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Abstract xi

Abstract

This work presents the performance analysis of the offset pulse position

modulation (PPM) scheme using graded-index plastic optical fibre with a

Gaussian impulse response. The aim of this analysis is to predict how sen-

sitivity, error, number of required photons, threshold voltage, and the effect

of inter-symbol interference will change with the change in the number of

data bits encoded at a rate of 1 Gbit/s. An information theory analysis

is presented in detail and also the band-utilization efficiency is determined.

Results are compared to equivalent digital PPM and multiple PPM schemes

and it is also shown that offset PPM gives an advantage over on-off keying

(OOK).

Bit error rate (BER) analysis has been presented numerically. The errors

due to different coding techniques are compared. It has also been shown that

offset pulse position modulation is more power efficient than multiple pulse

position modulation.

The spectral analysis of offset pulse position modulation coding scheme

has been carried out. For an offset PPM sequence the spectral characteristics

is presented both theoretically and numerically. The results show strong

frequency components at the frame rate and, if return-to-zero pulses are

used, the slot rate. Slot synchronisation has been taken into consideration for

the first time as offset PPM spectrum exhibits discrete slot rate component.

The effect of pulse shaping and modulating index on the spectrum has been



xii Abstract

shown. The dependency of slot component on the pulse shape is examined.

The results show that the frame synchronisation is possible for offset PPM

as this coding exhibits a strong frame rate component. A comparison of

spectral characteristics has been presented considering digital, multiple and

shortened PPM. For ease of implementation an offset PPM coder has been

designed.

In this work an efficient clock recovery topology is presented for offset

PPM data sequence at the receiver end. For clock recovery, a phase locked

loop is designed. Data recovery has also been presented. It is shown that a

frame clock can be extracted from the data sequence that yields the possibil-

ity of frame synchronization. A detailed noise analysis has been performed

for random offset PPM input.

It has been shown that the proposed clock recovery system is also effective

for extracting other data sequence. To elucidate, a multiple Pulse Position

Modulation (MPPM) data sequence is considered. The MPPM data sequence

has also been synchronised with the recovered clock. A noise analysis is car-

ried out for multiple PPM.

Keywords: Digital pulse position modulation, Information theory, Maxi-

mum likelihood detection, Optical communication, Offset pulse position mod-

ulation, Pulse detection errors, Bit error rate, Pulse modulation, Spectral

analysis, Fourier transform, Synchronization, Phase Locked Loop, Noise anal-

ysis.
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Chapter 1

Introduction

An optical communication system consists of a transmitter which encodes a

message into an optical signal, a channel which carries a signal to its destina-

tion, and a receiver which reproduces the message from the received optical

signal. The information is transmitted in two forms – analog and digital.

In analog communication, three key parameters of a carrier signal, namely

amplitude, phase and frequency, are modified (modulated) according to the

message signal to obtain the modulated signal. Variation of these key pa-

rameters produces three modulation schemes – amplitude modulation (AM),

phase modulation (PM) and frequency modulation (FM), and the aim is

to transmit a signal from transmitter to receiver with as little distortion as

possible. In digital transmission the information is converted into binary

symbols (bits). The optical carrier is modulated by the information which is

detected and decoded by the receiver into the original format. The digital

1
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information is transmitted over the optical link on a bit-by-bit basis (binary

encoding) or on a data word basis (block encoding). Two fundamental types

of coding generally are used to improve system performance: source coding,

channel coding. Source coding is used to reduce the redundancy of the source.

Channel coding is used to improve the reliability of the system performance

when the information is passed through a noisy or dispersive medium. While

the line coding is introduced to overcome the impairment of information due

to a noisy channel. In a broader view, the line coding is used to achieve a

specific form of information from the incoming data which is more reliable

to transmit. The source data is generated in a random manner and thus

statistical analysis is required. Two types of source generation are possible:

memoryless and with memory. In the literature (in the next section), various

coding techniques have been proposed to encode data in the transmitter side

so that the receiver can decode data with least error or distortion by utiliz-

ing the channel bandwidth properly. Analog signal is converted into digital

format by using pulse code modulation (PCM).

In optical communication, the positions of the pulses can be changed ac-

cording to the incoming digital data. This general form of coding is called

pulse position modulation (in Chapter 2). Figure 1.1 shows an optical re-

ceiver system, where an optical signal, received by a photodiode, is amplified

by an amplifier to a level that helps it to receive data with least distortion due

to noisy channel. A filter is used to pass the signal with a specific bandwidth

which in turn reduces high frequency noise. The receiver predicts position
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of the pulse by using a threshold crossing detection system. A decoder is

used to regenerate the signal into its original form. Timing synchronization

system is used at the receiver side to synchronize the clock of the incoming

data with the received data, so that errors in the received signal can be made

as small as possible. Various types of coding techniques have been proposed,

analyzed and developed by many authors as discussed in Section 1.1. Also,

some form of coding techniques have been discussed in detail in Chapter 2.

photodiode

pre-and post
amplifier

Matched
 filter

Voltage
comparator

Decoder

Timing
Extraction

Digital 
data

Vd

t=Ts

Figure 1.1: Schematic of an optical receiver system

1.1 Literature Review

Pulse Code Modulation (PCM) is a general scheme for transmitting ana-

log data in a binary form independent of the complexity of analog waveform.

In [1], Shannon introduced a detailed analysis on the characteristics of digital

data at the time of transmission, where the total information was represented

by logarithmic function. If the source has to encode N bits of binary data,

the total amount of information is equal to log2 2N = N . Considering a dis-
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crete noiseless channel, it was also shown in [1] that the channel capacity is

directly proportional to the amount of information for a time duration. This

was mathematically represented as C = limT→∞
logN(T )

T
, where N(T ) is the

amount of information for the time duration T . Also in [1], a framework for

statistical analysis of information sources (probability of occurrence, uncer-

tainty, etc.) and characteristics of different types of sources were presented.

If a binary memoryless source is considered where the probability of occur-

rence for symbol 1 is p and for symbol 0 is q = (1−p), then the entropy of the

source is calculated as H = −(p log p+ q log q). All the above characteristics

considering the noisy channel were also derived. These results are key to

communication theory and afterwards, the analysis of coding theory begins

by invoking Shannon’s concept of information theory.

Optical communication is a method where photons are used to form an op-

tical pulse and some optical pulse coding techniques have been introduced by

changing the temporal position of the pulses. In [3], McEliece described pho-

ton counting technology in optical communications. He showed that channel

capacity can be increased infinitely considering a noiseless channel and also

the signalling efficiency can be 10 nats/photon by sacrificing a considerable

amount of bandwidth. To overcome this problem, pulse position modulation

coding with Reed-Solomon coding was proposed leading to a balanced pho-

ton counting channel operated at the efficiency of 3 nats/photon. Based on

McEliece’s idea, Massey [4] analyzed the various factors of the channel such

as capacity, cut-off rate, etc. It was shown that the convolutional code system
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with Viterbi decoders performed much better compared to the code proposed

by McEliece. Marsh and Kahn [5] experimented with indoor data transmis-

sion using on-off keying at a data rate of 50 Mbit/s. Kobayashi [6] covered

different types of coding techniques to overcome random noise with reduced

inter-symbol interference (ISI). To overcome synchronization problems, the

inclusion of self clocking was introduced. In [7] and [8], the authors investi-

gated the transmission characteristics using low dispersion and dispersionless

single mode fibre.

To overcome the difficulties of PCM, many authors proposed different

types of pulse modulation techniques. Garret introduced digital PPM ( [9],

[10]) in its original form to increase the receiver sensitivity with respect to

PCM but at the cost of higher line rate or bandwidth expansion. In his

work the effect on errors due to the use of direct and heterodyne receiver

over a slightly dispersive channel was considered. Timing extraction at the

receiver was discussed. Many authors ( [11]- [15]) have sought to improve

on this scheme. In [11] theoretical analysis of optical digital PPM at the

data rate of 50 Mbit/s was implemented considering a PIN-BJT receiver

and also assuming a Gaussian pulse. The authors concluded that digital

PPM outperforms that of the same PCM system while sacrificing bandwidth.

Massarella and Sibley [12] presented an error detection and correction method

to reduce the effects of inter-frame interference (IFI). They proposed an error

correction method using Reed-Solomon (RS) code applied with digital PPM.

Calvert, Sibley and Unwin [13] also examined theoretical modeling of digital
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PPM and concluded that digital PPM system can offer better sensitivity (4.2

dB) than an equivalent binary PCM system. Sibley [14] also designed high

speed digital PPM and analyzed the system performance.

To consider the line rate reduction, differential PPM, a simple modifica-

tion of PPM, was introduced. Zwillinger established in [16] that differential

PPM has a higher throughput of data than an equivalent digital PPM system.

Shiu and Kahn [17] have described differential PPM considering several de-

tection systems in the presence of Additive White Gaussian Noise (AWGN).

They derived the expressions of error probability and power spectral den-

sity for differential PPM. They showed that differential PPM is more power

efficient and has a reduced hardware complexity. In overlapping PPM, de-

scribed by Bar-David and Kaplan [18], adjacent pulse positions are allowed

to overlap that results in line rate reduction. In that paper, they emphasized

the merits of overlapping PPM in terms of capacity, cut-off rate, throughput

in comparison with OOK and PPM. Patarasen and Georghiades [19] con-

sidered the synchronization issues of overlapping PPM as the frame lengths

vary in this case. They studied the performance of overlapping PPM using

computer simulation considering optimal frame synchronization rules as well

as suboptimal approximations. Results were compared with PPM. In [20],

authors improved the drawbacks of optical overlapping PPM allowing multi-

ple pulses to overlap without increasing bandwidth. The proposed technique

offers better capacity and cut-off rate compared to OOK, PPM and MPPM

(Multiple Pulse Position Modulation). Another application of overlapping
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PPM with RS codes was also studied in [20]. Synchronization issues were

investigated by Calderbank and Georghiades in [21]. They designed a finite

state machine and proposed an algorithm for proper synchronization. Sha-

laby [23] restricted the upper and lower bounds for the overlapping index

such that overlapping PPM outperforms digital PPM. It was also addressed

by Shalaby in [22] that throughput can be increased by 0.2 nats/slot allow-

ing two pulse positions per pulsewidth to overlap and, as a result, energy

requirement is reduced. The achieved maximum throughput is 0.5 nats/slot

considering some constraints.

Another coding method called Digital Pulse Interval Modulation (D-

PIM), a variation of digital PPM suppressing empty slots preceding a pulse,

results in line rate reduction. Using threshold detection scheme, the probabil-

ity of error for pulse-interval modulation was found by Lee and Schroeder [24]

and in support of this scheme, both analytical and numerical results were pre-

sented. The performance of this coding technique was investigated in [25]

using direct-detection receiver design. Ghassemlooy and Hayes [26] discussed

D-PIM for optical wireless communication. Expressions for transmission ca-

pacity, power spectrum and error probability were also presented by them.

Spectral characterization of D-PIM was evaluated by Cariolaro, Erseghe, and

Vangelista [27]. A similar scheme, Dual Header Pulse Interval Modulation

(DH-PIM) which uses dual header, was introduced by Aldibbiat et al. ( [28]-

[32]). This coding scheme offers similar transmission capacity and more band-

width efficiency compared to PPM and PIM. Also it has self synchronization
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capacity. The authors also studied the power efficiency scheme of DH-PIM.

The working principle of DH-PIM in the indoor optical wireless environment

was demonstrated and subsequently a mathematical derivation for the bit

error rate was presented. Spectral properties and closed form expressions for

spectral characteristics have been derived by Aldibbiat et al. [32]. In [33], Yan

and Minthis analyzed the performance of some modulation schemes such as

OOK, PPM, DPPM, DPIM and DH-PIM in terms of bandwidth efficiency,

transmission capacity, power efficiency and slot error rate by taking into

consideration the optical wireless channel. They concluded from theoretical

and numerical results that DPPM, DPIM and DH-PIM are useful for optical

wireless communication.

Sibley proposed a combination of a tertiary code (Dicode) and digital

PPM to give dicode PPM. In Dicode PPM [34] only data transitions are

coded into one of two data slots. It results in a bandwidth expansion of 2

if no guard interval is used, and the sensitivity is comparable with digital

PPM. But it gives a sensitivity improvement of 5–11 dB in comparison with

PCM. In [35], it was shown that effective three types of errors (wrong slot,

false alarm and erasure) can be reduced by using a Maximum Likelihood

Sequence Detector (MLSD) algorithm at the receiver side and theoretical

results for errors were presented when 1 Gbit/s PCM data was transmitted

over a dispersive medium. In [36] the performance of dicode PPM in the

presence of a third-order Butterworth filter with a zero-guard interval was

examined considering Gaussian pulses. Using this filter the receiver sensitiv-
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ity becomes −37.48 dBm for fn = 100 and −32.24 dBm for fn = 1.2 where fn

is the normalised bandwidth. It was also studied that if a PIN-FET receiver

is used [37], dicode PPM offers sensitivity of −53.33 dBm at a bandwidth

of 1.5 times the PCM bit rate. Cryan in [38] derived expressions for dicode

PPM spectrum and the theoretical results were presented in comparison with

numerically predicted data. Shortened PPM was introduced for underwater

wireless communication. In [39], Cryan derived continuous and discrete spec-

tral equations and theoretical results were compared with numerical results.

It was concluded that as SPPM gives both slot and frame rate components,

both slot and frame synchronization could be possible.

Multiple PPM is the most bandwidth efficient coding theory among the

above mentioned coding techniques. Sugiyama and Nosu in [40] gave a de-

tailed analysis of MPPM on the basis of bandwidth expansion, bit error rate

analysis and the amount of information transmitted. Sibley [41] analysed

MPPM operating over graded-index plastic optical fibre that offers a sen-

sitivity of −35.51 dBm for a (12
2 ) system (12 slot 2 pulse system) with low

dispersion. Nikolaidis and Sibley [42] investigated MPPM for eight different

numbers of slots over a highly dispersive channel. The analysis showed that

small MPPM families are more efficient than the higher families. But middle

order families are better for use when bandwidth is considered. They also

investigated [43] Gray coding the most effective among linear increment, lin-

ear decrement, and random mapping as it minimises the Hamming distance

between adjacent multiple PPM words. In [44], they have shown that (12
2 )
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and (12
3 ) MPPM systems offer optimum mapping on the basis of error rate.

Although MPPM is the most bandwidth efficient code and its response is

satisfactory for ideal channels, the system performance is degraded on mul-

tipath channels due to multipath dispersion. This was investigated by Park

and Barry [45] in the presence of ISI, and the upper and lower bounds for this

system were found. They also proposed a Trellis coded MPPM to combat

ISI [46] and the performance of that scheme was examined over a multipath

channel. This proposed partial-response precoding is suitable for a wireless

infrared channel. The performance of MPPM was also examined by Simon

and Vilnrotter [47]. Although MPPM is the most bandwidth efficient code,

the implementation of this system is complex. Partial-response was investi-

gated by many authors ( [48]- [49]).

Keeping in mind the advantages and disadvantages of all above men-

tioned coding techniques, Sibley [50] proposed a new coding theory, offset

pulse position modulation which is the subject of research in this thesis. An

analysis of the different types of errors occurring due to ISI and IFI using

graded-index plastic optical fibre (GI-POF) was given by Sibley.

Spectral characterization of different types of coding and how to find

closed-form expressions ( [58]- [76]) have been research topics for many years.

In [58], Cryan presented both the analytical and the numerical power spectral

density of nk PPM. Most of the analytical spectral equations were derived by

using the Wiener-Khintchine theorem; Power Spectral Density (PSD) is the

Fourier transform of the autocorrelation function considering cyclostationary
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properties of the modulation format. However, a discrete time signal is said

to be cyclostationary, or to be wide-sense stationary, if the statistical proper-

ties are repeated periodically. Gardner ( [66]- [69]) did thorough research on

cyclostationary and correlation properties, and analysed the effect of those

properties on random data sequence and on the spectrum characteristics.

In [71], Win derived spectral equations considering different types of data

source such as uncorrelated data pulse stream, independent identically dis-

tributed binary antipodal data pulse stream, zero-mean Markov source data

stream and interleaving independent first-order Markov sources. The ana-

lytical results were compared with those numerically obtained values. Win

also derived spectral equations considering different types of timing jitter.

Elmirghani ( [73]- [75]) considered both slot rate and frame rate spectral

components for digital PPM and showed that both slot and frame synchro-

nization could be possible. Investigations show that digital PPM exhibits

a slot rate component at the slot repetition frequency when return-to-zero

pulse is used, but does not provide a frame rate component as the frame has

a uniform distribution of pulses. To get the frame rate component at the

frame repetition frequency, a guard interval is used consisting of a number

of empty slots at the end of the frame.

In order to regenerate binary data at the receiving end of the digital

transmission system with the fewest bit errors, the received data must be

sampled at optimum instants of time. Since it is usually impractical to

transmit the required sampling clock signal separately from the data, timing



12 Chapter 1. Introduction

information is generally derived from the incoming data itself. The extrac-

tion of the clock signal from incoming data is called clock recovery. Timing

synchronization in the receiver side has been a strong research problem for

decades. Saltzberg [77] introduced timing recovery procedure for binary data

transmission. It is shown that by adjusting the sampling time of a random

incoming data, frequency offset, jitter, additive noise can be easily calculated

and adjusted. Later, many clock recovery processes have been introduced.

A reliable approach for clock recovery is the use of a Phase Locked Loop

(PLL). Razavi ( [78]- [79]) presented clock recovery using monlithic Phase

Locked Loop (PLL). The working principle of each individual building block

of a PLL was presented and the problem of clock recovery processes was

discussed. Many authors ( [80]- [93]) proposed different timing extraction

procedures with their advantages and disadvantages. Kalita [94] described

modeling and simulation of an analytical phase noise model of PLL frequency

synthesizer. A detailed noise analysis on all elements of PLL topology has

been shown. Mehrotra [95] addressed the problem of noise analysis of a PLL

which was formulated using stochastic differential equation solved in the pres-

ence of circuit white noise sources. Perrott [96] gave a detailed analysis of

different type of PLL design procedures.
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1.2 Organization of the Thesis

This thesis consists of eight chapters. The remainder of this thesis is orga-

nized as follows:

Chapter 2: Preliminaries

In this chapter, background material is presented which lays the foun-

dation of this thesis. At first, some of the coding techniques are described

along with their application areas, advantages and disadvantages. Then, the

Fourier transform, the sampling theorem and discrete Fourier transform are

briefly reviewed. Next, the Discrete Fourier Transform (DFT) of some sig-

nals has been presented. Finally, errors due to discrete Fourier transform are

discussed.

Chapter 3: Offset Pulse Position Modulation

This chapter presents the offset pulse position modulation coding scheme.

How the requirement of photons per pulse, threshold voltage, sensitivity, and

errors change with the variations in coding level in an offset PPM system are

presented. Then, a detailed analysis of offset PPM is given. Next, com-

parisons are made to digital PPM, multiple PPM, and for reference on-off

keying (OOK). In this chapter, graded-index plastic optical fiber (GI-POF)

is chosen as optical channel and a Gaussian-shaped impulse response is taken

into consideration. At last, information theory analysis is given for the first

time for offset pulse position modulation.
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Chapter 4: Bit Error Rate and Power Efficiency

Bit error rate analysis has been performed in this chapter considering

offset pulse position modulation data sequence. The effect of signal-to-noise

ratio (SNR) on the signal, when AWGN channel is used, has been shown.

Also the power requirement on the basis of photon per pulse is presented.

Chapter 5: Spectrum Analysis

This chapter contains the spectral analysis of offset pulse position modu-

lation, where both the theoretical and numerical results are presented. Slot

synchronisation has been discussed as the offset PPM spectrum exhibits a

discrete slot rate component. The effect of pulse shaping and modulating

index on the spectrum is also presented. Then, frame synchronisation has

been taken up as offset PPM exhibits a strong frame rate component. Next,

the change of frame rate component with the modulating index is exam-

ined. A comparative study on spectral characteristics of digital, multiple

and shortened PPM on the basis of dc value, frame rate component and slot

rate component is presented. A flow chart for designing offset PPM coder is

also given in this chapter.

Chapter 6: Timing Extraction

In this chapter, a Phase Locked Loop (PLL) for clock recovery has been

designed. Using the designed PLL, steady state error analysis has been

presented. Then, clock recovery technique is presented considering the input

data sequence as offset PPM. Next, a data recovery circuit has been used to
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recover input OPPM data sequence. In this chapter, it has been shown that

frame synchronization is possible using PLL. Finally, a detailed noise analysis

has been presented for random OPPM input to elucidate the effectiveness of

the designed scheme.

Chapter 7: Timing Synchronization of Multiple PPM

In this chapter, a discussion on slot and frame synchronization is pre-

sented on the basis of spectrum. Timing extraction technique presented in

Chapter 6 is extended in this chapter using multiple pulse position modula-

tion random data sequence. Using PLL topology, slot clock extraction from

MPPM data sequence at the receiver end is presented. Next, noise analysis

has been carried out for multiple PPM data sequence.

Chapter 8: Conclusions and Future Works

This chapter concludes the thesis with a summary of the main contribu-

tions and an outline of several suggestions for future research in this area.

1.3 Contribution of the Thesis

The main contributions of this thesis are summarised below.

• A detailed analysis of offset PPM coding scheme has been presented.

The variation of different parameters such as photons per pulse, thresh-

old voltage, sensitivity, and errors has been measured by changing the

coding level in an offset PPM. Comparisons are given considering digital
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PPM, multiple PPM, and for reference on-off keying (OOK). Informa-

tion theory analysis has also been presented for offset pulse position

modulation.

• Bit error rate analysis has been carried out considering the offset PPM

data sequence, and a comparison with digital PPM and multiple PPM

has been presented. The effects of AWGN on offset PPM data sequence

is examined. The power efficiency on the basis of photon per pulse has

been analysed.

• The spectral analysis of offset pulse position modulation has been pre-

sented, where both theoretical and numerical results are given. The

slot and frame synchronization have been studied as the offset PPM

spectrum exhibits strong slot rate and frame rate component as well.

The dependency of spectrum on pulse shape, data distribution on a

frame and modulation index is examined. A comparative study on

the spectral characteristics considering digital, multiple and shortened

PPM is presented. An offset PPM coder has also been designed.

• For clock recovery, an efficient Phase Locked Loop (PLL) has been

designed. Using the PLL, it has been shown that the slot clock can

be extracted from the data frame with zero steady state error. Data

synchronisation can also be made possible with the recovered clock

by using data recovery circuit. It is also shown that the frame clock

can be recovered and subsequently that frame synchronization is also
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possible. These applications have been shown for offset Pulse Position

Modulation (OPPM). Furthermore, a detailed noise analysis has been

presented for the designed PLL scheme.

• A timing extraction topology is explored in further detail considering

different parameters using Multiple Pulse Position Modulation (MPPM)

random data sequence. Extraction of a slot clock from the MPPM

data sequence at receiver is presented. A noise analysis for the de-

signed scheme is carried out. Results show that the received data can

be synchronized with the extracted clock. Based on the spectral char-

acteristics a discussion has also been presented for slot and frame syn-

chronization.
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Chapter 2

Preliminaries

In this chapter some background materials are presented which will be re-

quired to establish the main results of this thesis. Coding theory is described

in brief in Section 2.1. The Fourier transform is revisited in Section 2.2. Sec-

tion 2.3 presents the sampling theorem. Discrete Fourier Transform (DFT)

and the errors due to DFT are described in Section 2.4 and 2.5 respectively.

The Wiener-Khintchine theorem is described in Section 2.6.

2.1 Brief Description of Coding Schemes

Some of the coding schemes are discussed here with their advantages and

disadvantages.

19
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2.1.1 Pulse Code Modulation (PCM)

Materials presented in this subsection are taken from [105]. Pulse Code

Modulation (PCM) is a modulation format to represent any kind of analog

signals into digital format. In this modulation format, the amplitude of the

analog signal is sampled regularly at uniform intervals, and each sample is

quantized to the nearest value within a range of digital steps. The fidelity of a

PCM data stream can be categorized using two properties: sampling rate and

bit depth. Figure 2.1 shows an analog sine wave sampled at regular intervals.

The quantized values at the sampling time instants are 7, 9, 11, 12, 13, 14, 15,
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Figure 2.1: Pulse Code Modulation

15, 14, etc. These values will then be encoded into a binary representation

to form a set of binary nibbles such as: 0111, 1001, 1011, 1100, 1101, 1110,

1111, 1111, 1110, etc. These digital values could then be further processed or

analyzed by a digital signal processor and transmitted as a multiple stream

using Time-Division-Multiplexing (TDM) over a single physical layer. This
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coding scheme is widely used in digital audio in computers, Compact Discs,

modern public telephone system and other digital audio applications. In the

receiver side, data is recovered using an Digital-to-Analog Converter (DAC).

2.1.2 On-Off Keying (OOK)

On-off keying is the simplest form of modulation which can represent the

digital data independent of the presence of carrier wave. It has low power

consumption and low implementation cost. OOK is also used in optical

communication systems, RF carrier waves, remote control system.

2.1.3 Digital Pulse Position Modulation (DPPM)

Digital PPM has been proposed ( [9]- [15]) for the proper utilization of band-

width available in optical fibre links. It codes M bits of data into a single

pulse that occupies one of 2M time slots in a block. The coding system is

shown in Table 2.1. Sometimes a guard interval consisting of a number of

empty time slots is used at the end of the frame to reduce the effects of

Inter-Symbol Interference (ISI) and Inter-Frame Interference (IFI) caused by

channel dispersion. This coding technique exhibits better sensitivity with

respect to on-off keying, but the line rate and bandwidth are increased. The

data rate is counted, for example, 10.7 times that of the OOK when encoding

6 bits of data into 64 slots with no guard bits. Although DPPM has great

demand in processing electronics, the bandwidth expansion, a disadvantage
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of DPPM, restricts its use in other applications; however, it is still a simple

and less expensive coding scheme.

2.1.4 Multiple Pulse Position Modulation (MPPM)

This coding scheme ( [40]- [47]) uses a number of pulses in a frame where

data is being transmitted by (nk) number of possible coding combinations (n

= number of slots, k = number of pulses in one frame). If k = 1, MPPM

becomes simple digital PPM. Table 2.1 shows (5
2) multiple PPM in which a

5-slot frame uses two data pulses to code 3 bits of OOK. Ideally, k = 2 is used

in (nk) for ease of implementation. The Pascal’s triangle concept is generally

used to choose the values of n and k for a particular OOK bit. Multiple

PPM also offers better sensitivity than the digital PPM with reduced line

rate. Multiple PPM is the most bandwidth efficient code. Due to the use of

different values of pulses in a codeword multiple PPM can run at a lower speed

than digital PPM. It is a more complex code and so is costly to implement.

2.1.5 Differential Pulse Position Modulation

Differential Pulse Position Modulation ( [17], [16]) is a variation of PPM

coding. In differential PPM, data is encoded by removing the zeroes following

a pulse. Like digital PIM, in this coding technique the receiver measures the

relative distance between successive signals.
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2.1.6 Digital Pulse Interval Modulation (DPIM)

Digital Pulse Interval Modulation ( [25], [26]) is an asynchronous Pulse Time

Modulation (PTM) technique. In this modulation technique data is coded

as a number of discrete time intervals or slots, and the information depends

on the relative distance between successive pulses but not on the position of

the pulses in a frame. It uses a variable frame length. If a symbol encodes

M bits of data, the minimum and maximum symbol lengths are 2Ts and

(L + 1)Ts, respectively, where Ts is the slot duration and L = 2M . Table

2.1 shows the DPIM coding technique when it encodes 3 bits of data. In

order to avoid symbols in which the time between adjacent pulses is zero,

an additional guard slot can be added to each symbol immediately after

the pulse. The difficulty of this technique is mainly due to the variable

word length structure for spectral evaluation. But this variable word length

property plays a key role when considering synchronization, since the DPIM

does not require symbol synchronization as each signal is initiated with a

pulse. Compared to digital PPM, DPIM offers better performance in terms

of transmission efficiency and bandwidth requirement.

2.1.7 Shortened Pulse Position Modulation (SPPM)

Shortened Pulse Position Modulation [39] is a coding scheme which was pro-

posed for underwater wireless optical communication. M bits of OOK data

are encoded into n bits of the SPPM coding scheme where n = 1 + 2M−1.
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From Table 2.1 it is apparent that the first bit of OOK is carried on to the

first position of the SPPM codeword and the remaining (M − 1) OOK bits

are conveyed by changing the position of a single pulse in one of the remain-

ing 2M−1 time slots. SPPM is more bandwidth efficient than digital PPM as

SPPM has bandwidth expansion of (1 + 2M−1)/M whereas digital PPM has

2M/M over OOK.

Table 2.1: Generation of different types of coding from equivalent 3 bits of

data

OOK Digital PPM Differential PPM Digital PIM DH-PIM Offset PPM SPPM MPPM

000 0000 0001 0000 0001 1 100 0000 0 0001 11000

001 0000 0010 0000 001 10 1000 0001 0 0010 10100

010 0000 0100 0000 01 100 1000 0 0010 0 0100 10010

011 0000 1000 0000 1 1000 1000 00 0100 0 1000 10001

100 0001 0000 0001 1 0000 1100 00 1000 1 0001 01100

101 0010 0000 001 10 0000 1100 0 1001 1 0010 01010

110 0100 0000 01 100 0000 1100 1010 1 0100 01001

111 1000 0000 1 1000 0000 110 1100 1 1000 00110

2.1.8 Dual Header Pulse Interval Modulation (DH-

PIM)

Dual Header Pulse Interval Modulation ( [28]- [32]) is comparatively more

complex modulation scheme which offers shorter frame length. It also offers

improved frame synchronisation by initiating each frame with one of the two
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different types of header pulses. For M bits of OOK signal word, maximum

number of slots is n = 2M . Now if OOK frame maps to DH-PIM frame,

it starts with a header representing the weight of the input word and then

the remaining dTs (where Ts is the slot duration and d ∈ {0, 1, ..., (2M−1))}

represent the information of the input frame. There are possibly two types

of header which initiate the word. Depending on the pulse width each header

starts with a pulse followed by guard slots consisting of empty slots to avoid

multipath dispersion. Figure 2.2 shows the header one (H1) and header two

(H2) having pulse duration αTs/2 and αTs respectively, where α ia a positive

integer. It has higher bit rate and requires less transmission bandwidth

compared to digital PPM.

Header one

Guard
space Information slots

v

A

Tn Tn+1 t

nth frame

dnTs

Tn + (   +1)Tsα

τ=αTs/2

Header Two

Guard
space Information slots

v

A

Tn Tn+1 t

nth frame

dnTs

Tn + (   +1)Tsα

τ=α  Ts

Figure 2.2: DH-PIM word with Header one (up) and Header two (down)
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2.1.9 Dicode Pulse Position Modulation

In the dicode technique ( [34]- [38]), digital signals are coded according to the

data transitions occurring in OOK. So, no signal is transmitted when OOK

data is constant. When OOK data transitions occur from logic zero to logic

one, the dicode is coded as +V and when data transitions change from logic

one to logic zero, the dicode is coded as −V , shown in Figure 2.3. From this

figure it is seen that no signal is transmitted when there is no change in the

logic level. +V pulses are generally regarded as pulse SET (setting data to

logic one) and −V pulses are regarded as pulse RESET (resetting the data

to logic zero). These two signals are converted into two pulse positions in a

data frame. Sometimes two guard slots can be used in dicode PPM to reduce

the effects of inter-symbol interference (ISI).

Figure 2.3: Dicode Pulse Position Modulation
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2.1.10 Overlapping Pulse Position Modulation

In overlapping Pulse Position Modulation ( [23]- [21]) adjacent pulse posi-

tions are allowed to overlap. It is a modification of digital PPM. As the

pulse positions are overlapped, the line rate is reduced compared to digital

PPM but it exhibits higher transmission rate. Also it suffers from the loss of

orthogonality due to overlapping. It places more restriction on the synchro-

nization procedure as the frame length is variable. This coding technique

also has advantages such as low cycle, ease of decoding and much better

throughput efficiency compared to digital PPM which makes it attractive.

2.2 Fourier Transform

The Fourier transform is applied to a signal which is not a periodic signal

( [98], [105]). Fourier transform of a continuous signal is defined as

X(ω) =

∫ ∞
−∞

x(t)e−jωtdt (2.1)

where x(t) and X(ω) represent the time domain and the frequency domain

signals respectively. A signal is fourier transformable if it satisfies the Dirich-

let condition. If the signal is continuous in the time domain, it will become

aperiodic in the frequency domain and if it is aperiodic in the time domain,

it will become continuous signal in the frequency domain.
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2.3 Sampling Theorem

The sampling theorem (also known “Shannon’s Sampling Theorem” [1])

states that if a function x(t) contains no frequencies higher than B cps, it

is completely determined by giving its ordinates at a series of points spaced

1/(2B) seconds apart.

A sufficient sample-rate is therefore 2B samples/second, or anything

larger. Conversely, for a given sample rate fs the band limit for perfect

reconstruction is B ≤ fs/2 . When the band limit is very high (or there is

no band limit), the reconstruction exhibits imperfections, known as aliasing.

To sample a continuous time signal, the signal needs to be multiplied by

an impulse train and the resultant sampled version leads to periodicity in

the frequency domain. To avoid overlapping (i.e., aliasing) in the frequency

domain, generally a guard band is used at the end of the signal.

2.4 Discrete Fourier Transform (DFT)

A real, N-periodic, discrete-time signal x[n] can be represented [99] by a

linear combination of the complex exponential signals

X(k) =

(N−1)∑
n=0

x[n]e−j(2πkn/N) (2.2)

where k = 0, 1, 2, ..., (N − 1). Here x[n] is a periodic function of period N .

To make a non-periodic signal into a periodic one at a certain interval, first,

the signal has to be sampled. If the signal is discrete in the time domain, it
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becomes periodic in the frequency domain and also, if the signal is aperiodic

in the time domain, it will become continuous in the frequency domain by the

discrete Fourier transform. Equation (2.2) is concerned with the frequency

domain sampling of a finite energy sequence x[n].

Here are some different sampled signals and their DFTs by using Matlab.

All the left hand side figures are sampled signals with unit amplitude and

the right hand side figures represent their corresponding DFT.
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Figure 2.4: Sawtooth wave (left) and discrete Fourier transform (right)
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Figure 2.5: Gaussian pulse (left) and discrete Fourier transform (right)
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Figure 2.6: Triangular pulse (left) and discrete Fourier transform (right)
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Figure 2.7: Exponential pulse (left) and discrete Fourier transform (right)
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Figure 2.8: Sinc pulse (left) and discrete Fourier transform (right)



2.5. Errors of DFT 31

2.5 Errors of DFT

There are two types of error that occur in a signal due to the application of

DFT: aliasing and leakage.

2.5.1 Aliasing

If signal samples, which represent the high frequency components of the

underlying function, are not spaced sufficiently close to DFT values, then

those values are corrupted by aliasing. In order to minimize this error, a

continuous signal needs to be sampled faster than the Nyquist sample rate of

the signal bandwidth, or to be pre-filtered in minimizing its high frequency

spectral contents. When the DFT is applied at a sampling frequency exactly

equal to twice the frequency of the signal, the spectrum is visible. Figure

2.9 shows the case when continuous time cosine wave with frequency 3 Hz

is sampled at 3 Hz, the spectrum is visible but cannot be identified. If

a DFT is applied at a sampling frequency which is greater than twice the

frequency of the signal, all spectrum is visible and can be identified clearly.

Figure 2.10 shows that, if continuous time cosine signal of frequency 3 Hz

is sampled at 18 Hz, the spectrum is identified clearly. It can be seen from

Figures 2.9 and 2.10 that if the sampling frequency is greater than twice of

the signal frequency, then only the spectrum can be identified separately.

If the sampling frequency is below the signal frequency, then the spectrum

cannot be identified separately and also complete spectrum is not visible.
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Figure 2.9: Aliasing error (sampling frequency = signal frequency)
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Figure 2.10: Aliasing error (sampling frequency = 18 Hz, signal frequency =

3 Hz)

2.5.2 Leakage

The Fourier transform (equation (2.2)) of a periodic waveform requires sum-

mation to be performed over the interval −∞ to +∞ or over an integer

number of cycles of the waveform. If it is attempted to complete the DFT

over a non-integer number of cycles of the input signal, then the transform

must be corrupted in some way. This is indeed the case, as will now be



2.5. Errors of DFT 33

shown. Consider 3 cycles of a sine wave and the DFT of the signal is shown

in Figure 2.11, which is the normal expected spectrum. Now, if there are

3.5 cycles of a sine wave, then the DFT becomes as shown in Figure 2.12.

The spectrum for the case of 3.5 cycles is corrupted near the peak. From

the above example it is clear that if there is an integer number of cycles of a

periodic waveform in the time domain, then a proper spectrum is obtained.

If, however, there is not an integer number of cycles (3.5 cycles for example)

then there is a discontinuity which is due to leakage. Leakage can be reduced

by using a window. Even an increase in DFT length results in a reduction

of leakage. Figure 2.13 (left) shows the DFT for 3.5 cycles of a sine wave by

appending some number of zeros to increase the window length. Also this

leakage can be minimized by increasing the DFT length which is shown in

Figure 2.13 (right). Here the DFT length is increased by N = 128.
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Figure 2.11: Leakage error (DFT of a sine wave for 3 cycles)
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Figure 2.12: Leakage error (DFT of a sine wave for 3.5 cycles)
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Figure 2.13: DFT of sine wave for 3.5 cycles; increasing window length by

appending 60 zeros (left), increasing DFT length by 128 (right)

2.6 Wiener-Khintchine Theorem

The Wiener-Khintchine theorem states that the autocorrelation function of

a wide-sense stationary random process has a spectral decomposition given

by the power spectrum of that process [105]. In a simple way, the power

spectral density is the Fourier transform of the autocorrelation function of a
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signal and also autocorrelation function is the inverse Fourier transform of

the power spectral density function. This implies that autocorrelation and

power spectral density are a Fourier transform pair. A signal to be sampled

may be periodic signal or continuous signal. Let x(t) be a real wide-sense

stationary process with autocorrelation function Rxx(τ), then,

Rxx(τ) = E[x(t)x(t+ τ)] (2.3)

where E[·] is the expected value of the signal x(t) and τ is the time difference.

Now the power spectral density, Sxx(f) becomes according to the Wiener-

Khintchine theorem

Sxx(f) =

∫ ∞
−∞

Rxx(τ)e−j2πfτdτ (2.4)

and also,

Rxx(τ) =

∫ ∞
−∞

Sxx(f)ej2πfτdf . (2.5)

2.7 Stationarity

A random process is said to be stationary process if all the statistical prop-

erties, such as mean and autocorrelation, do not change with time [105].

Suppose a random process X(t) has PDF PX(x; t1) at time instant t1, and

PX(x; t2) at time instant t2. For a real stationary process,

PX(x; t1) = PX(x; t2). (2.6)
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For a stationary process the autocorrelation function depends on the time

origin through time difference.

RX(t1, t2) = RX(t1 − t2) (2.7)

Here RX(t1, t2) depends on t1 and t2. This could only be possible if the

process is time independent. So, all practical processes which are changing

with time are not stationary processes. If the autocorrelation function of a

process depends only on the time difference (t1 − t2) is called a Wide Sense

Stationary (WSS) process, i.e.,

RX(t1, t2) = RX(τ) (2.8)

which implies that, for WSS process, it does not matter from where it starts

and where it stops but only depends on τ . A wide-sense cyclostationary

(WSCS) process is characterized by an autocorrelation function which is

periodic in time. That implies,

RX(τ) = RX(τ + T ) (2.9)

where T is the period and also RX(τ) is periodic in τ with period T. Virtually

all communication signals exhibit cyclostationarity with cycle frequencies re-

lated to hidden periodicities underlying the signal. Often these signals are

appropriately modeled by random processes that are cyclostationary (CS),

i.e., processes with statistical parameters, such as mean and autocorrelation,

that fluctuate periodically with time. These cyclostationary (CS) random

processes occur in a wide variety of systems including biological, social, eco-

nomic, and mechanical as well as electrical systems.
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Sensitivity and Information

Theory Analysis

A new coding method, offset Pulse Position Modulation, was proposed in [50]

to improve error rate and sensitivity, and to reduce the line rate. This chapter

presents a detailed study on the efficiency of this coding approach.

3.1 Coding Scheme

In digital PPM, information is sent by changing the position of the pulse

within N = 2M slots where M is the number of bits to be coded. In offset

PPM the concept of a sign bit is used and the number of slots used in one

frame is half that of (2M−1) of the equivalent digital PPM scheme. Table

2.1, given in previous chapter, shows the coding scheme when 3 bits of data

37
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are encoded. This scheme is similar to digital PPM except for the use of the

sign bit (most significant bit). The introduction of the sign bit reduces the

line rate by deciding whether the offset is taken from 0000 or from 1000. No

pulse is sent for the 0000 case whereas with digital PPM one pulse is always

sent. In this chapter, a performance comparison is carried out with multiple

PPM as there are similarities between offset and multiple PPM as shown in

Table 2.1.

3.2 Errors

Like other PPM systems, offset PPM suffers from wrong slot, erasure and

false alarm errors, and these errors are much affected by Inter-Symbol-Interfe-

rence (ISI) and Inter-Frame-Interference (IFI) when operating over a highly

dispersive channel. The probability of errors is calculated assuming the re-

ceiver output noise voltage is a Gaussian random variable. In order to con-

sider the effects of ISI/IFI, particular sequences are considered, such as, 0

and 1 as isolated pulses and other sequences such as 01, 10 , 10, 01 , 11,

11 , 101 and 110. Here the symbol in italics style indicates the position of

the error. The derivation of the three possible errors is given by the follow-

ing [9], [10] and [50].
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3.2.1 Wrong Slot Errors

Wrong slot errors are caused by the noise on the leading edge of a pulse

producing a threshold crossing preceding or following the current time slot.

This error can be minimized if the pulse is detected in the middle of the slot.

The error probability is given by

Ps = 0.5 erfc

(
Qs√

2

)
(3.1)

where

Qs =
Ts
2
× slope(td)√

〈n0
2〉

(3.2)

of which Ts is the slot time, slope (td) is the slope of the pulse when the pulse

is received at the receiver at decision time td and 〈n0
2〉 is the mean squared

noise.

3.2.2 Erasure Errors

This type of error occurs if the receiver fails to detect a pulse within the time

frame. Due to noise corruption the pulse amplitude drops down below the

decision voltage level (td). The error probability is represented as

Pr = 0.5 erfc

(
Qr√

2

)
(3.3)

where

Qr =
vpk − vd√
〈n0

2〉
(3.4)

of which vpk represents the peak signal voltage of a particular time slot and

vd represents the decision voltage.
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3.2.3 False Alarm Errors

False alarm errors occur if any pulse is detected in the empty slot due to

noise. This error can be minimized if the threshold voltage is increased and

the corresponding error probability is given by

Pf =

(
Ts
τR

)
0.5 erfc

(
Qt√

2

)
(3.5)

where the ratio Ts
τR

represents the number of uncorrelated noise samples per

time slot and τR is the time at which the autocorrelation function gives the

minimum value.

Qt =
vd − vISI√
〈n0

2〉
(3.6)

where vISI represents the signal voltage level at a particular time slot and de-

pends upon the error sequences. Figure 3.1 shows the generation of different

types of errors from Gaussian type pulse shape.

3.3 Maximum Likelihood Sequence Detection

(MLSD)

MLSD is used in the receiver side to minimize the error rate. For example,

if an erasure error occurs in any block, the receiver will receive the block

containing all zeros or with single pulse in a codeword. Suppose an offset

PPM codeword of 1010 (corresponding OOK is 110) is affected by erasure

in its first time slot and produces the codeword 0010 corresponding to 010
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Figure 3.1: Generation of different types of error considering Gaussian type

pulse shape

– an error of 1 bit. Erasure of the second pulse gives a valid word of 1000

corresponding to an OOK word of 100 which is also in error by one bit. Thus

the average error for this codeword is one bit in three OOK bits.

In the case of a false alarm error, suppose the transmitter transmits the

previous codeword and the receiver receives the code as 1110 or 1011. The

MLSD here produces four possible valid codewords and the output is in error

by an average of 0.75 bits for the three bit OOK word, giving a OOK error

of 0.25 (M = 3). Other codewords are dealt with in an identical manner and

the average is computed. Wrong slot errors are dealt with in a similar way

to false alarm errors.

ISI/IFI terms are dealt with by considering particular sequences such as

the 11 sequence in which the second pulse suffers with ISI/IFI due to the
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first. This sequence is generated when the preceding word has a pulse in the

last slot (i.e. 0001 or 1001) and the following word has a pulse in the first

slot (i.e. 1XXX where X is the “don’t care” condition). The MLSD produces

all possible sequences and the error probabilities are calculated as with false

alarms. If an MLSD is not used, the receiver will generate random errors.

Figure 3.2 represents how the MLSD creates possible codewords to minimise

error.

Figure 3.2: Shown how (a) erasures and (b) false alarms affect the decoding

of offset PPM
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3.4 System Modeling

To analyse the system performance, a 1.2 GHz bandwidth PIN-BJT receiver

having a noise current spectral density of 16 × 10−24 A2/Hz (double sided)

was used. The optical channel used in the simulation had a Gaussian impulse

response, as obtained from the graded-index plastic optical fibre (GI-POF)

[2]. An operating wavelength of 650 nm was taken, corresponding to the first

transmission window in POF, and the photo-diode quantum efficiency was

considered to be 100%. An algorithm was used to calculate the number of

photons per pulse (b) needed to give an error rate of 1 error in 109 pulses of

the uncoded data.

Let the received pulse shape, hp(t), has the following property:

∫ ∞
−∞

hp(t) = 1. (3.7)

The impulse response of the channel (GI-POF) can be approximated to a

Gaussian and thus

hp(t) =
1√

2πα2
exp

(
− t2

2α2

)
(3.8)

with a Fourier transform of

Hp(ω) = exp

(
−α

2ω2

2

)
. (3.9)

The pulse variance, α, is linked to the fibre bandwidth by

α =

√
2 ln 2 Tb
2πfn

(3.10)
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where Tb is the bit time and fn is the channel bandwidth normalised to the

uncoded data rate, denoted by DR, given by

fn =
f

DR
. (3.11)

Here f is the 3 dB bandwidth of the fibre. As a classical matched filter is

being used, the pulse shape presented to the threshold detector is

vo(t) =
bηq

2π

∫ ∞
−∞

Hp(ω)2ZT (ω) exp (jωt) dω (3.12)

where b is the number of photons per pulse, η is the quantum efficiency of

the detector (taken to be unity), q is the electronic charge and ZT (ω) is the

frequency dependent transimpedance of the receiver (assumed to be single

pole). The solution to equation (3.12) is

vo(t) = bηqRT
ωc
2

exp
(
α2ω2

)
exp (−ωct) erfc

(
αωc −

t

2α

)
(3.13)

where RT is the mid-band transimpedance of the receiver and ωc is the −3 dB

bandwidth of the receiver. The noise on this signal is given by

〈
n2
o

〉
=
So
2π

∫ ∞
−∞
|ZT (ω)Hp (ω) |2dω (3.14)

= So
ωc
2
R2
T exp

(
α2ω2

c

)
erfc (αωc) (3.15)

where So is the double-sided, equivalent input noise current spectral density

of the receiver. A PIN photodiode has been used and hence its shot noise

can be ignored.

The total equivalent data error probability is obtained by adding all indi-

vidual probabilities. These probabilities are found by using the probability
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equations [50] and multiplying by the weightings from the MLSD analysis.

The OOK error probability has been taken 1 error in 109 bits. The pulse

shapes, derivatives, noise and the number of photons per pulse were calcu-

lated using system parameters. False alarm and erasure errors depend on

the threshold voltage vth which has been defined as

vth =
vd
vpk

(3.16)

where vpk is the peak voltage of the signal. To find the sensitivity of the

system, the photons (b) required per pulse is calculated using an algorithm,

and the sensitivity (SDPPM) is defined for digital PPM as

SDPPM = 10 log10

(
1× b× energy× DR

M
× 1

10−3

)
dBm (3.17)

whereDR is the uncoded data rate. Similarly, with offset PPM the sensitivity

(Soffset) is defined as

Soffset = 10 log10

(
pav × b× energy× DR

M
× 1

10−3

)
dBm . (3.18)

As there is uneven distribution of the pulse in the offset PPM code, the

average number of pulse, pav, in a offset codeword is used. For a 2 pulse

multiple PPM system the sensitivity is defined as

SMPPM = 10 log10

(
2× b× energy× DR

M
× 1

10−3

)
dBm . (3.19)

The energy/photon is defined as

energy =
hc

λ
J (3.20)

where h is the Planck’s constant; c is the speed of light in vacuum; λ is the

wavelength of the transmitted light.
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3.5 Theoretical Result Analysis

Figure 3.3 depicts the variation in photons per pulse versus the channel

bandwidth fn, normalised to the uncoded data rate, for different coding

levels. From this figure it can be seen that as the number of data bits is

Figure 3.3: Required photon vs. bandwidth Plot

increased, the number of photons required per pulse will also increase for a

particular bandwidth. As a result the sensitivity decreases with an increase

in the coding level and this sensitivity variation is shown in Figure 3.4. In

the lower bandwidth the photon requirement increases as the effects of ISI

is increased. The effect of ISI and threshold level has a great impact on

the errors and depends on the coding level as well as bandwidth. When the

bandwidth fn = 1.2 (Figure 3.5), the threshold voltage is just below the
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Figure 3.4: Sensitivity plot

minimum voltage for offset PPM when the equivalent data codeword is 110.

It implies the probability of erasure error is increased, but the probability

of false alarm error is reduced. With the increase in the coding level the

threshold level also increases resulting in a decrease in the false alarm errors

(Figure 3.6). How the errors will change with the change in bandwidth and

with the coding level is clearly shown in Table 3.1.

Figure 3.7 compares offset PPM with digital PPM, multiple PPM and

on-off keying for coding level 6 bits on the basis of sensitivity change. In this

figure at fn = 10, the sensitivity for offset PPM, digital PPM, multiple PPM

and on-off keying are respectively -34.25 dBm, -33.06 dBm, -34.49 dBm and
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Figure 3.5: Effect of ISI for 3 bits of coding at fn = 1.2

-26.05 dBm. With the increase in bandwidth the sensitivity for offset PPM

has been increased and at fn = 30 and onwards, offset PPM gives better

sensitivity in comparison with the other coding. At the lower bandwidth

fn = 3, offset PPM gives 3.7 dB advantage over on-off keying and 3.2 dB

advantage over digital PPM. With the increase in coding level the threshold

voltage also increases as shown in Figure 3.8 and the comparison with digital

PPM for coding level 6 is shown in Figure 3.9. An increase in the threshold

voltage means a decrease in the false alarm error.
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Figure 3.6: Effect of ISI for 6 bits of coding at bandwidth fn = 3

Figure 3.7: Comparison of the sensitivity for offset PPM, digital PPM, mul-

tiple PPM and on-off keying
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Figure 3.8: Threshold parameter vs. normalized frequency plot

Figure 3.9: Comparison of threshold parameter between offset PPM and

digital PPM for 6 bits of coding
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3.6 Information Theory Analysis

In digital PPM each signal block is divided into N equal time slots. One

optical pulse is transmitted in any one of the time slots for each frame. So

information is sent by the position of the pulses in the frame. Therefore the

amount of information sent during each signal block is log2N bits. In the

receiver, a threshold detector detects the position of the pulses within the

N slots. The amount of information (bits) transmitted per photon, defined

as transmission efficiency, depends upon the intensity of the optical pulses

which is set at such a level that the receiver can detect them.

One optical pulse carries log2N bits of information. Therefore the trans-

mission efficiency (ξ) can be expressed as [40]

ξ =
(log2N)

b
(3.21)

where b is the number of photons per pulse. According to this expression the

transmission efficiency can be increased theoretically infinitely. In practical

terms this is not possible because the value of b cannot be reduced beyond a

certain level as the error rate is increased. If N is increased, the pulse width

is reduced and the bandwidth requirement will expand, and, in turn increase

the noise.

The time required to transmit one frame of N slots is represented by T .

Thus a bandwidth term can be expressed as

B =
N

T
(Hz) . (3.22)
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From equation (3.22) it can be seen that B is directly proportional to N .

The information rate can be derived as

R =
(log2N)

T
(bits/s) . (3.23)

If the value of N is increased, R varies logarithmically with N and, as a

result, the band-utilization efficiency (R/B) degrades rapidly as shown by

R

B
=

(log2N)

N
. (3.24)

For example if N = 32, (R/B) will become 0.156 which means a band-

utilization efficiency of approximately 16%.

In the case of offset PPM, there is a nonuniform distribution of pulses

(for 000 = no pulse, 001 = p, 110 = 2p). So, the average number of pulse

per codeword must be taken. Thus

pav =
2(2(M−1) − 1) + 2(M−1)

2M
. (3.25)

So, the amount of information per pulse (shown in Figure 3.10) becomes

(log2N)/pav and information rate can be written as

R =
(log2N)

pavT
(bits/s) (3.26)

and the band-utilization efficiency (R/B) becomes

R

B
=

(log2N)

pavN ′
=

2(log2N)

pavN
. (3.27)

Here N ′ is the number of slots in offset PPM and always N ′ = N/2. Taking

N = 32, R/B will become 0.217 which means, offset PPM has a band-

utilization efficiency of 22%.
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How the band-utilization efficiency changes with the change in the coding

levels is shown in Figure 3.11. The digital PPM curve is shown for compari-

son. Figure 3.12 gives a clear picture of the change of transmission efficiency

with the change in the bandwidth.

Figure 3.10: Information transmission rate vs. number of slots plot

Figure 3.11: Band-utilization efficiency vs. number of coded bits
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Figure 3.12: Transmission efficiency vs. normalised bandwidth plot for dif-

ferent coding level in offset PPM

In multiple PPM, optical pulses are transmitted in multiple slots in one

signal block. If the number of the optical pulses transmitted during one

signal block is K, then (NK) pulse patterns can be formed by combining the

position of the pulses. This means that multiple PPM transmits log2(NK) bits

of information per signal block. Transmission efficiency becomes for multiple

PPM scheme

ξ =
log2(NK)

b
. (3.28)

Here b is the number of photons required. Now the information transmission

rate will become

R =
log2(NK)

T
(bits/s) . (3.29)
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Band-utilization efficiency (R/B) is derived as

R

B
=

log2(NK)

N
. (3.30)

Figure 3.13 shows the change of band-utilisation efficiency with the change

in the number of slots keeping K = 2. Table 3.2 gives the comparison

among offset PPM, digital PPM and multiple PPM. As can be clearly seen,

this analysis shows that digital PPM has the poorest band-utilisation (BU)

efficiency. This is important when considering low bandwidth channels.

Figure 3.14 shows how information transmission rate will change for dif-

ferent values of K in case of MPPM scheme. Figure 3.15 shows the compar-

ison of the transmission efficiency between OPPM and MPPM for 6 bits of

coding.

Figure 3.13: Band-utilization efficiency vs. number of slots plot for multiple

PPM
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Figure 3.14: Information rate vs. number of slots plot for different value of

k for MPPM

Figure 3.15: Comparison of transmission-efficiency for OPPM and MPPM



3.7. Conclusion 59

3.7 Conclusion

The performance of offset PPM in terms of varying coding level and channel

bandwidth has been analysed in this chapter. In order to implement the

system a Gaussian impulse response is considered and the performance of the

offset PPM has been compared to that of OOK, digital PPM and multiple

PPM using MathCad toolbox.

The theoretical model, presented in this chapter, shows that offset PPM

offers a sensitivity 3.27 dB greater than digital PPM when both are operating

at a normalised bandwidth of 3 with a coding level of 6. At the higher

channel bandwidth, where minimal inter-symbol interference occurs, offset

PPM offers a significant sensitivity advantage over the On-Off Keying of

nearly 10 dB. It has been shown that the effect of ISI will increase when there

is an increase in the bandwidth as well as in the coding level. Offset PPM

also has a better sensitivity than that of multiple PPM at higher bandwidth

channels.

In this chapter, Information theory analysis has also been considered

when there is an uneven distribution of pulses. Results show that offset

PPM has better band-utilization efficiency as well as transmission efficiency

than digital PPM.
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Chapter 4

Bit Error Rate and Power

Efficiency

This chapter presents the performance of offset PPM on the basis of Bit Error

Rate (BER) and power requirement. The main objective of any communica-

tion system is to receive the transmitted data with the minimum number of

errors possible; the BER depends on the selection of a suitable modulation

technique.

4.1 Bit Error Rate

In digital transmission the number of bit errors is the number of received

bits of a data stream over a communication channel which are altered due

to noise, interference, distortion or bit synchronization errors. Numerically

61
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the bit error rate (BER) is the number of bits in error divided by the total

number of transferred bits during a particular time interval and is given

by [105]

Bit Error Rate =
Number of bits in error

Total number of transmitted bits
.

In essence, BER is the probability of receiving a single bit in error. The

probability of receiving a bit in error is equivalent to the BER of a commu-

nication link when an infinite number of bits are sent and received. If the

propagation medium is extremely good and the signal to noise ratio is also

very high, then BER becomes negligible in the overall system. To evaluate a

system, BER assessment is the best way as it gives full system performance

including transmitter, receiver and also the medium.

In order to accurately analyse BER, the contribution from each signal

level must be accounted for by weighting the BER of a particular signal

level with the probability of the signal being at that level. The BER is very

sensitive to SNR. Accordingly, a small increase in the signal level results in a

small improvement in SNR which, in turn, provides significant improvement

in BER. In addition to voltage signal-related effects, timing uncertainty or

jitter can often lead to degradation of link BER. In brief, the primary point of

concern related to timing is the relative relationship in time between the data

and clock. Under ideal conditions, the receiver samples the incoming data

stream at the point in eye diagram where the signal margin is the largest.

By doing so, the BER will be optimized. The factors which affect BER the

most are SNR ratio, bandwidth selection of the channel, channel model and
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modulation schemes. For a fibre optic system, the BER is mainly introduced

because of signal dispersion, attenuation and imperfection of the components

used in the data link. Reduction of bandwidth limits the data throughput

which could be controlled by increasing the power level.

The BER is different for each modulation method. The energy per bit can

be increased and the BER can be reduced by using higher power transmission.

However, this may not always be possible. Hence, optimizing the signal to

noise ratio Eb/No is a trade-off among these factors, where Eb is the energy

in one bit and No is the noise power spectral density.

The offset Pulse Position Modulation technique has been described in the

previous chapter. The introduction of a sign bit has reduced the line rate

as well as bandwidth in comparison to digital PPM (Table 2.1, Chapter 2).

The performance of an offset PPM based modulation system is measured

by calculating its probability of error with an assumption that systems are

operating with additive white Gaussian noise (AWGN). The probability of

error (where the probability of a zero occuring = probability of a one occuring

= 1/2) is given by [105]

Pb = Q

(√
Eb
N0

)
(4.1)

where Q = 1
2
erfc( x√

2
). Equation (4.1) is the mathematical expression for

BER and the numerical evaluation is done by Matlab. For the numerical

analysis, the input data sequence is considered to be an offset PPM data

sequence (256 frames are taken randomly). Each bit of that sequence is

sampled with a sampling frequency more than the carrier frequency. The
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sampled sequence is then modulated using the pulse position modulation

method (‘ppm’ in Matlab). To add Gaussian noise, the modulated signal is

passed through an AWGN channel. How the channel noise affects the signal

with change in the SNR ratio is shown in Figure 4.1. The channel output

signal is received at the receiver which demodulates the signal using pulse

position demodulation method. The transmitted offset PPM data sequence

and the demodulated data sequence are then compared to calculate bit error.

The result is shown in Figure 4.2. It is clear from the figure that, with the

increase in SNR, BER will be reduced. Here a comparative study is presented

considering digital PPM and multiple PPM. This figure depicts that multiple

PPM produces a greater number of errors than other codes for the same SNR.

4.2 Power Requirement

The average power required to transmit one frame is calculated as

Required Power (P) =
number of pulses present

number of slots in that frame
. (4.2)

Here the term ‘power’ represents the amount of photons per slot, or in other

words, the amount of energy required to transmit a single frame. How the

number of photons varies with the change in bandwidth is shown in Figure

3.3 (in the previous chapter). If the number of pulses is changed, the photon

requirement also changes; and if the number of slots in a frame is changed,

the bandwidth changes. It implies that all three terms (photon requirement,
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Figure 4.1: OPPM signal after passing through AWGN channel at different

SNR (dB)

number of slots and number of pulses) are related. Here an analysis has been

done measuring the power requirement. For MPPM, one frame always uses

fixed number of pulses; for example, if k = 2, the required power is

PMPPM =
2

number of slots
. (4.3)
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Figure 4.2: BER for 3 bits of coding using AWGN noise

But as OPPM has uneven distribution of pulses, the average value of pulses

is taken and the required power for OPPM becomes

POPPM =

(
2(2(M−1) − 1) + 2(M−1)

2M

)/
(number of slots) . (4.4)

Figure 4.3 shows how the power requirement changes with the change in

the number of slots for MPPM. In Table 4.1, it has been shown clearly how

power requirement will change with the change in the number of OOK bits

for OPPM (Figure 4.4). It can be seen from both Table 4.1 and Figure 4.4

that, the average number of pulses has become constant (1.5) for the higher

bits of coding. If Figures 4.3 and 4.4 are compared for the equivalent code,

then it can be inferred that OPPM is more power efficient than MPPM.
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Figure 4.3: Normalised power requirement for MPPM
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Figure 4.4: Normalised power requirement for offset PPM
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Table 4.1: Power requirement with respect to the number of OOK bits

Number of Average number of pulse Required power

OOK bits present in OPPM for OPPM

3 1.25 0.313

4 1.375 0.172

5 1.438 0.09

6 1.469 0.04

7 1.484 0.023

8 1.492 0.012

9 1.496 0.005

10 1.498 0.002

11 1.499 0.001

12 1.5 0.0007

13 1.5 0.0003

14 1.5 0.0001
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4.3 Conclusion

In this chapter, BER has been calculated numerically in the MATLAB envi-

ronment considering the channel noise as AWGN. Results show that a small

improvement in SNR will have significant improvement in BER. Since offset

PPM gives the lowest number of errors in comparison with multiple PPM,

the former will produce more error-free data at the receiver. It has also

been shown that with the increase in the number of slots, bandwidth will in-

crease. Also, with the increase in the number of pulses, photon requirement

will increase and hence the required power level is increased. So, a trade-off

between bandwidth and power requirement is evident.
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Chapter 5

Spectrum Analysis

In statistical signal processing and physics, the spectral density, power spec-

tral density (PSD), or energy spectral density (ESD), is a positive real func-

tion of a frequency variable associated with a stationary stochastic process,

or a deterministic function of time, which has dimensions of power per Hertz

(Hz), or energy per Hertz. It is often called the spectrum of the signal. In-

tuitively, the spectral density measures the frequency content of a stochastic

process and helps to identify its periodicity. The spectral density function,

or power spectrum, of a random sequence of signals is defined as the distri-

bution of the average power with respect to frequency. Spectral analysis is

important to the design of any system because it indicates one of the most

important characteristics of a signal (i.e. bandwidth) and also the amount of

total average power of that signal in any frequency band. The Fourier trans-

form of the autocorrelation function of a signal gives the spectral density

71
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in the frequency domain. For spectral analysis, Fourier transform, discrete

Fourier transform, autocorrelation and sampling theorem are essential and

are presented in Chapter 2.

The discrete Fourier transform is performed in this work using the fast

Fourier transform (FFT) algorithm. If power spectral density (PSD) is com-

puted using the DFT, good results are not obtained when the signal is cor-

rupted by noise. There are many approaches available [97] for calculating

PSD that include Periodogram method, Welch method, Multitaper method,

Yule-Walker AR method, etc. The Wiener-Khintchine theorem (WKT) gives

better estimate of PSD compared to DFT in case of noisy signals. As in this

work a random data sequence is considered, the use of the Wiener-Khintchine

theorem is appropriate to evaluate PSD of a random offset PPM data se-

quence. Two types of pulse shape have been considered – return-to-zero

(RZ) and non-return-to-zero (NRZ). RZ format requires larger bandwidth

than NRZ format. However RZ format is used to produce slot rate powers

when slot synchronization is required. Difficulty appears for frame synchro-

nisation in the case of some modulation schemes (Differential PPM, Digital

PIM, Dual Header PIM) as the frame length is variable and buffers are re-

quired in coder and decoder.
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5.1 Spectral Analysis for Offset Pulse Posi-

tion Modulation

An offset PPM sequence can be represented as

m(t) =
∞∑

n=−∞

anp(t− nT ) (5.1)

where {an} is the offset pulse sequence and p(t) is the pulse shape. To

implement the probability distribution, 4-slot offset PPM was considered

and 64 frames were taken randomly to form a offset data sequence. This

data sequence was used to find out the probability distribution of zeros and

ones using Matlab which is shown in Figure 5.1. The sequence can be made

to have a zero mean, M(t), as

M(t) = m(t)−m(t). (5.2)

Here m(t) is the mean of m(t) and is defined as

m(t) , E{m(t)} =
∞∑

n=−∞

E{an}E{p(t− nT )}. (5.3)

E{·} represents the expected value. According to Wiener-Khintchine the-

orem, the Power Spectral Density is the Fourier transform of the autocor-

relation function of a data sequence. So, to find the PSD, autocorrelation

function needs to be derived.

Now, by definition the autocorrelation function of the zero mean process

M(t) is given by ( [60], [71], [103])

RM(t; τ) = E{M(t)M∗(t+ τ)} (5.4)
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Figure 5.1: Probability distribution for 4-slot offset PPM

Expanding the above equation with the value of M(t) and M∗(t + τ) auto-

correlation becomes

RM(t; τ) = E{
∞∑

n=−∞

[anp(t− nT )− E{an}E{p(t− nT )}] (5.5)

×
∞∑

m=−∞

[amp(t+ τ −mT )− E{am}E{p(t+ τ −mT )}]∗}. (5.6)

This can be rewritten as

RM(t; τ) =
∞∑

n=−∞

∞∑
m=−∞

E{ana∗mp(t− nT )p∗(t+ τ −mT )}

−E{an}E{a∗m} × E{p(t− nT )}E{p∗(t+ τ −mT )} (5.7)

using the property E{(X − X̄)(Y − Ȳ )} = E{XY } − E{X}E{Y }. Since,

p(t) =

∫ ∞
−∞

P (f)e+j2πftdf (5.8)

p∗(t) =

∫ ∞
−∞

P ∗(f)e−j2πftdf (5.9)
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p(t− nT ) =

∫ ∞
−∞

P (f)e+j2πfte−j2πnTdf (5.10)

where P (f) is the Fourier transform of p(t). Substituting (5.8),(5.9) and

(5.10) into (5.7) gives

RM(t; τ) =
∞∑

n=−∞

∞∑
m=−∞

∫
y

∫
z

[E{ana∗n} − E{an}E{a∗m}]

×P (y)P ∗(z)e−j2πynT e+j2πyte−j2πz(τ−mT )e−j2πztdydz

RM(t; τ) =
∞∑

n=−∞

∞∑
m=−∞

∫
y

∫
z

[E{ana∗n} − E{an}E{a∗m}]

×P (y)P ∗(z)e−j2πynT e+j2πyte−j2πzτe+j2πzmT e−j2πztdydz

RM(t; τ) =
∞∑

n=−∞

∞∑
m=−∞

∫
y

∫
z

[E{ana∗n} − E{an}E{a∗m}]

×P (y)P ∗(z)e−j2πynT e+j2πzmT e+j2π(y−z)te−j2πzτdydz. (5.11)

Now, the Kernel is defined as

Ka(n;m− n,−y,−z) , E{ana∗m} − E{an}E{a∗m} (5.12)

where −y = −z = f . Using the definition of Kernel, the autocorrelation

function becomes

RM(t; τ) =
∞∑

n=−∞

∞∑
m=−∞

∫
y

∫
z

Ka(n;m− n,−y,−z)

×P (y)P ∗(z)e−j2πynT e+j2πzmT e+j2π(y−z)te−j2πzτdydz. (5.13)

The autocorrelation function considering the data sequence as a random 4-

bit offset PPM is shown in Figure 5.2. In general the Power Spectral Density

(PSD) of a digital pulse stream consists of both continuous and discrete

components irrespective of the properties of the pulse stream {an}. The
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Figure 5.2: Autocorrelation function of offset PPM data sequence

continuous spectrum of the offset PPM data sequence can be represented by

using Wiener-Khintchine theorem. Thus the continuous PSD of m(t) is given

by

Scm(f) = FT {〈RM(t : τ)〉τ}

where 〈·〉 denotes time average for time duration t. Using the values of

autocorrelation from equation (5.13) into the above equation continuous PSD

becomes,

Scm(f) =
∞∑

n=−∞

∞∑
m=−∞

∫
y

∫
z

Ka(n;m− n,−y,−z)P (y)P ∗(z)

×e−j2πynT e+j2πzmT 〈e+j2π(y−z)t〉 F{e−j2πzτ}︸ ︷︷ ︸
δ(f+z)

dydz. (5.14)

Now integrating over z, the term which is under-brace becomes,

F{e−j2πzτ} = δ(f + z).
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The continuous PSD becomes

Scm(f) =

∫
y

∞∑
n=−∞

∞∑
m=−∞

Ka(n;m− n,−y, f)P (y)P ∗(−f)

×e−j2πynT e−j2πfmT 〈e+j2π(y+f)t〉dy

=

∫
y

∞∑
n=−∞

∞∑
m=−∞

Ka(n;m− n,−y, f)P (y)P ∗(−f)

×e−j2πynT e−j2πnfT ej2πnfT e−j2πfmT 〈e+j2π(y+f)t〉dy

=

∫
y

∞∑
n=−∞

∞∑
m=−∞

Ka(n;m− n,−y, f)P (y)P ∗(−f)

×e−j2πf(m−n)T e−j2π(y+f)nT 〈e+j2π(y+f)t〉dy. (5.15)

Letting l = (m−n), Ka(n; l,−y, f) is periodic in n with period N for a WSCS

sequence, it can be easily shown that

∞∑
n=−∞

Ka(n; l,−y, f)e−j2π(y+f)nT =

N∑
n=1

Ka(n; l,−y, f)e−j2π(y+f)nT

∞∑
k=−∞

e−j2π(y+f)kNT .

Using the Poisson sum formula

∞∑
n=−∞

e−j2πxnT =
1

T

∞∑
k=−∞

δ(x− k

T
) (5.16)

the above equation becomes

∞∑
n=−∞

Ka(n; l,−y, f)e−j2π(y+f)nT =

=

[
N∑
n=1

Ka(n; l,−y, f)e−j2π(y+f)nT

]
×

[
1

NT

∞∑
k=−∞

δ(y + f − k

NT
)

]
. (5.17)
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Using equation (5.17) and integrating over y, equation (5.15) becomes

Scm(f) =
∞∑

k=−∞

∞∑
l=−∞

1

NT

N∑
n=1

Ka(n; l, f − k

NT
, f)

×P (−f +
k

NT
)P ∗(−f)e−j2πn

k
N e−j2πflT 〈ej2π

k
NT

t〉. (5.18)

For a real pulse shape p(t), |P (f)| = |P (−f)| and also,

〈ej2π
k
NT

t〉 =
1

NT

∫ NT
2

−NT
2

ej2π
k
NT

tdt =

 1, k=0

0, k6=0.
(5.19)

Therefore equation for the continuous spectrum becomes

Scm(f) =
1

T
|P (f)|2

∞∑
l=−∞

[
1

N

N∑
n=1

Ka(n; l)

]
e−j2πflT = Sp(f)Sa(f). (5.20)

The term |P (f)|2, in equation (5.20), represents the Fourier transform of

the pulse shape p(t). Assume the pulse is a rectangular pulse of height A,

pulse width tp and offset PPM frame time Tf , Sp(f) is the part of spectral

component due to square pulse and Sa(f) is the part of spectral component

due to data sequence {an}. Now, Sp(f) can be calculated as follows.

Sp(f) =
1

T
|P (f)|2 = Atpsinc

(
ftp
Tf

)
(5.21)

Using the values of equation (5.21) in equation (5.20), the final equation of

the continuous spectrum can be written as

Scm(f) = Atpsinc

(
ftp
Tf

) ∞∑
l=−∞

[
1

N

N∑
n=1

Ka(n : l)

]
e−j2πflT . (5.22)

The discrete PSD of m(t) is given by ( [71], [103])

Sdm(f) = FT {〈
∞∑

n=−∞

∞∑
m=−∞

E{an}E{p(t− nT )}×E{a∗m}E{p∗(t+ τ −mT )}〉}
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= FT {
∞∑

n=−∞

∞∑
m=−∞

E{an}E{a∗m} × 〈E{
∫
y

P (y)e−j2πynT e+j2πytdy}

×E{
∫
z

P ∗(z)e−j2πzτe+j2πzmT e−j2πztdz}〉}

=

∫
y

∫
z

∞∑
n=−∞

∞∑
m=−∞

E{an}E{a∗m} × P (y)P ∗(z)× e−j2πynT e+j2πzmT

×〈e+j2π(y−z)t〉 FT {e−j2πzτ}︸ ︷︷ ︸
δ(f+z)

dydz. (5.23)

Integrating over z and rearranging terms gives

Sdm(f) =

∫
y

∞∑
n=−∞

E{an}e−j2πynT
∞∑

m=−∞

E{a∗m}e−j2πfmT

×P (y)P ∗(−f)〈e+j2π(y+f)t〉dy. (5.24)

E{an} is periodic in n with period N, so,

∞∑
n=−∞

E{an}e−j2πynT =
N∑
n=1

E{an}e−j2πynT ×
∞∑

k=−∞

e−j2πykNT . (5.25)

Using the Poisson sum formula given in equation (5.16) the above equation

becomes,

∞∑
n=−∞

E{an}e−j2πynT =

[
N∑
n=1

E{an}e−j2πynT
]
×

[
1

NT

∞∑
k=−∞

δ

(
y − k

NT

)]
(5.26)

and also,

∞∑
m=−∞

E{am}e−j2πfmT =

[
N∑
m=1

E{am}e−j2πfmT
]
×

[
1

NT

∞∑
l=−∞

δ

(
f − l

NT

)]
.

(5.27)

Using equations (5.26) and (5.27) in equation (5.24) and integrating over y

the equation (5.24) expression becomes

Sdm(f) =
1

NT

∞∑
k=−∞

N∑
n=1

E{an}e−j2π
kn
N ×
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1

NT

∞∑
l=−∞

N∑
m=1

E{a∗m}e−j2π
lm
N δ(f − l

NT
)P (

k

NT
)× P ∗(− l

NT
)〈e+j2π( k+l

NT
)t〉.

(5.28)

Using equation (5.19) the above expression reduces to

Sdm(f) =
1

(NT )2

∞∑
l=−∞

∣∣∣∣P (
l

NT
)

∣∣∣∣2 ×
∣∣∣∣∣
N∑
n=1

E{an}e+j2π ln
N

∣∣∣∣∣
2

δ(f − l

NT
) (5.29)

=
1

T 2
f

∞∑
l=−∞

∣∣∣∣P (
l

Tf
)

∣∣∣∣2 ×
∣∣∣∣∣
N∑
n=1

E{an}e+j( 2π
N
ln)

∣∣∣∣∣
2

δ

(
f − l

Tf

)
. (5.30)

The term
∑N

n=1 E{an}e+j( 2π
N
ln) represents the characteristic function of the

data distribution of the offset PPM sequence and Tf = (NT ) is the total

frame time.

5.2 Offset PPM Coder Design

The offset PPM coding scheme has been described in Chapter 3 and illus-

trated in Table 2.1. To determine the spectral characteristic of offset PPM,

an offset PPM coder was designed using Matlab. For a number, M , pulses to

be coded, the length of a codeword is n = 2M−1 where N = 2M is the number

of possible codewords in an offset PPM sequence. Table 2.1 shows how the

codewords are generated in an offset PPM sequence. In offset PPM, all n

positions of a codeword are initially reset to zero corresponding to the first

codeword in the sequence. The second codeword in the sequence is obtained

by setting the Least Significant Bit (LSB) to one. Subsequent codewords in
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the sequence are produced by shifting the LSB to left until the Most Signif-

icant Bit (MSB) is reached. With reference to Figure 5.3, the MSB is kept

at one and the next codeword in the sequence is formed by setting the LSB

to one. This is done by using OR operation between the generated sequence

and the output of the first loop to keep the MSB set. Subsequent codewords

are formed by left shifting the LSB up to (n− 1) positions. A buffer is used

to store all the codewords produced sequentially in each step. The output

gives all the possible offset PPM codewords.

Figure 5.3: Schematic diagram of the offset PPM coder

5.3 Result and Discussion

The PSD of offset PPM was evaluated both theoretically, using the results of

Section 5.1, and numerically using the coder schematic and the fast Fourier

transform. Eight samples per offset PPM slot were considered, 256 frames
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were taken randomly and 50 FFT’s were averaged in order to decrease the

noise due to randomness of the data sequence and due to averaging, the

variance was reduced from 0.15 to 0.12. The X-axis has been normalised to

the frame rate by dividing the total number of slots and no data windowing

was considered.

Figure 5.4 shows the theoretically and numerically obtained PSD of off-

set PPM data sequence for coding 3 bits of data (23−1 = 4 offset PPM data

slots) using non-return-to-zero (NRZ) pulses. As can be seen, there is ex-

cellent agreement between theoretical and numerical results. There are 3

distinct spectral components corresponding to the frame rate and its associ-

ated harmonics. There should be 4 spectral lines but, as is normal with NRZ

signalling, there is a null in the spectrum corresponding to the frequency

equal to the inverse of the pulse width and this coincides with the frequency

of the missing line. To confirm this, Figure 5.5 has been evaluated for 4 bits

of data and in the similar way 7 distinct spectral components corresponding

to the frame rate and 8-th one is missing. The same implementation has

been performed in Figure 5.6 and shows the spectrum obtained using 50%

return-to-zero (RZ) pulses for 3 bits of coding. As can be seen, the band-

width is effectively doubled but there is a line at the slot frequency. Figure

5.7 represents the spectral characterization for 4 bits of coding with 50% du-

ration of pulses. Figure 5.8 and Figure 5.9 represent the spectrum of offset

PPM for 5 and 6 bits of coding respectively using RZ pulses and Figure 5.10

is for 7 bits of coding using full pulse width. Figures 5.11, 5.12 and 5.13
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Figure 5.4: Comparison of theoretical and numerically obtained power spec-

tral density of offset PPM for coding 3 bits of data using NRZ pulse
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Figure 5.5: Comparison of theoretical and numerically obtained power spec-

tral density of offset PPM for coding 4 bits of data using NRZ pulse



84 Chapter 5. Spectrum Analysis

0 1 2 3 4 5 6 7 8
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

 

 

Frequency(normalised to frame rate)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
, d

B

Analytical
Numerical

Figure 5.6: Comparison of theoretical and numerically obtained power spec-

tral density of offset PPM for coding 3 bits of data using RZ pulse
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Figure 5.7: Comparison of theoretical and numerically obtained power spec-

tral density of offset PPM for coding 4 bits of data using RZ pulse
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Figure 5.8: Numerical PSD of offset PPM for coding 5 bits of data using RZ

pulse
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Figure 5.9: Numerical PSD of offset PPM for coding 6 bits of data using RZ

pulse
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show the numerically predicted PSD for digital, multiple and shortened PPM

when coding 4 bits of data. As can be seen from Figure 5.11 for digital
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Figure 5.10: Numerical PSD of offset PPM for coding 7 bits of data using

NRZ pulse
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Figure 5.11: Numerical PSD of digital PPM for coding 4 bits of data
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Figure 5.12: Numerical PSD of multiple PPM for coding 4 bits of data
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Figure 5.13: Numerical PSD of shortened PPM for coding 4 bits of data

PPM, there is no line at the frame rate (due to even distribution of bits in

the codewords) and no line at the slot frequency, as expected. A frequency

component at the frame frequency can be generated if the digital PPM frame



88 Chapter 5. Spectrum Analysis

contains unmodulated guard slots at the end of the frame (see Section 5.4

later). Both multiple and shortened PPM (Figures 5.12 and 5.13) show dis-

crete lines at the frame frequency but no line at the slot frequency due to the

use of NRZ pulses. Comparing all the results that are represented for 4 bit

coding, results can easily be compared in terms of line rate and bandwidth.

Digital PPM gives maximum line rate among these 4 coding techniques as

it uses 16 slots to transfer 4 bits of data and as a result it uses maximum

bandwidth. Multiple PPM is the most bandwidth efficient code and it uses

7 slots to transfer 4 bits of data and likewise shortened PPM uses 9 slots and

offset PPM uses 8 slots.

5.4 Frame Synchronization

Frame components are mostly affected by data distribution on a frame and

modulating index. Table 5.1 compares the amplitude of the frame com-

ponents for digital, multiple, shortened and offset PPM using NRZ pulses.

Frame rate component is measured by the power at the first spike using

non-return-to-zero pulse and the dc value is measured as the power at zero

frequency. As previously discussed, the frame component in digital PPM

is not present unless an empty guard interval is used. In order to obtain

the frame component, a modulation index of 0.8 was used. The modulation

index (Figure 5.14) is defined by the ratio of the effective band to the total
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Table 5.1: Comparison of offset PPM, digital PPM and multiple PPM

Coding Number of bits dc Value Slot rate Frame rate

coded-coding level power power

Offset 3 -10.1 dB -19.16 dB -24.12 dB

PPM 4 -15.23 dB -25.16 dB -26.82 dB

Digital 3 -18.1 dB -27.95 dB -32.45 dB (m=0.8)

PPM 4 -24.08 dB -33.97 dB -38.04 dB (m=0.8)

Multiple 3 -7.96 dB -17.85 dB -25.82 dB

PPM 4 -10.88 dB -20.77 dB -25.91 dB

Shortened 3 -10.48 dB -21.37 dB -26.25 dB

PPM 4 -15.51 dB -25.41 dB -27.88 dB

frame length and is given by

m = (ntp)/Tf . (5.31)

As can be seen from Table 5.1, offset PPM has the frame component with

the highest amplitude. It is also worth noting that offset PPM has the lowest

bandwidth expansion and this eases implementation.

Figures 5.15 and 5.16 show the change in frame rate power with a change

in the modulating index; m = 0.5 when n = 4 for Figure 5.15 and m = 0.5

when n = 8 for Figure 5.16. In Figure 5.17, it is shown how the frame rate

power changes with the variation in the modulating index. From this figure

it can be said that the frame rate power is a maximum at a modulating index

of m = 0.5.
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Figure 5.14: Consideration of frames for modulation index 0.8

0 0.5 1 1.5 2 2.5
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency (normalised to slot rate)

Fr
am

e 
ra

te
 p

ow
er

,d
B

Figure 5.15: PSD of offset PPM for frame synchronization at modulating

index = 0.5 and n = 4

5.5 Slot Synchronization

The strength of the slot clock is highly affected by the pulse shape (as already

seen) and the modulation index. There are two ways to extract a slot clock

from a PPM data stream: direct extraction of the slot clock; generation of the
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Figure 5.16: PSD of offset PPM for frame synchronization at modulating

index = 0.5 and n = 8
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Figure 5.17: Offset PPM frame rate power with respect to modulating index

when n = 8

slot clock using a Phase Lock Loop (PLL) locked to the frame frequency. As

discussed previously, the spectra of the PPM systems show a null at the slot
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frequency due to NRZ pulses being used. In order to extract the slot clock,

the pulse width must be reduced to move this null to a higher frequency so

that the slot clock can be extracted. Table 5.1 shows the amplitude of the

slot component for all four codes using RZ pulses.

Some form of phase synchronization is needed with these codes when the

data is to be demodulated rather than just regenerated. In this case the slot

clock would have to be produced and phase locked to the frame component.

This area of work is subject to another investigation and has been reported

in the next chapter.

Table 5.2 shows how the dc, slot component and frame component strengths

vary with coding level (number of bits coded) for offset PPM. As can be seen,

the power in all components reduces as more bits of data are encoded. This

is to be expected as the interval between pulses increases. Using the value

of tp from equation (5.31) in equation (5.22) the expression for continuous

spectrum in terms of modulating index can be written as,

Scm(f) =
∞∑

l=−∞

Al

∣∣∣∣∣mTfn sinc

(
mTf
n

Tf

)∣∣∣∣∣
2 [

1

N

N∑
n=1

Ka(n : l)

]
e−j2πflT . (5.32)

From equation (5.32) it can be seen that the effect of modulating index on

spectrum is directly proportional to modulating index and frame length. If

the length of the guard interval is increased, while keeping the total frame

length fixed, the modulation index will be reduced and the pulse width will

also be reduced. This will affect the spectrum. A practical 4 slot offset PPM

was evaluated considering 50% duration of the pulse and modulating index
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Table 5.2: Dc value, slot rate power and frame rate power change with respect

to coding level for offset PPM

Coding level dc value (dB) Slot rate power Frame rate power

of Offset PPM NRZ pulse (dB) RZ pulse (dB) NRZ pulse

3 -10.1 -19.16 -24.12

4 -15.23 -25.16 -26.82

5 -20.97 -30.76 -31.43

6 -26.75 -36.7 -36.69

7 -32.7 -42.62 -42.57

8 -38.7 -48.55 -48.18

9 -44.7 -54.57 -53.13

10 -50.72 -60.76 -60.09

m = 0.3. The numerically predicted result is shown in Figure 5.18. Figure

5.19 was implemented taking the same consideration as above when m = 0.8.

The spectrum shows the presence of discrete slot rate components. The pulse

shaping effect and the continuum due to the data randomness are also clear

in Figure 5.20.
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Figure 5.18: Slot rate component when n = 4, m = 0.3
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Figure 5.19: Slot rate component when n = 4, m = 0.8
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Figure 5.20: Effect of pulse shape on spectrum when (a) pulse width = 25

%, (b) pulse width = 75 %

5.6 Conclusion

This chapter presents the power spectral density of offset PPM using MAT-

LAB simulation. Results obtained both theoretically and numerically are in

excellent agreement. The results are compared with digital, multiple and

shortened PPM. It has been shown that offset PPM has the strongest frame

component. Furthermore, the modulation index has a strong impact on the

frame rate component and at m = 0.5, offset PPM exhibits the highest

frame rate component. In two ways modulating index can affect the frame



96 Chapter 5. Spectrum Analysis

rate power. Firstly, as the modulation index is reduced the allowed band

duration is shortened and the PPM frame periodicity is improved leading to

an improved frame rate component. Secondly, reduction in the modulation

index (while the frame duration is kept constant to preserve the bit rate)

results in narrower PPM slots. However, due to the enhanced periodicity at

low modulation index, the ratio of the discrete component to the continuum

is equal and that is why m = 0.3 and m = 0.7 give the same frame rate

power. For timing extraction purposes, a low modulation index (m = 0.3) is

more suitable.

With an increase in the number of coding levels, all the powers (dc value,

frame rate power, slot rate power) will increase. PSD shows that digital

PPM does not give a discrete line at the frame repetition frequency, whereas

offset, multiple and shortened PPM do. Offset PPM exhibits strong slot

rate components when RZ pulses are used. So, slot synchronization could be

possible by extracting slot rate component at the receiver end.



Chapter 6

Timing Extraction

Timing synchronization at receiver end has been a challenging research prob-

lem for decades. In order to decode a received signal properly, the received

signal needs to be synchronized with an extracted received clock. Many syn-

chronization procedures are available, among them the Phase Locked Loop

(PLL) is a widely used technique as it is easy to implement and economic.

Phase Locked Loop (PLL) has a wide area of application, primarily used in

communication applications such as AM radio receivers, frequency demodu-

lators, multipliers, dividers, frequency synthesizers, etc. Previously an analog

PLL was used. In analog systems, the signal needs to be sampled continu-

ously which is a drawback of this system. Whereas in digital communication

systems, information is conveyed by a bit sequence of 1’s and 0’s, where 1

and 0 respectively represent the presence and the absence of a pulse. To

process data correctly, the receiver usually synchronizes the frequency and

97
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phase of the data with a clock and this process is called clock recovery [104].

This chapter gives a brief introduction to the basic of Phase Locked Loop

(PLL) design for timing synchronization. Section 6.1 discusses various com-

ponents and system properties of PLL. The study of loop characteristics and

loop parameters is the subject of this section [101]. Clock and data recovery

are presented in Section 6.2 considering the input data sequence as offset

PPM. Frame synchronization has been shown in Section 6.3. The perfor-

mance analysis of PLL in the presence of noise is presented in Section 6.4.

6.1 Phase Locked Loop Design

The basic block diagram of a PLL for clock and data recovery topology is

shown in Figure 6.1. PLL comprises of a phase detector, a charge pump with

loop-filter and a voltage controlled oscillator (VCO). The loop is considered

as “locked” if the rate of change of phase of the output signal is constant

with time, as a result, the frequency of the input and output signals becomes

equal.

The phase detector (PD) compares the phase of the output signal to

the phase of the reference signal. If there is a phase difference between

these two signals (phase error), it generates a voltage proportional to the

phase error. Due to this self correcting technique (feedback mechanism), the

output signal becomes in phase with the reference signal. When both signals

are synchronized, the PLL is said to be in locked condition. The phase error
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Charge Pump+
Loop Filter

Voltage 
Controlled
Oscillator

Phase 
Detector

Data 
Recovery
Circuit

Data
Recovered
Clock

Recovered
Data

Figure 6.1: Basic block diagram for clock and data recovery

between the two signals is zero or almost zero in locked condition. The

schematic diagram of a PLL is shown in Figure 6.2. The PD provides an

error signal, vd(t), which is the difference between the frequency of the input

data φi(t) and the output of VCO φ0(t), multiplied by the detector gain kd,

i.e.,

vd(t) = [φi(t)− φ0(t)]kd. (6.1)

There are various type of phase detectors ( [96], [104]) such as triangular

phase detector, EX-OR phase detector, RS flip-flop phase detector, JK flip-

flop phase detector, D flip-flop phase detector, bang-bang phase detector, etc.

Due to the random nature of data the use of the phase detector is restricted,

as random data introduces undesired phase variation in the recovered clock.

In order to detect the frequency and phase error of a random digital data, the

Hogge detector (shown in Figure 6.3) has been considered here. The phase

detector gain, kd = α where the value of α depends on the type of phase

detector; for Hogge detector, α is 1/2. Figure 6.4 shows the output of phase
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Kd Icp H(s) kv/s     
vd(t) vf(t)i/p o/p

φ 
φ

0
i

Figure 6.2: Schematic diagram of the Phase Locked Loop

out put of 
VCO

offset PPM

Logical
Operator 2
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Operator 1
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Operator
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CLK

!CLR

Q

!Q

D Flip- Flop

D

CLK

!CLR

Q

!Q

Constant 1

1

Constant

1

BA

Figure 6.3: Hogge detector

detector considering input sequence as offset PPM data. In this figure, the

upper one shows the voltage at point A, middle one shows the voltage at

point B and the lower one shows the output voltage of charge pump.

The charge pump (CP) circuit converts the error signal, produced by the
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Figure 6.4: Phase detector output

Hogge detector, as a positive or negative signal. If the input signal frequency

is greater than the VCO clock frequency, the CP produces a positive error

signal and it becomes negative while VCO clock frequency is greater than

the input signal frequency.

The output of the CP passes through a loop-filter that plays a key role

in PLL feedback closed-loop system. A loop-filter introduces poles and zeros

into the PLL transfer function, which determines the bandwidth of the PLL.

Since a higher order loop-filter offers better noise cancellation property, a

loop-filter of order 2 or more is used in most of the PLL circuits in critical

applications. Here a type 1 (single pole at the origin), order 2 low-pass pas-

sive filter has been considered to achieve steady-state quickly (small settling

time). Figure 6.5 depicts the circuit diagram of the charge pump and loop-

filter considered in present work. In Figure 6.5, R1 = R2 = R3 and value
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Figure 6.5: Loop-filter and charge pump circuit diagram

of these resistors are determined based on the PLL design constraints. Here

‘Voltage’ is considered as 1V . The output of loop-filter in Laplace domain

becomes

Vf (s) = H(s)Vd(s) (6.2)

where H(s) is the loop-filter transfer function. The output of loop-filter for

an offset PPM data sequence is shown in Figure 6.6. This output voltage is

the control voltage to the VCO. This produces an output frequency ω0 which

is linearly proportional to the control voltage vf (t) generated by the loop-

filter. This linear relationship between the control voltage and the output

frequency simplifies PLL design. The VCO has a free running frequency that

adjusts the phase and frequency of the input signal based on the error signal
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Figure 6.6: Loop-filter output

produced by phase detector. Mathematically this can be written as:

φ0 =

∫
ω0(t)dt = ωc(t) + kvvf (t). (6.3)

Here kv is the VCO gain. The output of the VCO is shown in Figure 6.7.

The loop-filter transfer function can be represented as [96]

H(s) =
Vf (s)

Vd(s)
= kLP

1 + s
ωz

s(1 + s
ωp

)
. (6.4)

From the circuit diagram, shown in Figure 6.5

Vf (s)

Vd(s)
=

1

s(c1 + c2)
× 1 + sR1c2

1 + sR1
c1c2
c1+c2

. (6.5)

Comparing equations (6.4) and (6.5), the gain kLP , pole ωp and zero ωz are

calculated as:

kLP =
K

kvIcpα
=

1

c1 + c2

(6.6)

ωp = 2πfP =
c1 + c2

R1c1c2

(6.7)
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Figure 6.7: VCO output

ωz = 2πfz =
1

R1c2

(6.8)

fz = rf0 (6.9)

Here Icp is the charge pump current, K is the desired forward path gain, r

is the ratio (fz
f0

) and f0 is the free running frequency of VCO. Now from the

above, expressions for capacitance and resistance are obtained as follows:

c1 =
kvIcpαf0r

Kfp
(6.10)

c2 =
kvIcpα

K
− c1 (6.11)

R1 =
1

2πf0rc2

. (6.12)

The designed values of the parameters for implementing PLL are given in

Table 6.1.

Considering these values, the Bode diagram (magnitude and phase plots)

of the loop-filter is given in Figure 6.8. Zero (1/R1c2) and pole ((c1 +
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Table 6.1: Parameter values

K Kv (Hz/V ) α r ICP f0 (Hz) c1 c2 R1

2.03 5 0.5 1/8 1 1 22 224 5.7

×1012 ×105 Amp ×106 nF nF ohm
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Figure 6.8: Loop-filter magnitude and phase response

c2)/R1c1c2) of the transfer function H(s) determine the cut-off corner fre-

quencies. A loop-filter is designed such that the loop gain (overall gain of

the loop) of the closed-loop system becomes high in the low frequency region

that facilitates in achieving tracking performance of the system as well as

helping to attenuate disturbance entering the closed-loop. In order to make

the loop gain high at low frequency range, a loop-filter with a pole (Figure
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6.9) at origin is chosen. To this end, it is worth mentioning that to achieve

more loop gain at low frequency one may also introduce more poles at the

origin through the loop-filter; however, the stability margin of the designed

closed-loop system may deteriorate. To ensure a good stability margin, at the

crossover frequency the slope of the magnitude plot in Bode diagram is kept

around −20 dB/decade. Also in order to make the transient response less

oscillatory (Figure 6.10), sufficient phase margin of the closed-loop system is

maintained.
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Figure 6.9: Pole-zero plot of loop-filter

The closed-loop transfer function of the PLL is given as

G(s) =
A(s)

1 + A(s)
, (6.13)
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Figure 6.10: Unit step response of the closed-loop Phase Locked Loop

where A(s) is the forward path transfer function and it is given as

A(s) =
kvIcpαH(s)

s
. (6.14)

Replacing H(s) in A(s) and then substituting for G(s), the closed-loop trans-

fer function becomes

G(s) =
kvIcpα(1 + sR1c2)

s3(R1c1c2) + s2(c1 + c2) + s(R1c2kvIcpα) + kvIcpα
. (6.15)

In principle, a higher order low-pass filter can achieve sharp cut-off character-

istics (Figure 6.11), a desirable property in this application. However, such

systems are difficult to stabilize, especially when the process and tempera-

ture variations are taken into account. The stability of a feedback system is

related to the location of roots of the characteristic equation of the system
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Figure 6.11: Bode plot of the closed-loop Phase Locked Loop

transfer function. A system is stable if all closed-loop poles of the transfer

function have negative real parts. Figure 6.12 shows poles of G(s) which are

in the left half of the s-plane and hence is stable. From this pole-zero map

it is apparent that the PLL transfer function is of third order and a pole is

located far away from the imaginary axis due to a capacitor connected in

parallel with the LPF (Figure 6.5) output port to suppress high frequency

signals.



6.1. Phase Locked Loop Design 109

Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

−8 −7 −6 −5 −4 −3 −2 −1 0

x 10
6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

6

Figure 6.12: Pole-zero plot of the closed-loop Phase Locked Loop

6.1.1 Steady-state Error Analysis

Total error in Laplace domain is expressed as the phase difference of the

input and output phase

E(s) = φi(s)− φ0(s). (6.16)

The phase transfer function is

φ0(s)

φi(s)
=

A(s)

1 + A(s)
. (6.17)

Replacing φ0(s) in equation (6.16),

E(s) = φi(s)−
A(s)

1 + A(s)
φi(s) = φi(s)

[
1

1 + A(s)

]
. (6.18)
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The steady-state error is defined as [101]

ess = lim
s→0

s · E(s) = s · φi(s)
[

1

1 + A(s)

]
= s · 1

s

[
1

1 + lims→0A(s)

]

=
1

1 + lims→0
kvIcpαH(s)

s

=
1

1 +∞
= 0. (6.19)

In above expression φi(s) = 1/s as the input is considered as unit step

function. Now from the above expression it can be concluded that this PLL

topology theoretically does not exhibit any error at its steady-state, shown in

Figure 6.10. This response shows the performance of the system in terms of

settling time, peak time, overshoot, rise time, etc. The characteristics of the

step response will be changing with the change in system parameters given

in Table 6.1. Figure 6.13 shows the unit step response of the system when

the value of charge pump current (Icp) varies. If the charge pump current is

increased, the overshoot is decreased but the settling time is increased. As

the tracking system demands quick acquisition with zero steady-state error,

the settling time gets more priority. Figure 6.14 shows the unit step response

for different values of r. r = 1
8

is chosen here, as the settling time is increased

with decreasing the value of r.

6.2 Clock and Data Recovery

In this application, the goal is to determine how well the clock recovery func-

tion can be performed considering offset PPM data as an input sequence.

The PSD of 4-bit offset PPM was evaluated numerically in the previous
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chapter (shown in Figure 5.6) using the fast Fourier transform to understand

timing content in the data sequence. Eight samples per offset PPM slot

were considered and 50 FFT’s were averaged in order to decrease the noise

due to randomness of the data sequence. There exist spectral lines at the

slot repetition frequency which can be extracted using a timing extraction

process. This is an advantage of offset PPM as this coding exhibits spec-

tral lines when return-to-zero (RZ) pulses are used. Using PLL, designed

in this chapter, clock from offset PPM data sequence has been extracted,

shown in Figure 6.15, where a random offset data sequence is considered as

‘1001 1001 1010 1001’. Clock recovery topology has been designed to achieve

a minimum bit error rate (BER). Deviation of recovered clock from the ideal

one will increase BER. Data recovery circuit has been designed using D-flip

Figure 6.15: Clock recovery from offset PPM data sequence
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flop (Figure 6.16). Here the data are synchronised with the negative transi-

tion of the clock (shown in Figure 6.17) and thus, receiver can recover the

data. Synchronization with positive transition of the clock could also be

possible.

D        Q

CLK   !Q

D         Q

CLK    !Q

Synchronized 
Data

Input Data

Output of PLL

Figure 6.16: Data recovery block

Figure 6.17: Data recovery from offset PPM data sequence
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6.3 Frame Synchronization

From the power spectral density, it is seen that there exists a frame rate

component at frame repetition frequency. In the previous chapter, 4-slot

offset PPM was considered and the frame rate component has been shown

in Figure 5.4 (shown in the previous chapter). It should be noted that OOK

and digital PPM do not exhibit any frame rate component for NRZ pulses,

but show a frame rate component when a guard interval with empty slots is

used at the end of the frame. Using PLL circuit, designed in this chapter,

a frame clock can also be extracted from random data sequence. To extract

the frame clock a frequency synthesizer (Figure 6.18) has been used. As

D         Q

CLK    !Q

D          Q

CLK     !QVCO
output

New
clock

Figure 6.18: Frequency synthesizer block

4 (22) bits in a frame are used for the offset PPM data sequence, a mod-4

counter is used as a frequency synthesizer which is developed using D flip-

flops. In Figure 6.18 the complement output of the first D flip-flop is fed

back to input of the same flip-flop and complement output of the previous D

flip-flop is used as the clock of the next flip-flop. Thus the output frequency

is divided. Depending on the length of the frame, the number of counters
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is selected. The frame clock has been extracted correctly and is shown in

Figure 6.19. So, frame synchronization could be possible using this topology.

Figure 6.19: Frame clock recovery from offset PPM data sequence

6.4 Noise Analysis

Each block of a PLL contributes noise to the closed-loop for which an output

phase error or ‘jitter’ appears. Noise analysis is important for PLL system

design. Below, an analytical modeling framework for different types of noise

is presented.
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6.4.1 Reference Noise

PLL shows good performance with low reference noise, although this noise

is much less compared to VCO noise. The effect of reference noise can be

minimized by keeping Icp small. Transfer function from reference source to

PLL output is given by

Gref =
forward path transfer function

1 + loop transfer function

Gref =
kvIcpα(1 + sR1c2)

s3(R1c1c2) + s2(c1 + c2) + s(R1c2kvIcpα) + kvIcpα
(6.20)

6.4.2 Phase Detector Noise

The effect of phase detector noise is lower than the effect of VCO noise. The

transfer function for phase detector noise can be represented as

Gpdf =
loop-filter transfer function× VCO transfer function

1 + loop transfer function

Gpdf =
kv(1 + sR1c2)

s3(R1c1c2) + s2(c1 + c2) + s(R1c2kvIcpα) + kvIcpα
(6.21)

6.4.3 VCO Noise

The oscillator contributes most of the noise at output of a well designed

PLL frequency synthesizer. VCO noise dominates the noise level in a PLL

as the oscillator inherently amplifies all noises generated near its oscillation

frequency or any of its harmonics. VCO noise can be removed by suitably
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designing PLL loop bandwidth. But, the VCO phase noise cannot be atten-

uated at offset frequencies beyond the bandwidth. At high frequency, the

noise of the PLL comes from the VCO noise. The transfer function from the

VCO noise source to output is given by

Gvco =
1

1 + loop transfer function

Gvco =
s3(R1c1c2) + s2(c1 + c2)

s3(R1c1c2) + s2(c1 + c2) + s(R1c2kvIcpα) + kvIcpα
. (6.22)

Variation in supply or reference voltage to PLL changes the control voltage

to VCO which changes the VCO operating frequency. A change in oscillation

frequency of a VCO appears as a phase step in the input of phase detector.

The phase error accumulates jitter until it is corrected by PLL.

6.4.4 Loop-filter Noise

Loop-filter noise contributes more to the total noise level compared to refer-

ence noise and phase detector noise but contributes less than the VCO noise.

The transfer function for this noise can be represented as,

Glf =
VCO gain

1 + loop transfer function

Glf =
s2R1c1c2kv + skv(c1 + c2)

s3(R1c1c2) + s2(c1 + c2) + s(R1c2kvIcpα) + kvIcpα
(6.23)

Both phase detector noise and loop-filter noise can be minimized by

changing the value of VCO gain. Figure 6.20 represents the noise plots due

to different noise sources of the PLL.
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Figure 6.20: Noise plot for different noise sources in PLL

The closed-loop VCO noise behaves as high-pass filtered noise, which

contains the high frequency components. From Bode plot analysis of the noise

TF, the attenuation scheme can be determined. VCO noise characteristics

plot falls as f 2 at lower frequency range and at higher frequencies, it becomes

flat. Loop-filter noise response behaves like a band-pass filter. A noise peak

is observed in the magnitude curve of the noise response of loop-filter. The

closed-loop TF for reference noise and phase detector noise also behaves as

a low-pass filter. The transfer functions from each noise source to output

of the PLL shape the total noise. Multiplying each noise transfer function

with the power spectral density of the corresponding block output provides

the overall transfer function from any voltage (or current) noise to the PLL
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output. The total noise can be calculated as

Gtot = SrefGref + SvcoGvco + SpdfGpdf + SlfGlf (6.24)

where Sref , Svco, Spdf and Slf are PSD of the corresponding blocks and plots

of these PSDs are shown in Figure 6.21.
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Figure 6.21: (a) Spectrum of reference, (b) Spectrum of phase detector out-

put, (c) Loop-filter spectrum, (d) VCO spectrum
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6.5 Conclusion

This chapter describes the design of an efficient PLL design topology to re-

cover the clock from a high frequency offset PPM data sequence (1 GHz).

Data recovery implies synchronization can be possible from the data se-

quences in the receiver side with the minimum bit error as the data has

been synchronised with the negative edge transition of the clock. As a type

1 and order 2 low-pass passive filter has been considered, so acquisition has

been achieved quickly (system can reach at steady state quickly) and high

frequency noise will be removed before passing through the VCO. The overall

closed-loop system also behaves as a low pass filter which helps the PLL to

produce a noise free clock. Using this proposed clock recovery system, clock

can also be extracted from multiple PPM random data sequence which has

been described in the next chapter.



Chapter 7

Timing Synchronization in

Multiple PPM

In multiple PPM, two pulses change their position randomly to form the

MPPM codeword if a 2 pulse system is used. So, synchronization is required

for all the codewords. MPPM uses less bandwidth of the channel. This chap-

ter presents the method of extraction of the slot clock of the MPPM at the

receiver end using Phase-Locked Loop (PLL) topology. The PLL topology

is described in the previous chapter. The parameters are changed here and

hence the system performance is also changed. To show the synchronization,

in this chapter both power spectral density and PLL topology approaches

have been followed. It is shown that data are synchronized with the ex-

tracted clock. Slot and frame synchronization also have been discussed on

the power spectrum basis. For that purpose a random MPPM data frame is
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simulated using Matlab.

7.1 Power Spectral Density Approach

A (5-2) MPPM data sequence has been considered to implement power spec-

tral density based approach. 128 MPPM random data frames were taken with

8 samples per slot and the power spectral density was evaluated numerically

using FFT. 50 FFTs were averaged to reduce the noise due to randomness

of the MPPM data sequence. Figure 7.1 shows MPPM that produces slot

rate components at slot repetition frequency if return-to-zero (RZ) pulses are

used and the frame rate component is at frame repetition frequency. There

are four distinct spectral components corresponding to the frame rate and

its associated harmonics. The presence of slot rate components is neither

affected by the probability distribution nor by the modulation index. The

presence of slot rate components is therefore affected by the pulse shape only.

As MPPM provides both the slot rate and frame rate component, both the

slot clock and frame clock could be extracted, described in detail in Section

7.2. However, a guard interval, consisting of some number of empty slots is

used at the end of the frame to reduce the effect of ISI and IFI. The variation

of guard interval is represented as m = ntp/Tf where m is the modulating

index, n is the number of pulse, tp is the slot time and Tf is the frame time.

128 MPPM frames are considered randomly with each frame consisting of 5

slots to see the frame rate component. This frame rate component depends
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on the modulating index. Figure 7.2 shows the frame rate components at

modulating index 0.5.
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Figure 7.1: Power spectral density of (5-2) MPPM data sequence considering

return-to-zero pulses
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Figure 7.2: Frame rate component for MPPM data sequence
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7.2 PLL Topology Approach

The PLL topology followed here is described in Chapter 6. A brief descrip-

tion of the basic building blocks with their outputs considering the input data

as MPPM sequence is discussed here. The topology comprises of three basic

building blocks – phase detector, loop-filter and voltage controlled oscillator

(Figure 7.3). The phase detector (see Figure 6.3 in previous chapter) pro-

Kd Icp H(s) kv/s     
vd(t) vf(t)

φ 
φ

0
i

Data
recovery 
circuit

Recovered
clock

Recovered
data

Data

Phase
Detector

Charge
Pump

Loop
Filter VCO

Figure 7.3: PLL clock and data recovery block diagram

duces an error signal vd(t), which is proportional to the difference between

the phase of the feedback clock φi(t) and the phase of the reference clock

φ0(t).

vd(t) = [φi(t)− φ0(t)]kd (7.1)

Here kd = α. 1 GHz MPPM random data sequence has been considered

and at a particular instance of execution of the system, MPPM frames occur

as ‘01010 01100 10001’. The output of the phase detector is shown in
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Figure 7.4. This signal then passes through charge pump to produce positive

and negative signals, i.e., if the input frequency leads the VCO output then

charge pump produces positive signal and it produces negative signal when

the input frequency lags VCO output. The difference or error signal is passed

Figure 7.4: Phase detector output

through a low-pass filter and drives the oscillator. Here an order 2, type 1

low-pass passive filter has been considered. The charge pump and loop-

filter are shown in Figure 6.5 in the previous chapter. Taking the Laplace

transform the output of the filter becomes

Vf (s) = H(s)Vd(s) (7.2)

where H(s) = 1+R1c2s
s2R1c1c2+s(c1+c1)

is the loop-filter transfer function and the

output of the loop-filter is shown in Figure 7.5. The overall system bandwidth
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Figure 7.5: Loop-filter output

depends on the loop-filter. Figure 7.6 represents the pole-zero plot of the

loop-filter where one pole is at the origin and another one is far away from

the origin. Figure 7.7 shows the Bode plot of the loop-filter transfer function.

This filtered error signal acts as a control signal to the oscillator and

adjusts frequency of oscillation to align with the reference signal phase φi(t).

The phase is locked when the feedback clock has a constant phase error

and the same frequency as the reference clock. This can be represented

mathematically as,

φ0 =

∫
ω0(t)dt = ωc(t) + kvvf (t) (7.3)

where kv is the VCO gain. The output of the VCO is shown in Figure 7.8.

Now the open loop transfer function is defined as,

A(s) =
kvIcpαH(s)

s
(7.4)
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Figure 7.8: VCO output

So, the closed loop transfer function becomes,

G(s) =
A(s)

1 + A(s)

G(s) =
kvIcpα(1 + sR1c2)

s3(R1c1c2) + s2(c1 + c2) + s(R1c2kvIcpα) + kvIcpα
(7.5)

Figure 7.9 represents the Bode plot of the PLL which shows a sharp cut-off.

As all the closed-loop poles (Figure 7.10) are in the left hand side of the

s-plane, the system is stable.

7.2.1 Steady-state Error Analysis

Now the steady-state error is defined as

ess = lim
s→0

s · E(s) =
1

1 + lims→0
kvIcpαH(s)

s

=
1

1 +∞
= 0 (7.6)
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Figure 7.9: Bode plot of the closed-loop Phase Locked Loop

where

E(s) = φi(s)− φ0(s) = φi(s)

[
1

1 + A(s)

]
(7.7)

Following the above analysis, the designed PLL exhibits zero steady-state

error. The closed-loop system step response (Figure 7.11) gives less oscilla-

tion, less overshoot, quick acquisition of the steady-state (less settling time)

and also zero steady-state error. The parameters considered for MPPM to

implement the PLL are shown in Table 7.1.
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Table 7.1: Parameter values

K Kv (Hz/V ) α r ICP f0 (Hz) c1 c2 R1

3.03 5 0.5 1/8 3 1 13 152 8.4

×1012 ×105 Amp ×106 nF nF ohm

7.2.2 Clock and Data Recovery

For synchronization purpose a 1GHz MPPM random data sequence has been

considered and at a particular instance of execution of the system, MPPM

frames occur as ‘01001 00110 10010’. Figure 7.12 shows the designed PLL

topology used to extract the slot clock properly. Now, to synchronize the

input data with the extracted clock, a clock recovery block is used which

is shown in Figure 6.16 (see previous chapter). Received data have also

synchronized with the extracted clock, shown in Figure 7.13.

7.3 Noise Analysis

Each block of the PLL system contributes noise to the output signal. Among

all the blocks, VCO and loop-filter contribute the most. Other noise sources

like phase detector, frequency divider contribute less compared to VCO and

loop-filter. The transfer function model of the VCO noise is given by

Gvco =
s3(R1c1c2) + s2(c1 + c2)

s3(R1c1c2) + s2(c1 + c2) + s(R1c2kvIcpα) + kvIcpα
(7.8)
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Figure 7.12: Clock recovery for MPPM data sequence

Figure 7.13: Synchronized MPPM data sequence

Similarly the transfer function model of loop-filter noise can be represented

as,

Glf =
s2R1c1c2kv + skv(c1 + c2)

s3(R1c1c2) + s2(c1 + c2) + s(R1c2kvIcpα) + kvIcpα
(7.9)
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Figure 7.14 shows the magnitude versus frequency response of the VCO and

loop-filter noise. Here, in this implementation, also VCO behaves as high-

pass filter and loop-filter behaves as band-pass filter.
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Figure 7.14: VCO and loop-filter noise plot

7.4 Conclusion

The power spectral density of MPPM was evaluated numerically considering

NRZ pulses. As MPPM generates both slot rate and frame rate components,

so both the slot and the frame synchronization could be possible. To confirm

this, the designed PLL in the previous chapter has been considered. 1GHz

MPPM data has been synchronized with the extracted clock with the nega-

tive edge transition. In the case of MPPM, the VCO contributes maximum
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noise to the total output noise. As the designed PLL could be able to extract

the clock from MPPM data sequence, so it can extract the clock from other

data sequences also.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, the performance of offset PPM in terms of varying coding level

and channel bandwidth has been analysed. The performance of offset PPM

has been compared to that of digital and multiple PPM. The theoretical

model presented in this thesis shows that offset PPM can offer a sensitivity

3.27 dB greater than that obtained from digital PPM when both are oper-

ating at a normalized channel bandwidth of 3 with a coding level of 6. At

higher channel bandwidth, where there is minimal ISI, offset PPM offers a

very significant sensitivity advantage over OOK of nearly 10 dB. Under these

circumstances, better sensitivity is also obtained compared to multiple PPM.

Results show that BER of offset PPM is reduced with the increase in
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SNR. A comparison of BER for different coding schemes has been presented.

As offset PPM gives the lowest number of errors in comparison with multiple

PPM, offset PPM produces more error free data at the receiver. It can also be

concluded that, with increase in the number of slots, bandwidth is increased

but the required power level is reduced.

This work has examined and compared the spectral characteristics of

offset, digital, multiple and shortened PPM. The theoretical predictions of

power spectral density of offset PPM show an excellent agreement with the

simulation results. By analysing PSD, it has been shown that digital PPM

does not give a discrete line at the frame repetition frequency, whereas offset,

multiple and shortened PPM do. This component can be extracted to obtain

the slot clock needed to regenerate the signal. It has been shown that offset

PPM has the strongest frame component and also the slot rate component.

So, frame and slot synchronization are possible. A study has been carried out

to examine the effect of pulse shape, modulating index and data distribution

in frame on the spectrum.

In this thesis, an efficient PLL design topology has been given for clock

recovery from 1 GHz data sequence. For this purpose random offset PPM

data sequence has been taken into account. Data recovery indicates that

synchronization is possible from the data sequence in receiver side with the

minimum bit error as the data is synchronised with the negative edge transi-

tion of the clock. A type 1, order 2 low-pass passive filter has been designed

in order to achieve quick acquisition of data and to remove high frequency
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noise before passing through VCO which is the main source of PLL noise.

The overall closed-loop system behaves as a low-pass filter that helps PLL to

produce noise free clock. Using this proposed clock recovery system, other

data sequences can also be extracted.

The power spectral density of MPPM has been shown, which is evaluated

numerically. The PSD analysis shows that both slot and frame clock can

be extracted as MPPM generates both slot and frame rate components. To

ensure, a PLL has been designed. 1 GHz MPPM data has been synchronized

with the extracted clock when negative transition occurs.

8.2 Future Work

Studying the performance of offset PPM using receivers other than a

PIN-BJT receiver is an interesting topic for future research.

In this thesis, the synchronization process has been presented but the

‘jitter’ performance occurring during the synchronization for offset PPM has

not been investigated. This may be looked into in future scope.

This work considers the optical fibre medium. Investigation on the per-

formance of offset PPM in free space may be carried out in the future scope.
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