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ABSTRACT

The past few years have seen a rapid development in AI Planning and Scheduling. Many

algorithms and techniques have been studied and improved to deal with more complex and

difficult planning domains.

One such innovation was Graphplan, first developed by Blum and Furst in 1995 and soon

became one of the best approaches for optimal classical planning systems. Planning sys-

tems that use Graphplan’s plangraph framework can find optimal plans for temporal plan-

ning problems, in which actions have durations. However, these systems have had strict

assumptions on the preconditions and effects of actions, for instance, effects happen only

at the end of the execution. In addition, the algorithm used in the solution extraction phase

of these plangraph-based systems does not take full advantage of the information provided

by the expansion phase to prune irrelevant search branches early.

With the ambition to make temporal planning problems more realistic, the thesis proposes

an extension to the Planning Domain Definition Language (PDDL) 2.1 level 3, to allow

actions to have intermediate effects. Our optimal temporal planning system, CPPlanner,

is introduced as the first Graphplan-based optimal planner to handle the richer temporal

domains (i.e. actions can have intermediate effects). Futhermore, the planner applies “crit-

ical paths” as a backbone for the search in the solution extraction phase, so that irrelevant

search branches are pruned early. This improves the performance even in more restricted

temporal planning domains.

In our experimental evaluation, CPPlanner outperforms two leading plangraph-based opti-

mal temporal planning systems, TGP and TPSYS, in almost all test cases. The state-of-the-

art optimal planner CPT and latest temporal planning domains in the international planning

competition in 2004 and 2006 are also used in the experimental evaluation.
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Chapter 1

INTRODUCTION

It is hard to establish when Artificial Intelligence Planning (AI Planning) was first in-

troduced. It is known that AI Planning was already considered to be a subfield of Artificial

Intelligence in the late 1960s. AI Planning applications can now be found in different fields,

such as autonomous manufacturing, space exploration, and the game industry.

In our daily lives, planning problems are everywhere, e.g. going to school, going shop-

ping etc. Any of us is able to find plans in these situations. However, we have little

knowledge on how our brains work to find the solutions. The mechanism to find a good

plan for a planning problem is still a challenge to scientists nowadays.

One of the very first planning problems considered in AI was the monkey-banana prob-

lem which was proposed by John McCarthy in 1963 [70]. The initial state tells the position

of the monkey, the banana, and the chair. With actions such as walk, move the chair to

underneath the hanging banana, climb etc., the solution is a sequence of actions for the

monkey to get the banana (i.e. the goal state). In this example, John McCarthy introduced

the idea of modelling planning domains into situation calculus by using axioms.

Planning systems and definitions were gradually proposed and developed. However,

each research group developed their own planning system with their own specification lan-

guage for describing a planning domain. This was the situation until 1998, in order to pre-

pare for the first international planning competition, Drew McDermott and other members

of the committee proposed the first Planning Domain Definition Language (PDDL) [72]

to the planning community. Since then, planning systems are compared more easily using

PDDL. PDDL has been developed and extended further to model real-world domains, and

is still being developed.
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In 1995, Blum and Furst first introduced Graphplan [13] to the planning community.

The algorithm’s innovation is in forming the union of all the reachable states of a current

state together to reduce space complexity, and in finding a solution in a later stage by

backtracking search. This introduction was a big step forward in dealing with planning

problems. Years later, scientists are still working within the plangraph framework to handle

more complex problems, e.g. in temporal planning or planning with resources. Some have

extended the plangraph framework to find an optimal solution for temporal planning, while

others have used the relaxed planning graph as a part of the heuristic function for state-

space search.

However, planning is still a long way from being able to solve realistic problems ef-

ficiently. Planning problems are generally NP-complete [30], even the simple famous

BlocksWorld problems.

At the start of the research described in this thesis, TGP [88] and TPSYS [38] were

the two well-known plangraph-based optimal planning systems for temporal planning do-

mains. These planning system use the plangraph framework to find a plan with minimal

makespan. However, there are several limitations of these two systems, such as a strict as-

sumption on conditions and effects while executing actions. Effects of actions are allowed

only at the end of the action in TGP and only at the beginning or at the end in TPSYS.

Also, the approaches used in the solution extraction phase does not take advantage of all

the information available after the graph expansion phase. This motivated us to develop

CPPlanner. CPPlanner extends PDDL2.1 to allow actions with intermediate effects and

handles them using the plangraph framework. It also uses “critical paths” provided by the

expansion phase to add some actions and propositions to the final plan before the actual

backtracking search takes place. Other improvements are introduced to CPPlanner to speed

up the search.
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1.1 Thesis structure

The thesis is constructed as follows:

• Chapter 2: Introduction to Artificial Intelligence Planning. This chapter introduces

AI Planning. It begins with the definition of what is a planning problem, and a so-

lution to a planning problem. Different types of planning and approaches are intro-

duced. Then, the Planning Domain Definition Language (PDDL) with its extensions

is described briefly. The syntax and semantics of actions with intermediate effects

are proposed in this chapter. This extension allows actions of the current PDDL 2.1

level 3 to have intermediate effects.

• Chapter 3: Temporal Planning Systems. This chapter gives an overview of well-

known temporal planning systems. Each temporal planner is introduced briefly and

its capabilities discussed. The chapter focuses on TGP [88] and TPSYS [38], which

are the two main plangraph-based optimal temporal planning systems. These two

planners will be considered and compared directly to our system in the experimental

study.

• Chapter 4: CPPlanner - An Optimal Temporal Planning System using Critical Paths.

The chapter describes the CPPlanner framework. It begins with the plangraph frame-

work and extends it to deal with temporal domains. Extensions to handle interme-

diate effects are also illustrated. The details of the algorithms for both the graph

expansion phase and solution extraction are described fully. The use of “critical

paths”, which is one of the main contributions, is analysed and shown in detail. A

simple example is also included to illustrate the algorithm.

• Chapter 5: Improvements. This chapter contains the improvements to CPPlanner.

It introduces the timebound in selecting next actions for the search in the solution

extraction phase. In addition, conflict-directed backjumping is discussed and added
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to CPPlanner to help the planner jump right back to the origin of the conflict. These

improvements are developed and described in detail.

• Chapter 6: Experiments and empirical analysis. This chapter illustrates the per-

formance and comparison of CPPlanner to TGP and TPSYS on different temporal

domains. The domains are mainly from the planning competitions and the TGP

package. In addition, CPPlanner is compared to the state-of-the-art optimal tem-

poral planning system, CPT in latest temporal planning domains in the last two in-

ternational planning competitions, IPC2004 and IPC2006. This chapter also shows

the comparison of CPPlanner with the earlier version of CPPlanner, called CPPlan-

ner Basic which does not include “critical paths” in the solution extraction phase and

the improvements of chapter 5.

• Chapter 7: Conclusion and future work. This chapter contains the summary of con-

tributions of this thesis. It also incudes the future directions for CPPlanner.

• Appendix A: Comparisons a same planner on different operating systems. The chap-

ter shows the empirical study of the performance of a planning system on different

platforms. It illustrates there is not much difference in running time if planning sys-

tems are compared under the same hardware settings but on different platforms.

• Appendix B. The chapter contains the details of test suites which were used in the

empirical study.

1.2 Contributions

This section introduces and outlines the main contributions of this thesis:

• Introduction of intermediate effects to PDDL2.1 level 3. Because of the complexity

of using PDDL2.1 level 3 to introduce actions with intermediate effects into temporal
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planning, the extension in syntax and semantics of PDDL2.1 is introduced. This

introduction helps to move planning problems towards real-world problems.

• “Critical paths”. This new idea improves the performance of plangraph-based tem-

poral planning systems. The introduction of “critical paths” helps the solution extrac-

tion phase add actions and propositions before the actual search takes place. Note

that with actions and propositions being added to the plan early, the search for so-

lutions will be improved even when actions do not have intermediate effects. Time-

bounds and conflict directed-backjumping are also introduced to the backtracking

search of the solution extraction phase to reduce the search space.

• Development of CPPlanner. CPPlanner is developed with the ability to handle tem-

poral planning domains with intermediate effects. The new improvements of the

solution extraction phase are included and tested. The planner shows the efficiency

of the development via experimental results.

• Empirical analysis of CPPlanner and the introduction of a planning domains with

intermediate effects. It contributes to the planning community the comparison of

CPPlanner and other optimal temporal planning systems, TGP and TPSYS, on many

temporal planning problems. The comparison to CPT is also included. Especially, a

new temporal planning domain with actions and intermediate effects are introduced.

The empirical study of CPPlanner on this domain is also described.



Chapter 2

INTRODUCTION TO ARTIFICIAL INTELLIGENCE PLANNING

2.1 Introduction

Artificial Intelligence planning (AI planning) has been a sub-field of Artificial Intelligence

since the 1960s [79, 70, 71, 44]. It is a well-known area in Artificial Intelligence that studies

to build algorithms and techniques for planning. AI Planning is applied in many areas in

the real world such as automated data-processing [43, 17], autonomous manufacturing [75]

and [45], space exploration [74, 18, 86, 57], robotics [11, 10, 12, 9], game industry [93],

and large-scale logistics problems [104]. Scientists have studied and developed efficient

algorithms and models to deal with real world problems due to their size and complexity.

An overview of progresses and algorithms in AI Planning can be found in [101, 87, 66].

This chapter will describe briefly the definition of planning problems, types of planning,

approaches and techniques, and the description language used in the International Planning

Competitions: PDDL.

Firstly, it is necessary to define what is a planning problem. Different researchers have

different definitions of planning problems. However, below is the common definition of

what is a planning problem.

Definition 2.1 A planning problem is described as an initial state containing propositions,

a goal state (i.e. a set of propositions called subgoals) to be achieved, and a collection of

actions, in which each has a set of preconditions (which need to be true for the action to

be executed) and a set of effects (which will be true when the action is applied).

Definition 2.2 A solution (or a plan) to a planning problem is a sequence of actions which
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will transform the initial state to a state that satisfies all the propositions/subgoals of the

goal state.

In everyday usage, planning is the process of finding a plan for a given initial state and

goal state before actually executing any of them. For example, when we are cooking, we

have a plan which shows a sequence of actions that we will follow. These actions have to

be followed in a predefined order.

initial

state

actions

execution

the world

goal

state

planning

Domain
Model

Figure 2.1: The abstract view of components in a planning system

Figure 2.1 shows the general view of components of a planning system. Given a initial

state, a goal state, and a list of available actions, the planning system looks for a sequence

of actions to achieve the goal state. When the plan is executed, the actions are applied to

change from one state to another in the world to achieve the pre-defined goal state. The

initial state, the goal state and actions are defined depending on the type of planning and

the representation used. The details are described in the following sections.
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With the hope of encouraging researchers to share their planning problems and algo-

rithms, as well as to allow comparisons on performance of different planning systems, the

Planning Domain Description Language (PDDL) was first proposed in 1998 by a commit-

tee led by McDewmott [72], and then extended by Fox and Long in 2002 [34], EdelKamp

and Hoffmann in 2004 [27], and Gerevini and Long in 2006 [40]. The language has been

used as a standard for modelling planning problems. The detail of the language is discussed

later in this chapter.

AI Planning is categorized into different types, such as classical planning, planning

with time and resources, planning under uncertainty, according to the expressivity of the

representation of the planning problem (or the planning language required to describe the

planning problem). The more expressive the planning language is, the bigger the search

space to find a plan becomes. In the scope of this thesis, classical planning and its ap-

proaches are introduced and described briefly. The main focus is on temporal planning (i.e.

planning with time).

However, there are other ways to classify a planning system. It can be classified as a

domain-independent planner, or a domain-dependent planner, in which some hand-coded

knowledge is provided for the domain.

Besides, planning systems might be classified according to the algorithms and tech-

niques used, such as Graphplan-based planners (e.g. IPP [60], STAN [33], TGP [89]), SAT

planners [56, 54], and HTN planners [103, 19, 76] etc.

The next sections introduce classical planning, and planning with time and resources.

In each section, the representation and planning approaches, including algorithms and tech-

niques, are also described.
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2.2 Classical planning

2.2.1 Introduction

Early research in AI Planning was related to automated theorem proving [44]. In these

systems, the initial state, goal state and actions are described in terms of axioms. Resolution

theorem proving was used to produce a proof that a plan exists, and the actual plan found

by applying answer extraction to the proof. However, those systems faced difficulties when

it was required to specify axiomatically not only the changes that an action makes to a state

but also the elements left unchanged. This encouraged the development of the classical

formulation which introduced a simple solution to those types of problems.

Classical planning is a type of planning for restricted state-transition systems. These

restricted systems have the following assumptions:

• The system has a finite set of states.

• The system is fully observable.

• The system is deterministic, i.e. a possible application of an action to a state only

brings it to a single other state.

• The state remains unchanged until another application of an action.

• Actions have no duration.

• Goals are restricted and explicit. It means there are no constraints or conditions on

the goal state.

• The solution is a sequence of linearly ordered finite actions.

• The planning is offline, i.e. there is no change while the system is planning.
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2.2.2 Classical planning representations

In AI Planning, it is essential to have a description of the planning problem for planners.

There are different types of representations [42] for classical planning: set-theoretic rep-

resentation, classical representation, and state-variable representation. These representa-

tions have equivalent expressivity. It means that a planning problem can be represented

equally well in any of those representations. In AI Planning, the classical representation

is the most popular and often used by the community. The section below describes the

classical representation.

2.2.2.1 Classical representation

In classical representation, states are represented as a set of logical atoms. Actions are

represented as operators which change the truth values of atoms.

Firstly, the first-order language L has finite predicate symbols and constant symbols,

but no function symbols. A state is a set of atoms of L. Because L is finite and has no

function symbol, the set of all possible states S is finite.

Definition 2.3 An operator is a triple o = (name(o), precond(o), effect(o)), in which:

• name(o) is the name of the operator. It is an expression in the form of n(x1, ...,xk)

where n is the operator symbol, and is unique; and every xi is a variable symbol

which can appear anywhere in o.

• precond(o) and effect(o) are preconditions and effects of the operator. These precon-

ditions and effects are sets of literals (i.e. atoms and negations of atoms).

• The application of an instance of the operator to a state is described as follows: γ(s,

a) = (s \ effect−(a)) ∪ effect+(a).

Definition 2.4 Let L be a first-order language, a classical planning domain is a restricted

transition system Σ = (S, A, γ), such that:
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• S ⊆ 2{allgroundatomsofL}

• A ={all ground instances of operators in O}

• γ(s, a) = (s \ effect−(a)) ∪ effect+(a), if a is applicable to the state s. The new state

constructed is in S as well.

Definition 2.5 A classical planning problem is triple P = (Σ, s0, g), in which:

• s0 is the initial state.

• g is the goal state - a set of literals which need to be achieved.

2.2.3 Introduction to planning approaches

There are many different algorithms and techniques to deal with a wide variety of planning

problems [87]. Some planning systems solve planning problems by searching through a

graph representing the state space [77, 50, 6]. Each node in this space presents a state of

the world. Arcs are state transitions or actions. Therefore, a plan is a path starting from

the initial state, going through intermediate states, and ending at a goal state by applying a

sequence of actions. This is called state space planning.

Other planning systems solve planning problems by searching through a space of plans

[82, 8]. This approach is called plan space planning. Each node in this space is a partially

specified plan. Arcs are plan refinement operations to achieve an open goal or to remove

a possible inconsistency. In this approach, the planning system starts from an initial node

which is an empty plan. The planner, then, is aiming at the final node containing a plan,

which achieves the goal.

The planning graph approach is a synthesis of state space planning and plan space

planning. It introduces a compact and powerful search space, which is called a planning

graph. Starting from the initial state, also called the first level, the approach builds a next

level containing all possible states reachable by applying actions to the current level. In the
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same level, if two or more states have parts in common, those parts are stored only once.

Hence, the size of the graph is much smaller than the graph in the state space planning.

In addition, there are other approaches which apply Constraint Programming (CP),

Satisfiability (SAT) techniques, or heuristics.

Those approaches can be applied to both classical planning and planning with time

and resources. In the next sections, the classical representation is used in describing the

approaches for classical planning. For planning with time and resources, the planning

systems can use the same approaches but with extensions.

2.2.4 State-space planning

2.2.4.1 Introduction

As described earlier, in state-space planning, each node represents a state of the world. Arcs

are state transitions. The solution plan is a path in the search space. In classical planning,

classical state-space search algorithms are easy to understand. There are two approaches:

progressive and regressive search: starting from the state representing the initial state or

goal state respectively, the planning system searches through the state space to find the

solution path leading to the goal state or initial state respectively. These two approaches

are discussed in more detail in the following sections.

2.2.4.2 Progressive search

Progressive search, also known as forward search, is one of the simplest search algorithms

in AI Planning. Starting from the initial state, the planner searches the state space to find

a solution path leading to the goal state. Figure 2.2 is a general pseudo-code example of a

progressive search algorithm in AI Planning:

In figure 2.2, the algorithm is a depth-first backtracking search. The algorithm might

end up in an infinite search branch if there is a state si with i < k in the sequence s0, s1,

..., sk such that si = sk. In this case the algorithm will have an infinite loop and repeatedly
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01. Procedure ProgressiveSearch(O, s0, g)

02. s ← s0

03. π ← {} //an empty plan

04. Loop

05. if g is a subset of s then return π as the solution plan and terminate

06. // store the list of all possible actions

07. possActions ← a | a ∈ O and precond(a) is satisfied in s

08. If possActions=∅ then return failure and backtrack

09. // Try each action in the possible list

10. For each ai in possActions do

11. s ← γ (s, ai)

12. π ← π
⊕

ai

13. run the loop to continue

14. od {end for}
15. End {loop}

Figure 2.2: Pseudo-code for ProgressiveSearch (O, s0, g) extracted from [42].

return to this state. In order for the algorithm to be complete, these infinite search branches

must be pruned (i.e. the algorithm must check and return failure at any time it finds a state

which is the same as a state earlier in the list π).

2.2.4.3 Regressive search

Regressive search, also known as backward search, is another approach in state-space plan-

ning. The solution plan is extracted from the state space by starting the search from the

goal state, traversing through other states backwards, and ending at the initial state. The

figure 2.3 shows the pseudo-code of the regressive search.

Like the progressive search, the regressive search also keeps a record of the list of state

(..., sk, ..., sg) while searching. In order to avoid the infinite loop, the algorithm returns
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01. Procedure RegressiveSearch(O, s0, g)

02. s ← g

03. π ← {} //an empty plan

04. Loop

05. if s0 is a subset of s then return π as the solution plan and terminate

06. // store the list of all possible actions

07. possActions ← a | a ∈ O and effect(a) ∩ s 6= ∅
08. If possActions=∅ then return failure and backtrack

09. // Try each action in the possible list

10. For each ai in possActions do

11. s ← γ−1 (s, ai)

12. π ← ai
⊕

π

13. run the loop to continue

14. od {end for}
15. End {loop}

Figure 2.3: Pseudo-code for RegressiveSearch (O, s0, g) extracted from [42].

failure whenever it finds a state sj , in which j > k and sj ⊆ sk.

2.2.4.4 STRIPS algorithm

In the previous two sections, the progressive and regressive search are introduced. How-

ever, the size of the search space is very big. The STRIPS algorithm [31], which was

developed by Fikes and Nilsson in 1971 at Stanford university, is one of the first attempts

to reduce the search space. The algorithm is very similar to regressive search, but is differ-

ent in the following respects:

• In each recursive call to the STRIPS algorithm, only actions which have a part of their

effects in common with the preconditions of the last chosen action are considered.

This prunes the search space. However, it means that the search is incomplete.
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01. Procedure STRIPS(O, s, g)

02. π ← {} // an empty plan

03. Loop

04. if s satisfies g then return π

05. A ← {a | a is a ground instance of an operator in O,

06. and a is relevant for g}
07. if A = ∅ then return failure.

08. choose any action a ∈ A nondeterministically.

09. π’ ← STRIPS(O, s, precond(a))

10. if π’ = failure then failure

11. s ← γ−1 (s, π’)

12. s ← γ−1 (s, a)

13. π ← π.π’.a

15. End {loop}

Figure 2.4: Pseudo-code for STRIPS (O, s, g) extracted from [42].

• If at the current state, an action has all of its preconditions satisfied, STRIPS will

execute the action and not backtrack over this commitment.

2.2.5 Plan-space planning

2.2.5.1 Introduction

This section introduces plan-space planning. In state-space planning, nodes represent states

of the search space, arcs are transitions or actions between states, and a solution plan is a

path of states from the initial state to the goal state. However, in plan-space planning, as

described earlier, nodes are partially specified plans. Arcs are plan refinement operations

which further complete a partial plan. Starting with an empty plan, the algorithm goes

through the refinement operation to aim at the final node which contains a solution plan to
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achieve all the goals.

2.2.5.2 Search space

A solution plan is a sequence of actions which is organised in an order to achieve the goal.

A partial plan can be considered as any subset of actions of this sequence.

A partial plan is gradually refined by adding actions, add ordering constraints for ac-

tions, adding causal links, and variable binding constraints. Ordering constraints tell the

system the relationship between actions, i.e. which one needs to be done before the other.

A causal link is added when a precondition of an action is supported by another action.

Variable binding constraints make sure concerned objects of the relating actions are bound

together.

A plan space is a directed graph in which vertices are partial plans and edges are re-

finement operations. The directed edge from vertex A to vertex B means a refinement that

transform partial plan A to a successor partial plan B. The refinement operation can be one

or more of the followings:

• Adding an action to A.

• Adding an ordering constraint to actions in A.

• Adding a causal link into A.

• Adding a varible binding constraint to A.

Planning for this approach is a search through this directed graph, starting from the

initial partial plan to the solution plan. For each partial plan, there are subgoals which are

unsupported preconditions. The refinement tries to add things into the partial plan while

still keeps it satisfied.
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01. Procedure PSP(π)

02. flaws ← OpenGoals(π) ∪ Threats(π)

03. if flaws = Ø then return(π)

04. select any flaws φ ∈ flaws

05. ψ ← Resolve(φ, π)

06. if ψ = Ø then return(failure)

07. choose a ω ∈ ψ nondeterministically

08. π’ ← refine(ω, π)

09. return(PSP(π’))

Figure 2.5: Pseudo-code for plan-space planning PSP (π) extracted from [42].

2.2.5.3 Algorithms

A general algorithm for plan-space planning is described as in figure 2.5.

The algorithm starts with a partial plan, and tries to find its flaws, i.e. its opengoals and

its threats. Then, the algorithm selects one of these flaws and tries to find ways to resolve

it. Next, it will choose a resolver for the flaw and refine the partial plan.

The process of finding flaws consists of finding opengoals and threats. Opengoals are

preconditions which are not supported by a causual link yet. Threats are actions which

cause problems to the causal link of other two actions (i.e. ak threatens the causal link ai

→ aj). Finding threats can be done by checking all triple of actions (ai, aj , ak) in the partial

plan.

The process of resolving consists two parts: resolving opengoals and resolving threats.

To resolve an opengoal is to find an action which can provide that proposition (i.e. open-

goal). To resolve the threat ak of the causal link ai → aj is to put a constraint forcing

whether ak happens before ai or after aj .
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2.2.6 Planning graph

2.2.6.1 Introduction

In state-space planning, the plan is a sequence of actions, whereas in plan-space planning,

planners synthesize a plan as partially ordered set of actions, i.e. any sequence that meets

the constraints of the partial order is a valid plan. The planning graph approach applies

both. The approach was first introduced by Blum and Furst in 1995 in the Graphplan

planner [13]. The planning graph is directed layered graph, which is constructed based on

the reachability analysis (Note: see the next section for details of constructing the graph).

The planning graph approach has been analyzed, extended and improved in many plan-

ning systems to speed up the search [22, 13, 38] or deal with more expressive planning

domains. In addition, it has also been modified as a relaxed planning graph to build up

heuristic functions [80, 23, 49, 14] to guide the search in bigger and more complicated

domains.

2.2.6.2 Description

Starting from the initial state in the level 0, the planner will find all the possible actions

including no-op actions (i.e. actions doing nothing) which have preconditions in level 0 to

construct the level 1. This means that level 2 contains all the propositions which could be

true as a result of applying all possible actions to the initial state. The process repeats to

construct the whole planning graph. Thus, the planning graph is a directed layered graph

which alternates between a level of propositions and a level of actions.

In the planning graph, each proposition level is a union of all possible states of that

level. The figure 2.6 below illustrates an example of a planning graph.

2.2.6.3 Mutual exclusion

With the construction of the planning graph described in the above section, a certain propo-

sition level contains all possible states which can be reached at this level. However, because
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Figure 2.6: The overview of a planning graph

the algorithm stores states as a union of them, there might be two actions which cannot hap-

pen simultaneously due to a conflict in preconditions or effects. For example, an action may

delete preconditions of another action. Hence, not all the propositions of the proposition

level may be simultaneously true. Therefore, the mutual exclusion relations, also called as

mutex relations or mutexes, are introduced to identify whether actions or propositions can

appear simultaneously.

Definition 2.6 Two actions a and b are mutex if:

• [Inference] either action deletes a precondition or an added effect of the other ac-

tions.

• [Competing needs] A precondition of a is logically inconsistent with a precondition

of b in the previous level.

Definition 2.7 Two proposition p and q are mutex if:

• They are negations of each other, i.e. p = not q.



20

• All possible ways to create p are logically inconsistent with all possible ways to

create q.

2.2.6.4 Graphplan planner

The Graphplan planner [13] was introduce by Blum and Furst in 1995. It is an optimal

planner which finds an optimal solution (i.e. using the minimal steps) for classical planning

domains.

Graphplan contains two phases: the graph expansion and the solution extraction. In

the graph expansion, from the initial state, the planner applies possible actions and their

effects to advance the planning graph to the next level. The process is repeated until all

of the propositions of the goal state appear and are pairwise non-mutex. At this time,

the solution extraction is called to look for a solution in the planning graph. In the solution

extraction, starting from the propositions of the goal state, the planner looks for all possible

supporting actions and tries to add them into the plan. The preconditions of these selected

actions are then added. If it leads to a dead-end in the search tree, the planner will backtrack

and try other actions. The process continues to search backwards towards the initial state.

If it reaches the initial state, a solution is found and is optimal. At this time, the algorithm is

terminated. Otherwise, if all possible search branches have been tried, the graph expansion

is called again to advance the planning graph to the next level. If the planning graph has

levelled-off (i.e. the new level is the same as the previous one), there is no solution and the

algorithm stops.

The extension of Graphplan to deal with temporal planning is discussed in detail in

the next chapter. It describes the detail of the algorithms of TGP and TPSYS and the

improvements over Graphplan. Chapter 4 then describes in detail CPPlanner, which uses on

the planning graph to deal with temporal domains in which actions can have intermediate

effects.
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2.2.7 Constraint Programming in planning

2.2.7.1 Introduction

Constraint programming is a very powerful approach to find an optimal solution. Encoding

the planning problems as CSPs [97, 22, 69, 68, 96] allows to use efficient built-in search al-

gorithms and techniques in Constraint Programming Solvers. Graphplan has been adapted

to use constraint programming [22, 68] and is a typical example to show that planning

problems can be encoded to CSPs and solved using CSP algorithms.

2.2.7.2 Constraint Satisfaction Problem

A constraint satisfaction problem is defined as P = (X, D, C), in which:

• X = {x1, x2, ..., xn} is a finite set of variables.

• D = {D1, D2, ..., Dn} is a set of finite domains for corresponding variables, xi ∈ Di.

• C = {c1, c2, ..., cm} is a finite set of constraints.

Definition 2.8 A solution to a CSP is an assignment of (v1, ..., vn), in which vi ∈ Di, to

variables (x1, ..., xn) which satisfy all of the constraints in C.

For example, in Graphplan, the solution extraction process can be encoded as a dynamic

constraint satisfaction problem [22]. In this encoding, variables are propositions which

are looking for supporting actions. The domain for each variable consists of all possible

supporting actions of that proposition. The CSP starts with variables of all propositions

in the goal state. Each time new propositions appear which are preconditions of chosen

actions, new variables are created and added to the CSP. The CSP solver tries to look for

a possible assignment to variables. If there is a solution for the CSP problem, it is then

mapped back to propositions/actions to have the solution plan for the problem.
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Constraint programming is successfully used for resource allocation and scheduling

problems. In AI Planning, applying constraint programming is still at the early stage.

However, it is a promising approach for AI planning, especially for optimal planning sys-

tems. Besides the above example of encoding the solution extraction of Graphplan into

CSP, there have been a few studies of applying constraint programming into AI Planning,

such as CPlan developed by Peter van Beek [97], Encoding Temporal Planning as CSP by

Mali [69], Generalizing GraphPlan by Formulating Planning as a CSP [68], and Utilizing

Structured Representations and CSPs in Conformant Probabilistic Planning [52].

2.3 Planning with time and resources

In classical planning, actions are assumed to have no duration. The actions can take place

instantaneously. However, this is unrealistic. In addition, resources are also considered in

real world problems. For instance, in order to fly from city A to city B, it will take durAB

time and consume fuelAB. With the ambition to deal with real world problems, temporal

planning and planning with resources have been introduced.

With the introduction of time into planning, actions can take place concurrently as long

as they are not in conflict with one another. Hence, the plan is now a sequence of actions

attached with their starting time. With time and resources, the expressivity of the problem

description increases, and so does the complexity. The search space becomes much bigger

comparing to that of the classical planning. The next sections will show an overview of

planning with time and resources.

2.3.1 Planning with time

2.3.1.1 Introduction

Unlike classical planning, in temporal planning, actions now have duration. This section

will introduce the representation and techniques for temporal planning.
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2.3.1.2 Temporal representation

According to the description of a temporal planning domain in the book [42], it has:

• constant symbols are objects in the planning domains, such as cars, places, people.

• variable symbols are either object variables that are typed variables or temporal vari-

ables.

• relation symbols are either rigid relation symbols representing relations that do not

change during time, for example attach(crane, location), or flexible relation symbols

representing relations of the constants that may or may not hold at some instant for a

planning problem, for example at(car1, London).

• constraints are either temporal constraints which reside within point algebra calcu-

lus, e.g. t1 < t2, or binding constraints on object variables, which are expressions of

the form x=y, x 6=y and x ∈ D, with D being a set of constant symbols.

The rigid relations and binding constraints are object constraints, which are time-

invariant in this representation scheme.

The temporally qualified expression is an expression in the form: ρ(ζ1,..., ζk)@[ts, te).

in which, ρ is a flexible relation, ζi is a constant or object variable, and ts, te are temporal

variables, such that: ∀ t ∈ [ts, te), ρ(ζ1,..., ζk) holds at t.

A temporal database is defined as φ = (F, C), in which F is a finite set of temporally

qualified expressions, and C is a finite set of temporal and object constraints.

A temporal planning operator is a tuple o = (name(o), precond(o), effects(o), const(o),

in which:

• name(o) is in the form of o(x1, ..., xk, ts, te) such that o is the operator symbol, x1, ...,

xk are object variables which appear in o, and ts, te are temporal variables in const(o).
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• precond(o) and effects(o) are temporally qualified expressions.

• const(o) is a conjunction of temporal constraints and object constraints.

An action is an instance of the operator. The action a is applicable to φ=(F, C) iff

precond(a) is supported by F within some consistent constraints.

2.3.1.3 Approaches in temporal planning systems

This section describes a brief introduction to different approaches and techniques in tem-

poral planning, and illustrates temporal planning systems. Chapter 3 will discuss in detail

these temporal planners.

Simple Temporal Constraint Problem (STP) and Temporal Constraint Network Problem

(TCSP), which were introduced by Dechter et al. [21], have been widely used in several

temporal planning systems [15, 51, 18], and many improvements have been introduced

[16].

In temporal state-space planning, planning systems have applied heuristics to guide the

search, such as TLplan [4], and later developments [5, 7, 3], TALplanner [24, 62, 61, 25],

and the HS planner [41].

In plan-space planning, ZENO planner [83] dealt with rich representations with variable

durations and linear constraints. It is one of the earliest planning systems which can deal

with complex planning domains including deadline goals, metric conditions and effects,

and continuous changes.

In the planning graph approach, TGP [89], TPSYS[38], and SAPA [23] deal with du-

rative actions. TGP and the early version of TPSYS extend the Graphplan planner to find

an optimal solution for temporal planning domains. SAPA applies a heuristic search based

on the planning graph.

In HTN planning, several planning systems, such as O-Plan [19], and SHOP2 [78] use

time windows and constraints in their representation and processes.
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These approaches proved to successfully perform at the International Planning Com-

petition 2002. However, they make restrictive assumptions on actions, such as that actions

only have effects at the beginning or at the end of their execution.

2.3.2 Planning with resources

2.3.2.1 Introduction

Resources are an important part of making planning domains/problems more realistic.

However, since our main topic is working on temporal planning and planning systems,

planning with resources is not discussed in very detail. The section only gives an overview

of planning with resources.

In planning problems, resources can be categorized into two types: consumable re-

sources and reusable resources.

A consumable resource is consumed by an action during its execution. Fuel is a typical

example of a consumable resource. A reusable resource is used by an action during its exe-

cution; the resource is then released and unchanged when the action finishes. For example,

cars, locations are reusable resources.

Reusable resources are constraints on the number of actions which can perform in par-

allel, whereas consumable resources are constraints on whether the action can perform

freely during the lifespan of the plan.

Consumable resources are quantitative resources. These are encoded as a quantity with

a state. The value of this resource is often numeric. The consumption of this resource will

reduced its value accordingly. In some planning domains, there are actions which allow to

restore this resource. For example, an action drive(car, A, B) can consume an amount of

fuel. Another action refuel(car) can restore the fuel level for the car.

Reusable resources are qualitative resources. They are represented by the states of

objects. For example, when a robot arm is empty (or available), it means it is ready for

actions which require this resource to be executed.
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2.3.2.2 Approaches

There are several approaches to deal with planning domains with resources. In the work

of Srivistava and Kambhampati [94, 95], the authors tried to separate resources from plan-

ning. Resources are then managed and attached into the skeletal plan which is constructed

without resources earlier. The main difficulty of this idea is when the resource constraints

are too tight. In this case, it is very difficult to manage them into the skeletal plan. Because

of this difficulty, the attempt to separate resources from planning has been abandoned.

Many researchers have studied and implemented several planning systems to handle

resources. Penberthy and Weld [83] introduced ZENO planner, Laborie and Ghallab with

IxTeT [63], or Drabble and Tate with O-Plan [26], or Koehler’s work [58, 59] with intro-

duction of resources into the Graphplan framework. ZENO, IxTeT, and O-Plan are among

earliest planners which can handle planning domains with resources. However, due to the

limitation of the approaches they used at that time, their performance was not as good as

the current planning systems with new approaches.

The common idea in those systems is to consider resources as constraints and use spe-

cialized solvers to deal with these constraints. Dealing with resources makes planning sim-

ilar to scheduling. Systems, such as O-Plan and IxTeT, have used scheduling techniques to

solve the planning problems. O-Plan with optimistic and pessimistic resource profile, and

IxTeT identifying the minimum critical set of actions which have resource conflicts.

In ZENO, IxTeT, RealPlan and Koehler’s work, they also consider time as a resource.

ZENO and IxTeT used interval representation for actions and propositions, and applied

constraint programming techniques to manage the relationships between intervals. In Re-

alPlan and Koehler’s work, time is considered as steps, in which each corresponds to a set

of possible actions which can take place in parallel.
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2.4 Planning Domain Definition Language (PDDL)

2.4.1 Introduction

The Planning Domain Definition Language (PDDL) was introduced in order to help the

planning community to share planning models, problems and be able to compare their

systems. It became the standard language for the first International Planning Competition in

the community in 1998. Our planning system, CPPlanner, also uses PDDL as the language

for planning domains and problems. This section describes an overview of the language

and its development in the last few years.

Planning Domain Definition Language (PDDL) was first introduced by McDermott in

1998 with the purpose to make a standard planning language for the first International

Planning Competition. Since then, it has been accepted and widely used by the planning

community to share and exchange planning models. PDDL is an action-based planning

definition language, which was mainly inspired from the ideas of STRIPS. In the first

international planning competition in 1998, it was used as the standard definition language

for all participating planners. Before the introduction of PDDL, in the planning community,

each planning system used its own conventions on the input and output data. This caused

difficulty in comparing and sharing planning models. PDDL provides the standards for the

input and output data for planning systems. PDDL encourages scientists to develop and

compare the performance of their systems.

With the ambition to deal with realistic planning problems, PDDL has been extended

with more expressivity to describe more complex and realistic planning domains. In 2002,

it was extended to PDDL 2.1 which is able to model temporal planning domains and do-

mains with resources. In the international planning competition 2004, PDDL was extended

to PDDL 2.2, which added derived predicates and timed initial literals. Recently, Gerevini

and Long [40] extended it further by allowing to express strong and soft constraints on

plan trajectories (i.e. constraints over possible actions in the plan and intermediate states

reached by the plan). Strong constraints are constraints which must be satisfied, while soft
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constraints are ones attached with weights or values which are desired to be satisfied as

“much” as possible. They also proposed strong and soft problem goals (i.e. goals that must

be achieved in any valid plan, and goals that we desire to achieve, but that do not have to be

necessarily achieved). The following sections will introduce PDDL and its development.

2.4.2 PDDL

PDDL uses Lisp-like syntax to describe planning problems. It was built based on the for-

malisms of existing planning systems at that time, such as STRIPS [31], ADL [81], UCPOP

[82]. It is an action-centered language. PDDL separates planning domain descriptions

from problem descriptions. The planning domain description shows the general domain

behaviours via parameterised actions. The problem description contains initial state and

goal state of the problem. A planning problem is a pair of a domain description and a

problem description. Normally, one domain description can be paired with many problem

descriptions to create different planning problems in the same domain.

In the domain description, actions are described at an abstract level. In addition to

preconditions and effects, actions also have parameters which are assigned values when

the actions are applied. The preconditions and effects (i.e. post-conditions) are logical

propositions, objects and logical connectives.

Because PDDL is a general planning language, many planners just support a part of

it. In a domain description, requirements are introduced so that planning systems know

quickly whether they can handle it. Below are the most commonly-used requirements:

:strips

Description consists STRIPS only.

:typing

Domains uses types. It is used to declare

parameter and object types.

:adl
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Some or all of the domain description

uses ADL syntax, e.g. actions have quantified

and conditional effects, disjunctions and

quantifiers in preconditions and goals.

:equality

Domain uses "=" predicate as equality

In the original PDDL, the semantics is not formally described for the syntax proposed.

However, the language is widely accepted by the planning community. The language has

the power to express types of objects in planning domains, constrain types of arguments of

predicates, actions with negative preconditions or conditional effects etc. These expressive

abilities were fully described and proposed as ADL. It also attempted to form a standard

syntax for describing hierarchical domains which are used in HTN planners. However,

this attempt of proposing a standard syntax for hierarchical domains was not successfully

explored and was removed in PDDL 2.1. In addition, it also tried to propose a standard

syntax for numeric-valued fluents. However, in the planning competition in 1998 and even

2000, this part of the language is not applied.

Figure 2.7 shows a simple example of a domain description. This domain description

is extracted from the gripper domain of the planning competition in 1998.
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(define (domain gripper-strips)

(:predicates (room ?r)

(ball ?b)

(gripper ?g)

(at-robby ?r)

(at ?b ?r)

(free ?g)

(carry ?o ?g))

...

)

)

Figure 2.7: A part of gripper domain extracted from planning competition 1998
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(define (domain jug-pouring)

(:requirements :typing :fluents)

(:types jug)

(:functors

(amount ?j -jug)

(capacity ?j -jug)

-(fluent number))

(:action empty

:parameters (?jug1 ?jug2 - jug)

:precondition (fluent-test

(>= (-(capacity ?jug2) (amount ?jug2)) (amount ?jug1)))

:effect (and (change (amount ?jug1) 0)

(change (amount ?jug2)

(+ (amount ?jug1)(amount ?jug2))))) )

Figure 2.8: Jug-pouring domain description, extracted from the AI Magazine article [73]
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The example in the figure 2.8, shows how a planning system can tell from the domain’s

requirements whether or not it can handle the domain. For example, in the requirements of

the domain, the planner is required to handle fluents.

In PDDL, numbers are supported, and numeric quantities can be assigned and updated.

Figure 2.8 is also an example of numeric fluents used in PDDL. In this example, the water

is poured from jug1 to jug2 with the condition that jug2 is big enough to hold the water

from jug1. The effect of this action updates the quantities in each jug by a discrete quan-

tity. PDDL is also tweaked to handle resource consumption without using numeric fluents.

Figure 2.9 shows that the fuel is consumed by the car when it moves from one location to

another.
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(define (domain vehicle)

(:requirements :strips :typing)

(:types vehicle location fuel-level)

(:predicates

(at ?v - vehicle ?p - location)

(fuel ?v - vehicle ?f - fuel-level)

(accessible ?v - vehicle ?p1 ?p2 - location)

(next ?f1 ?f2 - fuel-level))

(:action drive

:parameters (?v - vehicle ?from ?to - location

?fbefore ?fafter - fuel-level)

:precondition (and (at ?v ?from) (accessible ?v ?from ?to)

(fuel ?v ?fbefore) (next ?fbefore ?fafter))

:effect (and (not (at ?v ?from))

(at ?v ?to)

(not (fuel ?v ?fbefore))

(fuel ?v ?fafter)))

)

Figure 2.9: Vehicle domain description, extracted from Fox and Long’s paper [37]
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Because of the complexity of PDDL, the first International Planning Competition in

1998, there were only 5 participants, in which three planners only supported STRIPS,

and the other two supported STRIPS/ADL. To encourage more participants, in the sec-

ond competition in 2000, the PDDL was restricted. In particular, negative preconditions

were removed; parsing of ADL actions was simplified to avoid unnecessary “nesting”; and

objects were explicitly listed in the problems.

In short, the PDDL is the first planning language which is recognised and widely used

by the community. It helps the community to share planning problems, resources and

compare planning systems’ performance. However, the semantics need to be formally

defined. In addition, in order to encourage more people using PDDL as a standard language

for planning domains and problems, more structure, guidelines and supporting tools need

to be developed and introduced.

2.4.3 PDDL 2.1

PDDL 2.1 [37] was based on the original PDDL with the extension to allow numerical vari-

ables, and concurrent execution of durational actions. This extension was introduced in the

international planning competition in 2002. PDDL 2.1 has 5 levels, in which level 1 is

ADL planning, level 2 adds numerical variables, level 3 introduces discretised durative ac-

tions, and level 4 extends level 3 to allow continuous durative actions under certain restrict

assumptions. Finally, level 5, which is also known as PDDL+, removes the assumptions

and introduces processes and events allowing to model complex discrete and continuous

real-time systems. The higher the level is, the more expressive language is. However, be-

cause planning systems could not handle the complexities of level 4 and 5, only the first 3

levels were used in the planning competition in 2002. The syntax and semantics of the first

3 levels are formally defined in [37]. Level 4 and 5 were defined in [35].

CPPlanner, the system described in this thesis, deals with PDDL 2.1 level 3 with some

extensions to allow intermediate effects of actions.
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(define (domain jug-pouring)

(:requirements :typing :fluents)

(:types jug)

(:functions

(amount ?j -jug)

(capacity ?j -jug)

(:action pour

:parameters (?jug1 ?jug2 - jug)

:precondition (>= (- (capacity ?jug2) (amount ?jug2))

(amount ?jug1)))

:effect (and (assign (amount ?jug1) 0)

(change (amount ?jug2)

(increase (amount ?jug1)(amount ?jug2)))))

)

Figure 2.10: Jug-pouring domain description, extracted from PDDL 2.1 document [37]

In PDDL 2.1, levels 1 and 2 have some minor modifications to the original PDDL

in order to simplify the parsing and the language. For example, instead of using change

to assign a numeric value to an object, PDDL 2.1 uses assign as direct assignment, and

increase and decrease as relative assignments, which makes the language clearer. The

declaration of functions is modified to allow only numeric-valued functions. PDDL2.1 has

functions in types of objects → R, whereas in original PDDL, functions are in types of

objects → object, allowing object to be extended by the application of functions to other

objects. With the consideration that numbers do not exist as independent objects in the

world but as attributes of objects, numeric expressions are only allowed as arguments to

predicates or values to action parameters.

Figure 2.10 illustrates PDDL 2.1 functions in assign change and increase.
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Previously, a plan was evaluated based on the number of steps or actions. In PDDL

2.1, plan metrics were first introduced for evaluation purposes. One planning problem may

have entirely different optimal plans with different plan metrics. An example of a plan

metric in PDDL 2.1:

(:metric minimize (+ (* 4 (fuel-consumption car))

(fuel-consumption van)))

Durative actions are the main introduction of PDDL 2.1 level 3 for the planning com-

petition in 2002. Figure 2.11 illustrates a durative action - the offload which has duration

of 10 (time units).

(:durative-action offload

:parameters (?t - truck) (?l - location)

(?b - box) (?c - crane)

:duration 10

:condition (and (at start (at ?t ?l))

(at start (empty ?c))

(at end (in ?b ?t))

(over all (at ?t ?l))

:effect (and (at start (holding ?c ?b))

(at start (not (in ?b ?t)))

(at start (holding ?c ?b))

(at end (not (empty ?c)))

Figure 2.11: Offloading a box from a truck

In level 3 of PDDL 2.1, in the description of preconditions and effects, it is explicitly

defined whether the corresponding proposition must hold at the start, at end of the execu-

tion, or over all (i.e. throughout) the execution. Note that the over all annotation is only
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used for preconditions not effects. With the introduction of time, actions can be performed

concurrently. Time is considered as point-based rather than interval-based. In this case, at

an interesting timepoint, for example at the start or end of an action, logical states change

instantaneously.

Durative actions with discrete effects in PDDL 2.1 can be used to model continuous

changes in planning problems.

(:durative-action Fly

:parameters (?a - airplane)

(?x - location)

(?y - location)

:duration (= ?duration (travel-time ?x ?y))

:condition (and (at start (at ?a ?x))

(at start (>= (fuel-level ?a)

(*(travel-time ?x ?y)

(consumption-rate ?a))))

:effect (and (at end (at ?a ?y))

(at end (decrease (fuel-level ?a)

(* (travel-time ?x ?y)

(consumption-rate ?a))))

(at start (not (at ?a ?x)))

Figure 2.12: Flying from one place to another

For example, in the domain shown in figure 2.12, the fuel-level changes continuously,

but it is modelled by a discrete change at the end of the action of flying. In the example,

when the numeric value of the fuel-level of the airplane is updated, no other concurrent

actions are allowed to interfere with the value of the fuel-level.

In level 3 of PDDL2.1, numeric variables are modelled in a discretized way. There are
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some limitations in this approach, such as the unavailability of information about the values

of numeric variables during the action execution, and actions are assumed to have effects

at the end of their execution without further intervention by the planner. For example, the

action of opening a tap to fill a bath should be explicitly terminated after a certain period of

time. Otherwise, the bath will be full and overflow. Or, in another example, a truck is called

to rescue a trailer out of mud. When moving to the accident place, the truck consumes fuel

and partially empties the tank. This may cause the problem that the truck is not heavy

enough to rescue the trailer out of mud.

PDDL+ (or level 5) models continuous time. It introduces processes which once ini-

tiated, run over time. The processes maintain logical aspects of a state while changing

numeric values of the state over time. Processes are different from actions in that they

do not cause state transitions. Events are also introduced in PDDL+ which have numeric

pre- and post-conditions. Events are instantaneous state transition functions. They are

not used to develop a plan as actions. Numeric post-conditions of processes are always

time-dependent, whereas those of events are not. In PDDL+, a three-part structure, called

start-process-stop, is introduced to model actions, processes and events. The start and stop

can be the application of actions or events or it can be the point at which effects of active

processes cause numeric values to reach critical thresholds (e.g. the bath is full, or water

is boiling). Figure 2.13 shows a part of the bath-filling domain which contains an action,

process and event.
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(:action turn-on

:parameters (?tap ?b)

:precondition (and (off ?tap ?b)

(plug-in ?b))

:effect (and (not (off ?tap ?b))

(on ?tap ?b)

(increase (flow ?b) (flow-rate ?tap)))

:process bath-filling

:parameters (?b)

:precondition (<= (level ?b) (capacity ?b))

(> (flow ?b) 0)

:effect (increase (level ?b) (* #t (flow ?b)))

(:event flood

:parameters (?b)

:precondition (and ($>=$ (level ?b) (capacity ?b))

(> (flow ?b) 0)

(dry-floor ?b))

:effect (and (wet-floor ?b)

(not (dry-floor ?b)))

Figure 2.13: A part of bath-filling domain, extracted from PDDL+ [35]



40

In the bath-filling example, the action turn-on will open the tap and the water will flow

at the flow-rate. The process bath-filling will increase the level of water in the bath up

to the capacity of the bath, while water is still running out of the tap. The event flood is

triggered when the level of water in the bath reaches its capacity.

In short, the PDDL2.1 has 5 levels in which only the first 3 levels were used in the

2002 planning competition due to its complexity. The introduction of durative actions,

processes and events for continuous behaviours makes planning problems more realistic.

The development of planning systems are still far behind in order to handle the complexity

of planning domains and problems.

2.4.4 PDDL 2.2

Because the complexity of the first 3 levels of PDDL2.1 is still a challenge to the planning

community, PDDL2.2 just extended a bit further for the planning competition in 2004

based on the first 3 levels of PDDL2.1. PDDL2.2 is also divided into 3 levels, which are

ADL, numeric, and durational planning. The main extension of PDDL2.2 over PDDL2.1

is the introduction of derived predicates and timed initial literals.

Derived predicates are predicates which are not affected by the execution of actions.

In fact, the truth value of a predicate is evaluated based on a logical statement of the form

if formula(x) then predicate(x). Below is an example of the derived predicate which is

extracted from the planning competition 2004 webpage [28] to illustrate the rule of the

”above” predicate in Blocksworld problem:

if on(x,y) OR (exists z: on(x,z) AND above(z,y)) then above(x,y)

Figure 2.14: An example of a derived predicate

In fact, in the original PDDL, derived predicates already existed in the form of axioms,

but were not used in the first planning competition.



41

Another extension of PDDL2.2 over PDDL2.1 is timed initial literals. They are one of

the simple ways to describe exogenous events (i.e. facts that are unaffected by actions of

the plan, but will become true or false at time points which are known by planning systems

in advance). An example of a timed initial literal is illustrated below:

(:init (at 10 (store-open)) (at 18 (not (store-open))))

Exogenous events are very common in the real world. With timed initial literals, plan-

ning problems are more realistic.

PDDL2.2, which was used in the planning competition 2004, does not extend much

on PDDL2.1. However, the derived predicates help planning systems to be able to express

updates on the transitive closure of relations as in figure 2.14. The derived predicates help

to identify the infeasibility when compiling them. The introduction of timed initial literals

moves the planning community one more step to approach real world problems.

2.4.5 PDDL 3

PDDL3 [40] is the latest development of PDDL. With the ambition to introduce constraints

into planning problems, Gerevini and Long extended the PDDL to PDDL3 which allows

strong and soft constraints on plan trajectories, as well as strong and soft problem goals to

be expressed in the problem.

Recently, planning systems have been compared mainly based on the CPU running

time. In PDDL2.1 and PDDL2.2, the quality of plans is also considered. Metrics, such

as number of actions in the plan, parallel steps, or more complex computations based on

makespan and numerical quantities, are introduced to find a high quality plan. With the

trend of setting up criteria or metrics for plan quality, PDDL3 introduced strong and soft

constraints into goals and on plan trajectories.

For example, in the Blocksworld domain, possible constraints are that a “fragile” block

cannot have any block on the top of it, or a tower of blocks always contains blocks of the

same colour.
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In PDDL3, trajectory constraints are constraints between actions in the plan, or inter-

mediate states reached by the plan. Goals or trajectory constraints can be either strong or

soft. Strong constraints must be obtained or satisfied in the plan, while soft constraints are

optional goals and constraints which are desired to be satisfied “as much as possible”.

In PDDL3, in order to compare plan qualities among planners, soft constraints and

goals have a weight or preference attached. The weight is a numerical value representing

the cost of its violation in a plan. For example, I prefer the plan which has all cars in their

original place, rather than the plan with shorter makespan. The constraint that each car

should be in its original place at the end of the plan is a soft constraint with an attached

weight. In this case, if at the end of the planning, any car which is not at the original place

will be penalised heavily.

To describe the trajectory constraints , a new flag : constraints is introduced to the syn-

tax of PDDL. Modal operators, which are sometime, always, at−most−one, and atend,

are also added to the syntax. Other operators, such as sometime − before, sometime −
after, always− within, are introduced in order to avoid some nesting.

Soft constraints have two parts: the identification and how they affect the plan quality

if they are not satisfied. The syntax for addressing the preference is described as follows:

(preference [name] <goal-description>)

In this case, the goal-description can be extended to include preference expressions.

However, those expressions are only conjunctions and universal quantifiers, not nested

preferences in connectives. Below are examples extracted from [40]:

(preference VisitParis

(forall (?x - tourist) (sometime (at ?x Paris))))

if at least one tourist fails to visit Paris, the above preference will return 1 for (is-

violated VisitParis).
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Using the same syntax for plan metrics from PDDL2.1, for example, PDDL3.0 might

have the metric as below:

(:metric minimize (+ (* 10 (fuel-used)) (is-violated VisitParis)))

In this example, the objective of fuel-used is considered 10 times more important than

the violation of visiting Paris.

In conclusion, PDDL3.0 introduced strong and soft constraints to planning domains in

order to give planning systems other criteria in evaluating plans. With weights/preferences

attached to soft constraints, planning systems are looking for solutions to optimize the plan

metric. The new introduction makes planning problems closer to what is happening in the

real world. However, the complexity of current PDDL and its extensions are too high for

planning systems to deal with.

2.5 An extension of PDDL2.1 level 3 to handle intermediate effects

2.5.1 Introduction

As discussed in the section of PDDL2.1 above, in 2002, Fox and Long introduced time

into classical planning. However, the notion of durative action is still quite limited. In

the description of PDDL2.1 level 3, since PDDL2.1 is only able to handle actions with

start and end conditions and effects, durative actions can be viewed as a combination of

start action, process, and end action. Thus, durative actions are not expressive enough to

illustrate conditions which hold for a particular period of time, and effects which can take

place at anytime during the execution of the action.

In [36], Fox and Long have discussed and argued that PDDL2.1 is able to model du-

rative actions with intermediate effects. It can be done by breaking up those actions into

series of smaller actions, in which effects only happen at the beginning or at the end of the

execution, and conditions are at the beginning, at the end, or hold over the entire action.

Also, in this approach, two special types of actions, called tightclip and looseclip, were
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introduced to make sure the series of smaller actions attach to each other to construct the

whole durative action. However, this approach makes the planning domain much more

complex and cumbersome. Planning systems have to perform extra search and use more

memory to store smaller actions.

The idea of supporting intermediate effects was first introduced in IxTeT [64] in 1995.

However, at that time, the planning community did not have a common language to de-

scribe planning domains and planning problems yet. In this chapter, based on the analysis

of the limitation of durative actions in PDDL2.1 from David Smith [91], an extension to

PDDL2.1 level 3 is described in the following section to handle temporal planning domains

which have actions with intermediate effects.

2.5.2 Syntax and semantics

To illustrate the extension of PDDL2.1 level 3, an example of turning a spacecraft into a

particular target is considered. This example was extracted from [91].

In this example, in order to turn the spacecraft to a target, thrusters in the reaction

control system (RCS) are fired to provide angular velocity. Then, the thrusters are switched

off while the spacecraft coasts until it nearly reaches the target. The thrusters are fired again

to stop the rotation. Firing the thrusters consumes resources (i.e. propellant) and changes

the status of thrusters to in-use. In addition, during the time of firing the thrusters, it

causes some vibration to the spacecraft. Due to those vibrations, certain operations cannot

be performed. The duration of firing thrusters are very short comparing to that of the

spacecraft coasting.

To model this domain intuitively, the domain definition language must support actions

with intermediate effects. In this case, the whole process of turning the spacecraft must be

modelled as one action.

In order to introduce intermediate effects into PDDL2.1 level 3, in addition to at start,

at end, over all, we add two more temporal notations of the language: (at (timepoint or
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time expression) (something)) and (during [start time end time] (something)). This pro-

posal is similar to the one proposed by David Smith [91].

With these new notations, intermediate effects can be modelled as follow:

• (at (- endtime RCS−duration) (decrease (propellant) (/ propellant−require 2)))

• (during [(- endtime RCS−duration) endtime] (controller−in−use))

In the above example, in the first case, it tells that at the time (endtime - RCS-duration),

the resource is decreased by propellant−require/2 to fire the thruster in order to stop the

rotation of the spacecraft. In the second one, it tells that during the time the thruster is

being fired from (endtime − RCS−duration) to the endtime of the action execution, the

controller is in use.

With the extension of the two new temporal notations, PDDL2.1 level 3 can model

temporal domain in which actions can have intermediate effects easier and more intuitively.

In the example above, the intermediate effect (during [...]) can be modelled by 2 at

effects, one at the start of the interval to tell that the controller is in use, and one at the end to

release the controller. However, if it is modelled by 2 at effects, another independent action

can intercept and release the controller before the end of the interval. Thus, it depends on

the planning domain to use those temporal notations correctly.

Figure 2.15 shows the action turning the spacecraft with the new extension.

In our planning domains with intermediate effects, we assume that there is no indepen-

dent action which intercepts during the time of the intermediate effect. Therefore, we use

two at effects instead of during.

CPPlanner is the first plangraph-based optimal planning system, which can deal with

this extension, as shown later.
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(:durative-action turn

:parameters (?cur ?dest - target)

:duration (= ?duration (/ (angle ?cur ?dest) (turning-rate)))

:condition (and (at start (pointing ?cur))

(at start (>= propellant

(/ propellant-require 2)))

(at start (not (controller-in-use)))

(at (- endtime RCS-duration)

(>= propellant (/ propellant$-$require 2)))

(at (- endtime RCS-duration)

(not controller-in-use))

:effect (and (at start (not (pointing ?cur)))

(at start (decrease propellant

(/ propellant-require 2)))

(during [starttime (+ starttime RCS-duration)]

(controller-in-use))

(during [starttime (+ starttime RCS-duration)]

(vibration))

(at (- endtime RCS-duration)

(decrease propellant (/ propellant-require 2)))

(during [(- endtime RCS-duration) endtime]

(controller-in-use))

(during [(- endtime RCS-duration) endtime]

(vibration))

(at end (pointing ?dest))

Figure 2.15: Turning the spacecraft from the current target to a new target
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2.6 Summary

The chapter gives a brief introduction to AI Planning, particularly classical planning and

planning with time and resources. Different search algorithms and approaches, such as

progressive, regressive search, planning graph, and constraint programming, are being dis-

cussed.

In AI Planning, planning under uncertainty makes planning more realistic. However,

in the scope of this thesis which concentrates on temporal planning, planning under uncer-

tainty is not discussed.

The Planning Domain Definition Language (PDDL) and its developments are described.

Through international planning competitions, PDDL is widely accepted by the planning

community as a standard language for domain description. With PDDL, planning com-

munity is able to share planning resources (i.e. domains and problems), and compare the

performance of planners.

Finally, the extension of PDDL2.1 level 3 to handle planning domains, in which actions

have intermediate effects, is discussed. The syntax and semantics of the extension are

described. This extension is used in a couple of planning domains in the experimental

chapter 6 to show the ability of CPPlanner.

The next chapter discusses in detail different temporal planning systems and their ap-

proaches.



Chapter 3

TEMPORAL PLANNING SYSTEMS

3.1 Introduction

Temporal Planning differs from classical planning in that it allows actions to have dura-

tions. The introduction of time into actions makes planning domains more realistic. In

temporal planning, durations can be static, dynamic, or uncertain: it often depends on the

context. For example, the action Fly(A,B), i.e. flying from the location A to the location

B, can be dynamically calculated depending on the distance between A and B and the type

of airplane in use. In addition, in temporal planning, duration introduces more complexity

to the planning domains. For instance, when are the conditions of an action needed? How

long are they needed for? When do the effects of an actions take place? In PDDL 2.1 (see

Chapter 2), it is assumed that actions have at-start, at-end or overall conditions; at-start or

at-end effects.

In the scope of this chapter, actions are considered in form of discretised durative ac-

tions. All conditions and effects must be temporally annotated. These temporal annotations

will tell explicitly whether a condition must hold at the start of the interval (i.e. the start

time when the action applies), at the end of the interval or over the interval from the start to

the end (i.e. invariant); or whether an effect is immediate (i.e. it happens at the start time),

or delayed (i.e. it happens in the middle of the interval or at the end of the interval). In this

thesis, the view of time is point-based rather than interval-based. It means that activities are

separated by timepoints at which state-changing activities happen. These changes happen

instantaneously. Since time is discrete, between any two timepoints, there are only a finite

number of happenings (i.e. activities).
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There are several approaches to deal with temporal planning domains. The section

below reviews different temporal planners with the approach they use.

3.2 Temporal Planning Systems

3.2.1 Graphplan-based temporal planners

3.2.1.1 Introduction

A brief discussion of the Graphplan planner was given in Chapter 2. It is described more

fully here because although it is a classical planning system, it has been used as the basis

for several temporal planners.

The Graphplan planner [13] was first introduced in 1995 by Blum and Furst. Since

then, there have been many variants. The main idea of Graphplan-based planning system

is to construct a compact search tree containing all possible states, and to find a solution

in that tree. The algorithm consists of two distinct phases: the graph expansion and the

solution extraction. A planning graph is a directed graph containing alternating proposition

and action layers. Proposition layers contain proposition nodes which can be true up to

that point. Action layers contain action nodes which can happen at that point. Mutexes

represent the conflict relationships between nodes. The planning graph is constructed by

the graph expansion phase. Starting from the initial state, the planner applies all possible

actions to create a new proposition layer with all effects from possible actions. Once the

planning graph is constructed to the proposition layer which contains all subgoals which are

non-mutex, the solution extraction is called to look for a solution. The solution extraction

starts from subgoals and does a backward chaining search to look for a valid plan. If a

solution is found, the algorithm stops. Otherwise, the graph expansion phase is called

again to advance the planning graph to a next layer.

The most important point of the Graphplan-based approach is that it is sound, complete

and produces parallel optimal solutions. Variants of this approach follow that framework,
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but try to improve the performance of both phases, resulting in a time-space tradeoff.

3.2.1.2 Temporal Graphplan (TGP)

TGP [88] was built by Smith and Weld in 1999. Instead of constructing explicitly a full

planning graph with alternating layers, it builds a compact graph which implies the full

planning graph. The idea of a compact planning graph is the result of the following obser-

vations about the original Graphplan planner:

• Once propositions or actions appear in a layer of the graph, they will appear in all

layers after that.

• If a mutex M between propositions P and Q appears at the layer Lk, M appears at

all previous layers which have both P and Q. This also applies to actions.

• If a proposition P is not achieved at the layer Lk, it is not achieved in any previous

layers.

TGP also introduces types of mutexes: cmutexes (or conditional mutexes) are those

which disappear eventually; and emutexes (or eternal mutexes) are those which do not

expire once they have appeared. It introduces a new type of mutex which is an action-

proposition mutex: the proposition (i.e. it is an invariant) cannot be true while the action is

executing. An action A is cmutex with a proposition P when either P is cmutex with any

precondition of A or A is cmutex with all actions which have P as an effect.

TGP runs a mutex reasoning while expanding the planning graph. Figure 3.1 shows

the causation diagram structure of the expansion phase of the TGP. For example, adding a

new proposition node into the graph might cause new actions which have this proposition

as a condition to be added to the graph. Starting from the initial state, the graph expansion

phase chooses an action which has the earliest ending time among possible ones to apply.

The planner then moves to the next possible timepoint. The graph will be expanded until all
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Figure 3.1: The causation diagram of the TGP graph expansion phase. Dark lines mean the

effects happen later in time (i.e. after action execution). The figure is extracted from TGP

paper [88]

subgoals appear and are pairwise non-mutex. At this time, the solution extraction is called

to look for a solution. The solution extraction in TGP uses basic backtracking search.

It searches backwards from the subgoals towards the initial state. If a solution is found,

the algorithm stops and prints out the result. This is also the parallel optimal solution.

Otherwise, the graph expansion is called again to advance the graph to the next possible

timepoint.

With the compact planning graph and mutex reasoning, TGP saves space in storing

the graph in the memory and the performance for the graph expansion, but increases the

complexity of the solution extraction.

In TGP, there are some strict assumptions on the temporal planning domains which it

can deal with. Actions only have conditions at the starting time and these conditions must

hold during the execution. Actions only have ending effects. The assumptions make it

easier in calculating the next possible timepoint and the starting time of next actions while

it advances the graph.

In TGP, time is associated with the action layers. From a certain proposition layer, the

graph is advanced by choosing an action which ends earliest among other possible actions.

This causes the problem to the algorithm in the case that the difference of duration between

actions is big. For example, if there is an action A that takes 100 units of time and another

action B which only has 1 unit time then the planning graph is advanced gradually for
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every 1 time unit.

TGP extends the original Graphplan approach to find an optimal solution for temporal

planning domains. It showed the best performance comparing to other temporal planners at

that time. The compact planning graph reduces the memory consumption while expanding

the graph. However, strict assumptions on the temporal planning domains make problems

less realistic. The solution extraction uses the basic backtracking search. In addition,

the performance of the system becomes worse if the ratio of the greatest common divisor

(GCD) of the action durations is small relative to the longest action. In this case, if the final

plan must contain the longer action, the planning system wastes a lot of time in choosing

the shorter action each time it advances the graph.

3.2.1.3 Temporal Planning System (TPSYS)

TPSYS [38] was developed by Garrido, Fox, and Long. It is an optimal temporal planning

system which can handle temporal planning domains with Level 3 of PDDL2.1.

TPSYS applies the idea of Graphplan planner and extends it to handle temporal plan-

ning domains. It is quite similar to the approach of TGP. However, there are some differ-

ences in the two systems.

Firstly, unlike TGP in which the planning graph is compact, TPSYS builds a whole

multi-level planning graph. This leads to the fact that there is much more memory con-

sumption in storing and maintaining the graph. However, it makes the solution extraction

easier while looking for a solution. In TGP, the solution extraction search may traverse

cycles in the graph, but not in TPSYS.

Secondly, TPSYS analyses and calculates the static mutexes in the preprocessing stage.

This helps to speed up other stages later. In TPSYS, the mutexes are introduced in each

level of the planning graph as they are in Graphplan planner. With the temporal extension,

TPSYS has mutexes for the end-part, which are Actionend-Actionend, Propend-Actionend,

Propend-Propend, and start-part, which are Actionstart-Actionstart, Actionend-Actionstart,
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Propstart-Actionstart, Propend-Propstart, and Propstart-Propstart.

Thirdly, because TPSYS handles temporal planning problems at the level 3 of PDDL2.1,

an action can have effects at the beginning, unlike in TGP. There are cases in which an ac-

tion executes and has beginning effects. With these effects, the final goals are satisfied

before the action actually ends. At the level with these effects, if the goals all appear and

are pairwise non-mutex, it calls the solution extraction. However the goals are still condi-

tional because the action has not finished yet. It is impossible to find a solution at this level.

Therefore, the authors introduced some propagation about the validity of the propositions

in the graph to make sure that propositions are not conditional before doing the solution

extraction.

Finally, the solution backtracking search of TPSYS is different from that of TGP or

Graphplan planner. It also searches backwards, but differently in moving towards the initial

state. In TPSYS, once it selects a proposition, using the backtracking search, it will try to

find a path backwards starting from that proposition (i.e. originally it is a subgoal) to the

initial state before moving to the next subgoal. It means the system tries to find a full

support from the initial state to each subgoal. However, with this approach, the authors

could not apply some time bounds to speed up the performance of the backtracking. The

introduction of time bounds are discussed in more details in the extension and improvement

of CPPlanner in a later chapter.

Like TGP, TPSYS also meets difficulties when the planning problems have actions with

big differences in duration. Because the nature of the expansion is to move step by step in

time, the planning graph in this case is built very slowly.

To handle the large-scaled problems, TPSYS was developed further [39] with the intro-

duction of heuristic guides. However, with this extension, TPSYS is no longer an optimal

temporal planning system.
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3.2.1.4 Linear-Programming GraphPlan (LPGP)

LPGP [67] was built by Fox and Long in 2002. It is another Graphplan-based planning

system. Like TGP and TPSYS, it extends the Graphplan planner to handle temporal plan-

ning problems. However, the extension is very different by attaching time into proposition

level, not action.

The graph expansion runs like breadth-first search. From the initial state, it will ap-

ply all of the possible actions to have a new action level and new proposition level which

is comprised from the effects of the actions. With this approach, it avoids the poor per-

formance when actions have big differences in durations. However, this will sacrifice the

optimality of the solution.

In LPGP, each action is divided into a start action, an end action, and invariant-checking

actions. In the graph construction, instead of using no-op actions, the invariant-checking

actions are used to propagate the propositions between levels. The duration of a level is

not fixed. It depends on the difference in time between the two consecutive timepoints of

activities (i.e. happenings). Figure 3.2 illustrates the overview of levels in planning graph

of LPGP with time attached to proposition level and actions are divided into start actions,

end actions, and invariant-checking actions.

Prop Prop Prop PropPropAction Action Action Action Action

d
1

d
2

d
3

d
4

d
5

A-start A-inv A-end

B-start B-inv B-inv B-end

C-start C-inv C-end

D-inv D-inv D-invD-inv D-end

Figure 3.2: The overview of the planning graph of LPGP with duration attached to propo-

sition level and actions are divided into smaller actions. Figure is extracted from the LPGP

paper [67]
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In the solution extraction phase, if an end action is selected to support a proposition,

a temporal constraint is introduced to make sure that the total duration between the corre-

sponding start action and this end action must equal to the duration of the real action. The

invariant-checking actions also need to be performed correctly with time. In some cases,

if a start action could satisfy a goal (i.e. its effects are in the goals), the corresponding end

action must be already in the plan. The mutex relations are used to keep the validity of the

plans. In addition, a small non-zero interval is introduced to avoid the interference between

an end of an action and a start of the next action.

Like other Graphplan-based planning systems, LPGP also has two phases, the graph ex-

pansion and the solution extraction. Instead of attaching time to the action, the introduction

of time to proposition levels helps to find plans more quickly. However, this approach will

return the plan with fewer number of actions but maybe longer in time (i.e. makespan). The

empirical study in [67] shows the better speed performance comparing to TP4, but worse

plan quality (i.e. might have fewer number of actions but longer makespan).

3.2.2 Partial Order Planners

3.2.2.1 Introduction

Partial Order Planners (POP) are also known as Least Commitment Planners. This ap-

proach was introduced in the chapter 2. In that chapter, it is described in general and

applied to classical planning. This section describes temporal planning systems which use

this approach to deal with temporal planning domains.

The planners work by adding actions that will be needed into a plan which are con-

strained in the least possible way. For example, if it does not matter what order two actions

are executed in, no order is put on them. After the partially ordered plan is built up, flaws

are recognised, e.g. if one action prevents another action from being executed or if con-

ditions (or subgoals) are not yet present in the plan. These are then dealt with by adding

more actions, ordering the actions (promotion and demotion) or constraining variables to
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equal or not equal other variables. In 1994, an introduction paper [102] on these planners

was written by Weld. POP planners, like Graphplan planners, can produce plans with some

concurrency. It means any actions in the partially ordered plan which are not ordered and

do not conflict can take place in parallel.

3.2.2.2 parcPLAN

parcPLAN [29] is a domain-dependent planning system which was developed by El-Kholy

and Richards in 1996. It used the Constraint Programming approach to deal with planning

problems. By the nature of its searching for a plan, it can be classified into Partial Order

Planners. parcPLAN can reason on time and resources to search for a plan.

In parcPLAN, a simple temporal problem is constructed by imposing temporal con-

straints on endpoints of request intervals. The planner uses a simple temporal network to

reason on time. Time is discrete and timepoints are represented as variables which take

natural values. Propagation on timepoint variables is performed by a path consistency al-

gorithm, which computes the minimal network. Boolean variables are used for each pair

of request-intervals to show whether these intervals overlap. This will help to check the

global resource constraint. For example, at a certain time, if the 2 request intervals overlap

each other, the boolean variable of those 2 intervals is true. The resource consumption at

this time will be calculated based on the two requests.

The search of parcPLAN is using meta-variable labelling (i.e. labelling the Boolean

variables). In this search, the global resource constraint is checked. The planner first

assumes that it has unlimited resources and tries to assign parallel requests. Then, the

planner checks to see if the resource constraints are satisfied. If they are, a feasible solution

is found. Otherwise, it tries to move a request away from others. The process is repeated

until a solution found or all possible assignments are tried.

With this approach, parcPLAN runs well and returns solutions quickly if the planning

problems have plenty of resources. However, if the resources are restricted, the planner



57

performs poorly.

3.2.2.3 IxTeT

IxTeT [63] is a planner that could be classified in a number of categories. It produces a

partial ordered plan through least commitment planning, but relies heavily on heuristics

to guide its search and also allows for macro-operator actions which also puts it in the

category of hierarchical task network planners. Rather than representing the world as a

set of true literals as in STRIPS, it uses a set of multi-valued state attributes and a set of

resource attributes. Each attribute is a mapping from a finite domain of objects to a value.

Time is modelled by the predicates hold and event to represent invariants and change of

attributes respectively:

• an assertion hold(att(x1,...):v,(t1,t2)) asserts the persistence of the value of state at-

tribute att(x1,...) to v for each t: t1 < t < t2 .

• event(att(x1,...):(v1,v2),t) states that an instantaneous change of value of att(x1,...)

from v1 to v2 occurred at time t.

The predicates use, consume, and produce refer to using reusable resources and con-

suming and producing consumable resources respectively. These work in a similar way to

hold and event. IxTeT uses timepoints, that are seen as symbolic variables that represent

temporal constraints. Actions are replaced by tasks. Each which may include sub-tasks , a

set of events that describe changes brought about to the world (the equivalent of effects with

time points), some preconditions and invariants, the resource usage and a set of temporal

and instantiation constraints that can bind the task to different time points in the plan. The

initial state is a special task that contains the initial attributes as a set of explained events,

a set of extraneous events (also as a set of explained effects), the initial resource level and

the goals that must be achieved as a set of assertions.
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The search of the partial plan starts with this initial state being a partial plan with flaws.

Branches represent some tasks or constraints inserted on the current plan to solve a flaw.

There are three types of flaws:

• Unexplained propositions are temporal propositions (hold or event) have not been

satisfied. These can be resolved by adding a causal-link (an assertion that protects

the state attribute value from the establisher to the subgoal). The establisher could

already be in the plan (simple establishment) or may need to be added (task inser-

tion).

• Threats are events or assertion that threaten an assertion already in place. It can be

resolved by ordering it by promotion or demotion (i.e. adding a temporal constraint)

or by adding a variable constraint (setting two variables to equal or not equal one

another).

• Resource conflicts are when tasks compete for the same resource or there is an insuf-

ficient amount. Again, these can be resolved by inequality constraints or addition of

tasks to produce the resource.

There are two choice points (or branching places) in the search space; one is the se-

lection of the flaw. The other is the selection of the resolver. This is done by a least

commitment strategy, i.e. trying to keep options open (and so prune the search space to a

minimum at that point). Flaws are selected opportunistically, i.e. the flaw is selected that

maximises the easiness to make a choice between its resolvers. The number of flaws may

be big, but any flaw which is resolved will only create new flaws at the same or a lower

level of abstraction (i.e. in the sub tasks of a task). This hierarchy can be automatically

generated from the domain and is not fixed but is dynamically ordered whilst planning.

The search is controlled by a “near-admissible” heuristic.
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Figure 3.3: The IxTeT Planner Architecture, from [63]

IxTeT is not used as an optimal planner, but it can be made optimal by using the task

deadlines. As the model of time is discrete, these deadlines can be decreased by unit time

until no plan is found. The last valid plan found is optimal.

3.2.2.4 Zeno

ZENO [84, 83] is another least commitment planner that can deal with temporal planning

domains including goals with deadlines. The actions have conditions and effects, but also

have two compulsory labels, one for the start time and one for the end time. They can also

have constraints between these labels. The schemas make planning domains that Zeno can

handle are more expressive than that of PDDL2.1, as the schema specifies exactly when

conditions, constraints and effects are true and even allow time intervals.

Because conditions and effects are attached with time, a planning problem can be en-

coded as a partial plan with a single dummy step. For example:
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Action Dummy

at-time: [t0, t1]

condition: at (t1, Peter, London) ∧ at (t1, Mary, London)

constraints: t0 < t1 ≤ t0 + 2.5

effect:

at (t0, Peter, Manchester) ∧ at (t0, Mary, Liverpool)

∧ at (t0, Linda, Liverpool) ∧ fuel(t0, car)=200

Figure 3.4: Dummy action

Initial condition, external events and domain axioms are the effect of this dummy ac-

tion. Deadline goals and final goals are conditions, and the time of the dummy action is the

desired time span for the plan to complete.

The algorithm that Zeno employs is a least commitment strategy with regressive search.

It first checks to see if the plan is consistent (i.e. no constraints are broken). If not it fails

and will have to backtrack. But, if the plan is consistent, it checks to see if there are

any outstanding goals. If not then it returns the plan, but if so, it then chooses a goal. If

this goal is complex it will reduce it to primitive goals and starts again. If it is primitive

and metric it will add it to the constraints and start again. Else, it will add an supporting

action and resolve the threats on it and restart the loop. There are three non-deterministic

decisions to backtrack. The first one is to decompose goals into simpler formulae. This

happens if the goal is a disjunction. The goal is replaced by one of its disjuncts. If the

goal was a conjunction, then all the literals are added to the unresolved goal list. Selecting

a time can be a problem as it is not discrete. Zeno does one of two things, it either splits

the time interval in two and explores each one separately, or it marks that time interval

as indivisible. This avoids infinite branching as it will only split time intervals to a pre-

set depth. The second decision to be made is to decide which supporting action to use.

Codesignation (e.g. x = y or x 6= y) and primitive metric constraints (e.g. v1 ≤ v2) are
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posted to the constraint reasoning system which determines if it is consistent. The third

decision is where constraints are introduced to prevent interference between actions and

goals.

Zeno relies on constraint satisfaction for all temporal and metric reasoning. For codes-

ignation a simple algorithm is used to maintain equivalence classes of all logical variables,

then determines whether the noncodesignations are inconsistent with the classification. A

Simplex algorithm handles the metric reasoning, whilst temporal relations are solved with

Warshalls transitive closure algorithm. The Simplex algorithm assigns the greatest possible

values to variables whilst not breaking constraints.

Zeno is a sound and complete planning system. However, because the time reasoning

takes a lot of time in querying and updating the temporal cache, it is quite slow in perfor-

mance. The system could not generate plans with more than a dozen actions. Since then,

there has been no further development on the system.

3.2.2.5 Constraint Programming Temporal planner (CPT)

CPT [98, 99] was developed by Vidal and Geffner in 2004 to participate in the Interna-

tional Planning Competition 2004 (IPC2004). It is a least commitment planner based on

Constraint Programming to find an optimal solution.

CPT uses a lower bound on the makespan to prune irrelevant partial order plans if they

exceed the lower bound. The heuristic function used to calculate the lower bound is nearly

the same the one using in [48, 49]. In partial order causal link planning, planners perform

by picking up flaws (i.e. open preconditions or threats), and then try to find supports or

solutions to those flaws. CPT adapted the branching to temporal planning by introducing

temporal variable T(a) which is the starting time of an action a of the partial order plan.

The temporal constraints were introduced, such as:

• If an action a has a precondition p which needs support, and a’ is a supporting action,

the casual link a’[p]a is created and a temporal constraint T(a’) + dur(a’) ≤ T(a).
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• If an action a in the partial plan deletes a proposition p in the causal link a1[p]a2, a

temporal constraint T(a) + dur(a) ≤ T(a1) or T(a2) + dur(a2) ≤ T(a).

The temporal constraints are then formed a Simple Temporal Problem (STP) [20] which

is checked by using the bounds consistency introduced by Lhomme in 1993 [65].

Unlike other constraint-based partial order planners which only reason on actions in

the current partial plan, CPT can reason on actions which are not in the partial plan yet.

CPT introduced variables for all actions in the planning domains, S(p,a) for undetermined

supporting action for precondition p of a, and its undetermined starting time T(p, a).

The formulation of CPT has four parts, which are preprocessing, variables, constraints,

and branching. In the preprocessing, CPT applies the heuristic function introduced by

Haslum and Geffner [48, 49] to compute the heuristic value for each action a. In CPT, all

branching decisions are binary and each branching node is a “partial plan”. The novel idea

of CPT which made CPT better than other Constraint-based planning systems is the ability

to reason on action a, which is not yet in the plan.

CPT is developed on Choco Contraint Programming library. It is an optimal temporal

planning system. The strict assumptions on actions in CPT are very similar to those of TGP

(i.e. actions are not allowed to overlap each other if they are conflict), which is stricter than

that of PDDL 2.1. CPT performed very well in the optimal track of the IPC2004. It was

ranked 2nd in the competition. However, because SATPLAN [55], the 1st ranked planner,

was only able to deal with classical planning domains, CPT was considered as the best

optimal planning system for temporal planning domain.

In 2006, CPT was updated and participated in the 5th Planning Competition (called

CPT2 [100, 2]). In this competition, it won the distinguished prize for brilliant performance

in the optimal track over other competitors.

CPT will also be used for comparison in the experiment chapter to show the competency

of our planning system.
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3.2.3 Heuristic Planners

3.2.3.1 Introduction

Heuristic planners try to efficiently search the state space by looking at the most promising

branches first by weighting search branches. They use heuristic functions to guide the

search to the solution. Planners use admissible search algorithms, such as A* to branch the

search tree. Calculating good heuristic functions can be computationally expensive. There

is often a tradeoff between the complexity of the heuristic function with the accuracy of the

guess.

3.2.3.2 Sapa

Sapa [23], which was developed by Do and Kambhampati, is a planner that applies a

heuristic approach for temporal and resource planning. Sapa search is performed through

a set of time-stamped states, represented by a tuple S = (P,M,Π,Q,t) in which:

• P is a set of predicates which are true at the time t and when they are last achieved.

• M is the set of values of all functions representing the metric resources.

• Π the set of invariants which must remain true for a period of time.

• Q is a set of updates in which each is scheduled to take place at a certain time in the

future.

• t is the timestamp.

These states do not only describe the state of the world now, but the state of the planners

search as well. All goal have deadlines. A goal is in a state if it is present in P and was

achieved before its deadline, or if there is an event in Q that will achieve the goal before

the deadline. The branching of the space comes from actions that can be applied to a state.
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An action can be applied if all preconditions are satisfied by P and M, the effects do not

interfere with anything in Π or Q and no event interferes with invariants of the action.

Besides normal actions, Sapa introduces advance-time actions which are used to advance

the time of the state S to the time point of the earliest event in the queue Q. Sapa uses a

simple A* to guide the search.

Sapa applied the idea of Graphplan planner to build a relaxed planning graph from

the initial state to the goal state to construct the heuristic function. The relaxed graph is

built by just ignoring delete effects and resource constraints. With the relaxed temporal

planning graph, the planner can prune irrelevant states which do not lead to the solution,

use the time in which the subgoals appear as a lower bound for the search, and estimate the

distance from the current state to the goal state.

Sapa is a domain-independent planner, which can handle durative actions, metric re-

source constraints, and deadline goals. It is designed to find a multi-objective solution.

Sapa can handle both time and resources. With the heuristic approach, the planner can

return feasible solutions in an acceptable running time. It is suitable to deal with large-sized

planning problems, which optimal solutions could not be found in a limited of time.

3.2.3.3 TP4

TP4 [49] was built in 2001 by Haslum and Geffner. It is a development of HSP planning

approach. It searches for plans backwards from the goal state. It can deal with both time

and resource, including consumable resource and renewable resource. In classical plan-

ning, plan tails (i.e. partial plans that achieve the goal if the conditions of the partial plan

are satisfied) are built from the goal state. When such a tail is concatenated with a plan

head, the end result is a valid plan. A plan tail can be summarised by a set of literals and it

is this set of literals that forms a state in the search space. However, in temporal planning, a

set of literals is insufficient to summarize the plan tail as it holds no information about the

actions in the potential plan that have started before this time point but not finished. Thus,
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a state is now defined as a pair of sets (E,F) in which E is a set of atoms and F is the set

of actions attached with time increments (a1,δ1),,(an,δn). A plan P achieves s = (E, F ) at

time t if P makes all the literals in E true at t and schedules the actions ai at the time t−δi.

The initial sate is (GP ,∅) where GP is the goal set of literals and the final state are all (E,∅)

where E is a subset of the initial facts.

The branching is done by selecting an action that has effects in E. In TP4, the heuristic

function estimates how close the current state to the initial state. TP4 uses IDA* search

algorithm. Like many other temporal planning systems, TP4 also tries to shift actions as

late as possible without changing the plan structure.

TP4 also deals with resources by including the current value of each resource in the

search state. Only renewable resources affect the branching rule although the heuristic

only remains informative with unary capacity resources. With consumable resources the

heuristic remains admissible but becomes less useful as they do allow for over consump-

tion. However, if resources are limited to be monotonically decreasing (i.e. consumed but

not produced) then some states can be pruned if actions consume more resource than the

remaining availability. A new heuristic is presented that minimises the amount of resource

consumed. By integrating the resource and temporal heuristic, some combination of op-

timising the duration and consumption can be achieved. TP4 also has the power to have

no-ops that consume resources. These are called maintenance actions and could be used to

model continuous effects.

TP4 uses IDA* and some other enhancements to guide the heuristic search. It is an

optimal planning system. It can deal with time and resource to find a minimal makespan.

In the empirical study [49], it shows that TP4 produces the solution similar to that of TGP,

but slower.

In 2004, TP4 was re-implemented to be a more flexible experimental platform for vari-

ations of the basic planning algorithms [46]. It was also added some other enhancements

to improve the performance of the search. The main difference of the new version and the

old version of TP4 is described as follows:
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Firstly, the new version of TP4 extended the resource finding procedure of the old ver-

sion to correctly identify resources in some planning domains in the International Planning

Competition 2004 (IPC2004) (e.g. the umts domain). However, the resource representation

which is used in TP4 is less expressive than that of PDDL 2.1.

Secondly, TP4 are improved with some new tricks in the search. The first improvement

is the “irrelevant detection”. The new TP4 uses the standard reverse unreachability to

detect and remove irrelevant propositions and actions. With this detection and removal,

the performance is improved (e.g. in the airport domain). The second improvement is the

introduction of two-stage optimization because the algorithm IDA* used by TP4 performs

badly if the GCD (greatest common divisor) of actions’ durations is small. In the 2-stage

optimization, action durations are first rounded up to the nearest integer to improve the

GCD. Then, TP4 will solve the problem with the new action durations. The result of

this (i.e. makespan) is used as an upper bound for a branch-and-bound search to find the

optimal solution with the real action durations. However, in the IPC2004, the new 2-stage

optimization only helped to improve the performance in the satellite domain (see [47]).

In the new version of TP4, it is still an optimal planning system which can deal with

time and resources. The resource finding procedure was extended to handle resource better

in IPC2004 domains. The new search improvements were introduced but the performance

was not improve much comparing to the old version.

3.3 Summary

The chapter shows an overview of different planners which deal with temporal planning

domains. Originally, AI planning only deals with instantaneous actions. In 2002, tem-

poral planning was first introduced in PDDL and officially used in the third International

Planning Competition. Temporal planning is a big step towards the ambition of dealing

with real-world problems. The chapter describes and groups different planners according

to their approach, including plangraph, partial order, constraint programming, heuristics.
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It focuses on the two plangraph-based planning systems, TGP and TPSYS, which use the

same approach as our planning system. In general, all planning systems described in this

chapter consider time as an integrated part rather than separating it as a sub-problem to

deal with later. TGP, TPSYS, parcPLAN, CPT, and TP4 can give optimal solutions to

temporal planning domains, while the other planners, LPGP, IxTeT, ZENO, and Sapa only

give feasible solutions. IxTeT is not specifically designed to find an optimal solution, but

it can modified slightly to become an optimal planner. The next chapter will describe our

plangraph-based planning system, called CPPlanner, to deal with temporal domains.



Chapter 4

CPPLANNER - AN OPTIMAL TEMPORAL PLANNING SYSTEM

USING CRITICAL PATHS

4.1 Introduction

Recently, the plangraph framework [13] has been applied and developed in many plan-

ning systems. It has been extended and modified to deal with more complex planning

domains. This chapter continues in this vein, introducing a further extension of the plan-

graph framework to deal with more complex temporal planning domains. A new planning

system, called CPPlanner, is described in detail. With the new extension, CPPlanner can

find an optimal solution in terms of time (makespan) for temporal planning domains in

which actions can have effects at any time during their execution. The main contribution

of CPPlanner is the usage of a critical path in the planning graph as a backbone for the

backtracking search while looking for an optimal solution.

The next section will introduce the representation of an action with the capability of

handling actions with effects occurring during their execution (intermediate effects). The

mutex relations between proposition-proposition, action-proposition, and action-action are

also presented in detail to show the constraints between nodes in the planning graph. Fi-

nally, the graph expansion and the solution extraction algorithms are described and dis-

cussed thoroughly.

In addition, the operation of the algorithms is demonstrated via a small worked example

prior to the detailed empirical study in the next chapter.
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4.1.1 Towards the new extension of the plangraph framework

The previous chapters introduced and discussed the two current plangraph-based temporal

planning systems, TGP and TPSYS. They extend the plangraph framework to find optimal

solutions for temporal planning domains. However, in TGP, it is assumed that an action’s

conditions must hold at the beginning and until the action finishes. Effects of actions are

undefined during the actions’ execution and are only guaranteed to hold at the end of the ex-

ecution. In TPSYS, the assumption is less strict, in that it allows actions to have beginning

effects (i.e. effects that hold from the start of the action’s execution). As in plangraph-based

planning systems, the mutex relations are used to indicate whether actions and propositions

can happen simultaneously. Because of the assumptions about the conditions and effects

in both TGP and TPSYS, mutex relations are still relatively simple.

With the ambition to deal with real world problems, CPPlanner has been extended

to have a broader assumption on effects of an action. An action can have effects at any

time during its execution. With this assumption, two actions now can overlap partially if

two actions have no mutex relation and a intermediate effect of one action is one of the

conditions of another action. The graph expansion is then extended to handle such actions.

In addition, due to the partial overlap of actions which depends on the starting time of

actions, the mutex relation checking in the solution extraction is more complicated than

that of TGP or TPSYS. The details of these extensions and techniques are discussed in the

following sections.

4.2 Action representation

In CPPlanner, the action representation has been designed to deal with temporal planning

domains in which actions can have effects at any time during their execution. Therefore,

the representation of an action must show that the starting time of each effect happens while

the action is executing. The action representation of CPPlanner is mainly influenced by the

PDDL+ [32] and the representation of actions in the Sapa planner [23].



70

The action representation for CPPlanner is described as follows:

An action A is presented as {DurA, CondA, EffA} in which:

• DurA: the duration of the action A. (DurA > 0).

• CondA = {〈condA1 , typeA1〉, ..., 〈condAk
, typeAk

〉}.

• EffA = {〈effA1 , δA1〉, ..., 〈effAh
, δAh

〉} with ∀i ∈ [1, h] : 0 ≤ δAi
≤ DurA.

In this representation, each action A has a duration DurA, a starting time StartA, a list of

conditions CondA, and a list of effects EffA. The duration DurA can be statically defined in

the domain or dynamically calculated at the run time of the action. For example, the action

Fly can be calculated based on the locations of the take-off airport, the landing airport, and

the speed of the aircraft. For actions, it is assumed that the conditions are required at the

beginning and need to be held throughout the execution of an action. Each CondA is a list

of propositions {〈condA1 , typeA1〉, ..., 〈condAk
, typeAk

〉} which are required for the action

to execute. Each condition condAi
attaches with a type typeA1 which is at start, at end, or

over all to describe that the condition needs to be held at the start, at the end or during the

execution of the action.

Since CPPlanner has richer action representation in which actions can have intermedi-

ate effects, the list of effects EffA for each action is a conjunction of tuples 〈effAj
, δAj

〉 (i.e.

〈 proposition, difference-in-time 〉). Each tuple represents that the effect effAj
will happen

at the time (StartA + δAj
) onwards.

With the representation shown above, an action A can have intermediate effects starting

at any time during its execution. For example, in figure 4.1, the action A starts at time 10

with CondA = {〈cond1, at start〉, 〈cond2, at start〉}, and the EffA = {〈eff1, 5〉, 〈eff2, 20

〉, 〈eff3, 20 〉}. In this example, eff1 is an intermediate effect with δA1 = 5 (i.e. after 5 units

of time from the starting of the action, the effect eff1 takes place).

Allowing intermediate effects for an action leads to more complexity in expanding the

planning graph and checking mutex relations in the solution extraction phase becomes more
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Figure 4.1: Action representation

difficult. In the graph expansion phase, because actions can have intermediate effects, two

actions can overlap partially with each other. The calculation for the starting time of the

next possible action is more complicated. The problem will be discussed in more detail in

the next sections.

4.3 The planning graph

In the plangraph approach, the planning graph is a multiple-level graph which alternates

between a level of propositions and a level of actions.

The graph is constructed from the initial state and advanced level by level from the left.

The first level of the graph consists of propositions in the initial state. The next level is the

level of actions which can apply, given these propositions. These actions are also called

possible actions. Then, the effects of these actions form a new level of the graph. The

propositions in the previous level, which do not appear again in the list of the effects, are

also added to this level via no-op actions.

In temporal planning, because each action has its duration, each action or proposition

has an attached timestamp showing the starting time of that action or proposition. Thus,

in temporal planning, each node in the planning graph contains a timestamp showing the



72

level 0 level 1 level 2

...

...

a1

a2

...

...

...

...

...
...

prop2

prop1

propn

level G

prop1

prop2

prop3

prop4

Figure 4.2: The multiple-level planning graph of the plangraph approach

earliest possible time it takes place.

Note that in plangraph approach, once a proposition appears in the graph, it will appear

again in all subsequent levels of propositions. As in TGP, in order to save memory con-

sumption, we also use the bi-level compact graph to represent the full planning graph. The

bi-level graph is a graph containing a level of actions and a level of propositions. There are

directed edges connecting between nodes in the two levels showing the links of conditions

and effects for actions. Also, there are edges showing the mutex relations among them in

the graph.

In TPSYS, because the planner uses the usual multiple-level planning graph, the ex-

pansion phase is simpler and more straightforward. In each level of the graph, all the nodes

of the previous level appear again. This causes a problem with the memory consumption

when the size of planning domain is big. In TGP, because of the strict assumption on con-

ditions and effects, effects only become true at the end of the execution of actions. New

actions, which need these effects as conditions, will use the current examining time t as the

starting time. However, in CPPlanner, because an action may have intermediate effects, a

new action might use one of these intermediate effects as a condition. Instead of using the
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current examining time t as starting time, it has to check all the timestamps of the condi-

tions to find out the starting time for the action. This problem will be discussed in detail in

section 4.4.

4.4 Graph Expansion

4.4.1 The concept

In the plangraph approach, the algorithm consists of two phases: the graph expansion and

the solution extraction. The graph expansion builds up the planning graph, and the solution

extraction tries to find an actual solution in the graph.

In the original plangraph approach, starting from the propositions in the initial state

(called level 0), the planner applies all possible actions to these propositions. The possible

actions are stored in the next level (i.e. level 1). The effects (=propositions) of these actions
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form a new level of propositions (level 3). Other propositions in the previous level (=level

0) which do not appear in this level are also being added (via no-op actions). This process

is repeated until all the propositions of the goal state appear in the graph. At this time, the

solution extraction is called to perform a backward-chaining search to look for an actual

solution. If the solution is found, it is the optimal one. Otherwise, the graph expansion is

called again to advance the graph to the next level, and the process repeats. The planning

graph of the plangraph approach is shown in 4.2.

In the Graphplan planner, because it is dealing with the classical planning domains in

which actions have no duration, the planner can apply all possible actions at each proposi-
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tion level to create a new level in the graph. However, CPPlanner is dealing with temporal

planning domains. The planner will advance the graph step by step in time. In order to do

this, from a certain time with propositions given, the planner will choose an action from

possible ones which finishes earliest (note that although this is not specially mentioned in

the papers of TGP and TPSYS, it is believed that this also applies in those systems).

In temporal planning, the planning graph is constructed based on the idea of advancing

from the intial state step by step in time until all the subgoals (propositions in the goal

state) appear. However, in TGP and TPSYS, because actions do not have intermediate

effects, they cannot overlap partially. The calculation for the new actions is straightforward

based on the current examining time t (i.e. the ending time of the previous chosen action).

However, in CPPlanner, actions can overlap partially. For example, while an action A is

executing, another action B, which uses the intermediate effects of actions A as conditions,

starts. The calculation for the starting time of action B needs to be based on the timestamps

of the intermediate effects rather than the current examining time t. The details of the

calculation are shown in the algorithm description section below.
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4.4.2 Algorithm description

In CPPlanner, as in TGP and TPSYS, at the start, the planning graph has all propositions

of the initial state with timestamps 0. The graph is advanced in time by choosing an action

which can use current propositions as conditions and has the earliest ending time. If there

are several actions which have the same ending time, all of them will be added. Other pos-

sible actions which can use these current propositions as conditions, but have longer ending

time are added to the list of temporary actions TmpActions 1 with their timestamps. This

temporary list TmpActions is maintained in order to calculate the next possible timepoint

and avoid the redundancy in calculating possible actions. Also, the new possible actions

are only calculated based on the updated effects of the new added actions. With this tempo-

rary list TmpActions, the next possible action is the next one in the list (Note: It is possible

to have more than one action which end at the next possible timepoint. In this case, all of

them are added).

After applying this earliest ending action, all of its effects with timestamps, which are

calculated based on the starting time of the action, are added to the queue list PropsQueue

to wait to be added to the graph. The PropsQueue is constructed and maintained in order

to calculate the starting time for next actions. This is the main difference with TGP and

TPSYS, and more complicated than the calculation for the starting time of new actions in

those systems.

The propositions in PropsQueue are sorted in chronological order. Each of them will be

chosen and added to the planning graph gradually. At the time of adding a proposition, say

propx, from PropsQueue into the graph, the planner also checks and adds any new action

which uses this proposition propx and other propositions in the Props (i.e. propositions in

the planning graph) as conditions with its timestamp to the temporary list TmpActions. The

timestamp of a new action, which is added to the temporary list, is the biggest timestamp

1 TGP has an equivalent to the TmpAction list. This is not evident in the papers describing the system, but

can be seen in the code.
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of all supporting propositions of that action (Note: sometimes if the new added proposition

propx is an intermediate effect of an earlier added action, it might have a smaller timestamp

comparing to other supporting propositions).

When adding a proposition from PropsQueue in to Props (i.e. the planning graph), if

the proposition appears again, the planner just needs to store the new timestamp for this

proposition in the planning graph as well as the old timestamp. This queue of proposi-

tions maintains all possible new propositions which are waiting to be added to the graph.

In this queue, it is possible that the same proposition appears many times with different

timestamps. However, once it is added to the graph, only the latest timestamp is stored.

The process is repeated until all the propositions in the goal state (subgoals) appear

and are pairwise non-mutex. At this time, solution extraction (see 4.6) is tried to look for

a solution. If a solution is found, it is also the optimal solution for the problem and the

algorithm is terminated. Otherwise, the process will be performed again to move to the

next possible timepoint.

Figure 4.6 presents the details of the graph expansion algorithm.
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01. Procedure GraphExpansion()

02. //All initial props with timestamp 0 in the Queue

03. PropsQueue = {< p1, 0 >,< p2, 0 >, ..., < pn, 0 >}
04. // Props - the propositions added to the graph

05. Props = {}
06. // Actions - the actions added to the graph

07. Actions = {}
08. // The examining timepoint starts at 0

09. t = 0

10. Loop

11. Call ApplyingPossibleActions(Props, PropsQueue, TmpActions, TmpProps)

12. // Move to the next possible timepoint where at least one action completes

13. t = ending timestamp of the next action in the TmpActions

14. // add the completed actions to the Graph

15. Actions ← Actions ∪ {new completed actions after moving to the next timepoint}
16. Remove these actions in TmpActions

17. PropsQueue ← PropsQueue + new props in TmpProps from completed actions at t

18. Remove these propositions in TmpProps

19. If goals ⊆ {Props∪PropsQueue} & pairwise nonmutex

20. then call IncludingAllRemainingActionsProps() and do solution extraction.

21. If (solution extraction succeeds)

22. then terminate the algorithm.

23. End {loop}
24. End Procedure

Figure 4.6: Pseudo-code for GraphExpansion().
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01. Procedure ApplyingPossibleActions(Props, PropsQueue, TmpActions, TmpProps)

02. while PropsQueue 6= ∅
03. CurProp = the first prop in the PropsQueue

04. Remove it from PropsQueue

05. Create its mutex relations with Props and Actions

06. PossibleActions = {all actions having CurProp as one

07. of their conditions, and the others from Props}
08. TmpActions ← TmpActions ∪ PossibleActions

09. TmpProps ← TmpProps ∪ {effects of PossibleActions with timestamps}
10. // Add CurProp to the graph.

11. // If CurProp is already in the graph, compare the timestamps and keep the bigger.

12. Props ← Props ∪ CurProp;

13. end {while}

Figure 4.7: Pseudo-code for ApplyingPossibleActions().

In TGP, it is simple that the starting time of a new applied action is the current examin-

ing time, because of the strict assumptions on conditions and effects of an action. However,

because CPPlanner allows actions to have intermediate effects, they can overlap partially.

The starting time of the possible action is not simply the current examining time t, but is

calculated based on the timestamp of the new added proposition from the PropsQueue and

the other supporting propositions. In the case that if the new added proposition is an in-

termediate effect of the current action, the new possible action will start before the current

action finishes.

For example, an action X may take some intermediate effects of action Y as its con-

ditions and start while action Y is still under way. In this case, the starting time of X is

the time when all conditions are true. This time is the biggest timestamp among support-

ing propositions, including some intermediate effects of Y. Sometimes, if the new chosen

proposition of the PropsQueue to be added to the graph is already in the graph, only the
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timestamps will be compared, and the bigger one will be kept as the timestamp for that

proposition. In some cases, if the new chosen proposition has a smaller timestamp (i.e.

that proposition has been generated by another action which issued a bigger timestamp

earlier), the graph remains the same.

4.5 Mutex relations

In the original Graphplan, the mutex relations are introduced to show the mutual exclusion

between actions or propositions. Since the expansion of the planning graph applies all

possible actions to given propositions, actions which conflict with one another are still

applied to advance the graph to the next level. Thus, the mutex relations are introduced

in order that, when the solution extraction phase is looking for a solution, it will not let

mutually exclusive actions or propositions happen simultaneously. In temporal planning,

actions have duration. Hence, the mutex relations are temporal constraints. They depend

on the time in which an action takes place or a proposition becomes true.

As in TGP and TPSYS, CPPlanner has two kinds of mutex relations: static mutex and

dynamic mutex (Note that TGP and TPSYS use different terms, but they have nearly the

same meaning). The static ones will show that actions or propositions are mutex with each

other regardless of the time. If an action A is smutex with an action B, this mutex relation

is always there whenever these actions take place. However, the dynamic mutex relations

are temporal constraints (or logical functions based on time) to show whether actions or

propositions conflict with each other or not, depending on the time that action takes places

or the proposition becomes true. In the solution extraction phase, because the timestamps

are changed when being added to the plan, these constraints are checked again with these

actual new timestamps.

The mutex relations of CPPlanner are described as follows:

• Proposition - proposition: propositions p and q are mutex if (1) they are negations

of each other or (2) all actions supporting q are logically inconsistent with p and vice
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versa.

In (1), the mutex is static and remains the same, regardless of the time. This type

of mutex is calculated once in the expansion phase, and can be used again in the

solution extraction when looking for a plan.

In (2), the mutex is dynamic; whether p and q are mutex depends on the starting times

of the supporting actions. For example, in the spacecraft domain, the vibration effect

only appears when the thrusters are in use. This vibration lasts for a small amount of

time during the whole turning process of the spacecraft. Due to the vibration, some

operations cannot be performed (e.g. using a camera) because of the mutex relation

of the propositions of those propositions with the vibration. The mutex relation needs

to be re-checked once the actual timestamps for actions and propositions are attached

in the solution extraction phase.

eff2

cond2

cond1

eff3Dur

10 15 20 25 30 35

Turning

Thrusters are in use (i.e. vibration).

p1 p2

camera_chance1
camera_chance2

Figure 4.8: Action turning of the spacecraft domain. The vibration effects prevent action

camera chance1 but not camera chance2.
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Figure 4.8 illustrates the action turning of the spacecraft domain. In this description,

due to the vibration effect when the thrusters are in use, there is a mutex conflict

between the condition p1 and the vibration. Thus, action camera chance1 could not

perform. However, action camera chance2 can perform because there is no conflict

between p2 and the vibration effect.

• Action - proposition: action A and proposition p are mutex if one of these holds

– (q ∈ CondA) ∧ (p and q are logically inconsistent).

If one of the conditions of the action A is mutex with the proposition p, the

action A will be mutex with the proposition. In this case, it depends on the

mutex relation between p and q. If the relation p-q is static, the mutex A-p is

also static. Otherwise, it is dynamic.

– (q ∈ EffA) ∧ (p and q are logically inconsistent) ∧ (p is true at the time the

effect q also becomes true).

This is a dynamic mutex relation. It depends on the starting time of the action

A to define the starting time that the effect q becomes true.

• Action - action: action A, B are mutex if one of these holds

– (p and q are logically inconsistent) ∧ (p ∈ CondA) ∧ (q ∈ CondB)

– (p and q are logically inconsistent) ∧ (p ∈ CondA) ∧ (q ∈ EffB) ∧ (p is true at

the time the effect q becomes true).

– (p and q are logically inconsistent) ∧ (p ∈ EffA)∧ (q ∈ EffB) ∧ (p and q are true

at the certain timepoint t).
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4.6 Solution Extraction

4.6.1 The concept

When the graph expansion phase has built the planning graph to a time tG in which all

subgoals appear and are pairwise non-mutex, the solution extraction phase is called to look

for a solution (or extract a plan). In a plangraph-based planning system, the solution ex-

traction uses exhaustive backtracking search to find a solution in the planning graph. All

the subgoals are first added to the plan. The planner builds and maintains a list of proposi-

tions which needs supporting, called Goals. The list Goals starts with all the subgoals. The

planner will find an action which has at least one of the propositions in the list Goals as its

effect. If the action does not conflict with other added actions and propositions in the plan,

it will be added to the plan. The effects of the new added action will be removed from the

list Goals, and conditions of the actions will be added to the list and the plan. At this time,

the planner looks again to find a new supporting action for at least one of the propositions

in the new list. This process is repeated moving backward in the planning graph, until the

initial state is a subset of the propositions in the plan. If the process fails to find a new

supporting action, it will backtrack by removing the last actions added with its conditions

from the plan and trying another supporting action. If a solution is found (i.e. the initial

state is a subset of the list of propositions of the plan), it is also the optimal solution and the

algorithm is terminated. However, if the extraction phase cannot find a solution at this time

tG, the graph expansion phase is called again to advance the graph to the next timepoint.
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Figure 4.9: The diagram of the solution extraction
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Normally, in these plangraph-based planning systems, the graph expansion phase only

takes a small proportion of the whole running time to build the planning graph. Thus, the

performance of these systems mainly depends on the speed of the solution extraction phase.

In TGP and TPSYS, the search for solution is basic backtracking. They select a supporting

action for current propositions in the goal state and check to see if it is mutex with other

chosen actions and propositions already in the plan. If it is not mutex, the action will be

added to the plan, and its conditions are also added to the plan and to the Goals. The search

process continues until the propositions of the initial state are in the plan.

In CPPlanner, in order to improve the performance of solution extraction, the idea of

critical paths is introduced, which will add actions and propositions to the plan earlier. A

critical path is a proposition-action path starting from propositions in the initial state and

ending at a subgoal with timestamp tG in the goal state. There must be at least one such

path, because the graph expansion phase has advanced to the time tG.

The propositions and actions along the selected critical path are added to the plan at the

start of solution extraction to form a backbone for the plan. This helps to prune irrelevant

branches, since propositions and actions that are mutex with the propositions and actions

of the critical path cannot be added to the plan. There can be more than one critical path,

however, if two (or more) actions both have ending effects at time tG. In such a case, if the

solution fails to find a solution, the planner chooses another critical path to try. Note that if

two actions have ending effects at tG, both may need to be part of any plan, or they may be

independent action in the sense that a plan containing either action might exist. To be safe,

two separate critical paths are constructed in such cases.

In addition, instead of using only the basic backtracking search, each time CPPlanner

chooses an action to the plan, the action is attached with a timestamp smaller than or

equal to that of the earlier chosen action. This process helps CPPlanner to build up a

timebound for timestamps of later actions added to the plan. It avoids the redundancy for

the backtracking search.
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01. Procedure FindProp(tmpAction, curPath, listOfCandidatePaths)

02. // decisiveProps are propositions effecting the timestamp of the action

03. For each tmpProp in tmpAction.decisiveProps do

04. FindAllPossiblePaths(tmpProp, curPath, listOfCandidatePaths)

05. Od {end for}

Figure 4.10: Pseudo-code to get a decisive proposition for an action.

4.6.2 Critical Path extraction

When the solution extraction is called, it means that all the subgoals appear and are pair

wise non-mutex at the time tG. In order to advance to this timepoint tG, there is at least an

action which ends at tG. These actions make the difference to the planning graph comparing

to the last time. Hence, if there is a solution at this stage, the plan (i.e. the solution) must

contain at least one of these actions. In addition, because the solution (i.e. plan) is a subset

of the whole planning graph, if the solution exists at this stage, one of the proposition-action

paths which leads to the subgoal with timestamp tG must be a part of the plan. However,

because there might be a case that there are more than one subgoal with timestamp tG or

more than one such proposition-action paths. CPPlanner will trace back to find all those

possible paths and consider them as critical path candidates. Then, the planner will select

them one by one as a actual critical path as act as the backbone for the solution extraction

search.

Figure 4.12 shows the pseudo-code of the extraction for the critical path candidates.
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01. Procedure FindAllPossiblePaths(curProp, curPath, listOfCandidatePaths)

02. // add curProp to the curPath

03. curPath = curProp
⊕

curPath

04. If curProp is in the initial state then

05. // A new candidate found and added to the list

06. listOfCandidatePaths = listOfCandidatePaths + curPath

07. Fi {end if }
08. else begin

09. // decisiveActions are actions effecting the timestamp of the curProp

10. For each tmpAction in curProp.decisiveActions do

11. curPath = tmpAction
⊕

curPath

12. FindProp(tmpAction, curPath, listOfCandidatePaths)

13. Od {end for}
14. end else

Figure 4.11: Pseudo-code to get all possible paths for a certain subgoal.

01. Procedure CPCANDExtraction(PropsGoal)

02. listOfCandidatePaths = ∅
03. For each curProp in PropsGoal do

04. If curProp.timestamp is tG then

05. curPath = {}
06. FindAllPossiblePaths(curProp, curPath, listOfCandidatePaths)

07. Fi {end if}
08. Od {end for}
09. return listOfCandidatePaths

Figure 4.12: Pseudo-code for CriticalPath candidates extraction ().
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In figure 4.10 and 4.11, the planner tries to extract all possible critical candidate paths if

there are more than one. In some cases, an action in the critical path candidates might have

more than one decisive propositions (i.e. propositions decide the timestamp of this action).

In those cases, because the planner is not sure which one is the main proposition supporting

this action, each of decisive propositions will create a new critical path candidate. How-

ever, other supporting propositions which are not the decisive ones are not considered to

be traced at this stage. Those propositions will be considered while the planner is doing

the solution extraction backtracking search. It is because that if the planner traces based

on those propositions, supporting actions of those propositions will be attached with times-

tamps which might not be the actual timestamps for them. If the actions are selected and

fixed with those timestamps, it will prevent other actions and propositions being added to

the plan because of the mutex conflicts. This will cause the incompleteness for the solution

extraction search.

The critical path candidates are then used one by one as the backbone for the solution

extraction search. The chosen actions and propositions of the critical path will prune some

search branches earlier by preventing new actions and propositions being added to the plan

because of the mutex conflicts. The details of the solution extraction are described in the

section below.

4.6.3 The algorithm description

The solution extraction attempts to extract a plan in the current planning graph for the

timepoint tG. At first, the solution extraction calls CPCANDExtraction() to retrieve all

critical path candidates. The solution extraction will choose one of them to act as the

backbone for the backtracking search. If it fails, the planner will try another one from the

candidates. If the planner cannot find any solution after trying all critical paths, it will call

the graph expansion again to advance the graph to the next possible timepoint.

In figure 4.13, in order to illustrate the critical path in the graph, the full level planning
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graph is used instead of the the bi-level graph. In the graph, the subgoals are prop1, proph,

propk, and propn. However, only proph, and propn have timestamps tG. The planner will

extract critical paths leading to these two propositions. In figure 4.13, the critical paths are

prop1-a1-...-aq-proph, and prop4-a3-...-af -propn. These paths will be added to the plan and

act as backbones for the backtracking search.
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Figure 4.13: The planning graph after the expansion phase. Note that for simplicity the full

level graph is used for the illustration purpose

When a candidate is selected to act as the backbone, all the actions and propositions

along this path will be added to the plan before the planner actually starts the backtrack-

ing search. With the chosen actions and propositions, other actions or propositions will

be eliminated in the search later on if they are mutex with those chosen. If the solution

extraction fails to find a plan based on the selected critical path, another is chosen to try.

Figure 4.14 presents the details of the solution extraction algorithm.
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01. Procedure SolutionExtraction()

02. // Attach the goal propositions with timestamp tG

03. Goals = {< p1, tG >,< p2, tG >, ..., < pn, tG >}
04. if Goals is a subset of initial state then stop the algorithm and print the solution.

05. Set t = tG

06. Candidates = CPCANDExtraction(PropsGoal)

07. while Candidates 6= ∅
08. CriticalPath ← get one from Candidates

09. Delete it from Candidates

10. ActionPlan = all actions of the critical path with their timestamps

11. Remove propositions supported by the critical path from Goals

12. Add all conditions of actions in the critical path to Goals with their timestamps

(including the non-decisive propositions)

13. // Note: excluding the conditions that are effects of other actions in the critical path

14. while can choose (NextAction = one of the actions which supports p

such that p∈Goals, and doesn’t mutex with ActionPlan and Goals).

15. Slide NextAction as late as possible, but its ending time not exceeding t.

16. Add NextAction into the ActionPlan.

17. Delete its effects in the Goals.

18. Add its conditions to the Goals with timestamps.

19. if the timestamp of any propositions < 0 then fail and try another NextAction

20. if Goals is a subset of initial state then print the solution and terminate the algorithm.

21. Update the time t = ending time of the chosen action

22. end {while}
23. end {while}
24. if cannot find a solution then graph expansion phase is run again by the Loop

Figure 4.14: Pseudo-code for SolutionExtraction ().
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As shown in line 6 of the figure 4.14, the critical path candidates are retrieved before

the search starts. These candidates are taken one by one to act as the backbone for the

search. The actions and propositions in the critical path are added to the plan. At this

stage, the proposition list of the plan has subgoals and propositions from the critical path.

The planner will find a next action which supports one or more propositions in the list. If

it does not conflict with the chosen ones, that action will be added to the plan. The effects

of this action which are also in the proposition list are removed from the list (i.e they are

supported by the newly chosen action). Conditions of this action are added to the list in

order to find supporting actions. The process is repeated until the planner cannot find any

action which can support the propositions in the list; or the list is a subset of the initial

state. In the latter case, a solution is found and is optimal. In the former case, the search

backtracks, and tries another critical path candidate. If the planner cannot find a solution

based on any critical path, the graph expansion is called again to move to the next possible

timepoint.

In this solution extraction, actions are chosen in reverse chronological order. When

each action is chosen to add to the plan, it is attached with a real timestamp. The earlier

in the process an action is chosen, the bigger its timestamp is. This helps to avoid re-

dundant search. Actions and propositions of the critical paths are added to the plan early

to help pruning irrelevant search branches. Therefore, the performance of the exhaustive

backtracking search is significantly improved (see chapter 6 for details).

4.7 Summary

This chapter has presented the algorithm of CPPlanner. The algorithm has two phases:

graph expansion and solution extraction. The graph expansion constructs the planning

graph until all of the subgoals appear and are pairwise non-mutex. The solution extraction

then tries to extract a plan from that planning graph. If a solution is found, it is the opti-

mal one. Otherwise, the graph expansion is called again to advance the graph to the next
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possible timepoint. The pseudo-codes of the two phases are provided in detail.

With the critical path extracted from the planning graph before looking for a solution,

the conditions and effects of the critical path are added early into the plan. The backtracking

search will eliminate any mutex-conflict actions or propositions with the chosen ones. This

helps to prune irrelevant branches early in the search tree. In addition, choosing actions in

a chronological order helps to avoid the redundant search. Hence, the performance of the

planning system is improved significantly.

The following chapter introduces some extensions and improvements on the solution

extraction phase. Some CSP techniques are also applied to speed up the search. The

empirical section after that will show the better performance of CPPlanner over TPG and

TPSYS in most of testing domains.



Chapter 5

IMPROVEMENTS

5.1 Introduction

In all plangraph-based planning systems, the performance depends mainly on the solution

extraction phase. Therefore, the improvement of the solution extraction phase will speed

up the whole system significantly. In this chapter, some improvements to the backtracking

process of the solution extraction phase are introduced to avoid redundant search and prune

irrelevant branches.

5.2 Avoid redundant solution extraction calls

In the expansion phase of the plangraph-based planning systems, whenever the graph is

expanded to the next timepoint, the system will check to see if all the subgoals (i.e. propo-

sitions) of the goal state appear and are pairwise non-mutex. If it happens, the solution

extraction will be called to perform the backtracking search to find a solution from that

graph. In each expansion step, a new possible action with the earliest ending time is cho-

sen and applied from all possible actions. As mentioned in [13], the result (i.e. plan) is

a subgraph of the plangraph. It is analysed and discussed in chapter 4 that the solution

must contain at least one of the critical paths as the backbone (i.e. a part of the subgraph

result). If the latest expansion step does not affect any subgoal (i.e. all the timestamps

of the subgoal remain the same), the critical paths are the same as the previous expansion

step. In this case, the planner does not need to run the solution extraction phase to look for

the subgraph result.

Therefore, to apply this improvement, in the graph expansion phase, we only need to
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check whether the latest advance in timeline affects any timestamp of the subgoals of the

goal state. If it does, the solution extract is called. Otherwise, the call is ignored and the

graph expansion tries to advance the graph to the next possible timepoint.

5.3 Conflict Directed Backjumping

5.3.1 Motivation

In chapter 4, the solution extraction phase uses exhaustive backtracking search. The back-

tracking is very basic except the improvement in timebounds while looking for the next

action. This section will review the inefficiency in the backtracking search when the plan-

ner fails to find out a supporting action and comes back to the previous chosen one to

backtrack.
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Figure 5.1: An example to illustrate the inefficiency in the backtracking of the solution

extraction phase

We shall have a look at figure 5.1 and analyse to find out the inefficiency of the basic
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backtracking search of the algorithm introduced in chapter 4. First of all, we have 4 sub-

goals 1, 2, 3, and 4 of the goal state which need to be supported. Assuming that we will find

supporting actions for them in that order, subgoal1 needs to be checked first. Assuming that

action a1 is the only action which supports subgoal1, a1 is chosen for level 1 (Note that in

solution extraction phase, the search is backward from the goal state. We name each action

found in each level from 1 to k in which level 1 contains the first action which supports the

first subgoal of the goal state). Proposition prop1 and prop2 which are conditions of action

a1 are added to the list of subgoals. However, because they have timestamps smaller than

those of the original subgoals, they are checked later after the origial subgoals are checked.

For the sake of simplicity, we assume that a2 and a3 are actions which support subgoal2 and

subgoal3 respectively. At a result, other propositions prop3, prop4, and prop5 are added to

the subgoal list. We now have to look for actions which supports subgoal4. In this example,

we assume that subgoal4 can be supported by any of the 3 actions a4, a5, and a6. However,

a4 and a6 are mutex with a1, and a5 is mutex with a2. In this case, after trying all possible

actions, due to mutex relation conflicts, the planner fails to find an action which supports

subgoal4. It has to backtrack and undoes choices. It comes back to the previous chosen one,

which is subgoal3 and choose a different search branch from there. Assume that there are

a few actions which can support subgoal3, it can choose the next one. However, whenever

the planner chooses a supporting action for subgoal3, and moves on to subgoal4, it always

fails to find a supporting action for subgoal4. The reason is that the problem of choosing

a supporting action for subgoal4 is not at the subgoal3, but at subgoal1 and subgoal2. The

planner wasted a lot of time trying different actions at the level 3 where action a3 is. There-

fore, if at each level the planner stores information about the source of conflicts, it can

easily jump back to the level where the problem is and try to choose another search branch.

The next section will describe this method to avoid redundant search and jump back to the

source of conflicts.
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5.3.2 Improving the search with Conflict-Directed Backjumping

As introduced and analysed in [85] [53], the conflict-directed backjumping is an efficient

method to avoid getting into irrelevant branches and jump back to the conflict source. In

our extraction algorithm, because actions are chosen one by one supporting the current

subgoal propositions, we can store the conflict list for the kth action in the level k. In

particular, when we are looking for the kth action in the extraction phase, if action ai is a

supporting action for the current subgoal (i.e. proposition), but it is mutex with one of the

earlier chosen action, says ax. Assuming that ax is in the level h. In this case, h is stored

in the conflict list of level k. In the end, if the planner tries all possible actions and fails to

choose one, it can rely on the conflict list to jump back to the closest earlier level to sort out

the problem. If we have a look again at our example above, the level 4 will have a conflict

list which contains 1 and 2. The planner will be directed to jump back to level 2 because

it is closer than level 1. This improvement will help the planner to avoid getting stuck into

irrelevant search branches.

5.4 Summary

This chapter analysed some inefficiencies of the basic backtracking described in chapter 4.

The two improvements, avoiding redundant solution extraction calls and conflict-directed

backjumping, are discussed and illustrated in detail. The improvements help CPPlanner

avoid irrelevant search branches to speed up the performance. Chapter 6 shows the effi-

ciency of applying those improvements in our planner via the empirical study.



Chapter 6

EXPERIMENTS AND EMPIRICAL ANALYSIS

6.1 Introduction

This chapter describes the experiments and empirical analysis of CPPlanner, our planning

system. CPPlanner has been developed based on the algorithms and improvements de-

scribed in chapter 4 and 5. This chapter also shows the comparison to an earlier version

of CPPlanner, called CPPlanner Basic, which has the same graph expansion phase but the

solution extraction only uses the basic backtracking without “critical paths” and does not

include the improvements in chapter 5. CPPlanner is compared directly to the two best op-

timal plangraph-based temporal planning systems, TGP and TPSYS, which were described

in detail in chapter 3.

The next section describes the domains used in the comparisons. Then, CPPlanner is

compared to CPPlanner Basic, TGP and TPSYS. Because TGP cannot handle PDDL2.1

domain specifications, a planning domain defined within the TGP package was used in

the comparisons. To compare with TPSYS, temporal domains from the 3rd International

Planning Competition in 2002 were used. Result tables are also included to show the direct

comparison. In each section, domain descriptions are given, and discussions and analysis

are made on the results. Besides TGP and TPSYS, CPPlanner is tested on a temporal plan-

ning domain - the Airport domain extracted from the 4th Planning Competition in 2004,

and the Storage domain extracted from the latest planning competition 2006 (Note that:

because of the different syntax in the domain description, TGP and TPSYS could not deal

with these domains). In these domains of IPC2004 and IPC2006, CPPlanner is compared

to the state-of-the-art planning system, CPT [98] , which ranked 2nd in the optimal track of
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the competition 2004 (Note: the 1st ranking planner could not handle temporal domains),

and won the distinguished prize in the competition 2006. Finally, CPPlanner was tested on

the new domain, Spacecraft, in which actions can have intermediate effects.

The research focuses on finding an optimal solution for temporal planning domains. In

the experimental evaluation, most of the test cases have been extracted from the temporal

domain section of the international planning competitions, or from the package of TGP.

In addition, temporal domain Spacecraft, in which actions can have intermediate effects,

was created for the evaluation to show the ability to handle richer temporal domains of

CPPlanner. Large test cases of the international planning competitions which are mainly

built for heuristic planning systems are not included in this experimental evaluation. Since

all the planning systems in the evaluation are optimal planners, the makespans of the result

plan are the same. Hence, the main criteria used in comparison are the CPU time and the

number of problems solved.

6.2 Temporal planning domains used in the experiments

This section illustrates all the temporal planning domains used in the experiments. Firstly,

the temporal logistic domain provided in the package of TGP was used to have a clearer

comparison with TGP.

Because our CPPlanner can handle the durative actions in PDDL2.1 level 3 specifica-

tions, most of the experimental domains are extracted from the Third International Planning

Competition in 2002 (IPC2002). In that competition, when durative actions were first intro-

duced to the planning community (see chapter 2 for details), most of the planning domains

contained temporal definitions. In addition, the temporal planning domains in the planning

competition 2004 (IPC2004) and the latest 2006 (IPC2006) have also been extracted for

the experiments in this chapter. Finally, two planning domains which were specifically

created to contain actions with intermediate effects were used to test the performance of

CPPlanner.
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6.2.1 Temporal domain logistics extracted from the TGP package

Since TGP was developed before the introduction of PDDL2.1, it cannot handle PDDL2.1

Level 3 specifications. In addition, TGP assumes that all the conditions of an action must

hold before executing the action and remain undefined during the execution. However,

the domain description that TGP can handle is quite similar to that of PDDL2.1 Level 3,

except it only contains fixed times for durations, all conditions are at-start and over-all

(i.e. required at start and holding throughout the execution), and effects happen only at

the end of the execution. In the domain logistics, packets need to be delivered to different

locations using trucks or airplanes. Below is the description of actions available in the

domain logistics extracted from the TGP package. In this domain, durations of actions are

static (i.e. the duration is a fixed number).

Actions:

• load: at location z, load packet x to vehicle y. The duration is 1 time unit.

• unload: at location z, unload packet x to vehicle y. The duration is 1 time unit.

• drive: in city c, drive truck x from location y to location z. The duration is 2 time

units.

• drive-inter-city: drive truck x from location y to location z in a different city. The

duration is 11 time units.

• fly: airplane x flies from airport y to airport z. The duration is 3 time units.

In this domain, there are totally 6 planning problems, named Log 1 to Log 6. Table

6.1 shows the numbers of objects in each planning problem of the Logistics domain. The

problem Log 1 is the biggest and most complex comparing to the others. Although Log 2

and Log 3 have fewer number of objects than those of Log 1. Log 4, Log 5, and Log 6

have much fewer number of objects and simpler initial and goal state.
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Problem cities offices airports trucks airplanes packets

Log 1 3 3 3 3 1 3

Log 2 3 2 3 2 1 3

Log 3 3 2 3 1 1 2

Log 4 3 0 2 0 1 1

Log 5 2 0 2 1 0 1

Log 6 3 0 2 0 1 1

Table 6.1: The numbers of objects in each problem of the Logistics domain extracted from

the TGP package.

6.2.2 Temporal domains extracted from IPC2002

6.2.2.1 Depots

This domain was constructed for IPC2002 by combining the two well-known domains,

logistics and blocks. The domain describes trucks moving crates from one place to another.

Crates are loaded into and unloaded from trucks by hoists. Durations of actions depend on

the locations of objects or the weight of crates. Crates are then stacked onto pallets at the

destination. The details of the domain are as follows:

Types: the domain uses the types: place, locatable, object, depot, distributor, truck, hoist,

surface, pallet, and crate. A pallet and a crate are of type surface. A truck, a hoist, and a

surface are of type locatable. A depot and a distributor are of type place. A place and a

locatable are of type object.

Actions:

• Drive: describes the driving of a truck from one place to another. The duration of the

action depends on the speed of the truck and the distance between the two places.

• Lift: describes that a hoist lifts up a crate from a surface. The duration of this action
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is 1 time unit. The condition is the hoist and crate are in the same place; the hoist is

available and nothing is on top of the crate.

• Drop: describes a hoist dropping a crate, which it is holding, i.e. has lifted onto a

surface. The duration of this action is 1 time unit.

• Load: describes a hoist putting a crate into a truck. The duration of this action

depends on the weight of the crate and the power of the hoist.

• UnLoad: describes a hoist picking up a crate from a truck. The duration of this

action depends on the weight of the crate and the power of the hoist.

Note that in the international planning competition 2002 in which temporal planning

domains were first introduced to the competition, there was no special track for optimal

planning systems. Since the domains and problems were designed for all participating

planning systems including heuristic-approach planners, the size and the complexity of the

domains and problems were far beyond the ability of optimal planners. Therefore, in this

experimental chapter, only small size problems were extracted for the comparison.

In this Depot domain, Depot 1 is only one problem extracted. The other problems in

this domain are too big for the optimal planners to handle within the limited time (i.e. 30

minutes). In Depot1, there are 1 depot, 2 distributors, 2 trucks, 3 pallets, 2 crates, and 3

hoists.

6.2.2.2 DriverLog

This domain describes the driving of trucks around places to deliver packages. It is more

complicated than the original logistics domain because drivers have to walk from one truck

to another to drive it. The details of the domain are as follow:

Types: the domains uses the types: object, location, locatable, driver, truck, and obj. A

driver, a truck, or an obj are of type locatable. A location and a locatable are of type

object.
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Actions:

• LOAD-TRUCK: an object is loaded into a truck. This action takes 2 time units.

• UNLOAD-TRUCK: an object is unloaded from a truck. This action takes 2 time

units.

• BOARD-TRUCK: a driver gets into a truck to be ready to drive. This action takes 1

time unit.

• DISEMBARK-TRUCK: a driver gets out of a truck. This action takes 1 time unit.

• DRIVE-TRUCK: a truck is driven from one location to another. A driver must be in

the truck and there must be a route linking the two locations. The duration of this

action depends on the two locations.

• WALK-TRUCK: a driver walks from one place to another. It is required that there is

a path linking the two places. The duration of the action depends on the two places.

In this DriverLog domain, there are two problems, which are DriverLog1 and Driver-

Log3, extracted. Table 6.2 shows the number of objects in each problem.

Problem drivers trucks packages locations

DriverLog 1 2 2 2 5

DriverLog 3 2 2 4 6

Table 6.2: The numbers of objects in each problem of the DriverLog domain extracted

from IPC2002.
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6.2.2.3 Satellite

The satellite domain is first PDDL-based planning domain bringing AI Planning towards

space related applications. The domain was inspired by the talk about “Ambitious Space-

craft” delivered by David Smith at AIPS2000 [90]. The domain involves planning obser-

vations from multiple satellites. Each satellite has different instruments.

Types: there are four different types in this domain. They are satellite, direction, instru-

ment, and mode.

Actions:

• turn to: describes the turning of a satellite from one direction to another. The dura-

tion depends on the two directions.

• switch on: switch on an instrument on a satellite. The duration is 2 time units.

• switch off : switch off an instrument on a satellite. The duration is 1 time unit.

• calibrate: at the end of the action, an instrument is calibrated and ready to take

images. The duration depends on the instrument and the direction that satellite is

aiming.

• take image: the action of using the instrument on the satellite to take an image. The

duration is 7 time units.

In this Satellite domain, Satellite 1 and Satellite 3 were extracted. Table 6.3 shows the

number of objects in each problem.

6.2.2.4 Rovers

This is another domain relating to space applications. It was inspired by planetary explo-

ration. In the domain, rovers navigate and find rock and soil samples on the surface. Then,

they communicate back to the lander.
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Problem satellites instruments modes directions

Satellite 1 1 1 3 7

Satellite 3 2 4 3 8

Table 6.3: The numbers of objects in each problem of the Satellite domain extracted from

IPC2002.

Types: there are 7 different types in this domain. They are rover, waypoint, store, camera,

mode, lander and objective.

Actions:

• navigate: move from a waypoint to another. Duration is 5 time units.

• recharge: recharge the energy to the rover at the recharge-rate. Duration depends on

how much energy it needs to be recharged.

• sample soil: get a full store of sample of soil at waypoint. Duration is 10 time units.

• sample rock: get a full store of sample of rock at waypoint. Duration is 8 time units.

• drop: drop the sample from the store. Store becomes empty.

• calibrate: calibrate the camera to be ready. Duration is 5 time units.

• take image: takes the image of an object at a waypoint. Duration is 7 time units.

• communicate soil data: communicates to the lander about the soil data. Duration is

10 time units.

• communicate rock data: communicates to the lander about the rock data. Duration

is 10 time units.
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• communicate image data: communicates to the lander about the images. Duration

is 15 time units.

In this Rover domain, there were 4 problems extracted, from Rover 1 to Rover 4. Table

6.4 shows the number of objects in each problem.

Problem modes rovers stores waypoints cameras objectives

Rover 1 3 1 1 4 1 2

Rover 2 3 1 1 4 2 2

Rover 3 3 2 2 4 2 2

Rover 4 3 2 2 4 3 3

Table 6.4: The numbers of objects in each problem of the Rover domain extracted from

IPC2002.

6.2.2.5 ZenoTravel

This is another transportation domain, which involves in transporting people around cities

by airplanes. The airplanes have different modes to travel, which are fast or slow. The main

introduction of this domain is the numeric track, in which the fuel levels are discrete. The

faster movement of the airplane is, the more fuel consumption it will use.

Types: there are 4 different types in this domain. They are aircraft, person, city, and fuel

level.

Actions:

• board: at a certain city, a person gets on the aircraft. Duration is 20 time units.

• debark: a person gets off an aircraft to the city. Duration is 30 time units.

• fly: an aircraft flies from one city to another with slow speed. Duration is 180 time

units.
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• zoom: an aircraft flies from one city to another with fast speed. Duration is 100 time

units. Fuel is consumed double comparing to the action fly.

• refuel: an aircraft refuels. Duration is 73 time units.

In this ZenoTravel domain, there were 4 problems extracted, from Zeno 1 to Zeno 4.

Table 6.5 shows the number of objects in each problem.

Problem aircrafts people cities fuel level

Zeno 1 1 2 3 7

Zeno 2 1 3 3 7

Zeno 3 2 4 3 7

Zeno 4 2 5 3 7

Table 6.5: The numbers of objects in each problem of the ZenoTravel domain extracted

from IPC2002.

6.2.3 Airport - a temporal domains extracted from the IPC2004

The Airport domain, created by Sebastian Trueg for IPC2004, describes the operations

involving airplanes at an airport. The details of the airport domain are as follows:

Types:

The types of airplane are: small, medium, and large. This describes the types of an air-

plane. Direction: north, and south. This shows the direction that the airplane is moving.

Segments: seg pp 0 60, seg ppdoor 0 40, seg tww1 0 200 etc. This describes the name of

a certain segment of the airport. Airplane names: these were used to identify the airplanes.

Actions:

• Move: an airplane moves from one segment to another. It depends on the two seg-

ments involved to know the duration and conditions and effects of that action.
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• TakeOff : an airplane takes off from a certain segment. The duration is 30 time units.

• Park: an airplane parks at a certain segment. The duration is 40 time units.

• StartUp: an airplane starts up and is in the status of moving. The duration depends

on the engine of that airplane. It is calculated as (60 * engine) time units.

In this Airport domain, there were 7 problems extracted, from Airport1 to Airport7.

Table 6.6 shows the size and complexity of those problems.

Problem directions airplane types segments airplanes

Airport1 2 3 17 1

Airport2 2 3 17 1

Airport3 2 3 17 2

Airport4 2 3 40 1

Airport5 2 3 40 1

Airport6 2 3 40 2

Airport7 2 3 40 2

Table 6.6: The numbers of objects in each problem of the Airport domain extracted from

IPC2004.

6.2.4 Storage - A temporal planning domain extracted from IPC2006

In the latest planning competition 2006, the new version of the planning domain description

language - PDDL3 was introduced. In this competition, the constraints were introduced

into the PDDL (see chapter 2 for details). There were 5 different domains for the bench-

mark, in which there were 3 new domains - storage, truck and pathways, and the other two

domains were taken from the IPC2004. Since pathways domain does not contain temporal
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descriptions, and truck domain is too difficult for temporal optimal planners, only storage

was extracted for the experiment of CPPlanner.

Storage is a planning domain which involves spatial reasoning. The domain is about

moving crates from certain containers to depots by hoists. In each depot, a hoist can move

according to the spatial map connecting different depots. The details of the storage domain

are as follows:

Types: There are 4 different types of for domain. They are: object, place, area, surface.

Hoist, surface, place, area are objects. Container and depot are of type place. Storearea

and transitarea are of type place. Area and crate are of type surface.

Actions:

• lift: a hoist lifts a crate from a surface. Duration is 2 time units.

• drop: a hoist drops a crate to a surface. Duration is 2 time units.

• move: a hoist goes from one storearea to another storearea. Duration is 1 time unit.

• go out: a hoist goes from a storearea to a transitarea. Duration is 1 time unit.

• go in: a hoist goes from a transitarea to a storearea. Duration is 1 time unit.

In this Storage domain, there were 15 problems extracted, from Storage1 to Storage15.

Table 6.7 shows the size and complexity of those problems.
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Problem storeareas hoists crates containers depots transitarea

Storage1 2 1 1 1 1 1

Storage2 3 2 1 1 1 1

Storage3 4 3 1 1 1 1

Storage4 6 1 2 1 1 1

Storage5 6 2 2 1 1 1

Storage6 6 3 2 1 1 1

Storage7 9 1 3 1 1 1

Storage8 9 2 3 1 1 1

Storage9 9 3 3 1 1 1

Storage10 12 1 4 1 1 1

Storage11 12 2 4 1 1 1

Storage12 12 3 4 1 1 1

Storage13 15 1 5 2 2 2

Storage14 15 2 5 2 2 2

Storage15 15 3 5 2 2 2

Table 6.7: The numbers of objects in each problem of the Storage domain extracted from

IPC2006.
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6.2.5 Spacecraft - A temporal domains with intermediate effects

This section describes a temporal planning domain which has actions with intermediate

effects. Instead of decomposing complex actions into many primitive actions with con-

straints to keep them together, actions with intermediate effects were introduced in this

thesis (see chapter 2 for details). Actions with intermediate effects make planning domains

look more natural and realistic. In this section, an example of temporal planning domain,

called spacecraft, with intermediate effects are introduced. The domain describes a space-

craft must turn an instrument to a specific target with many smaller operations involved.

The domain spacecraft was created mainly for the experiments of CPPlanner. It is

based on a complex action which has intermediate effects introduced by David Smith in

[91]. The domain describes a spacecraft in process of taking pictures of particular objects.

In this domain, the spacecraft must turn into a particular direction to point an instrument

at a particular target. The process of turning the spacecraft consists of many actions. At

first, thrusters in the reaction control system (RCS) are fired to provide the angular veloc-

ity. Then, those thrusters are switched off but the spacecraft still keeps turning until it is

closely to the target direction. At this time, the thrusters are fired again in the opposite

direction to stop the rotation. In the whole process, the thruster firing is very quick, but

the turning of the spacecraft is slow which may take several minutes. During the time of

firing the thrusters, it will cause some vibration to the spacecraft which prevents some op-

erations from performing. The process of turning a spacecraft is modelled by an action

with intermediate effects. After pointing to the right object, the camera is calibrated to be

ready. It is also set to the right mode to take pictures. After the picture taken, it will be

sent to the control center and also printed a copy. However, the printing process requires

the spacecraft still (i.e. not vibrating). Below is the overview of the domain.

Types: There are 4 different types for this domain. They are: object, camera, mode, and

direction.

Actions:
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• turn: turn the spacecraft to a particular heading. It consists of firing the thrusters,

coasting of the spacecraft, and firing the thrusters again. During performing this

action, there are two periods of time (at the start and at the end when the thruster are

in use) in which the vibration appears. The vibration prevents other operations from

performing (e.g. printing pictures)

• calibrate: calibrate the camera to be ready and point to the right direction to take

pictures.

• set mode: set the capture mode for the camera.

• take picture: take a picture of a particular object.

• communicate: send the picture to the control center.

• print picture: print a picture. This action cannot perform if there is any vibration

(i.e. thrusters are in use).

In this domain, 5 different problems are created for the experiment. Table 6.13 shows

the complexity of each problem in this domain.

Problem object camera mode heading

Spacecraft1 2 1 3 6

Spacecraft2 2 2 3 6

Spacecraft3 3 2 3 7

Spacecraft4 3 3 3 9

Spacecraft5 5 5 3 14

Table 6.8: The numbers of objects in each problem of the Spacecraft domain
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6.3 Comparisons of planning systems

The temporal planning systems which were used in the experiments are CPPlanner-Basic,

CPPlanner, TGP, TPSYS, and CPT. The details of TGP, TPSYS, and CPT were described

in chapter 3. CPPlanner-Basic is the first developed version of CPPlanner which does not

have the improvements, such as conflict-directed backjumping. CPPlanner is our latest

version which was developed based on the algorithm described in chapter 4 with all the

improvements described in chapter 5.

The experiments were carried out on a Athlon AMD XP2000 machine running at

1.667GHz with 256MB RAM and 1.5GB virtual memory. CPPlanner Basic, CPPlanner,

and TGP were run under the Windows XP operating system, whereas TPSYS runs on

MEPIS Linux on the same machine.

6.3.1 Logistics domain from TGP package

The domain used in this section is the logistics domain extracted from the TGP package

which is available from the TGP website. According to the author of TGP, the version

they provided on the website is improved by adding techniques described in [92]. Thus, it

performs much better than the version which was described in their IJCAI-99 paper [88].

Because TGP was developed on Macintosh Common Lisp, there were some problems

in re-compiling it and running it in Windows or Linux Common Lisp. In some source files,

there are no proper line terminations (CR only) which causes the whole file to be read as

one line only. In addition, because Common Lisp has an elaborate system for referencing

files, it is not portable across dialects of Common Lisp (e.g. the function full-pathname

appears to be unique in Macintosh Common Lisp).

By editing the TGP sources files 1, it was eventually possible to compile and run TGP

in Windows Common Lisp. The experiment was carried out on six temporal problems,

which are log 1 to log 6, provided in the TGP package downloaded from the TGP website

1 Stephen Cresswell helped with modifying the TGP files
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[92]. See table 6.9 for details.

Problem CPPlanner Basic CPPlanner TGP makespan

Log 1 7.25 1.58 3.72 15

Log 2 4.31 0.73 1.46 15

Log 3 2.71 0.21 0.27 15

Log 4 1.23 0.05 0.03 8

Log 5 1.16 0.03 0.01 24

Log 6 1.03 0.01 0.01 5

Table 6.9: The comparison of different planning systems on the Logistics domain. Time is

in seconds to find an optimal solution.

In this experiment, the problem Log 1 is the biggest with 3 cities, 3 offices, 3 airports,

3 trucks, an airplane, and 3 packets. Problems Log 2 and Log 3 are simplified from Log 1

by changing the goal. Log 4, Log 5, Log 6, and Log 7 have a much simpler goal.

The experiment showed that CPPlanner performed better than TGP on most of the tests.

In Log 4 and Log 5, because the size of the problems are very small, and CPPlanner spent

time checking whether there are actions with intermediate effects, the result showed it is

slower than TGP in those small test cases. In other tests, Log 1 and Log 2, CPPlanner

outperformed TGP.

There is not much difference in the running time of the expansion phase in TGP and CP-

Planner because it is only a small proportion of the whole performance. The two systems

applied a similar approach to expand the graph although CPPlanner spends little more time

in calculating the time for the next applied action. However, in the extraction phase, the

CPPlanner uses the critical paths to support the backtracking search, which consequently

shows a big improvement. In particular, in the test Log1 and Log2, because of the crit-

ical paths, CPPlanner has chosen a small number of actions and propositions before the
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search actually starts. The large remainder of possible actions is therefore pruned (made

into irrelevant search branches) by the detection of mutex conflicts, a process inherent in

CPPlanner.

The earlier version of CPPlanner, called CPPlanner Basic, ran quite slowly because of

the basic backtracking used and the redundant search in the solution extraction. With the

usage of the critical paths and improvements in chapter 5, for instance the use of time-

bound and directed backjumping, the performance of CPPlanner is much better than that

of CPPlanner Basic..

6.3.2 Temporal planning domains from IPC2002

The international planning competition in 2002 did not divide participating planning sys-

tems into optimal and non-optimal groups, and the planning domains were mostly designed

for non-optimal planners. In most of the competition’s test cases, the size of problems are

too big for optimal planners to deal with. Although optimal plangraph-based planning sys-

tems use the plangraph (which is a compact graph of all possible states), the graph is still

too big to fit in the memory of current computing hardware. This is because the plangraph

grows very quickly as all possibilities of actions are incorporated in the graph. Thus, CP-

Planner and TPSYS could not handle planning problems with large size in the IPC2002

test sets. Big planning problems are designed for non-optimal planners which use heuristic

approaches.

In our experiments, due to the size of the test cases, only a few small problems were

extracted from each of the planning domains. Thus Table 6.10 shows only problems which

can be solved by TPSYS within a 30-minute time allowance on the testing machine.

In the DriverLog domain, DriverLog 1 has 2 drivers, 2 trucks, 2 packets, and 5 loca-

tions. Driverlog 2 is bigger than DriverLog 1 with 2 more packets, and 1 more location.

In the Rover domain, Rover 1 has a lander, 3 modes, 1 rover, 1 store, 4 waypoints, a cam-

era, and 2 objectives. Rover 2, Rover 3, and Rover 4 are bigger than Rover 1, in which
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Problem CPPlanner Basic CPPlanner TPSYS makespan

Depot1 0.89 0.08 0.17 28

DriverLog1 1.2 0.14 0.16 92

DriverLog3 6.21 1.68 3.9 42

Rover1 2.42 0.22 0.47 57

Rover2 1.42 0.2 0.23 45

Rover3 2.82 0.24 0.59 64

Rover4 3.7 0.35 0.64 50

Zeno1 2.15 0.23 0.14 173

Zeno2 173.23 35.27 77.94 592

Zeno3 37.34 6.72 10.9 280

Satellite1 2.32 0.2 0.17 48

Satellite3 127.72 23.78 58.62 40

Table 6.10: Comparison to TPSYS on IPC2002 temporal planning domains. Time is in

seconds to find an optimal solution.

Rover 2 and Rover 3 have 2 cameras; and Rover 4 has 3 cameras and 3 objectives.

In the Zeno domain, Zeno 1 has an airplane, 2 people, 3 cities, and 7 fuel levels.

Comparing to Zeno 1, Zeno 2 has one more person, and Zeno 3 has 1 more airplane

and 2 more people. In the satellite domain, satellite 1 has a satellite, an instrument, 3

modes, and 7 directions. Satellite 3 has 1 more satellite, 3 more instruments, and 1 more

directions.

In each planning domain, only a few small problems were solved optimally. In all

those planning problems, CPPlanner was faster than TPSYS on the same hardware settings
2. Table 6.10 shows the results on the DriverLog, Rover, Zeno, and Satellite domains.

2 TPSYS runs on Linux and CPPlanner runs on Windows. However, both were developed based on C++
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In the result, CPPlanner is about twice as fast as TPSYS for most of problems. In small

test cases, e.g. Zeno1, Rover 2, Satellite1, because CPPlanner spent more time in checking

whether actions have intermediate effects, the CPU time was longer than that of TPSYS.

Again, the table demonstrates that the final version of CPPlanner is much faster than the

basic version CPPlanner Basic.

6.3.3 The Airport temporal domain extracted from IPC2004

Since other planning domains used in the international planning competition in 2004 have

resource information, which CPPlanner does not support yet, the Airport temporal planning

domain is the only one we extracted to use in our experiments. Because the Airport domain

was described with PDDL2.2 specifications, TGP and TPSYS could not handle it. TGP was

developed well before the introduction of PDDL2.2 and the domain specification that TGP

supports is its own definition. However, although TPSYS can handle PDDL2.1 domains,

these appear to be a little bit difference in the syntax of PDDL2.2 and PDDL2.1 (see chapter

2 for details), which raised a parsing error when trying to run TPSYS on this domain. Table

6.11 shows results on the Airport domain in comparison to CPT.

Although CPPlanner solves these problems optimally within a few seconds, the exper-

iment showed that CPT (see chapter 3 for details) performed better than CPPlanner in all

test cases. The good performance of CPT is mainly because of the ability to make infer-

ences about actions which are not yet in the plan, the efficient calculation of the lower

bound of the starting time of actions, and the propagation of Constraint Programming us-

ing the inferences and lower bounds. Thus, in CPT, all variables of the encoding problem

are reasoned. The propagation helps to reduce the domain of each variable quickly and

efficiently. Irrelevant branches can be pruned while the constraint solver is looking for a

solution.

and tested on the same machine, i.e. using the same hardware settings. Runtimes are roughly comparable

between the two systems. See the appendix A for more information on the difference when the same

planning system runs on two different operating systems on the same machine
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Problem CPPlanner CPT makespan

Airport1 0.38 0.07 64

Airport2 0.57 0.09 185

Airport3 1.03 0.15 200

Airport4 0.72 0.18 127

Airport5 2.57 0.55 227

Airport6 5.35 0.59 232

Airport7 7.23 0.57 232

Table 6.11: Comparison to CPT on the Airport planning domain in the IPC2004. Time is

in seconds to find an optimal solution.

Because CPT was developed using a totally different approach, CPPlanner was not

expected to compete with CPT. In IPC2004, CPT was the second best planner in the optimal

track. However, since SATPLAN’04, the best optimal planner in IPC2004, cannot handle

temporal planning domains, CPT was considered to be the best planning system the optimal

temporal planning.

CPPlanner would be competitive with CPT if the memoization (see chapter 7 for de-

tails) were applied. Also, the idea of using Constraint Programming in CPPlanner as de-

scribed in the Further Developments (see also chapter 7) would be helpful to improve the

performance of CPPlanner because the arc consistency checking and propagation might

help to eliminate redundant branches early in the search. However, these improvements

need to be fully analysed before they can be applied efficiently in CPPlanner.

6.3.4 The Storage temporal domain extracted from the latest IPC2006

There are 3 out of 5 planning domains which contain temporal parts in the planning com-

petition IPC2006. Since one of them is too difficult for optimal planners, and another is the
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one from IPC2004, in this experiment, only the storage domain is extracted for comparison.

In IPC2006, the new version of CPT was introduced, named CPT2. CPT2 won the dis-

tinguished prize for the outstanding performance on temporal domains in IPC2006. Table

6.12 shows the comparison of CPPlanner and CPT2

Problem CPPlanner CPT2 makespan

Storage1 0.02 0.01 5

Storage2 0.03 0.01 5

Storage3 0.12 0.02 5

Storage4 0.57 0.05 12

Storage5 0.73 0.09 8

Storage6 0.98 0.11 8

Storage7 74.62 1.76 20

Storage8 136.13 0.87 12

Storage9 254.87 4.52 11

Storage10 - - -

Storage11 - 1252.21 17

Storage12 - - -

Storage13 - - -

Storage14 - 174.27 17

Storage15 - 64.82 13

Table 6.12: Comparison to CPT2 on the Storage planning domain in the latest IPC2006.

Time is in seconds to find an optimal solution.
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6.3.5 Spacecraft - A temporal domain with intermediate effects

Spacecraft is the first experiment of temporal domains with intermediate effects. Because

other planners, such as TGP, TPSYS, and CPT could not handle planning domains with

intermediate effects, only CPPlanner is tested for this domain. The table 6.13 shows the

results on 5 different problems of this domains. In the 5 problems, the spacecraft5 is the

most complicated one requiring to turn the camera of the spacecraft to 5 different objects.

Problem CPPlanner

Spacecraft1 0.28

Spacecraft2 0.71

Spacecraft3 2.53

Spacecraft4 2.12

Spacecraft5 5.14

Table 6.13: Results for spacecraft domain in which actions has intermediate effects. Time

is in seconds to find an optimal solution.

The experiment shows that CPPlanner is able to handle richer temporal planning do-

mains in which actions may have intermediate effects. Instead of using many primitive

actions to describe a complex action, the planning domain looks much simpler. In this

case, the planning domain is more intuitive and smaller, and CPPlanner avoids redundant

search branches by considering the whole complex action at one action.
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6.4 Summary of the empirical study and discussion

The chapter presented empirical study of the development of CPPlanner and its comparison

to the two best plangraph-based optimal temporal planning systems, TGP and TPSYS.

In addition, it was also compared to the state-of-the-art planning system, CPT and the

later version CPT2, on domain Airport of IPC2004, and domain Storage of IPC2006. The

domains used in the experiments are taken from the TGP package, IPC2002, IPC2004, and

the latest IPC2006.

Since the research focuses on improving plangraph approach to find optimal solutions

for temporal planning domains, the main concern is the comparison with the two best

plangraph-based optimal planners, TGP and TPSYS. In addition, the comparison to CPT

and CPT2 is to show the competence of the plangraph approach to the state-of-the-art

approach.

In the experiments, CPPlanner showed significant improvements in performance over

TGP and TPSYS. In the logistic domain extracted from the TGP package, CPPlanner out-

performed most of the test cases, except the small ones in which CPPlanner wasted time in

checking whether actions have intermediate effects. With with improvements described in

chapter 5, CPPlanner performs much better.

In the experimental evaluation with TPSYS, CPPlanner ran about twice as fast as TP-

SYS in most of test cases. Like the previous experiment, in small test cases, CPPlanner

was a little bit slower because of spending time to check intermediate effects.

The experiment also shows that the critical paths and the improvements described in

chapter 5, such as timebound, and directed backjumping, make CPPlanner several times

faster than the basic version CPPlanner Basic.

Finally, there were some experiments on CPPlanner against CPT and the later version

CPT2. These planning systems use a totally different approach to find optimal solution (see

chapter 3 for details). CPPlanner is not comparable to CPT/CPT2 in all test cases. How-

ever, CPPlanner still shows the competency of plangraph approach for optimal solutions.
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It is worth noting that the problems solved in these experiments are small in comparison

with most problems encountered in the real world. Although some small-scale planning

problems do occur outside planning competition, for instance planning for photocopiers or

elevator planning, optimal temporal planning remains very difficult for large problems.



Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Introduction

This chapter revisits and expands on the main contributions, which were outlined in chapter

1, in the context of the previous chapters. Further developments for the CPPlanner are also

discussed.

7.2 Summary of contributions

There follows the brief summary of the contributions of this thesis.

7.2.1 CPPlanner algorithm

The main contribution of the thesis is the introduction of a new and efficient plangraph-

based algorithm to handle temporal planning domains to find an optimal solution. The

novel ideas are the ”critical path” and the extension to handle intermediate effects.

7.2.1.1 “Critical paths”

The introduction of the “critical paths” into the plangraph is a novel contribution of the

algorithm. While watching the plangraph expanding, it can be noticed that each time the

plangraph is extended to the next timepoint, there is at least one “path” which starts from

the proposition of the initial state and ends at a proposition at the current timepoint. One

or more of these paths must be used in extending the graph to the next timepoint. Fol-

lowing this observation, the idea of a “critical paths” candidate was introduced. Actions
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and propositions of the “critical path” candidate are considered to be a part of the final

plan. Thus, with this information from the expansion stage, actions and propositions of

the selected critical path are added to the final plan before the backtracking search takes

place. This helps to prune redundant search branches early and to reduce the search space

efficiently. In addition to “critical paths”, other improvements, namely timebounds and

conflict directed backjumping, are important contributions to the performance of the sys-

tem. The “critical paths” and these improvements speed up the performance of CPPlanner

even in temporal planning domains, in which actions have no intermediate effects. The

experimental evaluation was illustrated in chapter 6, in which CPPlanner outperforms TGP

and TPSYS in almost all test cases.

7.2.1.2 Extension to the algorithm to handle intermediate effects

In addition to “critical paths”, the algorithm has been extended to deal with intermediate

effects. CPPlanner builds on the representation of time and duration used in TGP and ex-

tends the graph expansion and solution extraction phase to deal with intermediate effects.

The graph expansion phase requires more complex calculations and comparisons to ad-

vance the graph to the next timepoint. Instead of using the current timepoint, the algorithm

needs to to keep tracks of all new coming intermediate effects to find out which action

will be applied next to extend the graph. In addition, the solution extraction phase requires

complicated checkings (i.e. mutex relations need to be checked again) when actions with

intermediate effects appear (see chapter 4 for details).

7.2.2 Extension to PDDL2.1 level 3

Another contribution of this thesis is the extension to the current PDDL2.1 level 3 to allow

actions with intermediate effects. In the original PDDL 2.1, actions are assumed to have

effects only at the beginning and at the end of the execution. This leads to the fact that if

any other action needs to use the effect of the current action, it has to wait until the current
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action finishes. On the other hand, in our daily lives, there are many actions which have

effects at any time during their executions (see chapter 2 for details). Within PDDL2.1

level 3, actions with intermediate effects can also be represented by splitting it into many

primitive actions with constraints to join them together (see paper [36] in which Long and

Fox tweaked the PDDL2.1 level 3 to handle intermediate effects). However, the decompo-

sition makes the planning domain more cumbersome and complicated. It also increases the

run time of planning systems because of scanning redundant search branches. This thesis

enriched the specifications of PDDL 2.1 level 3 to be able to define actions with intermedi-

ate effects directly. Chapter 2 discussed details of this extension in terms of PDDL syntax

and semantics.

7.2.3 CPPlanner - a new optimal planning system for temporal planning domains

At the start of this research, the plangraph framework was considered one of the most

promising approaches by the planning community. After the introduction of Graphplan in

1995, there was a period of intense research activity, leading to different extensions and

developments based on the plangraph framework. TGP, which uses the plangraph frame-

work, was the state-of-the-art planning system for optimal temporal planning at the time.

The plangraph framework therefore appeared to be a promising foundation for improve-

ments to optimal planning. The development of CPPlanner followed this promising line

of research. CPPlanner is a new plangraph-based optimal planning system to deal with

temporal planning domains with intermediate effects. The extension to actions with in-

termediate effects allows CPPlanner to deal with richer planning domains than existing

optimal temporal planners, while the improvements in search, such as the use of “critical

paths”, mean that it outperforms competing systems even in more restricted temporal plan-

ning domains. In the experimental evaluation, it performed better than TGP and TPSYS in

almost all test cases. Although CPPlanner performs well in the experiments, it was not able

to compete with the current best temporal planner, CPT. It is hoped that the performance
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would improve if the further developments in the next section were added.

7.3 Further developments

This section outlines ideas for further developments of CPPlanner.

7.3.1 Memoisation

In classical planning, using memoisation improves the backtracking search efficiency [53]

because it avoids revisiting search branches in the solution extraction phase. However, in

temporal planning, the memoisation is much more complex because of the introduction of

time into each node of the plangraph. Further investigation needs to be carried out to find

a compact structure to store propositions and their timestamps so that later backtracking

search for a solution is still able to tell whether a search branch has already been checked.

The tradeoff of memory consumption and speed needs to be investigated carefully.

7.3.2 Heuristic search

The planning community is trying to move towards solving real-world problems. How-

ever, in AI Planning, even the blocksworld problem is NP-complete. Therefore, in large

problems, it is impossible to find optimal solutions within limited time and resources. One

of the further developments to the current CPPlanner could be the introduction of heuris-

tic search. However, the main framework of optimal backtracking search could be still

kept. Whenever an input problem is over a size limit, defined by CPPlanner, the heuristic

search would be triggered to handle it. In this case, the plangraph expansion phase could

be relaxed to remove detailed information, to speed up the whole process.

There are a few existing planning systems [80, 50, 23, 33] which use the plangraph

framework as the foundation for a heuristic approach. The main idea of this extension is to

build up a relaxed plangraph and use it to provide a measurement for the heuristic function

in the heuristic search.
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In addition, another idea to relax the current backtracking search of CPPlanner to an

heuristic approach is to go backwards beyond the timepoint 0. It is noted that when search-

ing for a solution, if the planner goes back to timepoint 0 but has not found a solution yet,

that search branch has reached a dead-end. However, the reason for the failure may be that

the actions cannot fit into the current length because of the mutex relations. If the plan can

be extended further, beyond the timepoint 0, there is a chance that the whole plan could be

constructed and a solution found. In this case, the plan must be shifted to the right to give

the solution. Of course, the solution found may not be optimal but it saves a lot of time

comparing with expanding the graph to the next timepoint and do the solution extraction

search again. This idea needs further investigation to identify when the planner should do

a further search back beyond timepoint 0, and how far it should go.

These extensions could allow CPPlanner not only to be able to handle small planning

problems to get optimal solutions but also allow it to deal with bigger and more complex

problems to get feasible solutions in a limited time constraint.

7.3.3 Using current Constraint Programming Solvers

It is noted that the success of CPT was the use of constraint propagation within a Constraint

Programming Solver, i.e. Choco [1]. Constraint Programming can be an efficient route to

finding optimal solutions. In order to improve the performance of CPPlanner by using

Constraint Programming, the following idea could be investigated.

Apply constraint programming for the solution extraction: In classical planning, GP-

CSP [22] encoded the solution extraction phase as a CSP and used a CP Solver to deal

with it. This approach can be investigated and extended to handle temporal information

for each node of the graph. This idea can take advantage of current search strategies and

constraint propagation of a CP Solver to speed up the search. The drawback is that it still

relies on finding a solution by doing exhaustive search in each timepoint. However, if there

is a good memoisation approach to avoid revisiting search branches, this approach might
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improve the whole performance dramatically.

Another idea which might be thought of is apply constraint programming for the

whole planner. However, finding a suitable CSP encoding of the graph expansion is very

difficult. There was a proposal on how to encode the whole classical planning problem into

a CSP in [68] and use the CP Solver to handle it, but this has not been taken further. The

idea has potential but it has to be re-considered when introducing the temporal information

into the problem.

7.4 ...and finally

In short, it is hoped that the contributions and experimental results of this thesis are of use

for any further development in the field of Artificial Intelligence Planning. It is also hoped

that CPPlanner can be developed further to handle bigger and more complex planning

domains to move closer to real-world planning problems.
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Appendix A

COMPARISONS A SAME PLANNER ON DIFFERENT

OPERATING SYSTEMS

In this appendix, CPT [2] is tested on two different operating systems, MS Windows

XP and Linux MEMPIS, under the same hardware configuration to show the equivalent

performance. CPT was developed and distributed on different operating systems, including

Linux, MS Windows and Solaris. The test is carried out on two temporal planning domains,

Airport and Satellite, which were extracted from the International Planning Competition

2004.

Problem MS Windows XP time(s) Linux MEMPIS time(s) makespan

Airport1 0.06 0.06 64

Airport2 0.06 0.06 185

Airport3 0.12 0.11 200

Airport4 0.15 0.13 127

Airport5 0.23 0.21 227

Airport6 0.65 0.58 232

Airport7 0.65 0.56 232

Table A.1: Comparison of CPT on Windows XP and Linux MEMPIS on domain Airport

extracted from IPC2004. Time is in seconds to find an optimal solution.
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In the Airport domain, the running times of CPT on the two platforms are nearly the

same. When the problems get bigger, the performance of CPT on MS Windows is slightly

slower than that on Linux. I think the reason for the difference is that CPT was first and

mainly developed on Linux. Then, it was ported to MS Windows. Some optimizations

might not be considered thoroughly enough. When problems are getting bigger, the time

difference shows more clearly.

Problem MS Windows XP time(s) Linux MEMPIS time(s) makespan

Satellite1 0.07 0.11 135.486

Satellite2 1.36 1.26 156.13

Satellite3 0.24 0.26 65.198

Satellite4 3.44 3.36 122.24

Satellite5 1.17 1.14 105.26

Satellite6 3.87 3.59 64.82

Satellite7 2.66 3.02 60.202

Table A.2: Comparison of CPT on Windows XP and Linux MEMPIS on domain Satellite

extracted from IPC2004. Time is in seconds to find an optimal solution.



144

In the Satellite domain, the difference in running time of CPT on the two platforms is

also very small. In general, it runs a bit slower on MS Windows than on Linux (except

Satellite7).

In the two temporal domains extracted from the IPC2004, CPT shows nearly the same

performance on the two different operating systems, MS Windows XP and MEMPIS Linux.

It is arguably inferred that planning systems which are developed on different platforms can

be compared roughly if they are tested on the same hardware settings.



Appendix B

PLANNING DOMAINS AND PROBLEMS USED IN THE

EXPERIMENT

B.1 Logistics domain from the TGP package

B.1.1 Logistics domain

Below is the detailed description of the logistics domain extracted from the TGP package

[92].

(in-package :domains)

(define (domain logistics)

(:requirements :strips :equality)

(:predicates (packet ?x)(vehicle ?x)

(truck ?x)(airplane ?x)

(location ?x)(airport ?x)

(city ?x)(loc-at ?x ?y)

(at ?x ?y)(in ?x ?y))

(:action load

:parameters (?x ?y ?z)

:precondition (and (packet ?x) (vehicle ?y) (location ?z)

(at ?x ?z) (at ?y ?z))

:effect (and (not (at ?x ?z)) (in ?x ?y))

:duration 1

)
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(:action unload

:parameters (?x ?y ?z)

:precondition (and (packet ?x) (vehicle ?y) (location ?z)

(in ?x ?y) (at ?y ?z))

:effect (and (not (in ?x ?y)) (at ?x ?z))

:duration 1

)

(:action drive

:parameters (?x ?y ?z ?c)

:precondition (and (truck ?x) (location ?y) (location ?z)

(city ?c)

(not (= ?y ?z)) (loc-at ?y ?c)

(loc-at ?z ?c)

(at ?x ?y))

:effect (and (not (at ?x ?y)) (at ?x ?z))

:duration 2

)

(:action drive-inter-city

:parameters (?x ?y ?z)

:precondition (and (truck ?x) (location ?y) (location ?z)

(not (= ?y ?z)) (at ?x ?y))

:effect (and (not (at ?x ?y)) (at ?x ?z))

:duration 11

)

(:action fly
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:parameters (?x ?y ?z)

:precondition (and (airplane ?x) (airport ?y) (airport ?z)

(not (= ?y ?z)) (at ?x ?y))

:effect (and (not (at ?x ?y)) (at ?x ?z))

:duration 3

)

)

B.2 Planning domains from IPC2002

Temporal planning domains, including Depot, DriverLog, Satellite, Rovers, ZenoTravel,

are extracted from the 3rd Planning Competition in 2002. The detail of each domain is

described as follow:

B.2.1 Depot

(define (domain Depot)

(:requirements :typing :durative-actions)

(:types place locatable - object

depot distributor - place

truck hoist surface - locatable

pallet crate - surface)

(:predicates (at ?x - locatable ?y - place)

(on ?x - crate ?y - surface)

(in ?x - crate ?y - truck)

(lifting ?x - hoist ?y - crate)

(available ?x - hoist)

(clear ?x - surface))

(:durative-action Drive
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:parameters (?x - truck ?y - place?z-place)

:duration (= ?duration 10)

:condition (and (at start (at ?x ?y)))

:effect (and (at start (not (at ?x ?y)))

(at end (at ?x ?z)))

)

(:durative-action Lift

:parameters (?x - hoist ?y - crate ?z - surface ?p - place)

:duration (= ?duration 1)

:condition (and (over all (at ?x ?p))

(at start (available ?x))

(at start (at ?y ?p)) (at start (on ?y ?z))

(at start (clear ?y)))

:effect (and (at start (not (at ?y ?p)))

(at start (lifting ?x ?y))

(at start (not (clear ?y)))

(at start (not (available ?x)))

(at start (clear ?z))

(at start (not (on ?y ?z))))

)

(:durative-action Drop

:parameters (?x - hoist ?y - crate ?z - surface ?p - place)

:duration (= ?duration 1)

:condition (and (over all (at ?x ?p)) (over all (at ?z ?p))

(over all (clear ?z)) (over all (lifting ?x ?y)))

:effect (and (at end (available ?x))

(at end (not (lifting ?x ?y)))
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(at end (at ?y ?p)) (at end (not (clear ?z)))

(at end (clear ?y)) (at end (on ?y ?z)))

)

(:durative-action Load

:parameters (?x - hoist ?y - crate ?z - truck ?p - place)

:duration (= ?duration 3)

:condition (and (over all (at ?x ?p)) (over all (at ?z ?p))

(over all (lifting ?x ?y)))

:effect (and (at end (not (lifting ?x ?y)))

(at end (in ?y ?z))

(at end (available ?x)))

)

(:durative-action Unload

:parameters (?x - hoist ?y - crate ?z - truck ?p - place)

:duration (= ?duration 4)

:condition (and (over all (at ?x ?p))(over all (at ?z ?p))

(at start (available ?x)) (at start (in ?y ?z)))

:effect (and (at start (not (in ?y ?z)))

(at start (not (available ?x)))

(at start (lifting ?x ?y)))

)

)

B.2.2 DriverLog

This is a logistics domain extracted from the IPC2002 Planning Competition:

(define (domain driverlog)

(:requirements :typing :durative-actions)
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(:types location locatable - object

driver truck obj - locatable)

(:predicates

(at ?obj - locatable ?loc - location)

(in ?obj1 - obj ?obj - truck)

(driving ?d - driver ?v - truck)

(link ?x ?y - location) (path ?x ?y - location)

(empty ?v - truck)

)

(:durative-action LOAD-TRUCK

:parameters

(?obj - obj

?truck - truck

?loc - location)

:duration (= ?duration 2)

:condition

(and

(over all (at ?truck ?loc)) (at start (at ?obj ?loc)))

:effect

(and (at start (not (at ?obj ?loc)))

(at end (in ?obj ?truck))))

(:durative-action UNLOAD-TRUCK

:parameters

(?obj - obj

?truck - truck

?loc - location)
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:duration (= ?duration 2)

:condition

(and (over all (at ?truck ?loc))

(at start (in ?obj ?truck)))

:effect

(and (at start (not (in ?obj ?truck)))

(at end (at ?obj ?loc))))

(:durative-action BOARD-TRUCK

:parameters

(?driver - driver

?truck - truck

?loc - location)

:duration (= ?duration 1)

:condition

(and (over all (at ?truck ?loc))

(at start (at ?driver ?loc))

(at start (empty ?truck)))

:effect

(and (at start (not (at ?driver ?loc)))

(at end (driving ?driver ?truck))

(at start (not (empty ?truck)))))

(:durative-action DISEMBARK-TRUCK

:parameters

(?driver - driver

?truck - truck

?loc - location)
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:duration (= ?duration 1)

:condition

(and (over all (at ?truck ?loc))

(at start (driving ?driver ?truck)))

:effect

(and (at start (not (driving ?driver ?truck)))

(at end (at ?driver ?loc)) (at end (empty ?truck))))

(:durative-action DRIVE-TRUCK

:parameters

(?truck - truck

?loc-from - location

?loc-to - location

?driver - driver)

:duration (= ?duration 10)

:condition

(and (at start (at ?truck ?loc-from))

(over all (driving ?driver ?truck))

(at start (link ?loc-from ?loc-to)))

:effect

(and (at start (not (at ?truck ?loc-from)))

(at end (at ?truck ?loc-to))))

(:durative-action WALK

:parameters

(?driver - driver

?loc-from - location

?loc-to - location)
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:duration (= ?duration 20)

:condition

(and (at start (at ?driver ?loc-from))

(at start (path ?loc-from ?loc-to)))

:effect

(and (at start (not (at ?driver ?loc-from)))

(at end (at ?driver ?loc-to))))

)

B.2.3 Satellite

The satellite domain extracted from the IPC2002:

(define (domain satellite)

(:requirements :strips :equality :typing :durative-actions)

(:types satellite direction instrument mode)

(:predicates

(on_board ?i - instrument ?s - satellite)

(supports ?i - instrument ?m - mode)

(pointing ?s - satellite ?d - direction)

(power_avail ?s - satellite)

(power_on ?i - instrument)

(calibrated ?i - instrument)

(have_image ?d - direction ?m - mode)

(calibration_target ?i - instrument ?d - direction))

(:durative-action turn_to

:parameters (?s - satellite ?d_new - direction

?d_prev - direction)

:duration (= ?duration 5)
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:condition (and (at start (pointing ?s ?d_prev))

(over all (not (= ?d_new ?d_prev))))

:effect (and (at end (pointing ?s ?d_new))

(at start (not (pointing ?s ?d_prev))))

)

(:durative-action switch_on

:parameters (?i - instrument ?s - satellite)

:duration (= ?duration 2)

:condition (and (over all (on_board ?i ?s))

(at start (power_avail ?s)))

:effect (and (at end (power_on ?i))

(at start (not (calibrated ?i)))

(at start (not (power_avail ?s))))

)

(:durative-action switch_off

:parameters (?i - instrument ?s - satellite)

:duration (= ?duration 1)

:condition (and (over all (on_board ?i ?s))

(at start (power_on ?i)))

:effect (and (at start (not (power_on ?i)))

(at end (power_avail ?s)))

)

(:durative-action calibrate

:parameters (?s - satellite ?i - instrument ?d - direction)

:duration (= ?duration 5)

:condition (and (over all (on_board ?i ?s))

(over all (calibration_target ?i ?d))
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(at start (pointing ?s ?d))

(over all (power_on ?i))

(at end (power_on ?i)))

:effect (at end (calibrated ?i))

)

(:durative-action take_image

:parameters (?s - satellite ?d - direction

?i - instrument ?m - mode)

:duration (= ?duration 7)

:condition (and (over all (calibrated ?i))

(over all (on_board ?i ?s))

(over all (supports ?i ?m) )

(over all (power_on ?i))

(over all (pointing ?s ?d))

(at end (power_on ?i)))

:effect (at end (have_image ?d ?m))

)

)

B.2.4 Rovers

Domain Rovers is extracted from IPC2002:

(define (domain Rover)

(:requirements :typing :durative-actions)

(:types rover waypoint store camera mode lander objective)

(:predicates (at ?x - rover ?y - waypoint)

(at_lander ?x - lander ?y - waypoint)
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(can_traverse ?r - rover ?x - waypoint ?y - waypoint)

(equipped_for_soil_analysis ?r - rover)

(equipped_for_rock_analysis ?r - rover)

(equipped_for_imaging ?r - rover)

(empty ?s - store)

(have_rock_analysis ?r - rover ?w - waypoint)

(have_soil_analysis ?r - rover ?w - waypoint)

(full ?s - store)

(calibrated ?c - camera ?r - rover)

(supports ?c - camera ?m - mode)

(available ?r - rover)

(visible ?w - waypoint ?p - waypoint)

(have_image ?r - rover ?o - objective ?m - mode)

(communicated_soil_data ?w - waypoint)

(communicated_rock_data ?w - waypoint)

(communicated_image_data ?o - objective ?m - mode)

(at_soil_sample ?w - waypoint)

(at_rock_sample ?w - waypoint)

(visible_from ?o - objective ?w - waypoint)

(store_of ?s - store ?r - rover)

(calibration_target ?i - camera ?o - objective)

(on_board ?i - camera ?r - rover)

(channel_free ?l - lander))

(:durative-action navigate

:parameters (?x - rover ?y - waypoint ?z - waypoint)

:duration (= ?duration 5)

:condition (and (over all (can_traverse ?x ?y ?z))
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(at start (available ?x))

(at start (at ?x ?y))

(over all (visible ?y ?z)))

:effect (and (at start (not (at ?x ?y)))

(at end (at ?x ?z)))

)

(:durative-action sample_soil

:parameters (?x - rover ?s - store ?p - waypoint)

:duration (= ?duration 10)

:condition (and (over all (at ?x ?p)) (at start (at ?x ?p))

(at start (at_soil_sample ?p))

(at start (equipped_for_soil_analysis ?x))

(at start (store_of ?s ?x))

(at start (empty ?s)))

:effect (and (at start (not (empty ?s)))

(at end (full ?s))

(at end (have_soil_analysis ?x ?p))

(at end (not (at_soil_sample ?p))))

)

(:durative-action sample_rock

:parameters (?x - rover ?s - store ?p - waypoint)

:duration (= ?duration 8)

:condition (and (over all (at ?x ?p))

(at start (at ?x ?p))

(at start (at_rock_sample ?p))

(at start (equipped_for_rock_analysis ?x))

(at start (store_of ?s ?x))

(at start (empty ?s)))
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:effect (and (at start (not (empty ?s)))

(at end (full ?s))

(at end (have_rock_analysis ?x ?p))

(at end (not (at_rock_sample ?p))))

)

(:durative-action drop

:parameters (?x - rover ?y - store)

:duration (= ?duration 1)

:condition (and (at start (store_of ?y ?x))

(at start (full ?y)))

:effect (and (at end (not (full ?y)))

(at end (empty ?y)))

)

(:durative-action calibrate

:parameters (?r - rover ?i - camera

?t - objective ?w - waypoint)

:duration (= ?duration 5)

:condition (and (at start (equipped_for_imaging ?r))

(at start (calibration_target ?i ?t))

(over all (at ?r ?w))

(at start (visible_from ?t ?w))

(at start (on_board ?i ?r)))

:effect (at end (calibrated ?i ?r))

)

(:durative-action take_image

:parameters (?r - rover ?p - waypoint ?o - objective

?i - camera ?m - mode)
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:duration (= ?duration 7)

:condition (and (over all (calibrated ?i ?r))

(at start (on_board ?i ?r))

(over all (equipped_for_imaging ?r))

(over all (supports ?i ?m) )

(over all (visible_from ?o ?p))

(over all (at ?r ?p)))

:effect (and (at end (have_image ?r ?o ?m))

(at end (not (calibrated ?i ?r))))

)

(:durative-action communicate_soil_data

:parameters (?r - rover ?l - lander ?p - waypoint

?x - waypoint ?y - waypoint)

:duration (= ?duration 10)

:condition (and (over all (at ?r ?x))

(over all (at_lander ?l ?y))

(at start (have_soil_analysis ?r ?p))

(at start (visible ?x ?y))

(at start (available ?r))

(at start (channel_free ?l)))

:effect (and (at start (not (available ?r)))

(at start (not (channel_free ?l)))

(at end (channel_free ?l))

(at end (communicated_soil_data ?p))

(at end (available ?r)))

)

(:durative-action communicate_rock_data
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:parameters (?r - rover ?l - lander ?p - waypoint

?x - waypoint ?y - waypoint)

:duration (= ?duration 10)

:condition (and (over all (at ?r ?x))

(over all (at_lander ?l ?y))

(at start (have_rock_analysis ?r ?p))

(at start (visible ?x ?y))

(at start (available ?r))

(at start (channel_free ?l)))

:effect (and (at start (not (available ?r)))

(at start (not (channel_free ?l)))

(at end (channel_free ?l))

(at end (communicated_rock_data ?p))

(at end (available ?r)))

)

(:durative-action communicate_image_data

:parameters (?r - rover ?l - lander ?o - objective ?m - mode

?x - waypoint ?y - waypoint)

:duration (= ?duration 15)

:condition (and (over all (at ?r ?x))

(over all (at_lander ?l ?y))

(at start (have_image ?r ?o ?m))

(at start (visible ?x ?y))

(at start (available ?r))

(at start (channel_free ?l)))

:effect (and (at start (not (available ?r)))

(at start (not (channel_free ?l)))

(at end (channel_free ?l))
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(at end (communicated_image_data ?o ?m))

(at end (available ?r)))

)

)

B.2.5 ZenoTravel

Domain ZenoTravel is extracted from the IPC2002:

(define (domain zeno-travel)

(:requirements :durative-actions :typing)

(:types aircraft person city flevel - object)

(:predicates (at ?x - person ?c - city)

(at ?a - aircraft ?c - city)

(in ?p - person ?a - aircraft)

(fuel-level ?a - aircraft ?l - flevel)

(next ?l1 ?l2 - flevel))

(:durative-action board

:parameters (?p - person ?a - aircraft ?c - city)

:duration (= ?duration 20)

:condition (and (at start (at ?p ?c))

(over all (at ?a ?c)))

:effect (and (at start (not (at ?p ?c)))

(at end (in ?p ?a))))

(:durative-action debark

:parameters (?p - person ?a - aircraft ?c - city)

:duration (= ?duration 30)
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:condition (and (at start (in ?p ?a))

(over all (at ?a ?c)))

:effect (and (at start (not (in ?p ?a)))

(at end (at ?p ?c))))

(:durative-action fly

:parameters (?a - aircraft ?c1 ?c2 - city

?l1 ?l2 - flevel)

:duration (= ?duration 180)

:condition (and (at start (at ?a ?c1))

(at start (fuel-level ?a ?l1))

(at start (next ?l2 ?l1)))

:effect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?c2))

(at end (not (fuel-level ?a ?l1)))

(at end (fuel-level ?a ?l2))))

(:durative-action zoom

:parameters (?a - aircraft ?c1 ?c2 - city

?l1 ?l2 ?l3 - flevel)

:duration (= ?duration 100)

:condition (and (at start (at ?a ?c1))

(at start (fuel-level ?a ?l1))

(at start (next ?l2 ?l1))

(at start (next ?l3 ?l2)))

:effect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?c2))

(at end (not (fuel-level ?a ?l1)))
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(at end (fuel-level ?a ?l3))))

(:durative-action refuel

:parameters (?a - aircraft ?c - city

?l - flevel ?l1 - flevel)

:duration (= ?duration 73)

:condition (and (at start (fuel-level ?a ?l))

(at start (next ?l ?l1))

(over all (at ?a ?c)))

:effect (and (at end (fuel-level ?a ?l1))

(at end (not (fuel-level ?a ?l)))))

)

B.3 Airport domain extracted from IPC2004

Domain airport is extracted from the International Planning Competition in 2004. Since

the detail of the domain description is too big to fit into this appendix, only important parts

are extracted and illustrated here:

(define (domain airport_fixed_structure)

(:requirements :durative-actions :typing)

(:types airplane segment direction airplanetype)

(:constants

north south - direction

light medium heavy - airplanetype

seg_pp_0_60 seg_ppdoor_0_40

seg_tww1_0_200 seg_twe1_0_200

seg_tww2_0_50 seg_tww3_0_50

seg_tww4_0_50 seg_rww_0_50
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seg_rwtw1_0_10 seg_rw_0_400

seg_rwe_0_50 seg_twe4_0_50

seg_rwte1_0_10 seg_twe3_0_50

seg_twe2_0_50 seg_rwte2_0_10

seg_rwtw2_0_10 - segment

airplane_CFBEG - airplane)

(:predicates

;; airport information

(has-type ?a - airplane ?t - airplanetype)

;; plane a has type t

(at-segment ?a - airplane ?s - segment)

;; planes are at segments,

;; ie at their end in driving direction

(facing ?a - airplane ?d - direction)

;; planes face into their driving direction

;; how the planes affect the airport

(occupied ?s - segment)

;; a plane is in here

(not_occupied ?s - segment)

(blocked ?s - segment ?a - airplane)

;; segment s is blocked if it is endangered by plane p

(not_blocked ?s - segment ?a - airplane)

;; an airplane may lineup on segment s when facing d

(is-start-runway ?s - segment ?d - direction)

;; airplane a is starting from runway s

(airborne ?a - airplane ?s - segment)

(is-moving ?a - airplane)

(is-pushing ?a - airplane)
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(is-parked ?a - airplane ?s - segment))

(:functions

;; the length of a segment

(length ?s - segment)

;; the number of engines of an airplane

(engines ?a - airplane))

(:durative-action move_seg_pp_0_60_

seg_ppdoor_0_40_north_north_medium

:parameters (?a - airplane)

:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 2)

...

)

(:durative-action move_seg_ppdoor_0_40_

seg_tww1_0_200_north_south_medium

:parameters (?a - airplane)

:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 1)

...

)

(:durative-action move_seg_tww1_0_200_

seg_twe1_0_200_north_south_medium

:parameters (?a - airplane)



166

:duration

;; length of the segment divided through

the speed of an airplane (fixed 30 m/s)

(= ?duration 6)

...

)

(:durative-action move_seg_twe1_0_200_

seg_twe2_0_50_south_south_medium

:parameters (?a - airplane)

:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 6)

...

)

(:durative-action move_seg_twe2_0_50_

seg_twe3_0_50_south_south_medium

:parameters (?a - airplane)

:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 1)

...

)

(:durative-action move_seg_twe3_0_50_

seg_twe4_0_50_south_south_medium

:parameters (?a - airplane)
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:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 1)

...

)

(:durative-action move_seg_twe4_0_50_

seg_rwe_0_50_south_south_medium

:parameters (?a - airplane)

:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 1)

...

)

(:durative-action move_seg_rwe_0_50_

seg_rw_0_400_south_south_medium

:parameters (?a - airplane)

:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 1)

...

)

(:durative-action move_seg_rw_0_400_

seg_rww_0_50_south_south_medium

:parameters (?a - airplane)
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:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 13)

...

)

(:durative-action move_seg_rww_0_50_

seg_tww4_0_50_south_north_medium

:parameters (?a - airplane)

:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 1)

...

)

(:durative-action move_seg_tww4_0_50_

seg_tww3_0_50_north_north_medium

:parameters (?a - airplane)

:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 1)

...

)

(:durative-action move_seg_tww3_0_50_

seg_tww2_0_50_north_north_medium

:parameters (?a - airplane)

:duration
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;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 1)

...

)

(:durative-action move_seg_tww2_0_50_

seg_tww1_0_200_north_north_medium

:parameters (?a - airplane)

:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 1)

...

)

(:durative-action move_seg_tww1_0_200_

seg_ppdoor_0_40_north_south_medium

:parameters (?a - airplane)

:duration

;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 6)

...

)

(:durative-action move_seg_ppdoor_0_40_

seg_pp_0_60_south_south_medium

:parameters (?a - airplane)

:duration
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;; length of the segment divided through

;; the speed of an airplane (fixed 30 m/s)

(= ?duration 1)

...

)

(:durative-action takeoff_seg_rww_0_50_north

:parameters (?a - airplane)

:duration (= ?duration 30 )

...

)

(:durative-action takeoff_seg_rwe_0_50_south

:parameters (?a - airplane)

:duration (= ?duration 30 )

...

)

(:durative-action park_seg_pp_0_60_north

:parameters (?a - airplane)

:duration (= ?duration 40)

...

)

(:durative-action park_seg_pp_0_60_south

:parameters (?a - airplane)

:duration (= ?duration 40)

...

)

(:durative-action startup_seg_pp_0_60_north_medium

:parameters (?a - airplane)
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:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_pp_0_60_south_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_ppdoor_0_40_north_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_ppdoor_0_40_south_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_tww1_0_200_north_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_tww1_0_200_south_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...
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)

(:durative-action startup_seg_twe1_0_200_north_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_twe1_0_200_south_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_tww2_0_50_north_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_tww2_0_50_south_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_tww3_0_50_north_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_tww3_0_50_south_medium

:parameters (?a - airplane)
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:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_tww4_0_50_north_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_tww4_0_50_south_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_twe4_0_50_north_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_twe4_0_50_south_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_twe3_0_50_north_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...
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)

(:durative-action startup_seg_twe3_0_50_south_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_twe2_0_50_north_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

(:durative-action startup_seg_twe2_0_50_south_medium

:parameters (?a - airplane)

:duration (= ?duration (* 60 (engines ?a) ) )

...

)

)

B.4 Domain storage extracted from IPC2006

The temporal part of domain storage is extracted from the International Planning Compe-

tition 2006:

(define (domain Storage-Time)

(:requirements :typing :durative-actions)

(:types hoist surface place area - object

container depot - place

storearea transitarea - area

area crate - surface)
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(:predicates (clear ?s - storearea)

(in ?x - (either storearea crate) ?p - place)

(available ?h - hoist)

(lifting ?h - hoist ?c - crate)

(at ?h - hoist ?a - area)

(on ?c - crate ?s - storearea)

(connected ?a1 ?a2 - area))

(:durative-action lift

:parameters (?h - hoist ?c - crate

?a1 - storearea ?a2 - area ?p - place)

:duration (= ?duration 2)

:condition (and (at start (available ?h))

(at start (on ?c ?a1))

(over all (connected ?a1 ?a2))

(over all (at ?h ?a2))

(over all (in ?a1 ?p)))

:effect (and (at start (not (in ?c ?p)))

(at start (not (available ?h)))

(at start (lifting ?h ?c))

(at start (not (on ?c ?a1)))

(at end (clear ?a1)))

)

(:durative-action drop

:parameters (?h - hoist ?c - crate ?a1 - storearea

?a2 - area ?p - place)

:duration (= ?duration 2)

:condition (and (at start (clear ?a1))



176

(over all (lifting ?h ?c))

(over all (connected ?a1 ?a2))

(over all (at ?h ?a2))

(over all (in ?a1 ?p)))

:effect (and (at start (not (clear ?a1)))

(at end (not (lifting ?h ?c)))

(at end (available ?h))

(at end (on ?c ?a1)) (at end (in ?c ?p)))

)

(:durative-action move

:parameters (?h - hoist ?from ?to - storearea)

:duration (= ?duration 1)

:condition (and (at start (at ?h ?from))

(at start (clear ?to))

(over all (connected ?from ?to)))

:effect (and (at start (not (at ?h ?from)))

(at start (not (clear ?to)))

(at start (clear ?from))

(at end (at ?h ?to)))

)

(:durative-action go-out

:parameters (?h - hoist ?from - storearea ?to - transitarea)

:duration (= ?duration 1)

:condition (and (at start (at ?h ?from))

(over all (connected ?from ?to)))

:effect (and (at start (not (at ?h ?from)))

(at start (clear ?from)) (at end (at ?h ?to)))
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)

(:durative-action go-in

:parameters (?h - hoist ?from - transitarea ?to - storearea)

:duration (= ?duration 1)

:condition (and (at start (at ?h ?from)) (at start (clear ?to))

(over all (connected ?from ?to)))

:effect (and (at start (not (at ?h ?from)))

(at start (not (clear ?to)))

(at end (at ?h ?to))))

)

B.5 Domain spacecraft with intermediate effects

The spacecraft domain contains an action turn which has intermediate effects. The details

of this domain are as follows:

(:durative-action turn

:parameters (?cur ?dest - object ?h - heading)

:duration (= ?duration (+ (/ (angle ?cur ?dest) (turning-rate))) (heading_time ?h))

:condition (and (at start (pointing ?cur))

(at start (>= propellant

(/ propellant-require 2)))

(at start (not (controller-in-use)))

(at (- endtime RCS-duration)

(>= propellant (/ propellant$-$require 2)))

(at (- endtime RCS-duration)

(not controller-in-use)))

:effect (and (at start (not (pointing ?cur)))

(at start (decrease propellant
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(/ propellant-require 2)))

(at (starttime) (controller-in-use))

(at (+ starttime RCS-duration) (not (controller-in-use)))

(at (starttime) (vibration))

(at (+ starttime RCS-duration) (not (vibration)))

(at (- endtime RCS-duration)

(decrease propellant (/ propellant-require 2)))

(at (- endtime RCS-duration) (controller-in-use))

(at (endtime) (not (controller-in-use)))

(at (- endtime RCS-duration) (vibration))

(at (endtime) (not (vibration)))

(at end (pointing ?dest ?h)))

)


