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Abstract

The role of TNFR family members in regulating cell fate both in the immune system
and in non-lymphoid tissues has been under extensive research for decades. Moreover, the
ability of several family members (death receptors) to induce death (mainly via apoptosis)
represents a promising target for cancer therapy. Many studies have focused mostly on
death receptors such as TNFRI, Fas and TRAIL-R due to their strong pro-apoptotic potential.
Yet, cell death can be triggered via non-classical death receptors, and the Lymphotoxin (LT)
system represents a very good example of such a TNFR subfamily. Here we provide a
comprehensive review of intracellular signalling pathways and cellular responses to LT-
specific signalling, and compare for the first time the LT system to other TNFRs, such as
CDA40. Our aim is to highlight that non-classical TNFR-TNFL dyads such as the LT system
demonstrate more complex, cell-type and context-specific capabilities. Understanding these
complexities will permit a better understanding of the biological mechanisms via which non-
death domain-containing TNFRs induce cell death, but may also allow the design of better

therapeutic strategies.
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Abbreviations

AP-1: activator protein-1

APRIL: a proliferation-inducing ligand

BAFF: B-cell activating factor belonging to the TNF family
CLL: chronic lymphocytic leukaemia

DD: death domain

DR: death receptor

DcR: decoy receptor

DIF: differentiation-inducing factor

Fas: Fibroblast-associated cell-surface

LT: Lymphotoxin

LIGHT: Lymphotoxin-like exhibits Inducible expression and competes with herpes simplex
virus Glycoprotein D for HVEM, HVEM being a receptor expressed on T lymphocytes
NF-xB: nuclear factor kappa B

NGF: nerve growth factor

HVEM: herpes-virus entry mediator

IFN-y: Interferon-gamma

JNK: c-Jun N-terminal kinase

RANK: receptor activator of nuclear factor-kB

TF: Transcription factor

TNF: tumour necrosis factor

TNFa: tumour necrosis factor-alpha

TNFSF: TNF superfamily

TNFL: TNF ligand

TNFR: TNF receptor

TRAF: TNFR-associated factor

TRAIL: TNF-related apoptosis-inducing ligand

TRAIL-R: TRAIL receptor

TL1A: TNF-like molecule 1A
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1. The discovery of the Tumour Necrosis Factor (TNF) and
Lymphotoxin (LT) proteins

The first indirect evidence for the existence of the tumour necrosis factor (TNF)
family originates from experiments involving Coley’s mixed toxins, which were discovered in
the late 1800s. Coley’s toxins consisted of a cocktail of dead bacteria and this toxic mixture
was found to cause the regression of human sarcomas. The hypothesis was that the
immune system needs a local trigger, such as that achieved by pathogens, which mediates
the recruitment of immunocytes in order to attack tumour cells. Decades later, and in line
with Coley’s discovery, Gratia and colleagues found that administration of bacterial culture
filtrates (consisting of £.coli and other bacterial types) led to liposarcoma regression in
guinea pigs. In 1943, Shear and colleagues demonstrated that isolated endotoxins from
Gram-ve bacterial lipopolysaccharide (LPS) were able to cause haemorrhagic necrosis in
transplanted murine sarcomas. It was later suggested that the endotoxin-induced
haemorrhagic necrosis in transplanted tumours was not due to direct cytotoxicity to
tumours, but occurred by indirect mechanisms that resulted in hypotension, leading to
vascular collapse and ischemia, thus causing tumour cell anoxia and ultimately cell death. A
decade later, O'Malley and colleagues reported that administration of this endotoxin mixture
could induce necrosis to tumour-bearing mice and this factor was formally named Tumour
Necrosis Serum (TNS). The effectiveness of TNS was further confirmed /n vivo and Carswell
renamed this as Tumour Necrosis Factor (TNF), a ligand that appeared toxic towards
malignant cells (1), now referred to as TNFa. A series of initial investigations carried out
both /n vitro and /n vivo demonstrated the pro-apoptotic potential of TNFa and as the
administration of recombinant TNFa in tumour-bearing mice resulted in anti-tumour

responses, these observations rendered TNF a promising anticancer agent.

Soon after the identification of TNFa, a similar TNF-like factor was discovered and
named TNFB which was later renamed Lymphotoxin-alpha (LTa), following its discovery as a
protein secreted by T lymphocytes after recognition of host virus infection and of tumour
antigens. Officially the two ligands were characterised when the coding sequences for both
TNFa and LTa were isolated in the 1980s. The TNFa and LTa proteins are structurally and
functionally closely related molecules but they demonstrate differential functional outcomes
on several human cell lines (discussed in detail in subsequent sections). TNFa and LTa are
now classified into a group of cytokines which have critical functional importance in
immunity, inflammation, cytodifferentiation and apoptosis and represent the archetypal

4
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members of the group of proteins that now constitutes the tumour necrosis factor
superfamily (TNFSF).

2. The TNF ligands (TNFLs) and TNF Receptors (TNFRs)

The TNFSF consists of a large and complex network of ligands (TNFLs) and receptors
(TNFRs) and each subgroup of the family may function in distinct ways, based on their
signalling capacity and their ability to regulate specific gene expression and subsequently
cell fate. By means of signalling triggered via interactions of these receptors with their
cognate ligand(s), TNFRs play a critical role in cellular homeostasis and have multifunctional
roles ranging from promotion of cell growth or induction of differentiation, to cytotoxicity by
activation of cell death (mainly apoptosis). The members of TNFLs and TNFRs are
summarised in Table 1 with additional information on their cellular origins and recruited
intracellular proteins (see also subsequent sections). Whilst, to date, 18 ligands and 29
receptors have been identified, in this review we will mainly focus on receptors and ligands
of the Lymphotoxin (LT) system, and compare them with other closely related TNFSF
systems that share structural and particularly functional similarities. As described above, the
discovery of LTa came shortly after the discovery of TNFa. Both ligands are able to interact
with both TNFR —I and —II receptors, albeit with different affinities. Unlike other TNFRs such
as Fas, TRAIL-R or CD40 which almost exclusively have a single cognate ligand, the LT
system is far more complex with ligands LTa, LTB, LTa1B2, LTa2p1, and LIGHT being able
to interact with the two main transmembrane receptors LTBR and HVEM, the TNFRs -I and
—II as well as the soluble receptor DcR3 (however the DcR3 receptor will not be discussed in

this review).

2.1 TNFLs

TNFLs are type II transmembrane proteins that contain an intracellular N-terminus
and extracellular C-terminus with the C-terminus region characterised by a conserved TNF
homology domain (THD) (2, 3). TNFa is expressed in full-length on the cell surface as a
26kDa membrane ligand (mTNFa) and as a 17kDa soluble cytokine (sTNFa) after shedding.
By contrast, LTa is always shed as a soluble cytokine, yet LT is expressed only in a
membrane-bound form, as the latter does not contain a cleavage site. LTa and LT can

assemble together and form two membrane bound complexes of LTap; the LTa1B2 complex
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consists of a single BB and two unique ap sites and exhibits high affinity to LTBR; LTa2B1 on
the other hand binds to TNFR —I and TNFR —II, but with less affinity to LTBR. LIGHT, also
known as TNFSF14 or TL4, exists also in either membrane form (29kDa) or a soluble form
following cleavage by a yet undefined furin-like proteinase and can bind both LTBR and the
HVEM receptor, but not TNFR —I and TNFR —II (Figure 1).

2.2 TNFRs

The majority of the TNFRs are type I transmembrane glycosylated proteins with an
extracellular N-terminus and an intracellular C-terminus, although some TNFRs are type III
transmembrane proteins (BCMA, TACI, BAFFR and XEDAR (3)). Structurally, TNFRs can be
divided into three regions; an extracellular domain (ECD), a transmembrane domain (TMD)
and an intracellular domain (ICD). All TNFRs share a four cysteine-rich domain (CRD) in the
ECD region, which is responsible for the specificity and affinity of these receptors for their

cognate ligands.

In order to initiate TNFR-mediated cell signalling, TNFLs (either in soluble form or in
membrane-bound form on the surface of an effector cell) induce TNFR clustering,
aggregation and oligomerisation (cross-linking) on target cells. Signals are generally
accepted to require trimeric ligands to achieve receptor trimerisation (as shown in Figure 1).
However, TNFRs may not exist as monomers that trimerise only upon ligand binding; there
is in fact evidence for the existence of a pre-ligand assembly domain (PLAD) residing within
the CRD of the receptors, which appears to be critical for the function of the receptor (4).
Typically, once the receptor is activated, signal transduction is triggered via recruitment of
adaptor proteins in order to ultimately activate transcription factors such as NF-xB or c-Jun
N-terminal kinase /activator protein-1 (JNK/AP-1) for induction of either proliferation,
differentiation or, more typically for a large proportion of the TNFSF, cell death (Figure 1).
The precise nature, timing and extent of adaptor protein recruitment and overall TNFR
activation are dependent on several factors, such as cell type, cellular context/state, and
quality of the signal i.e. the strength of ligand-receptor interaction (discussed further in
subsequent sections). These factors are critical for adaptor protein recruitment and

intracellular signalling and thus functional outcome.
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2.3 TNFR sub-groups

TNFRs can be divided into three sub-groups based on the specific structural features
that they contain within their ICD (5). An important characteristic defining the first and more
classical TNFR group is that the ICD contains a death domain (DD) and this includes TNFRI,
Fas and TRAIL-Rs (Table 1). The DD permits signalling initiation via adaptor protein
recruitment; these adaptor proteins are modular, as they contain a DD (that allows
interaction with the receptor) as well as a death effector domain (DED). Examples of such
proteins include the TNFR-associated DD (TRADD) for TNFR-I and Fas-associated DD
(FADD) for Fas and TRAIL-Rs. The existence of the DED permits induction of apoptotic
signalling via recruitment of DED-comprising initiator pro-caspases, in particular caspase-8

and in some cases caspase-10 (5-7).

The second TNFR group is characterised by the presence of another type of domain
known as the TRAF-interacting motif (TIM). Receptor activation leads to recruitment of
TNFR-associated factors (TRAFs), which are zinc RING finger proteins with a C-terminal
region responsible for receptor binding, and these adaptors mediate recruitment and/or
activation of downstream signalling pathways, mainly Mitogen Activated Protein Kinases
(MAPKSs) such as p38 and JNK resulting in activation of transcription factors (TFs) such as
NF-xB and AP-1. To date, seven TRAF proteins have been identified and different TNFRs rely

on distinct signalling pathways mediated by different TRAFs following receptor activation

(8).

NF-«B is the best studied TF and is a critical transcriptional activator of many genes
involved in innate and adaptive immunity, inflammatory responses, as well as development
and maintenance of the immune system. The NF-xB family includes Rel (c-Rel), RelA (p65),
RelB, NF-xB1 (p50) and NF-xB2 (p52) and activates two pathways; the classical (canonical)
and alternative (noncanonical) (detailed in Figure 1). In the context of the TNFSF, the
canonical pathway often mediates inflammatory responses while the noncanonical pathway
is involved in immune cell proliferation, maturation and is responsible for secondary

lymphoid organogenesis (reviewed in (9)).

The third group of TNFRs is characterised by the lack of intracellular signalling
function, due to the lack of an ICD in their cytoplasmic region. Yet, by maintaining the
capacity to bind to TNFLs, these receptors act as decoy receptors and attenuate TNFR
signalling. The best characterised such receptors are the TRAIL decoy receptors TRAIL-R3
(DcR1) and -R4 (DcR2) (10, 11) (Table 1).
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2.4 Regulation of TNFL and TNFR function by shedding

Decoy receptors are not the only factor negatively modulating TNFR activation,
because regulation of receptor signalling involves shedding of both ligands and receptors
into soluble forms (Figure 2) by the action of a family of metalloprotease known as
sheddases, and often and this phenomenon is associated with attenuation of ligand-
mediated receptor activation. Such enzymes include disintegrin and metalloproteinase
(ADAM-17), and the latter is also referred to as TNF-alpha-converting enzyme (TACE) and
was originally identified for its ability to shed membrane (mTNFa) to soluble ligand (sTNFa)
(12). Importantly, cleavage of both mTNFRs and mTNFLs into soluble forms limits the
bioavailability and thus concentrations of TNFLs and their respective TNFRs and this may

have a direct impact on functional outcome.

3. The TNFa system: ligand-receptor interactions and
intracellular signalling

TNFa is either secreted or maintained as a membrane-bound ligand by various
immune and non-immune cell types including natural killer cells (NK), neutrophils,
macrophages, monocytes, T cells, mast cells and granulocytes, as well as neurons,
keratinocytes, smooth muscle cells, fibroblasts, endothelial cells and some malignant non-
lymphoid cell lines (13), where it can activate multiple signalling transduction pathways.
TNFa, the main ligand for the TNFR —I and —II receptors, is the archetypal pro-inflammatory
cytokine and is a highly pleiotropic factor that plays critical roles in a variety of physiological
mechanisms (13, 14). An intriguing feature of the TNFa/TNFR-I/II system is that differential
receptor expression and/or receptor activation by TNFa can regulate the balance between

cell survival and apoptosis (15).

TNFa was found to act as an inducer of apoptotic cell death during the maturation of
mice thymocytes (16, 17). In vitro, TNFa mainly has either growth inhibitory or cytotoxic
effects in some normal cell types and in human tumour cells, but in most cases tumour cell
lines are sensitive to TNFa only when the protein synthesis was inhibited using
cycloheximide (CHX) (18). TNFa can induce both necrotic and apoptotic cell death in mouse
fibroblasts /n vitro and /n vivo (19). In particular, recombinant TNFa causes growth inhibition
or cytotoxicity in @ number of cell lines of human and murine origin such as human

carcinoma cell lines ME-180 (cervical) and murine fibroblasts (L929). However, not all cells

8
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respond to TNFa by apoptosis. In fact, normal skin (Detroit 551) and lung fibroblasts (WI-
38) were resistant and their growth was actually stimulated by TNFa (20-22), which is also
observed in some carcinoma cells types such as those of the bladder, where TNFa can be
growth-promoting (23). Of note are studies demonstrating that membrane-bound TNFa
induces stronger signalling via TNFR —I and —II compared with its soluble counterpart, which
can fundamentally alter the functional outcome of receptor activation (24, 25). Therefore
TNFa exhibits both cell type- and context-specificity and TNFa-mediated signalling can have
highly pleiotropic effects.

TNFRs I and —II are mainly activated by TNFa although receptor ligation can be
induced by soluble LTa3 (due to its highly homologous structure to TNFa) and by LTa2Bp1
(see also following sections). TNFRI is constitutively expressed on most nucleated cell types
but is predominantly found on cells of epithelial and fibroblast origins. Overall, TNFRI has a
greater abundance than TNFRII, with TNFRII mainly expressed on monocytic, lymphocytic,
myeloid, hematopoietic, endothelial and neuronal cells. During inflammation, both TNFRI
and TNFRII receptors can be quickly shed into soluble receptors believed to be important in
down-regulating the inflammatory effects of TNFa and these sTNFRs have been detected in
human urine and blood serum of cancer patients (26).

Activation of TNFR —I and —II induces distinct signalling pathways; for instance, it
has been demonstrated that the stimulation of individual TNFR —I or —II on mouse
thymocytes and cytotoxic T cell line CT-6 by murine TNF (but not human TNF) induced
differential effects in these cells (27). Agonistic antibodies specific for TNFRI caused
cytotoxicity whereas antibodies for TNFRII failed to reciprocate this. Moreover, TNFRII
stimulation triggered cell proliferation (27). Through its DD and TRADD, TNFRI activation
can activate the caspase-mediated pathway of apoptosis in numerous tumour cell lines (28).
Activation of TNFRI by TNFa also induces the activation NF-xB (29) and this is a negative
regulator for apoptosis mediated by TNFRs signalling (30, 31). It has been shown that cell
death could be augmented by the inhibition of NF-xB after TNFa treatment or the specific
activation of TNFRII (32). Pham and colleagues further demonstrated soluble TNFa-induced
apoptosis in NF-kB-deficient cells (33) which was due to JNK activation. TNFRI also contains
a TIM domain which interacts with TRADD, TRAF1 and TRAF2 and this triggers the
activation of receptor interacting protein kinase (RIP). RIP and TRAF2 form a complex with
TRADD in order to induce either MAPKs which lead to NF-«xB, or c-Jun N-terminal kinase
(JNK)/activator protein-1 (AP-1) activation (11). RIP is a critical player that participates in
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various biological processes for intracellular and extracellular stresses and is found to
stimulate TNF-induced necrosis (34-37).

TNFR-II binds to mTNFa with high affinity, thus it has been suggested that there
must be cell-cell contact in order for TNFa to activate TNFRII effectively. TNFR-II also
recruits TRAF1 and TRAF2, and the latter plays a critical role in activation of IKK and stress
kinases JNK and p38. Activation of these is regulated by reactive oxygen species (ROS)
release, which can occur either from NADPH oxidase (Nox) or following mitochondrial
disruption (36, 38-46). Notably, ROS induction can trigger both pro-survival and pro-
apoptotic signals; low levels of ROS activate NF-xB and cell survival, yet in high amounts
ROS appear to activate JNK and cause apoptosis or necrosis. Reports indicate that ROS is
found to also be a critical upstream component for the activation of MAPKs, NF-xB and AP-1
and caspases, and thus many TNF-induced responses supported by findings that ROS
regulate TNF-a-induced apoptosis/necrosis (47). In fact, JNK can induce necrosis mediated
by TNF-stimulation by ROS augmentation, thus JNK may control the balance of TNF-
stimulated cell apoptosis versus necrosis (48). More recently mTNFa was shown to be highly
cytotoxic to carcinoma cells due its ability to cause ROS-mediated necrosis (49).
Interestingly, it was confirmed that apoptosis was driven by mTNFa-mediated ligation of
TNFR —II and not -1 (24, 49). Moreover, it has been reported that the inhibition of either
ROS or JNK activity prevents the release of mitochondrial cytochrome ¢ and caspase-3
cleavage in response to TNFRI activation, thus demonstrating that ROS are important
regulatory molecules in TNFa-mediated apoptosis. It should however be noted that a
number of previous reports indicated that JNK activation is not always essential in TNF-
induced apoptosis (47, 48, 50, 51).

4. The Lymphotoxin system: ligand receptor interactions and
cell signalling

4.1 LT receptors
4.1.1LTBR

LTPBR is activated by three ligands which are the two heterotrimeric LTa3 complexes
and the homotrimeric LIGHT (31). This receptor is mainly expressed on stromal fibroblasts,
epithelial cells, monocytes, DCs and mast cells but is absent on lymphocytes (52, 53).

Expression of LTBR by stromal cells in the intestine is important for normal production of IgA

10
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after antigen recognition. Constitutive LTBR-mediated signalling leads to the development of
autoimmune disease, including Sjogren’s disease and experimental autoimmune
encephalomyelitis (EAE). Moreover, LTa” and LTBR”" mice demonstrated a reduction in
chemokine and adhesion molecule expression within lamina propria lymphocytes (54).
Blocking of LT pathways in normal adult mice using soluble receptor-immunoglobulin fusion
protein (LTBR-Ig) caused inhibition of splenic germinal centre formation and defective
humoral responses (55). Thus, such studies using genetically modified mice indicate that
LTPBR is a key molecule involved in lymphoid organogenesis and in adaptive humoral
immunity. Two studies using a fusion protein to inhibit LTBR signalling through LTa1p2 and
LIGHT attenuation, have also shown that LT receptors regulate the normal development
lymph nodes of mice offspring (56, 57). More recent studies have indicated that little LTBR
expression is found in normal human colon tissue and adenomas, but receptor expression is
increased on colon adenocarcinomas (58), thus indicating that LT receptor expression may

increase during carcinogenesis.

Activation of the LTBR receptor /n vitro by either LIGHT mutein (LIGHT-R228E —
which is mutated form of LIGHT that preferentially interacts with LTBR over HVEM) or
agonistic anti-LTBR antibody, induces chemokine (IL-8) secretion in HEK293 and 375
melanoma cells and inhibits the growth of 375 melanoma cells, and this appears to be due
to differential modulation of the MAPKSs signalling molecules ASK1, JNK1/2, AP1, and NF-«xB
(59-62). Unlike TNFRI which activates the canonical pathway of NF-xB, LTPR can activate
both NF-«B pathways (5, 11). Lukashev et al have previously demonstrated that agonistic
multivalent pentameric anti-LTBR antibody CBE11 can reduce the growth of colon and
cervical tumours /n vivo (63). More recently, Hu et al demonstrated that LTBR activation
using LTBR agonistic antibody BS-1 was found to induce growth inhibition (as well as NF-xB
activation) in colon carcinoma cell lines HT29 and CT26, mammary carcinoma 4T1 and soft-
tissue sarcoma CMS4 (58). Moreover, BS-1 was able to trigger the activation of caspase -8
and -3 as well as the release of cytochrome c in tumour cells, all of which were mediated by
LTPBR activation; this provides evidence that cell growth inhibition of these tumour cells
could be partially driven by caspase-dependent mechanism (58). The aforementioned study
also reported that the activation of LTBR by using a different monoclonal anti-LTBR antibody
(ACH®6) suppressed the colon carcinoma metastasis /n vivo (58). These findings are in
support of previous work by Browning and colleagues demonstrating that anti-LTBR

monoclonal antibody alone caused cell death /in vitro (64). Therefore, signalling through

11
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LTBR either by its natural ligands or via agonistic anti-LTBR antibodies triggers cell death for

a variety of tumour cell lines (64, 65).

The growth of colon and cervical carcinoma cell lines in xenograft models was shown
to be inhibited by agonistic antibody LTBR (CBE11) and this potentiated tumour responses
to chemotherapeutic treatment (63). In vitro, however, some contradictory findings have
been reported, as the activation of LTBR with an agonistic LTBR antibody in melanoma cell
lines (Hs294T, SKMel5, SKMel28, and WM115) leads to the activation of the NF-xB and
enhances tumour cell proliferation (66). Mackay et al reported that activation of LTBR with
either soluble LTa1B2 or agonistic anti-LTBR antibody (CBE11) induced activation of NF-xB
in HT29 and WiDr human adenocarcinoma lines and human lung fibroblasts WI-38 (67), but
Browning at al demonstrated that recombinant LTa1p2 together with IFN-y were cytotoxic
to an array carcinoma cell lines, including HT29 and WiDr, breast adenocarcinoma cell line
(MDA-MB-468) and cervical carcinoma (HT-3) cells (64).

Signal transduction through LTBR involves recruitment of adaptor proteins such TRAF
-2, -3, and -5 to the cytoplasmic tail of the receptor upon its ligation (65, 68, 69) and these
interactions regulate TF activation. TRAF2 and TRAF5 recruitment led to NF-xB activation,
but TRAF3 was found to be a negative regulator for NF-xB activation and associated with
induction of cell death, as shown in the tumour cell line HT29 and in human embryonic
kidney cells (HEK293T) (70), findings is an accordance with such an effect for TRAF3 in
signalling triggered by other TNFSF members (71, 72). A study by Kim and colleagues also
demonstrated using Hela cells /n vitro that TRAF2 and TRAF3 were recruited following the
LIGHT/LTPR ligation and their recruitment led to the activation of NF-xB and JNK (73). Bista
and colleagues reported that TRAF3 functions as a pro-survival molecule during LTBR
activation, through canonical and noncanonical NF-«B function. In fact, LTBR-induced
signalling complexes enhanced TRAF3 recruitment, but decreased TRAF2 recruitment which
attenuated the phosphorylation of IkBa and RelA genes of NF-xB (74). Moreover, Chen and
colleagues demonstrated using human hepatoma cells (Hep3BT2), HeLa and HEK293 cells
that the activation of LTPR by using either LIGHT mutein (LIGHT-R228E) or agonistic
monoclonal antibody anti-LTBR (clone 31G4D8) led to the recruitment of TRAF3 and TRAF5
and the production of ROS, which in turn activated apoptosis signal-regulating kinase-1
(ASK1) to induce caspase-dependent and caspase-independent LTBR-mediated death (59).
Furthermore, it has been reported that a mixture of cell death features was observed
following LTBR activation and this depended on cell type; for example, apoptosis was

12
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observed in the fibroblastoid line WEHI164, whereas a mixed type of cell death (apoptosis

and necrosis) was seen in HT29 cells following LTBR activation (75).

4.1.2 HVEM

Another receptor that binds with LIGHT and LTa is the herpesvirus entry mediator
(HVEM). This receptor is expressed by lymphoid and non-lymphoid cells, but primarily it is
expressed transiently by NK cells and constitutively on naive CD4* and CD8" T cells. It is
reported that most B cell malignancies express HVEM and these include those of B-chronic
lymphocytic leukaemia (B-CLL), mantle cell ymphoma, acute lymphoblastic leukaemia (ALL)
and Burkitt's lymphoma. HVEM is also expressed by all primary myeloma cells and in plasma
cell leukaemia (31). HVEM has dual roles acting as both a receptor and as ligand and it was
first described as a receptor for herpes simplex virus-1 (HSV-1) glycoprotein D (HSV-gD),
the main component of the HSV envelope for entry into human and mouse cells (76, 77).
HVEM functions as ligand and binds the immunoglobulin (Ig) superfamily members B and T
lymphocyte attenuator (BTLA) and CD160 (glycosylphosphatidylinositol-anchored member of
immunoglobulin (Ig) domain protein), and expressed by many immune cells as reviewed

recently elsewhere (78).

It has been demonstrated that engagement of soluble LIGHT with HVEM-expressing
U937 cells induced a weak increase in NF-kB activity (79). Overexpression of HVEM in 293
cells enhances the recruitment of adaptor proteins, TRAF -1, -2, -3, and -5, which resulted in
activation of NF-xB and AP-1 activation. By contrast, other studies demonstrated that HVEM
activation more likely recruits TRAF2 and TRAF5, which are key mediators for the activation
of NF-xB as well as AP-1 (68, 73, 80, 81). Pasero and colleagues demonstrated that LIGHT-
mediated HVEM signalling is able to induce cell death in freshly isolated B-CLL tumour cells,
while LTBR was not expressed or expressed at low levels. The mechanisms responsible for
cell death in the B-CLL tumour cells related to expression of FasL, p53, Bax, Bid, Bcl-Xs and
mitochondrial cytochrome C release (82). Interestingly, it was found that broad caspase
inhibition via z-VAD-FMK did not prevent apoptosis, suggesting that both intrinsic and

extrinsic pathways of apoptosis were active (82-84).

This data suggests that despite the co-stimulatory and co-inhibitory role for HVEM
during immune regulation, HVEM could in fact function as a tumour suppressor if utilised in

the correct context. However, there is evidence to suggest that the way HVEM modulates

13
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cell fate might be indirect and more complex than the aforementioned studies suggested

(discussed in more detail in the following sections).

4.2 LT ligands
4.2.1LTa

LTa is often used as a term to describe the biologically active trimer LTa3 (31, 85),
but can exist in three different forms; soluble homotrimeric LTa3, or as two transmembrane
heterotrimeric complexes termed LTa1B2 and LTa2B1. LTalB2 and LTa2p1 complex
formation occurs when soluble LTa binds to LT bound on the cell membrane, thus
signalling via LTaB-LTBR interaction requires target-effector cell contact. In addition to
binding to TNFR (Figure 1), LTa3 may bind HVEM, although this binding has been reported
to be with low affinity (86). LTa is secreted by activated lymphocytes, resting B cells, non-
hematopoietic and myeloid lineage cells. Like TNFa, LTa secretion has been found in some
immortalised T cell lines including Jurkat and Hut78 (87). It is also found to be secreted
following stimulation of Raji B lymphocytes with phorbol ester (88). It has been shown that
when LTa is mutated at either D50N or Y108F, it will only remain as a homotrimer which is
not able to bind TNFRI or TNFRII and is not able to induce HT29 cell apoptosis. The
modified LTa ligand, however, co-assembled with LT and formed a stable ligand
heterotrimer complex named LTap, which was functionally active and able to trigger cell
death in the adenocarcinoma cell line due to a capability to bind LTBR (89). In addition,
Browning and colleagues reported that the LTa1B2 with mutated LTa was functionally active
on HT29 and WiDr cells (64).

4.2.2 LTB and LTap complexes

The non-cleavable membrane LT ligand is active when homotrimeric and it ligates
with LTBR (89). LTB is known to be expressed in splenic naive B cells in the adult spleen,
CD4" T cells, and mature DCs. Evidence suggests that the expression of LTB on these
lymphocytes enhances the immune response, and is also responsible for antiviral immunity
on non-lymphocytes by facilitating antigen presentation by APCs (90). LTB remains largely
under-researched, not only perhaps due to its lack of malignant cell toxicity, but because it

mainly assembles with LTa in order to form membrane stable complexes of LTa (89).
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As in the case of LT, the effects of LTaB complexes (via LTPR activation) remain
relatively under investigated, despite the ability of LTap ligands to induce cytotoxic effects /in
vitro and in vivo (64, 89). The expression of both LTalB2 and LTa2B1 complexes is
regulated by IL-2, which leads to their induction on human peripheral blood T cells (88).
Interestingly, LTap ligands exhibit differential receptor binding specificities due to the
differences in their stoichiometry (31). In murine studies, LTap expression shows induction
on splenic T cells in response to the cytokines IL-4 and IL-7 and the chemokines CCL19 and
CCL21 (91, 92), but it is still not yet reported how this relates to humans. The interaction of
LTap with its receptor LTBR is also important for the maintenance of the gut-associated
lymphoid tissues (GALT), including, lymph nodes and Peyer’s patches and also for the
formation of germinal centres (31, 87). This suggests that the system is important in normal
development and immune regulation following adulthood. Some studies have looked the
importance of the LTap complexes in signal transduction (31, 93-96). Of the two types of
LTaB membrane complexes, recombinant LTa132 was able to induce cell death in a range of

carcinoma cell lines in the presence of IFN-y (64).

4.2.3 LIGHT

Lymphotoxin-like exhibits Inducible expression and competes with herpes simplex
virus Glycoprotein D for HVEM, HVEM being a receptor expressed on T lymphocytes (LIGHT)
was identified and classified as a TNFL member when it showed sequence homology with
TNFa (27%), LTa (27%), LTB (34%), FasL (31%) and CD40L (26%) (86). LIGHT is
constitutively expressed on myeloid cells, primary immature DCs and its expression can be
induced on the surface of activated T cells and macrophages (79, 86, 97). LIGHT can ligate
both LTPR and HVEM receptors (and can bind to soluble receptor DcR3) to regulate cell
proliferation, differentiation and growth inhibition (see below). The interaction of LIGHT with
LTBR and HVEM plays an important role in the induction of positive co-stimulatory signals
between immune cells as reviewed in detail elsewhere (98, 99). LIGHT also plays a crucial
role in regulating gene expression in innate and adaptive immune system against pathogens

but also conversely may be linked to disease (autoimmunity and cancer) (reviewed in (87)).

Work in transgenic mice showed that LIGHT is important for T cell proliferation and
in regulation of T cell homeostasis (100). Two studies /n vitro showed that LIGHT induces T
cell proliferation, IFN-y secretion and NF-kB activation (101, 102). LIGHT also cooperates
with CD40 ligand (CD154) contributing to DC maturation (103-105). LIGHT induces the
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expression of chemotactic molecules CCL21 and adhesion molecule (MAACAM-1) and also
MIG/CXCL9 and IP-10/CXCL10 most likely via LTBR signalling (106-109). The release of MIG
and IP-10 possibly reduces tumour angiogenesis and enhances the infiltration of activated
tumour antigen-specific T cells, which may lead to tumour regression (102, 107). A study by
Petreaca and colleagues demonstrated in a cutaneous wound-healing model that LIGHT
promotes apoptosis in local macrophages via LTPR in order to reduce inflammation (110).
Conversely, however, LIGHT may enhance severe inflammation in non-lymphoid tissues
(31). In vivo, tumours expressing LIGHT have been reported to undergo autocrine LIGHT
mediated apoptosis thus LIGHT overall has a tumour suppressive effect (111). Other studies
in mice have also shown that the expression of LIGHT caused activation of localised NK cells
and the infiltration of cytotoxic CD8 T (CTL) which assisted tumour eradication (107, 112).
Transfected murine fibrosarcoma with stable membrane LIGHT resulted in tumour rejection
and eradication /7 vivo and LIGHT expression enhanced the anti-tumour response mainly by
priming T cells (101, 107).

Soluble LIGHT can trigger apoptosis of human tumour cells /n vitro but this appears
to require the presence of IFN-y (111). The combination of LIGHT/IFN-y in fact has the
capacity to cause apoptosis of p53-normal and p53-deficient HT29 adenocarcinoma cells
(113), MDA-MB-231 breast cancer cells (114), caspase-3 deficient MCF-7 breast cancer cells
and human hepatoma cells (59, 101). It was recently reported that LIGHT treatment
triggers the activation of caspase-3 with concomitant down-regulation of anti-apoptotic
protein Bcl-2 in HCT116 colorectal carcinoma cells (115). This is in support of previous
studies suggesting that the LIGHT/IFN-y combination induces apoptosis via down-regulation
of anti-apoptotic Bcl-2 family members, where the contribution of the Bcl-2 families (pro-
apoptotic and anti-apoptotic) appears to be cell type-dependent (101, 114). Some studies
also demonstrated that LIGHT/IFN-y induced apoptosis may be caspase-independent, as
caspase inhibition had little effect on cell death (75). Chen and colleagues also showed that
LIGHT treatment combined with IFN-y drives ROS-dependent apoptosis in the human
hepatoma line Hep3BT2 (101). There is now more evidence for a role of ROS in LT-related
and particularly TNFa-induced apoptosis and ROS-induced death overall is increasingly
attracting attention in the context of the TNFSF (116-118).

Interestingly, a number of studies have suggested that the functional outcome of
LTBR and HVEM receptor activation by LIGHT is dependent on the presence or relative
expression levels of these receptors on the target cells. Some elegantly performed studies

by Ware and colleagues using an HVEM-selective LIGHT mutant that cannot bind LTBR
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showed that IFN-y assisted activation of LTBR alone is sufficient and necessary for LIGHT-
induced apoptosis in HT29 cells, and apoptosis was TRAF3-dependent (65). Interestingly,
however, LIGHT-induced growth inhibition occurs in carcinoma cells MDA-MB-231 and HT29
cells which express both receptors LTBR and HVEM, and also LIGHT was not cytotoxic to
cells that expressed only one of these receptors (111). In that study, LIGHT induced growth
inhibition in the prostate cancer cell line PC-3 which only expresses LTBR but not HVEM.
This evidence highlighted two important points: a) LIGHT may not cause cell death for
target cells expressing one of the receptors LTBR or HVEM, b) LIGHT engagement with
LTBR or HVEM may trigger different biological mechanism in target cells (111). A recent /n
vitro study using HelLa and HT29 cells demonstrated that signal transduction (TRAF2 levels
and activation of NF-xB) and functional outcome (apoptosis) rely on the relative expression
of HVEM and LTBR on the target cells (72). This is in line with studies showing that HVEM
activation by agonistic antibodies rather than LIGHT acts to promote cell survival (119),
whereas LTBR signalling by agonists drives cell death or cell survival in a cell type-restricted
manner (61, 64, 67). However, such findings contrast previous studies by Pasero et al in
cells from patients with chronic lymphocytic leukaemia, which suggested that when HVEM is
the primary available receptor, soluble and mainly membrane-presented LIGHT promoted
cell death. Interestingly this was found to occur via cross-talk of LIGHT-mediated signalling
with other TNFSF members, in particular by induction of endogenous TNFa, which enhanced
HVEM mediated cell-death (82).

Therefore, the effect of LIGHT-induced signalling on cell fate appears complex and
studies like those discussed above have not only suggested receptor level-related effects,
but also, as soluble LIGHT does not bind to other TNFRs, e.g. Fas, DR4, or DR5 shown by /n
vitro binding assays (59), it is possible that indirect signalling (via cross-talk) may be
important, too. It may therefore be possible that the HVEM and LT[R receptors can signal
independently, cooperatively or in an antagonistic fashion in determining cell fate in the
context of LIGHT signalling.

5. The LT and CD40 ligand-receptor systems

5.1 CD40 and its signalling and functional similarities to LT in
regulating cell fate

In addition to its similarities to the archetypal ligand-death receptor dyads (and

particularly TNFa/TNFR-I/II), the LT system demonstrates strong and striking signalling and
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functional similarities to the CD40 system. CD40 was first functionally characterised in B cells
(although originally identified as an antigen expressed in bladder carcinomas) and shares
homology with NGFR (120). CD40 is a type I transmembrane protein with a MW 40-45 kDa
and is constitutively expressed on activated T cells, B cells, DCs, APCs, but also at low level
on monocytes, platelets as well as fibroblasts, epithelial, endothelial, neuronal cells, and is
also found to be expressed by a variety of carcinomas. The ligand of CD40 is CD154
(CD40L), a type II transmembrane protein with MW between 31-39 kDa (121). CD40L is
predominantly expressed on activated CD4* T cells and B cells, activated APCs (such as
DCs) as well as activated platelets (122-124). The CD40/CD40L dyad is critical in cellular and
humoral immune responses, and is essential for lymphocyte proliferation as well as
differentiation and maturation. CD40/CD40L engagement mediates DC activation and the
activated DCs promote the upregulation of other co-stimulatory molecules, for instance B7
family members, resulting in potent production of proinflammatory cytokine in order to

enhance productive immune responses.

One interesting characteristic of the CD40 system is that receptor expression is not
restricted only to normal cells but it is also expressed in both mouse and human in many
tumour cells, including hematological malignancies, such as lymphocytic leukaemia,
lymphoma, multiple myeloma, acute myeloid leukaemia (AML) as well as in both non-
Hodgkin’s lymphomas (NHLs) and Hodgkin’s lymphomas. Moreover CD40 is expressed on
non-lymphoid cells where its engagement by CD40L contributes to cytokine and chemokine
secretion and can also lead to fibroblast and endothelial cell proliferation. Although CD40
expression is relatively low on normal epithelial cells, it is often highly expressed on solid
tumours such as melanoma and lung cancers as well as in carcinomas of the nasopharynx,
bladder, cervix and in ovarian cancer, although it appears to be absent from most prostate

carcinomas (125).

The outcome of CD40/CD40L signalling ranges from proliferation and differentiation
to growth inhibition and cell death in a cell type- and context-dependent manner. With
regards to its function in tumour cells, CD40 ligation has growth inhibitory effects in ovarian,
breast, bladder (urothelial) and colorectal tumour cells /n vitro when such cells were treated
with a soluble form of CD40L or agonistic anti-CD40 antibodies (23, 126, 127). Combination
of soluble CD40 agonist with pharmacological protein synthesis inhibitor (cycloheximide) or
chemotherapeutic agents (e.g. cisplatin) dramatically enhanced the anti-proliferative
properties of CD40 ligation by rendering it pro-apoptotic in various types of carcinomas (23,
128-132).
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As in the case of the LT system, due to the lack of intrinsic kinase activity, CD40
signalling starts with the recruitment of adaptor proteins, in particular TRAF1, TRAF2,
TRAF3, TRAF5 and TRAF6. It has been shown that TRAF2, TRAF3 and TRAF6 bind directly
to cytoplasmic tail of CD40 whereas TRAF1 and TRAF5 are recruited indirectly via
interactions with TRAF2 and TRAF3, respectively. Following TRAF recruitment, signalling
cascades triggered include the p38 MAPK, AKT, JNK/AP-1, signal transducer and activator of
transcription 5 (STAT5) pathways and the activation of canonical and noncanonical
pathways of NF-kB. The activation of such cascades is dependent and attributed to the
precise TRAF protein recruitment pattern. In B cells, for instance TRAF2 and MEKK1
recruitment activates the JNK, p38 mitogen activated protein kinase (MAPK) and AKT
pathways (133-135), whereas TRAF5 and TRAF3, are found to be required for canonical and
noncanonical pathways of NF-xB activation (71, 136, 137). Ishida and colleagues
demonstrated that recruitment of TRAF5 via CD40 mediates the activation of NF-«B (138).
Studies in epithelial cells, where CD40 signalling is less well characterised, demonstrated the
importance of the presence of TRAF6 in activation of canonical NF-xB, p38, JNK and AKT
following CD40 ligation and its role in anti-apoptotic signalling (139, 140). By contrast, other
TRAFs such as TRAF3 have been implicated as mediators of CD40-induced apoptosis (127,
141). Overall, a number of signalling and functional properties appear to be shared by CD40
and LTBR. It has been reported that these receptors are able to induce the maturation and
immunogenic activity for DCs, and this is because they share similarities in activating
adaptor proteins as part of their intracellular signalling, e.g. TRAF3 induction activates the

noncanonical NF-xB pathway.

Activation of LTBR following binding of ligands LTap and LIGHT, or using other
soluble agonists, induced rapid LTBR signalling via recruitment of TRAF2, TRAF3 and TRAF5
(69, 73). It has been suggested that the role of TRAF2 is important for the activation of NF-
kB pathways (73, 81), whereas IJNK activation and cell death induction through LTBR
signalling was mediated by TRAF3. Studies using HeLa cells showed that recruitment of
TRAF2 and TRAF3 and activation of NF-kB are triggered after LTBR activation by LIGHT.
Recruitment of TRAF2 and TRAF3 through LTPBR signalling was found to be important with
TRAF3 being critical in apoptosis (65, 70), but JNK activation in this context has not been
reported. Moreover, two studies demonstrated that TRAF3 knockdown leads to the increase
of protein expression of noncanonical pathway NF-xB members, e.g. p100/RelB, RelB, and
stimulation-independent activation of NIK. NIK is a kinase required for the noncanonical

pathway activation, and the phosphorylation-mediated processing of p100/RelB into active
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form p52/RelB (74, 142, 143). NIK may act as either a pro-survival mediator by activation of
NF-xB or as a negative regulator for TRAF2 and cellular inhibitors of apoptosis 1 and 2
(cIAP1 and cIAP2) and mediate anti-apoptotic functions (144). These observations indicate a
similarity of LTBR signalling to other TNFRs (mainly CD40 and BAFF-R), where TRAF2
functions as an inducer but TRAF3 acts as inhibitor of NF-xB (92, 133); yet, the precise
functional roles of TRAFs in LTBR signalling remain relatively unexplored. Moreover, HVEM
can signal through binding to TRAF1, 2, 3 and 5 in epithelial cells (80). It was reported that
the overexpression of HVEM contributes to the activation of JNK but signal transduction via
HVEM activation is not fully understood (80, 145).

It is therefore clear that the LT system shares functional similarities to other TRAF-
recruiting receptors and particularly CD40, as it can recruit one or more similar adaptor
proteins with differential functional effects. Although more work is required to fully
characterise such functional similarities, it is clear that understanding the precise molecular
signature of LT and CD40 triggered signalling cascades and comparing their precise nature
may decipher the underpinning mechanisms of the observed differential functional

outcomes.

5.2 The importance of LT receptor and CD40 cross-linking in
determining functional outcome

One fundamental property of the TNFSF that despite its clear importance is very
rarely highlighted relates to how “signal quality” (i.e. the degree of receptor activation or
cross-linking) affects or determines the outcome of receptor ligation. There is a plethora of
reports in the literature clearly indicating that highly cross-linked agonistic antibodies, cross-
linked soluble recombinant ligands and particularly membrane-presented ligand (achieved by
co-culture of target cells with growth-arrested, ligand-expressing third-party cells) induce a

greater extent of carcinoma cell death in vitroin comparison to non-cross-linked agonists.

Studies in the CD40 system have demonstrated how ligand valency, and
consequently the extent of receptor cross-linking, can dictate cell death against survival
signals (23). Specifically in carcinoma cell lines, membrane-presented CD40 ligand
(mCD40L), but not soluble agonists (e.g. sCD40L), induces high level of pro-inflammatory
cytokine secretion and causes extensive cell apoptosis (7, 23, 146), whilst remaining a
tumour-cell specific death signal (23, 147). This is not a unique property of CD40, for
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instance it has been reported that mTNFa generates higher cytotoxicity than soluble ligand

in certain tumour cell lines leading even to necrotic cell death (24).

The importance of degree of TNFR cross-linking in determining functional outcome
(23, 148) is also clear in LT-specific signalling. Triggering cell signalling through the
activation of LTBR and HVEM has been demonstrated using various agonist formats:
agonistic antibodies, soluble recombinant ligands (LIGHT or LTap) or ligation by membrane-
presented ligand LIGHT. The majority of previous studies have focused on the activation of
LTBR, and to a lesser extent on HVEM, by soluble agonists and although activation of LT
receptors by membrane-bound ligand (and particularly LIGHT) remains under-investigated,
there are some studies that have utilised membrane-presented LT ligands.

It is well established in carcinoma cell lines that cross-linking of LTBR in Hep3BT2,
HelLa and HEK293 cells by soluble mutein LIGHT (LIGHT-R228E), which activates LTBR, and
agonistic anti-LTBR monoclonal antibody (clone 31G4D8) were able to induce cell death in
these cells (59, 65). Degli-Esposti and colleagues reported that cross-linking of LTBR with
immobilized agonistic anti-LTBR monoclonal antibody (M12) induced secretion of IL-8 and
RANTES in A375 cells, but not cell death, and similar observations were made with
membrane-bound LTB and LTap (ligands for LTBR) (61). On the other hand, Browning and
colleagues demonstrated that immobilised agonistic monoclonal antibody anti-LTBR (CBE11)
induced cell death efficiently for HT29, WiDr MDA-MB-468 and HT-3 better than when the
agonist was added to cultures in non-cross-linked form (64). Importantly, the activation of
LTBR was more enhanced when the same agonistic antibody was engineered and converted
into an IgM-like oligomer and thus delivered in pentameric form (CBE11p). The pentameric
agonistic antibody was shown to inhibit cell proliferation and induced cell death for HT29 in
the presence or absence of IFN-y to a greater extent than did the monomeric mAb form
CBE11 (63).

Interestingly, soluble recombinant LTa1B2 (another ligand for LTBR) was toxic when
combined with IFN-y in adenocarcinoma cell lines (64) and these studies by Browning and
colleagues using different cross-linked forms of LT ligands (e.g. LTal1B2) and antibodies for
LTPBR activation have provided some evidence for the importance of the degree of receptor
cross-linking in functional outcome for a number of cell lines /in vitro. Of note also, there is
evidence that cross-linking of HVEM receptor in CLL-derived cells (showing weak or no
expression of LTBR) with agonistic antibody could induce downstream signalling involving
pro- and anti-apoptotic proteins, which was more enhanced when LIGHT was presented in a

21



Albarbar et al Page 22 of 38

membrane-bound form (82). Moreover, recent studies by Bechill et al have demonstrated
that LTBR and HVEM in HelLa and HT29 cells activated by membrane-bound LIGHT (via
target cell co-culture with CHO cells expressing LIGHT ligand) or mutant LIGHT (LIGHT-
R228E) in the presence of IFN-y induced high levels of secretion of the CXCL10 chemokine
(72).

An interesting, yet related, aspect of the LT system is the clear requirement for
synergy with IFN-y for the induction of apoptosis. There is evidence that when LT receptor
activation by LIGHT is combined with IFN-y this enhanced LIGHT cytotoxicity (111), in
accordance with studies that cross-linking LTBR alone with soluble LIGHT in presence of
IFN-y is sufficient to induce cell death (65). The studies by Bechill et al showing that in HeLa
and HT29 cells LIGHT/IFN-y induced a higher level of cytokine secretion compared with
LIGHT treated cell alone further support this notion (72). Moreover, we now have evidence
that cross-linking LTBR and HVEM with wild type membrane-presented LIGHT induces
extensive cell death in carcinoma cells of various tissue origins in the absence IFN-y
compared with soluble agonists (Albarbar and Georgopoulos, unpublished observations).

Therefore, there is an emerging picture that although the activation of LT receptors
(LTBR and/or HVEM) requires the synergistic action of IFN-y to induce adequate cytotoxicity,
membrane-presented agonist may engage the apoptotic pathway more effectively thus
negating the need for IFN-y synergy. These observations on the importance of the quality of
the signal in determining functional outcome following LT system-triggered signalling
demonstrate intriguingly clear parallels with the mode of operation of the CD40/CD40L dyad,
where membrane-bound agonist provides a stronger pro-apoptotic signal that overrides

anti-apoptotic mechanisms (23, 127).

6. Concluding remarks and future perspectives

The role of the TNFLs and TNFRs in regulating cell fate in the immune system as well
as in non-lymphoid tissues has been under extensive research over the past three decades.
Moreover, the ability of several family members to induce death (mainly via apoptosis)
represents a promising target for cancer therapy. Such efforts have focused mostly on death
receptors such as TNFRI, Fas (CD95), and TRAIL-R due to their strong pro-apoptotic
potential; however lack of tumour cell-specificity represents an obstacle in such therapeutic
strategies. The ability of tumour-specific death induction might instead be a feature of the
non-classical death receptors, and the LT and CD40 systems might represent better such
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targets. However, as shown in this review, it appears that such non-classical TNFR-TNFL
dyads demonstrate more complex, cell-type and clearly context-specific capabilities, so it is

essential that more studies delve further into the complexities of these systems.

This complexity is evident at the signal transduction level as well as the level of
receptor activation. For instance, there is clear difference between the ability of TNF
agonists to trigger cell signalling when presented in a soluble versus membrane-bound form.
Often soluble agonists lack cytotoxic potency when administrated as a single treatment
(without synergism by co-treatment with cytokines), yet membrane-presented ligands
appear to be superior. And although such studies have been informative to a great extent,
the use of a variety of ligand/agonist format (soluble or membrane) between different
studies per se often makes it difficult to form a collective and unequivocal understanding of
the function of these ligands. Moreover, there is often a lack of consistency when it comes
to the cell models used to study the functional role of receptor-ligand interactions. This may
perhaps explain some of the inconsistencies evident in the literature, some of which we
mentioned above. It is thus essential that well-characterised in vitro models (e.g. cell lines
representative of tissues of origin) are employed to study the role of TNFRs. Equally, it is
important that the effect of TNFR signalling is also tested in the normal counterparts of such

cells to examine tumour cell specificity.

In conclusion, the LT and CD40 systems display several signalling similarities as well
as differences, but as our understanding of a) the signalling requirements, b) the cell-type
specificity and c) the role of the quality (strength) of ligand-receptor interactions in
determining functional outcome gradually increases, this will not only permit a better
understanding of the biological mechanisms via which non DD domain-containing TNFRs
induce cell death, but may also allow the design of better, i.e. more efficient, and also

ideally tumour-specific therapeutic strategies.
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. Signal
TNFR Cellular origin | = =~ TNFL Reference
initiation
TNFRI, TNFRSF1A, p55-60, and CD120a, Nucleated cells and all
DD plus TRAF2,5 | TNFa, cachectin, DIF, LTa3 (149-153)
TNFR60 and TNFRSF1A tissues
Inducible on immune cells
TNFRII, CD120b, p75-80 and TNFRSF1B TRAF1,2,3 LTa3, TNFa, LTa2p1 (15, 150, 154, 155)
and hematopoietic
Fibroblast, epithelial,
LTBR, TNFRSF3, CD18, TNFCR, TNFRIII myeloid cells and most TRAF2,3,5 LTB, LTa2B1, LTal1PB2, LIGHT (68-70, 74, 81, 156, 157)
tumour cells
CD95, APO-1, Fas, TNFRSF6 APT1 and T and B cells and FasL, APT1LG1 CD278, and
o DD plus TRAF2 (158-161)
DR2 epithelial cells TNFSF6
Activated T cells and
DR3, WSL-LR, TRAMP, TR3, LARD, APO- APO-3L, TWEAK, DR3LG, TL1A,
tissues of thymus, spleen | DD plus TRAF2 (159, 162-165)
3, DDR3, TNFRSF12 TNFSF12
and fetal kidney
DR4, Apo2, TRAILR1 and TNFRSF10A Most cells and cell lines DD TRAIL, Apo2L, TL2, TNFSF10 (166-170)
DR5, TRAILR2, KILLER, TRICK2 and
Most cells and cell lines DD TRAIL, Apo2L, TL2, TNFSF10 (167-171)
TNFRSF10B
Lymphoid organs, tissues
DR6, TR-7, TNFRSF21 lymphoid cells and DD plus TRAF2 N.D (153, 172-174).
tumours
DcR1, TRAILR3, TRID, Apo2, LIT and
Various human tissues Absent TRAIL, TL2, TNFSF10 (166, 171, 175-177)
TNFSF10C
DcR2, TRAILR4, TRUNDD Various human tissues Absent TRAIL, TL2, TNFSF10 (175, 178, 179)
Monocytes, dendritic
DcR3, TR6, M68, TNFRSF6B cells, lung tissues, Absent FasL, LIGHT, TL1A (158, 180)
adenocarcinomas
T, B cell and some
CD27, TNFRSF7, S152 and Tp55 TRAF2,3,5 CD27L, TNFSF7 and CD70 (181)
tumours
Lymphoid cells and some
CD30, TNFSF8 TRAF1,2,3,5 CD30L (150)
tumours
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CD40, GP39, HIGM1, IMD3, TNFRSF5,

T, B cells and some

CD40L, CD154, CD140, HIGM1,

TRAF2,3,5,6 (136, 138, 150, 182)
TRAP tumours TNFSF5
0X40, gp34, TNFRSF4, TXGP1L,CD134,
e T cells and some tumours | TRAF1,2,3,5,6 0OX40L, TNFSF4, TXGP1 (8, 183-187)
Nervous system, kidney,
NGFR, P75, P75NGFR, P75NTR, CD271, DD plus
lung, hair follicles and NGF, TNFSF16 (188)

TNFRSF16

some tumours

TRAF1,2,3,4,5,6

AITRL, TL6, hGITRL and

AITR, GITR and TNFRSF18 T cells and some tumours | TRAF1,2,3,4,5 (143, 189-193)
TNFSF18
T cells, lymphoid and
HVEM, HveA, TL1, CD270, TNFRSF14, LIGHT, LTa3, CD258, HVEM-L
non-lymphoid cells, and TRAF1,2,3,5 (80, 145)
ATAR, TR2 TL4, TNFSF14
some tumours
4-1BB, TNFRSF9, CD137 and ILA T cells and thymocytes TRAF1,2,3 4-1BBL and TNFSF9 (8, 194-196)

RANK, TRANCE-R, TNFRSF11A

Activated T cells,
dendritic cells, lymph

nodes

TRAF1,2,3,5,6

RANKL, OPGL, ODF TRANCE,
TNFRSF11A, TNFRSF11B

(195, 197-199)

Table 1

TNFL and TNFR members

The table summarises all known TNFRs and their cognate ligands, the cell types in which TNFRs are expressed and the adaptor

proteins involved in signalling triggered by the receptor in each case. N.D, not determined.
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Figure captions

Figure 1 : Interactions of TNFLs and TNFRs and associated
intracellular signalling pathways

Schematic representation of TNFL and TNFR interactions and associated signalling, with the
upper portion showing TNFL expression by an effector cell and lower portion showing TNFR
expression by target cell. TNFa can be both either membrane-bound or secreted and binds to
and activates TNFRI and TNFRII, whereas LTa3 exists in soluble homotrimeric form. LT is not
shed into soluble form and can bind with LTa to form LTaB complexes. Heterotrimeric LTalp2
binds LTBR and LTa2B1 binds with TNFRI, TNFRII as well as LTBR. LIGHT binds LTBR and
HVEM as well as soluble receptor DcR3. Arrows indicate high affinity interactions, the dotted red
arrow indicates possible binding and the dashed lines indicate binding at low affinity. TNFR-
mediated signalling is triggered via intracellular proteins associating with either the death
domain (as for TNFRI) or a TRAF binding motif (as for CD40, LTBR). Members of the TRAF
family are indicated: TRAF1 (purple), TRAF2 (black), TRAF3 (green), TRAF5 (red), TRAF6
(blue). The two main signalling axes are JNK and NF-kB (for precise explanations see text).
Activation of ROS triggers ASK1 and subsequently cell death which can be either caspase-
dependent or independent. Activation of NF-kB may involve canonical (classical) and
noncanonical (alternative) pathways. The canonical pathway depends on NIK and activation of
trimeric complex of IKKaBy and phosphorylation of IKBa to p50/RelA; the noncanonical pathway
of NF-«xB is dependent on NIK and IKKa and followed by activation of p100/RelB to p52/RelB.
The activity of p50/RelA and p52/RelB in the nucleus leads to activation of specific gene

transcription.

Figure 2 : Mechanism of TNFLs and TNFRs shedding

TNFLs (top) and TNFRs (bottom) are expressed in two forms, membrane-bound (via a

transmembrane domain anchoring the protein within the cell membrane) or soluble trimeric.
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Signalling via membrane-bound forms of TNFLs requires cell-cell contact to achieve activation of
membrane-bound forms of TNFRs to induce receptor trimerisation and trigger intracellular
signalling. Soluble TNFLs or TNFRs are membrane-bound forms that had been cleaved into

soluble forms by metalloproteinase.
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