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Abstract 

Liquid ammonia (LNH3) has a number of properties similar to water, such as the 

ability to dissolve a diverse range of chemical compounds and, based on the variety of 

chemical reactions in this non-aqueous solvent, speculation has arisen about the 

possibility of life processes in liquid ammonia.  

„Life‟ is difficult to define, but the general consensus is that it is comprised of a 

variety of individual process that could be regarded as „processes of life‟, some of 

which can be modelled within the laboratory. This project is primarily concerned with 

looking at some of these life processes and attempting to model them in liquid 

ammonia. This may give rise to the notion that life in liquid ammonia is plausible 

which could be of great interest to those searching for extra-terrestrial life as ammonia 

is found in our solar system and very likely in many other parts of the vast universe.  

One of life‟s fundamental processes is compartmentalisation, which is the aggregation 

of molecules into a protective cellular microenvironment, allowing life to survive and 

develop. Simple cell models in water and some other solvents have been studied 

widely allowing for a greater understanding of how the cell membrane works and they 

also have many commercial applications such as acting as drug delivery systems and 

as detergents. In this project, the aggregation of a variety of surfactants in liquid 

ammonia has been studied using a range of detection techniques. The common ionic 

surfactants, such as sodium dodecyl sulfate (SDS) and perfluorooctanoic acid (PFOA) 

were found not to aggregate in liquid ammonia, as evidenced by their conductance 

profiles. The reduced dielectric constant of liquid ammonia (εr = 16) compared with 

that of water (εr = 80) does not sufficiently decrease the repulsion between adjacent 

ionic head groups that naturally repel one another, and so micelle formation is not 

favoured. However, non-ionic, fully fluorinated fatty acid amides have been shown to 

aggregate into micelles in liquid ammonia using 
19

F NMR as a detection method. The 

aggregation of fluorinated amides in liquid ammonia was found to follow trends 

observed for hydrocarbon surfactants in water, such as the relationship between 

critical micelle concentration (cmc) and hydrophobic tail length. Additionally, the 

magnitude of 
19

F NMR shifts seem to suggest that the monomeric surfactant is 

surrounded by a relatively polar ammonia environment whereas those molecules in 
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the aggregated micelle are surrounded by the neighbouring fluorine atoms from the 

adjacent hydrophobic chains, as would be expected deep in a micelle core. There is 

also some evidence of micelle catalysis in liquid ammonia. 

Another major contributor to life‟s processes are enzymes, which are nature‟s 

catalysts made up of proteins which fold up into a unique structure because of their 

interactions with water. Although their natural habitat is generally an aqueous 

environment, within an organism for example, enzyme catalysis in non-aqueous 

environments, such as organic media, has been widely studied and they have many 

applications in industrial processes. Enzyme catalysis has never been reported in pure, 

anhydrous, ammonia. This part of the project explores the extent at which lipases can 

catalyse the ammonolysis of triglycerides in liquid ammonia. Immobilized forms of 

Lipase B from Candida antarctica (CALB) were found to catalyse the ammonolysis 

of a variety of triglycerides in liquid ammonia and appear to be more selective 

towards larger molecules. The rates of triester conversion to diester for short-medium 

chain triglycerides were increased moderately with added lipase, whereas the 

subsequent ammonolysis of diester and monoester from triacetin showed no 

significant enhancement by the lipase. Conversely, for the longer chain triglyceride, 

triolein, a significant increase in conversion to oleamide was observed with the 

addition of the lipase. In addition to the positive implications for the „life in ammonia‟ 

proposal, the lipase catalysed ammonolysis of triglycerides in liquid ammonia may 

have potential industrial applications. Triglycerides are abundant in nature, as fats and 

oils, and so are very cheap to acquire and the products of their ammonolysis, fatty 

acid amides, have many applications such as lubricating agents in the plastic industry 

and even medical uses. Oleamide, which is structurally related to the endogenous 

cannabinoid anandamide, is currently being examined for its sleep inducing effects. 

In addition to the preliminary studies of life-type processes in liquid ammonia, some 

general reactions have been explored, in particular the ammonolysis of esters and its 

catalysis by the ammonium cation.  

Small scale glassware can be used for the safe study of liquid ammonia at room 

temperature under approximately 10 bar pressure. Reactions in liquid ammonia have 

been previously studied generally by using a simple sampling method and analysing 

by GC or HPLC. Additionally, in this project, a variety of analytical techniques in 
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liquid ammonia have also been developed such as the use of conductance, UV-vis and 

liquid ammonia NMR. 
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Abbreviations 

A list of commonly used symbols and abbreviations in this thesis  

LNH3   liquid ammonia 

K   Kelvin 

°C   degree Celsius 

atm   atmospheres 

Å   angstrom 

m.p   melting point 

DCM   dichloromethane 

DMSO   dimethyl sulfoxide 

DMF   dimethyl formamide 

εr   dielectric constant 

D   dipole moment 

DN    donor number 

CALB   Lipase B from Candida antarctica  

Novozyme 435 CALB immobilised onto acrylic resin beads 

CR   Lipase from Candida rugosa  

GC   gas chromatography 

FID   flame ionization detector 

MS   mass spectrometry 

m/z   mass to charge ratio 

NIST   National Institute of Standards and Technology database  

NMR    nuclear magnetic resonance 

UV-vis   ultraviolet-visible spectrophotometry 

λmax   wavelength at maximum absorbance (nm) 

IS   internal standard 
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pKa   negative logarithm (-1og10) of the acid dissociation constant  

T   tetrahedral intermediate 

kobs   observed pseudo-first-order rate constant 

βlg   Brønsted constant for leaving group 

cmc   critical micelle concentration 

SDS    sodium dodecyl sulfate 

CTAB   cetyl trimethylammonium bromide 

DTAI    decyl trimethylammonium iodide 

S   siemens 

Kdiss   equilibrium constant for dissociation of ion-pair 

Kip   equilibrium constant for formation of ion-pair 

pfh   perfluorohexane 

ω   terminal -CF3 or -CH3 group of a surfactant tail 

δobs   observed chemical shift (ppm) 

δm   chemical shift of surfactant monomer (ppm) 

δa   chemical shift of aggregate (ppm) 

FAA   fatty acid amide 
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1.1 The search for ‘life’ 

1.1.1 Water - the matrix of life 

It is a commonly held assumption that if life exists beyond Earth it is carbon-based 

with water as the preferred solvent and utilises fuels and light as sources of energy to 

sustain itself.
1
 This outlook is expected and rational as it is, after all, how life as we 

know it exists on earth. Other suppositions are that the fundamentals of life originate 

quickly if given the opportunity to do so, but the evolution of multi-cellularity and 

intelligence takes a long time and, maybe, is an improbable event and so any extra-

terrestrial life may be uni-cellular and microbial.
2
  

There is speculation that extra-terrestrial life could be based on the silicon atom 

because it is in the same group as carbon in the periodic table and has many similar 

chemical properties.
3
 Furthermore, silicon can form analogues of common carbon-

based molecules (Scheme 1.1.1). 

 

Scheme 1.1.1 Silane (left), the silicon based analogue of methane (right). 

Approximately 28% of the earth‟s crust is composed of silicon compared with very 

little carbon (0.18%), and yet life on earth is carbon-based.
4
 Thus, the fact that silicon-

based life did not develop on the earth when given the chance, or was outcompeted by 

carbon-based life, could infer that life based on the silicon atom is unfavoured. One 

possible reason is that some silanes react with water and long chained silanes, alkane 

analogues, spontaneously decompose in water, the earth‟s most abundant solvent.
5
 

Thus, it may be the properties of the solvent that determine the chemistry of life.  

Generally speaking, for life as we know it, water is the essential component as the 

universal solvent and is described by Nobel Laureate A. Szent-Györgyi as “the matrix 

of life”.
6
 Indeed, one of NASA‟s official principle exploration strategies in the search 

for life in the universe is to “follow the water”.
7 

Thus, from the human perspective, it 

makes perfect sense to approach the search for extra-terrestrial life by looking for 
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conditions that best mimic those of the earth. Nevertheless, this doesn‟t necessarily 

mean that all life in the vast universe is indeed limited to this particular solvent.  

A recent committee on the subject of life in planetary systems emphasized that many 

of the current views about how water is uniquely suited for life can be slightly 

geocentric and misleading and they use the many types of water ice to highlight this 

complacency:
8
 Ice I, the most stable form of ice at 273 K and atmospheric pressure, 

floats on water and so can insulate a body of liquid water below and keep it from 

freezing whereas all other types of ice (ice II to ice X) are much denser than liquid 

water and sink, not providing any insulation.
9
 A geocentric view would infer that 

water ice I appears ideal for earth, as the insulation it provides allows life in these 

conditions to survive, and so this is generally the only type of ice worthy of 

discussion. It is conveniently omitted that ice I has a much higher albedo (ability to 

reflect sunlight) than liquid water leading to drastic cooling. This can result in the 

formation of more surface ice, an even higher albedo and further cooling, leading to a 

cycle that can amplify glacial events in an ice-age. One could argue that a model 

solvent for life would continually support a stable environment and yet the fact that 

ice water on earth floats, cooling down the planet, could certainly be viewed as a 

disadvantage, and so maybe water is not as „ideal‟ as first assumed. Thus, the 

committee concluded that they had found no compelling reason to limit life to a solely 

aqueous environment but they do suppose that any terrain life would likely be 

constrained to carbon based biomolecules. Several candidates for solvents which may 

have the ability to support life have been suggested (Scheme 1.1.2)  

 

Scheme 1.1.2 Potential „solvents for life‟ (left to right); hydrazine, hydrocyanic acid, 

sulfuric acid and ammonia. 

Theoretically, any of these solvents and many more may support life, each with their 

own rules that govern the fundamentals of life processes such as 

compartmentalisation, replication, metabolism and catalysis. One could imagine some 
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extra-terrestrial, non-aqueous based intelligent life-form, exclaiming that their solvent 

is the “matrix of life”, and that the prospect of life in water unthinkable (Figure 1.1.1). 

 

Figure 1.1.1 “Ammonia! Ammonia!” What really happened at the 1947 Roswell UFO 

incident? 
10

 

1.1.2 The potential for liquid ammonia to support life  

The possibility of life based in liquid ammonia has a long history and it has been 

suggested that metabolism in liquid ammonia is conceivable. Haldane highlighted 

ammonia analogues of water could form the building blocks of biomolecules whereby 

NH groups might replace oxygen atoms (Table 1.1.1) and Firsoff detailed the 

similarities between synthesis reactions in water and ammonia dominated systems.
11, 

12 
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Table 1.1.1 Some ammonia analogues of water-based life biochemical functional 

groups. 

Typical biochemical 

functionality 
water-based life form 

possible ammonia-based 

life analogue 

alcohol 
  

fatty acid 

  

carbohydrate 

  

One particular metabolic example highlights the possible synthesis of proteins in an 

ammonical environment, compared to the orthodox aqueous, and ammonia-water 

solutions. 

In water, two glycine molecules are combined to form a peptide bond, with the release 

of water (Scheme 1.1.3).  

 

Scheme 1.1.3 

Similarly, in an ammonia-water mixture, an amide CONH2 group may substitute for 

the carboxylic acid COOH and again, with formation of a peptide bond, but this time 

liberation of ammonia (Scheme 1.1.4). 
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Scheme 1.1.4 

Furthermore, in a purely anhydrous, liquid ammonia medium, with the absence of the 

oxygen atom, one can envisage the replacement of the carboxyl group with -

CH(NH)NH2 with a novel „peptide-like‟ bond with -CH(NH)NH- structure (Scheme 

1.1.5). There is in fact some speculation that the peptide bond may be a relic from the 

early stages of earth evolution in an ammonia-organic based environment.
12

  

 

Scheme 1.1.5 

Equally, comparable reactions can be shown for phosphate bond formation in nucleic 

acids, part of the building blocks of DNA. 

As a solvent for life, ammonia is comparable to water in many ways such as its ability 

to solubilise a diverse range of compounds including organic and electrolytic species. 

On earth, ammonia is liquid at lower temperatures than water and has a smaller range 

in which it stays liquid; -78 to -33 °C for liquid ammonia compared to 0 to 100 °C for 

water.
8
 This would suggest that in order to survive, life would have to adapt to a much 

smaller temperature window, although this assumes life is limited to earth like 

atmospheric pressures. At higher pressures, the range of temperatures for liquefied 

ammonia increases so, for example, at 60 atm, ammonia is liquid from -77 to 98 °C, 

so the common notion that „ammonia-life‟ equates to „cold-life‟ is only applicable to 

earth like atmospheres. Greater pressures would be experienced on other planets and 

so liquid ammonia may be abundant throughout space. Indeed, liquid ammonia is 

found in the clouds in the Jovian atmosphere although many view life in transient 

clouds as unlikely. This view could be revised if considering continuous (un-broken) 

cloud systems similar to those found in the atmosphere of Venus.
8
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Liquid ammonia would outperform water with its capacity to dissolve alkali metals 

without reaction, as is observed in water, which could be advantageous to metabolic 

pathways in ammonia as they can act as catalysts. The reduced viscosity of ammonia 

in comparison to water could also benefit ammonia based life. At ambient 

temperature, the viscosity of ammonia is 120 µPa.s compared with water 1002 µPa.s 

and so ions and dissolved particles in liquid ammonia would collide more frequently 

and possibly react more readily with each other.
13, 14

 

Additionally, there are some suppositions that ammonia based life may not just be 

restricted to a purely anhydrous medium. Recent studies of data recovered from the 

Saturnian moon Titan propose surface oceans comprising a liquid of comparable 

viscosity to an ammonia-water mixture.
8 

Additionally, Fortes speculates that the 

subsurface oceans of Titan, Triton (of Neptune) and the Galilean satellites may 

support life, with ammonia acting as an antifreeze for water, lowering the temperature 

at which water can remain liquid, and several enzymes can remain stable at these low 

temperatures.
15,16

 This does then raise the issue that any ammonia-water medium 

would be highly basic, and life as we know it, is not capable of withstanding highly 

basic environments as well as it can survive some acidic conditions. However, this 

may not be a major obstacle to life because the majority of organisms on earth may 

not have needed to adapt to basic conditions at all. On earth, there are only a few 

natural environments of high pH, mainly soda lakes, whereas if the earth was 

dominated by these environments, the adaptation of most organisms to basic 

conditions may have become the norm.  

1.1.3 Project aim - a study of life processes in liquid ammonia 

Surprisingly, defining life is not as simple as one may first assume and there is still a 

long-standing debate with no real scientifically accepted consensus.
17

 The 

fundamental problem is that living organisms use compounds that are abundant in 

their surrounding environment and, additionally, many processes that occur in living 

systems are not intrinsically different to processes that occur abiologically. For 

example, a simple metabolic process within the cell that would be considered a „living 

reaction‟ could be replicated in the laboratory, possibly under different conditions, but 

would by no means be described as a process of life (Scheme 1.1.6). 
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Scheme1.1.6 In living systems, during phase I metabolism, aniline may be converted 

to phenol by Cytochrome P450 and in the laboratory via formation of a diazonium 

salt.
18,19

 

Although the complexity of the enzyme is well appreciated, its intrinsic mechanisms 

and functions of the amino acid residues can be well interpreted from a chemistry 

perspective. Indeed, the synthesis and application of artificial enzymes is a current 

research area, so enzymes on their own are not necessarily „living things‟.
20, 21

 Given 

this, the notion that enzymatic processes are commonly credited as a „living process‟ 

is probably due to a combination of factors, such as their synthesis in the cell, 

secretion into extracellular compartments, removal of waste products, requiring an 

energy source for maintaining concentration gradients etc.  

Thus, there is not a single way of defining what life is, but rather, life can be defined 

through a collection of properties and processes. Some of these processes can be 

individually modelled in the laboratory but together encompass what would be 

generally regarded as a living system. For example, one of the fundamental processes 

of life is the compartmentalisation of molecules into cell structures and, simple, 

cellular type analogues can be modelled in water.
22

 Likewise, the formation of 

ammonophilic and ammonophobic phases in liquid ammonia, comparable to 

hydrophilic and hydrophobic phases in water, is conceivable and hence the formation 

of cellular-type structures may indicate that ammonia can support 
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compartmentalisation. In fact, the SETI institute (Search for extra-terrestrial life 

institute, USA) acknowledge the role that amphiphilic vesicle formation may have 

played in the origin and evolution of life.
23

 SETI currently has a number of projects 

dedicated to understanding how lipids relate to the origin of life. 

This project will focus on some of these fundamental processes of life and their 

potential applications in an ammoniacal environment. In doing so, the notion of liquid 

ammonia as suitable candidate for a „solvent for life‟ may be realised. Admittedly, the 

search for extra-terrestrial life is not exclusively focused on a suitable solvent medium 

and Schulze-Makuch et al highlights four major facets that are essential to life: 

habitat, energy, chemistry and solvent.
24

  

1.2 Properties of ammonia and liquid ammonia as a solvent 

1.2.1 Structure of ammonia 

Ammonia is a tetra atomic molecule with three hydrogen atoms covalently bound to a 

central nitrogen atom. The nitrogen atom has five outer electrons with an additional 

electron from each hydrogen, giving a total of 3 bonded electron pairs leaving one 

lone pair of electrons. It adopts a trigonal pyramidal shape as predicted by the valence 

shell electron repulsion theory (Scheme 1.2.1).
25

 

 

Scheme 1.2.1 Structure of an ammonia molecule. 

The N-H bond length is 1.01 Å, which is greater than that of water (0.96 Å) but 

smaller than that of methane (1.10 Å), and the H-N-H bond angle is 107.8 degrees, 

again in between that for water (105 degrees) and methane (109.5 degrees). At 

atmospheric pressure, it has a boiling point of -33.5 °C compared with 100 °C for 

water and approximately -160 °C for methane. The ammonia molecule pyramidal 

structure has a low height of 0.360 Å which gives rise to the possibility of the nitrogen 

atom passing through the plane to an equally stable position on the opposite side 
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(nitrogen inversion).
26

 The energy barrier for this inversion of the nitrogen at room 

temperature is a relatively low 24.7 kJ mol
-1 

compared to energy required to invert the 

similarly structured phosphine (PH3) which is 132 kJ mol
-1

. 
27, 28

 

1.2.2 Liquid ammonia as a dipolar aprotic solvent  

There are numerous ways of classifying solvents in terms of their physical properties, 

chemical composition and acid-base behaviour.
29

 One of simplest and most widely 

used methods of characterising solvents is by their polarity. Solvents are generally 

classed as either polar or non-polar and the solvent dielectric constant (r) can provide 

a rough estimation as to which of the two groups they best fit. A general rule is that 

solvents with a dielectric constant of greater than 15 are considered to be polar.
30

 

Polar solvents can be further classified by their ability to protonate/deprotonate and 

their hydrogen bonding ability. Solvents which can readily donate hydrogen are called 

protic whereas solvents which have non-acidic hydrogens and cannot H-bond are 

aprotic. For example, DMSO (dimethyl sulfoxide) is a polar-aprotic solvent. Hexane, 

however, is a non-polar solvent showing negligible acid/base behaviour towards the 

solute. Liquid ammonia has a reasonably low dielectric constant (16.0 at 25 °C), and 

is thus on the borderline of polarity.
31

 It is quite unique therefore in that it can 

solubilise a wide range of both salts and organic compounds.
32,33

A list of some 

solvent properties can be found in Table 1.2.1.  

Table 1.2.1 Physical properties of some common solvents at 25 °C. 
34 

Solvent 
Dielectric constant 

(r) 
Dipole moment (D) Classification 

water 80 1.85 polar amphiprotic 

DMSO 46.7 3.96 dipolar aprotic 

DMF 38 3.82 dipolar aprotic 

acetone 21 2.88 polar aprotic 

ammonia
†
 16.7 1.42 dipolar aprotic 

benzene 2.3 0 non-polar 

n-hexane 1.88 0 non-polar 

†
Reference 

35
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The solubility of ionic species is chiefly dependent on the dielectric constant of the 

solvent but can also depend on specific solvation effects and in most cases liquid 

ammonia solvates metal ions better than water. An abundance of synthetically useful 

salts are highly soluble in liquid ammonia, particularly ammonium salts, e.g., NH4N3, 

67.3 g/100g at -36 °C and NH4NO3 ca. 30 M at 25 °C.
25, 32 

Some salts such as 

fluorides and those with multiple negatively charged ions often show very low 

solubility in liquid ammonia at ambient temperature. The solubility of different salts 

in liquid ammonia can be seen in Table 1.2.2.  

Table 1.2.2 Solubilities of some inorganic compounds in liquid ammonia at 20-25 

°C.
25

  

Very soluble 

>100 g/100 g NH3 

Moderately soluble 

>10 g/100 g NH3
 

Slightly soluble 

>1 g/100 g NH3
 

Insoluble 

<1 g/100 g NH3
 

AgI AgNO3 AgBr AgCl 

KI Ba(NO3)2 B(OH)3 CaBr2 

LiNO3 Ca(NO3)2 KBr CdCl2 

NH4Br KNO3 KClO3 KBrO3 

NH4Cl NaNO3 KNCO KCl 

NH4ClO3 Sr(NO3)2 KNH2 LiBr 

NH4I NH4N3 LiCl NaF 

NH4HS  NaCl NaNH2 

NH4SCN   Na2SO3 

(NH4)2S   Na2S2O3 

NaI   RbCl 

NaBr   ZN(NO3)2 

NaSCN    

Generally, the solubility of organic compounds is much greater in liquid ammonia 

than in the highly polar water and some solubilities of aliphatics and aromatics can be 

seen in Tables 1.2.3 and 1.2.4. Solubility is important for the potential applications of 

liquid ammonia as a reaction medium and the fact that alcohols, amides, amines and 

aromatics all have good solubility in liquid ammonia makes liquid ammonia a good 

solvent for organic reactions.  
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Table 1.2.3 Solubilities of some aliphatic compounds in liquid ammonia.
33

  

Organic class Example Solubility in liquid ammonia 

Alcohols ethanol miscible 

Alkanes hexane insoluble (medium/long chain) 

Amides urea soluble 

Amines diethylamine miscible 

Carbohydrates glucose soluble 

Carboxylic acids pentanoic acid soluble (short/medium chain) 

Cyano compounds acetonitrile miscible 

Esters ethyl acetate soluble 

Ethers diethyl ether soluble 

Halides chloroform soluble 

Ketones pinacolone soluble 

 

Table 1.2.4 Solubilities of some aromatic compounds in liquid ammonia.
33

  

Organic class Example Solubility in liquid ammonia 

Alcohols (phenols) catechol very soluble 

Amides benzamide very soluble 

Amines aniline miscible 

Carboxylic acids nitrobenzoic acid soluble 

Cyano compounds benzonitrile miscible 

Esters ethyl benzoate very soluble 

Ethers anisole miscible 

Halides chlorobenzene soluble 

Hydrocarbons toluene slightly soluble 

Ketones acetophenone soluble 

Nitro compounds 1,3,5-trinitrobenzne very soluble 

The nitrogen lone pair makes ammonia a very good hydrogen bond acceptor and this 

confirms its classification as a dipolar-aprotic solvent which strongly solvates cations, 

evident by 
23

Na NMR chemical shifts.
36

 
 
Liquid ammonia has a very high donor 

number (DNLNH3 = 59 kcal mol
-1

) which is much greater than that of water (DNwater = 

18 kcal mol
-1

), pyridine (DNpyridine = 33.1 kcal mol
-1

)
 
and even the highly basic 

hexamethylphosphorous triamide (DNHMPT = 38.8 kcal mol
-1

).
37, 38

 Unlike amphiprotic 
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water, it is not a good hydrogen bond donor and does not significantly solvate anions. 

39, 40
 

1.2.3 Liquid ammonia as a ‘green solvent’ 

It is well known that the nature of the solvent can influence both the kinetics and 

mechanisms of organic reactions. 
29

 Dipolar aprotic solvents such as DMF and DMSO 

are currently used in around 10 % of chemical manufacturing process but have 

toxicity concerns and are expensive. In addition, they are very difficult to recover due 

to their water miscibility and high boiling points. Chemical processes using these 

solvents would often require liquid-liquid extraction and distillation most likely 

producing even more solvent waste and so they are frequently disposed of by 

incineration, releasing harmful gases such as CO2 and SO3. Liquid ammonia is a 

promising candidate to replace dipolar aprotic solvents in a number of applications. 

Ammonia has only one lone pair for three potential N-H hydrogen bonds which leads 

to a relatively weak association in the liquid state and a boiling point of -33 °C and 

vapour pressure of around 10 bar at 25 °C. 
25 

Although it is similar in many ways to 

the conventional dipolar aprotic solvents it is the low boiling point that makes liquid 

ammonia much easier to recover and reuse. As a consequence, liquid ammonia as a 

solvent can be regarded as a front-runner in the need for more environmentally 

friendly, „green chemistry‟.  In crude terms, liquid ammonia is essentially „green‟ 

because it is easily recyclable.  

1.3 General reactions in liquid ammonia 

Organic research in this unique solvent became popular in the late 19
th

 century when 

liquid ammonia became commercially available and the early research mainly 

covered chemical and physical properties of liquid ammonia.
41

 In particular, extensive 

studies of liquid ammonia solutions by Kraus provided fundamental data such as the 

solubility of inorganic and organic chemicals, conductivities of ammonia solutions 

and ionisation of metals, and, later, some basic organic reactions in liquid ammonia 

were studied. 
42,43,44

 The most recent major review of organic reactions in liquid 

ammonia was in 1963 by Smith.
33 

Generally speaking, liquid ammonia is used as a 

solvent for organic reactions in the following areas:   

i. As a solvent that dissolves alkali metals for reduction of organic compounds. 
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ii. As a solvent that dissolves alkali metals to produce strong bases for organic 

reactions. 

iii. As a general solvent for organic reactions. 

iv. As a reagent for reactions (solvolysis/ammonolysis). 

1.3.1 Metal reductions in ammonia 

Liquid ammonia solutions of sodium or potassium have been widely used as reducing 

reagents in organic synthesis, and were investigated in detail by Cady, Franklin and 

Kraus.
45, 41 

Dissolving an alkali metal in liquid ammonia forms a deep blue coloured 

solution which is characteristic of the solvated electron given up by the metal. The 

electrons can be donated to substrates to form radical anions/dianions and, following 

protonation, generate a reduced product.   

1.3.1.1 Cycloalkanes and conjugated alkenes and alkynes 

Dauben and Wolf demonstrated that -keto-cyclopropanes can be reduced with 

lithium in liquid ammonia to the analogous straight chain ketone (Scheme 1.3.1). 
46

 

 

Scheme 1.3.1 

Conjugated alkenes are readily reduced to mono-alkenes. For example, butadiene is 

reduced to a mixture of cis and trans-2-butene with lithium in liquid ammonia the 

ratio of the two isomers is temperature dependent (Scheme 1.3.2). 
47

 

 

Scheme 1.3.2 

Generally, non-conjugated alkynes are predominantly reduced to trans-alkenes. This 

is because the radical anion or dianion intermediate prefers a trans configuration in 

order to minimise interaction between the two negatively charged sp
2
 centres. For 
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example, 2-heptyne is reduced via the dianion to form exclusively trans-2-heptene 

(Scheme 1.3.3). 
48

   

 

Scheme 1.3.3 

1.3.1.2 Aromatic compounds 

Probably the most prominent application of the ammonia/metal system as a reducing 

agent for organic reactions is the Birch reduction.
49,50,51 

Regio-selectivity of the 

reduction depends on whether the substituent is electron-donating or electron-

withdrawing.  To minimise interactions, the intermediate radical anion tends to locate 

itself on the carbon meta to an electron-donating group and on the carbon ortho to an 

electron-withdrawing group.
52,53

 Scheme 1.3.4 demonstrates two examples of the 

Birch reduction of aromatic compounds using sodium in liquid ammonia and the 

effect of substituent position.
54,55

 

 

Scheme 1.3.4 

1.3.1.3 Carbonyl groups 

With the exception of carboxylate salts, all carbonyl groups are reduced in liquid 

ammonia with alkali metals.
56
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1.3.1.4 Epoxides, nitro and nitrile groups 

In alkali metal ammonia solutions, epoxides ring open and form the alcohol. The 

stability of the anion/dianion will affect the stereochemistry of the process. 

Interestingly, Kaiser et al observed that when styrene oxide is reduced in 

sodium/liquid ammonia, 2-phenylethanol is the only product (Scheme 1.3.5).
57

 

 

Scheme 1.3.5 

1.3.2 Ammonolysis, aminolysis and amidation reactions 

Probably the simplest reactions in liquid ammonia are solvolysis reactions. Solvolysis 

is the term used for a special type of nucleophilic substitution or elimination reaction 

whereby the attacking nucleophile is the solvent molecule itself. The most common 

type of solvolysis reactions is hydrolysis, with water solvent nucleophile but there are 

many others such as alcoholysis, with alcoholic solvent attack, or aminolysis, with an 

amine solvent nucleophile. For any reaction in liquid ammonia, with nucleophilic 

attack from ammonia solvent, the general term for the solvolysis reaction is 

ammonolysis. Ammonolysis or aminolysis to form an amide group can also be 

described as amidation.  

1.3.2.1 Ammonolysis/aminolysis of halides 

The importance of the amino group is well acknowledged by chemists due to the 

presence of this functional group in many areas of applied chemistry including the 

pharmaceutical, medicinal, agricultural and biochemical industries.
58

 Accordingly, the 

synthesis of amines from organohalides has been examined in detail in both industry 

and academia. There are currently numerous methods for the synthesis of amines in 

solvents other than liquid ammonia but most require catalysts and some operate at 

elevated temperatures. For example, Buchwald et al used hydrazones as the amine 
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nucleophile and obtained high yield using para-chlorobenzotrifluoride as substrate 

(Scheme 1.3.6).
59

 

 

Scheme 1.3.6 

Equally, under catalytic conditions, primary amines can be synthesised using an 

ammonia nucleophile yielding secondary amine side product (Scheme 1.3.7).
60

 

 

Scheme 1.3.7 

In pure ammonia, alkyl halides react with ammonia solvent to initially give the 

corresponding primary amine and ammonium halide salt as products (Scheme 1.3.8). 

 

Scheme 1.3.8 General ammonolysis of alkyl halide 

However, such reactions are often difficult to control because the amine product 

formed can react further to form the secondary and even tertiary amines. In some 

cases the primary amine formed can be more nucleophilic than the ammonia solvent 

and thus as a means of primary amine synthesis, the ammonolysis of alkyl halides has 

its limitations. For example, 1-bromooctane undergoes ammonolysis in ammonia 

yielding roughly equal amounts of primary amine and secondary amine with trace 

amounts of the trioctylamine and tetraoctylammonium bromide (Scheme 1.3.9).
61 
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Scheme 1.3.9 1-bromooctane in liquid ammonia 

The B. F. Goodrich company patented the synthesis of high yields of morpholine by 

reaction of dichlorodiethyl ether in liquid ammonia at moderate temperature (Scheme 

1.3.10).
62

  

 

Scheme 1.3.10 

For a given aliphatic group, the ease of ammonolysis generally lies in the order iodide 

> bromide > chloride >> fluoride, which is no different to the order observed for 

similar nucleophilic substitutions in aqueous environments. 
63

 Methyl halides readily 

undergo ammonolysis to the tetramethylammonium salts but the alkyl halide 

reactivity falls off with increasing size of the alkyl group.  

The kinetics of these reactions was further investigated by P. Ji in our laboratory to try 

understand the mechanisms involved.
64

 The rates of ammonolysis of a number of 

substituted benzyl chlorides can be seen in Table 1.3.1.  
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Table 1.3.1 Ammonolysis rates of substituted benzyl chlorides in liquid ammonia at 

25 °C.
 
 

Alkyl halide substrate kobs (s
-1

) t1/2 (min) 

4-methylbenzyl chloride 7.87x10
-4

 14.7 

benzyl chloride 9.18x10
-4

 12.6 

4-chlorobenzyl chloride 9.78x10
-4

 11.8 

4-carbomethoxybenzyl chloride 1.10x10
-3

 10.5 

4-cyanobenzyl chloride 1.33x10
-3

 8.7 

4-nitrobenzyl chloride 1.53x10
-3

 7.6 

3-methoxybenzyl chloride 7.80x10
-4

 14.8 

4-methoxybenzyl chloride 1.92x10
-3

 6 

-methyl benzyl chloride 6.72x10
-6

 1719 

-methyl 4-methoxybenzyl chloride 9.70x10
-4

 11.9 

 

A Hammett plot for the ammonolysis reaction data in Table 1.3.1 for the para-

substituted benzyl chlorides gives a slope (ρ value) of zero. This is in contrast to the 

same compounds in water which give a slope of around – 4.6. This data suggests that 

for the solvolysis of benzyl chlorides in liquid ammonia, there is little or zero charge 

developed on the central carbon atom in the transition state. This is indicative of a 

bimolecular, SN2 type mechanism whereby any charge developed due to partial 

fission of the bond to the leaving group is counterbalanced by an equal transfer of 

charge from the incoming nucleophile.   

Similarly, liquid ammonia can be used as a solvent for the reaction of alkyl halides 

with nitrogen nucleophiles (Scheme 1.3.11).  

 

Scheme 1.3.11 

P. Ji investigated the effect of varying the nitrogen nucleophile on the rate of reaction 

and, interestingly, found that  the second order rate constants were not greatly 

sensitive to the nature of the nucleophile (Table 1.3.2). 
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Table 1.3.2 Second order rate constants for the reaction of benzyl chloride with 

various nitrogen nucleophiles in liquid ammonia at 25 °C. 

nucleophile k2 (M
-1

s
-1

) 

pyrrolidine 2.67x10
-2

 

piperidine 1.70x10
-2

 

morpholine 3.24x10
-3

 

sodium azide 7.73x10
-3

 

sodium triazolate 9.42x10
-3

 

sodium benzotriazolate 2.61x10
-3

 

sodium imidazolate 5.56x10
-2

 

hydrazine 5.14x10
-3

 

Aryl halides tend to be more difficult to convert to primary amines in ammonia and 

require elevated temperatures and catalysts. US patent 2,001,284 uses gaseous 

ammonia with ammonium tungstate and cupric chloride as catalyst to prepare aniline 

from chlorobenzene (Scheme 1.3.12).
65

 

 

Scheme 1.3.12 

For molecules with sensitive functional groups, common in agrochemical and 

pharmaceutical intermediates, these high temperature conditions are often unsuitable. 

In liquid ammonia, P. Ji used copper (I) iodide and ascorbic acid as catalysts for the 

ammonolysis of halobenzenes at a comparatively moderate temperature (100 °C, 18 

hr). 
66

 

1.3.2.2 Ammonolysis of ketones 

Pinck et al found that benzophenone shows no reaction in liquid ammonia after 

several weeks at ambient temperature. 
67

 Sterically hindered aliphatic ketones and aryl 

alkyl ketones react very slowly in liquid ammonia, especially in the absence of any 
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catalyst. For example, acetophenone gives a low conversion to acetophenone-imine 

after heating at 180 °C for 4 hr (Scheme 1.3.13). 
68

 

 

Scheme 1.3.13 

With the addition of excess aluminium chloride, a higher yield of 30 % was observed 

and the method can be applied to a number of other ketones such as fenchone, 

camphor and methyl-p-tolyl ketone (Scheme 1.3.14) 

 

Scheme 1.3.14 

P. Ji showed that ammonium salts can increase the yields with a reduced temperature 

and reaction time. 
69

 With added ammonium chloride, benzophenone was converted to 

the imine with a yield > 80 % after 12 hr in liquid ammonia at room temperature. The 

yield is dependent on NH4Cl concentration and P. Ji proposed that this could be for 

two reasons; firstly, the ammonium ion may act as a Lewis acid to activate the 

carbonyl group, facilitating attack from the ammonia nucleophile; secondly, it may 

significantly shift the equilibrium to the formation of the imine by removing water 

from the system (Scheme 1.3.15). 
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Scheme 1.3.15 

Other catalytic processes have been explored to convert ketones to imines and give 

high yields with much reduced reaction times. Titanium dioxide (anatase) has been 

used as the catalyst in a process patented by BASF for the conversion of 

benzophenone to the imine with yields > 95 % (Scheme 1.3.16). 
70

 Imine products are 

very useful commodities as intermediates for primary amine synthesis via reduction in 

liquid ammonia. 

 

Scheme 1.3.16 

1.3.2.3 Amide synthesis 

Like amines, the carboxylic amide group is an important functional group found 

widely in raw materials for industrial production, pharmaceuticals and many 

consumer products. In the field of medical research, a recent patent describes the high 

anti-tumor effects of N-vanillyl fatty acid amides, which are themselves similar in 

structure to Capsaicin, the active component of chilli peppers (Scheme 1.3.17).
71, 72
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Scheme 1.3.17 

Additionally, capsaicinoids, with highly effective irritant properties, have found 

widespread use in chemical warfare, deployed primarily for personal protection and 

riot control. 
73

 The amide group is also a key functional group of many herbicides 

used in the agrochemical industry such as Isoxaben and Propyzamide. 
74

 Thus the 

synthesis methods for amides are of high importance to the chemical industry,  

Amides can be prepared in a number of ways, from both ester and non-ester starting 

materials.  

One of the most common synthesis methods for amides using a non-ester starting 

material is the Schotten-Baumann reaction. First described by C. Schotten and E. 

Baumann in 1883, this reaction uses an acyl chloride and amine to prepare amides 

(Scheme 1.3.18). 
75, 76

 

 

Scheme 1.3.18 

Amides can be prepared by the direct amidation of carboxylic acids with an amine, 

but generally require elevated temperatures to remove water (Scheme 1.3.19). 
77
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Scheme 1.3.19 

Veitch et al showed that a number of primary amides can be prepared from esters 

using magnesium nitride as a source of ammonia with good yields obtained (Scheme 

1.3.20). 
78

 

 

Scheme 1.3.20 

Primary amides can be prepared by reacting esters in liquid ammonia with the 

liberation of amide and alcohol (Scheme 1.3.21) 

 

Scheme 1.3.21 

The ammonolysis of esters is discussed in further detail in Chapter 3. 
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Chapter 2 - Experimental 

2.1 Materials and synthesis 

2.2 High pressure equipment for liquid ammonia 

2.3 Instruments and other equipment 

2.4 General procedures 
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2.1 Materials and synthesis  

2.1.1 General  

The majority of organic and inorganic chemicals were purchased from commercial 

providers Sigma-Aldrich and Acros and were used directly without any further 

purification. Solvents were of Reagent or HPLC grade and likewise were purchased 

from general commercial providers and were used without any further purification.  

Candida antarctica Lipase B (CALB) was obtained from Sigma-Aldrich as 

immobilised lipase on acrylic resin beads (also known as Novozyme 435). The 

macroporous beads have a diameter of 0.3-0.9 mm and their activity was reported as 

11075 units per gram of bead. Lipases from Candida rugosa and Candida antarctica 

in powdered form were also obtained from Sigma. 

Lewatit VP OC 1600 support beads (enzyme free) were supplied by Lanxess, 

Germany and were oven dried (≈ 90 °C) prior to use.  

Liquid ammonia was purchased from BOC Ltd. and has 99.98 % purity with small 

levels of moisture (<200 ppm) and also some oil impurities (<5 ppm). 
79

 Once 

distilled from the ammonia cylinder to the condensing vessel, no further purification 

was required prior to use. 

2.1.2 Preparation of esters for ammonolysis reactions 

2.1.2.1 Preparation of aryl benzoates (Scheme 2.1.1) 

 

Scheme 2.1.1 

The general method for the preparation and purification of phenyl benzoate, 4-

methoxyphenyl benzoate and 4-chlorophenyl benzoate was as follows: benzoyl 

chloride (5 ml, 43 mmol) was added in portions to the phenol (~50 mmol) in a 50 ml 
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conical flask. The mixture was shaken vigorously and left for 24 hr. The white 

precipitate was isolated by Büchner filtration and washed through with water. The 

ester was then dissolved in DCM with a further water wash (liquid-liquid extraction). 

The DCM was removed under rotary evaporation and fine ester crystals oven dried 

(50 °C) to constant mass. Purity was measured using GC-MS (>99 %). An example of 

GC-MS chromatogram and spectrum with NIST library match for phenyl benzoate 

can be seen in Figure 2.1.1 and Figure 2.1.2. 

 

Figure 2.1.1 GC-MS chromatogram for phenyl benzoate giving peak purity of > 99 

%. 

 

Figure 2.1.2 Mass spectrum of phenyl benzoate with positive match to the NIST 

database m/z = 198.0. 

Aryl benzoates were characterised by MS, NMR, IR and melting point analysis. 

Phenyl benzoate and 4-chlorophenyl benzoate are not novel compounds and so, where 
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possible, analytical data and physical properties are compared to those in literature. 

The bulk of available data is from online commercial suppliers and chemical 

databases. 4-methoxyphenyl benzoate appears to be a novel compound. 

Phenyl benzoate: observed m/z =198.1; 
1
H NMR (400 MHz, CDCl3, relative to TMS 

δ = 0): δ = aromatic hydrogens 7.25 (m, 3H), 7.44 (m, 2H), 7.52 (m, 2H), 7.65 (m, 

1H), 8.21 (m, 2H)
80

;
 13

C NMR (100 MHz, CDCl3, relative to TMS δ = 0): δ = 

aromatic carbons 121.8, 125.9, 128.5, 129.5, 130.1, 133.6, 150.9, carbonyl carbon: 

165.2 
80

; IR C=O stretch 1725 cm
-1 80, 81

; m.p 69 °C 
82

; white needle-like crystals. 

4-cholorophenyl benzoate: observed m/z = 232.0; 
1
H NMR (400 MHz, CDCl3, 

relative to TMS δ = 0): δ = aromatic hydrogens 7.17 (m, 2H), 7.39 (m, 2H), 7.52 (m, 

2H), 7.65 (m, 1H), 8.19 (m, 2H);
 13

C NMR (100 MHz, CDCl3, relative to TMS δ = 0): 

δ = aromatic carbons 123.1, 128.6, 129.5, 130.2, 131.3 133.8, 149.4, carbonyl carbon: 

164.9; IR C=O stretch 1727 cm
-1 83

; m.p 88 °C 
84

; white flake-like crystals. 

4-methoxyphenyl benzoate: observed m/z = 228.1; 
1
H NMR (400 MHz, CDCl3, 

relative to TMS δ = 0): δ = 3.83 (s, 3H, methyl R-O-CH3), aromatic hydrogens 6.94 

(m, 2H), 7.13 (m, 2H), 7.51 (m, 2H), 7.63 (m, 1H), 8.20 (m, 2H); 
13

C NMR (100 

MHz, CDCl3, relative to TMS δ = 0): δ = 55.6 (methyl R-O-CH3), aromatic carbons 

114.5, 122.5, 128.6, 130.2, 133.5, 144.2 157.3, carbonyl carbon 165.6; IR C=O stretch 

1729 cm
-1

; m.p = 90 °C; white powder.  

2.1.2.2 Preparation of alkyl phenylacetates (Scheme 2.1.2) 

 

Scheme 2.1.2 

The general method for the preparation and purification of 2-methoxyethyl 

phenylacetate and propargyl (2-propyn-1-ol) phenylacetate was as follows: Phenyl 

acetyl chloride (3 ml, 22 mmol) was added in portions to the alcohol (~30 mmol). The 

set-up in Figure 2.1.3 was used to form a white smoke of ammonium chloride by 

blowing in ammonia gas and compressed air.  
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Figure 2.1.3 Set up for the preparation of phenylacetate esters. Compressed air (1) 

and ammonia gas (2). Courtesy of Dr. H. Sun. 

Ammonium chloride and the amide from the acid chloride and ammonia are both 

insoluble in the liquid ester product. The slurry is filtered by syringe filter and was 

solubilised in DCM and further washed with water. DCM was removed by rotary 

evaporation to leave an oily ester product. GC-MS was used to confirm purity of 

compounds (>98 %). Figure 2.1.4 shows and example of a GC-MS chromatogram for 

propargyl phenylacetate and Figure 2.1.5 shows the mass spectrum obtained for 

propargyl phenylacetate. 

 

Figure 2.1.4 GC-MS chromatogram for propargyl phenylacetate giving peak purity of 

> 98 %. 
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Figure 2.1.5. Mass spectrum for propargyl phenylacetate m/z = 174.1. 

The alkyl phenylacetates appear to be novel compounds and so where characterised 

by MS, NMR and IR. 

Methoxyethyl phenylacetate: observed  m/z = 194.1; 
1
H NMR (400 MHz, DMSO-d6, 

relative to TMS δ = 0): δ = 3.25 (s, 3H, methyl R-O-CH3), 3.52 (t, 2H), 3.69 (s, 2H), 

4.16 (t, 2H), aromatic hydrogens 7.2-7.4 (m, 5H); 
13

C NMR (100 MHz, DMSO-d6, 

relative to TMS δ = 0): δ = 40.6, 58.5, 63.9, 70.1, aromatic carbons 127.2 128.7, 

129.7, 133.7, carbonyl carbon 171.6; IR C=O stretch 1737 cm
-1

; colourless oil. 

Propargyl phenylacetate: observed m/z = 174.1; 
1
H NMR (400 MHz, DMSO-d6, 

relative to TMS δ = 0): δ = 3.51 (t, 1H), 3.70 (s, 2H), 4.7 (d, 2H), aromatic hydrogens 

7.2-7.4 (m, 5H);
 13

C NMR (100 MHz, DMSO-d6, relative to TMS δ = 0): δ = 40.3, 

52.4, alkyne carbons 78.2 and 78.8, aromatic carbons 127.3, 128.8, 129.8, 134.4, 

carbonyl carbon 170.9; IR C=O stretch 1736 cm
-1

, C≡C stretch 2125 cm
-1

, H-C≡ 

stretch 3287 cm
-1

; pale orange oil. 



31 
 

2.1.3 Preparation and characterisation of surfactants for aggregation studies 

2.1.3.1 Decyltrimethylammonium iodide (DTAI) (Scheme 2.1.3) 

 

Scheme 2.1.3 

In a 25 ml round bottom flask, DTAI was prepared by the reaction of N,N-

dimethyldecylamine (2 ml, 0.00841 mol) with excess methyl iodide (5 ml, 0.0807 

mol) at room temperature for approximately 1 hr. The white solid product was washed 

repeatedly with DCM and filtered under vacuum. Excess solvent was removed by 

oven drying to constant mass (90 °C, 72 hr). Mass (yield %) = 2.41 g (87 %).GC-MS 

was used to confirm the sample contained none of the methyl iodide and N,N-

dimethyldecylamine reactants - a blank chromatogram was observed. 

DTAI appears to be a novel compound and so was characterised as follows: 

ESI-MS was used to confirm the accurate mass of the compound (Figure 2.1.6). 
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Figure 2.1.6 Mass spectrum of compound. Observed major ion m/z = 200.2375 and 

observed neutral mass = 200.2380, consistent with decyltrimethylammonium cation 

(200.2378 g/mol). Mass difference = -1.04 ppm. 

NMR was also used to confirm the structure of DTAI with 
1
H NMR peaks integrating 

to the correct number of hydrogens and 
13

C NMR DEPT-135 for analysis of -CH2/-

CH3 groups: 

1
H NMR (400 MHz, D2O, relative to TSP δ = 0): δ = 0.9 (t, 3H), 1.3 (m, 14H), 1.8 (m, 

2H), 3.1 (s, 9H), 3.3 (t, 2H); 
13

C NMR (100 MHz, D2O, relative to TSP δ = 0): δ = 

16.2 (CH3), 24.9 (CH2), 25.0 (CH2), 28.2 (CH2), 30.9 (CH2), 31.2 (CH2), 31.3 (CH2), 

31.4 (CH2), 34.0 (CH2), 55.5 (3 x CH3), 69.6 (CH2); IR: C-H stretch 2900 cm
-1

, C-H 

bend 1474 cm
-1

; m.p 196 °C; white powder. 
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2.1.3.2 Perfluorinated fatty acid amides (Scheme 2.1.4) 

 

Scheme 2.1.4 

Fluorinated amides used for micelle studies in liquid ammonia were either difficult to 

obtain from the usual commercial sources or were generally too expensive for the 

quantity required so that their synthesis, purification and characterisation was 

favoured. Perfluorinated amides were prepared directly from the reaction of the 

methyl ester in liquid ammonia, or in some cases where the methyl ester was not 

available, it was itself synthesised from the carboxylic acid.  

For example, methyl perfluorodecanoate (C10) was prepared by the following 

procedure: 

Perfluorodecanoic acid (5 g, 0.0097 moles), obtained from Apollo Scientific, was 

heated in neat methanol (20 ml) at 50 
°
C and the reaction monitored by GC-MS until 

no more acid was observed. When undisturbed, a phase separation was visible 

between the liquid ester and methanol, highlighting the relatively poor miscibility of 

fluorinated compounds even in organic solvents. The methyl ester layer was carefully 

removed by pipette and isolated by liquid-liquid extraction into DCM with a further 

water wash to remove any traces of the water by-product and methanol. The DCM 
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was removed under vacuum by rotary evaporation which would also remove any 

remaining methanol and the ester structure was confirmed by GC-MS with positive 

match to the NIST database. The purity was measured by GC-MS (>99 %). Mass 

obtained = 4.243 g (yield 83 %). 

Procedure for fluoroamide synthesis was as follows: 

Perfluorinated fatty acid methyl ester (approx. 2 g, 0.005 moles) was reacted in liquid 

ammonia (20 ml) at room temperature for 24 hr. GC-MS was used to monitor the 

reaction to confirm disappearance of the ester. Ammonia was allowed to evaporate 

and the white powdered product was solubilised in DCM and washed with water. 

After rotary evaporation to remove excess DCM and methanol, the powder was oven 

dried to constant mass (90 °C, 48 hr). 

Yields (%), appearance  

Perfluoroheptanamide (C7): 1.540 g (88 %), white powder. 

Perfluorooctanamide (C8): 1.821 g (89 %), white powder. 

Perfluorononanamide (C9): 2.280 g (93 %), white powder. 

Perfluorodecanamide (C10): 1.816 g (86 %), white powder. 

Characterisation of fluoroamides: 

Some of the fluorinated amides are available from online suppliers but, apart from 

some melting points provided in the MSDS (material safety data sheets), their 

characterisation data and other properties does not appear to be readily available. 

Therefore, the newly synthesised fluoroamides were characterised as follows: 

ESI-MS was used for accurate mass analysis. An example of an ESI-MS trace for the 

C7 fluoroamide can be seen in Figure 2.1.7 and full ESI-MS data for all fluoroamides 

is in Table 2.1.1.  
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Figure 2.1.7 ESI-MS of perfluoroheptanamide. Major m/z = 364.0006 [M+H]
+
.  

Table 2.1.1 ESI-MS data for fluoroamides.  

Fluoroamide 

carbons 

Major peak 

observed m/z 

[as ion] 

Observed 

neutral mass 

Theoretical 

neutral mass 

Mass 

difference 

(ppm) 

7 
364.0006 

[M+H]
+
 

362.9933 362.9929 -1.16 

8 
413.9974 

[M+H]
+
 

412.9902 412.9897 -1.16 

9 
481.0214 

[M+NH4]
+
 

462.9874 462.9865 -1.86 

10 
513.9908 

[M+H]
+
 

512.9839 512.9833 -1.21 

The fluoroamides were also characterised by NMR and Table 2.1.2 shows 
19

F NMR 

chemical shifts, multiplicity and integration data for the fluoroamides.  
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Table 2.1.2 
19

F NMR data for fluorinated amides (400 MHz, DMF, relative to 

trifluoroacetic acid δ = -75.51).  

Fluoroamide 

carbons 

 

19
F shift ppm  

(multiplicity, number of fluorines from integration)
†
 

terminal -CF3 α -CF2 

‘middle’ 

 -CF2- 

-CF2 adjacent 

to terminal 

7 
-80.4 

(t, 3F) 

-118.4 

(t, 2F) 

-121.8 

(m, 6F) 

-125.7 

(m, 2F) 

8 
-80.6 

(t, 3F) 

-118.3 

(t, 2F) 

-121.8 

(m, 8F) 

-125.7 

(m, 2F) 

9 
-80.8 

(t, 3F) 

-118.6 

(t, 2F) 

-121.9 

(m, 10F) 

-125.8 

(m, 2F) 

10 
-80.8 

(t, 3F) 

-118.6 

(t, 2F) 

-122.0 

(m, 12F) 

-125.9 

(m, 2F) 

†19
F NMR chemical shifts, multiplicity and integration patterns were consistent with 

those of aqueous solutions of fluorinated carboxylates in the literature.
85

 

Table 2.1.3 Melting points and IR analysis of fluoroamides.  

Fluoroamide 

carbons 
m.p (°C) 

IR shifts (cm
-1

) 

C=O N-H stretch N-H bend 

7   121
[a]

 1703 3194 +3373 1633 

8   138
[b]

 1702 3195 + 3373 1633 

9 151 1702 3192 + 3374 1632 

10   160
[c]

 1703 3194 + 3373 1633 

  [a][b][c] melting points consistent with MSDS data from online suppliers.
86, 87, 88 

GC-MS was used to check purity (Figure 2.1.8) and confirm removal of MeOH. All 

fluorinated amides gave a peak purity of > 98 %. 
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Figure 2.1.8 GC-MS chromatogram of perfluoroheptanamide in DCM. 

2.2 High pressure equipment for liquid ammonia 

2.2.1 Reaction vessels, glassware and cells 

2.2.1.1 Burettes and condenser vessels 

 

Figure 2.2.1 Burette (left) and ammonia condensing vessel (right). 
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Glassware was supplied by either Hampshire Glassware (R&D) Ltd. (Southampton, 

UK) or Cambridge Glassblowing Ltd. (Cambridge, UK). All glassware used for 

reactions in liquid ammonia at around room temperature was pressure tested up to 35 

bar using a HPLC pump (see safety section in Appendix 7.1 for full details). The 

ammonia condensing vessel was not calibrated and had a total volume capacity of 

approximately 40 ml, whereas the burette was calibrated, with a total volume of 

around 30 ml (Figure 2.2.1). The calibration of the burette permitted a minimum 

volume of 0.5 ml and allowed reasonable accuracy when dispensing liquid ammonia 

for reactions, as usually 5-10 ml was required. The condensing vessel and burette 

were fitted with standard Omnifit thread adaptors (1/4”) which allowed for gas tight 

connections between glassware via PTFE tubing and valves.  

2.2.1.2 Reaction Vessels 

 

Figure 2.2.2 High pressure rated jacketed (left) and non-jacketed (right) vessels for 

reactions in liquid ammonia. 

Reaction vessels were acquired from the same glass suppliers as above and likewise 

were pressure tested to the same capacity. For general liquid ammonia reactions, two 

types of vessels were used (Figure 2.2.2). A jacketed vessel was used for reaction 

kinetics, whereby the temperature in the vessel could be regulated, and a non-jacketed 
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vessel was available for other reactions where temperature control was not vital, such 

as in the preparation of the fluorinated amides. Both vessels had a total volume 

capacity of approximately 15 ml and usually the maximum volume used was roughly 

10 ml. The vessels were equipped with a standard GL14 screw fitting, which can be 

fitted with a GL14 screw-on lid. The lid comprised of a silicone rubber seal coated in 

PTFE which was inert to the ammonia and other chemicals used in the vessel. 

Likewise, the reaction vessels were equipped with the standard Omnifit
 
thread adaptor 

necks for easy connection between reaction vessels, burette and condensing vessel. 

This allowed for easy sampling of reactions under pressure via tubing, venting 

solutions and injecting through a septa to initiate reactions.  

The glassware/reaction-vessel used for the conductivity measurements was similar to 

that used for the general room temperature reactions (ester solvolysis etc.). It was, 

likewise, supplied by HGL, fitted with 2 standard Omnifit necks and equipped with a 

thermo jacket for the necessary temperature regulation. The neck of the reaction 

vessel however was a larger standard GL18 thread to allow the conductivity probe to 

fit tightly into the vessel through a GL18 hollowed screw cap.  

2.2.1.3 NMR tubes 

High pressure, quick valve NMR tubes (Figure 2.2.3) were purchased through Sigma-

Aldrich (supplier Wilmad-Lab Glass) and were pressure rated to 14 bar (200 psi). 

They are designed specifically for 500 MHz NMR instruments with a tube length of 7 

inches, outside diameter (O.D.) of 5 mm and wall thickness of 0.38 mm. The top inlet 

valve of the pressure tube has a standard Swagelok connection allowing for easy 

connection to the Omnifit apparatus and thus practical and safe charging of the NMR 

tube from the reaction vessel. 

 



40 
 

 

 

Figure 2.2.3 Diagram of high pressure NMR tube. 

2.2.1.4 UV cell 

 

Figure 2.2.4 High pressure UV cell for liquid ammonia studies 



41 
 

The high pressure UV cell was designed by J. Griffin and Dr. H. Sun and constructed 

by the University of Huddersfield Engineering department using a CNC (Computer 

Numerical Control) cutting machine. It is cut out of a solid aluminium block and has 

Swagelok threads allowing for easy connection to the Omnifit apparatus and reaction 

vessels. The windows were made from Quartz glass (diameter 10 mm, width 3 mm) 

supplied by UQG Optics. The window frame was sealed tightly with PTFE O-rings 

(I.D 6 mm, C.S 1 mm) supplied by Polymax.    

2.2.2 Other 

2.2.2.1 High pressure syringe  

To maximise accuracy with kinetic measurements, reactions were initiated by 

injection of the substrate into the liquid ammonia vessel. The high pressure syringe 

was obtained from SGE, has a total volume capacity of 1 ml, with the minimum 

volume unit of 0.01 ml. It is pressure rated to 33 bar (500 psi) and is equipped with a 

special side-hole needle with a length of 71 mm and an outside diameter of 1.07 mm. 

The syringe has a standard Swagelok fitting and a gas tight PTFE on/off valve.  

 

Figure 2.2.5 High pressure syringe obtained from SGE analytical science 

2.3 Instruments and other equipment  

2.3.1 General  

2.3.1.1 Thermo regulator 

For the majority of liquid ammonia reactions, where temperature regulation was 

required (kinetics), the temperature was controlled at 25 °C. Conductometric studies 

were performed at -15 °C. The vessel with the jacket allows connection to a thermo 

regulator. The thermo regulator used was a Huber-Unistat Tango Nuevo (Figure 

2.3.1) which allows temperature control of the reaction vessel ranging from -40 °C to 



42 
 

200 °C with good accuracy (± 0.01 °C). Silicone based thermo oil is used in the vessel 

jacket. 

 

Figure 2.3.1 Thermo regulator Huber-Unistat Tango Nuevo for accurate temperature 

regulation 

2.3.2 Analytical 

2.3.2.1 GC-FID/GC-MS 

Gas chromatography was used in this project to monitor reactions, identify products 

and assist characterisation of newly synthesised compounds. For quantitative analysis 

(purity and monitoring reactions), an Agilent Series 7980 GC with flame ionization 

detection (FID) was used. When identification of products/reactants was required 

(qualitative analysis), Agilent Series 7890A GC with MS or QQQ was available. This 

could also be used to monitor reactions but is generally not as accurate for 

quantitative analysis as the GC-FID. The choice of column and oven parameters used 

for a particular GC analysis was dependant on the analyte of interest such as its 

polarity or boiling point. For the typical analysis of an ester ammonolysis reaction, the 

parameters would be as follows: 

Column:   Agilent J+W 19091J-433 HP-5 

Dimensions:   30 m x 0.25 mm x 0.25 µm  

Inlet:    250 °C 

Split ratio:   50:1 
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Injection volume:  10 µl  

Carrier:    Helium (16.1 psi, 1.5 mL/min) 

Oven initial (hold):  45 °C (2 minutes) 

Ramp rate:   20 °C/min up to 320 °C 

Oven end (hold):  320 °C (2 minutes) 

The software used for GC-FID and GC-MS data acquisition and analysis was Agilent 

Chemstation and Enhanced Mass Hunter, respectively.  Figure 2.3.2 shows a TIC 

(total ion content) gas chromatogram from a typical reaction sample, from which the 

peaks can then be identified using a NIST MS Search 2.0 mass spectral library (Figure 

2.3.3). 

 

Figure 2.3.2 TIC gas chromatogram obtained from GC-MS analysis of a sample from 

the ammonolysis of propargyl benzoate in liquid ammonia at 25 °C. 
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Figure 2.3.3 NIST MS Search 2.0 library identification of ester, amide and internal 

standard from the TIC in Figure 2.3.2. 

GC oven parameters for oleamide analysis: 

Oven initial (hold):  40 °C (2 minutes) 

Ramp rate:   5 °C/min up to 80 °C 

    7 °C/min up to 160 °C 

    9 °C/min up to 200 °C 

    20 °C/min up to 280 °C 

Oven end (hold):  280 °C (10 minutes) 

2.3.2.2 Conductivity cells 

For conductivity measurements, 2 types of cell were used (Figure 2.3.4). A 5-ring 

conductivity cell with a PEEK (polyether ether ketone) shaft was supplied by 

Metrohm. A glass bodied conductivity cell (K=1) with platinum electrodes was 

obtained from Jenway. Before experiments, the cell was calibrated using a 0.01 M 
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potassium chloride solution in water which gives a conductance of 1413 µS/cm at 25 

°C.   

 

Figure 2.3.4 Both the Metrohm 5-ring conductivity cell (left) and Jenway platinum 

electrode conductivity cell (right) were used for conductivity measurements in liquid 

ammonia. 

2.3.2.3 Conductivity meter/module  

The Jenway platinum electrodes conductivity cell was used with a standard Jenway 

4510 conductivity meter which gave a simple conductivity reading and allowed for 

storage of up to 32 readings. The 5-ring cell was used with the more advanced 

Metrohm 856 Conductivity Module which allowed connection to a computer. As well 

as taking readings manually, the module‟s Tiamo software has an automated function 

for periodically taking measurements and tabulating/plotting the data against time. 

This is particularly useful for measuring the kinetics of reactions by conductivity, 

which, for our work in liquid ammonia, is a relatively novel concept, although this 

method was not used to any major extent in this project. 

2.3.2.4 NMR 

Fluorine-19 NMR measurements in liquid ammonia were performed on Bruker 500 

spectrometer operating at 470.5 MHz and other 
1
H NMR spectra (for product 

identification/characterisation) were recorded using a Bruker 400 spectrometer 

operating at 400.1 MHz. All raw NMR data was processed using Bruker Top Spin 3.1 

software.  
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2.3.2.5 UV-vis  

UV-Vis spectra were acquired using a Cary 4000 UV-Vis spectrophotometer supplied 

by Agilent Technologies. For liquid ammonia work, the 12 cell compartment block 

was removed and a steel frame was modified to allow for the new high-pressure 

ammonia cell to sit correctly in position. The correct positioning of the cell was 

calibrated using a standard dye solution of methyl yellow in water and was tested in 

both the standard UV cell and high pressure cell to give consistent readings of 

absorbance and λmax. Due to the modified cell compartment, temperature regulation 

was not possible when using the high pressure UV cell for liquid ammonia work. 

2.4 General procedures  

2.4.1 Ammonolysis reactions 

2.4.1.1 Pressure glassware set-up and handling of liquid ammonia  

There is always a desire to continually improve our handling procedure of liquid 

ammonia to create a safe and practical method for working with this solvent of such 

high pressure at room temperature. The transfer of liquid ammonia between glass 

condensers, burettes and vessels requires a pressure difference and some of our early 

methods relied on excessive heating and/or cooling of the glassware to achieve the 

desired outcome. Condensing of the ammonia from the ammonia tank into the 

condensing vessel was initially done by cooling the condensing vessel with liquid 

nitrogen. Likewise, transfer from the condensing vessel to the burette was achieved by 

intensely heating the nitrogen chilled condensing vessel with a hot air blower. The 

repeated process of heating and cooling the glassware can stress the glass 

unnecessarily and could potentially be extremely dangerous.  

An improved method was developed for the handling and transfer of liquid ammonia, 

reducing the extreme heating and cooling of vessels and thus reducing the overall 

hazards of the procedure (Figure 2.4.1).  
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Figure 2.4.1 Set-up for the handling of liquid ammonia using high pressure glassware 

The general procedure for setting up a liquid ammonia reaction/solution in the glass 

vessel reactor (D) is as follows: The condensing vessel (B) is cooled gently in an ice 

slurry bath and ammonia is condensed into the vessel from the ammonia cylinder (A) 

by opening valves (V1) and (V2). Valve (V3) is opened to vent ammonia gas from 

vessel (B), displacing air and allowing for easy transfer. When condensing vessel (B) 

is approximately 80 % full, it is removed from the ice bath and ammonia continues to 

condense until the vapour pressure in vessel (B) reaches the same as the ammonia 

cylinder (A). At this point, valves (V1), (V2) and (V3) are closed. Valve (V2) is then 

connected to the three-way valve (V4) and both are opened to allow transfer of 

ammonia from vessel (B) to the burette (C). Vent valve (V5) is opened briefly to 

displace air and aid transfer of liquid ammonia into the burette (C). When a sufficient 

volume of ammonia has been transferred, valves (V2) and (V4) are closed. The 

reaction vessel (D) is purged with excess ammonia from the condensing vessel (B) by 

opening 2-way valves (V2), (V6) and (V7) and then 3-way valve (V4) in order to 

connect these vessels. After adequate purging of ammonia gas, the burette (C) is then 

connected to the reaction vessel (D) by switching the 3-way valve (V4) allowing for 



48 
 

an accurate delivery of liquid ammonia. Vent valve (V7) can be used to aid transfer 

by displacing air in the reaction vessel (D). If using a jacketed reaction vessel (D) 

there was an option to cool it to around 5 °C using the Huber-Unistat, allowing for 

easier transfer from the burette. This can then be ramped slowly back up to the desired 

temperature (usually 25 °C). During reactions, the 2-way valve (V6) was 

disconnected from the 3-way valve (V4) allowing for sampling from the reaction 

vessel when required. 

During the project, the liquid ammonia handling method was further improved by 

using an ammonia tank recycled from a GC hydrocarbon trap. This cylinder was made 

form pure aluminium and so completely inert to ammonia and has a working pressure 

rating of 250 psi (17 bar). Thus ammonia did not need to be re-condensed for further 

purification every time into the condensing vessel (B) and could be transferred 

directly to the burette (C) by tipping the cylinder upside down. This reduces the time 

taken for setting up liquid ammonia experiments and also improves safety as less 

glassware (with risk of explosion) is required.  

2.4.1.2 General solvolysis reaction procedure 

The following procedure is for a typical ester ammonolysis reaction but also applies to 

other reactions such as the ammonium catalysed ammonolysis of esters and enzyme 

catalysed ammonolysis of triglycerides. Other reactants/catalysts (i.e. CALB enzyme, 

ammonium chloride) were added to the vessel along with the internal standard when 

required.  

An internal standard was used due to the inconsistency of the sampling volume. For 

most reactions biphenyl was used as an internal standard. Biphenyl (~ 15 mM) was 

added to the reaction vessel which was then sealed tightly with the GL14 screw cap.  

An accurate amount of liquid ammonia was charged from the burette as described 

above. The solution was left to equilibrate at 25 °C for about 1 hour with the magnetic 

stirrer switched on. Diethyl ether solutions of the substrate (e.g. ester) were prepared 

with a concentration of around 0.5 to 1 M. An accurate amount (0.1 to 0.3 ml) of these 

solutions was injected into the vessel using the high pressure syringe through the 

Omnifit injection port to initiate the reaction. The concentration of substrate in the 

vessel was therefore usually between 5 and 30 mM. At timed intervals, the 2-way 

valve (V6) was quickly opened and closed allowing for sample collection (~ 0.05 ml) 
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into a glass vial. The ammonia was allowed to boil off and then the sample was 

prepared for GC (FID or MS) analysis by diluting in DCM or chloroform. 

2.4.1.3 Data analysis and kinetic modelling procedure 

Exemplified below is the ammonolysis of propargyl phenylacetate in liquid ammonia 

at 25 °C: 

Samples were analysed by GC-MS in order to identify the propargyl phenylacetate 

ester peak, amide product (phenyl acetamide) and biphenyl internal standard. If peak 

retention times were known then GC-FID was used instead. All peaks were integrated 

to the baseline and the ester and amide peaks were normalised against the internal 

standard (Table 2.4.1). 

Where: 

                
                                             

                                         
 

Table 2.4.1 GC-MS raw data and normalised peak areas for the ammonolysis reaction 

of propargyl phenylacetate in liquid ammonia at 25 °C. 

time (min) area ester area IS area amide NA ester NA amide 

1 44443126 15434028 572978 2.880 0.037 

10 66016882 25275522 5190534 2.612 0.205 

30 59581296 25488932 15359122 2.338 0.603 

120 14537098 9495286 13823949 1.531 1.456 

180 19630529 18554522 41877268 1.058 2.257 

240 5994615 9104869 22751273 0.658 2.499 

360 5662754 23527478 68168165 0.241 2.897 

600 1408724 15384845 49475286 0.092 3.216 

720 1150428 16494623 53220816 0.070 3.227 

IS = internal standard; NA = normalised area 

A reaction profile was obtained by plotting normalised area of the ester and amide as 

a function of time using Microsoft Excel (Figure 2.4.2). 
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Figure 2.4.2 Reaction profile for the ammonolysis reaction of propargyl 

phenylacetate in liquid ammonia at 25 °C.  

Due to the vast excess of liquid ammonia (~ 35 M) in comparison to the ester 

substrate (5 – 30 mM) these reactions are pseudo-first-order: 

                    [     ] [   ]                               [   ]  [     ]       

                                                                   [   ]⁄  

The data can then be transferred to commercial data fitting software such as Berkeley 

Madonna where a pseudo-first-order rate constant (kobs) can be obtained (Figure 

2.4.3). This is achieved by following both the concentration of the ester starting 

material and amide product using the individual rate laws for both species: 

 [     ]

  
      [     ] 

 [     ]

  
     [     ] 
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Figure 2.4.3 Berkley Madonna data fit to ester and amide for the ammonolysis 

reaction of propargyl phenylacetate in liquid ammonia.  

From the model, a pseudo-first-order rate constant is generated; kobs = 0.00573 min
-1

 

(9.55x10
-5

 s
-1

).  

2.4.2 Conductivity  

2.4.2.1 Glassware and conductance cell set-up for liquid ammonia  

The Metrohm 5-ring cell has a pressure rating of 5 bar, which equates to the vapour 

pressure of liquid ammonia at around 5 °C. For safety reasons, however, it was 

deemed necessary to operate at around 50 % of the quoted pressure rating and so all 

conductivity measurements were carried out at -15 °C (~ 2.36 bar). Both conductivity 

probes have a shaft diameter of 12 mm and when fitted with two EPDM (ethylene 

propylene diene monomer) O-rings and the G19 cap screwed on to the vessel it gave a 

tight fit with no ammonia leaking (Figure 2.4.4). The top of the probe was clamped 

tightly to prevent ejection from the top of the vessel when pressurised.  
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Figure 2.4.4 Conductivity set-up in liquid ammonia with Metrohm 5-ring cell at -

15°C 

2.4.2.2 Conductivity vs. concentration (surfactants) 

Conductance was used as a method for the detection of micelles and aggregates in 

liquid ammonia. The conductivity cell was clamped in place with the cap on and the 

chilled vessel was filled accurately with the appropriate amount of liquid ammonia 

from the burette. Manual readings were taken using either the Jenway platinum or 

Metrohm 5-ring conductivity cell. Initially, the method of increasing the concentration 

of electrolyte in the ammonia was by injecting high concentrations of the electrolyte 

(in ether or THF) into the vessel via the high-pressure syringe. An immediate concern 

here, however, was that the conductivity was not entirely that of the 

electrolyte/ammonia solution but the added solvents, and with the some of the ether 

solvents being notoriously hygroscopic, there was always a risk of higher than 

acceptable water content in the liquid ammonia solution. In addition to this, high 

concentrations of many of the electrolyte solutions for injection couldn‟t be prepared 

due to poor solubility even in the organic solvents and so the injection method was 

rejected. Ideally, the conductivity measurements would just be taken in ammonia 

solutions of the desired electrolyte only, with no additional impurities. A dilution 

method was therefore developed in which the starting concentration of analyte was 
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high and was then gradually diluted with fresh liquid ammonia, taking a conductivity 

reading at each step. This was done by utilising the dip tubing (sample tube) to 

remove a known amount of liquid ammonia solution and adding an accurate, fresh 

portion of ammonia from the burette.  The volume of liquid ammonia below the dip 

tube was found prior to the experiment using water and accurate pipetting. Having 

taken a conductivity reading at the high concentration, the liquid ammonia was then 

expelled from the vessel until the dip tube is reached. Hence, there is now a known 

volume of a particular concentration of electrolyte solution which can be further 

diluted by accurate addition of liquid ammonia from the burette. This process can be 

repeated as many times as required to get the conductivity vs. concentration plot. 

The conductivity of electrolytes in liquid ammonia is much different to that in water 

due to the lower dielectric constant of ammonia which promotes the association of 

free ions into non conducting ion-pair species. A model was developed using a 

quadratic solver to account for the ion-pairing phenomenon and derivation of the 

model can be found in the conductance chapter and appendix where it was used to 

profile the conductance of ionic surfactants for aggregation studies.  

2.4.3 NMR procedure 

Liquid ammonia solutions of the analyte were prepared in a reaction vessel in the 

same manner as described for a general ammonolysis reaction. Solutions for NMR 

studies were also pre charged with a small amount of a deuterated standard (<1 %) 

such as DMSO-d6 to provide a deuterium lock. When studying chemical shift changes 

was the focus of the experiment, a standard compound was also added in small 

quantity (<1 %). For example, ammonium trifluoroacetate was used as standard when 

looking at the chemical shift changes for fluorinated surfactants by Fluorine-19 (
19

F) 

NMR. All 
19

F chemical shifts were adjusted relative to the -CF3 singlet peak of 

ammonium trifluoroacetate (δ = -75.5100 ppm). The NMR tube was cooled in ice-

water bath and the liquid ammonia was transferred carefully from the reaction vessel 

(at room temperature) to the cooled tube. The NMR tube was allowed to warm to 

room temperature before careful transfer to the NMR instrument. Spectra were 

recorded at a regulated temperature of 25 °C. 
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2.4.4 UV procedure  

Liquid ammonia solutions of dye were prepared in the reaction vessel as described for 

the general solvolysis reactions. The high pressure UV cell was cooled in ice bath 

slurry and the liquid ammonia solution was transferred from the reaction vessel. To 

minimise „air bubbles‟ in the UV cell which would give ambiguous readings, the vent 

valve was opened to expel excess ammonia and further cool the cell. This method for 

filling the high pressure UV cell led to concerns that the concentration in the UV cell 

when filled would not be consistent with that prepared in the vessel. This became 

apparent during experiments as repeat runs of the same dye solution in liquid 

ammonia yielded slightly different absorbance results on the UV spec. Thus it was 

concluded that the current set-up of our high pressure UV cell would only really allow 

for simple measurements such as wavelength confirmation rather than measurements 

where accurate absorbance is required such as solubilisation studies and reaction 

kinetics. 
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Chapter 3 - Ammonolysis of esters in liquid 

ammonia 

3.1 Background 

3.2 Results and Discussion 
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J. Griffin, J. Atherton and M. Page, J. Phys. Org. Chem. 2013, 26, 1032-1037 
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3.1 Background 

Analogous to ester hydrolysis in water, esters can react in liquid ammonia to give 

amide and alcohol products and is generally thought to occur by an addition-

elimination type mechanism (Scheme 3.1.1). 

 

Scheme 3.1.1 

Although the intrinsic mechanisms of esters ammonolysis have not been studied to 

any real extent, there are some general trends for the ammonolysis of esters in liquid 

ammonia:
89

 

i. Introducing electron-withdrawing -substituents accelerates the rate of 

ammonolysis. This presumably increases the electrophilicity of the ester 

carbonyl centre. 

ii. The presence of the an ,- double bond decreases the electrophilicity of the 

carbonyl centre resulting in a decrease in the rate of reaction.  

iii. P. Ji found that phenol esters are particularly reactive.
90

 

iv. Alkyl esters are more reactive than the corresponding aryl ester with the same 

pKa of the leaving group alcohol (vide infra). 

v. Ammonolysis rates can be increased with the addition of a metal amide. 

 

Most early studies on kinetics of ester ammonolysis in liquid ammonia explore the 

reactivity of aliphatic esters at -33 °C. Simple, aliphatic esters were found to be very 

resistant to ammonolysis, even at higher temperatures, although it was found that the 

addition of ammonium salts could greatly accelerate the reaction (Table 3.1.1). 
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Table 3.1.1 Some early data for catalysed and uncatalysed ammonolysis of simple 

esters in liquid ammonia.
91, 92

 

Ester substrate conditions yield 

ethyl acetate 130 °C, 24 hr No reaction 

ethyl acetate 130 °C, 24 hr, NH4Cl 43 % 

diethyl malonate 0 °C, 24 hr 9 % 

diethyl malonate 0 °C, 24 hr, NH4Cl 79 % 

 

3.2 Results and Discussion 

3.2.1 Uncatalysed ammonolysis of esters in liquid ammonia 

The solvolysis of a series of alkyl benzoates and alkyl phenylacetates and aryl 

benzoates in liquid ammonia gives the corresponding amide and alcohol/phenol 

products (Scheme 3.2.1). 

 

Scheme 3.2.1 

The corresponding pseudo-first-order rate constants vary significantly with the 

substituent (Table 3.2.1) with the esters of more acidic alcohols being more reactive. 

Phenylacetate esters are roughly five-fold more reactive than the corresponding 

benzoate esters and alkyl esters appear to be more reactive than the corresponding aryl 

ester with same (pKa) alkoxide leaving group.  
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Table 3.2.1 Observed pseudo-first-order rate constants for the solvolysis of various 

esters in liquid ammonia at 25 °C. 

Ester type Alcohol leaving group pKa (aq) of alcohol
[a]

 kobs s
-1

 

Benzoates ethyl 15.93 3.36x10
-8

 

 methyl 15.50 1.07x10
-7

 

 2-methoxyethyl 14.80 3.31x10
-7

 

 propargyl 13.55 1.78x10
-5

 

 vinyl    11.10
[b]

 1.47x10
-2

 

 4-methoxyphenyl 10.21 1.24x10
-3

 

 phenyl 10.00 7.45x10
-3

 

 4-chlorophenyl 9.40 n/a 
[c] 

Phenylacetates ethyl 15.93 1.81x10
-7

 

 2-methoxyethyl 14.80 3.47x10
-6

 

 propargyl 13.55 9.59x10
-5

 

 2,2,2-trifluoroethyl 12.37 1.38x10
-2

 

   [a] reference 
93

 

   [b] reference 
94

 

   [c] reaction too fast to accurately measure  

For alkyl esters of analogous carboxylate substituent, there is a linear relationship 

between the aqueous pKa of the leaving group alcohol and logarithm (log10) of the 

pseudo-first-order rate constant, showing a Brønsted correlation (Figure 3.2.1). 
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Figure 3.2.1 Brønsted plot for the pseudo-first-order rate constants for the solvolysis 

of alkyl esters of phenylacetic (○) and benzoic (▲) acid in liquid ammonia at 25 °C 

against the aqueous pKa of the leaving group alcohol. 

The relatively large βlg values of -1.34 and -1.18 for the solvolysis of alkyl 

phenylacetate and benzoate esters in liquid ammonia respectively, appear to indicate a 

significant development of negative charge on the leaving group alcohol oxygen 

relative to that in the starting ester. At first sight it is tempting to think this is 

indicative of rate-limiting breakdown of the tetrahedral intermediate expelling the 

alkoxide anion. The effective charge on the oxygen in the ester is ≈ 0.7
+
, and the βlg 

indicates the change in effective charge on oxygen in the transition state. 
95, 96

 

However, these reactions are carried out in liquid ammonia and not water, and so 

using the aqueous pKa values to try interpret structure-activity relationships of these 

solvolysis reactions in liquid ammonia is unwise, and certainly inconclusive. For that 

reason, knowledge of how the ionisation constant of the leaving group alcohol varies 

with substituents in liquid ammonia is required. Previous studies in liquid ammonia 

have demonstrated that phenols with aqueous pKa < 7.0, but not those with pKa > 8.5, 

are fully ionised at room temperature, 
97

 and there is a linear relationship between the 

apparent pKa values in liquid ammonia and the corresponding aqueous ones with a 

slope of 1.67 (Figure 3.2.2).  
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Figure 3.2.2 pKa of phenols in liquid ammonia against the corresponding aqueous pKa 

The greater dependence of the acidity of phenols on substituents in liquid ammonia 

compared with water results from the poorer solvation of the phenoxide anions in the 

non-aqueous solvent and as a result their stability is more dependent on the negative 

charge delocalisation through the substituent. It is a reasonable assumption that a plot 

of pKa of the leaving group alcohols in liquid ammonia against their corresponding 

aqueous pKa values would give a slope of at least 1.7, given the value of 1.67 

observed for phenols and the negative charge on alkoxide ions is likely to be more 

localised than that in phenols.  

As a result, the Brønsted βlg values obtained from a reconstituted plot of the log 

observed rate constant against the pKa of the leaving group alcohol in liquid ammonia 

would thus be significantly reduced to around -0.7. This would amend the previous 

assumption of rate-limiting breakdown of the tetrahedral intermediate and suggest a 

reaction mechanism whereby the rate limiting step involves some kind of reaction of 

the tetrahedral intermediate with little C-OR bond fission in the transition state 

(Scheme 3.2.2).  
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Scheme 3.2.2 

Anions are poorly solvated in liquid ammonia compared with water and other polar 

solvents and so although expected to be better nucleophiles in the poorly solvating,  

aprotic system, it is expected that anions will generally be poorer leaving groups in 

liquid ammonia compared with polar solvents. It is therefore anticipated that the 

ammonolysis of esters in liquid ammonia will proceed by the nucleophilic attack of 

ammonia on the ester carbonyl group to form a zwitterionic tetrahedral intermediate 

T
+-

, reversibly, because expulsion of ammonia (k-1) will be faster than that of the 

alkoxide anion (Scheme 3.2.2). Furthermore, aminium ions are fully deprotonated in 

liquid ammonia, and so exist as their free bases.
97,98 

As a consequence, deprotonation 

of the zwitterionic tetrahedral intermediate by solvent ammonia is thermodynamically 

favourable and very rapid (k2) to give the anionic T
-
. However, if the above 

suppositions are true about the „corrected‟ Brønsted βlg values of ~ -0.7, then 

breakdown of the anionic T
-
 cannot be the rate-limiting step as this would be 

incompatible with the rate law for the uncatalysed solvolysis. Given the relative 

instability of anions in liquid ammonia, the most stable form of the tetrahedral 

intermediate is the neutral T
0
, which in the absence of an external catalyst could be 

formed by a „proton switch‟ through the ammonium ion formed within the ion pair by 

a proton transfer  to a solvent molecule.
99

 

Alternatively, it has been proposed that T
- 
may be formed directly by a termolecular 

reaction involving two molecules of solvent, with one acting as a general base, similar 

to that proposed for some „spontaneous‟ pH-independent hydrolysis reactions 

(Scheme 3.2.3) 
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Scheme 3.2.3 Formation of T
-
 through a termolecular reaction involving two 

molecules of solvent ammonia with one acting as a general base 

However, with an autoprotolysis constant giving a pKa of 27.6 (25 °C), compared to 

with 14.0 for water (25 °C), ammonia is much less acidic than water.
35, 100

 This 

reduced acidity renders the proton removal from the attacking ammonia energetically 

unfavourable until after significant N-C bond formation generating substantial 

positive charge on the N (rapid deprotonation of aminium ions). For this reason this 

concerted mechanism is probably less likely than the stepwise formation of the T
0
. 

The reasons for postulating rate-limiting stepwise formation of T
0
 is further supported 

when the effect of an ammonium catalyst on the solvolysis of esters in liquid 

ammonia is explored.  

3.2.2 Ammonium catalysed ammonolysis of esters 

As reported previously, early work on ester solvolysis in liquid ammonia 

demonstrated that the reaction can be catalysed by ammonium ions (Table 3.1.1).  

Likewise, the observed pseudo-first-order rate constants for the solvolysis of 

propargyl benzoate in liquid ammonia significantly increases with ammonium 

chloride concentration at constant ionic strength (Figure 3.2.3).  
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Figure 3.2.3 The dependence of the observed pseudo-first-order rate constants for the 

ammonolysis of propargyl benzoate on the ammonium chloride concentration in 

liquid ammonia at 25 °C. (I = 0.1M KClO4) 

Ionic strength itself has little effect upon the rate of ester solvolysis, with the 

background k0 = 1.78 x10
-5 

s
-1

, compared with 1.97x10
-5

 s
-1

 with the addition of 0.1M 

KClO4. Contrary to this, the observed rate, kobs, increases nearly 10-fold with 0.1M 

ammonium chloride. The corresponding second-order-rate constant, kNH4+ = 1.90x10
-

3
M

-1
s

-1
, and the reaction is thus overall a third-order rate equation: 

               [     ][   ][   
 ] 

On initial inspection, there are a couple of theories as to how the ammonium cation 

may be catalysing the ammonolysis of esters in liquid ammonia; 

Firstly, the ammonium ion could be assisting in formation of a cationic tetrahedral 

intermediate, T
+
,
 
acting as an acid catalyst, concluding a rate limiting nucleophilic 

attack and proton transfer (Scheme 3.2.4).  
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Scheme 3.2.4 Catalysis by the ammonium cation via the acid-catalysed formation of a 

cationic tetrahedral intermediate, T
+
 

However the rate limiting formation of T
+
 does not appear to overcome the difficulty 

of expelling alkoxide ion compared with ammonia. 

Alternatively, the catalytic effect of ammonium on the ammonolysis of esters could be 

due to general acid-catalysed breakdown of the zwitterionic T
+-

 or neutral T
0
 

tetrahedral intermediate by acting as a proton donor to the leaving group alkoxide 

(Scheme 3.2.5). 

 

Scheme 3.2.5 General acid-catalysed breakdown of the zwitterionic T
+-

 (left) or 

neutral T
0 

(right) by the ammonium cation. 

However, Brønsted data generated for the ammonium catalysed reactions advocates 

that the general acid-catalysed breakdown of the T
+-

 or T
0
 by the ammonium is not 

possible. The second-order rate constant for the ammonium chloride catalysed 

solvolysis of methoxyethyl benzoate, kNH4+ = 2.79x10
-5

 M
-1

s
-1

. Using this data point in 

conjunction with the second-order rate constant for the ammonium catalysed 

solvolysis of propargyl benzoate, a two point Brønsted plot can be made generating a 

βlg of -1.46. The same two data points for the uncatalysed solvolysis reactions 

generate a roughly comparable Brønsted βlg of -1.38. Again, using liquid ammonia 
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pKa values, the βlg would be reduced to roughly -0.8 for the uncatalysed and 

ammonium catalysed reactions.  

This surprising observation would indicate that the effective charge on the alcohol 

oxygen in the transition state is similar in both reactions. This would, therefore, imply 

that the ammonium cation does not interact directly with the leaving group, alcoholic 

oxygen.  

It is concluded that the rate-limiting step for the ammonium-ion-catalysed solvolysis 

of alkyl esters in liquid ammonia is the diffusion-controlled protonation of the 

zwitterionic tetrahedral intermediate T
+- 

to give T
+
, which is rapidly deprotonated to 

give T
0
. This is compatible with the suggestion that the rate-limiting step for the 

uncatalysed reactions is the formation of the neutral T
0
 by a „proton switch‟. 
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Chapter 4 - Aggregation Studies 

4.1 Background 

4.2 Aggregation studies on ionic surfactants in water and liquid ammonia - Results 

and Discussion 

4.3 Aggregation studies on perfluorinated amides in liquid ammonia - Results and 

Discussion 
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4.1 Background 

4.1.1 The Cell - the unit of life 

The basic unit of all life is the cell which allows a diverse range of chemical reactions 

to take place within a confined environment. It is in water that chemical structures are 

able to aggregate into spheres, trapping water inside, ultimately allowing life to 

survive and develop. These chemical structures form biological membranes that are 

impermeable to charged species and large molecules and thus allow the concentration 

of biomolecules within the cell to be much greater than the surrounding medium.
101

 

Additionally, the biological membrane allows for the controlled transport of solutes 

and the majority of cell functions such as osmosis, translocation, fusion, intracellular 

interactions, endocytosis and exocytosis are all mediated by the membrane. This 

protective environment and regulation is the basic protective unit of life and without 

the aggregation of these chemical structures into cellular membranes life may not 

have come into being. Hence, one may regard compartmentalisation, the aggregation 

of molecules into well-ordered structures, as one of the fundamental processes of life. 

More complex organisms contain intracellular membranes that perform more 

specialized functions. The cell nucleus and mitochondria, for example, both comprise 

of their own unique cell membranes, providing a distinct intracellular compartment 

enabling them to independently function at their full potential.
102

 

The biological membranes of animal and plant cells are typically made up of 40-50 % 

lipids and around 50-60 % proteins.  As proposed by Singer and Nicholson, these 

lipids and proteins arrange themselves into a cellular membrane best described as a 

fluid-mosaic model (Figure 4.1.1). According to the model, the membrane consists of 

a lipid bilayer composed of glycolipids and phospholipids which incorporates the 

proteins. 
103

 These proteins can be found on the interior or surface of the membrane 

bilayer and along with the lipid molecules are free to diffuse laterally in the plane of 

the membrane, hence the name „fluid-mosaic'. 
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Figure 4.1.1 Fluid-mosaic model of the biological cell membrane.
104

 

The driving force for the formation of the biological membrane arises from the 

chemical structure of the lipid. An example of a phospholipid is shown in Figure 

4.1.2. 

 

Figure 4.1.2 Schematic model of a phospholipid (left) and the general structure of a 

phosphatidylcholine (right).
105

 

Phospholipids, which make up the biological membrane of the cell, are commonly 

regarded as amphiphilic molecules, which mean they consist of a polar, hydrophilic 

head group and a non-polar, hydrophobic tail.  The polar, „water loving‟ head group is 

generally a phosphate group such as a phosphatidyl choline, ethanolamine, serine or 
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phosphatidic acid, and the non-polar, „water hating‟ tails are typically derived from a 

diglyceride portion, often with a palmitate or oleate chain.  

The complex nature of the biological membrane has necessitated the use of simplified 

„models‟  from which a more detailed and better understanding of the membrane can 

be obtained. The prospect of modelling these exquisitely optimized membranes in the 

laboratory is challenging and indeed Fendler has stated that “Mother nature need not 

be slavishly reproduced”.
106

 Simple monolayers, micelles, bilayers, vesicles, host-

guest systems are used as practical models to gain an insight into the workings and 

structure of the biological membrane and are generally referred to collectively as 

„membrane mimetic agents‟.  Additionally, the mimicking of the membrane function 

in these simple model systems can often lead to novel applications such as drug 

encapsulation, molecular recognition and transport and even has potential use in 

photochemical solar energy conversion and storage.
107

 

It is proposed that as a preliminary study to the possible formation of the more 

complex cell structures in liquid ammonia, a simple, membrane mimetic model should 

first be explored. If the simple membrane model can be applied to a liquid ammonia 

solvent system, then the notion that cell like structures can form in this harsh 

environment can be realised. One of the simplest membrane mimetic models that is 

widely studied in all kinds of media is the formation of a monolayered cell-like 

structure known as the micelle, which is comprised of a number of surfactant 

molecules in an aggregated system. 

4.1.2 Surfactants - pseudo-phospholipids  

4.1.2.1 Structure and properties of surfactants 

Chemicals that have the ability to form aggregates in solutions have been recognized 

for their soap-like properties and cleaning ability for thousands of years. One of 

earliest recorded evidence of the utilization of soaps and detergent materials dates 

back to ancient Babylon around 2800 BC.
108

 Likewise, eminent historical papers, such 

as the Egyptian Papyrus Ebers, tell of how the ancient Egyptians used animal fats and 

vegetable oils combined with an alkaline, soda ash type substance which they called 

Trona, for the preparation of soaps used for washing.
109

 Countless more texts 

highlight the utilization of natural fats and oils in ancient societies up to the present, 
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more commercialised, products. There was not much insight into how or why these 

particular compounds behave as they do when in (normally aqueous) solution. In 

modern times, however, these compounds have been studied extensively and there is 

now a great understanding of the structures and properties of these compounds, which 

are commonly known as surfactants - surface active agents. 

Surfactants, sometimes called detergents, have some structural similarities to 

phospholipids and are likewise classed as amphiphilic molecules with distinct 

hydrophobic and hydrophilic regions. The non-polar moiety of the surfactant 

molecule is generally a long chain hydrocarbon tail of varying length and may contain 

an unsaturated bond(s) and even consist of two or more chains. Depending on the 

chemical structure, the polar region of the surfactant molecule can be neutral, cationic, 

anionic or even zwitterionic like the phosphatidylcholine molecule. The classification 

of the surfactant molecule is usually attributed to the nature of this polar, hydrophilic 

head group:  

o Non-ionic: Contains a surface active head group that carries no charge. 

Examples include hydroxyl groups, ethers, acetylene alcohols, glucoside alkyl 

ethers and amides 

o Cationic: Contains a surface active head group with a positive charge. 

Examples include pH-dependent amines (1
0
, 2

0
 or 3

0
) or the permanently 

charged quaternary ammonium salts.  

o Anionic: Contains a surface active head group with a negative charge. 

Examples include sulfates, sulfonates, carboxylates and phosphates. 

o Zwitterionic (amphoteric): Contains a more complex surface active head 

group with both a cationic and anionic head group. The cationic part is most 

commonly an amine (1
0
, 2

0
, 3

0
 or quaternary salt) whereas the anionic part can 

be more variable as above. These head groups tend to be similar in structure to 

the head group found in phospholipids.
110

   

Some examples of these four types of surfactants along with their potential 

applications can be found in Scheme 4.1.1.  
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Scheme 4.1.1 Some examples of the various types of surfactants: (a) Non-ionic 

sorbitol monostearate, used in the manufacture of foods and healthcare products,
111

 (b) 

Cationic cetrimonium bromide, used in buffer solutions for DNA extractions and 

synthesis of gold nano-particles,
112

 (c) Anionic ammonium lauryl sulfate, used in 

shampoos and cleaning products,
113

 (d) Zwitterionic cocamidopropyl betaine, used in 

cosmetics and hand soaps.
114

 

Although the tail group of commercial surfactants can be silicon or fluorocarbon 

based, for almost 99 % of surfactants used in industry the hydrophobic, water 

insoluble tail is made up of hydrocarbon chains, the majority of which are linear due 

to biodegradability concerns.
110  

In many cases, the hydrocarbon tail is derived from 

natural sources such as oils and animal fats although some synthetic sources such as 

petroleum based derivatives are available.  
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In a 2-phase water/organic system, it is the amphiphilic structure that gives the 

surfactant molecule the ability to adsorb at the liquid/liquid interphase, or if in a single 

phase polar system, at the liquid/air interface. Additionally, adsorption of these 

amphiphilic molecules can take place at a liquid /solid interface (Figure 4.1.3). 

 

Figure 4.1.3 Adsorption of surfactant molecules at: (a) aqueous/organic interface, (b) 

liquid/air interface, (c) liquid/non-polar solid interface and (d), liquid/polar solid 

interface.
115,116

 

The adsorption of the surfactant molecule is a consequence of its amphiphilic 

structure, whereby the polar, hydrophilic head group is readily solubilised in the 

aqueous phase and the non-polar hydrophobic carbon chain which has a poor affinity 

for water and so is either solubilized in the organic phase or content to orient towards 

the air, away from the surrounding water. The driving force for the surfactant 

molecule to adsorb at an interface is to reduce the free energy of that specific phase 

boundary.
117

 Similarly, it is this driving force and the need to reduce the free energy 

that ultimately promotes the formation of aggregates from surfactants. 

4.1.3 Micelles and aggregates 

4.1.3.1 Aggregation of surfactants 

When a surfactant is added to an aqueous environment the hydrophilic head group 

interacts strongly with the water molecules by dipole-dipole and ion-dipole forces 

whereas the hydrophobic tail interacts weakly or repulsively with the water. At low 

concentrations the surfactants are forced towards the interface of the system whereby 

the hydrophobic tails are oriented in a way to minimize contact with the water.
118, 119

 

This reduces the surface tension of the water, and hence the name surfactant - surface 
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active agent. However, there are limits to how much they can reduce the interfacial 

tension. Once all interfaces and surfaces have been occupied by the free surfactant 

monomers, they start to aggregate into monolayered cellular like structures known as 

micelles (from Latin mica; crumb, grain). The driving force for the aggregation is, 

again, the reduction of the free energy of the system. Thus in an aqueous environment, 

micelles have a core of favourably interacting hydrophobic tail groups no longer 

exposed to water and an outer layer of polar head groups still exposed to water. 

Conversely, if the surfactant is dissolved in a non-polar organic solvent quite the 

opposite occurs.
120

 The hydrophobic tail is now at the surface of the micelle, exposed 

to the solvent, whereas the polar head groups reside deep within the micelle, oriented 

away from the apolar bulk environment. These types of aggregates are commonly 

known as reverse micelles or inverse micelles and have many applications. For 

example, a C16 chain ammonium surfactant, hexadecyltrimethylammonium bromide 

(CTAB), forms reverse micelles in the non-polar cyclohexane and these have been 

used as a microenvironment for enzyme catalysed reactions.
121

 When used in this 

manner, reverse micelles usually comprise of three major components; a standard 

amphiphilic surfactant molecule, a non-polar solvent as the chief medium, and a small 

concentration of water. The water sphere within the reverse micelle mimics the 

microenvironment of the interior of a normal cell system in which the enzyme would 

usually function.  This allows certain enzymatic reactions to occur in a largely organic 

system where they would normally not function at all without the aid of this aqueous 

microenvironment.
122

  Figure 4.1.4 shows examples of the types of aggregates that 

can form surfactant molecules such as simple micelle structures to more complex 

vesicles.  
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Figure 4.1.4 Cross sections of surfactant aggregates: (a) normal micelle, (b) reverse 

micelle (in an organic solvent), (c) bilayer and (d) a vesicle.
123

  

In each case, the driving force for the aggregation process is essentially the desire for 

each part of the surfactant molecule (head group or tail) to be in their most favourable 

environment.  

4.1.3.2 Early micelle studies and physical properties of micelles solutions 

In the early twentieth century surfactant solutions began to be studied from a scientific 

standpoint. One of the leading pioneers in the chemical interpretation and 

understanding of these widely-used but somewhat „mysterious‟ soapy, detergent 

compounds was James. W. McBain. As early as 1914 he observed that surfactant 

molecules acted as normal electrolytes below a clearly defined concentration, whereas 

above this concentration some of the physical properties of the surfactant solution, 

such as conductivity or osmotic activity, changed dramatically.
124

  He postulated that 

this behaviour could be explained by molecule aggregation into a well-ordered, cell-

type structure above a certain concentration which he defined as a critical micelle 
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concentration (cmc).  At first this notion was regarded as preposterous: a leading 

physical chemist chairing a Royal Society London meeting responded to McBain‟s 

aggregation proposal with just two words- “Nonsense, McBain”.
125

 Yet today, it is 

universally accepted that, in water at least, 30-150 surfactant molecules can assemble 

into micelles in order to position the non-polar, hydrophobic chains away from the 

solvent. His early work on surfactant molecules was thought to support a lamellar or 

plate-like micelle consisting of, in his own words, a “double leaflet of soap molecules 

placed end to end and side to side” however by the mid 1930‟s this model was 

abandoned in favour of the now more orthodox, roughly spherical model (Figure 

4.1.5).
126, 127, 128 

 

Figure 4.1.5 Cross section of a McBain „double leaflet‟ lamellar micelle (left) and the 

Hartley spherical micelle (right).
125

 
 
 

Without belittling the breakthrough work of McBain, the Hartley spherical micelle 

model became more accepted as it supported successive work on micelles relatively 

seamlessly: (i) If the lamella model was correct, there would be great sensitivity to the 

hydrophilic head groups which lie close in a flat bed of charge, yet cmc values on the 

whole are intrinsically more dependent on the carbon chain length rather than the 

nature of the ionic hydrophilic head group. 
129 

(ii) Micelles formed from a particular 

surfactant have been proven to have a relatively constant aggregation numbers under 

set conditions but the double leaflet model would probably not adopt a distinct size as 

they seem intuitively capable of accepting more and more molecules in succession. 

(iii) The hydrocarbon chains that flank the lamellar model appear to be grossly 

exposed to surrounding water which would be thermodynamically unfavourable in an 

aggregated system which by its very nature should be more stable such that it 
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promotes the orientation of all hydrocarbon chains away from the surrounding polar 

environment.  

Below the cmc, the concentration of micelles is insignificant and so essentially all the 

surfactant is regarded as in monomeric form. Above the cmc, additional surfactant 

molecules added to the system form micelles, and the concentration of the free 

monomer remains virtually constant (Figure 4.1.6).  

 

Figure 4.1.6 Concentration of individual monomer and micelle species in a typical 

surfactant solution over a range of surfactant concentration. 
130

 

The cmc is dependent on a variety of factors including the chemical structure of the 

surfactant and the nature of the solvent medium. In crude terms, the cmc value is 

indicative of the surfactant‟s „desire‟ to aggregate, i.e. a lower cmc value means it is 

less favourable for the surfactant molecules to exist as monomers and so promote the 

formation of aggregates at a lower concentration to reduce the free energy. The cmc 

can therefore be reduced in a number of ways. One way is to increase the 

hydrophobicity of the hydrophobic moiety of the surfactant chain, thus increasing its 

desire to aggregate at a lower concentration. This can be achieved by increasing the 

chain length - most commonly used surfactants have chain length varying from C10 to 

C18. Additionally, the hydrophobicity of the tail can be increased by introducing a 

more hydrophobic chain such as a fluorocarbon chain as opposed to the traditional 

hydrocarbon alkane chain. Equally, the nature of the head group will affect the cmc 

value. For ionic surfactants, the cmc can be lowered by adding electrolytes (simple 
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ionic salts) to the surfactant solution. Electrolytes lower the cmc as they reduce the 

electrostatic repulsion between ionic head groups.
131

 These head groups of identical 

charge would naturally wish to repel one another and hence the reduction in this 

repulsion will promote the formation of a stable outer layer of the micelle. 

Additionally, one could argue that the presence of electrolytes will promote 

aggregation (i.e lower the cmc) as they would also increase the hydrophobicity of the 

alkyl chain due to increasing the polarity of the bulk solvent. It thus follows that on 

the whole non-ionic surfactants tend to have lower cmc values than their analogous 

ionics due to the reduction in these head groups repulsions; hence promotion of an 

aggregate is easier. 
132

 

Surfactant molecules behave differently depending on if they are present in solution 

as singular, free monomers or in an aggregated structure. Micelles, for example, are 

not surface active at all hence it is only the surfactant monomer that is responsible for 

decreasing the interfacial and surface tension.
133

 Similarly, many other physical 

properties of the solution change in going from monomer to micelle. By observing 

these physical changes it becomes possible to detect the formation of a micelle. Figure 

4.1.7 shows just some of the changes in general physical properties of the solution of 

monomer to micelle. The concentration at which these abrupt changes occur is 

generally assigned to the critical micelle concentration.   

 

Figure 4.1.7 Changes in some physical properties of a typical surfactant solution 

below and above the critical micelle concentration. 
134, 135
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For example, below the cmc, as the surfactant concentration is increased, the surface 

tension at the water-air interface is reduced as expected for these surface active 

agents. However, at the point of significant aggregation into the micelle, the cmc, the 

surface tension at the interface levels off and is no longer reduced. This is because the 

micelle itself has no surface active properties and so an increase in micelle 

concentration has negligible influence on the surface tension. The fact that the surface 

tension remains the same supports the notion that above the cmc the concentration of 

free monomer surfactant remains constant as in Figure 4.1.6. Surface tension is thus a 

principle method in the detection of micelles in aqueous systems.
136

 Similarly, the 

conductance profile can be attributed to the formation of the micelle from ionic 

(charged) surfactants. Below the cmc, the conductivity increases linearly with 

concentration as more ionic surfactant is added. As the cmc is reached, the formation 

of micelles causes an abrupt change in the conductance isotherm. The linear increase 

in conductance is abruptly retarded due to the formation of the micelle, reasons for 

which will be discussed further in the conductance section of this chapter.
134

  

Similarly, the solubilising capacity of the surfactant system changes abruptly upon 

micellization. Surfactant monomers do not significantly affect the solubility of 

organic solutes and so below the cmc the solubility of non-polar organics is poor. 

However, the organic solute can partition into the non-polar, highly organic, micelle 

core in a phenomenon known as solubilisation. Thus, as aggregation ensues, the 

aqueous solubility of the organic solute increases significantly and, again, the sharp 

change in this particular physical property of the surfactant solution can be attributed 

to the cmc.
120

 One of the most interesting things about these cell-type structures, 

however, is that they are not limited to just an aqueous medium.  

4.1.3.3 Aggregation of surfactants in non-aqueous media 

As previously described, the formation of aggregates in non-aqueous media is well 

studied as in the case with the formation of reverse micelles from common surfactants 

in non-polar, organic solvents. Likewise, the formation of regular micelles in non-

aqueous solvents is also well studied. For a specific surfactant molecule it is, in 

general, the polarity of the solvent that dictates the micelle type and structure, 

whereby the formation of standard micelle occurs in polar solvents and in non-polar 

solvents the formation of reverse micelles takes precedence.  
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Singh et al studied the formation of micelles from a range of common surfactants in a 

variety of polar non-aqueous solvents (Table 4.1.1). 
137

 

Table 4.1.1 Critical micelle concentrations of sodium dodecyl sulfate (SDS) and cetyl 

trimethylammonium bromide (CTAB) in various polar solvents at 35 °C
137

 

Solvent εr cmc SDS (mM) cmc CTAB (mM) 

N-methylformamide (NMF) 182 0.05 - 

N-methylacetamide (NMA) 179 0.09 0.08 

Formamide (FA) 109 1.05 0.94 

Water (H2O) 80 8.90 0.97 

Dimethyl sulfoxide (DMSO) 49 42.6 35.4 

Dimethylformamide (DMF) 37 16.7 10.9 

εr = dielectric constant (25 °C)  

It is apparent that the cmc values for both sets of surfactants is greatly influenced by 

the nature of solvent, in particular its polarity, or dielectric constant. Generally 

speaking, the magnitude of the cmc value increases with decreasing solvent polarity 

(lower dielectric constant). As discussed, the magnitude of the cmc value describes 

the „desire‟ for a surfactant molecule to aggregate into a micelle, to reduce the overall 

free energy of the system. The lower the cmc value, the greater the driving force to 

form a thermodynamically stable micelle to reduce the free energy. As previously 

explained, for a given solvent system this can be influenced by the surfactant structure 

such that increasing the chain length of the surfactant or introducing fluorine groups, 

for example, will increase its hydrophobicity. This will reduce the solubility of the 

hydrophobic moiety and so promote micellization and so a lower cmc value is likely. 

In a solvent of lower polarity, the hydrophobic alkyl chain would not be as „phobic‟ to 

the surrounding environment as it would be in a highly polar solvent. The need for 

aggregation would be greatly reduced and so it would be expected that the surfactant 

in the less polar solvent would aggregate at much higher concentration, giving a 

higher cmc value. This appears to be the case for these polar solvents. One would 

expect the cmc to increase further as the solvent polarity was reduced until the 

interaction between solvent and surfactant tail become so favourable, and interaction 

between head group and solvent so unfavourable, that reverse micellization is 

promoted. This is evident from the formation of reverse micelles of CTAB in 

cyclohexane as previously described (r cyclohexane ≈ 2.0)
138

. It would be expected that 
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lowest cmc values of normal micelles and reversed micelles would be at the extreme 

ends of polar and non-polar solvent scale, respectively.  

4.1.3.4 The potential for liquid ammonia to support micelles 

Liquid ammonia has a number of properties similar to water such as the ability to 

dissolve a diverse range of compounds and speculation has risen about the possibility 

of forming these cell-like structures in this dipolar aprotic solvent. Just like water, 

liquid ammonia is excellent at solubilising polar molecules, and shows reasonably 

poor solubility towards long chained, non-polar hydrocarbons, thus surfactant 

molecules may behave in an analogous manner to how they do in water. Due to its 

polar nature, it is predicted that surfactants in liquid ammonia would form regular 

micelle type structures rather than reverse micelles. As the surfactant molecules are 

added to the ammonia solvent, they would adsorb at the liquid-air interface. 

Eventually, as the concentration is further increased, a thermodynamically stable 

aggregate may form. These micelles would comprise of a number of surfactant 

molecules arranging themselves so that the hydrophilic („ammoniaphilic‟) head group 

would be exposed to the ammonia solvent whilst the hydrophobic („ammoniaphobic‟) 

tails would orientate themselves away from the bulk ammonia environment. A crude 

hypothesis is that if aggregation occurs in liquid ammonia, the cmc values would be 

higher than those in water and many of the solvents in Table 4.1.1. Owing to its 

relatively lower dielectric constant (εr liquid ammonia ≈ 16) the hydrophobic effect would 

be vastly reduced and as previously explained, a higher concentration of surfactant 

required to promote the formation of aggregates.  

The detection of micelles in surfactant solutions is not necessarily achieved by 

looking at a micelle macromolecule directly, but more so by observing the changes in 

physical and chemical properties of a system when going from a solution of free 

monomer surfactant molecules to the well-ordered, aggregated micelles. As 

previously described (Figure 4.1.7), these changes in physical properties of the 

micelle solution compared to the monomeric present an opportunity to detect this 

aggregation process. There are numerous methods for the detection of these self-

assembling structures such that the method of choice is usually dependent on the 

micellar system in question. This can include the differences in surfactant structure, 

such as whether the polar head group is charged or neutral, or the nature of the 
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hydrophobic tail, which could be hydrogenated or fluorinated, for example. Likewise, 

the nature of the solvent may govern which method is used. Owing to its high vapour 

pressure (~ 9 bar) at room temperature it is anticipated that surfactant studies in liquid 

ammonia will give rise to some difficult experimental issues. For example, the 

traditional micelle detection method of surface tension studies would be difficult in 

liquid ammonia under such pressure.  
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4.2. Aggregation studies on ionic surfactants in water and liquid ammonia – 

Results and Discussion 

Along with surface tension studies, conductivity is generally regarded as one of the 

most reliable and practical structure sensitive methods for  investigating micellar 

systems in all kinds of media. The approach is entirely based on fact that the overall 

observed conductivity of a solution is summative of the individual conducting species 

present. This implies, therefore, that in a micelle/surfactant type system, the 

contributors to the overall conductivity are from free monomer surfactant ions and 

their counter-ions, as well as the large aggregate micelles as macroions which can also 

conduct.
139

 Association of the charged micelle with the counter ions will also affect 

the conductivity.  

Generally speaking, the formation of micelles from singular, monomeric, surfactant 

units is thought to affect the conductance of the solvent system in a number of ways: 

140
 

1) The total viscous drag on the aggregate is probably reduced upon aggregation. It 

can be visualised that a micelle with n surfactant molecules can carry a charge more 

efficiently that n individual molecules because the drag on the former is much lower 

than that of n individual surfactant molecules. Consequently, there is an increase in 

conductance of the micellar solution compared to the monomeric.  

2) Due to the micelles high surface charge counter ions can become associated with 

the micelle which has two retarding effects on the conductivity of the solution. Firstly, 

the counter ion association with the micelle reduces the overall net charge of the 

bulky aggregate and so decreases its conductance. Secondly, it would follow that 

there is a reduction in the number of free counter ions available in solution to carry 

the current.   

3) The high charge that the micelle carries would greatly increase the interionic 

attractions between the unattached counter ions and the macromolecule. Interionic 

attractions arise from when an ion is surrounded by an ionic atmosphere which has a 

net charge opposite to its own.
141

 This creates a „drag‟ effect. Thus in a micelle 

system, the increased ionic atmosphere around the free counter ions would reduce 

their mobility and hence the overall conductivity of the solution.  
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Each factor may be difficult to individually model and so the above systems may 

appear quite difficult to assimilate. Nevertheless, utilising the conductance method for 

the detection of micelles and aggregates, which is anticipated in liquid ammonia, is 

relatively straight forward and does not require much data manipulation. Factors 2 and 

3, both of which cause a decrease in the molar conductivity with concentration above 

the cmc, tend to outweigh the effects of the first factor. The net result is that for the 

majority of ionic micelle systems the conductance profiles are quite definitive, as will 

be evident in the aqueous studies to be described. Both molar conductivity and 

specific conductivity plotted as a function of surfactant concentration can be used for 

cmc value determination.  

The most useful application of conductivity to micelle solutions is the determination 

of the critical micelle concentration at the observed point at which retardation in 

conductance is observed. It is possible to determine some other micellar properties by 

the conductance method such as the degree of counter-ion binding (β) or aggregation 

number.
142,143

 Nevertheless, given that nobody has reported micellization in liquid 

ammonia as of yet, investigation of cmc is a sensible starting point. A disadvantage of 

using the conductance method is that it is limited to ionic or charged surfactants 

where as other methods such as surface tension can allow for aggregation studies on 

neutral, non-ionic surfactant/micelle systems.  

4.2.1 Conductivity studies on ionic surfactants in water 

Prior to work in liquid ammonia, the methodology for micelle detection by 

conductance was tested in an aqueous environment, where it could be compared with 

literature as well as obtaining some new data. This would give an idea of the type of 

results one may expect in liquid ammonia with the hope of replicating some of the 

water data in the non-aqueous solvent.  

An example of how conductance can be used to detect micelles in aqueous solution 

can be observed in Figure 4.2.1 with the anionic carboxylate surfactant, 

perfluorooctanoic acid (Scheme 4.2.1).  
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Scheme 4.2.1 Perfluorooctanoic acid (PFOA) 

 

Figure 4.2.1 Specific conductivity of perfluorooctanoic acid as a function of 

concentration in water at 25 °C. 

As the concentration of perfluorooctanoic is increased from zero, there is a good 

linear relationship between concentration and specific conductivity. Perfluorooctanoic 

acid is a strong acid with a pKa of ~ 0 such that a 5 mM solution in water generates a 

pH of about 2.4. Hence it is fully ionised in water and so behaves as a strong 

electrolyte, just like general salts, KCl, NaBr etc. One could regard the fully 

dissociated acid as a „hydronium salt‟ and so the observed conductivity is therefore 

from the additive conductivity of the monomer surfactant ion (carboxylate anion) and 

free counter-ion (hydronium). However, as the concentration of the perfluorooctanoic 

acid surfactant is further increased, an inflection in the conductivity isotherm is 

observed. This inflection occurs at the point of micellization when the 

thermodynamically stable aggregates form and this point can be assigned as the cmc 

of the surfactant in solution. At the cmc the conductivity increases less abruptly 
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because the newly formed micelle macro-ions have an overall retarding effect on the 

conductivity of the solution. The newly formed micelle likely impedes the 

conductance due to counter ion binding and an increase in the ionic atmospheres, as 

previously described. The cmc of perfluorooctanoic acid determined in Figure 4.2.1 of 

around 9.3 mM is consistent with literature value of 9.7 mM obtained from other 

detection methods such as surface tension.
144 

Similarly, a plot of molar conductivity as 

function of surfactant concentration allows for determination of the cmc and as 

expected, above the cmc, the molar conductivity decreases with further increasing the 

surfactant concentration (Figure 4.2.2). 

 

Figure 4.2.2 Molar conductivity of perfluorooctanoic acid as a function of 

concentration in water at 25 °C.  

Molar conductivity is defined as the conductivity per unit concentration: 
145
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Likewise, the cmc can be determined at roughly 9 mM demonstrating that the both 

molar and specific conductivity can be used for micelle detection. Molar conductivity 

is often used as a means of measuring the „efficiency‟ with which a particular 

electrolyte conducts current in a solution whereas specific conductance or 

conductivity can give a visual picture of the actual conductance of the solution as the 

concentration changes. They can be interconverted easily and in the literature both 

methods are widely used such that the use of one over the other appears to be 

individual preferences rather than necessity.  

Figures 4.2.3 to 4.2.5 show more examples of how cmc values of other ionic 

surfactants (Schemes 4.2.2 to 4.2.4) in water can be determined using the 

conductometric method. 

 

Scheme 4.2.2 Perfluorodecanoic acid (PFDA) 

 

Figure 4.2.3 Specific conductivity of perfluorodecanoic acid as a function of 

concentration in water at 25 °C. 
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Scheme 4.2.3 Sodium dodecyl sulfate (SDS) 

 

Figure 4.2.4 Specific conductivity of sodium dodecyl sulfate as a function of 

concentration in water at 25 °C. 

 

Scheme 4.2.4 Cetrimonium bromide (CTAB) 
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Figure 4.2.5 Specific conductivity of cetrimonium bromide as a function of 

concentration in water at 25 °C. 

Some cmc values of ionic surfactants determined in water from both this work and the 

literature are shown in Table 4.2.1. 
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Table 4.2.1 Critical micelle concentrations of ionic surfactants in water at 25 °C. 

Surfactant 
cmc 

(mM) 

Reference,  

detection method 

Perfluoroheptanoic acid CF3(CF2)5COO
-
H

+
 25 85, NMR 

Sodium perfluoroheptanoate CF3(CF2)5COO
-
Na

+
 83 85, surface tension 

Perfluorooctanoic acid CF3(CF2)6COO
-
H

+
 9.7 

9.3 

144, unknown method 

this work, conductivity 

Sodium perfluorooctanoate CF3(CF2)6COO
-
Na

+
 35 85, NMR 

Perfluorononanoic acid CF3(CF2)7COO
-
H

+
 3.1 146, surface tension 

  3.4 this work, conductivity 

Sodium perfluorononanoate CF3(CF2)7COO
-
Na

+
 11.8 this work, conductivity 

Perfluorodecanoic acid CF3(CF2)8COO
-
H

+
 1.1 this work, conductivity 

Sodium perfluorodecanoate CF3(CF2)8COO
-
Na

+
 3.1 this work, conductivity 

Perfluoroundecanoic acid CF3(CF2)9COO
-
H

+
 0.23 this work, conductivity 

Sodium perfluoroundecanoate CF3(CF2)9COO
-
Na

+
 0.55 this work, conductivity 

Perfluorododecanoic acid CF3(CF2)10COO
-
H

+
 0.11 this work, conductivity 

Sodium perfluorododecanoate CF3(CF2)10COO
-
Na

+
 0.2 this work, conductivity 

Perfluorooctane sulfonate (Et4N
+
) CF3(CF2)7SO3

-
Et4N

+ 
 4.1 this work, conductivity 

Sodium dodecyl sulfate (SDS) CH3(CH2)11OSO3
-
Na

+
 8.3 

8.2 

8.1 

147, fluorescence  

148, conductivity 

this work, conductivity 

Cetrimonium bromide (CTAB) CH3(CH2)15N
+
(Me)3Br

-
 0.9 

1.0 

149, fluorescence  

this work, conductivity 

Dioctyl sodium sulfosuccinate 

(Aersol OT) 

CH3(CH2)3CH(CH2CH3)C

H2OOCCH(SO3
-

Na
+
)CH2COOCH2CH(CH

2CH3)CH2(CH2)2CH3  

2.7 150, unknown method 

In a given solvent system the critical micelle concentration is dependent on a large 

number of parameters and is an indication of the surface activity of the amphiphilic 

monomer. The more surface active the molecule is, the greater its tendency for 

micellization, and hence aggregation occurs at a lower concentration giving a lower 

cmc value.
151

 Increasing the chain length is one of the simplest ways to increase the 

surface active properties of the molecule. Consequently, the longer the hydrophobic 

tail of the surfactant, the lower the cmc value. This can be seen from the cmc values 

obtained for the long chained fluorinated carboxylic acids in Table 4.2.1, where by the 
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relationship between cmc value and number of carbon atoms in the hydrophobic tail is 

apparent (Figure 4.2.6).  

 

Figure 4.2.6 Critical micelle concentration (cmc) of perfluorinated carboxylates as a 

function of the number of carbons in the hydrophobic tail (n) in water at 25°C.  

The cmc as a function of number of carbons in the surfactants hydrophobic, non-polar 

tail is non-linear, and in fact, for a homologous series of amphiphiles, cmc values are 

expected to follow the empirical Klevens rule, according to a logarithmic equation:
152

 

             

where cmc is critical micelle concentration of the surfactant, n is the number of 

carbon atoms in the hydrophobic chain, A and B are constants for a homologous 

series of surfactants in a given solvent system.  

The constant A reflects the specific nature of the hydrophilic head group and its 

interactions with the solvent, whereas B displays the effect of each additional 

methylene unit, or as in this case, -CF2- unit, on the cmc. The A value is generally 

independent of the B value suggesting that they are indicative of the nature of the 

head group and tail group, respectively. 
153

 A plot of log cmc as function of number of 

carbons for the fluorinated carboxylates shows the values are in good agreement with 

Klevens rule (Figure 4.2.7).  
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Figure 4.2.7 Logarithm of cmc (M) as a function of the number of carbon atoms in 

the hydrophobic tail (n) for a series of perfluorinated carboxylates in water at 25 °C. 

The obtained values of A and B are 1.37 and 0.48, respectively. The value of 1.37 for 

A, the constant for the specific nature of the hydrophilic head group, is slightly less 

than that obtained for the fluorinated sodium salt carboxylates from this work (Table 

4.2.2). These values of A and B can be compared with literature for normal alkyl 

carboxylates. 

Table 4.2.2 Klevens constants for carboxylates in water at 25°C 

Surfactant head group Chain type A B Reference 

Na
+
 carboxylate hydrogenated 1.80 0.30 153 

K
+
 carboxylate hydrogenated 1.90 0.29 153 

H
+
 carboxylate fluorinated 1.37 0.48 this work 

Na
+
 carboxylate fluorinated 1.60 0.44 this work 

For non-fluorinated carboxylates, the B value of ~ 0.3 (approx. log2) indicates that the 

cmc is roughly halved for each additional methylene unit added. This is consistent 

with the majority of fully hydrogenated surfactants, even for surfactants with a wide 

variety of polar head groups: the cmc values of various length N-alkyl-N-

methylpyrrolidinium bromides, for example, give a B value of 0.30, and n-alkyl-1-
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sulfonates give a B value of 0.29.
152

 However, the effect of introducing an extra -CF2- 

group into the fluorinated surfactant chain has a greater effect on cmc, suggested by 

the higher B value of ~ 0.46, indicating that the cmc is lowered 3-fold per additional -

CF2-. From this, it can be deduced that one -CF2- group is approximately equivalent to 

1.4 -CH2- units. For example, a fluorosurfactant with 8 carbons would, with regards to 

cmc, behave like a hydrocarbon surfactant with 11 or 12 carbons. This is no surprise 

because, as described previous, the cmc is indicative of the surface activity of the 

surfactant and so increasing the hydrophobicity of the tail will promote aggregation at 

a lower concentration. Introducing fluorinated groups into the chain will certainly 

increase its hydrophobicity and tendency to aggregate. 

The Klevens relationship value will be discussed in further detail with regards to the 

aggregation of fluorinated amides in liquid ammonia and how it compares to the 

general surfactants in water (section 4.3).  

4.2.2 Conductivity studies on ionic surfactants in liquid ammonia 

4.2.2.1 Initial attempts to replicate the aqueous studies in liquid ammonia 

By repeating the aqueous surfactant conductivity experiments in liquid ammonia, and 

hopefully seeing similar changes in the conductivity isotherm at a particular 

concentration (cmc), the potential formation of aggregates in liquid ammonia may be 

realised. Furthermore, if a variety of cmc values could be obtained for a series of 

homologous surfactants of varied chain length, the Klevens constants in liquid 

ammonia could be determined and compared to those in water.  

Conductivity measurements in liquid ammonia were performed at -15°C due to the 

pressure limit on the conductivity cell. Interestingly, the observed conductivity of 

sodium dodecyl sulfate (SDS) in liquid ammonia shows a non-linear dependence on 

the concentration of the surfactant (Figure 4.2.8). 
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Figure 4.2.8 Specific conductivity of sodium dodecyl sulfate as a function of 

concentration in liquid ammonia at -15 °C.   

However, the profile does not show a clear „break‟ with two linear portions as 

observed with the aqueous surfactant solutions. This non-linear conductivity profile is 

observed with other ionic surfactants in liquid ammonia, including perfluorinated 

carboxylates and sulfonates (Figures 4.2.9 and 4.2.10 are just 2 examples). 
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Figure 4.2.9 Specific conductivity of perfluorooctanoic acid as a function 

concentration in liquid ammonia at -15 °C.  

 

Scheme 4.2.5 Dioctyl sodium sulfosuccinate (Aerosol OT) 
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Figure 4.2.10 Specific conductivity of Aerosol OT (Dioctyl sodium sulfosuccinate) as 

a function of concentration in liquid ammonia at -15 °C. 

These behaviours of the surfactant conductivity isotherms in liquid ammonia may be 

indicative of some kind of aggregation phenomena but probably not micelle 

formation. Further investigation into the conductance of these species in liquid 

ammonia was required. 

4.2.2.2 Modelling conductivity in liquid ammonia 

On initial inspection, the conductance of these surfactants in liquid ammonia is 

comparable to that of a weak electrolyte in water, such as that of acetic acid (Figure 

4.2.11). Curvature here is due to a relative decrease in dissociation with increasing 

concentration.  
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Figure 4.2.11 Specific conductivity of acetic acid (CH3COOH) in ultra-pure water as 

a function of concentration at 25 °C. 

As evident, the observed conductance profile for acetic acid in water is not too 

dissimilar to those of the surfactants in liquid ammonia, and so initially attempts were 

made to fit the liquid ammonia data to Ostwald‟s dilution law: 
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dilution law governs the conductivity of weak electrolytes and is derived from the 

equilibrium of the acid dissociation (Scheme 4.2.6).
154

  

 

Scheme 4.2.6 

Acetic acid, (pKa ≈ 4.7) is not fully ionized in water and thus behaves as a weak 

electrolyte, as opposed to strong electrolytes, such as ionic compounds, which are 

fully ionized. Hence Oswald‟s law of dilution is observed for acetic acid in water. The 

surfactants in liquid ammonia, however, should all behave as strong electrolytes as 

they are all essentially ionic salts; even the fluorinated acids, all with pKa values close 

to zero would be fully deprotonated and exist in liquid ammonia as the ammonium 

carboxylate salt. Therefore, it was not surprising that the conductance in liquid 

ammonia did not correlate with Ostwald‟s dilution law.  

Under the assumption that the ionic species in liquid ammonia should behave as 

strong electrolytes, attention turned to the relationship that unifies the conductance of 

such species, according to Kohlrausch‟s law: 

     
      ⁄  

Where: 

                                 

  
                                                     

                                                             

                                   

Again, the liquid ammonia data did not correlate with Kohlrausch‟s law equation as 

any common ionic salt such as sodium chloride or ammonium bromide would in 

water.
154

 It would appear therefore that surfactant species in liquid ammonia do not 

follow the typical conductance profile of weak electrolytes, like a weak acid/base in 

water, or that of a strong electrolyte, like a fully ionized salt in water. This infers that 
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there is some property of liquid ammonia that governs the conductance of species in a 

different manner to that in a conventional aqueous medium.  

Although generally considered a polar solvent, with the ability to solubilise a range of 

ionic species as well as organics, liquid ammonia is in fact only moderately polar 

compared with water. The dielectric constant of ammonia is roughly 5 times smaller 

than water and hence there is a noticeable difference not only on the ionisation, but 

also the dissociation of compounds in these two solvents.  Take for example, a simple 

diatomic salt, A
-
B

+
, that is soluble in both water and liquid ammonia (Scheme 4.2.7). 

The attractive force between oppositely charged ions is inversely proportional to the 

dielectric constant of the medium. 

 

Scheme 4.2.7 

The high dielectric constant of water favours the full dissociation of ion-pairs, thus the 

equilibrium is significantly shifted to the left, and so a typical salt ionised in water 

would be vastly dissociated into free ions with zero or negligible ion-pairing. 

Conversely, however, liquid ammonia, with its comparatively non-polar nature and 

lower dielectric constant, greatly facilitates the ion-pairing of ionised compounds. 

Thus, a salt, even though still fully soluble in liquid ammonia, would show a 

reduction in the dissociation of the salt into its free ions with increasing 

concentration.
155

 

The conductivity of a simple salt, ammonium chloride, for example, which is very 

soluble in both water and liquid ammonia, can be used to demonstrate the ammonia 

ion-pairing effect in the non-aqueous solvent compared to full dissociation in water. 

In water, the conductivity increases linearly with concentration as expected (Figure 

4.2.12). Water facilitates the full dissociation of ammonium chloride into the free 

anion (Cl
-
)
 
and cation (NH4

+
), which are both conducting species, with zero of the 

non-conducting ion-pairs present, and so the concentration/conductivity isotherm is 

linear.  
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Figure 4.2.12 Ammonium chloride specific conductivity as function of concentration 

in water at 25 °C is linear. 

 

Figure 4.2.13 Ammonium chloride specific conductivity as a function of 

concentration in liquid ammonia at -15 °C is non-linear. 

A plot of the conductivity against concentration for ammonium chloride in liquid 

ammonia is non-linear, showing the same type of curvature as was observed 
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previously with the ionic surfactants (Figure 4.2.13). It was also found that the liquid 

ammonia data for these simple salts, which are strong electrolytes in water, does not 

correlate to Kohlrausch‟s law for strong electrolyte conductance. This would suggest 

that there is some non-conducting species present which is concentration dependant, 

supporting the theory that the relatively reduced polarity of liquid ammonia facilitates 

the association of these species into neutral, non-conducting, ion-pairs. A model could 

be developed to describe and correlate the observed conductivity profile with this ion-

pair phenomenon.  

Using the mass balance equilibrium from Scheme 4.2.7, the dissociation constant for 

the ion-pair can be described from the concentration of the ion pair and freely 

dissociated species: 

        
[  ][  ]

[     ]  
                

The total amount of salt present can be calculated from: 

[  ]    [  ]  [    ]   

Using a quadratic solver allows for modelling the conductance of ionic species in 

liquid ammonia (see appendix 7.2 for full derivation). 

Where: 

         [  ] 

and 

[  ]  
       √     

           [  ]    

 
 

Where: 
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[  ]                         

[  ]                                                

                             

 

The quadratic solver model was compiled in the function fitting software Origin 8 and 

allows for a plot of conductance as a function of the total ionic species concentration. 

Using this model it was hoped to distinguish between ion-pairing and higher 

aggregation in liquid ammonia. The fluorinated acids could be viewed slightly 

different to the „salt like‟ surfactants such as SDS in that they firstly undergo 

ionisation in liquid ammonia (Scheme 4.2.8).  

 

Scheme 4.2.8 

However, as these fluoroacids are fully ionized in liquid ammonia, the left hand side 

of the scheme can be ignored and the system can be thought of as a general strong 

electrolyte „salt‟ in solution. In DMF, with dielectric constant of around 38, pyrdinium 

hydrochloride ( [PyH
+
] + [Cl

-
] ) has been shown to associate into a non-conducting 

ion pair ( [PyH
+-

Cl]ip ) as well as exist as the dissociated conducting ion species, but 

additionally can exist as the deprotonated free base ( [Py] + [H
+
] + [Cl

-
] ) in this 

moderately polar aprotic solvent.
156

 This would require a more complex modelling 

method taking into account the equilibrium on the left hand side of Scheme 4.2.8.  

The conductivity ion-pairing model was first applied to the simple salts in liquid 

ammonia such as ammonium chloride (Figure 4.2.14).  
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Figure 4.2.14 Specific conductivity of ammonium chloride as a function of 

concentration in liquid ammonia fit to the Origin ion-pairing model.  

From the ammonium chloride ion-pairing model, a Kdiss value of 0.0311 can be 

obtained, yielding an ion pairing constant of Kip = 32. Another simple salt, 

tetrabutylammonium bromide (TBAB) also showed the non-linear conductance 

profile in liquid ammonia for which the dissociation constant and ion-pairing constant 

are 0.0158 and 63, respectively. Comparison of the two ammonium salts suggests that 

there is a higher degree of dissociation (less ion-pairing) with the smaller NH4Cl 

compared to the bulky TBAB. It is likely that steric hindrance of the larger 

tetrabutylammonium cation is reducing the solvation by the ammonia molecule and 

thus promoting the formation of the neutral ion-pair. Contrary to this, the smaller 

ammonium cation with negligible steric hindrance can be solvated much better by the 

ammonia molecule and so a higher degree of dissociation would be anticipated, as 

evidently appears to be the case. Additionally, the smaller charge density in the 

(Bu)4N
+
 (more delocalised) may reduce the solvation by ammonia solvent, thus 

promoting ion-pairing.  

It has therefore been established for simple salts in liquid ammonia, that the non-

linear relationship between conductivity and concentration can be attributed to the 

formation of the non-conducting ion-pair species. The ion-pairing model was then 
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applied to the long chained surfactants in liquid ammonia to confirm that the observed 

conductance profile was also indicative of the ion-pairing phenomenon, as opposed to 

aggregation into micelles.   

For a range of surfactants tested, the conductivity profiles did indeed follow the ion-

pairing model. Figures 4.2.15 and 4.2.16 shows just two examples of ion-pair model 

fits for sodium dodecyl sulfate (SDS) and perfluorooctanoic acid (PFOA) in liquid 

ammonia. Kdiss and Kip values can be found in Table 4.2.3 

 

Figure 4.2.15 Specific conductivity of sodium dodecyl sulfate (SDS) as a function of 

concentration in liquid ammonia (-15 °C) fit to the Origin ion-pair model.  
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Figure 4.2.16 Specific conductivity of perfluorooctanoic acid (PFOA) as a function of 

concentration in liquid ammonia (-15 °C) fit to the Origin ion-pair model.  

Table 4.2.3 Kdiss, Kip and  values obtained from ion-pairing model of a range of 

surfactants and salts in liquid ammonia at -15 °C. 

Salt/surfactant Kdiss (M) Kip (M
-1

) Sm
-1

M
-1


NH4Cl 0.03109 32.2 9.8 

TBAB 0.01580 63.3 17.3 

Dioctyl sodium sulfosuccinate  0.00606 165.0 22.9 

Sodium dodecyl sulfate 0.00590 169.5 17.6 

Trifluoroacetic acid (C2) 0.01290 77.5 28.1 

Perfluorooctanoic acid (C8) 0.00918 108.9 19.8 

Perfluorononanoic acid (C9) 0.00689 145.1 21.5 

Perfluorodecanoic acid (C10) 0.00418 239.2 23.2 

Perfluoroundecanoic acid (C11) 0.00236 423.7 24.0 

Perfluorododecanoic acid (C12) 0.00026 3913.8 50.9 

Perfluorooctadecanoic acid (C18) - - - - - - - Insoluble in LNH3 at 2 mM - - - - - - - 

Pefluorooctane sulfonate (Et4N
+
) 0.00143 699.3 35.3 

Decyltrimethyl ammonium iodide 0.00149 671.1 49.3 
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In an effort to compare the Kdiss and Kip constants for the various ionic surfactants in 

liquid ammonia, there appears to be some kind of trend with the fluorinated 

carboxylate surfactants. It appears that as the chain length is increased, the Kdiss value 

is decreased, and hence an increase in ion-pairing is observed. The apparent trend 

raises questions as to why the ion-pairing is dependent on the chain length of the 

fluoro surfactant. For the longer chained fluoroacids, the influence of chain length is 

not expected to have much influence on the interactions between head group and 

counter ion. It is expected that the nature of the charged head groups influences ion 

pairing with the counter ion and solvent and thus for all long chained fluorinated 

carboxylic acids a reasonably constant ion pairing value would be anticipated. This 

appears to be the case with the sulfonate and sulfate head groups. Sodium dodecyl 

sulfate and dioctyl sodium sulfosuccinate (Aerosol OT), for example, both with Na
+
 

counter ion, yield similar Kdiss and Kip values, possibly owing to the similar structure 

of the sulfate and sulfonate anionic head group (Scheme 4.2.9). 

 

Scheme 4.2.9 Similarities between the sulfate (left) and sulfonate (right) head groups. 

In fact, it is observed in water that straight chained alkane sulfonate and sulfate 

surfactants have remarkably similar cmc values as well as Klevens A and B values. 

For example, the cmc values of sodium tetradecyl sulfonate and sodium tetradecyl 

sulfate in water are 2.5 and 2.2 mM, respectively.
157

 As they have the same 

hydrocarbon tail this suggests that the slightly different ionic head groups have similar 

interactions with the water solvent and sodium counter-ion or the cmc values would 

not be alike. This is also evident in their roughly comparable liquid ammonia ion pair 

values, indicating that specific nature of the head group of the surfactant should 

control the ion-pairing and not the chain length.  

Therefore, one has to question why there is an apparent increase in the ion-pairing as 

chain length is increased for fluorinated carboxylates in liquid ammonia. One 

potential reason is that these longer chained fluoro surfactants, although not 

necessarily forming typical larger micelle-type structures, may be forming some kind 
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of higher aggregates such as dimers or trimers, for example. The formation of these 

higher aggregates could arise from favourable interactions between the adjacent 

fluorinated chains by van der Waals forces, as opposed to the unfavourable 

interactions with the ammonia solvent (Scheme 4.2.10). 

 

Scheme 4.2.10. As opposed to monomer surrounded by ammonia (left), the formation 

of a dimer with van der Waals interactions may be favoured (right).   

With this in mind, attempts were made to fit the conductivity data to a model 

including the formation of the dimer type aggregate, but the data did not correlate 

with the model. This could be because that when including the possible formation of 

dimers and trimers and integrating them into the model, the number of variables and 

unknowns becomes too unpredictable. Say, for example, a dimer is formed from the 2 

monomer surfactant molecules, as in scheme 4.2.10. This dimer could itself exist as 

an associated ion-pair with the two counter ions or as a freely dissociated dimer 

species. This would give rise to more ion-pairing constants and equilibrium constants 

for the dimerisation process and dimer ion-pairing equilibrium. Furthermore, if one 

postulates the notion that trimers or even higher aggregates may be forming, then the 

model becomes too complex (Scheme 4.2.11). 
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Scheme 4.2.11 

If these fluorinated surfactants have the potential to form these higher aggregates, why 

does the simple, single ion-pairing model fit the conductance data and also give an 

increase in ion-pairing constant as chain length is increased? A simplistic overview of 

the conductivity ion-pairing model basically says that the curvature or reduced 

conductance observed as concentration is increased is because of the formation of 

some non-conducting species, which has initially being identified as a neutral ion-pair 

from the monomer species. But, equally, the formation of a dimer ion-pair or trimer 

ion-pair would also reduce the conductivity as they would also have zero 

conductance, such that a similar conductance isotherm would be expected.  

Additionally, one could argue that the formation of dimers and trimers that are 

dissociated from their counter-ions would also reduce the overall conductance. The 

formation of these large higher aggregates may, just like the macroion micelle in 

water, retard the conductance of the solution. Similarly to the aqueous micelle system, 

this could be due to an increase in ionic atmosphere of the solution with the higher 

aggregates causing a „drag effect‟ on the free counter ions thus reducing their ability 

to conduct. It is postulated that the formation of dimers and trimers and higher 

aggregates, even if not tightly ion-paired and hence still conducting, would have a 

lower conductance than the monomer species, and thus hinder the overall conductance 

of the solution. Thus the curvature in the conductance-concentration profile would be 

observed. 
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For the long chained surfactants it is therefore proposed that the degree of reduced 

conductance, the Kip value obtained, is representative of the formation of any poorly 

or non-conducting species in general, these being the monomer ion-pair, larger 

aggregate species such as dimers and trimers as well as their ion-pairs.  

This notion can now be applied to the fluorinated carboxylates in liquid ammonia in 

trying to explain why there is an observed rise in Kip value as the chain length is 

increased. Increasing the chain length by the additional -CF2- groups would increase 

the hydrophobicity or “ammonophobicity” of the molecule which would be expected 

to promote the formation of these higher aggregates. As the chain length is increased, 

the van der Waals forces between the surfactant tails would also increase and hence a 

higher degree of aggregation into a dimer etc. would be evident. Van der Waals forces 

play a key role in the intermolecular bonding of alkanes and it is actually these forces 

that give rise to the boiling point trend of hydrogenated alkanes where by the longer 

the chain length, the higher the boiling point.
158

 

It is possible that some of the ionic surfactants in liquid ammonia do form these 

„higher aggregates‟ due to van der Waals interactions between the fluorinated chains. 

It appears that there is no definitive evidence of full aggregation into a micelle 

structure. Under this assumption, one has to explore the reasons why these anionic 

surfactants do not form micelles in liquid ammonia as they do so very easily in an 

aqueous environment.  The most plausible explanation is that the anionic polar head 

group does not have favourable interactions with the ammonia solvent that would 

allow the formation of a thermodynamically stable aggregate, as will now be 

explained.  

4.2.2.3 Interpretation of the apparent lack of aggregation of ionic surfactants in 

liquid ammonia 

The general assumption is that the main driving force for micellization is the 

hydrophobic effect provided by the non-polar tail, but the polar head group plays an 

equally important role in the formation of the aggregate macromolecule. Just as 

important to aggregation as the unfavourable solvent-tail interactions are the 

favourable solvent-head group interactions within the stern layer of the micelle.  For 

the spherical micelle model, the polar head groups and associated counter-ions of an 

ionic micelle are found within the compact Stern layer. The free, dissociated, counter-
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ions are located in the Gouy-Chapman electrical layer where they are free to exchange 

and bond with molecules distributed in the bulk of aqueous phase.
159

 For a simple 

anionic carboxylate head group, for example, it is easy to see how the water solvent 

molecules would be able to well solvate the outer layers of the micelle and counter 

ions (Scheme 4.2.12). 

 

Scheme 4.2.12 Simplified two-dimensional representation of two adjacent 

carboxylate surfactant molecules in a spherical micelle in water.  

Scheme 4.2.12 shows some of the types of hydrogen bonding that could occur at the 

surface of the micelle with good interactions of the solvent molecule with both the 

head group and counter ion. In reality, the model would likely be a very fluid system, 

with ions constantly exchanging and interacting in and around the Gouy-Chapman 

and bulk phase layers. Additionally, the ionic head groups of equal charge would 

naturally want to repel each other which should in theory hinder the formation of an 

outer micelle layer with head groups packed together. The hydrogen bonding 

provided by the polar water solvent reduces this repulsion and thus overcomes this 

issue of head group repulsion allowing for aggregation. 

In contrast to this aqueous model, however, a hypothetical model for an anionic 

micelle in liquid ammonia seems less likely (Scheme 4.2.13).  
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Scheme 4.2.13 Simplified two-dimensional representation of two adjacent 

carboxylate surfactant molecules in a spherical hypothetical micelle in liquid 

ammonia. (CF2/CF3 groups omitted for simplicity).   

Certainly, as with the water micelle model, one would expect the positively charged 

counter ion, in this case ammonium ion, to be well solvated by the ammonia solvent 

in a Gouy-Chapman layer because of the solvent‟s ability to donate its electron pair 

and solvate cations. However, because of ammonia‟s relatively poor ability to donate 

hydrogen bonds, solvation of the anionic head group would be poor. Thus the 

formation of a thermodynamically stable micelle with good solvent interactions with 

head groups in a Stern-layer appears evidently unlikely. Equally, due to its relatively 

lower polarity, liquid ammonia may not be able to reduce the electrostatic repulsions 

between adjacent head groups of equal charge as water does so well and thus hinder 

the formation of the micelle. This may be the main factor in the lack of micelles from 

anionic surfactants in liquid ammonia as head group repulsion does appear to have a 

significant effect on the formation of micelles and, as a general trend, critical micelle 

values of non-ionic surfactants tend to have lower cmc values compared to analogous 

ionic counterparts.
160

 Adjacent non-ionic head groups do not show any electrostatic 
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repulsion of one another such that the formation of a stable micelle interface is 

promoted, hence the lower cmc.  

Thus for the fluorinated carboxylates in liquid ammonia, micelle formation is likely 

hindered by the poor solvent interactions with the head group which additionally leads 

to increased repulsion between these groups. Similarly, these explanations can be 

applied to the apparent lack of micelle formation from other anionic surfactants 

(sulfates, sulfonates) in liquid ammonia.  

If anionic surfactants cannot form a stable outer layer due to the absence of a fluid 

bonding network with the ammonia solvent in and around the head group, attention 

turned to the possible use of some cationic surfactants, as the ammonia solvent could 

solvate the positively charged head group strongly by donating its electron lone pair. 

Interestingly, the cationic surfactants such as cetyl trimethylammonium bromide 

(CTAB) and benzalkonium chloride were both insoluble in liquid ammonia at 

concentrations as low as 5 mM. A general trend for salts in liquid ammonia is that the 

solubility decreases as lattice energy of their crystal increases. So for NaI, NaBr, NaCl 

and NaF, for example, solubility decreases in liquid ammonia as the lattice energy 

increases such that NaI is much more soluble than NaF.
25

 With this in mind, the use of 

cationic surfactants with an iodide counter ion was explored, where this bulky anion 

with lower lattice energy would hopefully promote the solubility of the cationic 

surfactant. In comparison to the other cationic surfactants, it was observed that decyl 

trimethylammonium iodide (DTAI) was soluble in liquid ammonia at concentrations 

as high as 40mM supporting the theory that reducing the salt lattice energy by using a 

bulkier anion would increase solubility (Scheme 4.2.14). Thus, aggregation of DTAI 

in liquid ammonia initially looked promising. 
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Scheme 4.2.14. Cationic surfactants with varying counter anion with observed 

solubility 

However, the conductance of DTAI in liquid ammonia also generated a curved profile 

and the data fitted the ion-pairing model, with a Kip value of 671 obtained (Kdiss = 

0.00149). At higher concentrations, the surfactant was insoluble and thus again, there 

was no obvious evidence of micellization with the cationic surfactant as anticipated 

but instead just the ion-pairing phenomenon. 

In pursuit of an explanation as to why the cationic surfactants cannot form micelles in 

liquid ammonia, as was previously done with the anionics, a schematic of a theoretical 

DTAI micelle can be explored and scrutinized (Scheme 4.2.15).  
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Scheme 4.2.15 Simplified two-dimensional representation of two DTAI surfactant 

molecules in a spherical hypothetical micelle in liquid ammonia.   

In contrast to the anionic surfactant model in ammonia, this time there would likely be 

good interactions between the solvent ammonia and positively charged head group. 

This would in turn stabilize the positive charge on the head group and hence reduce 

the repulsion of adjacent surfactant head groups. Initially then, the possible formation 

of a cationic micelle appeared promising because, so far, the Stern layer of the micelle 

looks realistic, which of course wasn‟t the case with the anionics, contributing to their 

lack of micellization. The problem may arise from the poor solvation of the anionic 

counter ion in a Gouy-Chapman layer. There must be some degree of solvation of the 

iodide anion, owing to the higher solubilisation of DTAI compared to the bromide and 

chloride surfactants, and similarly the higher solubility of simple the iodide salts in 

general in comparison to salts with the less bulky anions. In fact any solubilised salt in 

liquid ammonia must have some degree of solvation of both cation and anion. It may 

just be that the solvation of the anion is just not good enough to create a stable Gouy-

Chapman layer. This lack of solvation is probably evident in the reasonably high Kip 

value obtained for DTAI. A high degree of ion-pairing is quite apparent (Kip = 671) 

which is much higher than the anionic hydrogenated surfactants (Kip SDS = 169, Kip 
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Aerosol OT =165). As previously outlined, the Kip may also be representative of some 

formation of the higher aggregates, such as dimers or trimers, but this is probably not 

the case with DTAI. The Kip for DTAI is much higher than the analogous C10 chain 

length fluorinated carboxylate and even higher than the perfluorododecanoic acid 

(Table 4.2.3), which has been assumed to form these higher aggregates due to their 

increased hydrophobicity. The hydrogenated chain is not as „ammoniaphobic‟ as the 

fluorinated chain so the DTAI would not be expected to form aggregates as readily. 

Hence the suggestion that the Kip for DTAI is indicative of some degree of 

aggregation that is actually greater than that of the C10 and even C11 fluoro chain is 

unlikely. The possibility therefore is that the DTAI shows a high degree of ion pairing 

due to the poor solvation of the iodide anion.  

Omitted from the above simplified micelle schematics for both ionic head groups in 

liquid ammonia is the possible ion pairing between the ionic head group and counter 

ion. This would occur at the Stern layer - Gouy-Chapman interface often described as 

the range of shear surface, and it could be argued that the ion pairing into a more 

„neutral‟ head group would promote the formation of micelles, as the repulsion 

between head groups would be reduced.  

However, on the whole, the lack of micellization is still evident from the conductance 

profile where it can be predicted that if aggregation was occurring the conductance 

profile would not be too dissimilar from the water profile. Similarly, the formation of 

the bulky macroion, the micelle, would show a noticeable change in the conductance 

isotherm at the cmc. A theoretical plot of what would be expected for the conductivity 

of a surfactant-micelle system in liquid ammonia is shown in Figure 4.2.17 with 

comparison to the general water model.  
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Figure 4.2.17 Conductivity as a function of concentration for a general ionic 

surfactant in water and a theoretical ionic surfactant in liquid ammonia that can form a 

micelle.  

Prior to micellization, in water conductance is linear with concentration whereas in 

ammonia it is curved due to ion-pairing and maybe even dimerisation. Then, the 

formation of the bulky micelle with its overall reduced conductance effect would 

cause a dramatic „break‟ in the conductance. Just like in water, a dramatic retardation 

in the conductance above the critical micelle concentration would be evident. It is 

anticipated that any charged micelle formed in liquid ammonia would also experience 

the same ion-pairing due to the reduced polarity of the solvent and thus a curved 

conductance would be expected for the micelle above the cmc. Again, this is just a 

hypothetical conductance model for an „ideal ionic micelle‟ in liquid ammonia, but 

just demonstrates that none of the conductance profiles for the surfactants looked like 

this. Only the initial curved profile is observed indicating monomeric conductance 

with ion-pairing and possibly some degree of dimer/trimer aggregation for the more 

hydrophobic (fluorinated) surfactants but clearly not full aggregation into a micelle.   

4.2.3 Summary of conductometric studies in liquid ammonia  

In summary of the conductometric studies, the ionic surfactants demonstrated the ion-

pairing phenomenon which is typical of simple salts in this solvent. It is the reduced 

polarity/dielectric constant of liquid ammonia (compared with water) that promotes 

the association of non-conducting, neutral, ion-pair species and thus a non-linear 

relationship between conductivity and concentration is observed. The formation of 
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higher aggregates such as dimers and trimers may also occur, as is evident with the 

fluorinated carboxylates, and these will in turn contribute to the non-linear 

conductance profiles. It was concluded that the anionic surfactants do not form 

micelles as the head group was not solvated well enough by the ammonia solvent in a 

Stern layer. This is in contrast to the cationic surfactants where by the lack of 

aggregation was likely due to poor solvation of the counter ion in the Gouy-Chapman 

layer of any potential micelle. Additionally, it may be that no ionic surfactant can ever 

form micelles because the relatively non-polar ammonia solvent cannot reduce the 

electrostatic repulsions between adjacent head groups as polar water does so 

effortlessly through hydrogen bonding.  

Thus, it is anticipated that non-ionic surfactants in liquid ammonia may have the 

ability to form aggregate species as they would show zero head group repulsion. 

Additionally, having observed that the head group interactions with the solvent must 

play such a vital role in the stabilisation of this micellar outer layer, the principal 

approach for the non-ionic studies was to find a neutral functional group that would 

be best solvated by the ammonia. The amide group could potentially be the ideal 

candidate.  
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4.3. Aggregation studies on perfluorinated amides in liquid ammonia – Results 

and Discussion 

4.3.1 Potential of fluoroamides to aggregate in liquid ammonia 

The potential for long-chained, fully fluorinated amides to form aggregates in liquid 

ammonia is quite apparent just by looking at the likely interactions these types of 

molecules may have with the ammonia solvent (Scheme 4.3.1).  Furthermore, during 

the synthesis of these amides it was observed that they showed a large degree of 

„frothing and foaming‟ in liquid ammonia. This is typical of a surface active system in 

water which, admittedly not scientifically conclusive, does suggest that they have 

highly surface active properties in ammonia and thus their potential to aggregate into 

micelles was promising. 

 

Scheme 4.3.1 The potential interactions of the long-chained fluorinated amides and 

liquid ammonia solvent are quite apparent. 

As previously summarised, the reason that conductometric studies on carboxylate, 

sulphate and other surfactants showed little evidence of micellization in ammonia 

could be due to a lack of solvent and polar head group interactions that are needed for 

aggregation. Water, with its polar, amphoteric nature, can solvate cationic and anionic 

(as well as non-ionic) head groups so that the aggregation of both cationic molecules, 

such as CTAB, and anionic molecules, such as SDS, is not surprising. Contrary to 

this, liquid ammonia shows poor anion solvation and consequently a 

thermodynamically stable aggregate consisting of an outer layer with stable ammonia-
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anion interactions is less plausible. On the other hand, the amide group is well 

solvated by the ammonia, owing to its electron lone pair with relatively high 

normalised donor number (DN
N
) which is 1.52, greater than that of HMPTA (DN

N 

=1) and thus at least as a starting point, long chained amides (fluorinated or not) are 

expected to be more soluble in liquid ammonia than their carboxylate counterparts. 

The amide head group does possess the ability to form a stable outer layer of the 

micelle. The formation of micelles, which requires some degree of surfactant 

solubility in the first place, looks promising with the long chained fluorinated amides. 

As a rough comparison, perfluorododecanoic acid is insoluble in liquid ammonia at 

concentrations as low as 5 mM, whereas the amide analogue, perfluorododecanamide, 

appears fully soluble up to around 40 mM. This simple observation is consistent with 

poor anion solvation in liquid ammonia, as this acid, with pKa ~ 0, is fully 

deprotonated in ammonia and thus exists as the carboxylate, RCOO
-
, and the 

ammonium ion, NH4
+
. Ammonia is a poor hydrogen bond donor to the carboxylate 

anion and hence the poor solubility of the overall species is explained. As expected, 

the fluorinated amides show little or no solubility in water and even the medium chain 

length perfluorooctanamide is insoluble at concentrations as low as 2 mM, with the 

corresponding fluorinated acid soluble at 30 mM. These trends show that it is not only 

the polarity of the solvent that effects its ability to solubilise these amphiphilic 

compounds, but also the solvent capacity to solvate and hence bond with the polar 

head group of the surfactant.  

Solvation of the polar amide group in ammonia would be well favoured, and, 

similarly to water, the non-polar, lipophilic, fully fluorinated chain would be poorly 

solvated by the ammonia, thus perfluorinated amides are ideal candidates to 

demonstrate aggregate phenomena in liquid ammonia. Conductometric studies on 

these perfluorinated amides showed that, as expected, they exist in liquid ammonia as 

uncharged, non-conducting species. Therefore the traditional method of detecting 

micelles by conductivity, looking for a „break‟ in the conductance isotherm, would 

not be applicable with these neutral species. Accordingly, another micellar detection 

method was required for the fluorinated amides in liquid ammonia.  
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4.3.2 Initial attempts to detect aggregation 

4.3.2.1 Solubilisation in micelles as a detection method 

With the need for a different detection method to observe the aggregation of these 

neutral surfactant species, attention immediately turned to the unique property of the 

micelle that gives it such wide application; its ability to solubilise compounds into an 

environment in which they would otherwise be insoluble. The solubilisation of water-

insoluble compounds into an aggregate surfactant phase in aqueous solutions is vital 

to many industrial applications such as drug delivery, textile dying, detergency and 

emulsion polymerization.
161, 162

 

The ability for the micelle to therefore solubilise a particular compound can then be 

used as a method for the confirmation of surfactant aggregation. One of the principal 

ways of achieving this is by investigating the solubilisation of dyes in aqueous 

solutions of micelles. 

4.3.2.1.1 Solubilisation of dyes into the micelle  

Singh et al showed that the solubilisation of organic, water-insoluble, dyes such as 

Sudan I and Quinizarin into aqueous solutions of surfactant micelles can be used to 

find cmc values which are consistent with literature from the more traditional methods 

such as conductance and surface tension.
163

 Using a UV-spectroscopic method, the 

cmc value was determined at the concentration of surfactant at which solubilised dye 

was detected by the instrument (Figure 4.3.1). 
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Figure 4.3.1 Solubilized dye (Sudan I) as a function of DTAB (dodecyltrimethyl 

ammonium bromide) concentration with varying amounts of initial dye concentration 

in water.
163

 

Although the UV method was used to accurately identify the initial solubilisation of 

the organic dyes into the aggregated phase, their work highlighted that at the cmc, as 

solubilisation of the organic dye into the micelle ensued, the colour could be observed 

discernibly with the naked eye. This is no surprise, as the extinction coefficient of 

organic dyes is generally in the region of 1x10
4
 M

-1
cm

-1
.  

Accordingly, the plan was to see if the aggregation of the fluorinated amides in liquid 

ammonia could be observed by the solubilisation of dyes into the non-polar 

hydrophobic core. This could be primarily achieved by simple visual detection to see 

if the theory is correct with a view to using the high pressure UV cell to get some 

accurate measurements of dye solubilisation as a function of surfactant concentration 

as was observed in the literature. This would perhaps allow some cmc values for the 

fluorinated amides in liquid ammonia to be obtained.  

The detection of micelles by this method relies on using a dye that is initially 

insoluble in the solvent medium, such that a series of dyes were investigated in liquid 

ammonia to see their suitability for the method. The first candidate was beta-carotene, 

a highly non-polar, strongly coloured red pigment that is found widely in nature, 

particularly abundant in plants and fruits. It is this water-insoluble compound that 

contributes to the bright orange colour of carrots and other orange root vegetables.
164

 

In liquid ammonia, it was observed that this dye has some solubility giving a bright 
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yellow coloured solution (Figure 4.3.2). The solubility was not massive, as evident by 

the 2 phase system but the initial speculation that the dye would hopefully be totally 

insoluble in the ammonia was incorrect.  

 

Figure 4.3.2 -carotene was visibly soluble in liquid ammonia. Approximately 5 mg 

in 5ml (~ 2 mM).  

The justification for this observed phenomenon was that this highly non-polar dye is 

soluble in liquid ammonia because ammonia has a much lower polarity than water, 

and thus has the ability to solubilise this species in similar fashion to organic solvents 

such as acetone and hexane. This would maybe imply that liquid ammonia can 

solubilize most organic soluble dyes but maybe not dyes on the opposite side of the 

polarity scale. Consequently, attention turned to the water-soluble azo-dyes such as 

Edicol Red and Tartrazine (Scheme 4.3.2). 
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Scheme 4.3.2 Structures of water soluble dyes Edicol Red (l) and Tartrazine (r). 

These types of dyes find use within the food industry, in the colouring of soft drinks, 

confectionary and cereals, for example. Unfortunately however, in similar fashion to 

the non-polar organic -carotene, these highly polar dyes were very soluble in liquid 

ammonia. In fact over a wide range of dye types, it was observed that they were all 

soluble in liquid ammonia. Using the high pressure UV cell, the spectra of these dyes 

in liquid ammonia were obtained and some maximum absorbance values (max) 

determined. In comparison, the solubility and subsequent absorbance of the dyes was 

investigated in other solvents including water and hexane (Table 4.3.1). The colour 

change for the brilliant yellow is likely due to the ionisation of the phenolic groups. 

Table 4.3.1 max values obtained by UV spectroscopy for a range of dyes in water, 

liquid ammonia and hexane at 25 °C. 

Dye 

Water (r = 80) LNH3 (r = 16) Hexane (r = 1.8) 

colour max (nm) colour max (nm) colour max (nm) 

Edicol Red purple 521 purple 509 - - - insoluble - - - 

Tartrazine yellow 426 yellow 431 - - - insoluble - - - 

Brilliant Yellow orange 400 purple 542 - - - insoluble - - - 

-carotene - - - insoluble - - - yellow 447 yellow 450 

Sudan II - - - insoluble - - - orange 484 orange 468 

Solvent Green 3 - - - insoluble - - - pale blue 634 blue 636 

Liquid ammonia evidently has the ability to solubilise the full spectrum of dyes 

ranging from the non-polar hydrocarbon type dyes, which are soluble in the organic 
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solvents such as hexane, to the water soluble azo-dyes which are essentially salts with 

a conjugated system. The results are somewhat surprising as they indicate that liquid 

ammonia solvent, typically classified as a polar, aprotic solvent, has properties which 

allow it to also mimic a non-polar type solvent. Initial speculation was that the 

ammonia solvent, with its dielectric constant of about 16 is really „in the middle‟ of 

the polarity scale of solvents and thus has the ability to solubilise the range of dyes 

from non-polar to polar. Yet it is well observed that short to medium chain alkanes 

such as hexane are insoluble in liquid ammonia so one would not expect the even 

larger hydrocarbons such as -carotene to be soluble.
33

  Liquid ammonia, however, 

has an interesting property as a solvent in that ammonia molecules exert large van der 

Waals forces, and for this reason, the highly conjugated system of the hydrocarbon 

dyes, even though non-polar, are well solvated by ammonia.
165

 The attractive field of 

ammonia as a solvent is divided almost equally between an orientation of polar forces 

(from the lone pair) and van der Waals effect, in contrast to water solvent in which 

there is much smaller contribution of the van der Waals forces in comparison to the 

polar attractive field. It is thought that these van der Waals forces in liquid ammonia 

contribute to the solvents ability to solubilise alkenes (even mono-unsaturated) better 

than alkanes such that it is not surprising that a whole range of dyes, which are always 

highly conjugated systems by their very nature, are well solubilised in liquid 

ammonia.  

Due to the apparent limited solubility of -carotene in liquid ammonia as evident in 

Figure 4.3.2, it was speculated that maybe the solubilisation of dyes could still yield 

some interesting results. The solubilisation with added surfactant could have been 

measured against a small background solubilisation, but, as discussed in the 

experimental section, our current high pressure UV set-up is not quantitatively 

accurate. 

4.3.2.1.2 Solubilisation of a lipophilic compound into the micelle 

Having highlighted that the dye method for detection of micelles in liquid ammonia 

was unfeasible due to the solubility of a wide range of dyes, attention turned to the 

possible use of non-dye, highly lipophilic compounds that are definitely not soluble in 

the ammonia but may be in an aggregate hydrophobic core. Comparable to the dye 

method, this technique works on the principle that the analyte is insoluble in the 
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ammonia solvent but then solubilised by the micelle core of the fluorinated amide 

aggregate (Figure 4.3.3). 

 

Figure 4.3.3 Schematic of micelle solubilisation of a fatty substance into the interior 

core of the micelle.  

Long chain alkanes are insoluble in liquid ammonia, so a primary candidate for these 

trials was a fully fluorinated alkane such as perfluorohexane (pfh). It was anticipated 

that the pfh would have limited or zero solubility in liquid ammonia and so any 

solubility increase with the presence of surfactants could be attributed to micelle 

solubilisation. A method was required to monitor this process. The chosen route was 

to use the Omnifit dip-tubing as a means of taking out samples from the liquid 

ammonia to test for pfh by GC-MS. A set amount of pfh would be injected into the 

ammonia solvent with vigorous stirring. After a time period, the stirrer would be 

switched off and the insoluble lipophile left to sink to the bottom of the vessel (pfh ≈ 

1.7 g ml
-1

). A sample would then be taken from the dip-tubing situated near the top of 

the solution for analysis. It was possible to detect the presence of any pfh by GC-MS 

using a non-polar HP-5 column with standard run parameters (pfh boiling point ≈ 56 

°C). Figure 4.3.4 shows a theoretical overview of the process. 
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Figure 4.3.4 Overview of method for solubilisation of pfh in fluorinated amide 

micelles in liquid ammonia; without fluoroamide (left), with fluoroamide prior to 

aggregation (centre) and with an aggregated fluoroamide surfactant (right).  

It was anticipated that without the micelles, the sample obtained would contain zero 

pfh, whereas in the samples with the fluorinated surfactants, if pfh was present then 

this may indicate solubilisation into the micelle. Ideally, this would only be the case 

above a certain fluoroamide surfactant concentration, indicative of the cmc value at 

which aggregates form.  

The baseline test in liquid ammonia only showed that the proposed method may be 

workable; pfh (~50 mM) in liquid ammonia with stirring for 2 hours and then left to 

settle for 30 minutes prior to sampling into hexane did not show up by GC-MS 

analysis. This process was then repeated with varying concentrations of the 

fluorinated amides of different chain length: perfluoroheptanamide (25 and 170 mM), 

perfluorooctanamide (15, 50 and 90 mM), perfluorononanamide (15 and 60 mM), and 

perfluorodecanamide (10, 20 and 40 mM). The results, however, were disappointingly 

inconclusive. For all the experiments, no pfh was observed when sampling from the 

solution possibly suggesting zero solubilisation into any aggregate. This doesn‟t 

necessarily dismiss the notion that these fluoroamide surfactants are forming micelles, 

but maybe that this simplified method in liquid ammonia is not working. Exploring 

the literature around this subject supports this notion. For example, Seedher et al 

investigated the micellar solubilisation of some generally poorly soluble anti-diabetic 

drugs.
166

 Their experimental procedure showed that the solubilisation of these 

sulfonylurea-type compounds into aqueous solutions of CTAB, SDS and Tween-80 

required a “vigorous centrifuging” process followed by filtration. Similarly, other 
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techniques that report the solubilisation of drugs into micelles entail the robust 

mechanical shaking of the mixtures for periods of up to a day.
167

 In fact, some reports 

even suggest that in order to solubilise their drugs into micellar solutions, a stirring 

period of up to 5 days at elevated temperatures was necessary.
168

 Although, different 

techniques may be used for different compounds and micelle systems, the underlying 

principle appears to be that the method for solubilising compounds into micelles often 

requires a highly vigorous and hands-on practical approach. The use of techniques 

such as centrifuging or mechanical shaking whilst working at 10 bar pressure in small 

scale glassware is not practical. Thus it was concluded that the possible observation of 

micelles by the simplistic solubilisation technique outlined in Figure 4.3.4 was not 

going to work. It may have been that with longer periods of vigorous stirring by 

magnetic flea (days, weeks?) the technique may have had some merit but this was not 

pursued. 

As a consequence, another technique was required to observe the micelles with the 

aim of using an analytical tool that is well known in the field of aggregation studies 

and can be simpler, repeatable and give conclusive results. NMR studies had the 

potential to fulfil these requirements.  

4.3.3 Aggregation studies on surfactants using NMR 

4.3.3.1 In water 

The use of NMR as a tool for the detection of micelles in water is widely reported 

within the literature.
85

 It is based on the principle that NMR chemical shift is 

extremely sensitive to the environment. Since neighbouring solvent molecules 

contribute to the environment it thus follows that chemical shifts are sensitive to the 

nature of the solvent as well as its molecular chemical environment. NMR theory 

states that the heavier the atom is, with more electrons, the greater its shielding and 

hence chemical shift range. Heavier atoms also tend to show a stronger solvent effect. 

For these reasons, the observation of micellization is much easier by 
19

F NMR 

(fluorinated surfactants) than 
1
H NMR (hydrogenated surfactants). Similarly, the 

13
C 

nuclei of alkyl surfactants can exhibit large solvent shifts but the applications are 

limited because of their low natural abundance (1.1%) and so are not used much in the 

detection of micelles.
169
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The observation of micelle formation by NMR is based on the fact that the chemical 

shift of an atom is sensitive to its chemical environment. For example, the terminal 

CF3 group of trifluoroethanol shows a significant decrease in 
19

F chemical shift in 

going from the highly polar water solvent ( = 76.8 ppm) to the aliphatic non-polar 

hexane solvent ( = 78.32 ppm) (Figure 4.3.5). 

 

Figure 4.3.5 
19

F NMR chemical shift of CF3 group of trifluoroethanol in water (red) 

and hexane (blue). 

One of the most extensive studies on micelles by NMR was done by Guo et al.
85

 They 

investigated the detection of aqueous micelles from the changes in chemical shift 

observed for a number of long chained fully fluorinated carboxylic acids and their 

salts. In particular, they were interested in the change in chemical shift of the terminal 

-CF3 group in going from the free monomer in an aqueous environment to deep within 

a micelle aggregate which could be classed as a non-polar „fluoroalkane‟ type 

environment.  Beneficial to their work, as they used ionic surfactants, was that they 

could also use conductance and hence confirm that their cmc findings by the NMR 

method were consistent with the widely accepted traditional detection method. 
19

F 

NMR spectra were obtained for the fluorinated acids over a wide concentration range 

and it was apparent that there was a distinct change in chemical shift of the terminal -

CF3 group as micellization occurred. Using the 
19

F NMR method, a number of critical 

micelle concentration values were obtained by Guo et al for a variety of long chained 

fluorinated carboxylate surfactants consistent with other detection methods (See Table 

4.2.1 from earlier section). 



128 
 

4.3.3.2 In Liquid Ammonia - Results and Discussion 

4.3.3.2.1 Initial attempts at observing micelles from alkyl amides using 
1
H NMR 

It was initially speculated that it may be possible to observe micelle formation in 

liquid ammonia for typical surfactants as is observed in water. Disappointingly, the 

conductance chapter showed that ionic surfactants cannot form micelles most likely 

because of the electrostatic repulsion between neighbouring head groups that arise 

from their poor solvation from the borderline polar/nonpolar ammonia solvent. 

Therefore attention turned to the fluorinated amides as potential suitable candidates 

for micellization in liquid ammonia. Prior to testing the fluorinated amides in liquid 

ammonia their alkyl counterparts were also briefly explored. The notion that these 

could form micelles in liquid ammonia is of great interest because, as will be observed 

in the next chapter, they can be synthesised readily in liquid ammonia from 

triglycerides in processes that can also be catalysed by lipases. Although, as described 

above, the use of NMR for micelle detection is commonly used for fluorinated 

surfactants, as their shifts are easily observed, there is some literature indicating 
1
H 

NMR may be also be utilised. Zhao and Fung showed that the -CH3 terminal group of 

sodium dodecyl sulfate exhibits an observable change in 
1
H NMR shift coinciding 

with the critical micelle concentration,
170

 reasons for which will be explained with the 

fluorinated amides. A plot of 1/c vs. chemical shift allows determination of the cmc of 

SDS in water and is consistent with literature from conductance and surface tension 

methods. 

Similarly, it was anticipated that this technique could be used to observe micelles of 

alkyl amides in liquid ammonia by observing changes in the chemical shift of the 

terminal -CH3 group in going from monomer to micelle. Unfortunately, however, for 

alkyl amides in liquid ammonia, the ammonia solvent peak swamps the peak of 

interest (-CH3) which is expected to have a shift of roughly 0.8 ppm, and therefore it 

would be difficult to observe any shift changes in this triplet peak (Figure 4.3.6).  
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Figure 4.3.6 
1
H NMR of 40 mM dodecanamide in liquid ammonia was swamped 

with the ammonia solvent peak.  

The slightly discernible peak at around 1.3 ppm is likely attributed to the „middle-

chain‟ -CH2- groups of the C12 amide.    

Obviously, with a lack of an ammonia peak and completely different shift range 

altogether, the fluorinated amide NMR‟s changes in chemical shift would be much 

easier to observe.  

4.3.3.2.2 
19

F NMR of perfluorinated amides in liquid ammonia 

For all fluorinated amide surfactants studied by 
19

F NMR, depending on concentration 

and hence resolution, reasonably distinct peaks and couplings can be observed for 3 of 

the peaks. The peaks in question results from the terminal  -CF3 group, its adjacent -

CF2- group, and the carbon -CF2- group. The signal of the other -CF2- groups in the 

middle of the chain were not resolved very well due to such high degree of long-range 

splitting, this becoming more prevalent with increasing the fluorocarbon chain length. 

Despite the complex splitting patterns for these „middle‟ groups however, integration 

of all the peaks was consistent with the correct number of fluorine atoms in the 

molecule. Figure 4.3.7 shows a typical 
19

F NMR spectrum of perfluorononamide in 

liquid ammonia. 
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Figure 4.3.7 
19

F NMR spectra of 16.9 mM perfluorononanamide in liquid ammonia at 

25 °C (relative to ammonium trifluoroacetate = -75.5100 ppm). 

The chemical shift for any particular CF2/CF3 group is easily identified from the peak 

splitting/integration and the shift is reasonably consistent with those of the long 

chained fluorinated acids in water.
85

 The -CF3 terminal peak ( shows a discrete 

triplet observed at around -82.2 ppm, with a coupling constant of 10.6 Hz. Similarly, a 

triplet is observed for the carbon -CF2- peak at around -120.0 ppm and a coupling 

constant of 12.2 Hz. The -CF2- group adjacent to the  carbon is not as well resolved 

as the previous due to more long range splitting but has a chemical shift of around -

127.4 ppm. To confirm the view that these peak shifts can be used to detect 

micellization of the amide surfactants, 
19

F NMR spectra were recorded over a wide 

concentration range in liquid ammonia.  

It was first observed that there was a clear decrease in chemical shift of the well 

resolved peaks, with the terminal CF3 group showing the largest decrease at the 

concentration extremities (Figure 4.3.8). 
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Figure 4.3.8 
19

F NMR spectra of terminal -CF3 group of 9.1 mM (red) and 280 mM 

(blue) perfluorononanamide in liquid ammonia at 25 °C (relative to ammonium 

trifluoroacetate = -75.5100 ppm). 

The initial hypothesis was that there would be a distinct chemical shift of the 

monomer -CF3 group in the reasonably polar ammonia environment. Subsequently, if 

micellization into aggregates occurs, there would be a distinct chemical shift of the -

CF3 groups that are now deep within the extremely non-polar, fluorinated 

environment. The chemical shift over the full concentration range, however, showed 

that this was not the case. For example, for perfluorononanamide there appears to be a 

relatively constant chemical shift for the -CF3 group of around -82.17 ppm for low 

concentrations (9 mM – 32 mM). However, above this concentration there is a 

decrease in chemical shift that appears to be roughly linear with further increasing 

concentration of the surfactant (Figure 4.3.9). This trend was also observed with C7, 

C8, and C10 fluorinated amide NMR chemical shifts over a wide concentration range.  
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Figure 4.3.9 CF3 chemical shift as a function of concentration for perfluorononamide 

in liquid ammonia at 25 °C. 

The results are quite promising as they suggest that there is something happening at a 

certain concentration (~0.05 M) that is causing this sudden decrease in chemical shift. 

If aggregation was occurring and the -CF3 group was now embedded deep within the 

micelle, in a fully fluorinated environment, one would expect an increase in shielding 

from neighbouring fluorine atoms and thus a decrease in chemical shift, as appears to 

be the case. This suggests that this phenomenon is actually indicative of micellization 

and so this is the first real indicator that aggregation is occurring in liquid ammonia. 

Under the assumption for now, therefore, that this is micellization one has to question 

why their appears to be a continuing decrease in chemical shift as the concentration is 

further increased, as the expectation was that there would be a specific chemical shift 

for the free monomer in the ammonia and a specific chemical shift for the aggregated 

species.  

Studies by Guo et al on the fluorinated compounds in water also yielded comparable 

relationships to ours in liquid ammonia between the 
19

F chemical shift and 

concentration. They observed that up to a certain concentration the chemical shift 

remained constant and then there was a gradual decrease in chemical shift.
85

  By 

various means, they clarified that this was due to the rapid exchange of the 
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fluorocarbon molecules between the monomer species and micellar aggregate, and the 

observed peaks shifts are weighted averages of the two environments. It is reported 

that the mean lifetime of the aggregates from fluorinated acids (as well as other 

surfactants) in water is usually in the order of 10
-6

 s and the exchange between and 

monomer and micelle is thought to be diffusion controlled.
171

 To confirm that the 

observed chemical shift was a weighted average of the two species (monomer & 

micelle), Guo et al studied their spectra at two different frequencies. At a higher 

spectrometer frequency, a broader peak was observed in comparison to the lower 

frequency and this peak broadening was interpreted as confirmation that the chemical 

shift line broadening effect is caused by chemical exchange between the two 

environments.  

Having established, therefore, that the 
19

F NMR chemical shifts above the cmc can be 

interpreted as exchange of molecules in different environments, one can now 

quantitatively analyse the data from the fluorinated amide shifts in liquid ammonia. A 

mass action model approximation can be applied to the chemical shift vs. 

concentration, where by the observed chemical shift obs can be expressed as 

             ⁄          

where cmc is the molar concentration at which micelles or aggregates begin to form, c 

is the total surfactant molar concentration of the solution, m is the chemical shift of 

the free surfactant monomer and a is the chemical shift of the micellar or aggregated 

phase.
172

  

Applying this mass action model approximation to all of the long chained fluorinated 

amides in liquid ammonia shows that the results are consistent with what was 

observed in water with the fluorinated acids. A plot of obs as a function of 1/c 

consists of 2 linear segments that intersect at 1/c = 1/cmc. Figures 4.3.10 and 4.3.11 

show plots of the chemical shift (-CF3) as a function of the reciprocal of concentration 

for perfluorononanamide and perfluorodecanamide in liquid ammonia. 
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Figure 4.3.10 The chemical shift of the  terminal -CF3 group as a function of the 

reciprocal of concentration for perfluorononanamide in liquid ammonia at 25 °C. 

 

Figure 4.3.11 The chemical shift of the  terminal -CF3 group as a function of the 

reciprocal of concentration for perfluorodecanamide in liquid ammonia at 25 °C. 
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Likewise, perfluoroheptanamide and perfluorooctanamide give similar plots. 

Accordingly, the critical micelle concentration can be calculated by solving 

simultaneous equations for x for the 2 linear equations at the intersect. This was 

applied to the varying chained fluoroamides in liquid ammonia and cmc values 

obtained are shown in Table 4.3.2.  

Table 4.3.2 cmc values of perfluoroamides in liquid ammonia. 

Surfactant 
total 

carbons 
1/C intersect  (M

-1
) 

cmc in liquid ammonia 

(M) 

perfluoroheptanamide 7 9.59 0.104 

perfluorooctanamide 8 15.08 0.066 

perfluorononanamide 9 23.65 0.042 

perfluorodecanamide 10 37.03 0.027 

 

It is appears clear from the plots in Figures 4.3.10 and 4.3.11, as would be expected, 

that at c < cmc, obs is independent of the surfactant concentration and can thus be 

identified with m, the observed chemical shift of the free monomer. Conversely, by 

extrapolation of the linear section c > cmc to 1/c = 0, the chemical shift of the 

aggregate, a, can be found. In reality one could most likely never observe this 

chemical shift even at very high micellar concentrations due to the rapid exchange of 

micelle to monomer as previously explained but, theoretically, the individual 

chemical shifts of both monomer and micelle have been obtained and are distinctly 

different as was hypothesized.  

4.3.3.2.3 Trends that confirm aggregation in liquid ammonia 

As with micelles in water and other medium, one does not necessarily confirm 

micellization directly, by „looking‟ at the aggregate itself. Instead, one looks for 

trends that support aggregation is occurring such as the following of trends and rules 

related to the chain length, for example.  
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4.3.3.2.3.1 Critical micelle concentration vs. chain length  

Having therefore reported that a number of cmc values for varying chain length of 

fluorinated amides in liquid ammonia have been determined from the mass action 

approximation models, one can now confirm aggregation in liquid ammonia by seeing 

if these apparent cmc values are indicative of the chain length relationship. i.e. 

Klevens rule. As presented with the conductance data (chapter 4.2.1), with the 

fluorinated acids in water, Klevens rule is the empirical formula that unifies the 

relationship between surfactant chain length and cmc for a series of homologous 

surfactants in a given solvent system.
152,153

  Interestingly, the cmc values obtained for 

the fluorinated amides in liquid ammonia do appear to follows Klevens rule, showing 

an excellent linear relationship between the number of carbons in the hydrophobic 

chain (n) and log cmc (Figure 4.3.12). 

 

Figure 4.3.12 Logarithm of cmc (M) as a function of the number of carbon atoms for 

a series of perfluorinated amides in liquid ammonia at 25 °C.  
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for hydrogen and fluorinated chain, in water, the relatively low B value of 0.19 in 

liquid ammonia is not surprising (Table 4.3.3) 

Table 4.3.3 Klevens B values for various surfactants in water and liquid ammonia. 

Surfactant chain type/solvent B value from Klevens plot 

hydrocarbon/water 0.30 

fluorinated/water 0.48 

fluorinated/liquid ammonia 0.19 

 

As discussed in aqueous medium, the B value for the fluorinated chain is higher than 

that for the hydrogenated because the effect of adding an extra -CF2- increases the 

hydrophobicity of the chain more than the addition of a methylene group. Thus 

aggregation is promoted by the addition of a -CF2- compared with a -CH2- at a lower 

concentration and a reduction in cmc is observed. The value of 0.19 obtained for the 

fluorinated chain in liquid ammonia is much lower than both the hydrogenated and 

fluorinated chains in water. This is expected as liquid ammonia is much less polar 

than water (ammonia = 16.0, water = 80) and thus the introduction of an extra -CF2- or -

CH2- has less effect in ammonia than it does in water. This would also suggest that 

liquid ammonia has the ability to solubilise alkane chained -CF2- groups even better 

than water can solubilise -CH2- groups. Effectively, the B-values are an indication of 

the free-energy of transfer of the monomer in the solvent to the aggregate micelle.  

The transfer of a -CF2- group from liquid ammonia to its aggregate is less than half 

the corresponding transfer from water. This is due to the much greater changes in the 

Lennard Jones interactions between the fluorocarbon and water compared with those 

in liquid ammonia.
173,174

 

Similarly to the B values obtained in water for the fluorinated/hydrogenated chains, in 

liquid ammonia one would expect that introducing a -CF2- group into the chain to 

have a greater effect than adding a -CH2-. Although, unfortunately, as seen above, the 

alkyl amides were not investigated in liquid ammonia to any major extent due to the 

ammonia peak overlapping with -CH3 group.  
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As a very crude prediction, using the ratio of two values obtained in water for 

hydrogenated (B = 0.30) and fluorinated (B = 0.48) surfactants, one could estimate 

that the B value for hydrogenated surfactants in liquid ammonia would be about 0.12. 

This is of course under the assumption that they would aggregate in liquid ammonia 

and some predicted cmc values can be obtained for fatty acid amides in liquid 

ammonia (Table 4.3.4).  

Table 4.3.4 Experimental and predicted cmc values for fluorinated and hydrocarbon 

amides in liquid ammonia at 25°C.  

Number of carbons in 

hydrophobic tail (n) 
Fluoro amide cmc (M) 

Alkyl amide cmc 

(M)
*
 

6 0.104
†
 0.224 

7 0.066
†
 0.169 

8 0.042
†
 0.129 

9 0.027
†
 0.098 

11 0.011 0.056 

13 0.004 0.032 

15 0.002 0.019 

†
denotes experimental obtained cmc, others are determined from Klevens rule. 

*
Using 

theoretical Klevens parameters A = 0.19 and B = 0.12 for alkyl amides in liquid 

ammonia 

With regards to the Klevens A value obtained in liquid ammonia for the fluorinated 

amides (0.19) it is difficult to evaluate as it is specific of the head group-solvent 

interactions and having only investigated the amide head group in ammonia there is 

nothing to compare it with. Generally speaking, within the literature, there is not 

much information on the specifics of the A value obtained from this empirical formula 

as it is dependent on a number of factors. These include interactions of the polar head 

group with the solvent molecules, adjacent head group interactions within the Stern 

layer and counter ion interactions for ionic surfactants and other solvation effects. As 

it is determined at the y-intercept, where n = 0, it could be regarded as a „theoretical‟ 

cmc value of the polar head group, which will obviously not form micelles. The lower 

value of A gives a lower „cmc value‟ at n = 0, and hence the easier it is to form 
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micelles suggesting better the head group-solvent interactions and reduced head 

group-head group repulsion.  In water, for example, a common A value for sodium 

carboxylates is around 1.8 , whereas it was observed that for a series of ionic liquid 

surfactants with aminium head groups, the A values were much higher in aqueous 

solution than the carboxylate surfactants (Scheme 4.3.3).
152

 

 

Scheme 4.3.3 Klevens A values of various head groups in water and the amide in 

liquid ammonia (where R = hydrophobic tail)  

Comparing the A values obtained for CnmimBr (1-alkyl-3-methyl-imidazolium 

bromides) and CnMPB (N-alkyl-N-methylpyrrolidinium bromides) in water, the 

smaller value obtained for the former suggests that the ability to form micelles in 

aqueous solutions of CnmimBr is superior to that of CnMPB. Although much more 

complex with the additional methyl/alkyl groups attached, a crude comparison of the 

two head groups shows that the imidazole (dipole moment = 3.61 D) head group is 

more polar than the pyrrole (dipole moment = 1.58 D) such that the tendency of the 

former to aggregate in water is greater due to better interactions with the polar water 

solvent, which is then evident in the slightly lower A value („cmc‟ at n = 0).  

Similarly, the even lower value of the carboxylate suggests this polar head group has 

even better interactions with the water solvent through strong H-bonding and thus 

promotes the formation of a stable aggregate easier. Formamide has a dipole moment 

of 3.37 D and dielectric constant 109.5 so is not surprising that the extremely polar 
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amide head group, with good interactions with the ammonia solvent, has an even 

lower Klevens A value in ammonia than the carboxylate and amines in aqueous 

systems.  

Non-ionic surfactants in general tend to have lower cmc values than ionics due to the 

lack of head group repulsion, allowing the formation of micelles at a lower 

concentration. There is currently a lack of data in the literature on Klevens values for 

non-ionics but it would be expected that, in water at least, the A value would be 

reasonably low just like that for the neutral amides in liquid ammonia. B values would 

be expected to be similar for both ionics and non-ionics, but still dependant on the 

nature of the tail, i.e. fluorinated or hydrogenated.  

Thus, the cmc values obtained for the fluorinated amides in liquid ammonia have been 

shown to follow the trends that are observed with general surfactants in water, with 

regards to the Klevens rule linear plot of log(cmc) vs. chain length. Ideally, one would 

like to compare the Klevens A and B values for some other surfactants in liquid 

ammonia but unfortunately this has not been the case. The lower B value obtained 

does conform to the notion that the addition of hydrophobic groups into the chain has 

less of an effect in the moderately polar liquid ammonia than it does in the highly 

polar water solvent. Similarly, the low value of A does support the original 

speculation that the head group interactions of ammonia solvent and amide, as well as 

adjacent amide-amide head groups would be very strong, favouring the formation of a 

thermodynamically stable aggregate.  

4.3.3.2.3.2 NMR chemical shift vs. position in micelle 

The detection of micelles by the NMR method, in liquid ammonia in particular, is 

much more time consuming and generally less practical than the traditional 

conductivity method and yet the use of this technique does have its benefits that can 

surpass the conductance method. The application of Klevens rule relies on obtaining 

cmc values for a series of homologous surfactants of differing chain lengths, as was 

achieved. However, the NMR method actually allows one to confirm that each of the 

individual fluorinated amides are aggregating by looking at the specific changes in 

chemical shift in going from monomer to micelle.  
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The general method for obtaining the cmc values was done using the changes in 

chemical shifts of the terminal -CF3 group of the fluoroamide as this group is 

expected to undergo the largest change in chemical environment. However, as 

observed previous, in Figure 4.3.7, the distinct peaks can be observed for the -CF2- 

group adjacent to the terminal as well as the alpha carbon -CF2-. In fact, applying the 

mass action model over the concentration range for both of these peak shift changes, 

allows for the cmc to be obtained for the fluoroamide, and is consistent with using the 

-CF3 group. Figures 4.3.13 and 4.3.14 are examples of  and  peak chemical shift for 

the perfluorodecanamide (Scheme 4.3.4).  

 

Scheme 4.3.4 Perfluorodecanamide with labelled carbon atoms. 

 

Figure 4.3.13 The chemical shift of the  carbon -CF2- group as a function of the 

reciprocal of concentration for perfluorodecanamide in liquid ammonia at 25 °C. 
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Figure 4.3.14 The chemical shift of the  -CF2- group (adjacent to the  CF3) as a 

function of the reciprocal of concentration for perfluorodecanamide in liquid 

ammonia at 25 °C. 

By solving simultaneous equations for the two lines to find the intersect (c
-1

), critical 

micelle concentration values obtained from the plots of the chemical shifts of the  

peak and  peak are 0.028 M and 0.027 M respectively, consistent with the value 

obtained from the  -CF3 plot (0.027 M). Comparable to the  plot, the and 

monomer (m) can be extrapolated to the y-intercept at c < cmc and similarly, the 

aggregate shift (a) can be extrapolated from the line equations at 1/c = 0 (the y-

intercept at c > cmc).  

For the three fluorinated carbons of interest, the magnitude of chemical shift change 

in going from monomer to aggregate can be calculated as m-a and values for 

perfluorodecanamide can be found in Table 4.3.5. 
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Table 4.3.5 
19

F chemical shifts of perfluorodecanamide monomer and aggregate 

peaks in liquid ammonia at 25 °C. 

carbon m a m-a 

 -120.06 -120.20 0.14 

 -127.44 -127.77 0.33 

 -82.21 -82.63 0.42 

All values obtained for m-a are positive because there is a decrease in chemical shift 

in going from monomer to micelle. The -CF2- and -CF3 groups in the monomers are 

surrounded by a polar ammonia environment whereas in the aggregated micelle they 

are surrounded by neighbouring C-F groups from the adjacent hydrophobic chains, 

thus the shielding effect is observed.  

However, more significant is the trend observed with regards to the magnitude of 

chemical shift change vs. carbon position. For the perfluorodecanamide, the 

magnitude of chemical shift change (m-a) increases further along the surfactant 

chain towards the end terminal group, with smaller change in chemical shift for the  

group. This useful data is compatible with micellization occurring as it suggests that 

as one goes further along the chain, deeper into the micelle structure, the fluorinated 

environment dominates and thus a greater change in chemical shift observed. The  

carbon, for example, would be going from a polar ammonia environment to a semi-

fluorinated environment near the surface of the micelle, still exposed to some of the 

ammonia solvent, so only experiences „mild‟ shielding effect and hence a small 

change in chemical shift expected. On the other hand, the  -CF3 group is going from 

one extreme to the other. As a monomer, it is likewise exposed to the polar ammonia 

solvent environment, yet when micellization occurs it now resides deep within the 

core of the micelle where the non-polar fluorinated environment predominates, with 

negligible exposure to the ammonia solvent on the outside. Thus a greater change in 

chemical shift would be expected and this does appear to the case. In standard 

aqueous micelle systems, water has the ability to penetrate deep into the micelle, and 

the same would be expected with the ammonia fluoroamide micelles.
175

 Hence, for 
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the -CF2 group adjacent to the  -CF3, the magnitude of shift is not as great as the -

CF3 probably due to ammonia penetrating deep into the micelle.  

For all the fluorinated amides in liquid ammonia, m-a values were calculated for the 

, , and -CF2- adjacent to terminal, by the same means as previous, and are 

compiled in Table 4.3.6. 

Table 4.3.6 
19

F chemical shifts of all fluorinated amide surfactant monomer and 

aggregate peaks in liquid ammonia at 25 °C. 

 Fluorinated amide m-a 

Carbon number C7 C8 C9 C10 

2 0.06 0.10 0.19 0.14 

6 0.17 - - - 

7 0.29 0.20 - - 

8 - 0.38 0.39 - 

9 - - 0.58 0.33 

10 - - - 0.42 

                  *
colour key:  -CF3 group, -CF2- adjacent to the -CF3,  -CF2- group 

Over the wide range of fluoroamides of varying chain length, the trend is apparent. In 

going from the  carbon towards the terminal groups, an increase in the magnitude of 

the chemical shift change is observed, which concurs with the above hypothesis.  

There are also apparent trends between the surfactants of varying chain length. With 

regards to the  -CF3 group‟s m-a for example, as the surfactant chain length is 

increase from C7 to C8 to C9 there is an increase in the change in chemical shift of 

monomer to micelle. This is expected as one could easily visualise that the terminal -

CF3 group of a C9 chain would reside deeper into a micelle core than the terminal -

CF3 of the C7 chain, for example. Consequently, the former would exhibit a greater 

change in environmental shift as it is further away from the polar ammonia and hence 

shows a greater change in chemical shift. There is, however, an apparent anomaly in 

the results. For the C10 fluorinated amide, the overall trend, of magnitude of shift 
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increasing further along the chain is still observed. But, a lower than expected value 

for m-a for the -CF3 is observed, with a value somewhere in between that of the C8 

and C9 chain length. A similar trend is observed for the  and -CF2- groups which 

also give a lower than expected value for the perfluorodecanamide. It is difficult to 

explain this apparent anomaly but one sensible theory may be that the C10 surfactant 

molecules aren‟t as tightly packed together, allowing for further penetration of 

ammonia deeper into the micelle.    

4.3.3.2.3.3 
19

F NMR of a ‘non-aggregating’ fluoroamide 

It had been established that the changes in NMR chemical shifts for the various 

fluorinated amides can be attributed to their aggregation in liquid ammonia. Although 

having previously surmised that the chemical shift is reliant on the solvent 

environment in general, one may argue that the observed concentration-shift profile 

may be indicative of a general molecule over a large concentration range, because in 

theory as the concentration of analyte is increased, the solvent system is essentially 

changing. To totally dismiss this notion, the chemical shift profile of a fluoroamide 

that would be unlikely to aggregate was investigated. The micellization of very short 

chained molecules does not occur and thus it is anticipated that the shortest chained 

fluorinated amide, trifluoroacetamide, would not aggregate (Scheme 4.3.5) Over a 

reasonably large concentration range, the chemical shift of the () -CF3 group for 

this C2 fluoroamide was reasonably constant, with slight scatter most likely within 

experimental/instrument error margins. The chemical shift as a function of both 

concentration and reciprocal of concentration can be seen in Figures 4.3.15 and 

4.3.16, respectively.  

 

Scheme 4.3.5 Trifluoroacetamide 
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Figure 4.3.15 CF3 chemical shift as a function of concentration for 

perfluoroacetamide in liquid ammonia at 25 °C. 

 

Figure 4.3.16 CF3 chemical shift as a function of the reciprocal of concentration for 

perfluoroacetamide in liquid ammonia at 25 °C. 

From the plots, it is apparent that over a quite a large concentration range, there is no 

noticeable change in the chemical shift. If anything, there is an apparent decrease in 
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chemical shift at the lowest concentration of trifluoroacetamide, as opposed to at the 

higher concentrations which the longer chained amides showed as a sign of 

aggregation, but this is most likely due to experimental variation as discussed. 

Similarly, in water, a rough test showed that the simple fluorinated acid, 

perfluorobutyric acid showed these kinds of trends over a wide concentration range. 

There was a medium scatter of chemical shift in the range of around 0.05ppm but, 

again, nothing as noticeable as with the long chained fluorinated acids and salts that 

showed a distinct decrease in the chemical shift to conclude the formation of an 

aggregate species.   

4.3.3.2.4 Catalysis in micelles 

Changes in organic reactivity in aqueous solutions of micelles have been used to 

explore the structure of micelles
176,177,106 

 themselves and utilise micelles as models 

for simple cells.
178, 125 

The interior of the micelles in water and the head-group/solvent 

interface act as pseudophases distinct from the bulk solvent, and can accelerate or 

inhibit reactions, depending on the mechanism involved with the reactions as well as 

the rate constants and reactant concentrations in the two distinct regions.
179

 It is 

therefore of wide interest to explore organic reactivity in liquid ammonia in the 

presence of these aggregate/micelles.  

The observed pseudo-first-order rate constant for the ammonolysis of propargyl 

benzoate was found to increase approximately 6-fold in the presence of 90 mM 

perfluorononanamide. More remarkably, over a range of perfluorononanamide 

concentrations, the rate increase appears to roughly coincide with concentrations 

around the cmc obtained from the above NMR studies, approximately 42 mM (Figure 

4.3.17). 
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Figure 4.3.17 Observed rate for ammonolysis of propargyl benzoate as a function of 

perfluorononanamide concentration in liquid ammonia at 25 °C. 

The moderate rate enhancement seen in the presence of surfactant is typical of the 

magnitude seen in aqueous micelle catalysed reactions and thus further evidence of 

aggregation of the perfluoroalkyl amides in liquid ammonia. Having deduced that the 

rate limiting step for the uncatalysed solvolysis reaction involves late formation of the 

zwitterionic tetrahedral intermediate or a neutral tetrahedral intermediate with little C-

OR bond fission in the transition state, one can speculate how the presence of micelles 

may enhance the rate. Presumably, the transition state is stabilised at the micelle-

ammonia interface either because of increased polarity of the region or due to direct 

H-bond interaction between the amide and tetrahedral intermediate (Scheme 4.3.6).  
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Scheme 4.3.6 

Similarly, over the range of fluoroamide surfactants, a moderate rate enhancement 

was observed for a variety of the simple esters and appeared to roughly coincide with 

the cmc values determined from the NMR studies. 

4.3.4 Summary of fluorinated amide studies 

In summary of the aggregation studies on fluorinated amides in liquid ammonia, it 

was apparent during their synthesis in liquid ammonia that they were particular highly 

surface active, showing a good degree of frothing and foaming. However, unlike the 

ionic surfactants, due to their neutral charge another detection method was required in 

order to confirm aggregation. Initial attempts using a solubilisation method were 

unsuccessful. Due to the mid polarity of liquid ammonia, the full range of dyes tested 

had some solubility in liquid ammonia and so this detection method was not examined 

further. Likewise, solubilisation of pfh into a liquid ammonia micelle was 

unsuccessful, but may have some merit if a safer method for more vigorous agitation 

of the mixture could be developed. 
19

F NMR showed significant changes in chemical 

shift over a concentration range, in particular for the terminal -CF3 group, which is 

indicative of aggregation of a monomeric species into a micelle. From these changes 

in shifts, cmc values could be calculated which appeared to follow the Klevens 

relationship between cmc and hydrophobic chain length. Furthermore, the magnitude 

of the chemical shift change increases further along the chain towards the terminal 

group. This is consistent with the notion that the terminal group undergoes the 
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extreme change in environment in going from monomer to deep within the micelle 

core. In comparison, the  -CF2- group in the micelle is likely still surrounded by 

solvent ammonia that can penetrate the outer layer of the micelle, thus only a 

moderate change in chemical shift is observed. Additionally, micelles of fluorinated 

amides in liquid ammonia appear to have some catalytic function, on the ammonolysis 

of esters at least. The modest rate enhancement in the presence of the micelle could be 

due to stabilisation of a tetrahedral intermediate or an increased region of polarity. 

With further investigation, there may be some industrial application for the micelles in 

liquid ammonia. The studies do however suggest that aggregation of molecules in 

liquid ammonia is possible just like aggregation in water allows for 

compartmentalisation of cells. Thus liquid ammonia may have some capacity to 

support a „living‟ cell-type aggregate. Admittedly, only the fluorinated amides were 

shown to aggregate (alkyl amides could not be monitored by NMR), but the general 

principle that molecules may aggregate in liquid ammonia stands true and one of 

„life‟s processes‟, compartmentalisation of lipids, is certainly conceivable in this non-

aqueous solvent.  
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Chapter 5 - Enzyme Studies 

5.1 Background  

5.2 Enzyme studies in liquid ammonia - Results and Discussion 
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5.1 Background 

5.1.1 Enzymes as nature’s catalysts 

Within the protective aqueous microenvironment that is the interior of the cell there 

are multiple reactions and chemical interconversions that help to maintain life. The 

vast majority of these reactions are non-spontaneous, slow and would not be able to 

meet the demand to sustain life if unaided. It is enzymes, nature‟s catalysts, which are 

responsible for the many thousands of reactions within the cell that help to preserve 

and develop life and so enzyme activity can be regarded as one of the fundamental 

processes of life along with cell aggregation.
180

 Enzymes are generally highly 

selective catalysts and so not only greatly accelerate the rate of reactions in nature but 

also dictate the specific metabolic pathways within the cell. Additionally, some 

enzymes play a key role in catalysing extracellular reactions like the breakdown of 

macromolecules in all living species and, in particular, these types of enzymes are an 

integral part of the digestive function of the fungi kingdom.
181

 Both intracellular and 

extracellular enzymes are synthesized within the cell, and are globular proteins but 

sometimes require the presence of co-enzymes and metal-ions for full activity.
182

 

5.1.2 Enzymes as industrial catalysts 

In addition to their role as biological catalysts, enzymes play a key role in the field of 

catalysis within the chemicals manufacturing industry. In the current climate, where 

the desire for „green chemistry‟ is becoming more prevalent, there is a drive towards 

the reduction, or preferably eradication, of waste produced by classical synthesis 

methods, and many industries are turning to enzymes to achieve this.
183, 184

 Enzymes 

offer the potential to manufacture high yields of pure products with a reduction in 

energy consumption and waste as they usually operate at mild temperatures, under 

moderate conditions and are highly selective towards the substrate. For example, the 

traditional method of disaccharide hydrolysis within the confectionary industry used 

to be accomplished using inorganic acids so that further purification would be 

required to remove by-products. The process can be made much more efficient, with 

little waste, using a hydrolase such as invertase to cleave the glycosidic bond (Scheme 

5.1.1). 
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Scheme 5.1.1 The action of invertase on sucrose to liberate glucose and fructose.
185

 

In more complex synthetic procedures, the enzyme‟s highly selective nature 

eliminates the need for protecting groups thus reducing the chemical derivatives that 

would be needed for further de-protecting, which overall reduces both the number of 

reactants and waste.
186

 A major test as to the extent at which enzymatic catalysis will 

replace conventional stoichiometric conversions within the manufacturing industry is 

sometimes determined by the enzymes ability to function out of its natural „comfort 

zone‟ of aqueous dominated media and its capacity to replace its natural reactants 

with the non-conventional as substrates. The potential for enzymes to catalyse 

reactions under anhydrous conditions has been well documented, particularly in 

organic solvents.
187

 

5.1.3 Enzyme activity in non-aqueous environments 

In the aqueous based environment in which life flourishes it is tempting to assume 

that enzymes only work in moderate, aqueous conditions. This can be reflected in that 

in the majority of enzymatic studies, water has been the orthodox reaction solvent as it 

is fundamentally the enzyme‟s natural habitat. However, many enzymes only work in 

a weakly aqueous environment, for example those which are membrane bound and 

catalyse reactions within a lipid phase.  

Many people have brewed beer and wine and made cheeses and yoghurts via 

enzymatic procedures for many centuries, but one of the first successful, scientific 
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industrial applications of enzymes was achieved by the Upjohn Company in 1951. 

They applied microbiological catalysis fermentation to a progesterone nucleus to 

introduce an 11-hydroxyl group which could then be transformed into cortisone, a 

steroid hormone.
188

 

More recent industrial applications of enzymes are highlighted in the synthesis of 7-

butyroyl-castanospermine, a highly effective inhibitor of HIV. This process utilises 

two enzymes in three separate steps (Scheme 5.1.2). 

 

Scheme 5.1.2 Reagents: (i) subtilisin, n-PrCOOCH2CCl3, pyridine, 92 hr, 84 %; (ii) 

Lipase CV, n-PrCOOCH2CCl3, THF, 72 %; (iii) Subtilisin, phosphate buffer, pH 6.0, 

64 %.  

Firstly, in non-aqueous conditions (pyridine), castanospermine is transformed into its 

1-butyroyl ester via a subtilisin catalysed transesterification. The monoester is then 

converted to the 1,7-dibutyroyl ester with lipase catalysis in tetrahydrofuran and 

finally subtilisin is used to cleave the 1-butyroyl ester.
189, 190

 

The above cases demonstrate how these biological catalysts can be utilised outside 

what one would normally regard their optimum aqueous environment that is the 

protective interior of the compartmentalised biological cell.  
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5.1.4 Choosing an enzyme and substrate for liquid ammonia studies 

5.1.4.1 A wide choice of enzymes, substrates and conditions 

Some enzymes are thus capable of showing catalytic activity out of their natural 

aqueous environment and so with a view to observing enzyme activity in liquid 

ammonia, there is a vast array of enzymes commercially available that could be 

examined. Additionally, with the many preparations of these enzymes available 

(lyophilized, immobilized, solubilised in co-solvent etc.) and the huge array of 

substrates for these biotransformations, a clearly defined plan must be set out as to the 

choice of enzyme, substrate and reaction conditions for the enzymatic studies in liquid 

ammonia. In, general, bio-catalysts are used in the laboratory and industrially in either 

a whole-cell system, such as yeast cells, or as isolated enzymes, which may be used 

free or immobilised, such as lipases. Although often cheaper, using whole cell 

systems in liquid ammonia does not appear to be a viable project.  

5.1.4.2 Enzyme catalysis in an ammoniacal environment  

Enzyme activity in a pure, anhydrous, liquid ammonia medium has not been 

previously reported. Although enzyme activity in a wide range of non-aqueous media 

is well studied, the use of nature‟s catalysts in an ammonia dominated environment 

has only briefly been explored. An example is Sheldon‟s pioneering work on the 

lipase catalysed ammonolysis of triglycerides in ammonia saturated organic solvents 

(Scheme 5.1.3). He demonstrated that in ammonia saturated tert-butanol, a number of 

triglycerides could be smoothly converted to the fatty acid amide by Candida 

antarctica Lipase B (CALB). In the absence of enzyme, no reaction was observed.
191

 

 

Scheme 5.1.3 Lipase catalysed ammonolysis of triolein in ammonia saturated tert-

butanol  
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A sensible approach to the liquid ammonia enzyme studies would be to mimic some 

of the reactions that Sheldon explored in ammonia saturated tert-butanol. If the 

formation of fatty acid amides from triglycerides could be catalysed by lipases in 

liquid ammonia then this could support an ammonia-based life system as well as offer 

some prospective industrial applications. The cell aggregation studies reported earlier 

were preliminary studies of very basic cell-type structures in ammonia. They 

demonstrated that, having observed micelles with simple surfactants, it may be 

possible to form more complex, biological-type cells from phospholipids. Any 

enzyme catalysis observed in liquid ammonia, even if not as efficient as in its „normal 

environment‟ would at least demonstrate the principle that ammonia has the potential 

to support a biological catalyst.  

Additionally, the potential products, fatty acid amides, are analogous to the 

fluorinated amide surfactants that were shown to aggregate into cell-like structures in 

liquid ammonia.  Admittedly, the aggregation of alkyl amides in liquid ammonia was 

not explored but if the enzymes can catalyse the synthesis of alkyl amides in liquid 

ammonia then it may be possible to piece together two individual processes of life - 

synthesis of lipids and formation of cells from these lipids. As referenced to in the 

introduction, the definition of „life‟ is not necessarily by observing an individual 

reaction or process, but more likely by combining a collection of these life-type 

processes.  

From an industrial perspective, the enzymatic synthesis of long chained fatty acid 

amides in liquid ammonia could be very interesting, as fatty acid amides are widely 

used commodities with applications in industry, the commercial market and medicinal 

research.  

5.1.4.3 Fatty acid amides 

5.1.4.3.1 Structure and applications 

Fatty acid amides (FAA‟s) are carboxylic acid amides comprising of an aliphatic 

chain and amide group (Scheme 5.1.4) 
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Scheme 5.1.4 General structure of a fatty acid amide, decanamide. 

Due to the amide head group they can form intermolecular hydrogen bonds and thus 

show higher melting points than their corresponding acids and esters.
192

 Conversely, 

they tend to show lower solubility in organic solvents than the analogous fatty acid 

esters.
193

  

One of ways of classifying fatty acid amides is by their carbon chain length:
194

 

 Short-chain fatty acid amides - aliphatic chains with fewer than 6 carbons such 

as butyramide. 

 Medium-chain fatty acid amides - aliphatic chains with between 6-12 carbons 

such as octanamide. 

 Long-chain fatty acid amides - aliphatic chains with between 13 to 22 carbons 

such as oleamide. 

 Very long-chain fatty acid amides - aliphatic chains with greater than 22 

carbons.  

Additionally, fatty acid amides can be characterised by the nature of their aliphatic 

tail, whereby fatty acid amides with one or more carbon-carbon double bonds are 

known as unsaturated whilst fatty acid amides without double bonds are classed as 

saturated.  

Medium and long chain fatty acid amides are very similar in structure to the 

surfactants studied in the aggregation chapter, comprising of a polar and non-polar 

moiety, and likewise can adsorb at a surface interface. It is the amphiphilic nature of 

fatty acid amides that make them useful commodities in various industries. They are 

primarily used as lubricating agents within the plastics industry and, because they 

have low toxicity, some FAA‟s (usually as diethanolamides) are replacing traditional 

surfactants in everyday consumer products such as hair shampoos, washing liquid, 

foam stabilizers and other detergents.
195
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In addition to their industrial and commercial applications, some fatty acid amides 

have recently been identified for their use in medicinal research. For example, 

oleamide (cis-9-octadecenamide) (Scheme 5.1.5) induces sleep in animals and 

accumulates in the cerebrospinal fluid during sleep deprivation.
196

 It is being studied 

as a potential treatment for sleep and mood disorders although the intrinsic 

mechanisms of action of this cannabinoid analogue are still under investigation.
197

 

 

 

Scheme 5.1.5 Oleamide (top) is structurally related to the endogenous cannabinoid, 

anandamide (bottom), and has the ability to bind to the Cannabinoid receptor type 1 

(CB1) receptor as a full agonist.    

The current global scale of fatty acid amide synthesis is in the region of 300,000 tons 

per year with market values estimated to be worth around £500 M.
198

 Hence, for both 

industrial and medicinal applications, there is a wide interest in the synthesis methods 

of fatty acid amides.  

5.1.4.3.2 Synthesis of fatty acid amides - current methods and liquid ammonia 

potential 

Fatty acid amides are most commonly prepared by reacting the fatty acid with 

anhydrous ammonia at high temperatures (> 200 °C) and pressures for extended 
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periods of time. Dehydration of the ammonium salt of the fatty acid produces the 

primary amide (Scheme 5.1.6).
199

 

 

Scheme 5.1.6 Fatty acid amide synthesis from the fatty acid 

Alternatively, there are some catalytic procedures available that allow for relatively 

shorter reactions time, but often still require elevated temperatures. One report uses a 

catalyst compound from metals of Groups 3 and 4 of the periodic table and claims 

yields of > 95 % fatty acid amides after 8 hours reaction in ammonia and an alcohol 

co-solvent at 180 °C.
200

 Another method uses a silica based surface catalyst and 

gaseous ammonia with high yields of > 99 % after 48 hr reaction at 160 °C.
201

  

Reaction times can be vastly reduced to less than 30 minutes using a microwave oven 

and a Lewis acid catalyst and urea as source of ammonia (yields > 90 %).
202

 However, 

microwave reactions are difficult to scale up and so this method is not effective for an 

industrial scale continuous processes. The fatty acids used for the above synthesis 

methods are routinely prepared by the hydrolysis of triglycerides (fatty acid esters) 

into the acid.  

Alternatively, the direct amidation of the triglyceride to prepare fatty acid amides is of 

great interest to the chemicals industry (Scheme 5.1.7).  

 

Scheme 5.1.7 Fatty acid amide synthesis direct from a triglyceride 

Unfortunately, the literature surrounding synthesis of fatty acid amides via this 

pathway is quite ambiguous and inconsistent. Balaty and others found relatively low 

yields of amide conversion (< 50 %) after reaction of various triglycerides in liquid 

ammonia at 25 °C for 92 hr.
203

 Contradicting this, one patent reports full conversion 
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of coconut oil (mainly C10-C14 fatty acid content) to the corresponding fatty acid 

amide upon standing in liquid ammonia at room temperature for only 12 hr.
204

 As 

with the amidation of fatty acids, the more efficient uncatalysed triglyceride 

amidation requires elevated temperature and pressure. For example, Roe and others 

report the ammonolysis of various oils with anhydrous ammonia at 170 bar and 170 

°C for 6 hr.
205

  

In summary, current industrial methods for fatty acid amide synthesis, either from 

fatty acids or triglycerides, requires a catalytic procedure and/or reaction at high 

temperature and pressure, all of which can be costly and yield unwanted by-products. 

Catalyst free procedures under moderate conditions require long reaction times. 

Furthermore, some fatty acid amides are reported to be very heat sensitive and so 

most industrial scale synthesis methods would require additional purification steps in 

order to meet specifications. This poses a significant problem particularly in the 

manufacture of the fatty acid amides for medicinal research, as described above, 

where extremely high purity of the FAA is critical. This can possibly be reflected in 

the high price of oleamide where, from commercial biochemical suppliers, it can be 

priced as high as £2500 per gram (pharmaceutical grade), with the corresponding 

carboxylic acid from which it is prepared, oleic acid, available at costs as low as £7 

per gram.
206, 207

 This suggests that the purification of oleamide from the standard 

synthesis methods is costly and time consuming and therefore any low-temperature 

synthesis methods of fatty acid amides that can bypass additional purification steps 

would be very attractive. The highly selective nature of an enzyme catalysed reaction 

could possibly meet this demand. 

In addition to Sheldon‟s work in ammonia saturated tert-butanol there are only a few 

other methods for the bio-catalytic amidation of triglycerides and fatty acids. One 

author reports the direct amidation of oleic acid to oleamide using lipase from 

Candida antarctica and a stoichiometric equivalent of ammonium carbamate as a 

source of ammonia. The yield is reported as 95 % (4 days reaction, 35 °C) using 

methyl isobutyl ketone (MIBK) as a solvent.
208

 Other reports suggest that some long 

chained fatty acid amides can be synthesised directly from oils by fermentation with 

microorganisms (B. subtilis 50), although yield were as low as 22 % after 5 days 

reaction.
209

  



161 
 

It appears that the lipases have the ability to function sufficiently outside their 

aqueous environment and given that fatty acid amides are potentially very high value 

commodities, it seems worthwhile to search for enzyme catalysis in liquid ammonia 

with this class of enzyme.  

5.1.4.4 Lipases 

5.1.4.4.1 Mechanisms of action 

Lipases (EC 3.1.1.3) are the lipid-splitting catalysts that excel in natural catalytic 

biotransformations involving the carboxylate group.
210

 More specifically, they play a 

key role in catalysing the hydrolysis of fatty esters. The mechanism operates 

fundamentally the same as serine proteases, utilising the catalytic triad in which the 

active site consists of serine, histidine and aspartate residues (Scheme 5.1.8). 

Deprotonation of the serine –OH group by histidine coordinates the attack of the 

serine residue on the carbon centre of the ester substrate forming a tetrahedral 

intermediate. The excess negative charge on the carbonyl oxygen is stabilised by the 

„oxyanion hole‟. The tetrahedral intermediate collapses to form the serine ester with 

the expulsion of the leaving product alcohol by accepting a proton from the histidine 

imidazole conjugate acid. The nucleophile (water) is then deprotonated by the 

histidine nitrogen lone pair facilitating the nucleophilic attack on the serine ester 

carbonyl carbon. This generates a second tetrahedral intermediate which subsequently 

collapses via the expulsion of the serine residue by protonation from the imidazolium 

ion, releasing the carboxylic acid product and the enzyme to its original state.   
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Scheme 5.1.8 Mechanism of lipase catalysed hydrolysis of an ester 

The simplicity of the lipase mechanism means that there is potential to utilise this 

enzyme outside its natural environment and replace its orthodox reactants with the 

non-conventional. Hence, these biological catalysts have been used extensively in a 

range of carboxylate based biotransformations including transesterification, 

aminolysis and esterification where the natural water nucleophile can be substituted 

for amines or alcohols. In principle, the above lipase mechanism could support many 

nucleophiles capable of reacting with the acyl-enzyme intermediate (serine ester).    

It is proposed that if the water nucleophile can be replaced by an amine or alcohol, for 

aminolysis or transesterification reactions, respectively, then there may be potential 

for an ammonia nucleophile and the ammonolysis reaction in pure liquid ammonia, 

provided that the enzyme can maintain a degree of catalytic activity in this solvent.   

5.1.4.4.2 Considerations for lipase studies in liquid ammonia 

Lipases are abundant in nature, and common enzymes for their use in laboratory 

biotransformations include the porcine pancreatic lipase (PPL), those from microbial 
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sources (Arthrobacter sp.) and extracts from yeasts and fungi such as Candida 

antarctica, Aspergillus niger and Candida rugosa.
211

 Additionally, many different 

forms of lipases are available (powdered, immobilised, solubilised in co-solvent), and 

the choice of them can greatly affect the efficiency of the biotransformation. For 

Sheldon‟s work in ammonia saturated alcohol the enzyme of choice was Candida 

antarctica Lipase B (CALB). This specific lipase has proven to be an extremely 

robust and versatile natural catalyst for numerous biotransformations in both aqueous 

and non-aqueous media.
212

 In their natural form, the enzyme is solubilized in an 

aqueous solution and so can be obtained commercially as a lyophilized powder. 

However, the use of lipases in non-aqueous media often necessitates a different 

enzyme „form‟ and many of these lipases in their free, powdered form often show 

little activity in non-aqueous solvents.  

In their orthodox aqueous environment lipases adsorb at the water-lipid interface and 

can be described as “interfacially activated”.
210

 A helical „lid‟ or „flap‟ on the lipase is 

responsible for the characteristics of this interfacial activation by blocking the 

enzymes active site (Figure 5.1.1).
213
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Figure 5.1.1 Schematic (top) and ribbon diagram (bottom) of lipase „lid‟ 

conformations to cover (left) or expose (right) active site.
214

  

A freely dissolved lipase in highly polar water, in the absence of the nonpolar-polar 

(lipid-aqueous) interface, remains inactive with the lid covering the active site. It is 

proposed that there is an equilibrium between open and closed forms.
215

 In a standard 

aqueous medium the lipase requires both the presence of a polar phase, provided by 

water, and a nonpolar lipid phase, provided by the substrate, to become activated for 

catalysis.  

Consequently, in non-aqueous solvent biotransformations, where presumably the 

solvent of choice may be less polar than water (organic solvents), this interfacial 

adsorption is lacking due to the absence of a polar phase. It could be argued that the 

lack of polar phase should not necessarily inactivate the enzyme as Figure 5.1.1 would 

suggest that in a non-aqueous (nonpolar) environment the lipase exists entirely in an 

open conformation and so should be catalytically active towards any lipophilic 
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substrates. However, without the polar phase, solubility of the free enzyme in the non-

aqueous solvent may be limited in the first place and so the protein folding (or lack 

of) needs to be considered. The activity of enzymes is fundamentally determined by 

their three-dimensional structure, arising from the unique folding of the protein. In 

water, this folding is driven by interaction of the long chains of amino acids with the 

polar solvent ultimately resulting in an „ideal‟ structure with the active site available 

for substrate binding, subsequent reactions and release of products and enzyme.  

Thus, a lipase in a non-polar solvent may not necessarily be inactive due to absence of 

interfacial activation, but is more likely denatured in the first place from a lack of the 

unique protein folding usually provided by the polar, aqueous medium.  

For many lipases, it appears that immobilisation of the enzyme onto a polar solid 

support can enhance enzyme activity, stability and selectivity in non-aqueous 

environments.
216

 This can be reflected in some of the current methods described for 

non-aqueous aminolysis/ammonolysis biotransformations, where the majority of 

methods use lipases adsorbed on a macroporous resin. This immobilisation method is 

used to overcome the problem of using non aqueous solvents, where there is a lack of 

polar phase and likely protein unfolding and denaturing of the enzyme. The polar 

solid support in principle mimics the natural polar aqueous phase that can adsorb the 

enzyme, with the substrate again providing the nonpolar phase and so lipase 

interfacial activation can be achieved. 

CALB is a widely used lipase immobilized onto acrylic resin beads and commercially 

available as Novozyme 435. In addition to providing the polar phase for enzyme 

adsorption and subsequent activation, the immobilisation of the lipase onto the 

macroporous beads allows for a larger surface coverage of the enzyme. The acrylic 

beads, of diameter 0.3-0.9 mm, have an average surface area of 130 m
2
 g

-1
.
217

 The 

spread of lipase over this large surface area can allow for a greater proportion of 

available active sites for catalytic function and furthermore can likely facilitate the 

mass transfer of substrates and products with the bulk phase.
187 

 

Due to liquid ammonia‟s reduced polarity, in comparison to water, it is anticipated 

that this solvent alone would not provide the interface required for the lipase to work 

if a „free‟ preparation of enzyme is used. It is therefore expected that, analogous to the 

biotransformations in organic media as described previously, liquid ammonia lipase 
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catalysis may require the solid supported enzymes to provide a highly polar phase to 

allow for the essential folding of the protein to render it catalytically active.  
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5.2. Enzyme studies in Liquid Ammonia - Results and Discussion 

5.2.1 General structure and reactions of triglycerides  

Comparable to simple mono esters, containing carboxylate and alcohol residues, 

triglycerides are larger molecules derived from glycerol (a polyol) and three fatty acid 

residues (Scheme 5.2.1). 

 

Scheme 5.2.1 

Triglycerides, also called triesters, may undergo attack from a nucleophile at the 

carbonyl carbon centre which could be a solvolysis reaction, if using a nucleophilic 

solvent. These reactions may be spontaneous or require a catalyst depending on the 

reactivity of the nucleophile or triester substrate, and the products formed are often of 

wide interest. 

Analogous to the surfactants studied for aggregation in the previous chapter, the more 

commercially used soaps are similarly comprised of a polar head group and 

hydrophobic tail, which tends to be hydrocarbon rather than fluorinated.
218

 They are 

often prepared by the base catalysed hydrolysis of the triglyceride and this „soap 

making‟ technique, also known as saponification, has been used for thousands of 

years to prepare these simple, but useful molecules.
109

 Triglycerides are abundant in 

nature and sources include animal and vegetable fats. Indeed, the word “soap” comes 

from the Germanic word “saipa” which takes its origins from the Latin word 

“sebum”, meaning fat or tallow.
219

 Tallow, a rendered form of beef or mutton fat 

consists of triglycerides whose main constituents are derived from stearic and oleic 

acids, and so a simple lye saponification (base hydrolysis) of these fats will produce 

the soaps sodium stearate and sodium oleate, and sodium stearate is one of the most 

common soaps used today.
220
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Furthermore, the attacking nucleophile can be an alcohol group, for a 

transesterification reaction, or an amine, for aminolysis (Scheme 5.2.2).
221, 222

 Indeed, 

the molecules in biodiesel are predominantly FAMEs (fatty acid methyl esters) which 

are routinely prepared by the transesterification of oils and fats with methanol, usually 

requiring a sodium hydroxide catalyst.
223

  

 

Scheme 5.2.2 

As discussed previously, the production of long chained amides (fatty acid amides) 

from an enzymatic process would be of wide interest as these surfactant molecules 

have uses in the manufacturing industry as lubricants as well as potential medicinal 

uses. Additionally, lipase catalysis in liquid ammonia would satisfy another of life‟s 

processes, suggesting that ammonia may be a suitable candidate to replace water as 

life‟s medium. With this in mind, attention will initially focus on the ammonolysis of 

some simple, short chained triglycerides to see if any lipase catalysis is possible. 

Although, their products, short chained fatty acid amides are not necessarily high 

value commodity products, this will establish at least an initial, baseline knowledge of 

the potential for these enzymes in liquid ammonia, which can then be applied to 

longer chain fats and oils.  

5.2.2 Solvolysis of short chained triglycerides in liquid ammonia only  

A simple view of triester solvolysis in liquid ammonia would be the stepwise 

conversion of triester to diester and amide product which one would expect to be 

pseudo-first-order due to the vast excess of ammonia, as was evident with the basic 

mono esters (Chapter 3). One of the simplest triglycerides, triacetin for example, 
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would react with ammonia to form diacetin and acetamide (Scheme 5.2.3). This 

simple scheme assumes that the diacetin is much less reactive than triacetin and the 

reaction effectively stops after this first ammonolysis. As will be shown later this is an 

oversimplification but can be used as a rough comparison for lipase-catalysed and 

uncatalysed ammonolysis.  

 

Scheme 5.2.3 

The rate profile for the solvolysis of the triglyceride can be monitored easily by GC 

and so a baseline rate of conversion of triacetin to diacetin can be established. Again, 

as with simple esters, the observed rate can be generated from either the natural log 

method or differential equation using data fitting Berkeley Madonna (Figure 5.2.1). 

 

Figure 5.2.1 Berkeley Madonna pseudo-first-order fit for the baseline solvolysis of 

triacetin to diacetin in liquid ammonia at 25 °C. 
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This generates pseudo-first order rate constant, kobs, of 0.0360 hr
-1

 (1.00x10
-5 

s
-1

) with 

half-life of 19¼ hr. The pseudo-first-order rate constant obtained using the natural log 

method (ln GC area vs. time) is 0.0358 hr
-1 

(0.99x10
-5

 s
-1

), in good agreement with the 

Madonna differential method.  

However, to get an overall view of if and how lipases may be catalytically active 

towards these triglycerides in liquid ammonia, one has to appreciate the complexity of 

the triester ammonolysis process. As its name suggests, the triester or triglyceride is 

composed of three ester functional groups attached to its glycerol „backbone‟ and so 

the basic view of triester to diester outlined above is only the first step in what is a 

rather complex process. The diester produced from the triester ammonolysis can itself 

undergo solvolysis by ammonia solvent, producing a monoester as well as an 

additional amide product (acetamide in this case). This process is repeated further 

with the newly formed monoester undergoing ammonolysis, finally liberating the 

glycerol and a third amide molecule. Each of tri, di, and mono ester thus react 

independently with the ammonia solvent under pseudo-first-order conditions as 

outlined above and generate their own individual rate constants for each ammonolysis 

step (Scheme 5.2.4).  

 

Scheme 5.2.4 An overview of triacetin ammonolysis process 

The modelling of this process, to find these individual rate constants, is not as simple 

as just saying that there are three separate esters each with a basic pseudo-first-order 

profile as seen above with the triacetin (Figure 5.2.1). The process is more complex as 

it proceeds via both the consecutive and simultaneous ammonolysis of each ester, 

such that as soon as diacetin is produced, it is further reacting to form the monoacetin, 

and subsequently as soon as the monoacetin is produced, it reacts to form the glycerol, 

all the while the triacetin substrate is still undergoing ammonolysis.   

5.2.2.1 GC-MS analysis of triacetin ammonolysis and data modelling 

In order to fully understand the reaction profile, with the individual rate constants, it 

was necessary to fully process the raw GC-MS or GC-FID data, to identify the 

Triacetin Diacetin Monoacetin

k1 k2 k3
Glycerol

NH3 NH3 NH3
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individual peaks in the chromatogram as each of the reactants, products and internal 

standard (Figure 5.2.2). 

  

Figure 5.2.2 Total ion-chromatogram (TIC) of 28½ hr sample for reaction of triacetin 

in liquid ammonia at 25 °C. 

For a typical sample taken from the triacetin reaction in liquid ammonia, each peak 

has its own mass spectrum and by using its ion fragmentation pattern, MS software 

Mass Hunter combined with NIST library is able to accurately identify each peak 

(Figures 5.2.3 to 5.2.6). 

 

Solvent peak 
Internal standard 

4.68min 
8.31min 

9.57min 

10.35min 
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Figure 5.2.3 Mass spectrum of peak at 4.68 min matched with acetamide. 

 

Figure 5.2.4 Mass spectrum of peak at 8.31 min matched with monoacetin. 

 

Figure 5.2.5 Mass spectrum of peak 9.57 min matched with diacetin. 
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Figure 5.2.6 Mass spectrum of peak at 10.35 min matched with triacetin. 

Retention times are consistent with  GC theory that, as a rough guide, for molecules of 

comparable structure (triacetin, diacetin, monoacetin), the compounds of lower 

molecular weight tend to be more volatile and so elute from the column first (Table 

5.2.1).
224

  

Table 5.2.1 GC-MS peak retention times for reactants, products, internal standard and 

solvent. 

Compound GC-MS RT
†
 (min) M.W (g/mol) 

DCM (solvent peak) 2.36 84.93 

Acetamide 4.68 59.07 

Monoacetin 8.31 134.13 

Diacetin 9.57 176.17 

Triacetin 10.35 218.20 

Diethylene glycol dibutyl ether (IS) 11.07 218.33 

          †
RT = retention time 

As the chromatogram and peak analysis suggest, there is an absence of glycerol in the 

samples analysed. In comparison to the main analytes of interest (esters, internal 

standard), glycerol is quite a polar molecule. Samples were prepared for GC-MS 

using dichloromethane, in which glycerol is insoluble. Furthermore, for GC analysis, 
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a moderately nonpolar HP-5 column is used in order to achieve optimised peak shape 

and resolution for the tri, di, mono esters and internal standard. In order to follow 

glycerol carefully, the samples could be re-run using a polar column and water as 

solvent, but then there would be internal standard solubility concerns. Thus, accurate 

glycerol formation was not resolved.  

The kinetics of the overall ammonolysis of triacetin in liquid ammonia was followed 

by measuring the changes in these peaks with time. The integrated peak areas of the 

identified compounds were normalised against the internal standard and tabulated, and 

a plot of normalised peak area against time shows the complexity of the full reaction 

profile for triacetin ammonolysis (Figure 5.2.7). 

 

Figure 5.2.7 Normalised GC area as a function of time for triacetin ammonolysis in 

liquid ammonia at 25 °C. 

The fact that diacetin formation is observed and reaches a maximum concentration 

before eventually decreasing shows that rate constants k1 and k2 are of similar 

magnitude. If k1 > k2 then almost one molar equivalent of diacetin would be formed 

and the maximum would be reached when all the triacetin had disappeared. 

Conversely, if k2 > k1 then little diacetin would be observed. Differential solver 
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Berkeley Madonna, however, does possess the ability to data fit multiple and more 

complex differential equations simultaneously, and therefore modelling via this 

method was an option. The full complexity of the triester ammonolysis is outlined in 

Scheme 5.2.5. 

 

Scheme 5.2.5 

From the reaction profile in Scheme 5.2.5, differential equations can be formed for 

each of the steps observed rate constants, k1, k2 and k3: 

      

  
      [   ]  

     

  
    [   ]     [  ]  

       

  
    [  ]     [    ]  

        

  
    [   ]      [  ]      [    ]  

The differential equations generated above can be fitted along with the data into 

Berkley Madonna with the following model: 

METHOD RK4 
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STARTTIME = 0 

STOPTIME= 200   {hours} 

DT = 0.5 

 

T' = -k1*T    {differential eqn. for Triester} 

D' = (k1*T - k2*D)*M1   {differential eqn. for Diester} 

M' = (k2*D - k3*M)*M2   {differential eqn. for Monoester} 

A' = (k1*T + k2*D + k3*M)*M3    {differential eqn. for Amide} 

 

k1 = 0.1     {initial guess for k1} 

k2 = 0.1     {initial guess for k2} 

k3 = 0.1     {initial guess for k3} 

 

init T = 0.55    {guess initial Triester normalised peak area at time = 0} 

init D = 0    {initial Diester normalised peak area} 

init M = 0    {initial Monoester normalised peak area} 

init A = 0    {initial Amide normalised peak area} 

 

M1 = 0.5    {initial guess for Diester GC response modifier} 

M2 = 0.5    {initial guess for Monoester GC response modifier} 

M3 = 0.5     {initial guess for Amide GC response modifier} 

The modifiers (M values) were put into the model to take into account the differing 

response factors of the different compounds by GC-MS which is evident in the raw 

data of the normalised peak areas. Stoichiometrically, 3 moles of acetamide are 

produced per mole of triacetin and therefore a true plot of the concentration against 

time for this would (at the end) show 3 times as much acetamide as initial triacetin 

concentration. Each individual peak is normalised against an internal standard and 

thus the modifier is there to „clarify‟ to Madonna that the response factor of each 

reactant/product is quantitatively different.  

Normalised GC-MS peak areas were simultaneously fitted in the model (Figure 5.2.8) 

and the individual rate constants obtained for the ammonolysis of triacetin in liquid 

ammonia (Table 5.2.2).  
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Figure 5.2.8 Berkeley Madonna fit of normalised GC area as a function of time for 

ammonolysis of triacetin in liquid ammonia at 25 °C. Initial triacetin concentration is 

6.6 mM. 

Table 5.2.2 Optimised rate constants provided by Berkeley Madonna for the 

ammonolysis of triacetin in liquid ammonia at 25 °C. 

pseudo-first-order rate constant s
-1

 

k1 1.00x10
-5

 

k2 1.56x10
-5

 

k3 6.75x10
-6

 

 

5.2.3 Initial experiments with ‘free’ lipase  

Liquid ammonia is a mid-polarity solvent that exhibits properties of both 

nonpolar/organic and polar/aqueous illustrated in its ability solubilize organic and 

inorganic species to varying degrees. Lipases, like most enzymes, are highly soluble 

in water, their natural habitat, and with liquid ammonia‟s medium polarity, lipase 

solubility and function in liquid ammonia was genuinely speculation. If solubilised, 
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then the protein folding may be analogous to that in water, and so the enzyme may be 

catalytically active.  

Lyophilized preparations of lipase B from Candida antarctica (CALB) and lipase 

from Candida Rugosa (CR) were selected for the initial triglyceride ammonolysis 

studies. The molecular weights of CALB and CR are approximately 33.5 kDa and 60 

kDa, respectively.
225, 226

 At concentration as low as 5 µM in liquid ammonia both 

lipases appeared to be insoluble by visual inspection but were still tested for their 

catalytic activity. Triacetin reactions were performed under similar conditions to those 

described previously with added lipases and reactions monitored to obtain the rate 

constants k1, k2 and k3. Both lipase reactions showed virtually no rate enhancement 

with all three steps observed rates roughly comparable to the background rates: 

CALB (7.46 µM)
†
: k1 = 1.06x10

-5 
s

-1
, k2 = 1.47x10

-5 
s

-1
 and k3 = 6.69x10

-6 
s

-1
. 

CR (8.3 µM)
†
: k1 = 0.92x10

-5 
s

-1
, k2 = 1.67x10

-5 
s

-1
 and k3 = 6.35x10

-6 
s

-1
. 

†
Lipase concentrations are denoted as if fully soluble in liquid ammonia. 

These preliminary results were inconclusive as the lack of rate enhancement could be 

for a variety of reasons: 

 Firstly, the enzyme may have very low solubility in liquid ammonia, even 

though they appeared insoluble to the eye, but be unreactive and so it could be 

argued that the lack of catalytic activity means that these particular lipases 

cannot function in a purely anhydrous, ammonical environment. The protein 

may even be folded correctly but the catalytic mechanisms just not compatible 

with the solvent.  

 Secondly, if the enzyme was unequivocally insoluble in liquid ammonia then 

the lack of catalytic activity is due to the type of enzyme preparation (as a free 

lyophilized powder) rather than its incapacity to function in liquid ammonia. 

This supports the initial hypothesis that an immobilised preparation of the 

lipase may be required in order to provide an environment that allows the 

„ideal‟ folding of the protein to make it catalytically active and also allow for 

interfacial activation of the lipase. This is the case with many of the reactions 

catalysed by lipases in organic media where the free enzyme is insoluble and 
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showed zero catalytic activity but biotransformations were vastly improved 

with the immobilised lipase.  

It was speculated that maybe a polar co-solvent could be used to solubilize the lipase 

into the liquid ammonia medium but with the vast array of solvents to choose from 

this method was not investigated to any real extent. Moreover, some of these solvents 

may render the enzyme inactive or act as a nucleophile themselves (water, methanol) 

and so further obscure the results. Ideally, to test the notion that enzymes can function 

in an ammoniacal environment, pure anhydrous liquid ammonia was the preferred 

solvent.  

Accordingly, attention turned to the immobilised form of the Candida antarctica 

lipase B on acrylic resin beads (Novozyme 435) and so from hereon, all liquid 

ammonia studies used this immobilised lipase.  

5.2.4 Candida antarctica lipase B (CALB) catalysed ammonolysis of short and 

medium chain triglycerides in liquid ammonia at 25 °C 

5.2.4.1 Triacetin  

Triacetin ammonolysis was repeated with the addition of the CALB beads and an 

initial look at the normalised GC data was encouraging. Compared with the 

background reaction, with 25 mg of CALB beads there was an observable reduction 

in the time taken for the triester to disappear (Figure 5.2.9). This is the first suggestion 

that the lipase may be active in liquid ammonia. 
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Figure 5.2.9 Normalised GC peak area of triacetin for baseline reaction (○) and 

reaction with 25 mg CALB beads (▲) in liquid ammonia at 25 °C. 

As with the baseline reaction, the individual rate constants for each ammonolysis step 

were obtained by fitting the data to the Berkeley Madonna model (Figure 5.2.10). For 

the ammonolysis reaction with added 25 mg CALB beads the model gives optimised 

values of k1 = 2.75x10
-5 

s
-1

, k2 = 1.53x10
-5 

s
-1

 and k3 = 6.75x10
-6 

s
-1

. 
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Figure 5.2.10 Berkeley Madonna fit of normalised GC area vs. time for ammonolysis 

of triacetin in liquid ammonia at 25 °C with the addition of 25 mg CALB beads.  

Interestingly, compared with the background rates, the value for k1 increases nearly 3-

fold with the added 25 mg CALB and yet no increase is observed for the other rate 

constants, k2 and k3, for the ammonolysis of diacetin and monoacetin, respectively. 

This trend is observed with increasing masses of CALB beads (Table 5.2.3). 

Table 5.2.3 Berkeley Madonna pseudo-first-order rate constants as a function CALB 

beads concentration for the ammonolysis of triacetin in liquid ammonia at 25 °C 

CALB beads (mg) k1 (s
-1

) k2 (s
-1

) k3 (s
-1

) 

0 1.00x10
-5

 1.56x10
-5

 6.75x10
-6

 

25 2.75x10
-5

 1.53x10
-5

 6.75x10
-6

 

50 4.67x10
-5

 1.58x10
-5

 6.56x10
-6

 

CALB immobilised on acrylic resin beads in liquid ammonia do, therefore, show 

apparent catalytic activity with triacetin as the substrate, increasing the ammonolysis 

rate for conversion of triacetin to diacetin, with a ~ 5-fold increase with the addition 

of 50 mg CALB beads. The observation that the k1 step is affected by CALB but not 

those of k2 or k3 is indicative of selectivity, compatible with enzyme catalysis.  
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There is an apparent linear dependence of k1 on CALB (Figure 5.2.11) suggesting a 

first-order dependence on CALB.   

 

Figure 5.2.11 Observed rates k1 (+), k2 (○) and k3 (■) vs. CALB beads added for 

reaction of triacetin in liquid ammonia at 25 °C. 

The apparent second order rate constant for the first ammonolysis step, k1, can be 

expressed as 7.33x10
-7

 s
-1

mg
-1

. 

For these reactions, the total volume of liquid ammonia used was 20 ml and initial 

triacetin concentration was 0.0066 M (6.6 mM). Figure 5.2.12 shows a plot of kobs as a 

function of the mass of CALB beads per unit volume. 
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Figure 5.2.12 Observed rates k1 (+), k2 (○) and k3 (■) as a function of CALB beads/ml 

for the reaction of triacetin in liquid ammonia at 25 °C. 

This gives an apparent second-order rate constant for k1 expressed as a function of 

CALB beads per ml of liquid ammonia as 1.47x10
-5

 s
-1

mg
-1

ml
-1

.  

Initially, there were some doubts that the apparent catalytic activity of the CALB 

beads in liquid ammonia may be due to some kind of heterogeneous bead catalysis 

effect, whereby possibly a functional group of the acrylic bead surface may be 

catalysing the triacetin to diacetin ammonolysis process, but not the other 

ammonolysis steps. To rule out this possibility, blank beads, prior to any enzyme 

immobilisation, were obtained from supplier (Lanxess, Germany). The triacetin 

reaction was performed under the same conditions with the addition of 50mg „blank‟ 

beads and the modelled data yielded observed rates consistent with the baseline liquid 

ammonia reaction; k1 = 9.69x10
-6 

s
-1

, k2 =1.63x10
-5 

s
-1

 and k3 = 7.02x10
-6 

s
-1

. This data 

confirms that the increase observed in the triacetin to diacetin rate, k1, is a result of 

some kind of enzymatic process, due to the lipase.  

The enzyme appears to be catalysing only the reaction of the triester and not the 

ammonolysis of the diester or monoester which would suggest that the CALB lipase 
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is selective towards the triester. The selectivity of enzymes towards only specific 

structures and functional groups is, not surprisingly, very common.  

5.2.4.2 Tributyrin 

To investigate the effect of increasing the alkyl chain length in the carboxyl residue, a 

short-medium chain triglyceride, tributyrin (Scheme 5.2.6) was reacted in ammonia 

with the addition of CALB lipase. Firstly, the baseline liquid ammonia rates were 

established and compared with those obtained with the addition of CALB beads 

(Table 5.2.4). 

 

Scheme 5.2.6  

Table 5.2.4 Berkeley Madonna observed rate constants as a function of CALB beads 

added for ammonolysis of tributyrin in liquid ammonia at 25 °C. 

CALB beads (mg) k1 (s
-1

) k2 (s
-1

) k3 (s
-1

) 

0 3.66x10
-6

 3.72x10
-6

 1.05x10
-6

 

35 2.32x10
-5

 6.64x10
-6

 4.17x10
-6

 

The rates of background ammonolysis are lower than those for the triacetin 

background reaction. Interestingly, and in contrast to the triacetin catalysed 

ammonolysis, the rates for all three ammonolysis steps for tributyrin appear to be 

enhanced by the lipase (Figure 5.2.13).  
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Figure 5.2.13 Observed rates k1 (+), k2 (○) and k3 (■) as a function of CALB beads 

added for reaction of tributyrin in liquid ammonia at 25 °C. 

The apparent second order rate constants can be expressed as: 

k1 = 5.59x10
-7

 s
-1

mg
-1 

k2 = 8.33x10
-8

 s
-1

mg
-1 

k3 = 8.89x10
-8

 s
-1

mg
-1 

The second order rate constant for the first ammonolysis step, k1, is slightly lower but 

of comparable magnitude to that obtained for the triacetin lipase reactions (7.33x10
-7

 

s
-1

mg
-1

). Furthermore, k2 and k3 are not massive but do suggest that CALB beads can 

catalyse the ammonolysis of dibutyrin to monobutyrin and monobutyrin through to 

glycerol. This is in contrast to the triacetin ammonolysis reactions where there was no 

rate enhancement of k2 and k3 with any added mass of CALB. 

Figure 5.2.14 shows a plot of kobs as a function of the mass of CALB beads per unit 

volume. 
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Figure 5.2.14 Observed rates k1 (+), k2 (○) and k3 (■) as a function of CALB beads/ml 

added for the reaction of tributyrin in liquid ammonia at 25 °C. 

k1 = 1.12x10
-5

 s
-1

mg
-1

ml
-1

 

k2 = 1.67x10
-6

 s
-1

mg
-1

ml
-1 

k3 = 1.78x10
-6

 s
-1

mg
-1

ml
-1 

A summary for the second order rate constants for triacetin and tributyrin CALB 

ammonolysis in liquid ammonia can be found in Table 5.2.5. 

Table 5.2.5 Second order rate constants expressed as kobs per mass of CALB 

triglycerides in liquid ammonia at 25 °C. 

Triglyceride 
Second order rate constants (s

-1
mg

-1
) 

k1 k2 k3 

Triacetin 7.33x10
-7

 nd nd 

Tributyrin 5.59x10
-7

 8.33x10
-8

 8.89x10
-8

 

     nd = not detected 

Likewise, comparisons can be made between the second order rate constants 

expressed as functions of mass of beads per volume of liquid ammonia (Table 5.2.6). 
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Table 5.2.6 Second order rate constants expressed as kobs per mass of CALB per 

volume of liquid ammonia triglycerides in liquid ammonia at 25 °C. 

Triglyceride 
Second order rate constants (s

-1
mg

-1
ml

-1
) 

k1 k2 k3 

Triacetin 1.47x10
-5

 nd nd 

Tributyrin 1.12x10
-5

 1.67x10
-6

 1.78x10
-6

 

     nd = not detected 

The results would suggest that for these reactions in liquid ammonia, CALB lipase 

may have some selectivity towards larger molecules.  

5.2.5 Candida antarctica lipase B (CALB) catalysed ammonolysis of longer chain 

triglycerides in liquid ammonia at 25 °C  

In contrast to amides produced from short and medium chained triglycerides, longer 

chained fatty acid amides have many applications. Industrially, the market for fatty 

acid amides is mainly dominated by the unsaturated amides such oleamide (cis-9-

octadecenamide) and erucamide (cis-13-docosenamide) which are used as lubricants 

in the plastic industry, with some also having potential medicinal uses as cannabinoid 

neurotransmitter analogues. Additionally, the substrates required for the production of 

these fatty acid amides, triglycerides, are abundant in nature and can be extracted at 

very low cost.
227

 Triolein (a symmetrical triglyceride derived from the unsaturated 

fatty acid oleic acid containing a C17 alkyl chain and a cis double bond at C9) is a 

major component of many plant and vegetable oils including sunflower seeds and 

olive oil.
228

 The lipase catalysed ammonolysis of triolein to the useful commodity, 

oleamide, could be of wide interest. Naturally sourced triglycerides however tend to 

be unsymmetrical and comprise of mixtures of fatty acids and so this work will 

initially focus on triolein obtained from commercial scientific suppliers with high 

purity.
229
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5.2.5.1 Initial tests on triolein reactions in liquid ammonia and identification of 

oleamide 

The short and medium chained triglycerides both appeared soluble in liquid ammonia 

and reacted with ammonia in the absence of the lipase catalyst. Triolein, with its three 

monounsaturated C17 chains, appeared to be insoluble in liquid ammonia so it was 

proposed that any background ammonolysis may only occur at a phase boundary. 

After 100 hr of stirring triolein in liquid ammonia, the insoluble substrate remained at 

the bottom of the vessel (ρtriolein = 0.95 g/ml)
230

, suggesting negligible reaction with 

ammonia. In contrast, however, a repeat of the triolein reaction with the addition of 

100mg CALB beads yielded an interesting observation. After just 24 hr at room 

temperature, there was a noticeable change in the ammonia solution, which now 

appeared to have a white, „milky‟ complexion. One supposition was that this 

appearance was from leaching of the lipase into solution, which has been reported 

elsewhere.
231

 With these immobilised CALB beads (Novozyme 435), the lipase is not 

covalently linked onto the acrylic resin carrier but only adsorbed.
232

 However, for all 

the above work in liquid ammonia (triacetin, tributyrin) this phenomenon has not been 

observed with any mass of CALB beads, suggesting that the appearance of the 

solution is indicative of a reaction, and that the poorly soluble precipitate is likely to 

be oleamide.   

After removal of ammonia, a white solid was obtained and was separated from the 

beads by dissolving in chloroform and subsequent recrystallization. Using mass 

spectroscopy, the compound gave [M+H]
+
 ion at 282.2790 m/z with mass of neutral 

compound determined as 281.2718 m/z compared with the theoretical mass of 

oleamide as 281.2719 m/z. This gives a mass difference of 0.26 ppm (>99.99% 

match) confirming oleamide is produced.  
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Figure 5.2.15 Mass spec of product shows oleamide was observed.  

The melting point was found to be 74 °C and 
1
H NMR (400 MHz, DMSO-d6) showed 

two olefin protons at 5.32 ppm as a multiple and two NH protons at 7.2 and 6.7 ppm, 

consistent with the literature.
233

  

5.2.5.2 Monitoring the lipase catalysed ammonolysis of triolein 

Therefore, in addition to their catalytic activity towards medium and short chained 

triglycerides, it appears that lipases, in their immobilised form at least, can function 

on long chained triglycerides in liquid ammonia. For the shorter chained lipids, the 

reaction was easy to monitor by GC due to the relatively low boiling points of the 

various tri, di and mono esters, and amide products. In comparison, triolein has a 

much higher boiling point, outside the maximum working temperature of standard GC 

(Table 5.2.7).  

Table 5.2.7 Boiling points of the three triglycerides used for ammonolysis in liquid 

ammonia 

Triglyceride Boiling point (°C) 

triacetin 259
[a] 

 

tributyrin 305-309
[b]

 

triolein 606
[c]

 

  [a] reference
 
234

  

[b] reference
 
235 

[c] predicted value - triolein reportedly decomposes below boiling point
 236
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Equally, it is expected that the products of triolein ammonolysis, diolein and 

monoolein, would have similarly high boiling points and thus incompatible with GC 

analysis.  

As a result, it was concluded that the triolein reaction would not be easily monitored 

by GC, whereby by the individual rate constants, k1, k2, k3 could be obtained. Instead, 

a more industrial perspective was taken, focusing on yields of product as a function of 

time and total reaction times with varying amounts of enzyme etc. The formation of 

oleamide or other fatty acid amides via these biotransformations in liquid ammonia 

could have industrial potential and so the efficiency of the process should be 

established. 

A method was still required for monitoring the reaction progress by following the 

formation of the 2 major products of the reactions, glycerol or oleamide.  

5.2.5.2.1 Monitoring glycerol product formation 

Glycerol is an excellent indicator of reaction progression as it is only observed once 

the final ester product, monoolein, has undergone ammonolysis to liberate the third 

mole of oleamide (Scheme 5.2.7). 

 

Scheme 5.2.7   
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A GC method was developed to quantify the formation of polar glycerol (r = 40.1)
237 

using a highly polar DB-WAX column. Glycerol was calibrated against an internal 

standard (ethylene glycol) so that the concentration in the vessel at the time of 

sampling could be quantified. In the absence CALB beads zero glycerol was observed 

after 70 hr indicating no background ammonolysis reaction. However, after just 20 hr, 

glycerol was present in the samples from CALB reactions (Figure 5.2.16). In this 

figure, the glycerol formed is calculated as % yield from the initial moles of triester 

used (1 mole triolein liberates 1 mole glycerol) as a function of the amount of CALB 

used. 

  

Figure 5.2.16 Glycerol formed after 20 hr calculated as a % of initial triolein 

concentration with varying amounts of CALB beads for ammonolysis of 45 mM 

triolein in liquid ammonia at 25 °C. 

Although the percentage yield of glycerol is low, it is produced at a greater rate with 

increasing the mass of lipase confirming catalytic activity toward the long chained 

triglyceride. There were, however, concerns about the accuracy of following the 

reaction by monitoring glycerol. The beads used for lipase immobilisation are of 

moderately polar character and there are some reports suggesting that the polar 

Lewatit VP OC 1600 supporting beads may be susceptible to the adsorption of 
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glycerol.
238

 Severac et al showed that residual glycerol concentrations decreased over 

a period of 24 hours in tert-butanol with varying masses of beads.
239

  

Presumably, the adsorption of glycerol onto the polar beads is solvent dependent such 

that the use of a low polarity medium promotes the adsorption process. Small scale 

reactions were set up with the incubation of glycerol and CALB beads in water and in 

liquid ammonia but both showed no reduction in glycerol concentration over a period 

of 24 hr. tert-butanol, with dielectric constant of 12.4 is a much less polar solvent than 

water (εr = 80), and slightly less polar than liquid ammonia (εr = 16), and so seemingly 

promotes the adsorption of the polar glycerol onto the polar beads.
240

 During the 

triolein ammonolysis reactions, fatty acid di/mono esters and amides are produced and 

may, to some extent, be solubilised into the ammonia solvent. This would have a net 

effect of reducing the polarity of the medium and consequently may promote 

adsorption of any glycerol produced.
241

 The polarity of the solvent would then be a 

function of the reaction progress and so profiling glycerol for each reaction may be 

complicated. This may be evident from the glycerol formed as a function of time for 

the reaction of triolein with 105 mg CALB beads (Figure 5.2.17).  

 

Figure 5.2.17 Apparent glycerol % as a function of time for the ammonolysis of 

triolein in liquid ammonia with 105 mg CALB lipase at 25 °C. 
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The apparent scatter at low concentration of glycerol formed may be explained by the 

fact that it is adsorbed onto the beads until the beads are saturated with glycerol. 

Above this point, as more glycerol is produced it remains in solution and an increase 

in concentration is observed.  

It would appear that accurately following the reaction by monitoring glycerol 

formation may be subject error due to the complexity of the processes involved and 

possible glycerol adsorption.  

In addition to these points that could affect the accurate monitoring of glycerol, 

glycerol adsorption onto the beads may affect the catalytic activity of the immobilised 

lipase and there are some conflicting reports on the subject. Lee et al incubated 

Novozyme 435 with varying amounts glycerol prior to activity assay and observed no 

effect on enzyme activity for the production of biodiesel from canola oil.
242

 In 

contrast, some reports suggest enzyme activity may be affected by the formation of 

glycerol.
243, 244

 Glycerol may form a polar, hydrophilic coating on the surface of the 

immobilised lipase bead, which obstructs the active site of the enzyme from the 

nonpolar triglyceride substrate and so have an adverse effect on lipase activity.
245 

5.2.5.2.2 Monitoring and quantifying oleamide product formation 

Oleamide had already been characterised as the main product of the reaction by NMR, 

mass spectroscopy and melting point analysis but a method was required for 

quantifying it. Although the initial attempts at GC and GC-MS analysis of triolein 

were unsuccessful, high temperature GC methods have been reported for analysis of 

compounds similar in structure to oleamide. Zhao‟s analysis of the Chinese brandy 

Changyu XO identified long chained monounsaturated fats including oleic acid and 

Yasar et al actually reported the presence of (z)-octa-9-decenamide (oleamide) in their 

GC analysis of flowers, stems and root extracts of the sunflower Tripleurospermum 

callosum. 
246, 247

 Both methods used a high temperature oven profile with a non-polar 

HP-5 column. A method was developed to analyse oleamide by GC that could be used 

to quantify the triolein reaction (see Experimental section for GC parameters).  For 

any reaction, GC-MS could be used to confirm that the product was oleamide by 

matching the spectra to the NIST library search.  
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Figure 5.2.18 GC-MS confirmation of oleamide with retention time 32.5 min. 

Using GC-FID, oleamide was calibrated along with the internal standard for the 

reaction, biphenyl. A typical GC-FID chromatogram can be seen in figure 5.2.19. 

 

Figure 5.2.19 GC-FID chromatogram of oleamide (RT = 32.5 min) and biphenyl (RT 

= 21.4 min). 

5.2.5.3 CALB catalysed ammonolysis of triolein in liquid ammonia  

Initially, reactions were performed in a similar fashion to those described earlier for 

the general ammonolysis reactions with sampling over time. However, oleamide is not 

very soluble in liquid ammonia and so sampling from a liquid with precipitated amide 

could lead to inconsistencies. Alternatively, the method adopted was to leave the 

contents of the reaction for a set time, vent off the ammonia, and analyse the full 

contents of the vessel by solubilising in DCM or chloroform for GC analysis.  

As with previous reactions, the extent of background ammonolysis was to be 

explored. The glycerol tests, admittedly with their potential inaccuracies, showed that 

no glycerol had formed after 70 hr but this does not necessarily indicate negligible 
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ammonolysis as glycerol is only liberated after the final ammonolysis stage. A 

baseline experiment with triolein (≈ 46 mM) in liquid ammonia at 25 °C indicated a 

0.7 % conversion to oleamide after 68 hr. This yield percentage is calculated from the 

maximum potential oleamide yield which is three times the molar charge of the 

triester (i.e. 1 mole of triester can form 3 moles of amide). Although appearing 

insoluble in liquid ammonia, triolein charge is expressed as a concentration to assist 

with calculations of oleamide yields. 

The ammonolysis of triolein in liquid ammonia was repeated with varying amounts of 

CALB beads and stopped after 68 hr. The yield of oleamide is dependent on the mass 

of CALB beads, suggesting an enzymatic process (Figure 5.2.20).  

 

Figure 5.2.20 % conversion of triolein (≈ 46 mM) to oleamide in liquid ammonia 

after 68 hr with varying mass of lipase beads at 25 °C. 

If only one of the ester groups reacted then the maximum yield of oleamide would be 

33 % and, if two reacted, 66 % yield. To investigate if all ester groups reacted, 

corresponding to 100 % yield of oleamide, for the reaction with 250 mg CALB, the 

oleamide produced was monitored over time (Figure 5.2.21). A reasonably smooth 

curve is obtained suggesting a total reaction time of about 180 hr, and would 

correspond to around 0.4 g of oleamide produced. 
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Figure 5.2.21 % conversion of triolein (≈ 46 mM) to oleamide in liquid ammonia 

with 250 mg CALB beads at 25 °C. 

The conversion of triolein to oleamide via the liquid ammonia biotransformation is 

quite impressive compared with the negligible background conversion in the absence 

of enzyme. Once more it was speculated that the observed catalysis may be due to the 

beads acting as some kind of surface catalyst, which seems more plausible this time 

given that the triolein ammonolysis reaction is a multi-phase process; triolein, liquid 

ammonia, CALB beads, oleamide. A test with 250 mg „blank‟ beads showed just 0.6 

% conversion to oleamide after 68 hr, analogous to the background ammonolysis with 

no added CALB beads (~ 0.7 %).  

Given that a near 100 % conversion of triolein to oleamide was observed in Figure 

5.2.21, it can be assumed that CALB catalyses all three ammonolysis steps (Scheme 

5.2.8). 
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 Scheme 5.2.8 

Having not directly followed triolein, diolein and monoolein through the reaction, the 

extent at which CALB catalyses each ammonolysis step is unknown. The first 

ammonolysis step, k1, is evidently enhanced by the enzyme, as the conversion of 

triolein to diolein without CALB is negligible. It may be that, as with triacetin and 

tributyrin, only the first step is catalysed to any major extent by the enzyme. The 

reaction may then just progress through to completion, uncatalysed, if diolein and 

monoolein are highly reactive in liquid ammonia. However, given the poor reactivity 

of triolein, which may also be a phase boundary issue, it is unlikely that diolein and 

monoolein are highly reactive in ammonia unaided. This would infer that for the 

uncatalysed reaction, k2 and k3 >> k1, which seems improbable having observed that 

for tributyrin and triacetin background ammonolysis, all three rate constants are of 

comparable magnitude. Thus the observation that adding the CALB beads makes the 

reaction go through to completion suggests the lipase is catalysing all three 

ammonolysis steps; k1, k2 and k3.  

The potential industrial application of lipase catalysed ammonolysis in liquid 

ammonia can be explored by comparing the results with other enzymatic 

ammonolysis methods. Currently, the only major reported ammonolysis of triolein via 

a biotransformation is the work of Sheldon et al in ammonia saturated tert-butanol.  
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Table 5.2.8 Comparison of two methods for CALB catalysed ammonolysis of 

triolein; in liquid ammonia and ammonia saturated tert-butanol. 

Solvent 
CALB 

(mg/ml) 
temp (°C) conversion (time) 

liquid ammonia 0 25 0.7 % (68 hr)
d
 

liquid ammonia 8
a
 25 44.9 % (68 hr)

d
 

liquid ammonia 25
b
 25 63.6 % (68 hr)

d
 

†
NH3 sat tert-butanol 5

c
 60 82.0 % (72 hr)

e
 

† 
Reference
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a 
80 mg CALB beads in 10.4 ml; 

b 
250 mg CALB beads in 10.4 ml; 

c 
250 mg CALB beads in 

50 ml; 
d
 Initial triolein = 0.407 g, 0.46 mmol, 46 mM ; 

e
 Initial triolein = 5 g, 5.6 mmol, 113 

mM. 

Comparing the CALB catalysed ammonolysis of triolein in liquid ammonia with 

Sheldon‟s work is not easy. Sheldon‟s reactions are at 60 °C in comparison to the 

moderate conditions in liquid ammonia (25 °C). Indeed, the CALB lipase in this 

immobilised form is well known for being quite a robust enzyme. For a variety of 

biotransformations, many authors report optimum temperature of the Novozyme 435 

lipase as roughly 50-60 °C. 
248, 249

 Remarkably, Overmayer et al report enzyme 

function at temperatures as high as 160 °C in their studies in supercritical CO2, but 

maximum activity at around 80 °C. 
250

  Certainly it would appear that the optimum 

temperature is a function of the specific biotransformation and solvent medium etc. 

but this does indicate that there is some potential for the liquid ammonia reaction 

which is currently limited to 25 °C due to pressure limits on the glassware available.  

Additionally, Sheldon‟s reaction of triolein necessitated that the “reaction mixture 

was shaken….”
191

 whereas the liquid ammonia reaction is mixed in a comparably 

milder manner, with agitation by magnetic flea. Again, for safety reasons, vigorous 

shaking of liquid ammonia reactions in their current set-up with glass vessels is not 

practical but this does highlight the issues associated with using heterogeneous 

systems, as simple things like the stirring rate of the flea would likely influence the 

reaction. The reaction in liquid ammonia is essentially a three or four-phase system; 

bulk solvent ammonia, insoluble triolein and solid support enzyme beads, plus the 

oleamide product that appears to have limited solubility. Presumably, it would follow 
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that maximising the contact between all three reactants as much as possible would 

likely promote the catalytic effect, evident by Sheldon‟s need for vigorous agitation.  

For the liquid ammonia biotransformations, the effect of triolein charge on the mass 

of oleamide produced was investigated by charging various masses of triolein into 

liquid ammonia with constant mass of beads. The mass of oleamide produced was 

determined after 40 hr (Figure 5.2.22). 

 

Figure 5.2.22 Mass of oleamide produced after 40 hr for the reaction of triolein in 10 

ml liquid ammonia with 250 mg CALB beads (25 mg/ml liquid). 

Interestingly, over this range of triolein charge, the % conversion of oleamide 

(calculated as a % of the theoretical maximum yield) versus time is roughly the same; 

with 0.407 g of triolein, the mass of oleamide produced after 40 hr is 0.201 g, 

corresponding to a 52 % conversion and likewise, with 1.05 g of triolein 0.48 g of 

oleamide is produced giving a yield conversion of 55 %.  

5.2.6 Reaction rate vs. triglyceride chain length 

Directly comparing the rates of lipase catalysed ammonolysis as a function of 

triglyceride chain length is not easy because, for the long chained triolein, the 

individual rate constants, k1, k2, and k3, were not obtained. The progress of the 
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reaction can be roughly compared by using the total reaction time as a guide to the 

effect of lipases on various chain lengths with additional comparison to the 

background ammonolysis. Figure 5.2.21 illustrated that triolein in 10 ml liquid 

ammonia with 250 mg CALB beads has a total reaction time of around 180 hr. For the 

shorter chained triglycerides, where a lower mass of CALB was used, the apparent 

linear relationship between lipase mass per volume of LNH3 and individual rate 

constant, can allow for approximate extrapolation to 250 mg CALB beads, or more 

specifically, 25 mg/ml. For example, triacetin with 25 mg/ml CALB beads would 

yield an approximate observed k1 = 3.77x10
-4 

s
-1

, with k2 and k3 as same as the 

background rates, as these were shown not to increase with lipase. Using these 

optimized values in the Berkley Madonna model allows for a theoretical profile with 

250 mg (25 mg/ml) beads and total reaction time obtained and compared to the 

background ammonolysis (Table 5.2.9).  

Table 5.2.9 Approximate total reaction time of triglycerides in liquid ammonia only 

and with 250 mg (25 mg/ml) CALB added.  

Triglyceride 
Background, approx. 

reaction time 

25 mg/ml CALB beads, 

approx. reaction time 

Triacetin 650 hr 250 hr 

Tributyrin 1600 hr 70 hr  

Triolein 10000 hr (estimate) 180 hr 

 

With the extrapolated rates, for a theoretical reaction with 250 mg CALB beads in 10 

ml liquid ammonia, the overall reaction time for triacetin is decreased by 2½-fold 

whereas with tributyrin it is decreased roughly 20-fold. Given that the background 

triolein reaction showed only 0.7 % conversion after 68 hr it is difficult to estimate a 

total reaction time. Even a generous estimate of 10000 hr would equate to over a 50-

fold reduction in the total reaction time with 250 mg CALB. This observation 
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supports the earlier assumption that lipases would show greater catalytic activity with 

longer chained triglycerides.  

5.2.7 Summary of lipase studies in liquid ammonia 

In summary of the enzyme studies in liquid ammonia, the results on the whole were 

encouraging. Initially, free lipases showed no catalytic effect on the rates of 

triglyceride ammonolysis probably due to poor solubility or inactivity of the lipase. 

Immobilised forms of lipase B from Candida antarctica (Novozyme 435) showed 

moderate rate enhancement with the short and medium chain triglyceride 

ammonolysis. There appears to be some selectivity which is indicative of enzyme 

activity, whereby the ammonolysis of the short chain diacetin and monoacetin was not 

catalysed by the lipase but the triacetin ammonolysis was. For the slightly larger 

tributyrin, the triester ammonolysis was also catalysed by the lipase, with the di and 

mono ester showing very modest rate enhancement with the addition of the lipase 

beads. In comparison, the long chained triolein appears to be a very good substrate for 

these lipases in liquid ammonia. Although difficult to monitor the individual 

ammonolysis steps, the overall conversion of triolein to oleamide is increased greatly 

with the addition of CALB beads. This may have some industrial applications due to 

the high commodity value of fatty acid amides, in particular in the plastics industry 

and in the area of medical research. Due to limitations of the current set-up work was 

only carried out at ambient temperatures whereas CALB beads are well known for 

their robustness and high activity at elevated temperatures. 
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Chapter 6 - Conclusions and Future work 
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6.1 Conclusions 

6.1.1 Ammonolysis of esters 

Alkyl esters of benzoic and phenylacetic acid undergo ammonolysis in liquid 

ammonia to form the corresponding amide and alcohol products. The reaction rates of 

ammonolysis increase with acidity of the leaving group alcohol and a Brønsted 

correlation using liquid ammonia pKa values generates a βlg of ~ -0.7. This indicates 

little C-OR bond fission in the transition state and a rate-limiting step involving a 

reaction of the tetrahedral intermediate. The ammonolysis of esters is subject to 

significant catalysis by the ammonium ion, which, surprisingly, generates a similar 

Brønsted βlg indicating little interaction between the ammonium ion and the leaving 

group. It is concluded that the rate-limiting step for the ammonium-ion-catalysed 

solvolysis of alkyl esters in liquid ammonia is the diffusion-controlled protonation of 

the zwitterionic tetrahedral intermediate T
+-

 to give T
+
, which is rapidly deprotonated 

to give T
0
. This is compatible with the rate-limiting step for the uncatalysed reaction 

being the formation of the neutral T
0
 by a „proton switch‟. 

6.1.2 Aggregation Studies 

Ionic surfactants in liquid ammonia do not show the typical conductance profile that is 

observed for the aggregation of surfactants in water. However, a curved conductance 

profile can be attributed to the association of neutral, non-conducting, ion-pair 

species. In water, salts behave as strong electrolytes because the polar solvent has the 

ability to fully separate the oppositely charged species whereas the lower polarity of 

liquid ammonia promotes ion-association. Ion-pairing data suggests that there may be 

some formation of higher aggregates such as dimers or trimers, in particular with the 

fluorinated carboxylates, but in general there is no distinct evidence of micellization 

for ionic surfactants. Ionic surfactants have charged head groups that repel one 

another which may hinder the formation of a micelle, evident by the fact that cmc 

values of non-ionics tend to be lower than ionics. The high polarity of water reduces 

these adjacent head group repulsions with the help of hydrogen bonding. In contrast, 

the reduced polarity of liquid ammonia may not possess the ability to sufficiently 

reduce adjacent head group repulsions, thus aggregation of ionic surfactants in liquid 

ammonia may not occur. Perfluorinated amides are neutral surfactants that do not 
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show head group repulsion and form micelles in liquid ammonia as determined by a 

19
F NMR method. Chemical shifts changes of the terminal -CF3 group over a range of 

concentrations suggested that fluorinated amides were aggregating, and cmc values 

were obtained for surfactants of varied chain length. The cmc values follow Klevens 

rule showing that as the surfactant tail length is increased, the concentration at which 

aggregation occurs is reduced. Moreover, the magnitude of the -CF2-/-CF3 chemical 

shift change increased from the alpha carbon towards the terminal group, consistent 

with formation of a micelle with a fluorine dominated core and amide head groups 

exposed to ammonia. The fluorinated micelles also appeared to catalyse the ester 

ammonolysis reaction, possibly by stabilizing the zwitterionic tetrahedral 

intermediate. 

6.1.3 Enzyme Studies 

Triglycerides undergo ammonolysis in liquid ammonia and the reaction is catalysed 

by CALB lipase. For short chain triglycerides, the rate enhancement with the addition 

of lipase is not massive and for the triacetin substrate only k1, the rate constant for 

triacetin to diacetin ammonolysis, is enhanced. For tributyrin, the lipase shows 

moderate rate enhancement for each ammonolysis step, k1, k2 and k3. Thus the enzyme 

may be selective towards long chain triglycerides which are, essentially, the natural 

substrates of lipases. Triolein was very unreactive in liquid ammonia which may be 

due to the reaction occurring at a phase boundary owing to the poor solubility of the 

long chain lipid. The ammonolysis of triolein to the useful commodity oleamide can 

be greatly enhanced with the addition of the CALB enzyme. Individual rate constants, 

k1, k2 and k3, were not determined for the triolein reaction but a general comparison of 

reaction times for the catalysed and uncatalysed reaction of each triglyceride appears 

to confirm that the enzyme is particularly selective towards the long chain substrate.  

6.2 Future work 

Liquid ammonia has been shown to support both aggregation, a necessary prerequisite 

for forming a cell-type compartment, and a biological catalyst and thus the potential 

for this non-aqueous solvent to support life may have some merit. The fact that this 

project is one of the first to examine these life-type processes in liquid ammonia 

means that there are numerous paths that could be taken in order to further investigate 

the life-supporting potential of liquid ammonia, including looking at some replication 
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or phosphorylation processes. Further investigation into the aggregation of surfactants 

could include finding a viable detection method for alkyl amides. These neutral 

surfactants could not be investigated by conductance and the NMR method was not 

pursued to any major extent due to the ammonia peak swamping the peaks of interest. 

However, in an „ammonia-life‟ system, fluorinated amides are unlikely to be naturally 

abundant whereas the normal alkyl amides might be readily available to form the 

basis of a cell container. Furthermore, alkyl amides can be synthesised in liquid 

ammonia in a process that can be significantly enhanced by a lipase catalyst, 

particularly for the longer chained triglycerides. Thus, investigation into aggregation 

of alkyl amides may be a primary concern because two of life‟s processes may be able 

to function together in liquid ammonia (Scheme 6.2.1). 

 

Scheme 6.2.1 Potential synthesis and subsequent aggregation of alkyl amides in liquid 

ammonia. 

As there have not been any previous reported studies of biocatalytic processes in 

liquid ammonia, the initial focus of this project was to see if, and to what extent, any 

enzyme may function in this „harsh‟ environment. Further work could focus on the 

lipase catalysed ammonolysis process from a more biological perspective, 

understanding how the enzyme functions in liquid ammonia and if the mechanism is 

equivalent to that in its natural aqueous habitat, utilising the „catalytic triad‟ and an 
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oxyanion hole for stabilisation of the TI. Site-specific mutagenesis could be one way 

of achieving a better understanding of the mechanism in liquid ammonia.   

From an industrial perspective, there is potential for some future work on the lipase 

catalysed ammonolysis of long chained triglycerides. Fatty acid amides have many 

industrial applications and are used in medical research. An optimised enzymatic 

method for their preparation in liquid ammonia could be economically viable and 

„green‟ due to the recyclability of both liquid ammonia and enzymes. CALB on 

acrylic resin beads (Novozyme 435) is reportedly very robust and able to operate at 

high temperatures. Future work could look at the design of a stronger, steel-based 

vessel that could be used to safely operate liquid ammonia reactions at higher 

temperatures. Moreover, this may allow for vigorous agitation of the multiphase 

reaction mixture that could further enhance the enzymatic process.  
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Chapter 7 - Appendix 

 

7.1 Safety, hazards and risk mitigations 

7.2 Derivation of ion-pairing model for general salt in liquid ammonia 
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7.1 Safety, hazards and risk mitigations  

To be read carefully prior to any laboratory work and handling of liquid ammonia.  

7.1.1 COSHH (Control of Substances Hazardous to Health) assessment  

A thorough COSHH assessment must be completed before any experiments are 

carried out. This complies with UK regulations and additionally gives general insight 

into the dangers associated with any chemicals that are to be used. All chemicals 

obtained from commercial supplies are provided with an MSDS (Material Safety Data 

Sheet) from which the relevant COSHH data can be found as well as important 

information such as what do in case of emergency/spillage/cleaning/disposing etc.  

7.1.2 Major risks involved in liquid ammonia handling 

The vapour pressure of liquid ammonia at 25 °C is approximately 10 bar and it is 

classified as a toxic compound. The 3 major risks when working with liquid ammonia 

are: 

1) A catastrophic failure of the glass vessel resulting in ejection of glass and 

liquid/vapour into the immediate working area.  

2) Unexpected pressure increase due to lack of venting in the vessels (from gas 

evolution). This can lead to the same outcome as described in risk 1).  

3) Splashing with liquid ammonia during venting and sampling can lead to burns. 

Additionally, inhalation of liquid ammonia vapour at very high concentration can lead 

to unconsciousness.  

7.1.3 Glassware design and pressure testing 

Glassware is specially designed for the liquid ammonia work and the glassblower is 

made aware of the intended use and required operating pressures. Prior to use all 

glassware is pressure tested to at least twice the operating pressure. The procedure for 

pressure testing vessels is as follows: 

The vessel is filled with water and then connected to a HPLC pump. Before switching 

the pump on, the vessel is submerged in a bucket of water with a Perspex sheet over 

the top. The vessel is sealed using an Omnifit stopper and water is pumped in at a 

very low flow rate (≈ 0.1 ml/min) and an increase in the pressure is observed from the 

HPLC read-out. The pump is set to automatically switch off as a pressure limit is 
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reached, which in this case would be set at around 20-25 bar (operating pressure is 10 

bar). The vessel is kept at this high pressure for around 10 min and then the pressure 

is released and the glassware inspected for any failures. The procedure is repeated 

every 2-3 months and records kept.  

7.1.4 Personal protective equipment (PPE) 

For all laboratory work, correct PPE to be worn at all times. This includes lab coat, 

goggles and gloves (when required).  Also available is a full face shield for use when 

judged appropriate.  

7.1.5 Fume hood and laboratory precautions  

Glassware under pressure is to be shielded at all times by a Perspex sheet of at least 

8mm thickness. All persons in the lab are to be made aware of on-going liquid 

ammonia experiments and the hazards/risk procedures involved and there is to be no 

working alone in the laboratory when handling liquid ammonia.  
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7.2 Derivation of ion-pairing model for general salt in liquid ammonia 

 

        
[  ][  ]

 [     ]  
                          [  ]   [  ]       

Hence: 

       
[  ] 

[     ]  
 

The total amount of salt present can be calculated from: 

[  ]    [  ]  [    ]   

Rearrangement and substitution into equilibrium equation:  

[  ]    [  ]  
[  ] 

     
 

This can be rearranged to a quadratic form: 

      [ 
 ]          [ 

 ]  [  ]  

  [  ]         [ 
 ]        [ 

 ]    

           

Where: 

      

        

         [ 
 ]    

  [  ] 

Using the quadratic solver (positive): 
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   √      

  
 

 

[  ]  
       √     

           [  ]    

 
 

 

The quadratic solver can be used in tandem with the conductivity equation of 

electrolytes in solution, which states that the overall observed conductivity is 

summative of the specific conductivity of charged species and their concentration, 

plus a background solvent conductance: 

         [  ] 

Where: 

                                              

                                         

                                                  

[  ]                         

Substitution of the conducting species concentration, [A-], from the quadratic solver 

into the conductivity relationship:  

        
       √     

           [  ]    

 
 

The quadratic solver model was compiled in the function fitting software Origin 8. 
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