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Statistical modelling of railway track geometry degradation using hierarchical Bayesian models 
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Abstract 

Railway maintenance planners require a predictive model that can assess the railway track geometry degradation. 

The present paper uses a hierarchical Bayesian model as a tool to model the main two quality indicators related to 

railway track geometry degradation: the standard deviation of longitudinal level defects and the standard 

deviation of horizontal alignment defects. Hierarchical Bayesian Models (HBM) are flexible statistical models that 

allow specifying different spatially correlated components between consecutive track sections, namely for the 

deterioration rates and the initial qualities parameters. HBM are developed for both quality indicators, conducting 

an extensive comparison between candidate models and a sensitivity analysis on prior distributions. HBM is 

applied to provide an overall assessment of the degradation of railway track geometry, for the main Portuguese 

railway line Lisbon-Oporto. 
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1 – Introduction  

For railway Infrastructure Managers, predicting railway track geometry degradation is crucial to plan maintenance 

and renewal actions associated with it, and as become more and more relevant within their decision support 

systems. The use of more complex predictive models that tackle important aspects of railway track geometry 

degradation, namely the spatial correlations between degradation models’ parameters, may enhance decision-

making processes related to maintenance and renewal decisions, while preserving parsimonious in statistical 

modelling. 
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Bayesian statistical models provide a flexible framework to combine prior information from past samples or from 

expert judgment with the new data. Moreover, they allow specifying hierarchical probability structures that can 

capture uncertainty associated with a model parameter. They also provide a learning mechanism that can update 

information through time. Therefore, Bayesian statistical models seem a promising tool in transport infrastructure 

management, namely in railway infrastructure. The present paper intends to explore Hierarchical Bayesian Models 

(HBM) as a predictive tool to assess maintenance needs given a maintenance and renewal startegy. 

This paper is structured in the following way: this first section briefly introduces the motivation and idea behind it, 

section 2 provides some background on railway track geometry degradation, focusing on current states of the Art 

and of the Practice, while identifying some current limitations in the statistical modelling of railway track geometry 

degradation. Section 3 introduces in a brief way Hierarchical Bayesian Models (HBM). Then, section 4 explores the 

statistical modelling of railway track geometry degradation with HBM, focusing namely on the model assumptions, 

on the definition of prior distributions and the derivation of the joint posterior distribution, and the description 

and comparison of different HBM specifications. Section 5 applies the HBM to a particular track segment of the 

main Portuguese line, with an extensive sensitivity analysis on the influence of prior distributions, and model 

comparison. Section 6 provides an overview of the railway track geometry degradation of the main Portuguese line 

using the best selected HBM model. Finally, section 7 discusses main conclusions and sketches directions for 

further research.  

2 – Statistical modelling of railway track geometry degradation  

2.1 – State of the Art 

Research on the topic of statistical modelling of railway track geometry has benefitted from a number of 

contributions in the last three decades. First published works from the 80s focused on obtaining quantitative 

measures that described rail-vehicle performance through two components: i) ride comfort and ii) safety 

(probability of derailment). Corbin and Fazio [1] called them performance-based track-quality measures, and used 

simple linear models to obtain response modes for a given vehicle to some track geometry irregularities, and thus 

computed envelopes of allowed profile (longitudinal level defect) deviations for different speeds depending on the 



spatial frequency (cycles per meter) or on its inverse (i.e. the wavelength in meters). They used the power spectral 

density of rail profile (longitudinal level defect) as a statistical representation of railway track geometry, for ride 

comfort and safety purposes.  

Nearly at the same time, Hamid and Gross [2] also discussed the need to objectively quantify track quality for 

maintenance planning and ride comfort purposes, analysing rail track geometry data collected over a period of one 

year on approximately 290 miles (467 km) of main-line, investigating statistical dependencies on track geometry 

defects (measured at 1-ft (0.3048-m) intervals by the T-6 vehicle) and some indicators (e.g. mean, 99th percentile, 

standard deviation and higher-order moments). Moreover, they developed empirical degradation models through 

linear autoregressive techniques that could describe the relationship between track quality indexes (defined as the 

standard deviation of profile) and physical parameters. For instance, simple linear regressions were put forward to 

relate the track quality index with the root mean square of vertical acceleration. Nevertheless, as the resulting 

empirical equations exhibited autoregressive terms, i.e. they included previous values as explaining variables, 

these expressions proved unreliable to predict track quality for the medium- or long-term. Development of rail 

track degradation models to predict future track quality indices for maintenance planning purposes had a major 

contribution with Bing and Gross [3], where they used a multiplicative form of model including as explaining 

variables: traffic information (equivalent train speed), track structure, maintenance (e.g. time since surfacing), or 

even ballast index in order to explain the rate of degradation at two consecutive time periods. Another important 

contribution was put forward by Hamid and Yang [4], in which they followed an approach based on analytically 

describing typical variations of track geometry, distinguishing random waviness, periodic behaviours at joints, and 

isolated variations, which occur occasionally but with regular patterns. In fact, they represented some track 

geometry defects as stationary random processes (modelled through the power spectral density) and others as 

periodic processes. 

Besides these first published works, there were previous investigations carried out in the 70s by the former Office 

for Research and Experiments (ORE) trying to understand the fundamentals of the deterioration mechanism and to 

control this phenomenon, which examined data available from a number of administrations and showed that the 

factors governing the rate of deterioration were not obvious. They also showed that unknown factors in the track 



were the most critical in determining both the average quality and the rate of deterioration. Original tests on the 

rate of deterioration of track geometry were carried out by ORE committee D 117. Although the results were not 

very conclusive, track quality on relaying (i.e. the initial quality) was identified as the most important factor. More 

measurements on track geometry were recorded and other main qualitative conclusions were drawn [5]:  

i) After the first initial settlement, both vertical quality and alignment deteriorate linearly with tonnage 

(or time) between maintenance operations;  

ii) The rate of deterioration varies drastically from section to section even for apparently identical 

sections carrying the same traffic;  

iii) There is no proved effect on the quality and on the rate of deterioration by the type of traffic or track 

construction;  

iv) The rate of deterioration appears to be a constant parameter for a section regardless of the quality 

achieved by the maintenance machine;  

v) Tamping machines improve the quality of a section of track to a more or less constant value.  

Therefore, note that the second conclusion above emphasizes the importance of modelling degradation at the 

track section level, whereas the fourth conclusion (together with the second conclusion) makes clear that the 

inherent uncertainty of the degradation model parameters should be assessed with a learning mechanism 

associated with it. 

Later on in the 90s, Iyengar and Jaiswal [6] proposed modelling railway track irregularities as a non-Gaussian model 

and concluded that in terms of level crossing and peak statistics, the proposed non-Gaussian model was 

consistently better than the Gaussian model in predicting the number of upward level crossings and peaks. Their 

non-Gaussian model to statistically represent railway track irregularities used a finite series of uncorrelated terms: 

the first term was a Gaussian process and the remaining terms were derived using a Gram-Schmidt procedure. 

Iyengar and Jaiswal [7] eventually modelled track irregularities (both Absolute Vertical Profile (longitudinal level 

defects) and unevenness (standard deviations)) as a stationary Gaussian random field so that the classical level-

crossing and peak-statistics theory could be exploited to relate the sample deviation to the highest peak value in a 

simpler way than in their first non-Gaussian model. In a way, Iyengar and Jaiswal opted to simplify their initial 

approach so that they could make probabilistic approaches appealing to practical engineers. Nevertheless, as it 



was discussed by Kumar and Stathopoulos [8], unevenness data (standard deviations) indicated a non-Gaussian 

character with skewness and kurtoses significantly different from the typical values for Gaussian processes. 

More recently, other approaches have also tried to capture the nonlinear characteristics of track quality 

deterioration [9] [10] [11], though they typically would not consider all track geometry defects, and would model 

instead a quality index. An important contribution was given in [12] for the case of a Spanish high speed railway 

line, identifying the embankment height as a dependent variable on the density of maintenance works, though the 

study analyses the past tamping actions and vertical accelerations rather than the track geometry records 

themselves. In that sense, that work is analysing the ‘outputs’ of maintenance decisions, rather than their inputs 

(i.e. degradation) so that one may assess whether or not that decision was a good one. Moreover, another 

relevant issue in statistical modelling of railway track geometry is how to model the tamping/maintenance 

recuperation, i.e. the impact of levelling and tamping operations in the railway track geometry defects and their 

evolution. In fact, specialized literature usually does not cover this improvement in great detail and only a few 

references have been found, such as [11] and [13]. A recent work by Quiroga and Schnieder [14] has used 

accumulated tamping interventions as an explaining variable, showing higher variances for higher number of 

accumulated tamping interventions. Furthermore, a recent work by Vale and Lurdes [16] also discussed a 

stochastic model for the geometrical railway track degradation process, focusing on the standard deviation of 

longitudinal level defects and not on the standard deviation of horizontal alignment. Other contributions focusing 

on different prediction techniques used to assess future railway track geometry condition have been proposed, 

namely using artificial neural networks [17], stochastic state space methods [18] or even Petri net models [19]. A 

Bayesian approach is explored in [20], but this time following a nonparametric specification with a Dirichlet 

Process Mixture Model, focusing on the failure of different railway components rather than specifically on railway 

track geometry degradation.  Finally, a very recent work by Gong et al. [21] has put more focus on the 

deterioration of lateral alignment using vehicle dynamic simulation and considering an elastic lateral model for the 

railway track, while assessing the effect of different factors like the vehicles, running speed, traffic mixes and 

different wheel/rail contacts. 

 



2.2 – State of the Practice 

According to a best practice guide for optimum track geometry durability [22], European Infrastructure Managers 

tend to trigger their preventive tamping actions based on a single indicator: the standard deviation of longitudinal 

level defects. Nevertheless, the European standard EN 13848-5 puts forward recommended Alert Limits for 

preventive maintenance actions based on two indicators: i) the standard deviation of longitudinal level defects and 

also ii) the standard deviation of horizontal alignment defects. 

In fact, recent research has discussed the use of these two indicators as predictors of other impacts associated 

with planning maintenance of railway track geometry, namely the corrective/unplanned maintenance needs and 

the delays imposed due to temporary speed restrictions. Both works [23] [24] have found that not only the 

standard deviation of longitudinal level defects was a statistically significant predictor, but also the standard 

deviation of horizontal alignment defects. Therefore, the present paper intends to statistically model the evolution 

of these two quality indicators relative to railway track geometry using a HBM. 

The degradation of railway track geometry is usually quantified by seven track geometry defects: the left and right 

longitudinal level defects (LLL and RLL), the left and right horizontal alignment defects (LHA and RHA), the cant 

defects (C), the gauge deviations (GD) and the track twist (T). These defects are measured through automated 

measuring systems, typically integrated in inspection vehicles, and saved as signal data. Signal digital processing 

techniques are then used to align signals and derive indicators (for each type of defect) that can support 

maintenance and renewal decisions as part of planned maintenance or eventually as unplanned maintenance 

actions. Many Infrastructure Managers tend to combine all these indicators into a track quality index, which is 

typically a function of the standard deviations of each defect and/or train permissible speed (as reported in [25] or 

[26]). Nevertheless, the standard deviation for the short wavelength (3m - 25m) of longitudinal level defects is still 

perceived as the crucial indicator for planned maintenance decisions for many European Infrastructure Managers. 

The use of the standard deviation of the short wavelength (3m - 25m) of longitudinal level defects (SDLL) as the 

crucial indicator for planned maintenance on railway track geometry degradation may be attributed in our 

perspective to two reasons: i) due to the simplicity in the empirical expressions describing its evolution (which 



depends on the accumulated tonnage, usually in Million Gross Tons (MGT)), and ii) due to the fact that it correlates 

well with the vertical force [13] [27], which is a proxy or vertical acceleration felt by the passenger and thus, of ride 

quality. 

Railway track geometry defects should be within certain limits according to a given safety standard. The European 

Standard EN 13848-5 [28] provides limits for several indicators for each type of defect depending on the maximum 

permissible speed and for three main levels: 

 IAL – Immediate Action Limit: refers to the value which, if exceeded, requires imposing speed restrictions 

or immediate correction of track geometry; 

 IL – Intervention Limit: refers to the value which, if exceeded, requires corrective maintenance before the 

immediate action limit is reached; 

 AL – Alert Limit: refers to the value which, if exceeded, requires that track geometry condition is analysed 

and considered in the regularly planned maintenance operations. 

 

Although the IAL limits are considered normative, providing the highest admissible limits to ensure safety and ride 

comfort; the IL and the AL limits are purely indicative, reflecting common practice among most European 

Infrastructure Managers. They are even expressed as a range rather than a single value. In fact, the EN 13848-5 

also directs each Infrastructure Manager to select their own IL and AL limits according to their inspection and 

maintenance systems, which in turn relate to different targets for safety, ride quality, lower life-cycle costs and 

track access availability. 

2.3 – Current limitations in statistical modelling of railway track geometry degradation 

Current statistical approaches tend to focus on track quality indexes rather than on the standard deviations of 

longitudinal level defects (SDLL) and of horizontal alignment defects (SDHA). These track quality indexes are 

sometimes dependent on the maximum permissible speed so they do not refer only to railway track physical 

degradation but also to its use. The statistical approaches that model the standard deviation of longitudinal level 

defect (SDLL) do not consider the standard deviation of horizontal alignment defects (SDHA), arguing that current 



practice of maintenance decisions rely solely on the SDLL [22]. Nevertheless, the SDHA indicator seems to play an 

important role as a predictor of localized defects and corrective maintenance needs.       

Moreover, current statistical models have overlooked the spatial correlations of the deterioration rates and the 

initial qualities for consecutive track sections. In fact, this idea followed from an initial exploratory work previously 

conducted in [15], showing that spatial correlation between deterioration rates and initial quality were statistically 

significant. In that sense, none of the previous statistical models takes advantage of these spatial correlations 

between deterioration rates and the initial qualities for consecutive track sections, in order to improve the current 

predictive models. In the present paper, these spatial correlations are handled using HBM, so that the parameters 

for the deterioration rates and the initial qualities (i.e. the slope 𝛽 and the y-intercept 𝛼 in simple linear regression 

models 𝑦 = 𝛼 + 𝛽. 𝑥 + 𝜀) can be considered random quantities, and thus, Conditional Autoregressive (CAR) 

probability structures can be assigned to these parameters associated with consecutive track sections . Note that 

in classical statistical approaches, the spatial correlations would have to be tackled through CAR structures 

assigned to the random error 𝜀, as the slope 𝛽 and the y-intercept 𝛼 are not random, and in fact  they are assumed 

to be fixed but unknown, and estimated from the data. And, therefore as a result, HBM is the mathematical 

statistical method that let us model directly the spatial correlation between the deterioration rates and initial 

qualities and not on the random error. 

Our HBM approach models separately the two main indicators (SDLL and the SDHA) and adds CAR probability 

structures to the deterioration rates and the initial qualities parameters to handle the previously overlooked 

spatial correlations between consecutive tracks. As it will be seen later on, this proved to provide a better fit to the 

data according to the Deviance Information Criterion (DIC).  

 

3 – A brief note on Hierarchical Bayesian Models (HBM) 

This section briefly explores Hierarchical Bayesian Models (HBM) to predict the evolution of railway track geometry 

degradation. Bayesian models are different than classical statistical models in the fact that they assume 

parameters as random variables, whose uncertainty can be quantified by a prior distribution. This prior distribution 



p(θ) is then combined with the traditional likelihood p(y|θ) to obtain the posterior distribution of the parameters 

of interest. The posterior distribution p(θ|y) of the parameters θ given the observed data y can be computed 

according to Bayes’ rule as: 

𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃). 𝑝(𝜃)

∫ 𝑝(𝑦|𝜃′). 𝑝(𝜃′) 𝑑𝜃′
 ∝  𝑝(𝑦|𝜃). 𝑝(𝜃) 

The specification of the prior distribution constitutes a very important step in any Bayesian model, using for 

instance a non-informative (or vague prior), or incorporating preceding known information using old samples 

(hopefully under the same boundary conditions) or from expert judgment techniques. Further details on Bayesian 

statistics can be found in [29] and [30], or for a more practical approach [31]. However, in almost every case in real 

applications, one finds that that the joint posterior distribution p(θ|y) has a reasonably high dimension, and 

integration through numerical methods must rely on Markov Chain Monte Carlo (MCMC) methods, which are built 

in such a way that their stationary distribution is the desired posterior distribution. 

HBM are a special case of Bayesian models. They benefit from a major property: they can be factorized through 

Directed Acyclic Graphs (DAG) in a convenient way. This not only enables arbitrarily complex full probability 

models to be specified based on the simple local components, but it also makes the identification of full 

conditional distributions straightforward. Moreover, this hierarchical construction is particularly useful, because 

once the full conditional distributions are identified/available, one can sequentially sample from them using the 

Gibbs sampler, and sample from the posterior distribution of interest, or using any more general sampling method 

(e.g. adaptive rejection sampling, Metropolis-Hastings algorithm).  

A DAG is a graph that is directed because each node is linked through an arrow (i.e. with a defined direction) and it 

is acyclic because no cycles are formed with the arrows (i.e. it is not possible to return to a given node once you 

left it). Parent nodes from a given node (i.e. parents[v]) are all nodes that are connected through arrows from 

them to that node ‘v’; whereas children nodes from a given node (i.e. children[v]) are all nodes that are connected 

through arrows from that node ‘v’ to them.  

According to Lunn et al. [32] on the WinBUGS use of DAG factorization, let 𝑉 denote the set of all nodes (𝑣) in a 

DAG for a given HBM, it can be shown that: 



𝑝(𝜃|𝑦)  ∝  𝑝(𝜃, 𝑦) = 𝑝(𝑉) = ∏𝑝(𝑣|parents[𝑣])

𝑣 ∈ 𝑉

 

Let 𝑉 \ 𝑣 denote ‘all elements of 𝑉 except 𝑣’. The full conditional 𝑝(𝑣 | 𝑉\𝑣) is then proportional to the product of 

terms in 𝑝(𝑉) which contain 𝑣: 

𝑝(𝑣 | 𝑉\𝑣)  ∝  𝑝(𝑣|parents[𝑣]) × ∏ 𝑝(𝑤|parents[𝑤])

𝑤 ∈ children[𝑣]

 

Note that OpenBUGS – the most recent development of WinBUGS, allows user-friendly inference for these HBM, 

especially if the adaptive rejection sampling algorithm from Gilks and Wild [33] is needed. 

4 – Modelling railway track geometry degradation with HBM 

Having briefly introduced the main concept of HMB in section 3, let us explore the intricacies of the proposed 

modelling of railway track geometry degradation using HBM. The associated DAG for the more complicated 

models is provided at the end of this section. We start by discussing the main assumptions on statistical modeling 

of railway track geometry degradation that our modelling approach will rely on, without forgetting the past 

research findings previously discussed in subsections 2.1 and 2.2. The models developed in this section are 

specified in the same way for the main two quality indicators related to railway track geometry degradation, i.e. 

for the standard deviation of longitudinal level defects (SDLL) and for the standard deviation of horizontal 

alignment defects (SDHA). In the following, when we refer to the dependent variable as a quality indicator, the 

reader should have in mind that the dependent variable can be either the SDLL or the SDHA. 

4.1 – Model assumptions 

Let us start by assuming that a quality indicator (ysvkl) at inspection l for track section k from track segment v from 

area s is normally distributed with mean msvkl and variance σs
2, i.e. ysvkl ~N(msvkl, σs

2). Figure 1 should support 

the reader to understand better the meaning of indices s, v, and k for a typical double track line. 

Then, some assumptions on its mean value result from a combination of factors: 



1) A constant linear evolution with accumulated tonnage (𝑇𝑠𝑣𝑘𝑙  – accumulated tonnage since last tamping or 

renewal operation), given by the deterioration rate - 𝛽𝑠𝑣𝑘  (slope of a linear regression), which assumes 

different values for each track section k in track segment v for area s. 

2) An initial value for the quality indicator, given by the initial quality - 𝛼𝑠𝑣𝑘  (y-intercept of a linear regression), 

which assumes different values for each track section k in track segment v for area s. 

 

These first two assumptions presume a linear evolution of the quality indicator with accumulated tonnage since 

last maintenance or renewal action and an initial quality, allowing different values for each track section.   

 

3) A disturbance effect (𝛿𝑠𝑣) of the quality indicator after each tamping operation, i.e. the quality indicator does 

not recover to its initial value 𝛼𝑠𝑣𝑘, but it is affected by a rate 1 + 𝛿𝑠𝑣, given by 𝛿𝑠𝑣, which assumes different 

values for each track segment v for area s. Therefore, note that at each new tamping cycle the initial quality 

would be 𝛼𝑠𝑣𝑘(1 + 𝛿𝑠𝑣)
𝑁𝑠𝑣𝑘𝑙, in which 𝑁𝑠𝑣𝑘𝑙  is the number of tamping operations conducted since last 

renewal. 

4) Distinction between renewed track sections (𝑅𝑠𝑣𝑘𝑙 = 1) and non-renewed track sections (𝑅𝑠𝑣𝑘𝑙 = 0) is 

assured through the separation of the initial quality and the deterioration rates for a non-renewed track 

section k from segment v for area s – 𝛼′𝑠𝑣𝑘  and 𝛽′𝑠𝑣𝑘  respectively; whereas the disturbance effect (𝛿𝑠𝑣) is 

considered the same for renewed and non-renewed track sections. 

 

These next two assumptions provide an exponential effect of the number of tamping operations conducted since 

last renewal and different parameters for renewed and non-renewed track sections. 

 

These four assumptions can be compiled in a single mathematical expression for the mean 𝑚𝑠𝑣𝑘𝑙 of the quality 

indicator ysvkl as: 

𝑚𝑠𝑣𝑘𝑙 = [𝛼𝑠𝑣𝑘(1 + 𝛿𝑠𝑣)
𝑁𝑠𝑣𝑘𝑙 + 𝛽𝑠𝑣𝑘𝑇𝑠𝑣𝑘𝑙] ∙ 𝑅𝑠𝑣𝑘𝑙 + [𝛼

′
𝑠𝑣𝑘(1 + 𝛿𝑠𝑣)

𝑁𝑠𝑣𝑘𝑙 + 𝛽′
𝑠𝑣𝑘
𝑇𝑠𝑣𝑘𝑙] ∙ (1 − 𝑅𝑠𝑣𝑘𝑙) 



In this expression, we should regard 𝛼, 𝛽, 𝛼′, 𝛽′and 𝛿 as parameters, to which there should be assigned a 

hierarchical probability structure, whereas 𝑁, 𝑇 and 𝑅 should be regarded as known/explaining variables. Figure 2 

provides a graphical representation of the intended behaviour of the mean of the quality indicator expressed by 

the equation above (𝑚𝑠𝑣𝑘𝑙). 

 

4.2 – Introduction of spatial correlations through CAR probability structures 

In this subsection, we discussed two CAR probability structures to handle the spatial correlation between the 

deterioration rates and the initial qualities of consecutive track sections.  

In order to be parsimonious in modelling, i.e. trying to keep the number of parameters to a minimum, a good 

strategy is considering (Gaussian) Conditional Autoregressive (CAR) terms. Besag [34] showed in 1974 that 

conditional probability structures could deal with spatial interactions in the more complex structures. The CAR 

model is used to model the spatial dependencies in deterioration rates and initial qualities for consecutive track 

sections. For example, take the initial quality αsvk for a given track section k in segment v in area s, we will consider 

that αsvk is a combination of two additive components: an average value αsv and a spatially correlated term εαsvk 

so that αsvk = αsv + εαsvk. For εαsvk, we then assign a CAR probability structure such as 

εαsvk|𝛆𝛂𝐬𝐯(−𝐤) , 𝜎𝛼𝑠𝑣
2  ~ 𝑁(ε̅αsvk , 𝜎𝛼𝑠𝑣

2 𝑛𝑠𝑣𝑘⁄ ), in which ε̅αsvk = ∑ εαsvj 𝑛𝑠𝑣𝑘⁄𝑗∈𝒩𝑠𝑣𝑘
, 𝒩𝑠𝑣𝑘  denotes the set of track 

sections which are considered neighbors to track section k (in segment v in area s), and 𝑛𝑠𝑣𝑘 is the number of 

neighbors of track section k (in segment v in area s), and finally 𝛆𝛂𝐬𝐯(−𝐤) is the vector with all components εαsvk 

from segment v in area s except the component related to track section k.  

Two well-known CAR structures were tested: the first-order random walk (𝑅𝑊(1)) and the second-order random 

walk (𝑅𝑊(2)) as hierarchical structures for parameters 𝛼, 𝛽, 𝛼′, 𝛽′.  

The first-order random walk (𝑅𝑊(1)) is defined by considering as neighbour structure 𝑛𝑠𝑣𝑘 = 1 for 𝑘 = 1 and 

𝑘 = 𝐾𝑠, and 𝑛𝑠𝑣𝑘 = 2 for 𝑘 = 2,… , 𝐾𝑠 − 1, and ε̅αsvk = εαsv(k+1) for 𝑘 = 1, ε̅αsvk = (εαsv(k−1) + εαsv(k+1)) 2⁄  for 

𝑘 = 2,… , 𝐾𝑠 − 1, and  ε̅αsvk = εαsv(k−1) for 𝑘 = 𝐾𝑠.  



For the second-order random walk (𝑅𝑊(2)) these expressions complicate a little more but they can be derived 

from the following equivalence, where the symbol * denotes the different possible parameters 𝛼, 𝛽, 𝛼′, 𝛽′: 

 ε∗svk ~ RW(2)  ⇔ ε∗svk|ε∗sv−k
, σ∗
2  ~

{
 
 
 
 

 
 
 
 N(2 ε∗sv(k+1) − ε∗sv(k+2) , σ∗

2) , k = 1

N ([2 ε∗sv(k−1) + 4 ε∗sv(k+1) − ε∗sv(k+2)] 5⁄ , σ∗
2 5⁄ ) , k = 2

N ([− ε∗sv(k−2) + 4 ε∗sv(k−1) + 4 ε∗sv(k+1) − ε∗sv(k+2)] 6⁄ , σ∗
2 6⁄ ) , k = 3,… , Ks − 2

N ([− ε∗sv(k−2) + 4 ε∗sv(k−1) + ε∗sv(k+1)] 5⁄ , σ∗
2 5⁄ ) , k = Ks − 1

N (− ε∗sv(k−2) + 2 ε∗sv(k−1), σ∗
2) , k = Ks

 

 
4.3 – Definition of prior distributions  

After assigning a CAR probability structure to tackle spatial correlations in a parsimonious way, we define the prior 

distributions for all other parameters. Therefore, for the parameter 𝛿𝑠𝑣, i.e. the disturbance effect of the initial 

quality after each tamping operation, we define a typical probability structure expressing vague information on 

that parameter, i.e. 𝛿𝑠𝑣 ~𝑁(0, 𝜎𝛿
2). Moreover, for each variance component in each hierarchical structure, we 

finalize by assigning inverse gamma distributions to each component, i.e. 𝜎𝑠
2 ~ 𝐼𝐺(𝑐0, 𝑑0), 𝜎𝛿𝑠

2  ~ 𝐼𝐺(𝑐1, 𝑑1), 

𝜎𝛼𝑠𝑣
2  ~ 𝐼𝐺(𝑐2, 𝑑2), 𝜎𝛽𝑠𝑣

2  ~ 𝐼𝐺(𝑐3, 𝑑3), 𝜎𝛼′𝑠𝑣
2  ~ 𝐼𝐺(𝑐4, 𝑑4) and 𝜎𝛽′𝑠𝑣

2  ~ 𝐼𝐺(𝑐5, 𝑑5), where 𝐼𝐺(𝑐, 𝑑) denotes an inverse 

gamma distribution with shape parameter 𝑐 and scale parameter 𝑑, whose density is proportional to 

𝑥−(𝑐+1) exp (−
𝑑

𝑥
), 𝑥 > 0. For all models (M1, M2, M3 and M4), inverse gamma priors 𝐼𝐺(0.5, 0.0005) were 

assigned for each variance parameter (𝜎𝑠
2, 𝜎𝛼𝑠𝑣

2 , 𝜎𝛽𝑠𝑣
2 , 𝜎𝛼′𝑠𝑣

2 , 𝜎𝛽′𝑠𝑣
2  and 𝜎𝛿𝑠

2 ). Note that flat priors are improper 

distributions, i.e. do not integrate to one, but assume a constant value everywhere, attempting to describe vague 

or no prior information on that parameter. 

As a side note, it is important to mention that the use of inverse gamma prior distributions for the variance terms 

is not free of criticism and has been discussed by Gelman [35], who recommended starting with a non-informative 

uniform prior density, or when more prior information is desired, working within the half-t family of prior 

distributions, which are more flexible and have better behaviour near 0, compared to the inverse-gamma family, 

which are very sensitive in data sets where the variance terms may assume low values of σ2. However, the choice 

of assigning inverse gamma distributions ‘is an attempt at non-informativeness within the conditional conjugate 

family’ [35], which mainly translates into full conditional posterior distributions for each variance component 



within the same distributional family, i.e. also inverse gamma distributions, as later seen in the Appendix for i), iii), 

v), vii), ix) and xi). This choice is not only attractive for pedagogical purposes, but it is also a common choice in 

many BUGS software applications. 

Figure 3 provides a DAG representing the proposed HBM, focusing in 3 models explored later on: models M2, M3 

and M4. Model M1 has a simple representation without the eight upper nodes (𝜎∗
2 and 𝜀∗𝑠𝑣𝑘 for ∗= {𝛼, 𝛽, 𝛼′, 𝛽′}). 

Stochastic nodes are represented in ovals with solid line, whereas constants are in rectangular boxes. 

Hyperparameters (c, d) of the variance components are not represented for clarity and ovals with dashed contours 

are logically dependent on their parent nodes and are not stochastic. 

Note that the definition of the proposed HBM with completely independent DAG for each segment s facilitates 

simulation in a separate manner for each segment s. This is guaranteed by defining hyperparameters - 𝜎𝑠
2, 𝜎𝛿𝑠

2 , 

𝜎𝛼𝑠𝑣
2 , 𝜎𝛽𝑠𝑣

2 , 𝜎𝛼′𝑠𝑣
2  and 𝜎𝛽′𝑠𝑣

2  that are each different for each area s. Of course, a more parsimonious modelling option 

could have been chosen, but then the simulation could not be conducted separately for each track segment s 

(which favours for instance the possibility of applying parallel processing techniques in the future). 

4.4 – Joint posterior distribution 

To derive the joint posterior distribution, prior independence is assumed amongst the model parameters so that 

the joint posterior density is then proportional to: 
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In which: 

msvkl = [αsvk(1 + δsv)
Nsvkl + βsvkTsvkl] ∙ Rsvkl + [α

′
svk(1 + δsv)

Nsvkl + β′
svk
Tsvkl] ∙ (1 − Rsvkl) 

αsvk = αsv + εαsvk; α′svk = α′sv + εα′svk; βsvk = βsv + εβsvk and β′svk = β′sv + εβ′svk  

In order to ensure that the CAR model structures are identifiable, we follow the typical constraint suggested by 

Besag and Kooperberg [36] that is to impose that the ∑ εαsvk𝑘 = 0, and use a flat prior for the constant αsv on the 

whole real line. Note that these CAR probability structures are also adopted for β, α′ and β′ parameters. 

As the joint posterior is rather complex, we present the full conditional posterior distribution in the appendix, so 

that a Gibbs sampling strategy can iteratively draw for each parameter and use them as current values for each 

conditional posterior distribution. 



4.5 – Different model specifications and comparison 

For each quality indicator (SDLL and SDHA), mainly 4 models (M1, M2, M3 and M4) are explored whose differences 

are related with hierarchical structures for α, β, α′ and β′: 

- Model M1 assigns simple flat priors to each parameter 𝛼𝑠𝑣 , 𝛽𝑠𝑣 , 𝛼′𝑠𝑣 , 𝛽′𝑠𝑣;  

- Model M2 assigns a flat prior to each parameter 𝛼𝑠𝑣 , 𝛽𝑠𝑣 , 𝛼′𝑠𝑣 , 𝛽′𝑠𝑣  and a normal prior with mean equal to 

zero and variance 𝜎𝛼𝑠𝑣
2 , 𝜎𝛽𝑠𝑣

2 , 𝜎𝛼′𝑠𝑣
2 , 𝜎𝛽′𝑠𝑣

2  for each parameter 𝜀𝛼𝑠𝑣𝑘, 𝜀𝛽𝑠𝑣𝑘, 𝜀𝛼′𝑠𝑣𝑘, 𝜀𝛽′𝑠𝑣𝑘, respectively.  

- Model M3 assigns a flat prior to each parameter 𝛼𝑠𝑣 , 𝛽𝑠𝑣 , 𝛼′𝑠𝑣 , 𝛽′𝑠𝑣  and a first-order random walk for each 

parameter 𝜀𝛼𝑠𝑣𝑘, 𝜀𝛽𝑠𝑣𝑘, 𝜀𝛼′𝑠𝑣𝑘, 𝜀𝛽′𝑠𝑣𝑘; 

- Model M4 assigns a flat prior to each parameter 𝛼𝑠𝑣 , 𝛽𝑠𝑣 , 𝛼′𝑠𝑣 , 𝛽′𝑠𝑣  and a second-order random walk to 

each parameter 𝜀𝛼𝑠𝑣𝑘, 𝜀𝛽𝑠𝑣𝑘, 𝜀𝛼′𝑠𝑣𝑘, 𝜀𝛽′𝑠𝑣𝑘.  

In terms of model comparison, HBM tend to rely on a standard measure proposed by Spiegelhalter et al. [38] for 

comparing models of any degree of complexity.  In fact, the Deviance Information Criterion (DIC), whose 

assessment is straightforward using MCMC inference methods, balances two components: the expected posterior 

deviance (i.e. the goodness of fit) and the effective number of parameters (i.e. the complexity of the model). It is 

defined as: DIC = 2D(θ)̅̅ ̅̅ ̅̅ − D(θ̅), where D(θ)̅̅ ̅̅ ̅̅   is the posterior mean of deviance and θ̅ is the posterior mean of 

the model parameters. In practical terms, a lower DIC value means a better model in terms of relative comparison.  

5 – HBM application to a particular area of the main Portuguese line  

This section will analyse some detailed results from the application of the proposed HBM on a particular 

area/sample from the historical data from the main Portuguese line (Lisbon-Oporto). 

5.1 – A brief description of the sample  

This historical data mainly refers to: i) the inspection records from the EM 120 vehicle to get the standard 

deviation of longitudinal level defects (SDLL) and the standard deviation of horizontal alignment defects (SDHA) 

relative to 200-m long track sections, ii) the operation records to get the accumulated tonnage (𝑇𝑠𝑣𝑘𝑙), and finally 



to iii) the maintenance records to get the past maintenance and renewal actions (𝑁𝑠𝑣𝑘𝑙 , 𝑅𝑠𝑣𝑘𝑙  ). As the main 

contribution of this paper is the HBM itself rather than a comprehensive analysis of the experience from the 

Lisbon-Oporto line regarding inspection, operation and maintenance, we decided to focus on a particular area in 

this section, though in section 6 an overview of the all areas of the Lisbon-Oporto line is provided as an additional 

application of the present HBM. This first tested area mainly involves a double-track (𝑉𝑠 = 2) area of about 15 km 

(𝐾𝑠 = 74), from a total of 36 inspections (𝐿𝑠 = 36)  from February 2001 up to October 2009. 

5.2 – MCMC simulation details 

MCMC samples were of size 20,000, taking every tenth iteration (thin=10) of the simulated sequence, after 10,000 

iterations of burn-in period, for the four models. Initial values were set: for the variance terms 𝜎𝑠
2, 𝜎𝛼𝑠𝑣

2 , 𝜎𝛽𝑠𝑣
2 , 𝜎𝛼′𝑠𝑣

2 , 

𝜎𝛽′𝑠𝑣
2  and 𝜎𝛿𝑠

2  equal to 10 (which is equivalent to precision (1 𝜎2⁄ ) equal to 0.1), for the spatially correlated terms 

𝜀𝛼𝑠𝑣𝑘, 𝜀𝛽𝑠𝑣𝑘, 𝜀𝛼′𝑠𝑣𝑘 and 𝜀𝛽′𝑠𝑣𝑘 equal to 0, and finally, for each parameter  𝛼𝑠𝑣, 𝛽𝑠𝑣, 𝛼′𝑠𝑣 , 𝛽′𝑠𝑣  and  𝛿𝑠𝑣 equal to 0. To 

have a reasonable confidence on MCMC convergence, we ran an alternative MCMC simulation for every model 

using different initial values, and found very similar results for posterior estimates. We also used the diagnostic 

convergence tests from BOA program [37], which did not reveal any evidence against convergence for all MCMC 

outputs. 

5.3 – Discussion of model results 

Table 1 provides a comparison of the four models based on the DIC for each quality indicator (SDLL and SDHA). We 

can spot that model M3 with first-order random walk CAR structure has the lowest DIC value among the four 

models explored for the SDLL and for the SDHA. However, note that for each quality indicator (SDLL and SDHA), the 

DIC for model M4, which has second-order random walk CAR structures, is not so distant from the DIC value for 

model M3. 

Based on the MCMC simulations for each quality indicator and for each model, table 2 provides estimates of the 

posterior parameters for the example track segment, for both dependent variables (SDLL and SDHA).  



Regarding Table 2 for the dependent variable SDLL, note that both the parameters related to renewal track 

sections, i.e. initial quality 𝛼𝑠𝑣 and deterioration rate 𝛽𝑠𝑣, present very close values, especially for models M2, M3 

and M4. This is also true for the parameters related to non-renewed track sections (𝛼′𝑠𝑣  and 𝛽′𝑠𝑣), though for 

model M1 values differ very much particularly for the deterioration rate. Regarding the disturbance effect (𝛿𝑠𝑣), 

the standard deviations (s.d.) associated with its estimates are high compared to its mean values for models M2, 

M3 and M4. Moreover, note that all values for the disturbance effect seem to be very close to zero. Besides, note 

that the deterioration rates for non-renewed track sections are (on average) at least four times higher than the 

deterioration rates for renewed track sections for models M2, M3 and M4, and only 40% higher for model M1; 

whereas the initial quality for non-renewed track sections seem to be at least four times higher than for the 

renewed track sections (on average) for models M2, M3 and M4, and five times higher for model M1.  

Regarding table 2 for the dependent variable SDHA, note that both the parameters related to renewed track 

sections, i.e. initial quality αsv and deterioration rate βsv, also present very close values, especially for models M2, 

M3 and M4. Again, this is also true for the parameters related to non-renewed track sections (α′sv and β′sv), 

though for model M1 values differ a little bit more, particularly for the initial quality. Regarding the disturbance 

effect (δsv), the standard deviations (s.d.) associated with its estimates are relatively high compared to its mean 

values for models M2, M3 and M4. Moreover, all values for the disturbance effect seem to be close to zero. 

Besides, note that the deterioration rates for non-renewed track sections are (on average) at least 60% higher than 

the deterioration rates for renewed track sections for models M1, M2, M3 and M4; whereas the initial quality for 

non-renewed track sections seems to be 3 times higher than for the renewed track sections (on average) for 

models M1, M2, M3 and M4.  

Moreover, comparing between SDLL and SDHA, one finds that, on average, deterioration rates for renewed and non-

renewed rail track sections are lower for the horizontal alignment than for the longitudinal level defects, whereas 

the initial qualities are higher for renewed rail track sections and lower for non-renewed rail track sections. 

Regarding the disturbance effect (δsv), it assumes higher values for the model relative to the standard deviation of 

horizontal alignment defects (SDHA) than for the model relative to the standard deviation of longitudinal level 

defects (SDLL). 



5.4 – A Sensitivity Analysis on the influence of prior distributions 

To analyse the influence of priors’ specifications, a sensitivity analysis is conducted in this subsection, assuming 

different inverse gamma priors 𝐼𝐺(𝑐, 𝑑). For this purpose, we followed the same experimental design from a 

similar investigation contained in Silva et al. [39] on Bayesian Hierarchical models to analyse revascularization 

odds, using only inverse gamma distributions but different combinations: 

(𝑐, 𝑑) = (0.5, 0.0005), (0.001, 0.001), (0.01, 0.01), (0.1, 0.1), (2, 0.001), (0.2, 0.0004) and (10, 0.25), which are 

denoted by A, B, C, D, E, F and G, respectively. As it is noted in [39], priors C and D (with 𝑐 = 𝑑) are variants of prior 

B with a larger associated dispersion (compared to B) in increasing order, whereas prior E and F correspond to 

distributions with the same mode (𝑑 (𝑐 + 1)⁄ ) as prior A, but with lower (E) and larger (F) dispersion. Prior G is a 

less vague prior from this experimental design set. 

Table 3 provides for model M3 and for both quality indicators SDLL and SDHA some estimates of the variances 𝜎𝑠
2, 

𝜎𝛼𝑠𝑣
2 , 𝜎𝛽𝑠𝑣

2 , 𝜎𝛼′𝑠𝑣
2 , 𝜎𝛽′𝑠𝑣

2  and 𝜎𝛿𝑠
2  for different parameters and the sensitivity of these estimates using different priors. 

Note that for both the SDLL and the SDHA cases, the mean values for 𝜎𝑠
2, 𝜎𝛼

2 and 𝜎𝛼′
2  are not very sensitive to 

different inverse gamma priors; whereas 𝜎𝛽
2 and 𝜎𝛽′

2  seem to be very sensitive for priors D and G and 𝜎𝛿
2 seems to 

vary very much for all priors with associated standard deviation (s.d.) higher than its mean values, which indicates 

that priors are conveying a lot of information to the variance of the disturbance effect - 𝜎𝛿
2.  

We also conducted a sensitivity analysis on model selection, i.e. we analysed if different priors would affect the 

selection of model 3 as the best model according to the Deviance Information Criterion (DIC) of both quality 

indicators. Table 4 explores the sensitivity of DIC for different models using different priors. For this analysis, we 

decided to leave out model M1 because its DIC value for Prior A was high compared to the others. The last two 

columns of the table present the selected model according to the lowest DIC for each prior.  

Regarding Table 4 on the SDLL, note that model M3 seems to be the best model for priors A, B, D, F and G; whereas 

model M4 seems to present a lowest DIC value for priors C and E. Therefore, the selection between models M3 

and M4 is sensitive to the prior used for the variance components for the quality indicator SDLL. Apart from prior C, 

for which DIC values are almost the same, it seems that model M4 has a lowest DIC for more vague priors in the 



experimental set used, and model M3 has a lowest DIC for less vague (more precise or more informative) priors. 

Regarding table 4 on the SDHA, model M3 seems to be the best model for priors A, B, E, F and G; whereas model 

M4 seems to present a lowest DIC value for priors C and D. Similar to what happen for the standard deviation of 

the longitudinal level defects, the selection between models M3 and M4 is sensitive to the prior used for the 

variance components for the horizontal alignment case. Again, it seems that model M4 has a lowest DIC for more 

vague priors in the experimental set used, and model M3 has a lowest DIC for less vague (more precise or more 

informative) priors. 

6 – Applying HBM: an overview of the Portuguese main line degradation  

This section explores the application of the HBM model to all the track segments of the Lisbon-Oporto line. In 

section 5, the HBM were validated for a particular area with a double-track line, and a detailed sensitivity analysis 

was conducted. In the current section, the HBM for the SDLL and for the SDHA will be explored for all the track 

segments without the detailed sensitivity analysis previously conducted. Model M3, with a first-order random walk 

CAR structure for the deterioration rates and the initial quality parameters, was the selected model explored in the 

following analysis, as it exhibited the lowest values in the Deviance Information Criterion (DIC) for that particular 

example.  

For the application of the HBM model to all track segments, some adaptations were conducted: i) in non-renewed 

track segments the parameters 𝛼𝑠𝑣 and 𝛽𝑠𝑣, associated with renewed track segments were excluded from the 

equation to express the mean value (𝑚𝑠𝑣𝑘𝑙) in the HBM, as well as the corresponding CAR structures and ii) in 

renewed rail track segments (i.e. renewed before 2001), the parameters 𝛼𝑠𝑣
′  and 𝛽𝑠𝑣

′  were excluded.  

The Lisbon-Oporto railway line has a total length of 336.2 km and links the most populated cities in Portugal by 

using passenger trains running at a maximum speed of 220 km/h and freight trains running at 80 km/h. The 

maximum permissible load of trains is equal to 22.5 t and the renewal works have been conducted since 1996. 

Approximately 2/3 of the line was renewed, whereas the remaining 1/3 will be renewed in the next years. These 

renewal operations included a thorough improvement of the track-bed bearing capacity and a complete renewal 

of the track superstructure incorporating monoblock concrete sleepers (with a length of 2.60 m and a seating 



surface of 3,125 cm
2
 per rail seat) spaced at 600 mm, rail UIC 60 and Vossloh fastening system with plastic railpads 

ZW 687 (vertical stiffness 450 kN/mm). The Lisbon-Oporto line is a double-track line in its majority, and between 

Braço de Prata (4.0 km) and Alverca (21.8 km), it is a multiple track segment, more specifically a four-track 

segment: two tracks (Rapid and Slow Lines – RL and SL) in the Oporto direction (Northwards) and two tracks (RL 

and SL) in the Lisbon direction (Southwards). This multiple track configuration is particularly useful as it allows 

faster trains to overtake slower trains. For clarity, only the two Rapid tracks (RL) of the multiple track segments 

between Braço de Prata (4.0 km) and Alverca (21.8 km) are represented in the following figures. 

In terms of maintenance and renewal actions performed in the analysed period, i.e. between 2001 and 2009, 

Figure 4 provides an overview of the annual number of track sections which benefited from planned 

maintenance/tamping actions (𝑁) and the ratio of renewed tracks sections (𝑅) from 2001 to 2009. This ratio 

quantifies the number of renewed track sections over the total number of track sections; or in other terms, the 

number of renewed kilometers over the line total length. Note that the ratio of renewed track sections has 

increased from 0.33 in 2001 (i.e. approximately 1/3 of total length) to 0.64 in 2009 (i.e. approximately 2/3 of total 

length) that has been renewed since 1996.  

In terms of MCMC simulation details, the initial values, burn-in period, and number of samples were set equal to 

the MCMC simulation runs for the exemplifying area in section 5, i.e. MCMC samples were of size 20,000, taking 

every tenth iteration (thin=10) of the simulated sequence, after 10,000 iterations of burn-in period, with the initial 

values set for the variance terms 𝜎𝑠
2, 𝜎𝛼𝑠𝑣

2 , 𝜎𝛼′𝑠𝑣
2 , 𝜎𝛽𝑠𝑣

2 , 𝜎𝛽′𝑠𝑣
2  and 𝜎𝛿𝑠

2  equal to 10 (which is equivalent to precision 

(1 𝜎2⁄ ) equal to 0.1), for the spatially correlated terms 𝜀𝛼𝑠𝑣𝑘, 𝜀𝛽𝑠𝑣𝑘, 𝜀𝛼′𝑠𝑣𝑘 and 𝜀𝛽′𝑠𝑣𝑘 equal to 0, and finally, for each 

parameter  𝛼𝑠𝑣, 𝛽𝑠𝑣, 𝛼′𝑠𝑣 , 𝛽′𝑠𝑣 and  𝛿𝑠𝑣 equal to 0.  

Figures 5, 6 and 7 provide the posterior mean for all the degradation parameters for the HBM for the SDLL: for the 

initial standard deviations for renewed track sections 𝛼 and for non-renewed track sections 𝛼′ for both directions 

(in Figure 5), for the deterioration rates for renewed track sections 𝛽 and for non-renewed track sections 𝛽′ for 

both directions (in Figure 6), and for the disturbance effect due to tamping 𝛿 for both directions (in Figure 7). 



Both directions are presented in the following figures: the Oporto direction (towards Oporto) is presented in solid 

lines for renewed (in blue) and non-renewed track sections (in red) and the Lisbon direction (towards Lisbon) is 

presented in dashed lines for renewed (in blue) and non-renewed track sections (in red). Moreover, some track 

segments do not exhibit values for the renewed or non-renewed track segments. This happens because some track 

segments, for the analysed period between 2001 and 2009, were already renewed or still need renewal. Track 

sections which present both parameters for renewed and non-renewed track sections are the segment that 

benefitted from a renewal action in that analysed period.       

Figure 5 provides the posterior mean for the initial quality parameters of the hierarchical Bayesian model for the 

standard deviation of longitudinal level defects, i.e. for the renewed track segments (𝛼𝑠𝑣) and for the non-renewed 

track segments (𝛼𝑠𝑣
′ ). Non-renewed track segments represented in red tend to exhibit larger values than renewed 

track segments represented in blue. For the first track segment between Lisbon – Sta. Apolónia (0.0 km) and 

Bifurcação Xabregas (1.6 km), non-renewed track sections exhibit extremely high values compared to the other 

track segments, whereas renewed track segments also exhibit the higher values compared to the other track 

segments. This might indicate that the data associated with this particular track segment is not reliable. Figure 6 

exhibits the posterior means for the degradation parameters 𝛽𝑠𝑣 and 𝛽𝑠𝑣
′ , respectively the deterioration rates for 

renewed and non-renewed track segments. Again the two directions of the Lisbon-Oporto line are incorporated in 

the same figure: the Oporto direction in solid lines, and the Lisbon direction in dashed lines. Non-renewed track 

segments (marked in red) exhibit higher deterioration rates than renewed track segments (marked in blue) for 

both directions. Note that some segments do not exhibit values for the renewed or non-renewed track segments. 

For instance, the track segments comprehended between locations Pombal (169.6 km) and Pampilhosa (231.2 

km), only the parameter 𝛽𝑠𝑣
′  for non-renewed track sections is represented for the Oporto and the Lisbon 

directions, because no renewed track sections are within those locations for the analyzed time period and thus, no 

value for 𝛽𝑠𝑣 is represented. 

Figure 7 provides values for the disturbance effect (𝛿) of the initial quality after each tamping operation for the 

SDLL. It exhibits a maximum value of 0.021 for the track segment between locations 287.4 km and 290.2 km for the 

Lisbon direction, and a minimum value of -0.003 for the track segment between locations 106.4 km and 114.4 km.       



Similar to the previous Figures 5-7, the following Figures 8, 9 and 10 provide the posterior mean for all the 

degradation parameters, but for the HBM for the SDHA: for the initial standard deviations for renewed track 

sections 𝛼 and for non-renewed track sections 𝛼′ for both directions (in figure 8), for the deterioration rates for 

renewed track sections 𝛽 and for non-renewed track sections 𝛽′ for both directions (in figure 9), and for the 

disturbance effect due to tamping 𝛿 for both directions (in figure 10). 

Similarly to Figure 5, Figure 8 exhibits the posterior means of the initial qualities, but for the SDHA, i.e. for the 

renewed track segments (𝛼𝑠𝑣) and for the non-renewed track segments (𝛼𝑠𝑣
′ ). Again, the parameter referring to 

non-renewed track segments exhibits a larger value than the same parameter referring to non-renewed track 

segments. Again the track segment near Lisbon – Sta. Apolónia (0.0 km) exhibit a considerable high value for 𝛼𝑠𝑣
′  in 

the Lisbon direction, which might indicate some reliability problems in the model for that particular segment.   

Figure 9 exhibits the posterior means for the deterioration rates for renewed (𝛽𝑠𝑣) and non-renewed (𝛽𝑠𝑣
′ ) track 

segments in Lisbon-Oporto line for the SDHA. Deterioration rates for non-renewed track segments tend to exhibit 

higher posterior means than for renewed track segments, though this contrast is not as visible as in figure 6 for the 

longitudinal level defects case. Nevertheless, the posterior means for the deterioration rates tend to exhibit higher 

variability among track segments for the horizontal alignment indicator (figure 9) than for the longitudinal level 

case (figure 6), specially for the parameters associated with non-renewed track segments.  

Finally, figure 10 exhibits the posterior means for the disturbance effect (𝛿) of the initial quality after each tamping 

operation, but in this case for the SDHA. For the horizontal alignment case, in contrast with the longitudinal level 

case, it exhibits only positive values with a considerable larger range. It exhibits a maximum value of 0.178 for the 

track segment between Gaia (332.4 km) and Oporto-Campanhã (336.2 km) for the Lisbon direction, and a 

minimum value of 0.001 for the track segment between locations 9.6 km and 13.8 km. 

Note that in order to preserve some clarity in the exposition of the previous figures 5-10, the corresponding 

standard deviations for each degradation parameter (𝛼, 𝛼′, 𝛽, 𝛽′ and 𝛿) were excluded from these figures, neither 

a credible interval was included for that purpose. It is also important to mention that similarly to what happened in 

the exemplifying area explored in section 4.3, the standard deviations for these estimates are relatively low 



compared to the posterior mean of those parameters, indicating the statistically significance of those degradation 

parameters. Nevertheless, for the disturbance effect 𝛿, the associated standard deviations exhibit for some 

segments high values compared to the posterior mean for that parameter, especially for the HBM for the SDLL. 

Another important issue regarding the exploration of the degradation parameters is related with the reliability of 

the track geometry indicators for the initial segments, i.e. the stations areas near Lisbon – Sta. Apolónia (0.0 km) 

and near Oporto-Campanhã (336.2 km). The standard deviations associated with the posterior estimates for the 

degradation parameters are much higher when compared with other areas.  

7 – Conclusions and further research 

This paper has discussed statistical modelling of railway track geometry degradation using Hierarchical Bayesian 

models, in order to predict the evolution of the main quality indicators for planned maintenance, namely the 

standard deviation of longitudinal level defects (SDLL) and the standard deviation of horizontal alignment defects 

(SDHA). Particular attention was given to the need to insert spatial statistical dependencies between model 

parameters for consecutive track sections, namely make them follow random walk priors, capturing the spatial 

correlation between deterioration rates and initial qualities, which proved to be a better model based on the 

Deviance Information Criterion (DIC) comparison. Moreover, we have also provided an inference method through 

the derivation of the full conditional posterior distribution and the associated Markov Chain Monte Carlo (MCMC) 

or Gibbs sampling procedure is provided in the Appendix. 

In general terms, the application of the model to a sample of railway inspection, operation and maintenance data, 

showed that the HBM exhibit a worse fit of the quality indicator SDHA compared to the quality indicator SDLL, 

suggesting that the horizontal alignment defects seems to be less predictable.   

For further research, the present HBM can be extended by assigning a typical transportation demand model to the 

future tonnage usage 𝑇, relaxing the assumption that 𝑇 is known quantity. Additionally, the HBM can serve as a 

simulation predictive tool and to compare different maintenance and renewal strategies, and ideally find a 

strategy that minimizes life-cycle costs and safety impacts, while improving ride comfort and track access 

availability. We have submitted a paper on that topic elsewhere [40].     



Moreover, an important unexplored branch regards the use of more complicated correlation structures than the 

first- and second-order random walks. In fact, other spatial formulations, using for example power exponential 

functions to model the decline of correlation depending on the distance between track sections may bring more 

inside in the spatial correlation between degradation models. These extensions should also be comprehended 

within a multivariate hierarchical Bayesian model to predict SDLL and SDHA in a joint model instead of the separate 

HBM for each indicator. Finally, another future direction worth pursuing would be trying to let the model 

comparison be conducted for each area s, and then select as an overall predictive model the combination of all 

models selected at a particular s, rather than running model selection for all the areas. In that sense, we would be 

letting the overall prediction model select which model (i.e. M3 or M4 for example), it would use for each area s. 
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Appendix 

Let 𝜽 be the vector of the model parameters, with elements 𝜎𝑠
2, 𝛿𝑠𝑣, 𝜎𝛿

2, 𝜀𝛼𝑠𝑣𝑘, 𝜎𝛼
2, 𝜀𝛽𝑠𝑣𝑘, 𝜎𝛽

2, 𝜀𝛼′𝑠𝑣𝑘, 𝜎𝛼′
2 , 𝜀𝛽′𝑠𝑣𝑘, 𝜎𝛽′

2 , 

𝛼𝑠𝑣, 𝛽𝑠𝑣, 𝛼′𝑠𝑣  and 𝛽′𝑠𝑣 , with 𝑠, 𝑣 and 𝑘 varying for: 𝑠 = 1,… , 𝑆; 𝑣 = 1,… , 𝑉𝑠; 𝑘 = 1,… , 𝐾𝑠 . From the joint 

posterior, one can derive the full conditional posterior distributions (denoted below by [𝑗|𝜽−𝑗]), which are given 

by: 

i) 𝜎𝑠
2|𝜽−𝜎𝑠2 ~ IG (𝑐0 +

1

2
𝑉𝑠𝐾𝑠𝐿𝑠 , 𝑑0 +

1

2
∑ (𝑦𝑠𝑣𝑘𝑙 −𝑚𝑠𝑣𝑘𝑙)

2
𝑣,𝑘,𝑙 ), 𝑠 = 1,… , 𝑆; 

ii) 𝛿𝑠𝑣|𝜽−𝛿𝑠𝑣  ∝ exp (−
1

2𝜎𝛿
2 𝛿𝑠𝑣

2 −
1

2𝜎𝑠
2∑ (𝑦𝑠𝑣𝑘𝑙 −𝑚𝑠𝑣𝑘𝑙)

2
𝑘,𝑙 ), 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠; 

iii) 𝜎𝛿
2|𝜽−𝜎𝛿

2 ~ IG (𝑐1 +
1

2
𝑉𝑠  , 𝑑1 +

1

2
∑ 𝛿𝑠𝑣

2
𝑣 ), 𝑠 = 1,… , 𝑆;  

iv) 𝜀𝛼𝑠𝑣𝑘|𝜽−𝜀𝛼𝑠𝑣𝑘
 ∝ exp (−

𝑛𝑠𝑣𝑘

2𝜎𝛼
2 (𝜀𝛼𝑠𝑣𝑘 − 𝜀�̅�𝑠𝑣𝑘)

2
−

1

2𝜎𝑠
2∑ (𝑦𝑠𝑣𝑘𝑙 −𝑚𝑠𝑣𝑘𝑙)

2
𝑙 ) , 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠, 

𝑘 = 1,… , 𝐾𝑠; 

v) 𝜎𝛼
2|𝜽−𝜎𝛼2  ~ IG (𝑐2 +

1

2
𝐾𝑠 , 𝑑2 +

1

2
∑ 𝑛𝑠𝑣𝑘(𝜀𝛼𝑠𝑣𝑘 − 𝜀�̅�𝑠𝑣𝑘)

2
𝑘 ) , 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠; 

vi) 𝜀𝛽𝑠𝑣𝑘|𝜽−𝜀𝛽𝑠𝑣𝑘
 ∝ exp (−

𝑛𝑠𝑣𝑘

2𝜎𝛽
2 (𝜀𝛽𝑠𝑣𝑘 − 𝜀�̅�𝑠𝑣𝑘)

2
−

1

2𝜎𝑠
2∑ (𝑦𝑠𝑣𝑘𝑙 −𝑚𝑠𝑣𝑘𝑙)

2
𝑙 ) , 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠, 

𝑘 = 1,… , 𝐾𝑠; 

vii) 𝜎𝛽
2|𝜽−𝜎𝛽

2  ~ IG (𝑐2 +
1

2
𝐾𝑠  , 𝑑2 +

1

2
∑ 𝑛𝑠𝑣𝑘(𝜀𝛽𝑠𝑣𝑘 − 𝜀�̅�𝑠𝑣𝑘)

2
𝑘 ), 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠; 

viii) 𝜀𝛼′𝑠𝑣𝑘|𝜽−𝜀𝛼′𝑠𝑣𝑘
 ∝ exp (−

𝑛𝑠𝑣𝑘

2𝜎𝛼′
2 (𝜀𝛼′𝑠𝑣𝑘 − 𝜀�̅�′𝑠𝑣𝑘)

2
−

1

2𝜎𝑠
2∑ (𝑦𝑠𝑣𝑘𝑙 −𝑚𝑠𝑣𝑘𝑙)

2
𝑙 ) , 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠, 

𝑘 = 1,… , 𝐾𝑠; 



ix) 𝜎𝛼′
2 |𝜽−𝜎𝛼′2  ~ IG (𝑐2 +

1

2
𝐾𝑠  , 𝑑2 +

1

2
∑ 𝑛𝑠𝑣𝑘(𝜀𝛼′𝑠𝑣𝑘 − 𝜀�̅�′𝑠𝑣𝑘)

2
𝑘 ), 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠; 

x) 𝜀𝛽′𝑠𝑣𝑘|𝜽−𝜀𝛽′𝑠𝑣𝑘
 ∝ exp (−

𝑛𝑠𝑣𝑘

2𝜎𝛽′
2 (𝜀𝛽′𝑠𝑣𝑘 − 𝜀�̅�′𝑠𝑣𝑘)

2
−

1

2𝜎𝑠
2∑ (𝑦𝑠𝑣𝑘𝑙 −𝑚𝑠𝑣𝑘𝑙)

2
𝑙 ) , 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠, 

𝑘 = 1,… , 𝐾𝑠; 

xi) 𝜎𝛽′
2 |𝜽−𝜎𝛽′

2  ~ IG (𝑐2 +
1

2
𝐾𝑠  , 𝑑2 +

1

2
∑ 𝑛𝑠𝑣𝑘(𝜀𝛽′𝑠𝑣𝑘 − 𝜀�̅�′𝑠𝑣𝑘)

2
𝑘 ), 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠; 

xii) 𝛼𝑠𝑣|𝜽−𝛼𝑠𝑣  ∝ exp(∑ (𝑦𝑠𝑣𝑘𝑙 −𝑚𝑠𝑣𝑘𝑙)
2

𝑘,𝑙 ) ∙ 𝑃[𝛼𝑠𝑣] , 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠; 

xiii) 𝛽𝑠𝑣|𝜽−𝛽𝑠𝑣  ∝ exp(∑ (𝑦𝑠𝑣𝑘𝑙 −𝑚𝑠𝑣𝑘𝑙)
2

𝑘,𝑙 ) ∙ 𝑃[𝛽𝑠𝑣] , 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠; 

xiv) 𝛼′𝑠𝑣|𝜽−𝛼′𝑠𝑣  ∝ exp(∑ (𝑦𝑠𝑣𝑘𝑙 −𝑚𝑠𝑣𝑘𝑙)
2

𝑘,𝑙 ) ∙ 𝑃[𝛼′𝑠𝑣] , 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠; 

xv) 𝛽′𝑠𝑣|𝜽−𝛽′𝑠𝑣  ∝ exp(∑ (𝑦𝑠𝑣𝑘𝑙 −𝑚𝑠𝑣𝑘𝑙)
2

𝑘,𝑙 ) ∙ 𝑃[𝛽′𝑠𝑣] , 𝑠 = 1,… , 𝑆, 𝑣 = 1,… , 𝑉𝑠; 

 

 

 



Tables 

 

Table 1 – Comparison of the DIC for different models M1-M4 for both quality indicators: the standard deviation of 

longitudinal level defects (SDLL) and the standard deviation of horizontal alignment defects (SDHA). 

Models defined from∗𝑠𝑣𝑘= {𝜶𝒔𝒗𝒌, β𝒔𝒗𝒌, 𝜶′𝒔𝒗𝒌, β′𝒔𝒗𝒌} 
DIC 

SDLL SDHA 

M1: ∗𝑠𝑣𝑘=∗𝑠𝑣 7192 8324 

M2: ∗𝑠𝑣𝑘=∗𝑠𝑣+ 𝜀∗𝑠𝑣𝑘  ; 𝜀∗𝑠𝑣𝑘~ 𝑁(0, 𝜎∗
2)  

-2794 3857 

M3: ∗𝑠𝑣𝑘=∗𝑠𝑣+ 𝜀∗𝑠𝑣𝑘  ; 𝜀∗𝑠𝑣𝑘  ~ 𝑅𝑊(1) -3274 3406 

M4: ∗𝑠𝑣𝑘=∗𝑠𝑣+ 𝜀∗𝑠𝑣𝑘  ; 𝜀∗𝑠𝑣𝑘  ~ 𝑅𝑊(2) -3234 3481 

Note: The symbol ∗ intends to represent the parameters 𝜶, β, 𝜶′, β′. 

  



Table 2 – Estimates of the posterior parameters for an example track segment (s=1, v=1) for both quality indicators: SDLL and 

SDHA. 

Quality 
indicator 

Models 

𝛼𝑠𝑣 

(mm) 

𝛽𝑠𝑣 

(mm/100MGT) 

𝛼′𝑠𝑣 

(mm) 

𝛽′𝑠𝑣 

(mm/100MGT) 
𝛿𝑠𝑣 

Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d. 

SDLL 

M1 0.3407 0.020 1.203 0.143 1.787 0.038 1.680 0.329 -0.1016 0.019 

M2 0.3065 0.024 1.469 0.133 1.379 0.067 6.406 0.488 -0.0035 0.008 

M3 0.3102 0.012 1.460 0.081 1.381 0.015 6.247 0.179 -0.0015 0.009 

M4 0.3034 0.013 1.499 0.090 1.375 0.016 6.169 0.170 0.0055 0.009 

SDHA 

M1 0.4353 0.029 0.542 0.191 1.524 0.041 1.123 0.375 0.0172 0.024 

M2 0.4243 0.020 0.602 0.133 1.345 0.074 1.032 0.443 0.0262 0.016 

M3 0.4263 0.019 0.606 0.132 1.342 0.255 1.069 0.273 0.0279 0.015 

M4 0.4291 0.019 0.595 0.128 1.343 0.025 0.959 0.272 0.0304 0.016 

 

 

  



Table 3 – Estimates of the spatial variance components based on model M3 with different inverse gamma prior for both quality 

indicators (SDLL and SDHA) for the particular test segment (s=1, v=1). 

QI Prior 

𝜎𝑠
2  

(mm2) 

𝜎𝛼𝑠𝑣
2   

(mm2) 

𝜎𝛼′𝑠𝑣
2   

(mm2) 

𝜎𝛽𝑠𝑣
2   

((mm/100 MGT)2) 

𝜎𝛽′𝑠𝑣
2   

((mm/100 MGT)2) 

𝜎𝛿𝑠
2  

Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d. 

SDLL 

A 0.0323 0.00141 0.0531 0.00816 0.3478 0.04848 1.4520 0.2379 21.950 3.609 0.0304 0.105 

B 0.0318 0.00069 0.0522 0.00818 0.3679 0.04834 1.6220 0.2489 23.100 3.758 0.1732 0.787 

C 0.0327 0.00199 0.0454 0.00729 0.3551 0.04917 3.3140 0.4299 24.610 4.025 0.2596 4.513 

D 0.0312 0.00067 0.0429 0.00723 0.3618 0.04591 16.380 1.9770 42.070 5.544 0.7139 6.716 

E 0.0326 0.00241 0.0506 0.00833 0.3522 0.04694 1.5470 0.2432 21.610 3.565 0.0121 0.013 

F 0.0318 0.00073 0.0535 0.00856 0.3535 0.04529 1.4480 0.2358 22.380 3.592 0.0947 0.725 

G 0.0316 0.00067 0.0360 0.00569 0.3048 0.03832 32.700 3.6110 57.510 6.801 0.0274 0.010 

SDHA 

A 0.1114 0.00238 0.0052 0.00259 0.3140 0.03985 0.4275 0.0923 7.245 1.757 0.0023 0.005 

B 0.1119 0.00230 0.0040 0.00209 0.2884 0.04409 0.6264 0.1122 8.026 1.842 0.1276 1.406 

C 0.1108 0.00227 0.0038 0.00133 0.3180 0.04218 2.3540 0.3045 11.50 2.069 0.1262 1.236 

D 0.1104 0.00227 0.0097 0.00232 0.3155 0.04316 15.220 1.8170 31.50 4.277 0.5429 3.340 

E 0.1117 0.00233 0.0028 0.00156 0.3037 0.04087 0.6045 0.1056 6.914 1.609 0.0010 0.001 

F 0.1115 0.00238 0.0063 0.00274 0.3065 0.04239 0.3762 0.0845 7.481 1.762 0.0108 0.057 

G 0.1104 0.00236 0.0114 0.00206 0.2650 0.04256 31.790 3.5250 48.940 5.856 0.0269 0.009 

 

  



Table 4 – Sensitivity Analysis of the model selection based on DIC for both quality indicators SDLL and SDHA and for different 

inverse gamma priors.  

Prior Models 
DIC Selected model 

SDLL SDHA SDLL SDHA 

A 

M1 7192 8324 

M3 M3 
M2 -2794 3857 

M3 -3274 3406 

M4 -3234 3481 

B 

M2 -2796 3857 

M3 M3 M3 -3337 3382 

M4 -3230 3520 

C 

M2 -2790 3851 

M4 M4 M3 -3106 3429 

M4 -3107 3398 

D 

M2 -2775 3856 

M3 M4 M3 -3275 3449 

M4 -3154 3431 

E 

M2 -2794 3859 

M4 M3 M3 -3083 3467 

M4 -3217 3552 

F 

M2 -2795 3865 

M3 M3 M3 -3232 3400 

M4 -3189 3556 

G 

M2 -2779 3853 

M3 M3 M3 -3288 3209 

M4 -3214 3266 

 

 

  



Figures 

 

 

Figure 1 – A typical double track line with indices from area s, segment v and track section k. 

 

 

Figure 2 – Mean behaviour of the quality indicator for a given track section k in segment v in area s. 
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Figure 3 – Directed Acyclic Graph (DAG) for the proposed hierarchical Bayesian models M2, M3 and M4. 



 

 

Figure 4 – Information on the number of track sections tamped (N) and on the ratio of renewed track sections (R) for the 
Lisbon-Oporto line between 2001 and 2009. 

 

 

Figure 5 – Initial qualities of the standard deviation of longitudinal level defects for renewed (𝜶) and non-renewed (𝜶’) track 
segments in Lisbon-Oporto line. 

 



 

Figure 6 – Deterioration rates of the standard deviation of longitudinal level defects for renewed (𝜷) and non-renewed (𝜷’) 

track segments in Lisbon-Oporto line. 

 

 

Figure 7 – Disturbance effect (𝜹) of the initial quality after each tamping operation for the standard deviation of longitudinal 

level defects. 



 

Figure 8 – Initial qualities of the standard deviation of horizontal alignment defects for renewed (𝜶) and non-renewed (𝜶’) 

track segments in Lisbon-Oporto line.  

 

 

Figure 9 – Deterioration rates of the standard deviation of horizontal alignment defects for renewed (𝜷) and non-renewed (𝜷’) 

track segments in Lisbon-Oporto line. 



 

Figure 10 – Disturbance effect (𝜹) of the initial quality after each tamping operation for the standard deviation of horizontal 

alignment defects. 

 

 


