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ABSTRACT 
Bernoulli's transformation and the related separation of variables method or modal analysis as 
classically applied to the partial differential equation of motion of an elastic continuum will 
always conclude an undamped response.  However, this conclusion lacks reliability, since the 
underlying analysis assumes either integralwise differentiability (i.e. differentiation and 
integration signs are interchangeable) or termwise differentiability (i.e. the derivative of an 
infinite series of terms equals the sum of the derivatives of the terms) for Bernoulli's 
transformation, which not only is arbitrary but also is responsible for the undamped response. 

This paper using Bernoulli's transformation examines an elastic uniform column ruled by 
the generalized Hooke’s law and subjected to axial surface tractions at its free end or a free 
axial vibration, and shows that the above differentiability assumptions underlying classical 
analysis are equivalent and actually constitute a limitation to the class of the response 
functions.  Only on this limitation, damping appears to be inconsistent with the elastic column 
response.  Removing the limitation through nontermwise differentiability of Bernoulli’s 
transformation results in a damped response of the elastic column, which indicates that 
damping actually complies with the generalized Hooke’s law as applied to elastic continua. 
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1. INTRODUCTION 
The paper is an advance on a publication of 1996 criticizing classical continuum dynamics as 
applied to a uniform elastic column subjected to an axial surface traction at its free end [1].  To 
specify, in the classical view, the elastic stresses do not include damping components, which 
by virtue of the boundary stress conditions deprives the surface traction of any damping 
components, thereby leading to an undamped response of the elastic column.  In contrast, by 
means of Bernoulli’s transformation [2 p.502-522], that is, using separation of variables 
method or modal analysis, this paper offers a mathematical proof that the elastic column 
response is damped, thereby verifying that the elastic stresses include damping components. 

2. PARTIAL DIFFERENTIAL EQUATION OF MOTION OF A UNIFORM 
ELASTIC COLUMN 

The continuum model of a uniform elastic column used in the above publication of 1996 [1] 
has been sketched in the following Fig. 1  

 

 

 

   

 

Figure 1. Uniform continuum model of an elastic column 

The symbols used in Fig. 1 and also in the ensuing analysis are specified as below: 
z  stands for the level variable that refers to the initial state of static equilibrium of the elastic 
column.  By definition, z 0=  corresponds to the fixed end and z L=  corresponds to the free 
end of the column, with L  standing for the initial (at-rest) length of the column. 
t  stands for the time variable. 
( )p t  stands for an axial surface traction externally imposed on the column at its free end. 
( )z,tσ  stands for the axial internal stress developed at the level z of the column. 
The partial differential equation of motion of the uniform elastic column subjected to the 

surface traction ( )p t  at its free end z L=  has the form 
 

 ( ) ( )2c u z,t u z,t 0′′⋅ − = , (2.1) 
 

where ( )u z,t  and c  stand for the displacement response of the cross-section level z  of the 
elastic column at time t , and a constant, respectively.  The constant c  represents the velocity 
of propagation of longitudinal waves along the column and is equal to [3 p.408] 

 
 c E ρ= , (2.2) 

 
with E  and ρ  standing for the modulus of elasticity (Young’s modulus) and the mass density 
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of the uniform elastic column, respectively.  Dots and primes over functions, e.g. ( )u z,t  and 
( )u z,t′′ , stand for differentiation with reference to the time t  and to the level z , respectively. 
The partial differential equation (2.1) has been derived from Newton's second axiom as 

applied to the dynamics of an infinitesimal length of the elastic column at level z , viz. 
 

 ( ) ( )z,t z u z,tσ ρ∂ ∂ = ⋅ , (2.3) 
 

and the generalized Hooke's law as a linear relation between stresses ( )z,tσ  and strains 
( )u z,t′  at the same level [4 p.8], [5 p.58], that is, 

 
 ( ) ( )z,t E u z,tσ ′= ⋅ . (2.4) 

 
It is assumed that the elastic column continuum was at rest before subjected to the axial 

surface traction ( )p t , and hence, its initial conditions ( )u z,0  and ( )u z,0  must be zero, 
 

 ( ) ( )u z,0 u z,0 0= = . (2.5) 
 

The influence of the axial surface traction ( )p t  on the dynamics of the elastic column is 
accounted for through the inhomogeneous boundary stress condition 

 
 ( ) ( ) ( )p t L,t E u L,tσ ′= = ⋅ , (2.6a) 

 
while the fixed end at z 0=  is represented by the homogeneous boundary condition 

 
 ( )u 0,t 0= . (2.6b) 

 

3. TRANSFORMATION OF AN INHOMOGENEOUS BOUNDARY VALUE 
INTO A HOMOGENEOUS ONE 

The classical approach to the partial differential equation of motion of the elastic column of 
Fig. 1 requires homogeneous (i.e. zero) boundary conditions.  Thus, a transformation of the 
response function in the partial differential equation (2.1) is sought so that the inhomogeneous 
boundary condition (2.6a) will be transformed into a homogeneous one [6 p.435-436].  Such a 
transformation of the response function ( )u z,t  into a new one, say ( )û z,t , is given as below 

 

 ( ) ( ) ( )p t
û z,t u z,t z

E
= − ⋅ . (3.1) 

 
On account of the above transformation, the partial differential equation (2.1), the initial 

conditions (2.5) and the boundary conditions (2.6), we conclude that the following partial 
differential equation in ( )û z,t  must hold true 

 

 ( ) ( ) ( )2 2
2

2 2

ˆ ˆu z,t u z,t p t
c z

Ez t

∂ ∂
⋅ − = ⋅

∂ ∂
, (3.2) 
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with the homogeneous boundary conditions 
 
 ( ) ( )ˆ ˆu 0,t u L,t z 0= ∂ ∂ = , (3.3) 

 
and the initial conditions 

 

 ( ) ( ) ( ) ( )
and

ˆp 0 u z,0 p 0
û z,0 z z

E t E
∂

= − ⋅ = − ⋅
∂

. (3.4) 

 

4. UNCOUPLING THE PARTIAL DIFFERENTIAL EQUATION OF MOTION 
INTO UNDAMPED VIBRATIONS 

The response ( )û z,t  of the column can be expressed as a Fourier series with respect to the 
system of orthogonal functions of modes ( ) ( )n z sin n 1 2 z Lϕ π= ⎡ + ⎤⎣ ⎦  as follows [7 p.489] 
 

 ( ) ( ) ( ) ( ) ( )n n n
n 0 n 0

û z,t q t z q t sin n 1 2 z Lϕ π
∞ ∞

= =

= ⋅ = ⋅ ⎡ + ⎤⎣ ⎦∑ ∑ , (4.1a) 

( ) ( ) ( ) ( ) ( ) ( )
1L L L

2
n n n

0 0 0

2 ˆq t z dz u z,t z dz u z,t sin n 1 2 z L dz
L

ϕ ϕ π
−

⎛ ⎞
⎜ ⎟= ⎡ ⎤ ⋅ ⋅ ⋅ = ⋅ ⎡ + ⎤ ⋅⎣ ⎦ ⎣ ⎦⎜ ⎟
⎝ ⎠
∫ ∫ ∫ , (4.1b) 

 
with ( )nq t  standing for a Fourier coefficient.  The modes ( ) ( )n z sin n 1 2 z Lϕ π= ⎡ + ⎤⎣ ⎦  are 

derived from the eigenvalue equation ( ) ( ) ( )2
n n nz c z 0ϕ ω ϕ′′ + ⋅ = , with n c cons tan tω = , and 

the homogeneous boundary conditions ( ) ( )n n0 L 0ϕ ϕ′= =  corresponding to the homogeneous 
boundary conditions (3.3).  The Fourier series (4.1) is but Bernoulli’s transformation of the 
response function ( )û z,t  [2 p.502-522], and by this latter name will be called in this paper. 

By means of Bernoulli’s transformation (4.1), classical analysis uncouples the partial 
differential equation of motion (3.2) into ordinary differential equations each one of which 
represents an undamped vibration in terms of a generalized displacement ( )nq t . 

Indeed, multiplying the partial differential equation (3.2) by ( )sin n 1 2 z Lπ⎡ + ⎤⎣ ⎦  and 
integrating from z 0=  to z L=  gives 

 

 ( ) ( ) ( ) ( )
L L2 2

2
2 2

0 0

ˆ ˆu z,t u z,t
c sin n 1 2 πz L dz sin n 1 2 πz L dz

z t

∂ ∂
⋅ ⋅ ⎡ + ⎤ ⋅ − ⋅ ⎡ + ⎤ ⋅ =⎣ ⎦ ⎣ ⎦∂ ∂∫ ∫    

 ( ) ( )
L

0

p t
z sin n 1 2 z L dz

E
π= ⋅ ⋅ ⎡ + ⎤ ⋅⎣ ⎦∫ . (4.2) 

 
The first integral of the left-hand member after performing an integration by parts, and taking 
into account the homogeneous boundary conditions (3.3), becomes 
 

 ( ) ( ) ( ) ( ) ( )
2L L2 2

2 2
0 0

û z,t n 1 2 π
ˆsin n 1 2 πz L dz u z,t sin n 1 2 πz L dz

z L

∂ +
⋅ ⎡ + ⎤ ⋅ = − ⋅ ⋅ ⎡ + ⎤ ⋅⎣ ⎦ ⎣ ⎦∂∫ ∫ , (4.3) 
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which, after substituting ( )nq t L 2⋅  for its right-hand member integral, in accordance with 
Bernoulli’s transform (4.1b), may be rewritten as 
 

 ( ) ( ) ( ) ( )
L 2

2
n2

0

û z,t Lsin n 1 2 πz L dz n 1 2 π L q t
2z

∂
⋅ ⎡ + ⎤ ⋅ = − ⎡ + ⎤ ⋅ ⋅⎣ ⎦ ⎣ ⎦∂∫ . (4.4) 

 
The integral in the right-hand member of equation (4.2), in view of the following equality [8 
p.164 eq. 216] 

 

 ( ) ( )
( )

nL

2
0

1
z sin n 1 2 z L dz

n 1 2 L
π

π

−
⋅ ⎡ + ⎤ ⋅ =⎣ ⎦

⎡ + ⎤⎣ ⎦
∫ , (4.5) 

 
becomes equal to 

 

 ( ) ( ) ( ) ( )
( )

nL

2
0

p t p t 1
z sin n 1 2 z L dz

E E n 1 2 L
π

π

−
⋅ ⋅ ⎡ + ⎤ ⋅ = ⋅⎣ ⎦

⎡ + ⎤⎣ ⎦
∫ . (4.6) 

 
Now, it is classically assumed that differentiating the integral in Bernoulli’s transform (4.1b) 
to the second order with respect to time t  equals differentiating its integrand to the second 
order with respect to time t  (namely, assumption of integralwise differentiability), viz. 

 

 ( ) ( ) ( )
L 2

n 2
0

û z,t2q t sin n 1 2 z L dx
L t

π
∂

= ⋅ ⎡ + ⎤ ⋅⎣ ⎦∂∫ , (4.7) 

 
for which, however, a sufficient condition is the continuity of the derivative ( )2 2û z,t t∂ ∂  for 
all values of z  and t  [7 p.286, Leibnitz’s rule], [9 p.348].  And then, combining with 
equations (4.2), (4.4) and (4.6), the classical analysis can obtain the ordinary differential 
equations [10 p.212] 
 

 ( ) ( ) ( ) ( )
( )

for
n

2
n n n 2 2

p t 2L 1
q t q t n = 0,1,2,3,

E n 1 2
ω

π

−
+ ⋅ = −

+
… , (4.8) 

 
where nω  represents a natural angular frequency of the elastic column equal to 
 
 ( )n n 1 2 c Lω π= + . (4.9) 

 
Operating similarly, but without using any assumption, on the initial conditions (3.4) yields 

 

 ( ) ( ) ( )
( )

( ) ( ) ( )
( )

and
n n

n n2 22 2

p 0 2L 1 p 0 2L 1
q 0 q 0

E En 1 2 n 1 2π π

− −
= − = −

+ +
. (4.10) 

 
It is emphasized that each one of the ordinary differential equations (4.8) describes a 
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forced vibration of a single-degree-of-freedom system in a generalized displacement ( )nq t , 
and by virtue of the initial conditions (4.10), is easy to be solved for a known surface traction 
( )p t .  Moreover, the lack of a damping term in the left-hand member of each ordinary 

differential equation (4.8) suffices for the undamped nature of the forced vibration in ( )nq t . 
Since the ordinary differential equations (4.8) are equivalent to the partial differential 

equation of motion (3.2) on the assumption of integralwise differentiability (4.7), their 
undamped character indicates the undamped character of the partial differential equation (3.2) 
on the assumption of integralwise differentiability (4.7).  Only on this assumption, the 
classical view that the response of an elastic continuum is undamped seems to be reasonable. 

5. A CRITIQUE OF THE UNCOUPLING INTO UNDAMPED VIBRATIONS 
There are three major points of dispute over the uncoupling into the undamped vibrations 
(4.8) underlying the classical view that the elastic column response is undamped: 

1. The undamped vibrations (4.8), and hence, the undamped character of the responses 
( )û z,t  and ( )u z,t , have been derived from uncoupling the partial differential equation of 

motion (3.2) exclusively on the assumption of integralwise differentiability (4.7). 
2. The integralwise differentiability (4.7) can only be assured if the second-order 

derivative ( )2 2û z,t t∂ ∂  is continuous for all values of z  and t , which, however, constitutes 
an arbitrary limitation to the response functions ( )û z,t  and ( )u z,t , beyond the requirement of 

existence of the second-order derivative ( )2 2û z,t t∂ ∂  dictated by the partial differential 
equation (3.2).  Thus, the assumption of integralwise differentiability (4.7) is but an arbitrary 
limitation to the elastic column continuum dynamics, which deprives the undamped vibrations 
(4.8) of any reliability as equivalent to the partial differential equation (3.2). 

3. The assumption of integralwise differentiability (4.7) proves to be equivalent to the 
assumption of termwise differentiability of the infinite series (i.e. the derivative of the infinite 
series equals the sum of the derivatives of the series’ terms) in Bernoulli’s transform (4.1a).  
And hence, the really general solution to the elastic column continuum dynamics requires that 
the termwise differentiation rules be replaced by nontermwise differentiation rules. 

The ensuing analysis elucidates these points and finally concludes that the really general 
solution to the elastic column continuum dynamics must represent a damped vibration. 

6. EQUIVALENCE OF THE ASSUMPTIONS ABOUT INTEGRALWISE AND 
TERMWISE DIFFERENTIABILITY 

As shown in par. 4, the ordinary differential equations (4.8) are equivalent to the partial 
differential equation (3.2) on the assumption of integralwise differentiability (4.7).  With the 
aim to use this postulate, we can multiply equation (4.8) by ( )sin n 1 2 z Lπ⎡ + ⎤⎣ ⎦  and get 
 

 ( ) ( ) ( ) ( )2
n n nq t sin n 1 2 z L q t sin n 1 2 z Lπ ω π⋅ ⎡ + ⎤ + ⋅ ⋅ ⎡ + ⎤ =⎣ ⎦ ⎣ ⎦    

 ( ) ( )
( )

( )
n

2 2

p t 2L 1
sin n 1 2 z L

E n 1 2
π

π

−
= − ⋅ ⎡ + ⎤⎣ ⎦

+
, (6.1) 

 
which, taking into account that the second-order derivative of ( )sin n 1 2 z Lπ⎡ + ⎤⎣ ⎦  and 
equation (4.9) allow the substitution 
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 ( ) ( ) ( )
2

2
n2

d sin n 1 2 z L c sin n 1 2 z L
dz

π ω π⎡ + ⎤ = − ⋅ ⎡ + ⎤⎣ ⎦ ⎣ ⎦ , (6.2) 

becomes 
 

( ) ( ) ( ) ( )
2

2
n n2

dc q t sin n 1 2 z L q t sin n 1 2 z L
dz

π π⋅ ⋅ ⎡ + ⎤ − ⋅ ⎡ + ⎤ =⎣ ⎦ ⎣ ⎦  

 ( ) ( )
( )

( )
n

2 2

p t 2L 1
sin n 1 2 z L

E n 1 2
π

π

−
= ⋅ ⎡ + ⎤⎣ ⎦

+
. (6.3) 

 
Summing up all equations (6.3) for n 0, 1,2,3,= …  entails 

 

( ) ( ) ( ) ( )
2

2
n n2

n 0 n 0

dc q t sin n 1 2 z L q t sin n 1 2 z L
dz

π π
∞ ∞

= =

⋅ ⋅ ⎡ + ⎤ − ⋅ ⎡ + ⎤ =⎣ ⎦ ⎣ ⎦∑ ∑  

 ( ) ( )
( )

( )
n

2 2
n 0

p t 12L sin n 1 2 z L
E n 1 2

π
π

∞

=

−
= ⋅ ⋅ ⋅ ⎡ + ⎤⎣ ⎦

+
∑ . (6.4) 

 
On account of Bernoulli’s transformation (4.1) and equation (4.5) it follows 

 

 ( )
( )

( )
n

2 2
n 0

12Lz sin n 1 2 z L
n 1 2

π
π

∞

=

−
= ⋅ ⎡ + ⎤⎣ ⎦

+
∑ , (6.5) 

 
which inserting in equation (6.4) results in 
 

( ) ( ) ( ) ( ) ( )2
2

n n2
n 0 n 0

p tdc q t sin n 1 2 z L q t sin n 1 2 z L z
Edz

π π
∞ ∞

= =

⋅ ⋅ ⎡ + ⎤ − ⋅ ⎡ + ⎤ = ⋅⎣ ⎦ ⎣ ⎦∑ ∑ . (6.6) 

 
Equation (6.6) as a superposition of the ordinary differential equations (4.8) must be 

equivalent to the partial differential equation of motion (3.2), on the assumption of 
integralwise differentiability (4.7).  This equivalence entails the termwise differentiability of 
Bernoulli’s transform (4.1a), viz. 

 

 ( ) ( ) ( )
2

n2
n 0

û z,t
q t sin n 1 2 πz L

t

∞

=

∂
= ⋅ ⎡ + ⎤⎣ ⎦∂
∑ . (6.7a) 

 ( ) ( ) ( )
2 2

n2 2
n 0

û z,t dq t sin n 1 2 πz L
z dz

∞

=

∂
= ⋅ ⎡ + ⎤⎣ ⎦∂
∑ . (6.7b) 

 
Indeed, applying Bernoulli’s transformation (4.1) to the function ( )2 2û z,t t∂ ∂ , with this 

function replacing the function ( )û z,t  in the transformation, gives 
 

 ( ) ( ) ( )
2

n2
n 0

û z,t
g t sin n 1 2 z L

t
π

∞

=

∂
= ⋅ ⎡ + ⎤⎣ ⎦∂
∑ , (6.8a) 
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 ( ) ( ) ( )
L 2

n 2
0

û z,t2g t sin n 1 2 z L dz
L t

π
∂

= ⋅ ⎡ + ⎤ ⋅⎣ ⎦∂∫ , (6.8b) 

 
with ( )ng t  standing for a new Bernoulli’s coefficient replacing ( )nq t .  Further, on account of 
the assumption of integralwise differentiability (4.7), Bernoulli’s transform (6.8b) yields 

 
 ( ) ( )n ng t q t= , (6.9) 

 
and substituting in Bernoulli’s transform (6.8a) gives the termwise differentiation rule (6.7a), 
which combined with equation (6.6) and the partial differential equation of motion (3.2) 
results in the termwise differentiation rule (6.7b).  And inversely, the assumption of termwise 
differentiability (6.7a) via Bernoulli’s transformation (6.8) assures equality (6.9), and proves 
to be equal to the assumption of integralwise differentiability (4.7). 

On this base therefore, Bernoulli’s transformation (4.1) and the assumption of integralwise 
differentiability (4.7) entail the termwise differentiability (6.7).  And inversely, Bernoulli’s 
transformation (4.1) and the assumption of termwise differentiability (6.7) entail the 
integralwise differentiability (4.7), which implies that the assumptions of integralwise 
differentiability (4.7) and termwise differentiability (6.7) are equivalent.  Thus, recalling that 
the assumption of integralwise differentiability (4.7) is the prerequisite for the undamped 
character of the partial differential equation (3.2), it follows that the undamped character of 
the partial differential equation (3.2) requires the termwise differentiability (6.7).  That is, 
without the assumption of termwise differentiability (6.7), the partial differential equation 
(3.2) cannot describe any undamped motion, notwithstanding conventional wisdom. 

7. UNCOUPLING THE PARTIAL DIFFERENTIAL EQUATION OF MOTION 
BY TERMWISE DIFFERENTIABILITY 

The equivalence of the assumptions of integralwise differentiability (4.7) and termwise 
differentiability (6.7) can be verified by showing that the latter assumption in combination 
with the partial differential equation of motion (3.2) and Bernoulli’s transformation (4.1) can 
result in the classical ordinary differential equations (4.8) like the former assumption. 

Indeed, inserting the termwise differentiation rules (6.7) in the partial differential equation 
of motion (3.2), multiplying the resulting equation by ( )sin ν 1 2 z Lπ⎡ + ⎤⎣ ⎦  for ν 1,2,3,= … , 
integrating all over the column length L , and after having made use of the differentiation 
property (6.2) of the trigonometric function ( )sin n 1 2 z Lπ⎡ + ⎤⎣ ⎦  and its orthogonality property 

 

 ( ) ( )
for

for

L

0

0 n ν
sin n 1 2 πz L sin ν 1 2 πz L dz L n ν

2

≠⎧
⎪⎡ + ⎤ ⋅ ⎡ + ⎤ ⋅ = ⎨⎣ ⎦ ⎣ ⎦ =⎪⎩

∫  (7.1) 

 
we can derive the classical ordinary differential equations (4.8) directly from the partial 
differential equation of motion (3.2) on the assumption of termwise differentiability (6.7). 

8. INTEGRALWISE AND TERMWISE DIFFERENTIABILITY ASSUMPTIONS 
AS LIMITATIONS TO THE RESPONSE 

The analysis in par. 4 made quite clear that the undamped ordinary differential equations (4.8) 
and their equivalence with the partial differential equation of motion (3.2), which suffices for 



 

  E12 

the undamped character of the motion, is due to the arbitrary assumption of integralwise 
differentiability (4.7).  Actually, Bernoulli’s transform (4.1b) ensures this assumption only on 
the condition of a continuous derivative ( )2 2û z,t t∂ ∂  for all values of z  and t  [7 p.286, 
Leibnitz’s rule], [9 p.348], which, however, is beyond the requirement of the existence of the 
derivative ( )2 2û z,t t∂ ∂  for the formation of the partial differential equation of motion (3.2).  

On the other hand, the derivative ( )2 2û z,t t∂ ∂ , as the acceleration of the column, is always 
discontinuous at the initial time 0t = , where its at-rest zero value coexists with its nonzero 
value for leaving the state of rest.  Besides, the theoretical possibility of abruptly applying an 
infinitesimal additional velocity distribution at a finite number of instants t  in time, which, 
however, does not affect the forced vibration of the elastic column as a linear stable system, 
requires that the distribution of the acceleration ( )2 2û z ,t t∂ ∂  along z  vary discontinuously 
with time at the finite number of instants t .  In short, the continuity of the acceleration 

( )2 2û z ,t t∂ ∂  sufficing for the integralwise differentiability (4.7), and hence, for the validity 
of Bernoulli’s undamped ordinary differential equations (4.8), cannot be taken for consistent.  
Thus, the assumption of integralwise differentiability (4.7) is arbitrary and in fact constitutes a 
limitation to the class of the response functions ( )û z,t , thereby depriving the ordinary 
differential equations of the undamped vibrations (4.8) of any reliability as the real ordinary 
differential equations in the generalized displacements ( )nq t  that can be derived from the 
partial differential equation of motion (3.2).  Exactly for this reason, the classical view that 
damping is inconsistent with the response of the elastic column, which is founded on the 
assumption of integralwise differentiability (4.7), is deprived of any reliability. 

As its equivalence to the assumption of integralwise differentiability (4.7) indicates, the 
assumption of termwise differentiability (6.7) also is arbitrary [9 p.24-29] and in fact 
constitutes a limitation to the class of the response functions ( )û z,t .  Actually, only the 
uniform convergence of the infinite series in equations (6.7) can suffice for the validity of the 
termwise differentiability of Bernoulli’s transform (4.1a) [7 p.407-417], [9 p.24-30].  And of 
course, assuming this uniform convergence is but an arbitrary limitation to the class of the 
response functions ( )û z,t  sought. 

9. THE DAMPING EFFECT OF NONTERMWISE DIFFERENTIABILITY 
Either of the equivalent assumptions about integralwise differentiability (4.7) and termwise 
differentiability (6.7) actually constitutes a limitation to the class of the response functions 
( )û z,t .  So, in seeking the really general solution to the partial differential equation of motion 

(3.2), we can remove this limitation by replacing the termwise differentiation rules (6.7) with 
the nontermwise general differentiation rules 
 

 ( ) ( ) ( ) ( )
2

n t2
n 0

û z,t
q t sin n 1 2 z L R z,t

t
π

∞

=

∂
= ⋅ ⎡ + ⎤ +⎣ ⎦∂
∑ , (9.1a) 

 ( ) ( ) ( ) ( )
2 2

n z2 2
n 0

û z,t dq t sin n 1 2 z L R z,t
z dz

π
∞

=

∂
= ⋅ ⎡ + ⎤ +⎣ ⎦∂
∑ , (9.1b) 

 
where ( )tR z,t  and ( )zR z,t  stand for remainder terms that cannot be separated into the modal 
forms included in the series under the summation sign �. 



 

  E12 

Inserting equations (9.1) in the partial differential equation of motion (3.2) will give 
 

( ) ( ) ( ) ( )
2

2
n n2

n 0 n 0

dc q t sin n 1 2 z L q t sin n 1 2 z L
dz

π π
∞ ∞

= =

⋅ ⋅ ⎡ + ⎤ − ⋅ ⎡ + ⎤ +⎣ ⎦ ⎣ ⎦∑ ∑  

 ( ) ( ) ( ) ( )
( )

( )
n

2
z t 2 2

n 0

p t 12Lc R z,t R z,t sin n 1 2 z L
E n 1 2

π
π

∞

=

−
+ ⋅ − = ⋅ ⋅ ⋅ ⎡ + ⎤⎣ ⎦

+
∑ , (9.2) 

 
which after using equation (6.2) and rearranging terms becomes 
 

( ) ( ){ } ( ) ( ) ( )2 2
n n n t z

n 0
q t q t sin n 1 2 z L R z,t c R z,tω π

∞

=

+ ⋅ ⋅ ⎡ + ⎤ + − ⋅ =⎣ ⎦∑  

 ( ) ( )
( )

( )
n

2 2
n 0

p t 12L sin n 1 2 z L
E n 1 2

π
π

∞

=

−
= − ⋅ ⋅ ⋅ ⎡ + ⎤⎣ ⎦

+
∑ .   (9.3) 

 
On account of equation (9.3), we can always express the sum ( ) ( )2

t zR z,t c R z,t− ⋅  by 
means of Bernoulli’s transformation (4.1) as follows 

 

 ( ) ( ) ( ) ( )2 2
t z n n

n 0
R z,t c R z,t y t sin n 1 2 z Lω π

∞

=

− ⋅ = ⋅ ⋅ ⎡ + ⎤⎣ ⎦∑ , (9.4a) 

 ( ) ( ) ( ){ } ( )
L

2 2
n n t z

0

2y t R z,t c R z,t sin n 1 2 z L dz
L

ω π⋅ = − ⋅ ⋅ ⎡ + ⎤ ⋅⎣ ⎦∫ , (9.4b) 

 
where ( )2

n ny tω ⋅  stands for a generalized acceleration, and hence, ( )ny t  denotes a new 
generalized displacement in addition to the generalized displacement ( )nq t .  Notwithstanding 

that the generalized acceleration ( )2
n ny tω ⋅  appears as a product, it actually represents a single 

Bernoulli’s coefficient only, say, ( ) ( )2
n n ny t tω ψ⋅ = . 

Inserting Bernoulli’s transform (9.4a) in equation (9.3) yields 
 

( ) ( ) ( ){ } ( )2
n n n n

n 0
q t q t y t sin n 1 2 z Lω π

∞

=

+ ⋅ ⎡ + ⎤ ⋅ ⎡ + ⎤ =⎣ ⎦ ⎣ ⎦∑  

 ( ) ( )
( )

( )
n

2 2
n 0

p t 12L sin n 1 2 z L
E n 1 2

π
π

∞

=

−
= − ⋅ ⋅ ⋅ ⎡ + ⎤⎣ ⎦

+
∑ . (9.5) 

 
Multiplying equation (9.5) by ( )sin ν 1 2 z Lπ⎡ + ⎤⎣ ⎦  with ν 1,2,3,= … , integrating the 

resulting equation all over the length L  of the column, interchanging the order of integration 
and summation, and taking into account the orthogonality property (7.1), we can finally 
conclude that equation (9.5) is equivalent to 
 

 ( ) ( ) ( ) ( ) ( )
( )

for
n

2
n n n n 2 2

p t 2L 1
q t q t y t n = 0,1,2,3,

E n 1 2
ω

π

−
+ ⋅ ⎡ + ⎤ = −⎣ ⎦

+
…  (9.6) 
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In view of equation (4.8) and the analysis of par. 4, the generalized displacement ( )ny t  can 
only be zero on the assumption of the integralwise differentiability (4.7), that is, 

 
 ( )ny t 0 assumption of integralwise differentiability (4.7)= ⇔ . (9.7) 

 
Equations (9.6) are the actual ordinary differential equations in the generalized displacements 

( )nq t  that can in general be derived from the partial differential equation of motion (3.2).  
Since the ordinary differential equations (9.6) are equivalent to equation (9.5), which actually 
represents the partial differential equation of motion (3.2), they must be equivalent to the 
partial differential equation of motion (3.2).  And hence, the undamped or damped character 
of the ordinary differential equations (9.6) indicates the undamped or damped, respectively, 
character of the partial differential equation of motion (3.2).  Let us examine whether the 
actual ordinary differential equations (9.6) represent undamped or damped vibrations. 

Evidently, each ordinary differential equation (9.6) describes a forced vibration of a single-
degree-of-freedom system in a generalized displacement ( )nq t , with the system internal force 

( ) ( )2
n n nq t y tω ⋅ ⎡ + ⎤⎣ ⎦  having magnitude dependent not only on the displacement ( )nq t  of its 

application point, which implies that its work does not depend only on the displacement 
( )nq t .  This latter assures that the internal force ( ) ( )2

n n nq t y tω ⋅ ⎡ + ⎤⎣ ⎦  must be nonconservative 
[11 p.90], [12 p.3-4], which verifies that the actual ordinary differential equation (9.6) must 
represent a damped vibration of the single-degree-of-freedom system. 

On this base therefore, the partial differential equation (3.2) must in general represent a 
damped vibration.  Only assuming the integralwise differentiability (4.7) of Bernoulli’s 
transform (4.1b), which implies ( )ny t 0= , the internal force ( ) ( )2

n n nq t y tω ⋅ ⎡ + ⎤⎣ ⎦  becomes 

equal to ( )2
n nq tω ⋅ , and hence, conservative, thereby reducing the actual ordinary differential 

equation (9.6) to the classical ordinary differential equation (4.8), which represents an 
undamped vibration. 

10. THE REALLY GENERAL SOLUTION OF THE PARTIAL DIFFERENTIAL 
EQUATION OF MOTION 

The velocity magnitude ( )n ny tω ⋅  can be related to the generalized velocity ( )nq t  as below 
 

 ( ) ( ) ( )n n n ny t 2 t q tω ξ⋅ = ⋅ , (10.1) 
 
where ( )n tξ  denotes a scalar coefficient varying with time so that it ensures equation (10.1).  
Actually, ( )n tξ  is a function of both the generalized magnitudes ( )ny t  and ( )nq t . 

Applying substitution (10.1) to the actual ordinary differential equation (9.6) yields 
 

 ( ) ( ) ( ) ( ) ( ) ( )
( )

for
n

2
n n n n n n 2 2

p t 2L 1
q t 2 t q t q t n = 0,1,2,3,

E n 1 2
ξ ω ω

π

−
+ ⋅ ⋅ + ⋅ = −

+
… , (10.2) 

 
which discloses that the scalar coefficient ( )n tξ  is but the damping ratio of the thn  mode.  
Thus, the partial differential equation (3.2) is actually uncoupled into the nonlinear ordinary 
differential equations (10.2), which represent damped vibrations, and not into the classical 
ordinary differential equations (4.8), which represent undamped vibrations. 
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Inserting the damped general solution of the actual nonlinear ordinary differential equation 
(10.2) in Bernoulli’s transformation (4.1) and combining with equation (3.1) gives the really 
general solution of the initial-boundary value problem of the uniform elastic column, which 
must also be damped in view of the equivalence of the differential equations (10.2) and (3.2). 

In the case of an almost constant damping ratio nξ  or a mean damping ratio nξ , the actual 
differential equation (10.2) may be simplified to [13 p.12-15, p.48] 
 

 ( ) ( ) ( ) ( ) ( )
( )

for
n

2
n n n n n n 2 2

p t 2L 1
q t 2 q t q t n = 0,1,2,3,

E n 1 2
ξ ω ω

π

−
+ ⋅ ⋅ + ⋅ = −

+
… , (10.3) 

 
whose general solution, for the underdamped case n0 1ξ< < , equals [3 p.234 eq.(5.22)] 
 

( ) ( ) ( ) ( )
n n n n n nt 2 2

n n n n n n2
n n

q 0 q 0
q t e q 0 cos 1 t sin 1 t

1
ξ ω ξ ω

ξ ω ξ ω
ξ ω

− ⋅ ⋅
⎧ ⎫+ ⋅ ⋅⎪ ⎪⎡ ⎤ ⎡ ⎤= ⋅ ⋅ − ⋅ + ⋅ − ⋅ +⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪− ⋅⎩ ⎭

 

 ( )
( )

( ) ( ) ( )n n

n t
t

n2 22
0n n

2L 11 1 p e sin t d
En 1 21

ξ ω ττ ω τ τ
πξ ω

− ⋅ ⋅ −−
− ⋅ ⋅ ⋅ ⎡ − ⎤ ⋅⎣ ⎦

+− ⋅
∫ . (10.4) 

 
On account of the classical initial conditions (4.10), which are independent of the 

assumption of integralwise or termwise differentiability, the general solution (10.4) becomes 
 

( ) ( )
( )

( )n n

n
t 2

n n n2 2

2L 1 1q t e p 0 cos 1 t
En 1 2

ξ ω ξ ω
π

− ⋅ ⋅
⎧ ⎛− ⎪ ⎡ ⎤⎜= ⋅ ⋅ ⋅ − ⋅ +⎨ ⎢ ⎥⎜ ⎣ ⎦+ ⎪ ⎝⎩

 

( ) ( )n n 2
n n2

n n

p 0 p 0
sin 1 t

1

ξ ω
ξ ω

ξ ω

⎞+ ⋅ ⋅ ⎡ ⎤ ⎟+ ⋅ − ⋅ +⎢ ⎥ ⎟⎣ ⎦− ⋅ ⎠
     

 ( ) ( ) ( )n n

t
t

n2
0n n

1 p e sin t d
1

ξ ω ττ ω τ τ
ξ ω

− ⋅ ⋅ −
⎫
⎪+ ⋅ ⋅ ⋅ ⎡ − ⎤ ⋅ ⎬⎣ ⎦
⎪− ⋅
⎭

∫ , (10.5) 

 
and substituting in Bernoulli’s transform (4.1a) and using equation (4.9) gives 

 

( ) ( ) ( )n n

n2
t 2

n n2
n 0 n

12cû z,t e p 0 cos 1 t
L E

ξ ω ξ ω
ω

∞
− ⋅ ⋅

=

⎧ ⎛− ⎪ ⎡ ⎤⎜= ⋅ ⋅ ⋅ ⋅ − ⋅ +⎨ ⎢ ⎥⎜ ⎣ ⎦⋅ ⎪ ⎝⎩
∑  

 ( ) ( )n n 2
n n2

n n

p 0 p 0
sin 1 t

1

ξ ω
ξ ω

ξ ω

⎞+ ⋅ ⋅ ⎡ ⎤ ⎟+ ⋅ − ⋅ +⎢ ⎥ ⎟⎣ ⎦− ⋅ ⎠
     

 ( ) ( ) ( )n n

t
t n

n2
0n n

1 p e sin t d sin z
c1

ξ ω τ ω
τ ω τ τ

ξ ω

− ⋅ ⋅ −
⎫
⎪+ ⋅ ⋅ ⋅ ⎡ − ⎤ ⋅ ⋅⎬⎣ ⎦
⎪− ⋅
⎭

∫ , (10.6) 

 
which is the really general solution of the partial differential equation (3.2). 
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Combining equations (10.6), (3.1), (4.9) and (6.5), we conclude the really general solution 
of the partial differential equation of motion (2.1) for ( )n nt cons tan tξ ξ= = , as below 

 

( ) ( ) ( ) ( )n n

n2
t 2

n n2
n 0 n

12cu z,t p t e p 0 cos 1 t
L E

ξ ω ξ ω
ω

∞
− ⋅ ⋅

=

⎧ ⎛− ⎪ ⎡ ⎤⎜= ⋅ ⋅ − ⋅ ⋅ − ⋅ +⎨ ⎢ ⎥⎜ ⎣ ⎦⋅ ⎪ ⎝⎩
∑  

   
( ) ( )n n 2

n n2
n n

p 0 p 0
sin 1 t

1

ξ ω
ξ ω

ξ ω

⎞+ ⋅ ⋅ ⎡ ⎤ ⎟+ ⋅ − ⋅ +⎢ ⎥ ⎟⎣ ⎦− ⋅ ⎠
     

 ( ) ( ) ( )n n

t
t n

n2
0n n

1 p e sin t d sin z
c1

ξ ω τ ω
τ ω τ τ

ξ ω

− ⋅ ⋅ −
⎫
⎪− ⋅ ⋅ ⋅ ⎡ − ⎤ ⋅ ⋅⎬⎣ ⎦
⎪− ⋅
⎭

∫ , (10.7) 

 
which represents a superposition of damped forced vibrations of the elastic column, thereby 
representing a damped response of the elastic column. 

11. THE CASE OF FREE AXIAL VIBRATION 

A free axial vibration of the elastic column corresponds to zero surface traction, i.e. ( )p t 0= , 
and hence, to ( ) ( )p t p t 0= = , which implies that ( ) ( )û z,t u z,t= , and is excited by the general 
initial conditions ( )u z,0  and ( )u z,0 .  In this case, the partial differential equation of motion 
remains the same as equation (2.1), while Bernoulli’s transformation (4.1) and the continuity 
of ( )u z,t  and ( )u z,t , which is assured by the existence of the second-order derivatives 

( )2 2û z,t t∂ ∂  and ( )2 2û z,t z∂ ∂ , lead to the following initial conditions for ( )nq t  
 

 ( ) ( ) ( )2 L

n
0

q 0 u z,0 sin n 1 2 z L dz
L

π= ⋅ ⎡ + ⎤ ⋅⎣ ⎦∫ , (11.1a) 

 ( ) ( ) ( )2 L

n
0

q 0 u z,0 sin n 1 2 z L dz
L

π= ⋅ ⎡ + ⎤ ⋅⎣ ⎦∫ . (11.1b) 

 
All preceding equations also hold true for a free axial vibration of the elastic column by 

inserting the above general conditions.  For example, the general solution (10.4) after putting 
( )p t 0=  and substituting ( )nq 0  and ( )nq 0  in accordance with the initial conditions (11.1) 

becomes the general solution in ( )nq t  of the free axial vibration.  This latter solution inserting 
in Bernoulli’s transform (4.1a) and after replacing ( )û z,t  by ( )u z,t  gives the really general 
solution of the partial differential equation (2.1) for ( )n nt cons tan tξ ξ= = , viz 

 

( ) ( )n n

L
t 2n n

n n
n 0 0

2u z,t e sin z u z,0 sin z dz cos 1 t
L c c

ξ ω ω ω
ξ ω

∞
− ⋅ ⋅

=

⎧⎛ ⎞⎪ ⎡ ⎤⎜ ⎟= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ +⎨ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎪⎝ ⎠⎩
∑ ∫  

 ( ) ( )
L

2n
n n n n2

0n n

1 u z,0 u z,0 sin z dz sin 1 t
c1

ω
ξ ω ξ ω

ξ ω

⎫⎛ ⎞ ⎪⎡ ⎤⎜ ⎟+ ⋅ ⎡ + ⋅ ⋅ ⎤ ⋅ ⋅ ⋅ − ⋅ ⎬⎣ ⎦ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎪− ⋅ ⎝ ⎠ ⎭
∫ , (11.2) 
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which represents a superposition of damped free axial vibrations of the elastic column, 
thereby representing a damped response of the elastic column. 

12. REMARK 
It is worth emphasizing that the really general solutions (10.7) and (11.2) have been derived 
on the assumption of constant damping ratios nξ , which limits the actual ordinary differential 
equations (10.2) to linear equations only.  For the general case of varying damping ratios 

( )n tξ , equations (10.2) become nonlinear, thereby representing nonlinear damped vibrations 
in the generalized displacements ( )nq t , and hence, the really general solution of the partial 
differential equation (2.1) becomes a superposition of these nonlinear damped vibrations. 
Only on the arbitrary assumption of integralwise differentiability (4.7) or its equivalent 
assumption of termwise differentiability (6.7), equations (9.7) and (10.1) make the damping 
ratio nξ  be zero, thereby reducing each of the really general solutions (10.7) and (11.2) to a 
superposition of undamped vibrations, which represents the classical case. 

13. CONCLUSIONS 
On the base of the above analysis, our criticism of the sufficiency of the classical application 
of Bernoulli’s transformation to the dynamics of an elastic continuum seems to be justified.  
Actually, by Bernoulli’s transformation itself we conclude that the really general solution of 
the partial differential equation of motion of an elastic column subjected to a surface traction 
at its free end or an initial excitation represents a superposition of damped vibrations, thereby 
representing a damped response.  The undamped response of classical analysis results from 
arbitrary assumptions about the differentiability of Bernoulli’s transformation that reduce the 
really general solution to a superposition of undamped vibrations. 
The damped response indicates that the stresses developed in the elastic column must include 
damping components, thereby indicating that damping actually complies with the generalized 
Hooke’s law as applied to elastic continua. 
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