 20 0 0.35 22.41 7.27 0.36 

ref



8 20 0 0.35 20.49 16.44 0.36 

9 20 180 0.35 19.17 188.31 0.33 

 

 

A series of measurements were carried out using the 4-sensor probe to obtain values of meas , 

meas  and measv . These measurements were made for ranges of values of ref  and ref .  

Values of  meas , meas  and measv  are shown with the corresponding values of ref , ref  

and refv  in Table 2 for 9 various experimental conditions. It should be noted that when 

o
ref 0  then both ref  and meas  are meaningless (see figure 2). 

 

It is clear from Table 2 that the values of meas , meas  and measv  as measured by the 4-sensor 

conductance probe are reasonably close to the reference values for these quantities. In fact, 

the mean error in meas   is 
o32.1 , the mean error in meas  is 

o1.0  and the mean percentage 

error in measv  is 0.8%. 

6. Conclusions 

Both 4-sensor conductance probe and two high speed cameras were used to measure the polar 

angle, the azimuthal angle and the magnitude of the bubble velocity vector in a bubbly water 

tank. From the comparisons of both results it can be seen that the mean error in the bubble 

polar angle measured by the probe was 1.32º, the mean error in the bubble azimuthal angle 

measured by the probe was -0.1º and the mean percentage error in the measured bubble 

velocity magnitude measured by the probe was 0.8%.  The findings shows the best results yet 

obtained from a 4-sensor probe when measuring the velocity vectors of bubbles with a major 

axis of less than 10mm and a minor axis of about 5mm. 
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