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Abstract - Laves-phase precipitation and coarsening of tungsten strengthened 9% Cr steel under thermal aging at 

923K up to 8000 h was reported in this paper, where the information of the evolution of mean particle size, the 

number density, the volume fraction of Laves-phase precipitates and the partition coefficients of W and Mo in the 

matrix over the aging time were determined. The change of hardness over time was also measured. The main 

results of this investigation were: 1) Laves-phase nucleates and grows rapidly on grain boundaries and lath 

boundaries within the first 1,500 h of aging time; 2) the coarsening of Laves-phase is much faster than that of 

M23C6 carbides, meanwhile it demonstrates the two stages characteristics and kinetics of Laves-phase nucleation 

and growth which were determined experimentally; 3)The precipitation of Laves-phase produces a pronounced 

matrix depletion of W and Mo atoms; and 4) The precipitated Laves-phase gives rise to weaker precipitation 

strengthening in comparison with M23C6 carbides, and causes the loss of hardenss and creep strength due to the 
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depletion of Mo and W from the solid solution. This paper contributes to the knowledge of kinetics of 

Laves-phase precipitation and coarsening, as well as understanding the creep damage broadly.  

Keywords: Alloys; Anealing; Precipitation; Electron microscopy; Microstructure 
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1. Introduction    

Recently, Demands on the reduction of CO2 gas emission have been the driving force in development of ultra 

supercritical (USC) power plants in China and Europe[1-2]. The high-strength 9Cr ferritic heat-resistant steels 

containing W as a substitute for a part of Mo, such as 9Cr-0.5Mo-1.8WVNb steel (ASME C.C.2179 P92), are key 

materials for thick section components at temperatures up to 625 ℃ in USC boilers [3]. Recently, 10
5
 h creep 

rupture strength for the P92 steel had been questioned mainly in view of the microstructural instability during long 

term service at high temperatures above 600 ℃, and as a result its allowable tensile stress was revised in Europe, 

U.S. and Japan in 2007, 2006 and 2005, respectively [4]. 

The Laves-phase plays a complicated and controversial role affecting and/or determining the creep strength of 

high Cr steels. Firstly, the precipitation of Laves-phase leads to a depletion of Mo and W in the matrix, and 

thereby reduces the solid solution hardening effect in 9-12% Cr steels [5,6]; the fine Laves-phase particles 

contribute to precipitation strengthening and decrease the creep rate in the primary and transient creep region, 

however, the subsequent coarsening of Laves-phase reduces the precipitation strengthening effect [7].Secondly, 

Laves-phase precipitates on lath boundaries in TAF650 steel are conducive to the retardation of lath structure’s 

recovery and enhance the creep rupture strength compared with that on grain boundaries and packet boundaries in 

Mod.9Cr-1Mo steel [8]. Thirdly, the final rupture is controlled by cavity which is strongly associated with 

Laves-phase. Recently, the authors [9] have briefly summarized the effect of creep cavity, and also note the 

report of Lee et al [10] on stress rupture of P92 steel as: 1) the steel shows ductile to brittle transition with 

increasing rupture life, and the breakdown is in accordance with the onset of brittle intergranular fracture; 2) creep 

cavities are nucleated at coarse precipitates of Laves-phase along grain boundaries. It was further suggested that 

these findings can explain the breakdown of creep strength. Laves-phase precipitates and grows during creep 

exposure. Coarsening of Laves-phase particles over a critical size triggers the cavity formation and the consequent 
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brittle intergranular fracture. The brittle fracture causes the breakdown. The coarsening of Laves-phase can be 

detected non-destructively by means of hardness testing of the steel exposed to elevated temperature without 

stress [10]. The authors [11]have also noted the cavitation of P92 weld is associated with the Laves-phase.  

Thus, in order to provide a systematic and definite understanding of that process and the creep damage and 

final rupture, it is necessary to investigate sequentially that 1) the Laves-phase precipitation and coarsening during 

the thermal exposure; 2) the Laves-phase precipitation and coarsening under creep (both uniaxial and multi-axial 

states of stress); 3) the cavitation under creep (both under uniaxial and multi-axial states of stress). This paper 

reported a detailed investigation of Laves-phase precipitation and coarsening over time. The results of the 

evolution of the mean size, the number density and the volume fraction of Laves-phase precipitates and partition 

coefficients of W and Mo in the matrix over time were obtained. 

2. Experimental procedure 

2.1. Investigated materials 

The material investigated was taken from a thick section pipe (325mm outer diameter and 40mm wall 

thickness) originally supplied by V＆M corporation. The compositions of the steel are shown in Table 1. The 

material had been annealed and air cooled, followed by tempering at 1053 K for 6 h. Then the samples were 

isothermally aged at 923 K for 100 h, 500 h, 1000 h, 1500 h, 2000 h, 2500 h, 3000 h, 5000 h and 8000 h, 

respectively. The hardness of the aged specimens was measured using a Brinell hardness tester with a force of 

187.5 kgf. The microstructures of as-aged material were observed by optical microscopy. Specimens were 

prepared by mechanical polishing followed by etching in a solution of ethanol(100 ml), hydrochloric acid(5 ml) 

and picric acid(1g) at room temperature. 

Table 1. Chemical compostions of the investigated P92 steel（wt.%） 

C Si Mn Cr Mo Ni W V Nb N B S P Fe 

0.12 0.21 0.43 8.84 0.50 0.16 1.67 0.21 0.067 0.042 0.0033 0.004 0.014 Bal. 
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2.2. SEM-BSE 

SEM-BSE was chosen over the Energy filtered transmission electron microscope (EFTEM) due to its 

capability of detecting and distinguishing the second phases. Energy filtered transmission electron microscope 

(EFTEM) offers this similar capability and has been proved to be very useful when applied to 9-12% Cr steel 

[12], however, this method is not suitable for Laves-phase because of its large precipitate size, only a small 

number of the specimen area can be observed in one TEM image, and yields poor statistics [13]. 

In SEM analysis, the thermally aged specimens were observed by backscattered electron (BSE) image, in 

which Laves-phase was clearly distinguished from M23C6 carbides due to the brighter image of Laves-phase 

arising from the difference in mean atomic weight. The resolution in the SEM is too low to detect fine MX 

precipitates, therefore, Laves-phase is uniquely distinguished. Thus it is possible to quantify the change in volume 

fraction and size distribution of Laves-phase during aging from segmented (binarized) BSE images. 

The SEM investigation was performed using a QUANTA400F at 20 keV. Each specimen analysis was 

usually obtained with more than 5 randomly selected fields analyzed. To find out the optimum SEM parameters 

(contrast, brightness, etc.) to guarantee comparable and exact quantification results, BSE images at different 

magnifications (25 and 50 kX) were compared with secondary electron (SE) images with regard to the equivalent 

circle diameter (ECD) and number of particles.‘Mean diameter’was given as the arithmetic mean value of the 

measured ECD. The ECD measurements of the secondary phase on the basis of BSE images have to be corrected 

for truncation using the following equation[14]: 

4
obscorrd d


 

 

The corrected median value of the ECD is chosen in this study to describe the precipitate size.  

2.3. TEM-EDS 

The microstructural evolution of the aged material was investigated by conventional TEM techniques. Thin 
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foils for observations of change in subgrain width and dislocation density were prepared by twin-jet 

electropolishing using a solution of 10% perchloric acid and 90% methanol below 223 K. Carbon extraction 

replicas were prepared from aged specimens in order to avoid matrix effects during chemical analysis of the 

precipitates by energy dispersive X-ray spectroscope (EDS). Their preparation is as follows: the polished 

specimens were etched using a solution of 3 mL hydrochloric acid and 1 g picric acid in 100 ml of ethanol, then 

the etched specimens were carbon coated, and the replicas were released with a solution containing 5% HNO3 and 

90% ethanol. More than 10 dispersion particles were measured by TEM-EDS for M23C6 and Laves-phase of 

typical aged condition specimens, respectively, and the mean value and the standard deviation of constituent 

elements in the two precipitates were obtained. The experimentally measured value was compared with theoretical 

value from thermodynamic equilibrium calculation by Thermo-Calc software. 

2.4. Potentiostatic electrolysis 

To obtain residues, the specimens were dissolved at the anode in a solution of 75 g potassium chloride and 5 g 

citric acid in 1000 ml water with the pH value of 3～4. The constant current density was chosen to be between 

0.02 and 0.03 A/cm
2
, where only the iron matrix dissolves. Details about electrolytically extracted residue method 

have been reported in Ref.[15]. Later, the chemical composition of extracted residues were analyzed by means of 

inductively coupled plasma (ICP) mass spectrometry and the partition coefficients of alloying elements in the 

precipitates or matrix are determined. 

3. Results 

3.1. Microstructural Change 

Fig.1 shows the optical micrographs of specimens after tempering and after aging at 923 K for different times. 

It can be seen that the constituents of martensite, for example lath, packet and block, appear coarser with 

increasing the aging times. This is related to the recovery of excess dislocations. However, the martensitic lath is 
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still clear in the specimen even subjected to aging at 923 K for 8000 h, revealing that the martensitic 

microstructure in P92 steel exhibits relatively high thermal stability at 923 K. 

 

Fig.1 Optical micrographs of P92 steel (a)as received; aged at 923 K for (b)500 h; (c)2000 h; (d)8000 h. 

3.2. Quantitative Results of the Laves-phase 

For each thermal aging condition more than five SEM-BSE images are produced to visualize precipitates of 

Laves-phase. For the quantification, the visible and bright precipitates（Laves-phase）in the BSE image are 

processed to binary images and measured with an image analysis system. The basic principle is shown in Fig.2. 

The SEM-BSE and the binary images of specimens aged at 923 K for 500 h, 2000 h, 5000 h and 8000 h are on the 

left and right respectively, as shown in Fig.2. Laves-phase particles are observed on martensite laths boundaries 

and grain boundaries during aging. The nucleation mechanism for Laves-phase precipitates will be described later. 

Specimen aged for the first 500 h shows a relative small size and high number density of Laves-phase, while that 
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aged for 8000 h shows coarse size and fairly lower number density. It should be noted that the size of M23C6 

carbides (grey particles) mainly on laths boundaries is much smaller than that of Laves-phase precipitates, and 

increases slowly during aging up to 8000 h. This indicates that Laves-phase coarsens more rapidly than M23C6 

carbides in P92 steel.   
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Fig.2 SEM-BSE image and corresponding processed binary image of P92 steels aged at 923 K for 500 h(a) and 

(b), 2000 h(c) and (d) , 5000 h(e) and (f), 8000 h(g) and (h) 

Fig.3（a）-（c）show the area fraction (equal to volume fraction), number density and corrected mean ECD of 

Laves-phase precipitates as a function of aging time. The area fraction and number density of Laves-phase 

precipitates increase with increasing time during the first 1500 h of aging. Afterwards, up to 3,000 h, the 

equivalent diameter seems to be stable while the number density decreases significantly (from 249*10
3
 

particles/mm
2
 to 189*10

3
 particles/mm

2
). Then, coarsening continues up to 8,000 h with the number of particles 

further dropping to 94*10
3
 particles/mm

2
 and the mean ECD increasing from 308 nm to 438 nm. The maximum 

area fraction of Laves-phase of 0.95% is determined in this investigation, which is very similar to about 1.05 % 

reported by Dimmler et al [16]. The time for the completion of precipitation is determined as soon as the number 

density starts to drop and it is found to be 1500 h. This is also similar to that of Ref[16]. However, it is worth to 

point out that this investigation is based on a high time resolution during exposure and therefore obtains more 

detailed information of Laves-phase. 
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Fig.3 Quantification of Laves-phase precipitates in P92 steel aged at 923 K: （a）area fraction; （b）number 

of particles and;（c）corrected mean ECD 
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Fig.4a shows the precipitated phase amounts of equilibrium as a function of temperature calculated by 

Thermo-Calc in P92 steel with composition given in Table 1. The calculated volume fraction of Laves-phase at 

923 K is about 0.58%, which is far lower than the upper limit of 0.95% in this study. The experimental results 

provided by Dimmler et al[16] and Hättestrand et al[13] also showed that the precipitated volume fraction of 

Laves-phase in steel P92 aged for 10000 h at 923 K is close to 1.0%. The calculated value is obtained at 

equilibrium which the Z-phase [Cr（V,Nb）N] forms and fully replaces the MX [（V,Nb）(C,N)] carbonitride, 

however, no Z-phase is observed during aging at 923 K up to 8000 h. Danielsen[17]have reported observed 

quantity of Z-phase is still low in P92 steel even after being exposured at 923K for 31000 h. Thus, the 

Thermo-Calc calculations by suppressing the Z phase altogether are performed to clarify whether the precipitation 

of Z-phase effects on the amount of Laves-phase, and the results are shown in Fig.4b. It can be seen that the 

volume fraction of metastable Laves phase is almost the same as that of equilibrium Laves phase at different 

temperatures, showing that the formation of Z-phase does not affect the amount of Laves-phase in P92 steel. This 

suggests that the theoretical calculation by Thermo-Calc will overestimate the amount of metastable Laves-phase 

in P92 steel and other reasons rather than the formation of Z-phase bring about this clear discrepancy.   
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Fig.4 Thermo-Calc calculations showing the phase quantity as a function of temperature in P92 steel: （a）

with the precipitation of Z-phase ; （b）without the precipitation of Z-phase 

3.3. Results of TEM-EDS 

Fig.5 shows the TEM micrographs of the thin foil specimens after tempering and after aging at 923 K for 5000 

h. The initial microstructure consists of lath subgrains, which contains a high density of dislocations and fine MX 

carbonitrides in lath and less fine M23C6 carbides mainly on lath boundaries. Slight decrease in the dislocation 

density and increase in width of subgrains are observed in the specimen aged for 5000 h compared with the 

tempered specimen, but the morphology of martensite lath is clear, which further confirms the result observed by 

OM. In the specimen aged for 5000 h, the MX carbonitrides is still very fine and the coarsening of M23C6 carbides 

is not obvious, however, some large precipitates can be found, which were analyzed as Laves-phase. 
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Fig.5  TEM thin micrographs of P92 steel as received (a) and after aged at 923 K for 5000h  (b) 

Fig.6 shows the TEM micrographs of the carbon extracted replicas of specimens before and after aging for 

500 h, 2000 h, and 5000 h. The energy-dispersive X-ray analysis (EDS) shows that minor precipitates are rich in 

V and Nb and indicate the MX carbonitride, and the less fine precipitates are rich in Cr and the large precipitates 

are riched in Fe and W, corresponding to M23C6 carbides and Laves-phase particles, respectively. Laves-phase 

does not occur in the tempered specimen (Fig.6a), because the tempering temperature of 1053 K was above its 

solution temperature. As shown in Fig.6, Laves-phase precipitates in size increases significantly with increasing 

aging time, showing quicker coarsening in comparion with M23C6 precipitates. The observations taken by SEM 

have indicated M23C6 carbides coarse slowly during aging at 923 K, this is further confirmed with TEM 

observations at high magnification. 

Fig.6 TEM micrographs of the replica of P92 steel. as received (a) and aged at 923 K for（b）500 h,（c）2000 
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h, (d) 5000 h 

Fig.7 shows the identification of coarse precipitates by diffraction analysis with extraction replica from 

specimen aged at 923 K for 2000 h, revealing that the coarse precipitates are Laves-phase with primitive 

hexagonal crystal structure. 

 

 

 

 

 

 

 

 

 

 

Fig.7 Identification of coarse precipitates by diffraction analysis with extraction replica from P92 steel aged at 923 

K for 2000 h, (a) bright field image,（b）selected area diffraction pattern 

 Table 2 lists the average chemical composition of single Laves-phase precipitates by EDS under different 

aging conditions, together with metastable and equilibrium calculations by Thermo-Calc, indicating that, 1) Fe, Cr, 

Mo and W elements are present in Laves-phase, and ratio of（Fe、Cr）and (Mo、W）in at.% is around 2:1. 2) 

Laves-phase is a W-rich phase with higher W concentration than Mo. 3) The composition of Laves-phase remains 

unchanged during aging. A reasonable good agreement is found for the W concentration in Laves-phase between 

measured data by EDS and calculations by Thermo-Calc, but the difference of the other constituent elements 

seems to be relative large. Moreover, the formation of Z-phase has no effect at all on the composition of the 

Laves-phase, this may be due to the Z- phase containing no concentrations of Mo or W.   
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Table 2. Results from EDS analyse of Laves-phase (in normalised at.%) 

 

 

 

 

 

 

Table 3 lists the mean chemical composition of single M23C6 by EDS under different aging conditions, 

showing that, 1) The metallic elements in M23C6 carbide mainly contain Fe and Cr, but some amount of W and 

Mo. 2) The change in the compositions of M23C6 is also little during aging. 3) The difference of Fe and Cr 

concentrations in M23C6 precipitates between measured data and calculations by Thermo-Calc is small, but 

measured values exhibit lower Mo content and slightly higher W content than calculations. No change in the 

compositions of M23C6 during aging indicates that the precipitation of Laves-phase does not affect the constituents 

of M23C6 carbide. In addition to the slower coarsening rate of M23C6 carbide mentioned above, this result further 

reveals that M23C6 carbide is a stable precipitate at 923K aging in P92 steel. 

Table 3. EDS analyse of M23C6carbides (in normalised at.%) 

Aging conditions Cr Fe Mo W Mn V 

923 K, 500 h 67.61±1.12 22.72±0.90 2.0±0.24 5.29±0.33 1.35±0.28 1.03±0.62 

923 K, 2000 h 68.09±1.80 22.41±1.37 1.91±0.16 5.40±0.36 1.41±0.24 0.78±0.27 

923 K, 5000 h 69.86±1.25 19.71±0.76 1.97±0.22 5.64±0.46 1.35±0.26 1.47±0.96 

Equilibrium 

calculations 
69.92 18.04 7.10 3.34 0.35 1.24 

3.4. Potentiostatic electrolysis Results 

The contents of Cr, Mo, W, V and Nb in precipitates during aging, which are the constituents of M23C6, MX or 

Laves, are shown in Fig.8. It is found that a markedly increase in the Mo and W concentrations occurred in the 

Aging conditions Cr Fe Mo W 

923 K, 500 h 14.50±1.72 47.97±1.45 8.54±0.79 28.95±1.04 

923 K, 2000 h 17.07±3.42 47.25±1.75 8.15±0.90 27.53±1.48 

923 K, 5000 h 13.46±2.15 49.36±1.59 8.12±0.56 29.06±1.28 

Metastable equilibrium calculation 

(without the precipitated Z-phase) 
9.60 56.88 3.98 29.18 

Equilibrium calculation 9.60 56.88 3.98 29.18 



 16 

extracted residues as a result of precipitation of Laves-phase during aging for the first 1500 h. It should be noted 

that the increasing Cr content in the extracted residues can also be observed in this stage. The increase in Cr 

content during early stage aging is not probably ascribed to Cr-rich M23C6 carbides, because they have 

precipitated during tempering and their composition keep constant during aging. This can be explained by the 

precipitation of Laves-phase, because this phase also contains Cr apart from Mo and W, as shown in Table 2. As 

the aging time over 1500 h, the Mo and W concentrations in the extracted residues saturate due to the end of 

Laves-phase precipitation, in agreement with investigations based on SEM observations. In contrast, the contents 

of V and Nb, as the constituents of MX carbonitrides, are unchanged, indicating that this secondary type phases 

have precipitated during normalizing or tempering. 

 

 

 

 

 

 

 

Fig.8 The amount and composition of extracted residues as a function of aging time for P92 steel at 923 K 

Redistribution of Mo and W elements takes place due to the precipitation of Laves phase, resulting in the 

increase of Mo and W in precipitates and decrease of these two elements supersaturated in the matrix. The 

partition coefficient of alloying elements in the matrix is defined as follows: 

 

 

where C0
i
 is wt.% of alloying element i in steel, C0

R
 is wt.% of extracted residues in steel, CR 

i
 is wt.% of alloying 

0 0

0

(2)
i R i

R
i i

C C C

C


 
 
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element i in extracted residues. Variations of partition coefficients of Mo and W in the matrix with aging time are 

shown in Fig.9. It is observed that partition coefficients of Mo and W drop rapidly with increasing time during the 

early aging stage. When aging time exceeds 1500 h, partition coefficients of the two elements in matrix retain a 

constant value of about 50%. Variations of partition coefficients of Mo and W in the matrix with aging time 

correspond well to the change of area fraction of Laves-phase (Fig.3a). It should be noted from Fig.9 that not all 

the Mo and W atoms of the steel are dissolved in the matrix before aging, with about 14 wt.% of Mo and W of the 

steel in precipitates. This is ascribed to M23C6 carbides formed during tempering before aging containing Mo and 

W atoms (as shown in Table 3). On the basis of the results of potentiostatic electrolysis, the significant depletion 

of Mo and W in the matrix is closely correlated with the precipitation of Laves-phase. 

 

 

 

 

 

 

 

Fig.9 Varations of the partition coefficients of Mo and W supersaturated in matrix with aging time at 923 K for 

P92 steel  

3.5. Hardness Measurement 

Fig.10 shows the change of hardness as a function of aging time. The hardness of the as-received specimen is 

around 230 HB and gradually reduces to 213 HB of the specimen aged for 8000 h at 923 K. In the early stages of 

aging (below 2000 h) , although the fine Laves-phase may contribute to the precipitating hardening, the loss of 
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hardness seems to be more pronounced than after the aging time above 2000 h, and is in good agreement with the 

large drop of concentrations of Mo and W in the matrix, both of which decrease quickly because of the 

precipitation of Laves-phase (as shown Fig.9). After aging times beyond 2000 h, the concentrations of Mo and W 

atom keep a constant value in the matrix due to the completion of Laves-phase precipitation, and the drop of 

hardness becomes slow accordingly. This indicates that the depletion of dissolved atoms in the matrix caused by 

the precipitation of Laves-phase may be one of the main factors responsible for the drop in hardness in the early 

aging stage. The other microstructure changes including recovery of excess dislocations and coarsening of 

precipitates, mainly cause the continuing loss of hardness for the longer time aging. Lee et al [10]proposed to 

detect and investigate coarsening of Laves phase by means of hardness measurement of the steel exposed at 

elevated temperature and no stress. We agree with his proposal and confirm that the loss of hardness can be more 

clearly and easily detected in the precipitation of Laves-phase stages. 

 

 

 

 

 

Fig.10 Change of hardness of P92 steel as a function of aging time at 923 K 

4. Discussion  

4.1. Kinetics of Laves-phase Precipitation and Coarsening 

On the basis of the results reported above, Laves-phase precipitation in P92 steel occurs mainly during the first 
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1500 h of aging at 923 K. The time-dependent volume fraction f of a secondary phase can be described using the 

Johnson-Mehl-Avrami equation: 

0

( )

( ) 1 (3)

nt

t
f t e



    

where t0 is a time constant and n is a time exponent. The value of the time exponent n depends on the nucleation 

mechanism. In the case of secondary phase precipitates nucleating at boundaries, the time exponent is n=3/2 and 

1/2 for the constant nucleation rate and nucleation rate rapidly decreasing to zero, respectively [18]. In Fig.11, the 

time exponent n has been evaluated according to experimental data of the test P92 steel based on the 

Johnson-Mehl-Avrami equation (Eq.(3)), thus deduces the nucleation mechanism for Laves-phase precipitation. 

The evaluation of the time exponent n and a time constant t0 using a linear regression method on specimens up to 

an aging time of approximately 1500 h, shows a value of 0.67 for n, and a time constant t0 to be approximately 

5.5×10
9
[s]. The time exponent n close to 1/2 suggests that the boundaries are the preferential nucleation sites of 

Laves-phase in P92 steel, which is in reasonable with results from observations by SEM images that Laves-phase 

precipitates on martensite laths boundaries and grain boundaries (Fig.2).  

 

 

 

 

 

 

 

 

 

Fig.11 Evaluation of time exponent n based on the quantification results of the area fraction of Laves-phase 

precipitates in P92 steel at 923 K 
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The Laves-phase coarsening mechanism is discussed as follows. 1) Once the precipitation of Laves-phase is 

finished, the area fraction of Laves-phase keeps a constant value and a redistribution of particles takes place, 

which marks the beginning of coarsening. The coarsening is described by the following Ostwald ripening 

equation: 

0 (4)m m

pr r K t  
 

where r0 and r is the average radius of particles at the beginning of coarsening and at a given time t, and Kp is a 

constant. The exponent m is 3 for coarsening controlled by volume diffusion. In a multi-phases system of β 

precipitate in the matrix, the coarsening rate constant Kp can be calculated theoretically by the following formula 

[19]:                             

/ 2

/
1

8
(5)

( )9

/

m
p c

i i

i i i

V
K

x x

x D RT



  

 





 




 

In equation (5)γ is the interfacial energy and Vm
β
 is the molar volume of the precipitate phase. Di is the diffusion 

coefficient of element i in the matrix, Xi
β
 is the molar fraction of element i in the precipitate and Xi

α/β
 is the molar 

fraction of element i at the precipitate /matrix interface (often used as Xi
α, the molar fraction of element i in the 

matrix). R is the gas constant and T is the temperature. The value ofγ is 1 Jm
-2

 due to incoherent coarse 

Laves-phase particle/matrix interfaces. Vm
β 

=4.57×10
-8

 m
3
 is for Laves phase, DW=2.22×10

-17
 m

2
/s and 

DMo=9.6×10
-17

 m
2
/s are for α-Fe at 923 K. The values of Xi

β 
and Xi

α 
are evaluated using Thermo-Calc and they are 

29.18% and 0.27%. The calculated value of Kp is 3.80×10
-30

 m
3
/s using Eq.(5) in the case of m=3 (coarsening 

controlled by volume diffusion).  

However, a theoretically calculated value of Kp is two orders of magnitude smaller than predicted by the 

experimental curve (Fig.12). Furthermore, Abe et al [20]have revealed that the volume diffusion controlled 

process is mainly involved in the coarsening of M23C6 carbides during creep based on the comparison of the 
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experimental results and calculations. Hald[21]reported that the theoretically calculated value of Kp for M23C6 is 

4.78×10
-30

 m
3
/s, which is slightly higher than that of Kp for Laves-phase in the case of m=3 at 923K in P92 steel, 

while Laves-phase exhibits a much rapider coarsening rate than M23C6 from our SEM observations. Therefore, it 

can be concluded that the Ostwald ripening of Laves-phase precipitates in P92 steel is not controlled apparently 

only by volume diffusion. Much higher diffusion coefficients of W and Mo element at grain boundaries than 

inside grain during Ostwald ripening, therefore, other diffusion mechanisms such as grain boundary diffusion, 

may accelerate its ripening. Lee et al [10] also suggested that grain boundaries is a diffusion path in the 

nucleation and coarsening of Laves-phase in P92 steel. 

 

 

 

 

 

 

 

 

Fig.12 Coarsening rate constant of Laves-phase estimated from the experimental results in P92 steel at 923 K 

4.2. Effect of Laves-phase Precipitation on Substructure and Creep Strength of Steel P92 

In the early stage of aging, Laves-phase with relatively higher number density and smaller mean interparticle 

spacing, may improve creep strength by dispersion hardening. Precipitation hardening enhanced by retarding the 

recovery migration of dislocations and subgrain boundaries, is the most important method to increase the 

long-term creep strength of tempered martensitic 9%Cr steel. The Orowan stress due to precipitates is given by 

the following equation[22]: 
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3.32 (6)
p

Orowan

p

f
Gb

d
  

 

where G is the shear modulus (64 GPa at 923 K), b is the length of Burgers vector (0.25 nm),  fp is the precipitate 

volume fraction and dp is the mean precipitate diameter. The Orowan stress of Laves-phase particles and M23C6 

carbides by Eq.(6) is given in Table 4. It shows that the maximum Orowan stress produced by the Laves-phase 

precipitates takes place at the time for the completion of its precipitation, and below or beyond that time will fall 

due to the lower volume fraction or coarsening. It should be noted that the Orowan stress of Laves-phase 

precipitates is much lower than that of M23C6 carbides , only about its one fourth to one fifth.   

Table 4. Orowan stress of precipitates estimated from the Eq.(5) 

Particle 
Volume fraction 

fp (%) 

Diameter 

dp (nm) 

Orowan stress 

σor（MPa） 

Laves (923 K, 500 h) 0.36 241 13 

Laves (923 K, 1500 h) 0.93 284 18 

Laves (923 K, 8000 h) 0.94 438 12 

M23C6 (Unaged) * 2.0 95 79 

M23C6 (923 K, 3000 h) * 2.0 118 64 

M23C6 (923 K, 10000 h)* 2.0 144 52 

* In ref. [23] 

The precipitation of Laves-phase during aging causes the reduction of Mo and W atoms supersaturated solute 

in the matrix. Solid solution strengthening is often discussed to explain the effect of Mo and W on creep strength 

of 9-12% Cr steel, but experimental evidence to demonstrate and quantify the mechanism is sparse. On the basis 

of the quantitative estimation as shown in Fig.8 and Fig.9, the drop of Mo and W dissolved in the matrix in the 

early stage of aging is very fast, and the loss of hardness is significant correspondingly although the precipitated 

Laves-phase brings about a certain amount of dispersion hardening. On the completion of Laves-phase 

precipitation, the amount of Mo and W in the matrix does not reduce any more, and the hardness drops slowly 
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correspondingly. The continuing drop in hardness may result from the recovery of excess dislocations and 

coarsening of the precipitates, including the M23C6 carbides and Laves-phase. This indirectly suggests that solid 

solution hardening enhanced by Mo and W atom is one of the main strengthening mechanism in P92 steel. Thus, it 

can be concluded that the effect of depletion of dissolved atoms in the matrix due to the precipitation of 

Laves-phase on creep strength should not be neglected. 

In the present study, the much lower coarsening rate of M23C6 carbides than that of Laves-phase was observed 

during aging. Hald et al [21] have reported that the value of Kp for M23C6 carbides in P92 steel is one order lower 

than that in P91 steel. The addition of W in 9% Cr steel can suppress the coarsening of M23C6 carbides, although 

the mechanism by which this occurs is not fully understood [24]. M23C6 carbides mainly on lath boundaries 

retard the migration of subgrain boundaries, resulting in the significant precipitation hardening. Therefore, the 

stability of M23C6 carbides is crucial for avoiding the creep strength loss of P92 steel. In the present research, the 

maintaining of lath structure and relative slow drop of hardness during aging at 923 K in P92 steel are closely 

correlated with the thermally stable M23C6 carbides, and the contribution of precipitation hardening by the newly 

formed Laves-phase is small. 

The above discussion is focused on the microstructural change and its influence on the capability of resisting 

creep deformation. However, it is necessary to point out that the final rupture of P92 material [10] and weld [11] 

is often associated with the cavitation that is one of the problems for which authors are advocating and working [9, 

25]. The detailed information about creep cavity can be obtained by new techniques and examples of such work 

have been published [26]. 

Thus, future work is planned to investigate the thermal coarsening under stress and how it contributes to cavity 

nucleation and cavity growth under multi-axial states of stress. 

5. Conclusions  
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The results of the precipitation and coarsening of Laves-phase in P92 steel during aging at 923 K can be 

summarized as follows. 

1. SEM-BSE is a suitable method for measurement of Laves-phase precipitates, and can achieve significant 

statistical data when characterizing large particles comparing with the EFTEM, so that evaluate the kinetics of 

precipitation and coarsening of Laves-phase.  

2. Laves-phase nucleates and grows rapidly within the first approximately 1,500 h of aging, and is found to be 

located at grain boundaries and martensite laths boundaries. The Laves-phase kinetics supports this 

conclusion. The saturated value of its volume fraction is around 0.95%. 

3. Obvious coarsening of Laves-phase starts at approximately 3,000 h of aging and its rate is much greater than 

that of M23C6 carbides. Both the volume diffusion and the grain boundary diffusion control the Ostwald 

ripening of Laves-phase. 

4. The precipitation of Laves-phase produces a pronounced matrix depletion of W and Mo atoms, and partition 

coefficients of these two elements supersaturated in the matrix reduce from 86% before aging to 50% on the 

completion of its precipitation. 

5. The precipitating of Laves-phase causes the loss of hardenss and creep strength due to the depletion of Mo 

and W from the solid solution, and its precipitation strengthening is much weaker than M23C6 carbides. 
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