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Abstract. Uniform sampling in metrology has known drawbacks such as coherent spectral 

aliasing and a lack of efficiency in terms of measuring time and data storage. The requirement 

for intelligent sampling strategies has been outlined over recent years, particularly where the 

measurement of structured surfaces is concerned. Most of the present research on intelligent 

sampling has focused on dimensional metrology using coordinate-measuring machines with 

little reported in the area of surface metrology. In the research reported here, potential 

intelligent sampling strategies for surface topography measurement of structured surfaces are 

investigated by using numerical simulation and experimental verification. The methods include 

the jittered uniform method, low-discrepancy pattern sampling and several adaptive methods 

which originate from computer graphics, coordinate metrology and previous research by the 

authors. By combining the use of advanced reconstruction methods and feature-based 

characterisation techniques, the measurement performance of the sampling methods is studied 

using cases studies. The advantages, stability and feasibility of these techniques for practical 

measurements are discussed. 

 

Keywords: Intelligent sampling, sampling strategies, structured surfaces, reconstruction, 

feature characterisation 
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1.  Introduction 

Uniform sampling has been used in surface topography measurement as the default measuring strategy 

for the last fifty years. Uniform sampling is widely accepted as the most natural sampling method due 

to its good numerical operability and the maturity of its theoretical foundations [1, 2]. However, the 

emergence of structured surfaces [3, 4] has forced surface metrologists to consider the drawbacks of 

uniform sampling. The main drawbacks include coherent spectral aliasing [5] (see figure 1) and a lack 

of efficiency in terms of measuring time and data storage [6]. Structured surfaces usually consist of 

repeated geometrical structures over wide areas or are in the form of large step like features as 

encountered on MEMS or micro-fluidic devices. These novel kinds of surfaces usually require both 

large sampling areas and small sampling intervals (or spacing) to guarantee both the measuring 

efficiency and accuracy. The requirement described here is for intelligent sampling methods that are 

able to address the drawbacks of uniform sampling. 
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(a) 

 
(b) 

Figure 1. Illustration of the coherent spectral aliasing effect in computer graphics. (a) Uniform 

sampling produces coherent aliasing; (b) Jittered uniform sampling transforms the aliasing into noise 

[5]. 

 

Intelligent sampling methods in the fields of computer graphics and coordinate metrology have 

been a research focus during the last twenty years [5-15]. Several techniques have been developed to 

overcome the coherent spectral aliasing problem such as jittered uniform sampling [5]. Some methods 

are produced in order to reduce the statistical error of form estimation, such as the low-discrepancy 

pattern sampling [7]. Other intelligent sampling methods have flexible sampling designs adapting to 

the surface geometric changes, i.e. adaptive sampling methods, thus the sample size and sampling 

duration can be reduced efficiently [6, 10-15]. However, to date, only a small number of methods for 

intelligent sampling have been used in surface metrology (see section 2).  

In this research, the performances of potential intelligent sampling methods have been investigated 

on the basis of the measurement of structured surfaces. To judge the performances of different 

sampling methods, a widely used evaluation indictor, i.e. such as the root-mean-square (RMS) height 

residuals, is used. For example, by comparing the reconstructed surface based on an intelligently 

designed sampling pattern to the original continuous surface, a deviation map of the height 

information can be obtained for reference. However, the height deviations are only capable to measure 

the height information in a global way. A feature-based characterisation technique [16, 17] is 

additionally used in this research. With the feature-based characterisation, dimensional parameters 

relating to regional geometric features can be figured as extra indicators.  

In general, no single sampling method has ideal performance or is flexible enough to be applied to 

all surface types [3]. It is anticipated that an intelligent sampling toolbox will form the core part of the 

next generation of the measurement modules in surface measuring instruments. Before the advantages 

of intelligent sampling can be fully exploited two specific issues need to be addressed.  

1. Reconstruction  

In surface metrology, measurement results are usually presented in the form of a cloud of 

regularly spaced points. This regular lattice data can be easily manipulated for mathematical 

computation or transforms, such as convolution or discrete Fourier transforms [18]. With the 

traditional triangulation-based rendering techniques, or other reconstruction techniques such as 

bilinear interpolation, the results are generally expressed as a continuous surface for visual 

inspection, for example in OpenGL and MATLAB [19, 20].  

Most intelligent sampling methods result in a non-regular lattice of distributed (or scattered) 

sample points. In this case, advanced reconstruction methods need to be considered, such as 

tensor product reconstruction with B-splines, triangulation, and radial basic function (RBF) 

reconstruction [21]. In this way, the point cloud can be reconstructed into a continuous surface 

for visual inspection in a stable manner; regular latticed data can then be extracted from the 

constructed continuous surface for fast numerical manipulation.  

2. New data formats  

Current sampling data are usually saved as a coded matrix (for example, the reference data 

format SDF defined in ISO/FDIS 25178 part 71 [22]) which corresponds to the height 

information of regularly latticed sample points. This format cannot represent non-regularly 

spaced latticed data, in which case the whole three-dimensional information of each sampled 

data point needs to be saved. Intelligent sampling requires a new data format that supports 
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saving of the non-regularly latticed data. Also in the “trailer” part of this new data format (see 

figure 2), the specifications in terms of the reconstruction should be assigned aiming to reduce 

the reconstruction uncertainties. Figure 2 gives an outline schematic of a new data format.  

 

 

Figure 2. Schematic diagram of a new data format for surface measurement. 

 

Four types of sampling strategies and seven method variations in total have been studied in this 

research. In the following, a brief literature review is given in section 2 followed by an introduction to 

the sampling methods investigated in section 3. Section 4 introduces potential reconstruction methods 

for non-regularly spaced sample data. In section 5, error evaluation methods are described by 

introducing feature-based characterisation techniques. Following this, case studies are given in which 

different sampling methods are applied to three example structured surfaces. The advantages and 

disadvantages of each method are demonstrated and discussed.  

2.  Current state of the art of surface sampling 

As a direct and simple variation on uniform sampling, jittered uniform sampling provides an efficient 

solution to convert the coherent spectral aliasing of a measurement data  into random noise [5]. Kim 

and Raman [23] investigated this method for flatness measurement. It is found that jittered uniform 

sampling provides an accurate measurement result compared to low-discrepancy pattern sampling.  

Low-discrepancy patterns are found to be optimal for minimising the discrepancy between a 

measurement value and the true value of the statistical properties of a population [5, 7, 24]. Some 

optimal patterns have been used for coordinate metrology. Woo et al [8] investigated Hammersley and 

Halton-Zaremba patterns for the estimation of surface flatness and arithmetic mean roughness. 

Significant improvements on saving the sample size (or minimising the measurement error) were 

found compared to uniform sampling methods in their simulations. Lee et al [9] modified the 

conventional Hammersley pattern for special object measurements such as circular features, conical 

features and hemispherical features. The advantages of low-discrepancy patterns have also been 

demonstrated in practical flatness measurement [23]. 

Adaptive sampling is a novel sampling design that can redirect sampling effort during a survey in 

response to the observed values [25]. Generally there are two main categories of adaptive sampling 

strategies: model-based methods and non-model-based methods. The former specifies the sampling 

positions based on a given nominal model (e.g. a CAD surface model, or a preliminary measurement 

with a simple sample design) by analysing its local surface properties such as the mean curvature. To 

be strict, the model-based sampling methods are not adaptive to their earlier samples, i.e. they are not 

an adaptive sampling [25]. In this paper, these techniques are also regarded as an adaptive sampling 

because their samples are adaptive to a given surface model or a preliminary measurement. Most of 

the earlier work on adaptive sampling is based on given models. Cho and Kim [26] developed an 

adaptive sampling method based on mean curvature analysis and various probe path generation 

algorithms are tested. Elkott introduced several CAD-based sampling methods for freeform surface 

metrology; this included four kinds of automatic sampling [11], curvature change-based sampling and 

iso-parametric sampling [12]. Shih et al [10] developed three kinds of adaptive sampling methods for 

coordinate metrology, such as direct sampling, indirect sampling and local adjustment sampling. 

Discrete wavelet decomposition based adaptive sampling technique have also been proposed recently 
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[13]. These methods have been shown to be advantageous in terms of saving sample size or improving 

sampling accuracy for most general cases. However, CAD model-based solutions do not consider 

unexpected defects that are generally present in practical manufactured products and the pre-

positioning error in clamping a surface product may induce a significant bias in the sampling 

positions. These considerations are of particular criticisms in the measurement of micro- or nano-scale 

structured surfaces. 

In contrast, the non-model-based method has the ability to adjust its sampling points in real time. 

They are regarded as adaptive sampling in the strict sense. Edgeworth and Wilhem [15] proposed a 

real-time adaptive sampling method based on surface normal measurement. Hu et al [27] proposed an 

adaptive scanning strategy that automatically adjusts its sample step length according to surface slope 

variations. These solutions avoid inherent positioning errors and are able to effectively pick up the 

necessary information to identify potential defects. Their real-time sampling designs may not be as 

optimized as in the case of the model-based method. Also, the results are generally sensitive to the 

initial conditions, such as the initial sample position. However, they can easily generate a good 

sampling result without an accurate pre-positioning.  

The presence of a plethora of techniques shows that no single method is ideal and applicable in all 

cases. Selection of an optimized method depends on the specific surface, and the required 

measurement efficiency and accuracy. A sampling toolbox that integrates diverse sampling methods 

would be highly beneficial for future advanced measurement scenarios.  

In addition, on the realisation of efficient measurement, some intelligent scanning techniques and 

instruments have been developed. For example, Wieczorowski developed a spiral scanning-based 

surface texture measurement equipment [28] which avoids the time-consuming reciprocating 

movement in raster scan. Machleidt et al [29] developed a large-scope AFM measuring machine based 

on a nanopositioning and nanomeasuring machine (NPMM) stage. Also, the recent success in 

manufacturing the 128-cantilever array [30] enables fast surface measurement in nano scales. With the 

development of the intelligent sampling designs and scanning techniques, efficient measurements are 

on their way to current instruments. But in this paper, only sampling pattern designs are investigated. 

3.  Sampling methods 

3.1.  Uniform sampling 

Uniform sampling, sometimes referred to as uniform stratified sampling, allocates sampling points in a 

regular latticed pattern, for example the most classical regular “square grid” pattern which is 

investigated in this study. Investigations on different uniform sampling methods are described 

elsewhere [31, 32]. The “square grid” uniform sampling method is implemented by allocating a 

random start point 
0 00 0 0 ,[ , ]x yx y p  in a plane and subsequent periodic translations 

,[ , ]
x yx y d dd d d  and duplications on x/y directions. Thus a “square grid” pattern P  can be 

constructed (see figure 3a) 

 

, , 0{ : [ , ], , }i j i j x yid jd i j   P p p p . 

3.2.  Jittered uniform sampling 

Jittered uniform sampling is a simple variation of uniform sampling. Simply added with a random 

position jittering sequence ,{ ( , ), , }
2 2

i j i j   
d d

  , a uniform sampling pattern becomes a jittered 

uniform sampling pattern (see figure 3b) 

 

Jittered , , , , , ,{ : , , , , }i j i j i j i j i j i j i j      P Pp p p p   . 
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3.3.  Low-discrepancy pattern sampling 

By optimising the sampling pattern, an estimation error of the total or average properties of the 

population can be reduced. Two classical low-discrepancy patterns – Hammersley and Halton pattern 

– are introduced here by considering their two-dimensional case 

 

2

2 3

{ : [ / , ( )],  }

{ : [ ( ), ( )],  }

i i

i i

i N i i

i i i

   

    

Hammsley

Halton

P

P

p p

p p
, 

 

in which ( )b i  is the radical inverse function [5] 1 2( ) 0. ...b mi d d d  , where id  satisfies 

1

1

,  {0,1,..., }k
k i

k

d b i d b






  . The radical inverse function converts a non-negative integer i  into a 

floating-point number within [0,1) . For example, the first ten numbers of 2  are 

1 1 3 1 5 3 7 1 15 5
[ , , , , , , , , , ]
2 4 4 8 8 8 8 16 16 16

. A Hammersley pattern and Halton pattern of 100 points are 

illustrated in figure 3c and figure 3d respectively. 

 

 
(a) A uniform pattern 

 
(b) A jittered uniform 

pattern 

 
(c) A Hammersley 

pattern 

 
(d) A Halton pattern 

Figure 3. Illustration of typical sampling strategies with 100 sample points. 

3.4.  Adaptive sampling 

Three adaptive sampling methods have been studied in this research and these comprise: sequential 

profiling adaptive sampling, triangle patch adaptive subdivision sampling and rectangle patch adaptive 

subdivision sampling. Adaptive sampling has no fixed sampling pattern or mathematical expressions 

similar to the four methods above. Adaptive sampling methods are expressed by ordered algorithm 

procedures.  

3.4.1.  Sequential profiling adaptive sampling. Sequential profiling adaptive sampling [6] has been 

developed based on Shih’s indirect sampling [10]. Considering the raster scanning mechanism used in 

conventional stylus profilometers, this method is expected to work on current stylus instruments to 

enable efficient measurements. Sequential profiling adaptive sampling is a non-CAD model-based 

method which consists of a core algorithm – profile adaptive compression – and works in two 

sequential stages.  

The profile adaptive compression algorithm requires an initial profile scanning as a reference 

which employs a high density sample size setting, e.g. the instrument allowed highest sample density. 

The key samples are then selected from the initial samples by recursively examining the reconstruction 

error compared to a pre-defined threshold. Specifically, in the first stage, an approximate measurement 

(for example, take several profile scans in the y-direction at random or uniformly selected x-positions, 

see figure 4b) is carried out and the y coordinates of the key scanning positions, can thus be 
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determined based on the adaptive compression algorithm. In the second stage, a fine adaptive 

sampling is implemented in x-direction at each of the key scanning position. With the aid of the 

adaptive compression algorithm, the key samples of each x-direction scan are collected which 

constitute the final sampling result. As illustrated in figure 4c, a final sampling result can thus be 

achieved. This method has been demonstrated with apparent advantages over the four sampling 

patterns for the measurement of structured surfaces. A detailed description of this technique can be 

found elsewhere [6].  

 

 
(a) The CAD model of the 

original surface 

 
(b) The first stage scanning 

(approximate) 

 
(c) The second stage sampling 

(fine) 

Figure 4. Two stages of the sequential profiling adaptive sampling. (a) The original structured surface. 

(b) First stage: implementation of ten profile adaptive compression sampling in the y-direction (dashed 

lines); and based on the pruned key sample positions (red dots), the downsampled key scanning 

positions are selected (red squares). (c) Second stage: implementation of the profile adaptive 

compression sampling on x-direction at each selected position. 

3.4.2.  Triangle patch and rectangle patch adaptive subdivision sampling. Triangle patch and 

rectangle patch adaptive subdivision sampling are two CAD model-based methods. They require a 

CAD model or a preliminary measurement (with a simple sample design, e.g. uniform sampling) for 

determination of the adaptive samples. The two methods have been introduced as “direct sampling” 

[10]; hereby a brief introduction is given and a minor modification to the error evaluation criteria is 

made. The algorithm is as follows. 

 

 
(a) Triangle patch subdivision 

 
(b) Rectangle patch subdivision 

Figure 5. Subdivision of triangle patch and rectangle patch. 

 

1. Triangle patch adaptive subdivision sampling. 

1) Select a rectangle region on a surface as the sampling object. 

2) Select four initial points on the extreme corners of rectangle region and group the four 

corner points into two triangles.  

3) Subdivide each triangle into four triangles by inserting three points on the centre of 

the edges of the triangle, as in figure 5a. 
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4) Evaluate the reconstruction error
1
 of each triangle. 

5) If the error is greater than a preset threshold, then repeat steps 3 and 4. Otherwise, 

stop. 

 

2. Rectangle patch adaptive subdivision sampling.  

1) Select a rectangle region on a surface as the sampling object. 

2) Select four initial points on the extreme corners of rectangle region. 

3) Subdivide the projected area into four rectangles by inserting five points as shown in 

figure 5b. 

4) Evaluate the reconstruction error
1
 of each rectangle. 

5) If the error is greater than a preset threshold, then repeat steps 3 and 4. Otherwise, 

stop. 

 

Representative sample patterns generated by the three methods are illustrated in figure 6 in which 

the ideal surface tested in figure 4a is sampled respectively using each method above with a sample 

size of approximately 1500 points. It is found that the sequential profiling adaptive sampling pattern 

has no regular distribution of sample points on the feature edges. Triangle patch and rectangle patch 

adaptive division samplings generate more regularly designed sample patterns. Specifically, the 

former has dense samples regularly on the feature edges; while the latter yield more dense samples at 

the feature lateral corners.  

 

 
(a) Sequential profiling adaptive 

sampling 

 
(b) Triangle patch adaptive 

subdivision sampling 

 
(c) Rectangle patch adaptive 

subdivision sampling 

Figure 6. Adaptive sampling patterns produced by the three adaptive sampling methods (1500 sample 

points). 

4.  Reconstruction 

Surface reconstruction is the process of obtaining a continuous surface that best illustrates a given 

discrete data point set. Diverse methods for reconstruction of regular lattice data and scattered data in 

surface measurement have been investigated [21]. 

4.1.  Tensor product surface reconstruction 

The tensor product method has been widely used for reconstruction of regular lattice data (for 

example, the uniform sampling result in figure 3a or partially regularly latticed data in figure 6a). This 

is due to this method’s high numerical stability and computational efficiency. The tensor product 

method presents a surface as a tensor product of two bases, for example 

                                                      
1
 The reconstruction error in step 4 of the two methods is the maximum deviation between the original surface 

patch and the reconstructed surface patch using linear interpolation (for triangle surface patch) or bilinear 

interpolation (for rectangle surface patch). 
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in the x and y directions independently. Thus the surface can be expressed as  

 

, ,

1 1 1 1

( , ) ( , ) ( ) ( ) ( , )
S T S T

k l k l k l k l

k l k l

z x y a b x y c x y    
   

    a b , 

where { }k  and { }l  are preset base functions and the coefficient vectors a  and b  should be 

calculated from the data. Chebyshev polynomials, polynomial splines and B-splines provide base 

functions for the tensor product surface reconstruction [2]. Considering the smoothness and 

computational stabilities,
 
second (linear) and fourth order (cubic) B-spline [33] basis functions are 

adopted in this research. 

4.2.  Delaunay triangulation reconstruction 

Intelligent sampling always results in non-regular latticed data which cannot be solved by the tensor 

product method. Triangulation based methods are a simple and stable substitution. For example, 

Delaunay triangulation [34, 35] establish neighbourhood connections among the data points with the 

Delaunay triangulation algorithm, which neglects all the non-neighbouring points in the Voronoi 

diagram of the given points and avoids poorly shaped triangles. Following this structuring process, 

regional reconstructions [35] (linear or cubic) within each triangle patch can be carried out. These 

methods are able to guarantee a reconstruction to arbitrary accuracy if the sample points are dense 

enough, which provides the theoretical foundation for developing new reconstruction techniques. 

Considering that the amount of sample points for surface measurement is usually large, radial basis 

function (RBF) based interpolations or fits are not generally recommended. For example, it has been 

stated elsewhere [36] that RBF-based reconstructions may be very unstable, computationally complex 

and memory consuming; the RBF-based reconstructions are only employed when data points are no 

more than several thousand in number.  

 

 
(a) Tensor product reconstruction with the 

second order B-splines 

 
(b) Delaunay triangulation reconstruction 

(linear) 

Figure 7. Reconstruction from the sample result of figure 6a. 

 

Typical examples using the tensor product reconstruction methods and Delaunay triangulation 

method are presented in figure 7 in which the sample result shown in figure 6a is tested. The 

performance differences of the reconstruction results are clearly shown. Selecting an appropriate 
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method for reconstruction usually depends on many conditions, such as the surface complexity, 

distribution of the sample points, accuracy and efficiency requirements, and so on. In this study, all the 

potential methods are tested and the best one (with the minimum residual error) is selected for use.  

5.  Error evaluation 

5.1.  Height residuals estimation 

Traditional surface geometry descriptors and the traditional statistical parameters such as Sa, Sq or Ssk 

[37] have been reported to have a lack of efficiency when used to characterize structured surfaces [4]. 

In a new feature-based characterisation system [17, 38], surfaces are treated as a composition of 

diverse geometric features. Characterisation of each individually recognized feature and a statistic of 

the concerned feature attributes have been developed. Therefore, the purely statistical methods have 

not been used in this study although they have been used in earlier research work [8, 9, 14].  

Estimations of the statistical values (for example, the root-mean-square (RMS) value, maximum, 

etc.) of the height residuals are usually employed when measuring freeform surfaces. In this way, the 

CAD model and the measured surface are compared based on height information and a residuals map 

can then be obtained. Evaluation of the residuals map would seem appropriate for performance 

comparison of different sampling methods. This solution has been used in nearly all of the current 

research in metrology [6, 10-12, 15, 26].  

In this study, the RMS height residuals error is employed using the following 

 

2

1

( )
N

i i

i

e z z


 
 

 

where iz  are each value of the standard high-density sampled data matrix, iz  is each value of the 

reconstructed surface data matrix which has the same sample size as the standard data and N is the size 

of the high-density sampled data matrix.  

5.2.  Feature based characterisation 

Feature based characterisation has been recognized as being of high importance in advanced 

metrology techniques [39], particularly for the characterisation of structured surfaces by extracting 

micro-scale dimensional parameters [40, 41]. By sequentially employing the “areal feature 

segmentation”[16, 42], “boundary segmentation” [41, 43], “dimensional parameter selection” (such as 

the defined attributes in [17]) and the “parameter calculation and statistics” [38], the concerned micro-

scale dimensional parameters can be extracted. These parameters are then used for the performance 

comparison of different sampling methods. For example, the mean absolute deviations of these 

evaluation parameters from that of the original high-density sampled results are investigated in this 

paper 

0mean( )ie p p  , 

 

in which 0p  is an evaluation parameter (for example, step height, roundness) extracted from the 

original high-density sampled surface or CAD models and ip  are the corresponding parameters 

extracted from a reconstructed surface that was sampled at a lower density. For example, figure 8a 

shows a Fresnel lens surface (table 1c) reconstructed from a 2500 Hammersley pattern sample and the 

areal segmentation is carried out by extracting the feature edges (bold yellow curves). Evaluation 

parameters ip  such as radius and roundness of a circle feature can be consequently estimated (figure 

8b). If repeated tests are carried out, a mean value of the results from the same sampling setting is 

taken. 
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(a) Areal feature segmentation 

 
(b) Boundary analysis 

Figure 8. Illustration of a feature based characterisation of a circle edged feature.  

6.  Performance tests 

6.1.  Experimental settings 

General structured surfaces contain three basic types of feature groupings. These comprise linear 

patterns, tessellations and rotationally symmetric patterns [4]. Three representative high-precision 

structured surface specimens were used in this research to validate the performance of different 

sampling methods. High-precision measurements of the three surfaces are presented in table 1a, b and 

c, which include a five parallel-grooves calibration artefact, a nine pits-crossed-grating calibration 

artefact and a Fresnel lens central patch. These high density sampled results are used as the references 

for comparison. A performance evaluation procedure is described as follows. 

 

1. Standard data preparation.  

For a given real surface, obtain the standard measurement result (e.g. a 1024 × 1024 regular 

lattice data) using the instrument allowed high density sample setting. Standard feature related 

parameters (e.g. groove-width, step height, see table 1, which are selected in consideration of 

the main functions of the structured surfaces) are characterised for later uses.  

2. Sampling. 

Re-sample the standard surface data using different sampling methods and sample sizes. In this 

study, seven sampling methods and six different sample sizes (see table 1) on each of the 

specimens are tested. 

3. Reconstruction. 

Potential reconstruction methods are then employed to reconstruct the “continuous” surface 

with the same sample design as the originals – the standard measurement result. The best 

reconstruction results with the lowest RMS height residuals are selected for use. 

4. Performance evaluation. 

Extract the RMS height residuals of each reconstructed data from the standard data; extract 

feature related parameters from each reconstructed surface and the differences from the 

standard measurement results are calculated. The smaller the height residual or a parameter 

difference, the better of the performance the used sampling design has.  

Table 1. The three typical structured surface specimens and the experimental settings. 

 Sample 1 Sample 2 Sample 3 

S
p

ec
im

en
 

n
am

es
 

Five-parallel-grooves 

calibration artefact 

Nine-pits-crossed-grating 

calibration artefact 
Fresnel lens central patch 
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R
en

d
er

in
g

 o
f 

th
e 

h
ig

h
-d

en
si

ty
 

sa
m

p
le

d
 r

es
u

lt
s 

 
(a) five-parallel-grooves (linear 

pattern) 

(1024 × 1024) 

 
(b) nine-pits-crossed-grating 

(tessellation) 

(256 × 256) 

 
(c) Fresnel lens (rotational 

symmetric) 

(358 × 240) 

E
v

al
u

at
io

n
 

p
ar

am
et

er
s 

1. The RMS height deviation 

2. The mean groove width 

3. The step height 

1. The RMS height deviation 

2. The mean pitch distance 

3. The step height 

1. The RMS height deviation 

2. The radius the central lens 

edge 

3. The roundness of the 

central lens edge 

T
es

te
d

 

sa
m

p
le

 

si
ze

s Six sizes: 2.5k, 10k, 40k, 90k, 

160k and 250k
2
 

Six sizes: 1.2k, 2.5k, 5k, 10k, 

15.6k and 22.5k
2
 

Six sizes: 1.2k, 2.5k, 5k, 10k, 

22.5k and 40k
2
 

6.2.  Results and discussion 

 

The results in table 2 show the sampling errors – the discrepancies of each evaluation parameter 

between each sampling-reconstruction result and the standard high-density sample result. It indicates 

that the sampling error has a power function-like relationship against sample size 
by cx , 

where y  is sampling error, x denotes the sample sizes, and c  and b  need to be calculated to give a 

best fit function. Other researchers have shown similar results [6, 8, 10, 23]. A linear plot of the 

sampling errors against the sample sizes cannot render a clear performance comparison when sample 

size increases.  

Since a linear relationship existed between ln y  and ln x  deduced from the above power function 

ln ln lny c b x  , 

log-log plotting is employed in this research thus the sampling performance can be shown evenly. By 

plotting the sampling-reconstruction errors against the sample sizes and giving the best fitting power 

functions, the sampling errors of each evaluation parameters extracted from the numerical 

experimental results are presented in table 2. 

 

The following conclusions can be drawn in sequence.  

1. Adaptive sampling methods usually have prominent advantages over other methods in terms of 

minimising the sampling error (height residuals and feature parameters) for structured surfaces.  

2. Uniform sampling, jittered uniform sampling, Hammersley pattern and Halton pattern sampling 

have close capabilities for retaining the measuring accuracies for measurement of structured 

surfaces. None of the methods show clear advantages over others. 

                                                      
2

 The tested sample sizes are selected based on the following criteria: (1) the tested samples sizes are 

representatively selected which indicates they might be normally used in practical measurements; (2) The tested 

sample cannot be too small in which case severe reconstruction distortion occurs; (3) The tested sample size 

cannot be too large in which case reconstruction error has minor fluctuations and the evaluation process may be 

time consuming. 
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3. On measuring the linear patterns, the sequential profiling adaptive sampling always has distinct 

advantages over the other methods. 

4. On measuring the tessellations, the three adaptive methods show their advantages on measuring 

the height related parameters such as the step height. But they have similar capabilities as other 

fixed sampling patterns when measuring the lateral parameters such as the mean pitch distance.  

5. On measuring the rotational symmetric patterns, triangle patch and rectangle patch adaptive 

subdivision samplings show significant advantages. 

 

Low-discrepancy pattern sampling methods have a similar performance as uniform or jittered 

uniform sampling. However, it doesn’t mean that they are not an optimising method; for example, 

clear advantages have been shown when measuring flatness of flat surfaces [8, 23]. On measuring 

structured surfaces, their advantages are not apparent and sometimes they may not be a better 

substitution of uniform methods. Sometimes, uniform sampling may be a better solution compared to 

other fixed patterns; evidence for this can be seen in table 2a. 

Table 2. Deviations of the evaluation parameters from the standard result for Sample 1, Sample 2 and 

Sample 3. (log-log plots) 

Sample 1 Sample 2 Sample 3 

 
(a)  

 
(d)  

 
(g)  

 
(b)  

 
(e)  

 
(h)  

 
(c)  

 
(f)  

 
(j)  

 
 

The fundamental advantages of adaptive sampling are in evidence in this work. These 

methodologies allocate their sampling efforts according to their earlier sample results or models. In 
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other words, they can adapt the sampling effort to key positions which have higher impact factors on 

enhancing the reconstruction accuracy than others. Although Adaptive sampling approaches have no 

clear advantages for measuring the pitch distance of crossed-gratings (see table 2e) but have been 

shown to be effective for other structured surfaces and other parameters of tessellated surfaces.  

The challenges, however, of applying adaptive sampling to practical measurements still widely 

exist. The sequential profiling adaptive method may suffer from the mechanical constraints of stability 

(e.g. the thermal drift) and accuracy in y-direction scanning. Most of the other efficient sampling 

methods are difficult to implement within the operation envelope of stylus instruments, with regard to 

complex scan route designs and redundant scan duration. In terms of interferometers, many of the 

reviewed sampling methods may be of promise, with the aid of a high resolution CCD and pixel 

stratification process or lens auto-switch systems. Considering the positioning errors and optical 

resolution constraints, a specialised research work on intelligent sampling of the interferometers may 

be required in the next step. In addition, more theoretical work is necessary to further the research on 

intelligent sampling. For example, the data storage solutions need to be reconsidered which was 

introduced at the beginning of this paper. The reverse problem on sampling and reconstruction need to 

be fully investigated on the basis of geometric measurement. Also, determination of the sample size 

for an adaptive measurement is a tough research topic which requires particular attentions.  

7.  Conclusions  

Selecting proper reconstruction techniques, conventional uniform sampling and three efficient 

sampling strategies are investigated for measurement of structured surfaces. The sampling accuracies 

of each method are estimated by testing three representative structured surface specimens. 

Specifically, the RMS height residuals and the main function related feature parameters of the tested 

samples are evaluated. In the presented comparison results, no prominent advantages are found among 

the fixed sampling patterns, i.e. uniform sampling, jittered uniform sampling, Hammersley pattern and 

Halton pattern sampling. Adaptive sampling methods show their distinctive performances in most of 

the cases. Particularly, performance differences between sequential profiling adaptive sampling and 

the other adaptive methods have also been shown.  

As an innovative measurement technique with prominent advantages, the difficulties of transferring 

the intelligent sampling techniques to practical instruments are widely challenging. For example, the 

mechanical and optical limitations of the stylus instruments or interferometers are not considered at 

the moment; the reverse problem on sampling and reconstruction has not been fully understood. 

However, with successful solutions of these challenges, efficient samplings are of promise in the next 

generation of measurement techniques, especially where large areas need to covered with high 

resolution. 
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