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Abstract 

 

Body fluid identification (BFID) forms a crucial aspect within forensic investigations. BFID is 

particularly important where the origin of a DNA profile is also needed e.g. sexual assaults.  

The aim of this work was to develop a RNA-based BFID for use in forensic casework.  The test 

was developed in three stages: exploring co-isolation and single isolation strategies, screening 

and selecting RNA markers and different casework conditions e.g. low-level, non-human, 

degraded and mixed samples.  Blood, saliva, skin, semen and vaginal material samples were 

collected.  Samples underwent single or co-isolation (DNA, total RNA or messenger RNA), 

DNA quantification, cDNA synthesis and qPCR using a number of different candidate markers 

and reference genes for microRNA (miRNA) and messenger RNA.  During the development of 

the test the following novel findings were observed: utilisation of complex co-isolation 

methods was not need for co-analysis of RNA and DNA; six highly discriminative miRNA 

markers were identified for miRNA analysis: blood (miR-451 and miR-194); saliva (miR-205); 

vaginal material (miR-224 and miR-335) and semen (miR-891a).  In terms of casework 

applications, microRNA analysis showed potential for greater sensitivity than current 

enzymatic methods with the use of appropriate reference gene; species specificity was observed 

for reference gene RNU44; sample stability was observed in 1-yr bloodstains with miR-451 

and RNU44 and successful resolution of major and minor components was achieved. 
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1.1 Body fluid identification  

Body fluid identification (BFID) plays a crucial role in forensic casework.  It provides valuable 

information regarding the body fluid origin and can provide evidentiary strength to a DNA 

profile.  DNA profiling has become a powerful tool for forensic investigations due to the 

tremendous efforts that have gone behind developing this technology.   

 

DNA profiling is one of the most common methods used for identifying an individual.  Current 

DNA technologies utilise short tandem repeats (STRs), which are repeating DNA sequences 

between 100 to 400 bp in length [1].  STRs can be categorized by the repeat pattern: simple, 

compound and complex.  Simple repeats are identical in sequence and length, compound are a 

combination of simple repeats while complex repeats contain a range of different repeating 

sequences [2].  DNA profiles utilise a combination of all three types STR markers [2].  For 

instance, the Life Technologies Next Generation Multiplex Select (NGM SE) kit for PCR 

utilises the SE33 locus, which is a complex marker [2].  The use of multiple STR markers 

increases discriminatory value.  The NGM SE kit utilises a total of 17 loci to identify 

individuals.  DNA profiling kits have also become very sensitive over the years.  For instance 

the total input required for a full DNA profile using the NGM SE kits is 1.0 ng [3].  One of the 

major limitations of DNA profiling is that it cannot give information regarding the body fluid 

origin. 

1.1.1 Forensic applications 

Despite the evidentiary strength that DNA profiling provides within courtrooms, there are 

many cases where BFID would be a powerful addition to a DNA profile e.g. non-consensual 

intercourse, withdrawn consent, digital penetration, bestiality, cold cases and trace DNA. 
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1.1.1.1 Non-consensual intercourse  

BFID would be valuable where multiple body fluids are present [4].  For example in a case of 

non-consensual intercourse, there may be vaginal material and semen heavily present within an 

item of evidence collected.  Generally the identification through DNA profiling is sufficient for 

identifying the suspect and victim.  However identification of additional body fluids could 

provide valuable insight into a case.  For instance, the presence of blood could indicate forced 

entry or non-consensual vaginal intercourse [5-10].  The lack of lubrication may cause 

lacerations and abrasions in the vagina and labia majora and minora (skin protecting the vulva, 

urethra and vagina) and result in the presence of circulatory blood in the sample.  Additionally, 

forced entry may cause tears along the frenulum (a string connecting the prepuce to the vernal 

mucosa) and cause blood to be released from the penis.  The presence of menstrual blood also 

may be an indicator of forced entry or non-consensual vaginal intercourse as it is different to 

circulatory blood.  In all three scenarios, BFID may provide important circumstantial evidential 

evidence to the DNA profile.  

 

1.1.1.2 Withdrawn consent 

Another example where BFID would provide valuable information is in cases of withdrawn 

consent.  Consent is defined by Section 74 of the Sexual Offences Act 2003 as an agreement 

made by choice [11].  Withdrawn consent is therefore the removal of that initial agreement.  

The issue of consent can occur at any point before or during a sexual act.  For example two 

people may initially agree to oral stimulation or intercourse e.g. fellatio, cunnilingus but then 

withdraw that consent due to feelings of discomfort [12, 13].  A victim may state that non-
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consensual stimulation or intercourse took place where as the suspect may state that only the 

exchange of kisses on the mouth occurred.  DNA profiling would not be able to resolve the 

context of this case.  However BFID may give an indication of both the presence and the type 

of body fluids present e.g. saliva, semen or vaginal material, which could then be used to 

establish if fellatio or cunnilingus took place. 

 

1.1.1.3 Digital penetration 

BFID would also be very useful for cases of sexual assault through penetration [14-18].  

Assault through penetration is defined in Section 2 of the Sexual Offences Act 2003 as non-

consensual penetration of the vagina or anus through digital penetration or with a foreign object 

[19, 20].  Digital penetration can be with the fingers, tongue or toes [20].  An example of digital 

penetration is in a case of Regina vs. Z (2009) [20].  A suspect digitally penetrated the victim 

staying at her boyfriend‟s home.  The victim‟s anus was penetrated three times.  The suspect 

was convicted in this case.  However it was not determined whether penetration occurred 

through direct contact in the anus or through clothing.  BFID of anal swabs and clothing could 

help establish the method of contact in addition to the DNA profiles obtained. 

 

Another example of sexual assault is through digital penetration with a foreign object [21]. 

Sturgiss et al (2010) reviewed 20 cases of sexual assault involving foreign objects.  The 

majority of the objects reported were cylindrical, with the most common object of insertion 

being drink bottles in the vaginal cavity.  Other objects reported in this study included items 

such as pasta jars, handles and pencils.  Additionally, any household item may be used to 

digitally penetrate a person e.g. deodorant can.  BFID from foreign objects such as these may 

indicate the circumstances of the assault.  For instance the presence of circulatory blood and 
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vaginal material may reflect the level of violence behind the assault.  Thus providing valuable 

circumstantial evidence to the DNA profiles.   

 

1.1.1.4 Bestiality 

In forensic casework it is also common to encounter body fluids from different species [22].  

For instance, crimes that occur in the household may contain animal body fluids.  Body fluids 

from animals may be prevalent in homes where domesticated pets or livestock are cared for. 

For instance in sexual assaults involving animals, semen from a human male may be present in 

an animals anal or vaginal cavities.  Identification of the individual through DNA profiling is 

powerful evidence.  However the identification of the body fluids (e.g. semen, vaginal or anal 

swabs) would provide crucial information to the circumstances in a case. In 2009, 

Imbschweiler et al (2009) described such case between a human male and an ewe.  Successful 

conviction was achieved using a combination of DNA profiling and BFID through visualisation 

of semen and epithelial cells [23].  In addition, body fluids from animals may be present in the 

home from preparing food.  The presence of animal blood would need to be put into context of 

a case.  For instance it is unlikely that the presence of Bos primigenious (cow) blood will be of 

significance unless the crime had taken place at a farm.   

 

1.1.1.5 Cold cases 

BFID may also be useful in cases where samples are heavily degraded such as in cold cases.  

Cold cases are crimes that have undergone investigation but have not been resolved.  The exact 

point in which a case becomes cold is somewhat ambiguous.  However it can generally be 

described by points of inactivity or lack of leads in a case (e.g. 1 year) [24].  Cold case samples 
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can be particularly challenging to forensic practitioners.  The standard operating procedures 

(SOP‟s) used to recover, collect, transfer, test, record and preserve samples may have varied.  

Practitioners may also have little or no sample remaining from the tests performed while the 

case was active.  Therefore the use of tests such as DNA profiling and BFID is very important.  

BFID can provide valuable insight into the circumstances of a case, which can be very useful 

where a full, partial or no DNA profile has been obtained from the samples tested.  BFID may 

also be useful in cases where samples have been heavily degraded by environmental factors 

such as ultra-violet (UV) light, temperature and humidity.  DNA profiles may or may not be 

obtained from these types of samples.  In these instances BFID can provide additional 

circumstantial information where DNA profiles cannot.  

 

1.1.1.6 Trace DNA 

Another example where BFID is valuable is in trace DNA samples [18, 25-28].  Trace DNA 

can be broadly described as DNA that cannot be associated to body fluids.  Trace DNA can be 

transferred onto people and surfaces through direct or indirect contact.  DNA profiles may be 

full, partial or absent depending on factors such as type of contact, surface, place, time and 

lifestyle of the individuals [28].   BFID can provide insight to such factors in a case.  Touch 

DNA has been important such as in Regina v Reed (2006) [29, 30].  In this case, two brothers 

were convicted of murder.  Partial profiles were obtained from the suspects and victim from 

plastic from two knife handles.  DNA profiling was essential to identifying and convicting the 

two suspects.  The body fluid origin of these profiles was not determined e.g. skin cells or 

saliva.  However it was evident that BFID could have played a crucial role in providing insight 

into the circumstances of this case. 
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Additionally there may be cases where body fluids may not be present.  However this does not 

necessarily eliminate the possibility that a crime took place.  For instance, semen will generally 

remain longer in the vagina than in the oral or anal cavities of individuals [31].  A victim may 

report non-consensual intercourse long after a crime taken place e.g. weeks, years.  In these 

types of circumstances, samples such as clothing may not be available, making DNA profiling 

or BFID methods unusable.  Instead, courtrooms may have to turn to other forms of evidence 

such as eyewitnesses [32, 33].  

 

1.1.2 Current BFID tests 

There are a number of different BFID tests currently used in forensic casework.  They can be 

divided into two sections: presumptive and confirmatory.  Presumptive BFID testing plays an 

important role in forensic investigations.  They allow for both forensic practitioners and police 

to decide the most effective approach and tests to use in casework, which is often limited by 

both time and budgetary constraints.  Presumptive tests are generally rapid, accurate, safe, easy 

to use, inexpensive and portable.  However they also generally lack in specificity (e.g. body 

fluids, animal species, plants, household products) and sensitivity (e.g. limited or mixed 

samples) resulting in false positive and false negative results.  False positives can suggest the 

presence of a particular body fluid where there is none.  Conversely, false negatives can 

suggest the absence of a particular body fluid when it is present. 

 

Confirmatory BFID tests form the other half of testing in forensic investigations.  They are 

considered to be confirmative because they can identify components that are characteristic or 

unique to the particular body fluid type.  For instance sperm cells are only found in semen.  

Confirmative BFID tests are generally more accurate, sensitive and specific than presumptive 
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tests.  They also tend to require lower sample input, which is very beneficial for in forensic 

casework where sample is often limited.  Furthermore these qualities generally lower the 

chances of false positive and negative results.  The most casework relevant presumptive and 

confirmatory BFID tests have been described in this section. 

 

1.1.2.1 Blood 

Blood is a commonly encountered body fluid in forensic casework.  Blood consists of three 

major components: plasma (54%), erythrocytes (45%), leukocytes and thrombocytes (1%). 

[34].  Plasma consists primarily of water (92%) and protein (8%).  The water is rich in 

electrolytes, vitamins, acids and hormones (e.g. magnesium, potassium, amino acids, insulin), 

which is essential for maintaining homeostasis in the body.  The proteins (e.g. serum albumin) 

in plasma also help maintain homeostasis in the body.  Osmotic pressure is maintained by 

serum albumin.  Erythrocytes are cells that do not contain a nucleus.  They have a round 

slightly concave exterior that is comprised mainly of lipids while the interior contains a globule 

of iron-rich protein.  The protein is called haemoglobin and is comprised of two α- and two ß-

subunits [34]. The four subunits of haemoglobin can be further divided into haem, which is 

comprised of iron (Fe
2+

) and protoporphyrin IX (organic compound) [34].  The characteristic 

red colour often observed in blood is from the iron present in erythrocytes [35].  Erythrocytes 

are produced in the bone marrow.  Their main role in the body is to transport oxygenated and 

deoxygenated blood through the body. Leukocytes are cells that contain a nucleus.  They can 

be classed into three major categories: granulocytes, lymphocytes and monocytes [36].  Their 

main role in the body is to protect it from foreign material and disease. Thrombocytes are cells 

that do not contain a nucleus.  Their main role is to help with the healing process from injury by 
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aggregating around the injury and releasing histamine and serotonin that will eventually form a 

blood clot [37].  They are produced by megakaryocytes in the bone marrow.   

 

 

1.1.2.1.1 Oxidation-reduction tests 

There are several different presumptive techniques used to indicate the presence of blood [38-

43].  Two of the most commonly used tests in forensic casework are the Kastle-Meyer (KM) 

and Leucomalachite Green (LMG) tests [44, 45].  The principle of both tests is very similar.  

The KM and LMG reagents in the presence of haem will undergo a standard oxidation-

reduction reaction.  Both KM and LMG are tested indirectly onto samples using filter paper or 

swabs.  Both reagents are in a reduced state (colourless) before performing the test.  KM or 

LMG reagent is first added to the samples.  After a few seconds hydrogen peroxide (H2O2) is 

then added.  In the presence of haem, the KM dye phenolphthalin will oxidise into 

phenolphthalein causing the sample to turn a bright pink colour.  Similarly, with the LMG test, 

the base leuco will oxidise in the presence of haem turning the sample a vibrant green colour 

[46].  However it is important to mention that it is the peroxidase-like activity that causes this 

colour change in both of the tests.  False positives can be indicated by a colour change between 

the addition of KM or LMG and addition of H2O2.  Another common enzymatic method used 

in forensic casework is the luminol test.  The principle behind the luminol test is very similar to 

the KM and LMG tests.  Luminol (3-aminophthalhdrazide) will oxidise in the presence of haem 

turning the sample luminescent [46]. 
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There have been a number of reports exploring the sensitivity and specificity of the KM, LMG 

and luminol tests in blood.  Webb et al (2006) performed a comprehensive study comparing the 

sensitivity of presumptive tests for blood including the KM, LMG and luminol tests.  In their 

findings, they found the luminol test to be the more sensitive than the KM and LMG tests.  The 

sensitivity range of luminol was similar to other studies in this area, having sensitivity range of 

1 in 5,000,000 dilutions [41].  The sensitivity range reported for the KM and LMG tests varied 

when compared to other research such as Cox et al (1991).  For instance with the KM test, 

Webb et al (2006) detected blood-stained cloth down to 1 in 10,000 dilutions where as Cox et 

al (1991) detected it down to 1 in 100,000 dilutions.  This may be down to a number of 

variables including reagent preparation.  For instance, both Webb et al (2006) and Cox et al 

(1991) prepared their reagents from scratch.   The wide range of sensitivity observed may also 

be a reflection of the target molecule, the more specific the target the more accurate the result.  

 

Tobe et al (2007) performed a study comparing the specificity of presumptive blood tests 

including the KM, LMG and luminol tests.  They found the least amount of cross reactivity in 

the luminol test.  Luminol reacted only with metals (e.g. nickel chloride and cupric and ferric 

sulphate) [42].  The KM tests showed cross reactivity with other vegetables (e.g. horseradish, 

red onion), common household products (e.g. bleach) and body fluids (e.g. semen). The LMG 

test showed less cross reactivity than the KM test, reacting only with potato and red onion.  

Their findings agreed with previous literature where as the KM and LMG tests did not [38, 39].  

The difference may be due to the type of sample used.  For instance, Cox et al (1991) compared 

sweet potato and Irish potato, neither of which showed cross reactivity in the KM and LMG 

testing where as the type of potatoes tested in Tobe et al (2007) was not mentioned in their 

results.   
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Both the KM and LMG tests are sensitive methods.  However their sensitivity is limited by 

their lack of specificity towards vegetables, household products and body fluids.  The luminol 

test is more sensitive and specific than the KM and LMG tests and can be used to indicate the 

presence of blood that may have been cleaned up.  However it is limited by the need to 

visualise the stains in the dark.   

 

1.1.2.1.2 Crystal tests  

Another common test used for blood in forensic casework are the crystal tests.  Crystal tests are 

confirmatory methods.  The Takayama and Teichmanns tests are two common methods used in 

forensic casework.  The principles of both tests are very similar, utilising a chemical reaction to 

identify haem.  This reaction will produce specific derivatives that can later be visualised using 

microscopy.  The Takayama test uses an alkaline solution (contains sugar and pyridine) to form 

pyridine ferroprotophorphyrin [46].  The Teichmanns test uses a combination of heat and 

glacial acetic acid to produce ferriporphyrin chloride [46].  Both techniques are limited by their 

low sensitivity and inability to distinguish between different species [47]. 

 

1.1.2.1.3 Immunochromatographic tests 

The use of species-specific blood tests can be useful in forensic cases where animal blood is 

present [43].  One common approach utilises immunochromatographic tests, which target the 

ß–units of haemoglobin (Hb) in primates to indicate the presence of blood. 

Immunochromatographic tests are presumptive techniques.  One common technique used in 

forensic casework is the Hexagon OBTI test
®
 [48].  The test is performed on a lateral test strip, 

which contains a sample and control region.  These regions will contain monoclonal anti-
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human Hb antibodies, which have a blue dye attached for testing.  During analysis, suspected 

blood samples are placed onto the sample area.  A buffer containing Tris is then added to the 

sample.  In the presence of Hb, an antibody-antigen-antibody complex will form along the 

sample and control regions of the strip resulting in the appearance of two separate blue lines. 

Samples not containing Hb will only show a blue line in the control region [43].  Hochmeister 

et al (1999) performed an extensive validation study on the Hexagon OBTI test
® 

exploring 

factors such as sensitivity, specificity, casework and the hook effect.  Their findings showed 

that the Hexagon OBTI test
®
 was primate specific and sensitive down to 1 in 100,000 dilutions 

in water.  The test was also found to be robust, showing positive reactions in all casework 

samples e.g. blood-stained cloth 2-15 years old [48].  The Hexagon OBTI test
®
 also exhibited 

the high dose hook affect where high levels of erythrocytes were present, highlighting one of 

the main limitations of this test.   The other main limitation of this test is that it is not human-

specific and has tested positive in other primates including Pongo pygmaeus (Orangutan). 

 

Summary 

The identification of blood can be very important in forensic casework.  There are a handful 

presumptive and confirmatory tests that have been used to indicate the presence of blood.  

These tests target different components in blood.  One of the main presumptive methods 

described was the oxidation-reduction tests e.g. KM, LMG and luminol.  These tests are rapid, 

accurate, sensitive and easy to use.  Both the KM and LMG tests however lack in specificity 

towards other body fluids, plants and common household products.  Luminol has additional 

advantages over the KM and LMG tests including greater sensitivity and specificity.  It is 

however limited by the need to visualise stains in the dark.  Another presumptive technique 

described was immunochromatographic blood tests.  They are rapid and sensitive techniques.  
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Their main drawback is the lack specificity towards human blood.  Two confirmative tests were 

also described; Takayama and Teichmann.  These tests are accurate however they have lower 

sensitivities than in other presumptive blood tests.  Despite the range of different presumptive 

and confirmatory blood tests there are currently no confirmative tests that can differentiate 

between trauma and menstrual blood.  

 

1.1.2.2 Saliva  

Saliva is another commonly encountered body fluid in forensic casework (e.g. biting, licking, 

oral sex) [49-51].  Saliva is generally comprised of three major components: water (99.5%), 

organic (0.3%) and inorganic compounds (0.2%) [52-55].  The organic components of saliva 

consist mainly of proteins (e.g. α-amylase, albumin, histatins, mucins), acids (e.g. uric acid) 

and fats (e.g. cholesterol and lipids) [54].  The inorganic components of saliva comprise mainly 

of cations (e.g. calcium, magnesium, potassium, sodium) [54].  Three major glands in the 

mouth produce saliva: paratoid, sublingual and submandibular [56].  The major roles of saliva 

include deglutition, lubrication of deglutition (e.g. food) and protection of the enamel and from 

foreign viruses, bacteria and fungi of the mouth [52, 54].  Humans produce on average 1.3 L of 

saliva per day [46]. 

 

1.1.2.2.1 Amylase tests 

There are a handful of presumptive techniques that are used in forensic casework to indicate the 

presence of saliva.  One of the most commonly used presumptive tests in forensic casework is 

with the presence of enzyme α-amylase.  Humans contain two different types of α-amylase: 

pancreatic α-amylase (HPA) and salivary α-amylase (HSA).  Both have an important role in 
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digestion and aiding in the breakdown of complex carbohydrates (e.g. polysaccharides) into 

simple sugars (e.g. mono-saccharides).  Humans normally have high levels of amylase in the 

body.  However this can vary between individuals due to natural variation, disease and time of 

day [57, 58]. 

 

One of the main kits used to indicate the presence of saliva in forensic casework is the 

Phadebas
®
 tests [57, 59-62].  The Phadebas

®
 tests utilises the α-amylase activity to indicate the 

presence of saliva.  In the presence of α-amylase, a water-insoluble polymer attached to a 

soluble blue dye will hydrolyse releasing the dye and will result in the appearance of a dark 

blue colour.  There are liquid and paper versions of this test.  The liquid version will test for α-

amylase activity using aliquots of suspected samples before undergoing quantification with a 

spectrophotometer (620 nm).  The paper Phadebas
®
 press test is generally applied onto a piece 

of filter paper, moistened with water and placed onto the suspected sample regions (e.g. 

clothing) [58, 59, 63, 64].  The presence of α-amylase is then determined through visualisation 

of the stain. 

 

Another common test used to indicate the presence of saliva is the starch-iodine test.  It utilises 

similar principles to the Phadebas
®
 test, relying on the activity of α-amylase activity to produce 

the appearance of a dark blue colour.  However starch is used to identify α-amylase activity.  

The test is performed in a petri dish.  An agarose gel will be set with starch, which will result in 

a blue colour.  Samples are added to wells in the gel and immersed in iodine solution.  A white 

colour in the well (due to diffusion) indicates amylase activity.  The level of amylase present 

can be quantified by the size of the white area and standard curve (e.g. large white area are 

indicative of high levels of amylase) [46]. 
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Summary 

Amylase tests form an important part of forensic investigations involving saliva.  The presence 

of amylase can give forensic practitioners insight on the circumstances of a case and how to 

proceed.  In addition they are also relatively inexpensive and easy to use [62].  Amylase tests 

are limited by a number of factors.  The tests are not specific to HSA and can be mistaken for 

HPA found in other areas of the body (e.g. blood, semen, vaginal material) [46].  Animals (e.g. 

primates, some rodents), plants (e.g. potatoes) and common household products (e.g. lotions, 

detergent) also contain high levels of amylase and as a result can generate false positives [51, 

57, 65]. 

 

1.1.2.2.2 Microscopy 

Alternatively, buccal cells can be visualised using microscopy.  It is relatively quick and easy 

to use.  Epithelial cells can be stained prior to visualisation.  The haematoxylin and eosin 

(H&E) stain can be used in forensic casework to enhance the appearance of epithelial cells.  

The nucleus will be dyed blue while the surrounding region of the cell will be dyed red.  

Microscopy can be useful for identifying epithelial cells.  However its inability to differentiate 

the morphology of epithelial cells found in vaginal material and skin, means that it cannot 

definitively confirm the presence of saliva.   

 

1.1.2.2.3 Immunochromatographic tests 

A more accurate, sensitive and specific approach for indicating the presence of saliva is using 

immunochromatographic tests, which target α-amylase. Immunochromatographic methods are 

presumptive techniques.  One common immunochromatographic test used in forensic casework 
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is the rapid stain identification (RSID™) for human saliva test [50, 51].  They utilise lateral 

flow strips similar to pregnancy tests, which contain both sample and control regions.  Both the 

sample and control region contain two monoclonal antibodies.  The presence of the specific 

antigens will result in binding to the antibodies and a red line in both sample and control 

regions will appear.  Samples not containing these antigens will only show a red line in the 

control region [50, 66].  

 

Old et al (2009) performed a study exploring different casework applications (e.g. sensitivity, 

specificity, stability, and mixed body fluids) using the RSID™ human saliva test.  In their 

findings, the RSID™ tests showed greater sensitivity than with the generic amylase tests.   In 

their specificity studies, the RSID™ saliva test showed slight cross reactivity towards milk and 

post-coital samples containing vaginal material but no cross reactivity in blood and semen.  The 

RSID™ test for saliva showed α-amylase stability in samples stored at high temperatures (e.g. 

37 º C) as wells as in samples stored over long periods of time (e.g. 30 days) [50, 67].  Saliva 

samples showed specificity in mixed samples containing blood or semen.  The studies 

performed by Old et al (2009) reiterate the strengths of using an immunochromatographic test 

in forensic investigations.  However their study also highlights the need for a confirmatory 

BFID test for identifying saliva.    

 

1.1.2.2.4 Alternative light sources 

Other less commonly used tests include alternative light sources (ALS).  ALS is a presumptive 

technique.  The general principle of ALS involves the absorption of light from shorter 

wavelengths followed by the emission of light at longer wavelengths and fluorescence of a 

sample.  Saliva can fluoresce between 200-550 nm depending on the light source [68].  For 
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instance, Polilight
®

, which is a common ALS source can indicate the presence of saliva when 

using orange goggles and a wavelength of 450 nm [26].  A study by Vandenberg and van 

Oorschot (2006) explored Polilight
®
 and its applications on forensically relevant body fluids, 

which included saliva.  In the majority of their studies (e.g. appearance on different fabrics, 

cleaning products, diluted and mixed samples), the presence of saliva could be indicated.  

However it is clear through their work that body fluid differentiation with ALS is limited by 

factors such as the composition of body fluids, mixed body fluids and the presence of 

household cleaning products [26].  

 

Summary 

The identification of saliva can be very important in forensic casework.  There are a handful 

presumptive tests that have been used to indicate the presence of saliva.  These tests target 

different components of saliva.  One of the main presumptive methods described was α-

amylase test and immunochromatographic tests. Both tests are relatively accurate, inexpensive 

and easy to use. However the immunochromatographic test has greater specificity than the 

amylase tests, which gives false positives in other body fluids, animals, plants and chemicals.  

Microscopy with staining (via H&E) is another technique that can be used to identify epithelial 

cells.  The test is relatively quick and easy to use.  However its main drawbacks include the 

inability to differentiate the morphology of saliva from vaginal material and skin as well as its 

destructive nature.  ALS is another presumptive method that was described.  Its main advantage 

over the other techniques is the ability to visualise the area of the stain.  However it lacks in 

specificity towards other body fluids and common household products. The main drawback to 

these presumptive BFID methods in forensic casework are they cannot distinguish saliva from 

vaginal material [69]. 
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1.1.2.3 Semen 

Semen is another commonly encountered body fluid in forensic casework (e.g. sexual assaults) 

[65, 70-73].  It normally contains two components: 5% spermatozoa (sperm) and 95% fluid 

[74].  Spermatozoa have a head, which contains DNA and RNA, a tail, which is used for 

mobility and a complex mid-piece, which connects the two parts.  The fluid consists of a 

number of components necessary for the survival of sperm during reproduction.  The main 

energy sources for sperm include fructose and glycerophosphorylcholine.  They are derived 

from storage areas such as the ampulla and epididymis, as well as the prostate glands and 

seminal vesicles.  The environment of the sperm (e.g. pH 7-7.5) is regulated mainly by these 

glands and vesicles [74].  They will release a number of different enzymes, hormones, acids 

and elements including acid phosphatase, diamine oxidase, y-glutamyl transpeptidase, 

prostaglandins, semenogelins, citric and lactic acid and calcium, sodium, potassium and zinc 

[65, 74, 75].  In addition, the urethral glands will release mucus.  The secretions produced by 

these glands and vesicles will also aid in the motility of sperm during reproduction.  A healthy 

male on average releases about 3 ml of semen, which can contain up to 10 million sperm [74]. 

 

1.1.2.3.1 Acid phosphatase tests 

Over the years a wide range of presumptive and confirmatory tests that have been developed to 

identify semen [46].  One common presumptive method used to indicate the presence of semen 

is the prostate acid phosphatase (PAP) test [76-81]. The PAP tests are used by forensic 

investigators to identify the samples that contain semen.  This test is accurate and relatively 
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easy to use.  Acid phosphatase is an enzyme produced by the prostate gland.  Its main function 

is to increase acidity of semen [82].  PAP is normally found at high levels in semen.  

 

There are two common AP tests used in forensic casework: the α-naphthyl phosphate and the 4-

methylumbelliferone phosphate test [46, 65].  Suspected casework stains are treated with 

moistened filter paper or swabs to preserve the original sample [81].  The filter paper is 

subsequently treated with these substrates and additional reagents or light sources to indicate 

the presence of semen. 

 

The chemistry behind both tests is relatively similar.  Acid phosphatase in the presence of α-

naphthyl phosphate or 4-methylumbelliferone phosphate will cause removal of these phosphate 

groups through hydrolysis [46, 65].  Semen is then indicated through precipitation using 

Brentamine Fast Blue B, which gives a purple colour or through the examination with ultra-

violet respectively. 

 

The acid phosphatase test is an effective test for indicating the presence of fresh semen [80, 

83].  The test is also quick and portable making it useful for forensic casework.  However there 

are a several limitations with this test.  Acid phosphatase is also found in other body fluids, 

plants, chemicals (e.g. vaginal phosphatase, tea, toilet cleaner) and can yield false positives [78, 

79, 81].  It is worth noting that indirect testing of the sample area has been shown to be a 

contributing factor to false positives [81, 84].  Acid phosphatase also degrades when exposed to 

different conditions such as putrefaction and heat [65, 75].  There are tests available that are 

more suited for degraded semen described later. 

 



20 

 

1.1.2.3.2 Microscopy 

Samples containing acid phosphatase then undergo confirmatory testing using microscopy [65].  

Spermatozoa is visualised through the microscope directly or through cytological staining.  

There are three popular methods used by the forensic community; the nuclear fast red and 

picroindigocarmine, alkaline fuchsin and haematoxylin and eosin tests [65, 72, 85].  

Spermatozoa are prepared onto slides by drying (e.g. air drying or heat drying) and treatment 

with chemicals such as ether or alcohol [85].  Slides are then stained with the dyes and 

visualised under a microscope.  The current standard for conviction within forensic casework is 

the presence of a single sperm head in addition to a DNA profile [85, 86].   

 

The staining process for these dyes is relatively similar. The nuclear fast red and 

picroindigocarmine dye will target two different regions of the spermatozoa.  Nuclear fast red 

is basophilic and will bind to the sperm head dying it red while the picroindigocarmine is 

acidophilic and will bind to the sperm tail dying it green [65, 85, 87].  The haematoxylin and 

eosin (H&E) stain performs in a similar manner except the sperm head is dyed blue while the 

sperm tail is dyed red.  The alkaline fuchsin stain will dye the sperm red [87].   

 

It is with no doubt that microscopy is a powerful confirmatory tool in forensic casework.  It has 

been used to convict thousands of individuals [7, 15, 16, 88].  However identification of sperm 

is limited by its presence in a sample.  Medical conditions and lifestyle choices may affect the 

presence of sperm.  Individuals may have medical conditions such as aspermia where they do 

not produce semen, azoospermia where they have no sperm in the seminal fluid or 

oligospermia where they have a low sperm count.  Other individuals may have no sperm 

present because of a vasectomy, a medical procedure that does not allow sperm to leave the 
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body.  Alternative tests have been developed for establishing the presence of semen in a 

sample. 

 

1.1.2.3.3 Immunochromatographic tests 

Another common confirmatory method used to indicate the presence of semen are 

immunochromatographic tests [71].  They are generally rapid, accurate and easy to use. A 

common immunochromatographic test using in forensic casework is the prostate-specific 

antigen (PSA, P30, Kallikrein 3).  PSA is a protein produced by the prostate gland.  Its main 

role is to add volume to semen to encourage motility of sperm during reproduction.  Semen 

normally contains high levels of PSA (e.g. 5.0 mg/ml) [89].  Its high concentration and relative 

stability make it particularly useful for identifying heavily degraded semen samples (e.g. 55 

years) [48, 89-91].  

 

The seminal vesicle-specific antigen test is another common immunochromatographic test used 

for semen samples.  Semenogelins are comprised of two main proteins (semenogelin I and 

semenogelin II) and are produced by the seminal vesicles.  Their main role is to add viscosity to 

semen during ejaculation.  They are found at higher levels than PSA making them particularly 

useful for heavily degraded samples [91].   

 

Two commonly used immunochromatographic tests used in forensic casework are the 

ABAcard
®
 p30 test and RSID™ of human semen test [66].  These tests utilise the presence of 

the PSA or semenogelins to identify semen respectively.  As mentioned previously, they utilise 

strips, which contain both sample and control regions.  Both the sample and control region 

contain specific antibodies.  The presence of specific antigens will result in binding to the 
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antibodies and a pink line in both sample and control regions will appear.  Samples not 

containing these antigens will show a pink line in only the control region [66]. 

 

Boward and Wilson (2013) performed a comprehensive study exploring the sensitivity, 

specificity and cost-effectiveness of both ABAcard
®
 p30 and RSID™ semen test using fresh, 

frozen, post-coital, vasectomised and mixed samples.   The overall findings from their study 

indicated similar levels of specificity.  In terms of cost-per-analysis, ABAcard
®

 p30 was 

slightly cheaper than the RSID™ semen test.  Also interestingly, the ABAcard
®
 p30 showed 

varying levels of sensitivity when compared to the RSID™ semen test [66].  For instance in the 

mixed samples the RSID™ semen test showed greater sensitivity than with the ABAcard
®
 p30, 

which was expected as semenogelins are generally found at higher levels than PSA.  However 

the ABAcard
®
 p30 showed greater sensitivity in post-coital samples. This was surprising as 

high levels of semenogelins are released prior to ejaculation.  The difference in sensitivity may 

be down to variation in PSA and semenogelins levels between individuals.   It may also be due 

to the use of different commercial kits. 

Immunochromatographic tests are important in forensic casework.  They provide an essential 

link to the presence of semen when spermatozoa are absent.  In addition they are also rapid in 

throughput, accurate and easy to use.  However there are couple of limitations to 

immunochromatographic tests.  They can produce false negatives in the presence of too much 

sample (e.g. PSA levels of 50,000 ng/ml and above), a behaviour known as the high dose hook 

effect [48].  They can also produce false positives when sample amounts are limited.  Prostate 

specific antigens and semenogelins are can also be found present in other body fluids (e.g. 

blood, milk, urine) and tissues (e.g. colon, kidneys, trachea) respectively [46, 91].  

Furthermore, low levels of these antigens may also be mistaken for the presence of other body 

fluids.   
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1.1.2.3.4 Alternative light sources 

Other less commonly used methods to identify semen in forensic casework include ALS.  

Alternative light sources are presumptive methods.  They are rapid, non-destructive and easy to 

use.  ALS can be useful for visualising biological stains on individuals and crime scenes (e.g. 

sexual assaults) [92, 93].  As mentioned previously, ALS will absorb light from shorter 

wavelengths to emit light at longer wavelengths; resulting in fluorescence of a sample [26].  

One common ALS used in forensic casework to identify semen is the Woods lamp (WL).  The 

WL will emit a wavelength at 360 nm, which falls in the ultra-violet (UV) light region of light; 

200-400 nm [94, 95].  Semen with the WL will generally fluoresce between 300-500 nm [26, 

68, 96].  Another common ALS used in forensic casework is the Polilight
®
.  Polilight

®
 emits 

light in the range 310-610 nm, which is also in the UV light region [26].  

 

Wawryk and Odell (2005) performed a study on ALS.  They explored the fluorescence of 

semen and other substances on skin using the Woods lamp.  They reported that the appearance 

of semen stains was generally more faint on skin than on items such as sheets and clothing.  

They also performed a study comparing the fluorescence of azoospermic, vasectomized and 

normal semen.  However they were not able to distinguish between these sample types.  ALS 

relies heavily on visual interpretation of a sample.   

 

ALS can be a useful tool for forensic investigations e.g. visualizing biological stains on bed 

sheets.  Alternative light sources are generally easy to use, non-destructive and cost-effective.  

However ALS can give false positives from the presence of common household products e.g. 
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hand creams, soaps, detergents and ointments and must be interpreted with caution [26, 94, 96].  

In addition, ALS is not a confirmatory method for identifying semen. 

 

Summary 

The identification of semen can be crucial in forensic investigations, especially in cases of 

sexual assault.  There are a number of different presumptive and confirmatory techniques that 

were described for targeting different components of semen.  Microscopy with staining was one 

of the main confirmatory methods described.  Its use within forensic casework is powerful as 

the presence of one sperm head in addition to a DNA profile is enough to convict an individual.  

The main limitation of this technique is that it can only be used in the presence of sperm.  The 

AP and immunochromatographic methods (e.g. PSA) were two other presumptive methods 

described.  Both tests are generally used in cases where sperm is absent, with the latter method 

being of particular use for aged semen stains.  In addition, these techniques are relatively 

accurate and easy to use.  The main drawback of both tests is their lack of specificity towards 

other body fluids, plants and chemicals.  Another limitation is that it can produce false 

negatives if the hook effect occurs.  ALS is another presumptive technique that was described.  

Its main advantage over the other techniques is the ability to visualise the area of the stain.  

However it lacks in specificity towards other body fluids and common household products.  

 

1.1.2.4 Vaginal material 

Vaginal material is another commonly encountered body fluid in forensic casework.  Vaginal 

material contains a number of different components including glycogenated epithelial cells, 

enzymes, proteins, acids, carbohydrates, organic compounds and microflora [97-101].  The 
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vagina is comprised of glycogenated epithelial cells.  They will secrete vaginal transudate (e.g. 

glycogen, mucin, potassium, sodium) that will keep the vaginal walls moist during or without 

stimulation as well as during different points during the menstrual cycle [102-104].  Glycogen 

will also serve as one of the main energy sources for microflora (e.g. lactobacilli), which are 

naturally present in the body.  They will produce organic acids (e.g. lactic acid) that will help 

act as a natural barrier against antigens based on the low pH (<4.5) [98, 105].  The vaginal 

walls will also renew itself on a regular basis through shedding.  In this way it can keep the 

vaginal clean from bacteria build up.  The average female will produce 3 ml of vaginal 

transudate per day [105]. This will be combined with other lubricating fluids from the upper 

and lower reproductive tracts. The endometrial and tubal glands found in the cervix will 

produce cervical mucus [106].  This mucus is thick and rich in glycoprotein and carbohydrates, 

serving as a protective barrier to the uterus [101].  The sebaceous glands surrounding the labia 

minora will produce sebum that will help protect and lubricate the entrance to the vagina during 

stimulation or no stimulation [106].  All of the components found in vaginal material are 

responsible for reproduction and health of the vagina.   

 

1.1.2.4.1 Microscopy 

There are a few presumptive tests used for indicating the presence of vaginal material [107].  

One of the main presumptive methods utilises microscopy.  Glycogenated epithelial cells are 

stained and visualised under a microscope.  There are two main staining techniques used in 

forensic casework: the Lugol iodine and periodic acid-Schiff (PAS) test.  The principles of both 

techniques are very similar.  Samples are isolated in water then placed on a slide to dry (via air 

dry, methanol) and stained with either the Lugol or PAS reagent [108-110].  Both the Lugol 
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iodine and PAS reagent are acidophilic and will turn the cytoplasm of the glycogenated 

epithelial cells dark brown and red respectively [65, 87, 111]. 

 

Jones and Leon (2004) performed a study exploring the glycogen content from different body 

fluid types (e.g. saliva, vaginal material) using both Lugol iodine and PAS tests.  In both 

methods, they found a low glycogen content in saliva (1-8%) when compared to vaginal 

material (>10%) [110].  The use of these techniques could be particularly useful for woman 

who are menstruating as they have been reported to have high levels of glycogenated epithelial 

cells in the vagina [109].  The level of glycogen in saliva was also interesting, as both tests 

have shown higher glycogen levels than in saliva and semen [108, 109, 112, 113].  Both the 

Lugol iodine and PAS tests can be useful tools for indicating the presence of vaginal material.  

However the use of these tests is limited by the ability to confirm the body fluid origin of 

glycogenated epithelial cells (e.g. saliva, vaginal material, semen), particularly where little 

sample is available [114].  In addition, microscopy using Lugol and PAS staining can give false 

negatives as non-menstruating women do not always have glycogen epithelial cells present 

[65].  It is also destructive to the sample.  Other methods have been developed to indicate the 

presence of vaginal material.   

 

1.1.2.4.2 Immunoelectrophoretic tests 

Another presumptive technique used to indicate the presence of vaginal material is 

immunoelectrophoretic tests [79, 97, 115, 116].  Vaginal material contains low levels of acid 

phosphatase.  One immunoelectrophoretic method that has been used to separate vaginal acid 

phosphatase in forensic casework is the Laurell immunoelectrophoretic test [116].  The 

principle involves separation of acid phosphatase on a gel (e.g. polyacrylamide) using 
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isoelectric focusing (e.g. pH 4) [115, 116].  The gel is then stained with a dye e.g. Brentamine 

fast black. The bands are then visualised under a light source such as a UV light.  In a gel, 

smaller molecules tend to migrate faster than larger molecules.  

 

Ablett (1983) performed a study comparing the mobilities of acid phosphatase from vaginal 

fluid and semen using twelve isoforms of acid phosphatase.  Characteristic bands were 

observed for vaginal acid phosphatase (VAP) and semen acid phosphatase (SAP) suggesting 

that Laurell immunoelectrophoretic separation could be used to differentiate the two [116]. 

 

Adams and Wraxall (1974) also performed a study on range of different acid phosphatases e.g. 

VAP, SAP and other body fluids and plants.  Their findings showed that 

immunoelectrophoretic separation could be used to indicate the presence of VAP or SAP.  

Their work also highlighted the limitations of this test (e.g. false positives).  For instance, AP 

was also detected in yeast and plants [79].   

 

1.1.2.4.3 Alternative light sources 

Other methods that have been used to indicate the presence of vaginal material are ALS. ALS 

is a presumptive technique that is rapid, non-destructive and easy to use.  The principle of ALS 

is it will absorb light from shorter wavelengths to emit light at longer wavelengths; resulting in 

fluorescence of a sample.  Vandenberg and van Oorschot (2006) explored Polilight
®
 and its 

applications on forensically relevant body fluids, including vaginal material.  Their findings 

showed that vaginal material gave similar fluorescence to saliva (450 nm wavelength) with 

orange goggles [26, 97].   
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Summary 

The identification of vaginal material is crucial to forensic investigations, especially in cases of 

sexual assault.  There are a few presumptive tests that have been used to indicate the presence 

of vaginal material.  These tests target different components of vaginal material.  One 

presumptive method described was microscopy with staining.  Glycogenated cells are stained 

using the Lugol or PAS reagent.  Its use in forensic casework is limited due to its lack of 

specificity towards other body fluids (e.g. saliva, vaginal material and semen) and women at 

different developmental stages (e.g. menstruating, non-menstruating).  It is also destructive to 

samples [97].   

Another presumptive method described was immunoelectrophoretic testing, which uses 

isoelectric focusing to indicate the presence of VAP.  The technique can distinguish between 

VAP and SAP but not other body fluids (e.g. saliva) and plants.  It is also destructive to the 

sample [97].  The last presumptive method described was ALS.  This method utilised light to 

indicate the presence of vaginal material.  ALS is rapid, easy to use and non-destructive.  

However its main limitation was that it lacked specificity towards other body fluids and 

household products.  The main drawback of all of these methods is that there are currently no 

presumptive BFID tests that can distinguish vaginal material cells from skin cells.  

 

1.1.2.5 Skin cells 

Skin cells are also commonly encountered in forensic casework (e.g. trace DNA, digital 

penetration).  Skin consists of three main layers: the hypodermis, dermis and epidermis [117].   

The hypodermis is the innermost layer, comprising mainly of tissue and glands (e.g. sweat).  Its 

main function is to help insulate the body.  The dermis is the middle layer, consisting mainly of 

muscle, nerves, hair follicles, glands (e.g. oil and sweat), vessels (e.g. lymph, blood) and tissue 
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[117].  It is responsible for thermoregulation, sensation and protection of the skin.  The 

epidermis is the outermost layer, consisting of keratinised skin cells (contains no nuclei).  Its 

main role is to provide a protective barrier from the environment (e.g. bacteria, chemicals).  

 

1.1.2.5.1 Microscopy 

There are a few tests that have been used to indicate the presence of skin in forensic casework.  

One presumptive method that has been used is microscopy through staining (e.g. H&E).  

French et al (2008) performed a study developing a staining technique that could differentiate 

epithelial cells collected from the ear or elbow from other areas of the body e.g. oral and 

vaginal cavities [104].  They explored a number of different dyes (e.g. Dane‟s, Ayoub-Shklar) 

and fixtures (e.g. 100% methanol, 95% ethanol) to observe the morphology and colour of the 

cells.  Dane‟s technique utilises one dye, which stains the nuclei and cytoplasm a red-orange 

colour.  It has been used to target protein (e.g. keratin) and carbohydrates (e.g. mucin).  Ayoub-

Shklar method utilises two dyes, which stain nuclei blue and cytoplasm red.  In their study they 

found that a combination of Dane‟s method and methanol could distinguish epithelial cells 

from all cell types.  Epithelial cells from the ear and elbow gave an orange colour while the 

buccal cells gave red-orange colour and vaginal cells gave bright orange colour and blue hue 

[104].   

 

French et al (2008) performed a further study using blind samples containing epithelial cells 

either from the ear, elbow, oral or vaginal cavities.  They were able to successfully distinguish 

95% of the samples tested based on red-stained keratin in the skin cells [104].  The studies by 

French et al (2008) have demonstrated the potential for using histological staining to identify 

and distinguish epithelial cells from different areas of the body.  However their studies did not 
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explore skin collected from the mid-layer e.g. dermis, which could be of relevance where a 

suspect has produced a deep scratch on a victim during a sexual assault.  This could affect the 

ability to distinguish different epithelial cells because of the skin from the dermis layer contains 

nuclei.   

 

 

Summary 

Skin cell identification can be very important in forensic investigations.  It has been suggested 

by French et al (2008) that microscopy combined with histological staining could be powerful 

tool for indicating the presence epithelial cells from different cell types [104].  However their 

method may be limited by identification of epithelial cells collected from the epidermis.  

Furthermore there are currently no presumptive or confirmative methods available in forensic 

casework that can distinguish skin cells from cells collected from the oral and vaginal cavity.   

 

Current BFID tests summary 

There is a wide range of presumptive and confirmatory BFID tests that are currently be used in 

forensic casework.  For blood these include the KM, LMG, luminol, Takayama, Teichmanns, 

Hb immunochromatographic tests.  For saliva these include amylase, α-amylase tests 

microscopy with staining (e.g. H&E) and ALS tests.  For semen these include microscopy with 

staining (e.g. nuclear fast red and picroindigocarmine, alkaline fuchsin or H&E dyes, AP, PSA 

and ALS tests.   For vaginal material these include microscopy with staining (e.g. Lugol, PAS) 

and ALS tests.   Skin tests include mainly microscopy with staining (e.g. Dane test).   
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Despite the large number of body fluid identification tests available there are still no tests that 

can differentiate trauma blood from menstrual blood.  Similarly there are no tests that can 

currently differentiate epithelial cells collected from skin, saliva or vaginal material.  The 

ability to be able to identify the origin of a body fluid can be particularly important to 

understanding the context of a case.  

 

1.1.3 New BFID tests 

There are a number of new techniques that are currently being developed to overcome these 

challenges within forensic casework.  These techniques can be divided by their application: 

forensic or non-forensic (e.g. biology, chemistry, material science).  Non-forensic methods 

include Raman, fluorescence, hyper spectral imaging and nanotechnology.  Forensic methods 

include DNA methylation, messenger RNA and microRNA analysis.   

 

1.1.3.1 Raman spectroscopy 

One qualitative method that is currently being explored for forensic purposes is Raman 

spectroscopy.  It was discovered and invented by Chandrashekhara Raman in the early 1920s 

[118].  The basic principle of Raman spectroscopy relies on inelastic scattering of molecules to 

obtain characteristic vibrational signatures of a sample in a solid, liquid or gas state [71].  There 

are three different mechanisms of scattering: Stokes Raman, anti-Stokes, and Rayleigh [118].  

Stokes Raman scattering occurs when the frequency is higher than the energy exchanged 

between a molecules and photons.  Conversely anti-Stokes occurs when the frequency is lower 

than the energy exchanged between a molecules and photons.  Rayleigh scattering occurs when 

the frequency is the same as the energy exchanged between molecules and photons [118].  
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There is another form of scattering known as elastic scattering.  This occurs when there is no 

change in frequency or energy between molecules and photons.  The frequency of molecules 

are generally higher in samples containing functional groups e.g. alkenes, alkynes.  Molecules 

are generally excited using a laser such as an argon ion (488.0 and 514.5 nm) [118].   

 

Raman spectroscopy has been used in a wide range of fields including biology, chemistry, 

material science and pharmaceuticals [118].  Its use within forensic casework has only recently 

been explored.  Virkler and Lednev (2008) performed a handful of studies exploring the use of 

Raman spectroscopy for identifying blood, saliva, vaginal material and semen.  In their studies 

they utilised near infrared (NIR) Raman spectroscopy using a confocal Raman 

spectrophotometer [118].  The instrument as the name suggests, uses a combination of 

microscopy and Raman scattering to produce a characteristic chemical spectrum that is read 

through a charge coupled device (CCD) camera.  

 

Virkler and Lednev (2008) performed a series of BFID studies using NIR Raman spectroscopy 

at a wavelength of 785 nm.  In their work they characterised dried blood, saliva, vaginal 

material and semen from multiple sample donors.  Blood gave a characteristic spectrum 

containing two peaks; one of haemoglobin and other of fibrin.  Saliva also gave a unique 

spectrum containing three peaks similar to protein, acetate and saccharide and amino acid.  

Semen gave a characteristic spectrum with three peaks: choline, tyrosine and spermine.  

Vaginal material also showed a spectrum containing three peaks: protein, urea and lactic acid 

[65, 71, 97, 119-121].  Their findings highlighted the potential of using Raman spectroscopy as 

a BFID method in forensic casework.  However their work also highlighted spectral variations 

observed due to the complex nature of body fluids. 
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Raman microscopy such as NIR Raman spectroscopy has a number of advantages over other 

presumptive and confirmatory BFID tests [65, 119].  One of its main advantages is its ability to 

penetrate and produce a three-dimensional image without any destruction to the sample.  

Casper et al (2003) performed a study exploring the composition of skin using confocal Raman 

spectroscopy.  In their findings they were able to identify both the cellular (e.g. blood cells, 

epithelial cells from hypodermis, dermis and epidermis) and molecular structures of skin (e.g. 

amino acid levels and moisture in skin) [122].  Applications explored in Casper et al (2003) 

study may be very useful in resolving the issue of indicating the presence of epithelial cells 

from various cell types in forensic casework.  For instance it could be used to indicate the 

presence vaginal material, skin or saliva based on the chemical composition of each body fluid 

type.  Raman spectroscopy has also shown potential for indicating the presence of mixed, trace 

and animal body fluids, which could be very useful for casework [65, 118]. Other advantages 

include ease of use and portability [123, 124].  

 

However despite these advantages, Raman spectroscopy is limited by the variations that can 

occur in the spectrum (e.g. body fluid heterogeneity and sample variation between individuals), 

which can cause false positive results [65, 118, 120].  Also unless Raman spectroscopy is 

coupled with another technique (e.g. NIR) it can be subject to fluorescence interference from 

other molecules [120]. 

 

1.1.3.2 Hyper spectral imaging  

Another qualitative method that is currently being explored for forensic purposes is hyper 

spectral imaging (HSI).  HSI combines spectroscopy and imaging to obtain the chemical 

composition and distribution of samples [125].  The principle of this technique is based on a 
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cubic (hypercubic) structure, which consists of three planes: x, y and λ (one wavelength).  

Samples undergo temporal scanning, which involves stacking of narrow spectral bands from x, 

y and λ planes to form three-dimensional images.  Samples can be scanned according to points, 

lines or area.  The point scanning imaging system (whiskbroom), targets two points along the 

spatial planes (x, y) to produce a hypercube.  The line scanning system (pushbroom), targets 

one line along the spatial (x,y) axes and one line along the spectral (λ) axes to produce the 

cube.  The area scanning system (staredown), targets a sequence of images along the spatial 

planes (x, y) to produce the cube [125].  Samples are visualised along the electromagnetic 

spectrum (e.g. NIR, IR, UV).   

 

HSI has been used for a wide range of applications including satellite imaging, medicine and 

pharmaceuticals [125]. Its applications within forensic casework such as aged samples or trace 

samples are recent [126, 127]. Bo et al (2013) performed an interesting study exploring the 

spectral changes of dried equine blood over a 30-day period using pushbroom HSI.  In their 

work they were able to establish the average age of bloodstains (±1.2 days) through 

spectroscopic changes observed when blood ages.  Both α- and ß– units of haemoglobin will 

oxidise (HbO2) into meta-haemoglobin (met-Hb) then hemichrome (HC) [127].  Their findings 

showed that the first oxidation stage, met-Hb occurred in ≤ 3 days while second oxidation 

stage, HC occurred in ≥ 30 days [127] 

 

Studies such as Bo et al (2013) are very useful for forensic casework as they require no contact 

with the sample, are non-destructive and provide both spectral and spatial information of a 

sample.  However they did not compare spectral signatures with other commonly encountered 

body fluids, which is also important for BFID in forensic casework.  The use of HSI for BFID 

may be limited by the complex nature of body fluids.  The interpretation of casework samples 
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may add an additional challenge as samples exposed to different environmental changes (e.g. 

temperature, humidity) can affect the final spectra. 

 

1.1.3.3 Nanoparticles 

Another emerging technique within the forensic community is nanotechnology [128-130].  

Nanotechnology can be defined as a technique that can manipulate samples at cellular or 

molecular levels.  It uses nanoparticles to target the sample of interest (e.g. biological, 

chemical, mechanical, optical, physical).  Nanoparticles are generally 1-100 nm in size and are 

also often coated with metals (e.g. Au, Ag) or polymers (e.g. chitosan, silica) to further target 

properties [128].  Nanoparticles have been used for a number of different applications including 

biology, chemistry and biomedical science [128].  Its use within forensic casework has been 

very limited e.g. toxicology, fingerprints.   

 

A study by Kestell and Gabriel (2010) explored the use of gold nanoparticles to identify drugs 

and their metabolites in urine using surface-enhanced Raman spectroscopy (SERS).  In their 

work they spiked benzodiazepine and metabolites (e.g. 1,4-benzodiazepam) and tested them 

against different agents to enhance the interaction and sensitivity of the spectra [130].  They 

found that magnesium chloride (MgCl2) gave the highest sensitivity amongst the spiked urine 

samples tested.  Their findings could be especially useful in cases of drug-facilitated sexual 

assaults.  Further studies could also be performed with other body fluids such as saliva and 

blood.   SERS is a useful technique as it is more sensitive than Raman spectroscopy alone.  

However the performance of SERS is limited by selecting the appropriate aggregating agent. 



36 

 

1.1.3.4 DNA methylation 

Another technique that is currently of forensic interest is DNA methylation [131-134].  The 

principle of this technique utilises the addition of a methyl group (-CH3) onto the 5‟ position of 

cytosine using DNA methyltransferases [135, 136].  DNA methylation generally occurs where 

cytosine-phosphate-guanine (CpGs) are present.  CpGs are where a cytosine is directly 

preceded by guanine.   CpGs are often found clustered along the DNA sequence in areas known 

as CpG islands.  CpG islands can be completely methylated or unmethylated.  They can also 

contain a combination of the two.  DNA methylation plays a fundamental role human 

development.  It will regulate gene expression through methylated and unmethylated CpG sites.  

The majority of CpGs are methylated in humans (e.g. 60-90%) [136]. 

 

DNA methylation patterns can be determined using several different methods [136-138].  One 

common technique involves chemical modification of cytosine.  The principle utilises sodium 

bisulfite to convert unmethylated cytosine into uracil while keeping the methylated sites 

unaffected.  Samples then undergo PCR during which, any converted regions containing uracil 

will be recognised as thymine.  DNA methylation patterns can then be identified through a 

comparison of these CpG sites and the original target sequence [139].  One method that can be 

used to identify these regions is methylation-specific PCR (MSP).  It uses a set of methylated 

or unmethylated primers to produce PCR amplicons.  Bisulfite treatment is a sensitive, flexible 

and versatile technique [140].  It can be used for either qualitative or quantitative assessment 

and can be applied to a wide range of applications.  Its main drawback is the effectiveness of 

the bisulfite treatment.  Incomplete conversion of unmethylated cytosines can result in false 

positives [141].  The chemical alteration of DNA sequences may result in inefficient priming 

resulting in non-specific product or low PCR yields [136].  
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Another common method utilises methylation-sensitive restriction enzymes [136, 140].  The 

principle of this technique involves digestion of methylated CpG sites along a target DNA 

sequence.  Samples then undergo PCR where primers will bind to the target regions.  The 

forward primer will bind left of the enzyme recognition site while the reverse primer will bind 

right of this site.  Fully digested samples will be fragmented and will show no amplification 

during PCR while samples that have not digested will show amplification.  A commonly used 

methylation-sensitive restriction enzyme is the HhaI enzyme [142].  It targets the sequence 

5‟…GCGC…3‟, which contains a methylated cytosine directly after the first guanine in the 5‟ 

direction [143].  Methylation-sensitive restriction enzymes are an inexpensive, sensitive and 

method for determining methylation patterns.  They also can be multiplexed which can be 

useful in BFID.  However the enzymes ability to successfully recognise and cleave the target 

DNA sequence and CpG sites limits this technique.   

 

Methylation patterns have been used in a wide range of fields including chemistry, biology and 

medicine [140].  Its use in the forensic genetics is relatively new [131, 137, 142, 144, 145].  

Frumkin et al (2011) performed the first study exploring the use of DNA methylation for BFID 

purposes.  They analysed a number of forensically relevant body fluids such as blood, saliva, 

semen, skin and vaginal secretions.  They utilised DNA isolation, methylation-sensitive 

restriction enzyme HhaI and PCR to determine methylation patterns.  Their BFID panel 

included fifteen loci and three internal controls.  Frumkin et al were able to successfully 

determine unique methylation patterns for each body fluid type through a comparison of peak 

height ratios [142].  Their findings showed the potential for using methylation patterns to 

identify body fluids within forensic casework.  However their technique is limited by the need 
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to perform DNA profiling and methylation separately, which results in higher sample 

consumption.  

 

Wasserstrom et al (2012) performed a study expanding on Frumkin et al (2011) work.  They 

explored the applications of DNA methylation in forensic casework using a kit they developed 

called the Nucleix DNA source identifier (DSI)-semen kit [131, 146].  It uses the same 

principles and methods as in their earlier BFID study [142].  They tested the sensitivity and 

specificity of this kit using casework samples containing body fluids such as semen, blood, 

saliva and vaginal material.  In their work they were able to successfully identify and 

differentiate semen from these body fluids.  They findings were comparable to microscopy of 

sperm cells.  This technique is limited in its use towards mixed body fluids, as it cannot 

distinguish semen when it is a minor component.  

 

DNA methylation patterns have also shown potential use in trace body fluids.  Xu et al (2012) 

performed a study on trace bloodstains using a modified bisulfite sequencing method.  They 

utilised a combination of Qiagen‟s micro kit and EpiTect bisulfite kit to isolate and treat 

samples respectively [147].  Samples then underwent methylation-specific PCR (MSP) and 

direct sequencing.  Their findings showed that their modified method gave a high conversion 

rate in the differentially methylated region of the SNRPN gene [148, 149].  Thus demonstrating 

its potential application for trace body fluids.   However their technique is limited to trace 

blood samples.  Further work needs to be performed to determine whether this method can be 

used for forensic casework.  

 

DNA methylation patterns have also been used for a number of other forensic applications.  For 

instance it has been used to differentiate monozygotic twins [137, 150, 151].  The DNA 
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methylation pattern in monozygotic twins is identical at birth.  However differences in lifestyle 

factors, growth, diet and health can affect their methylation patterns.  Li et al (2013) performed 

an interesting study exploring the difference in methylation profiles of peripheral blood 

between monozygotic twins.  They collected blood samples from a total of 22 female and male 

monozygotic twins aged from 17 to 74 years old [152].  Blood underwent DNA isolation and 

bisulfite treatment.  They used a Beadchip, consisting of 27,578 CpG sites to establish 

methylation sites in the blood samples [152].  In their study, they identified 92 CpG sites that 

were significantly different between each pair monozygotic twins.  Their findings demonstrated 

the potential of using DNA methylation patterns for BFID in forensic casework.   However the 

applications of their technique are limited by the need to explore methylation patterns within 

other body fluid types such as semen and vaginal material.   

 

The use of epigenetic markers to identify body fluids has shown potential within forensic 

casework via characteristic methylation patterns. The techniques used to determine DNA 

methylation patterns also provide additional advantages to forensic investigators.  Both the 

bisulfite treatment and methylation n-restriction sensitive enzyme are relatively sensitive, 

flexible and versatile.  However both techniques are limited in their reliability.  The bisulfite 

treatment is dependent on complete conversion of unmethylated cytosines to uracil.  Similarly, 

the methylation-restriction sensitive enzymes are dependent on their ability to correctly 

recognise and cleave the target site.  It has been demonstrated that a combination of techniques 

can enhance the reliability of a result.  However it is not ideal.  DNA methylation is perhaps not 

the best application for forensic casework as samples are often very limited in quality and 

quantity.   
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1.1.3.5 Messenger RNA analysis 

Another confirmative method used for BFID is messenger RNA (mRNA) profiling [153-158].  

The principle of this method utilises gene specific expressions to identify body fluids.   

Initially, mRNA is transcribed from DNA after which it is processed.  There are several 

different mechanisms for processing mRNA.  One of the main mechanisms is through splicing.  

Splicing is the removal of introns (non-coding sequences).  Messenger RNA can code for 

single or multiple proteins depending on the method of splicing.  Messenger RNA makes up 

approximately 4% of total RNA [154].  Mature mRNA from the 5‟ to 3‟ direction contain a 5 

guanidine methyl cap, a 5‟ untranslated region, a coding region, a 3‟ UTR region and a poly(A) 

tail.  

 

Messenger RNA gene expression levels can be determined using a number of different 

methods.  Some of the most popular mRNA analysis methods include Northern blot analysis, in 

situ hybridization, microarrays, nuclease-protection assays and RT-PCR.  A common mRNA 

analysis method for BFID utilises RT-PCR.  In order to analyse mRNA it must first be isolated.  

Two common methods used to isolate RNA: solid-phase and liquid-liquid extractions [4].  

Solid-phase extractions utilise a solid platform and a combination of high and low ionic buffers 

to isolate and purify RNA.  Liquid-liquid phase methods (organic extractions) use a liquid 

platform and a combination of different buffers and alcohols to isolate and purify RNA.  There 

are a number of methods and kits available for isolating RNA in body fluids.  A common solid-

phase RNA isolation kit is Qiagen‟s RNeasy mini kit, which uses a silica-gel membrane and 

high and low ionic buffers.  A commonly used organic method is the guanidine isothiocyanate 

phenol/chloroform extraction with isopropanol precipitation [159].  RNA extracts then undergo 

reverse transcription (RT).  Reverse transcription is process where mRNA is replicated to form 
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a single stranded molecule called complementary DNA (cDNA).  RT is performed using a 

combination of buffers, primers, deoxynucleotide triphosphates (dNTP‟s), reverse transcriptase, 

RNase inhibitor and PCR grade water.  An example of a RT kit is Ambion‟s RETROscript
®
 kit 

which utilises components such as Moloney Murine Leukaemia Virus reverse transcriptase 

(MMLV-RT).   

 

Samples then undergo PCR.  There are a number of different PCR technologies that can be 

used to amplify RT products.  The two main PCR technologies used in mRNA analysis are 

end-point and real-time PCR [160].  Both techniques have their advantages and disadvantages.  

End-point PCR is an effective method for detecting the presence or absence of particular 

transcripts.  However it cannot measure the gene expression levels during a reaction.  Real-time 

PCR is a more accurate and sensitive method of analysis.  It measures gene expression levels 

with reference genes.  Reference genes are ubiquitous and are responsible for the basic 

functioning of cells.  A common reference gene used for mRNA BFID is glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) [160, 161].  PCR products are then separated using 

electrophoresis.  In mRNA analysis samples are generally separated in gels or capillaries.  The 

general principle involves the separation of molecules based on size and charge through the 

application of an electrical field.  Commonly used capillary electrophoresis instruments include 

Life Technologies 310, 3130 and 3500 genetic analysers.  Messenger RNA analysis has been 

used in a broad range of field including chemistry, biology and biomedical science.  Over the 

past decade there have been an increasing number of forensic research groups that have 

explored mRNA profiling for BFID [4, 18, 27, 155, 156, 160-184].  The main reasoning behind 

this includes their sensitive and specific expression within different body fluids and tissues.  
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Bauer and Patzelt (2002) performed the first study exploring mRNA analysis as a potential 

body fluid identification method in forensic casework.  They focused primarily on developing a 

co-isolation technique for DNA and RNA.  They used blood (venous and menstrual) and 

epithelial cells for their study.  Samples underwent mRNA isolation, RT, PCR and gel 

electrophoresis.  In their work they developed a suitable co-isolation method for mRNA 

analysis.  However their study was limited to dried bloodstains and epithelial cells.  Further 

work addressing the stability of mRNA would be useful. 

 

Juusola and Ballantyne (2003) also performed a study exploring the potential of mRNA BFID 

using dried blood, saliva and semen swabs.  Samples underwent total RNA isolation, cDNA 

synthesis, PCR and gel electrophoresis.  In their study they identified suitable reference genes 

(e.g. GAPDH) for all of the tested body fluids.  They also identified tissue-specific genes for 

saliva [155].  Juusola and Ballantyne (2005) expanded their mRNA panel to include blood, 

saliva, semen and vaginal secretions.  Samples underwent similar processing steps before 

except they separated samples using capillary electrophoresis.  In their work they developed a 

multiplex RT-PCR system for indicating the presence of blood, saliva, semen and vaginal 

secretions in both single and mixed samples [156].  In a further study, Juusola and Ballantyne 

(2007) utilised their multiplex RT-PCR system containing body fluid specific markers and 

reference genes.  They were able to successfully indicate the presence of different body fluids 

[161].  Their findings from the three studies demonstrate the potential of using mRNA as BFID 

tool in forensic investigations.  The technique was shown to be sensitive, specific and robust. 

The main drawback is the stability of mRNA when exposed to environmental factors.  

Additionally this technique has the potential to produce false positives if sample input is 

limited. 
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Fleming and Harbison (2010) also developed an mRNA multiplex system for single and mixed 

dried blood (peripheral, menstrual), saliva and semen stains.  They also explored the sensitivity 

and specificity of this test.  Samples underwent co-isolation, RT, PCR and capillary 

electrophoresis.  In the majority of their studies they were able to obtain both DNA and mRNA 

profiles from both single and mixed samples [4].  Their findings also showed the test to be both 

sensitive and specific.  Their overall findings demonstrated the potential of using mRNA BFID 

in forensic casework.  However their studies did not test the stability of mRNA, which is one of 

the main issues associated with this technique.  

 

Lindenbergh et al (2012) conducted a study to develop an mRNA BFID test for dried blood, 

saliva, skin and semen stains.  Messenger RNA profiling was performed using a series of co-

isolation, reverse transcription, PCR and capillary electrophoresis steps.  Their main study 

explored the use of candidate body fluid specific markers and reference genes.  Additional 

studies included stability of aged body fluids.  In their studies they were able to successfully 

develop a 19-plex mRNA multiplex system for indicating the presence of body fluids including 

blood, saliva and semen.  In addition they were also able to obtain full DNA profiles from these 

samples.  They were also able to demonstrate the use of this mRNA-multiplex on aged body 

fluids [182].  Lindenbergh et al (2013) performed a further study exploring the use of their 

mRNA-multiplex system in forensic casework.  They utilised a similar protocol to the previous 

study.  However they included a step-by-step procedure for potential interpretational guidelines 

of an mRNA profile e.g. research perform analysis with clear interpretational guidelines with 

no knowledge in the context of the case followed by interpretation and collation of profiles 

with reporting officer and researchers [168].  In their study they were able to successfully 

establish a preliminary approach to the interpretation of RNA profiles within forensic 

casework.  The authors notes that additional factors will need to be taken into account during 
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interpretation e.g. chain of custody [168].  Their findings from both studies highlight the 

potential of using an mRNA BFID method in forensic casework.  Their work showed relatively 

high sensitivity and specificity.  However one of the main limitations of this work, apart from 

developing this test is the issue of stability of mRNA.  In Lindenbergh et al (2012) study, they 

were able to obtain both DNA and mRNA profiles from stains.  However this work utilised 

dried stains in controlled humid-free conditions. 

 

Messenger RNA BFID has also been explored in collaborative exercises performed by the 

European DNA profiling (EDNAP) group.  A total of 24 different forensic genetic laboratories 

participated during these studies.  They covered a number of forensically relevant body fluids 

including blood, saliva, semen, skin and most recently, vaginal material and menstrual blood 

[173-177].  They performed these studies using a wide range of commercially available 

isolation, reverse transcription, amplification kits of their choice.  During their studies they 

developed multiplex systems for each body fluid.  In their first and second collaborative 

exercise they identified a highly sensitive duplex and moderately sensitive pentaplex of mRNA 

markers for bloodstains [175, 176].  In their third exercise they identified sensitive mRNA 

triplex for saliva and pentaplex semen [173].  In their fourth and fifth exercise they identified 

potential mRNA markers for vaginal material and two triplexes for menstrual blood [174].  In 

all of their studies they were able to indicate the presence of dried blood, saliva, semen, vaginal 

material and menstrual blood using different multiplex of body fluid identification markers.  

They also explored the stability of mRNA in many of these body fluids stored at room 

temperature or freezing.  The majority of the laboratories were also able to obtain full DNA 

profiles or partial profile with one or two allelic dropouts from these samples.  They were also 

able to obtain RNA and DNA profiles from aged body fluids.  Their studies using a wide range 

of methodologies and demonstrated the versatility and potential ease of utilising mRNA BFID 
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into current forensic genetic laboratories.  However their studies were limited by the use of 

multiple technologies.  The findings from these groups could not always be directly compared 

to one another.  Furthermore their stability studies were limited to the use of dried stains and 

did not include factors such as humidity.  

 

Roeder and Haas (2013) also performed a smaller study on mRNA BFID using dried blood, 

saliva, skin, semen and vaginal material swabs.  Samples were analysed through single or co-

isolation, RT, PCR and capillary electrophoresis.  Their initial approach in developing a mRNA 

BFID test was to use one or two mRNA markers to indicate the presence of a particular body 

fluid [183].  However they found that this could give lead to false positives.  Therefore they 

incorporated a minimum of five body fluid specific mRNA markers to identify each body fluid.  

They also included reference genes in their study.  Their findings showed that the use of 

additional mRNA markers gave greater accuracy in BFID and lowered the number of false 

positives.   However their findings also show that mRNA BFID could still produce false 

positives, which can be problematic where sample amount is limited.  Furthermore their study 

is also limited by the stability of mRNA when exposed to environmental factors. 

 

Xu et al (2014) recently performed an mRNA BFID study on a wide range of body fluids 

including blood (circulatory, menstrual), saliva, semen vaginal secretions, sweat, urine and 

nasal secretions [169].  Samples underwent co-isolation, RT, PCR and capillary 

electrophoresis.  Their initial panel of candidate BFID markers were collated from many of the 

other mRNA research groups including Juusola et al 2007, Fleming and Harbison 2010, 

Lindenbergh et al 2012.  From their studies they were able to develop a sensitive and specific 

mRNA 12-plex system containing body fluid specific markers and reference genes.  They were 

also able to obtain full DNA profiles from these body fluids.  Their findings highlight one of 
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the main advantages of this technique, which is the ability to multiplex markers.  However their 

work is still limited by the stability of mRNA.   

 

Messenger RNA analysis has shown potential as a BFID method in forensic casework.  The 

technique is both sensitive and specific and can be applied to mixtures.  It can also be 

multiplexed, which can reduce overall cost and time.  It also offers a quality that many of the 

current BFID do not have, which is compatibility with current DNA profiling techniques.  

There are also drawbacks to this technique including the potential to generate false positive 

results.  The main drawback is the instability of mRNA when exposed to external factors such 

as UV-light, temperature, dust and humidity.  Despite these challenges mRNA analysis is still 

being studied extensively as a BFID method in forensic casework.  In fact, a number of 

strategies have been used to implement mRNA profiling into current DNA profiling methods.  

Many research groups have utilised co-analysis to obtain both DNA and mRNA profiles [157, 

159, 164, 173-175, 182, 185].  In forensic casework, samples are often limited in both quality 

and quantity.  Thus a number of research groups have also explored co-isolation of DNA and 

mRNA as a means of maximising sample.    

 

Bauer and Patzelt (2003) performed a study on co-isolation of DNA and mRNA using dried 

venous blood, menstrual blood and semen stains.  Co-isolation of DNA and mRNA was 

performed using an organic extraction method with precipitation [164-166].  They utilised 

phenol/chloroform to separate both aqueous and organic phases.  RNA was removed from the 

aqueous phase.  They also compared their study with a standard DNA isolation method used in 

routine forensic laboratories, the Chelex-100
®
 extraction [186].  The principle of this method 

utilises the alkalinity of chelating resin and boiling to isolate and purify DNA.  In the majority 

of their work they were able to obtain DNA and mRNA profiles using the co-isolation protocol 
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[166].  Their findings also showed that their co-isolation strategy was not as sensitive as the 

standard DNA isolation protocol tested.  However it was still sensitive enough to use on 

casework samples.   

 

Alvarez et al (2004) performed a co-isolation study of DNA and mRNA using dried blood, 

saliva, semen and vaginal secretion swabs and cloth [157].  They utilised an organic isolation 

method with precipitation to co-isolate DNA and RNA.  Samples were treated with an 

extraction solution containing Tris-HCl, EDTA, SDS and DTT.  Phenol:chloroform (5:1 pH 

4.5) was then added to separate both organic and aqueous phases.  DNA and total RNA were 

collected from the aqueous phase.  DNA fractions were separated through overnight 

precipitation using 100% ethanol.  Similarly RNA fractions were separated using isopropanol.  

Samples then underwent RT, PCR and gel electrophoresis.  DNA extracts underwent PCR and 

gel electrophoresis.  RNA extracts underwent RT, PCR and gel electrophoresis.  In their study 

they also compared a standard DNA isolation using an organic solvent method and total RNA 

isolation method using guanidine isothiocyanate-phenol:chloroform method [155, 159, 187].   

Their study showed efficient separation of DNA and RNA using the co-isolation method.  They 

also able to obtain both DNA and mRNA profiles from the samples tested.  The co-isolation 

results were also comparable to the standard DNA and total RNA isolation methods.  Their 

study demonstrates one of the main advantages of utilising a co-isolation technique in forensic 

casework, the use of minimal sample consumption.  Often if samples are limited, they will only 

undergo DNA profiling [164].  However their study also utilises an overnight precipitation 

step, which can be costly in terms of overall analysis time.  Furthermore there technique 

requires separation of DNA and RNA fractions post extraction, which can lower the evidential 

strength of associating a particular body fluid with a DNA profile.    
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Fleming and Harbison (2010) performed a side study on co-isolation of DNA and mRNA 

during an mRNA BFID study using blood (peripheral, menstrual), saliva and semen stains.  

They modified a total RNA method used by Juusola and Ballantyne (2005) to co-isolate DNA 

and RNA.  The original protocol can be divided into two stages: organic extraction using 

guanidine isothiocyanate phenol:chloroform and precipitation using isopropanol [4, 159].   Co-

isolation of DNA and RNA was achieved by initially replacing one of the components in the 

guanidine isothiocyanate denaturing solution (e.g. 2-mercaptoethanol) with DTT.  DNA was 

precipitated from both the organic and interphase using 100% ethanol.  DNA fractions 

underwent PCR and capillary electrophoresis. Their findings from their study showed that the 

majority of DNA was detected in the aqueous phase and did not agree with Bauer and Patzelt 

(2004) who recovered DNA in the organic phase.  Fleming and Harbison (2010) modified their 

protocol further by precipitating DNA and total RNA from the aqueous phase using 2-propanol.  

DNA and total RNA were then separated using enzymatic digestion before performing DNA 

and mRNA analysis.  From their study they were able to successfully obtain both DNA and 

mRNA profiles from the tested body fluids.  Their study demonstrated one of the main 

advantages of using co-isolation in forensic casework, which includes reduced sample 

consumption.  However their technique also required an overnight treatment of DNA and total 

RNA, which can be costly in terms of time in forensic casework.  Perhaps most important, their 

method requires separation of DNA and mRNA post-extraction, which can reduce the ability to 

associate a DNA profile with a particular body fluid.  

 

Bowden et al (2011) took an interesting approach on co-isolation using dried blood, saliva, 

semen and vaginal fluid swabs.  They used a combination of Promega‟s DNA IQ system and 

Zymo‟s Research Mini Isolation™ II kit to co-isolate DNA and mRNA from the samples 

[185].  DNA isolation was performed using Promega‟s silica coated magnetic beads.  Total 
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RNA was then isolated from the DNA lysis buffer discard using Zymo‟s isolation kit.  Two 

separate extracts containing either DNA or total RNA were then used to perform STR or 

mRNA analysis respectively.  They also compared this method with Fleming and Harbison 

(2010) organic co-extraction method for DNA and mRNA.  Bowden et al (2011) was able to 

obtain both DNA and mRNA profiles using their modified approach.  They also obtained 

comparable results to Fleming and Harbison (2010) study.  Their work in this study provides a 

few advantages over the organic co-isolation method [4].  Their use of the discarded lysis and 

binding buffers to isolate total RNA reduces overall sample consumption.  However their need 

for an additional kit to isolate total RNA adds to the total sample processing time.  Their use of 

magnetic bead technology can be advantageous to casework samples as the beads can offer 

360º binding.  However this modified approach does require separation of both DNA and total 

RNA extracts (e.g. lysis/binding step), which can lower the evidential value in court.  

Furthermore the authors describe the potential for automation of their technique.  However 

given the nature of casework samples this may not be necessary.  

 

A number of other groups have incorporated co-isolation method during the development of an 

mRNA BFID test for forensic casework.  For instance in the BFID collaborative exercises 

performed by the European DNA profiling (EDNAP) group.  They utilised samples from 

blood, saliva, semen, skin and most recently, vaginal material and menstrual blood [173-175]. 

The majority of the laboratories performed co-isolation using Qiagen‟s AllPrep RNA/DNA 

Mini kit [188].  This kit utilised a silica-gel membrane to isolate DNA.  Total RNA was then 

separated using the DNA wash.  Thus resulting in two different extracts then underwent DNA 

or mRNA profiling separately.  In their studies they were able to obtain full DNA and mRNA 

profiles from their body fluids tested.  The advantages of using this technique include reduced 
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sample consumption.  However their method requires separation of the sample, which can 

lower the ability to associate a DNA profile with its body fluid origin. 

 

Many of the co-isolation methods described both separate DNA and total RNA fractions post-

extraction or during the extraction procedure [173-175, 189].  One research group even 

explored different mediums to co-isolate mRNA and DNA from the same stain e.g. magnetic 

beads [185].  Also the majority of co-isolation efforts using magnetic beads have been more of 

non-forensic interest.  The development of a co-isolation method whether neither fractions 

(DNA and RNA) are separated could offer a number of advantages over the co-isolation 

techniques utilised by other groups [4, 173-175, 185].  The main advantage would be the ability 

to closely associate a DNA profile with a body fluid.  In addition, the use of a single co-

isolation method would reduce the consumption of sample and time, which are often crucial 

factors in forensic casework.   

 

Despite the recent collaborative efforts that have gone into developing mRNA profiling for 

current forensic casework the question remains of whether mRNA profiling is the best-suited 

method for BFID [4, 168, 170, 172-177, 184].  As described previously one of the main 

drawbacks of mRNA is its stability.  Messenger RNA degradation plays an important role in 

normal living cells.  It helps regulate the amount of mRNA translated and thus the amount of 

gene produced in a cell.  The lifetime of an mRNA depends on its role in the body.  Some 

mRNA will be present for minutes while other may be present for hours or even days.  For 

instance the half-life of c-fos message is 15 min while the half-life of ß-globin mRNA is 24 

hours [190].  There are two main regulatory mechanisms for mRNA [154, 190].  One 

mechanism utilises AU rich elements (ARE) in the 3‟UTR of mRNA.  ARE‟s contain motifs 

such as AUUUA and range between 50-150 nt in length [191].  ARE-binding proteins will bind 
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to the 3‟ UTR regions and will either promote translation or degradation of the mRNA.  The 

other mechanism involves removal of the methylguanosine (m
7
G) cap in the 5‟ end of mRNA 

[190].  The removal of the m
7
G cap will allow for degradation of the mRNA.  Messenger RNA 

degradation in biological stains is more variable and is strongly dictated by external factors 

from the environment such as bacteria, ribonucleases (RNases), temperature, light and humidity 

[154].  Therefore stability in a forensic context can be defined as a sample that survives from 

time of deposition and to time of collection.  A number of groups have explored the stability of 

mRNA in body fluids [27, 154, 164, 173-175].  

 

Setzer et al (2008) performed a comprehensive study exploring the stability of mRNA in blood, 

saliva, semen and vaginal secretions under different environmental conditions.  Blood, saliva 

and semen were aliquot and dried onto cotton cloth.  Vaginal secretions were collected onto 

polyester swabs [192].  Samples were stored indoors at room temperature and exposed to light, 

dark, humid or non-humid environments.  They were also stored outdoors and exposed to 

humidity, light and heat with or without rain.  All samples were exposed to these conditions 

over a period of 0 to 547 days [158].  Samples underwent total RNA isolation, RT, PCR and 

gel electrophoresis.  In their indoor studies blood was stable in all room temperature conditions 

up to 365 days.  Saliva was also stable in all room temperature conditions for 365 days except 

in UV-light, where it was detected for 180 days.  Vaginal secretions were more variable in the 

room temperature conditions and were detected from 90 to 547 days.  In their outdoor studies 

protected from rain, vaginal secretions were detected for 180 days, blood for 30 days and saliva 

and semen for seven days.  In their outdoor studies exposed to rain, samples showed a 

significant decrease in mRNA stability e.g. semen was detected between one to seven days, 

blood and vaginal secretions for three days and saliva for one day [158].  The findings from 

their outdoor studies may be a result of intra- and extracellular activities e.g. osmosis, bacteria 
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and RNases.  Thus indicating that mRNA BFID may not be the most appropriate method for 

forensic casework. 

 

Zubakov et al (2008 and 2009) performed two studies on the stability of mRNA in blood and 

saliva stains.  Blood and saliva were aliquoted onto cotton swabs and dried at room 

temperature. In Zubakov et al (2008) study samples were stored over a period of 0 to 180 days 

in a dust and humid-free environment.  Samples were stored under the same conditions in 

Zubakov et al (2009) but over a period of 2-6 years and 13-16 years.  All samples were 

exposed to natural daylight in the laboratory.  Samples were isolated for total RNA using 

Qiagen‟s RNeasy kit.  Blood and saliva specific mRNA markers were then selected using 

microarray and gene expression data analysis.  Samples then underwent RT followed by qPCR 

utilising SYBR
®
 green chemistry.  They identified 14 mRNA markers that were stable in blood 

stored over a 180-day and 16-year period and saliva over the 180-day and 6-year period [193, 

194].  Both studies provide useful insight into the stability of mRNA in blood and saliva when 

samples are dried and tested under relatively controlled conditions e.g. light.  However none of 

their work addresses the stability of mRNA under more adverse conditions such as prolonged 

exposure to temperature and humidity. 

 

Kohlmeier and Schneider (2011) performed a study on the stability of mRNA in blood when 

dried onto different substrates (e.g. carpet, fabric, jeans, wallpaper, leather and wood).  

Bloodstains were stored for 23 years in a dark, dust and humid-free environment.  Samples 

were co-extracted for total RNA and DNA using Qiagen‟s AllPrep DNA/RNA Mini kit.  RNA 

fractions underwent cDNA synthesis using SuperScript III RT kit and qPCR using a panel of 

body fluid specific markers adapted from Juusola et al (2005) and Haas et al (2009).  DNA 

fractions underwent DNA quantification using Life Technologies Quantifiler kit and amplified 
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using Life Technologies AmpFlSTR
®
 SEfiler Plus™ kit. Their findings showed stability on all 

the substrates tested up to 23 years.  Also full DNA profiles were obtained in all blood samples.  

Haemoglobin ß (HBB) is currently being explored as a marker for forensic casework [175].  

Haas et al (2011) findings provide additional insight to HBB.   However this study does not 

address the stability of HBB on these substrates when exposed to prolonged periods of 

humidity or UV-light, which can be relevant to casework samples [195].  

 

Additionally there have been several other groups that have explored the stability of mRNA in 

their mRNA profiling development work.  Haas et al (2011) performed a side study exploring 

mRNA stability in blood under different environmental conditions.  Their study was performed 

over a shorter period of time (1 day to 1 year) and with a single type of body fluid where as 

Setzer et al (2008) stored blood, saliva, semen and vaginal secretions over 547 days.  However 

Haas et al (2011) work was more comprehensive as they recorded details such as the amount of 

rain, humidity level and temperature range into their findings [153].  Additionally they 

explored high heat (37 ºC) which none of the other groups exploring stability in blood 

performed.  Samples underwent co-isolation.  RNA fractions underwent RT, PCR while DNA 

fractions underwent PCR and capillary electrophoresis.  Interestingly samples that had been 

covered were detected in a shorter time frame (3 days) than the uncovered samples (1 month), 

which was the reverse of what Setzer et al (2008) found.  DNA profiles were obtained from the 

majority of covered samples however none were obtained in the uncovered samples.  The 

authors emphasize the potential of mRNA BFID.  However this study also showcases the 

instability of mRNA.  Messenger RNA profiling may not be best method for BFID. 

 

Jakubowska et al (2013) performed a side study exploring the stability of mRNA in vaginal 

fluid and menstrual blood.  Vaginal fluid was collected onto cotton swabs or sanitary towels 
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and stored over a period of 0 to 12 years at room temperature or 0 to 18 years in the freezer.  

Menstrual blood was collected onto different substrates (jeans, cotton or leather) and stored for 

two years at room temperature.  Samples underwent total RNA isolation, reverse transcription, 

PCR and capillary electrophoresis.  In their work they detected mRNA in menstrual blood 

stored for one year at room temperature.  They also detected mRNA in vaginal fluid stored for 

two years at room temperature and 18 years when frozen [178].  Their findings on mRNA 

stability agreed with Setzer et al (2008) who also interestingly detected mRNA in vaginal stains 

aged over a period of 547 days.  Jawbowski et al (2013) provides additional insight on the 

stability of mRNA in vaginal stains after long-term storage in the freezer, which none of the 

previous studies had explored.  This information could be useful for casework samples 

collected during colder months.  However their findings were limited to controlled parameters 

e.g. temperature.  It would be interesting to see the effect of mRNA stability over time during 

which samples are exposed to different temperatures for set time intervals.   

 

Messenger RNA has been shown to be stable in a range of forensically relevant body fluids 

such as blood, saliva, semen and vaginal material.  High stability was observed in samples that 

had been stored indoors and exposed to different temperature, lighting and humidity.  Rapid 

degradation was observed in samples that had been stored outdoors, particularly when exposed 

to rain.  Messenger RNA profiling may not be the best tool for identifying forensic casework 

samples as they are often exposed to a variety of different environmental conditions that can 

degrade mRNA.  A potentially more suited and stable candidate for BFID is microRNA. 
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1.2 MicroRNA 

MicroRNAs (miRNA, miR) are short sequences of RNA between 18-25 nucleotides in length.  

They are found in the non-coding regions of DNA.  They are often clustered and conserved 

along the intergenic regions of the human genome [196].  Although not as common, they can 

also be found within the intronic regions of the human genome [197, 198].  MicroRNAs found 

within the same clusters or “families” often exhibit similar functional roles within the human 

body [199].  From an evolutionary standpoint it is thought that miRNAs are clustered along the 

genome as a way of preserving information from generation to generation [200-202].   

 

There are two main types of small non-coding RNAs: miRNA and short interfering RNA 

(siRNA) [203].  Both siRNAs and miRNAs play a key role in negative-regulation of genes in 

the human body. They play essential roles in biological processes including cell growth, 

proliferation, differentiation, glucose homeostasis, fat metabolism and immune regulation 

[204]. They also play important roles in various cancers, neurodegenerative disorders and 

disease (e.g. infections, autoimmune, cardiovascular) [204-206]. 
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1.2.1 Biogenesis 

                          

Figure 1. Showing the biogenesis of microRNA in eukaryotic cells.  Image taken from Sand et al (2010). 

 

The biogenesis of microRNA is shown in Figure 1 [207-209].  Mature miRNA can form by 

first cleaving the primary miRNA (pri-miRNA) transcript with enzyme Drosha and co-factor 

DGCR8. The precursor miRNA (pre-miRNA) will then be transported out of the nucleus and 

into the cytoplasm using enzyme Exportin 5 and co-factor Ran-GTP.  There, pre-miR transcript 

will be cleaved a second time to remove the stem-loop using enzyme Dicer and co-factor 

TRBP/PACT [210, 211].  One of the miRNA strands will then degenerate. The remaining 

strand will bind with the Argonaut protein and form an RNA inducing silence complex (RISC). 
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1.2.2 Discovery 

MicroRNAs were first discovered about a decade ago [208].  Gene inhibition was first explored 

by Van der Krol et al (1990) during a study with flavonoid genes in petunias.  They used 

anthocyanins (pigmented) and flavonols (non-pigmented) petunias for their study. They 

evaluated two flavonoid genes: dihydroflavonol-4-reductase (DFR) and chalcone synthase 

(CHS) to observe the effects of flower pigmentation [212].  In the majority of their work, the 

introduction of DFR and antisense CHS mRNA into the Petunia hybrida gene did not give a 

noticeable change in flower pigmentation.  However in 25% of these samples, they observed a 

dramatic reduction in gene expression and flower pigmentation.  Their study inadvertently 

stumbled upon a potential mechanism of gene silencing. 

 

Fire et al (1998) explored this gene inhibition mechanism further in a study using 

Caenorhabditis elegans (C. elegans).  They injected C. elegans with single stranded RNA 

(ssRNA) and double stranded RNA (dsRNA).  They utilised genes with well-characterised 

phenotypes for their study including the unc-22 gene.  The unc-22 gene codes for myofilament 

protein found in striated muscle cells [213].  Partial inhibition of this gene will cause muscle 

twitches where as full inhibition will result in impaired mobility and structural defects in the 

muscle [213].  Injection with ssRNA (antisense or sense), showed reduced activity in C. 

elegans while injection with dsRNA resulted in complete loss of muscle activity.  Fire et al 

(1998) work was crucial to understanding the gene inhibition mechanism and won them the 

Nobel Prize for Physiology and Medicine in 2006.    

 

Montgomery et al (1998) expanded on Fire et al (1998) work with C. elegans.  They injected 

C. elegans with dsRNA derived from the unc-22 gene.  They performed a series of studies to 
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determine whether or not gene inhibition was occurring during the pre-transcriptional, 

transcriptional or post-transcriptional stages of mRNA.  They compared the effect of dsRNA 

during the initial stage of biosynthesis and observed no changes in the gene or primary 

transcripts [214]. They also explored the transcriptional of effects of dsRNA when utilising 

genes clustered in an operon.   They observed no changes in activity upstream or downstream 

regions of the gene during transcription.  In their final study they utilised in situ hybridization 

to determine the effects of dsRNA.  They identified minimal changes in the nucleus and 

significant changes in the cytoplasm.  Their findings from their study suggested that gene 

inhibition occurred at the post-transcriptional stage of mRNA.       

 

Parish et al (2000) performed a study identifying the structural features of dsRNA for gene 

inhibition in C. elegans.  They explored a number of different factors including RNA bases, 

length, sequence, homology and helical structure.  Their findings showed a wide range of 

dsRNA could promote gene inhibition.  Interestingly they found dsRNA as short as 25 nt in 

length could promote RNA interference [215].  Lee et al (1993) identified the first miRNA 

during a study comparing the heterochronic patterns of lin-4 and lin-14 genes in C. elegans.  

Both lin-4 and lin-14 are responsible for the development of larvae [216, 217].  In their studies 

they identified two lin-4 transcripts, 22 and 61 nt in length that were complementary to the 

sequence the 3‟UTR of lin-14 [218].  They found these transcripts would indirectly or directly 

inhibit the translation of lin-14 mRNA.  Thus lin-4 was first miRNA to be discovered.  Reinhart 

et al (2000) discovered the second miRNA in C. elegans during a study comparing the 

heterochronic patterns of let-7 with lin-14, lin-28, lin-41, lin-42 and daf-2 genes in C. elegans.  

They identified let-7 directly inhibited the 3‟UTR of lin-14, lin-28 and lin-41.  The inhibition of 

lin-41 was detrimental resulting in complete loss of muscle function [219].  Thus let-7 was the 

second miRNA to be identified.  Since then thousands of miRNAs have been identified across 
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different species and been recorded on a database called miRBase [198, 220-226].  The latest 

version of miRBase (v21) currently holds information for over 2,500 human miRNAs [227].  

 

1.2.3 MicroRNA analysis 

A recent technique that has sparked interest amongst the forensic community is microRNA 

(miRNA) analysis [204, 228].  MicroRNA has a number of advantages over mRNA analysis.  

Their short sequence length of approximately 18-25 nt provides greater inherent stability 

compared to mRNA and as consequence has become of great forensic interest, particularly in 

BFID in forensic casework [229-236].  Their expression patterns in different species types are 

also of interest.  Also their relatively high abundance within cells make them excellent 

candidates for BFID in forensic casework samples especially where low level samples and 

mixed body fluids are involved.  MicroRNA analysis has been mainly used for clinical and 

medical fields.  Its use within a forensic context is recent.  There have been a handful of studies 

that have been performed using miR analysis in forensic casework [229-233, 235, 237].  The 

microRNA analysis techniques performed by these groups are similar to the messenger RNA 

method described for RT-PCR, except it utilises special primers to accommodate for 

microRNA shorter size. 

 

Hanson et al (2009) performed the first study exploring miRNA analysis as a potential body 

fluid identification method in forensic casework.  Five different body fluids were used in their 

study: blood (venous, menstrual), saliva, semen and vaginal secretions.  Samples underwent 

total RNA isolation using an organic method [159].  Samples then underwent reverse 

transcription using poly-T tails incorporated after polyadenylation and qPCR using SYBR
®
 

Green chemistry.  From their findings they identified nine potential miRNA markers that could 
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be used to indicate the presence of blood (miR-16 and miR-451), saliva (miR-205 and miR-

658), semen (miR-10b and miR-135), vaginal secretions (miR-124a and miR-372) and 

menstrual blood (miR-412 and miR-451) [230].  They also selected two potential reference 

genes for blood (RNU6B and RNU44) and one reference gene for semen (RNU6B) during 

sample normalization (shown in Table 1).  Their findings demonstrate the potential of using 

miRNA analysis as a BFID in forensic casework.  However there studies also demonstrate the 

need to develop this BFID test, as this study was limited.  Further work is needed in the 

identification of body fluid specific miRNA markers.  Also extensive work exploring low-level, 

non-human, degraded and mixed samples is needed to determine the suitability of this test on 

forensic samples. 

 

Zubakov et al (2010) performed a more comprehensive study exploring miRNA analysis as a 

potential BFID technique by performing a larger screen on the miRNAs.  Five different body 

fluids were used in this study: blood (venous, menstrual), saliva, semen and vaginal secretions.  

Samples underwent total RNA isolation followed by microarray analysis or RT-qPCR.  In their 

microarray studies they utilised LNA™-modified oligo-nucleotide capture probes to screen the 

microRNA repository (version 10.1), which contained 718 human miRNAs [231].  From their 

findings they identified 294 potential miRNAs.  They selected 14 of the most promising 

candidate markers to undergo RT using stem-loop primers and qPCR using TaqMan
® 

chemistry.  From their work they identified four potential miRNA markers that could be used to 

indicate the presence of venous blood (miR-144 and miR-185) and semen (miR-135a and miR-

891a).  However they were not able to identify miRNA markers for menstrual blood, saliva, 

semen or vaginal secretions.  They also identified three potential references genes (RNU24, 

RNU44 and RNU48) (shown in Table 1).  Their findings show the potential of using miRNA as 
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a BFID method.  However their studies again highlight the need for more BFID studies in this 

area as different markers were identified in Hanson et al (2009) work.   

 

Zubakov et al (2010) also performed brief work exploring the stability, sensitivity and 

specificity of the blood and semen markers. In their stability study, they stored dried blood and 

semen for 1 year in a dust and UV- free environment with controlled humidity and 

temperatures.  Their findings showed stability in all of the blood and semen markers tested.  

The authors do highlight that their study was limited.  Further research on the stability of 

miRNA is needed with regards to environmental factors including prolonged exposure to 

humidity and UV-light.  In their sensitivity study they serially dilute blood and semen samples 

20 to 0.002 ng [231].  In their study they were able to differentiate all of the body fluid markers 

down to 0.002 ng, suggesting that miRNA analysis is more sensitive than mRNA BFID.  Their 

study on specificity amongst species was very limited.  They performed alignment studies on 

these markers and found they were also expressed on other animals.  It is clear that much more 

work is needed in this area to establish the sensitivity, specificity and stability of miRNA.   

 

Courts and Madea (2011) also conducted a study on miRNA analysis using dried blood and 

saliva stains.  In their studies samples underwent total RNA isolation followed by microarray 

analysis or RT-qPCR.  Microarray studies were performed using Geniom
® 

Biochips, which 

utilise the reverse complements of mature miRNAs to screen the miRNA repository (v14.0) 

containing 800 miRNAs [235].  From their study they selected a total of six candidate miRNA 

markers to undergo RT-qPCR analysis using SYBR
®
 Green chemistry.  They identified three 

potential miRNA markers for blood (miR-451, miR-150 and miR-126) and three markers for 

saliva (miR-205, miR-203 and miR-200c) [235].  They also identified a potential reference 

gene for blood and saliva (RNU6b) during sample normalization (shown in Table 1).  Their 
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study again highlights the potential of using miRNA BFID in forensic casework.  However 

their findings also demonstrate that further investigation is needed to identify the most suitable 

miRNA markers for BFID as both Hanson (2009) and Zubakov (2010) have also identified a 

range of miRNA markers. 

 

In the same study Courts and Madea (2011) also explored the stability of these markers and 

their application in mixed samples. In their stability study they stored a bloodstain in the dark 

for one year.  They found that both markers showed stability in the bloodstains.  Although this 

study was useful, it was very limited.  Further work exploring the stability of miRNA is needed 

across a wide range of body fluids.  In their mixed body fluid study they combined both blood 

and saliva by volume.  They detected the presence of blood and saliva.  However the authors 

did not describe whether they were able to determine the mixing ratios in this test.  It is clear 

that further studies need to be conducted to explore the effect of mixing ratios and whether this 

miRNA BFID test is suitable for distinguishing a single source or mixed sample.   

  Wang et al (2013) performed an interesting study comparing the work of Hanson et al (2009), 

Zubakov et al (2010) and Courts and Madea (2011).  Blood (venous, menstrual), saliva, semen 

and vaginal material were used in their study.  Samples in their work underwent total RNA 

isolation followed by microarray analysis of RT-qPCR.  Microarray studies were performed 

using TaqMan Array Human MicroRNA cards, which contain 754 known human miRNAs.  

From their study they selected five miRNA markers for RT using stem-loop primers and qPCR 

using TaqMan
®
 chemistry.  In their work they identified three new miRNA markers for 

indicating the presence of blood (miR486), semen (miR-888) and menstrual blood (miR-214) 

[233].  They also identified the same marker for blood (miR-16) and vaginal material (miR-

124a) as in the study by Hanson et al (2009) and semen (miR-891a) as in the study by Zubakov 

et al (2010).  They also identified selected a potential reference gene for BFID (RNU6) (shown 
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in Table 1).  Their studies again show the potential of using miRNA analysis as a BFID method 

in forensic casework.  However further work needs to be done for identifying the most suited 

miRNA BFID markers.  

 

Wang et al (2013) also performed a study briefly exploring the stability and sensitivity on 

several of the body fluids.  In their study they tested the stability of blood (venous and 

menstrual) and semen when stored for 1-month in the dark.  Their study showed stability of 

miRNA in all of the body fluids tested, which can be useful information for samples stored 

over a shorter periods.  There study however was very limited.  It did not explore longer 

storage times or environmental conditions.  In their sensitivity study they explored miRNA in 

all of the body fluids (10-0.001 ng).  They found that miRNA could be detected in all of the 

body fluids. 

Bai et al (2013) also recently conducted a study comparing Hanson et al (2009), Zubakov et al 

(2010) and Courts and Madea (2011) work.  Four different body fluid types were used in this 

study: blood, saliva, semen and vaginal secretions.  Samples underwent total RNA isolation, 

RT and qPCR using SYBR
®
 Green chemistry.  In their work they identified new miRNA 

markers for semen (miR-10b, miR-135b).  They also identified the same markers for blood 

(miR-16 and miR-451), saliva (miR-205 and miR-658), and vaginal material (miR-124a and 

miR-372) as in the study by Hanson et al (2009) (shown in Table 1).  They also identified 

similar markers for blood (miR-451) and saliva (miR-205) as in Courts and Madea (2011) 

work.  None of the markers identified were the same as Zubakov et al (2010).  The chemistry 

may have an impact of the identification of the markers.  Bai et al (2013) utilises the same 

chemistry, SYBR
®

 Green as Hanson et al (2009) and Courts and Madea (2011) [236].  This 

study demonstrates the need for further work in this area.  
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 Hanson (2009) Zubakov (2010) Courts (2011) Wang (2013) Bai (2013) 

 SYBR
 
Green TaqMan SYBR Green TaqMan SYBR

 
Green 

Blood miR-16 

miR-451 

miR-144   

miR-185 

miR-126 

miR-150 

miR-451 

miR-16 

miR-486 

 

miR-16 

miR-451 

Saliva miR-205 

miR-658 

 miR-200c  

miR-203 

miR-205  

 miR-205 

miR-658 

Semen miR-10b 

miR-135 

miR-135a 

miR-891a 

 miR-888 

miR-891a 

miR-10b 

miR-135b 

Vaginal 

material 

miR-124a 

miR-372 

  miR-124a miR-124a 

miR-372 

Reference 

gene 

RNU6b 

RNU44 

RNU24 

RNU44 

RNU48 

RNU6b RNU6  

 

Table 1. Summary of the body fluid specific miRNA markers and reference genes identified by Hanson et al (2009), Zubakov et al (2010), Court and Madea (2011), Wang et 

al (2013) and Bai et al (2013). 
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1.3 Project aims 

The aim of this project was to develop an RNA-based body fluid identification test for use in 

forensic casework.  Three main areas were covered during the development of this test.  The 

first topic explored both single and co-isolation strategies for DNA, microRNA and mRNA.  

The overall aim was to develop a single or co-isolation method that did not separate DNA and 

RNA fractions.  Thus allowing the DNA profile to be more closely associated to a body fluid.  

Once a sample isolation method was determined the next project was to screen a panel of body 

fluid specific RNA markers as selection of markers can vary depending on the technique used. 

Finally the applications of the RNA-based BFID test were examined including sensitivity, 

specificity, stability and mixtures.  This was to determine whether this test was suitable for 

forensic casework. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

Methods and Materials 
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2.1 Ethical approval  

One of the fundamental factors to consider when developing a new body fluid identification 

test is to ensure that the test is ethical.  This is essential, as both the development and nature 

of the test relies on the use of donors.  The physical and mental safety, comfort and privacy 

of the donors must be maintained if the method is to be implemented by the forensic 

community.  A new BFID test was developed and approved by the University of 

Huddersfield School of Applied Sciences Ethics Committee. 

 

2.2 Sample collection 

When developing a new BFID test it is important that the body fluid is collected as 

efficiently and effectively as possible.  In this way, maximum use of the sample can be 

achieved and contamination from surrounding areas can be minimised.  Poor sample 

collection methods can be a host for a number of unnecessary problems.  It can lead to 

limited and low quality yields during sample isolation and can affect downstream processes 

including cDNA synthesis and qPCR.  It can ultimately lead to difficult to interpret results 

or in worst, loss of a case sample. 

 

Both the UK and US police forces have standard operating procedures (SOPs) for collecting 

body fluids.  One common technique used for body fluid collection is with the use of cotton 

swabs.  Cotton swabs are a relatively non-invasive method for obtaining DNA profiles from 

victims and suspects.  Cotton swabs are also used for collecting more intimate body fluids 

in cases of sexual assaults.  For instance after a rape, both the victim and suspect will 

generally taken to a hospital, where a trained specialist will carefully collect vaginal and 
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penile swabs.  If the suspect is not apprehended but a condom is present, then the cotton 

swab may be used to collect semen from the inside of the condom. 

 

In other cases, the entire item is collected for body fluid identification. Items of clothing can 

be a popular source of body fluids.  For instance, a T-shirt may be collected for trace 

amounts of blood and saliva from the victims and suspects. The collection methods 

prepared in this work have been developed to simulate such case scenarios. It has also been 

developed to require minimal modification if it is incorporated into routine casework. 

  

2.2.1 Blood samples 

Blood was collected onto sterile filter paper (Fisher Scientific, UK). Disposable Unistik 3 

comfort lancets (Barrier Healthcare, UK), which are commonly used to help measure 

diabetic blood levels, were used to create a pinprick on sanitised fingertips (Brosch Direct, 

UK).  Blood was then stained onto filter paper and immediately packaged into sterile RD 

polyethylene bags to minimise contamination (Fisher Scientific, UK).  The purpose of using 

this method of collection was to simulate dried bloodstains found on surfaces at a crime 

scene.  

 

2.2.2 Saliva samples 

Two different methods were used.  One collection method used buccal swabs.  This 

involved swabbing each cheek for 30 s using sterile buccal swabs (Sarstedt, UK).  This 

particular length of time was chosen to ensure that a sufficient amount of epithelial cells 

would be collected.  Also, all samples were collected with at least 1 hr. between food or 

drink consumption to minimise experimental variables such as bacterial contamination.  
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This collection method was used to simulate samples collected from sexual assaults e.g. 

linking a victims saliva on a penile swab during non-consensual oral sex. 

 

The second collection method used was with collection tubes.  Donors followed the same 

guidelines as before e.g. a minimum 1 hr. between food and the drink consumption.  Donors 

then deposited saliva directly into sterile 50 ml BD Falcon™ tubes (VWR, UK).  This 

collection method was also selected to simulate samples collected from an assault e.g. 

linking a suspect to a victim to a bar fight through the presence of saliva deposits on the 

victim shirt.  

 

2.2.3 Skin samples 

Skin was collected using a combination of sterilised rulers and cotton swabs.  Skin from the 

back of the hand was selected, as it was easy to access and sanitise for donors.  Gentle 

abrasion was applied with a sterile ruler to help lift epithelial cells.  A cotton swab was then 

used to collect these cells from the hand and ruler.  This collection method was developed to 

simulate samples that may be collected during an assault e.g. linking suspects to a victim 

through the presence of the suspects skin on a victims fingernail clippings. 

  

2.2.4 Vaginal material samples 

Vaginal material was also used for the development of the BFID test.  Donors signed 

consent forms and were provided with overnight sample collection kits by a designated 

female staff member.  Additional information such as time since last period or time since 

last intercourse were not requested as only a handful of donors came forward during this 

study.  
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Sample kits for collecting vaginal material contained additional information about the study, 

collection items (e.g. 2 sterile cotton swabs, a biohazard bag) and instructions on collecting, 

packaging and storing samples.  Samples were then returned to the designated female staff 

member and placed into the laboratory.  This collection method was developed to broadly 

simulate samples that may be collected from sexual assaults. 

 

2.2.5 Semen samples 

Semen was also used for the development of the BFID test.  Donors signed consent forms 

and were provided with overnight sample collection kits by a designated male staff member.  

Additional information such as whether donors were vasectomised were not requested due 

to the potential sensitivity of donors. 

 

Each sample kit contained information about the study, the collection items: 2 sterile cotton 

swabs and a biohazard bag and instructions on collecting, packaging and storing samples.  

Samples were then returned to the designated male staff member and placed into the 

laboratory.  This collection method was developed to broadly simulate samples that may be 

collected from sexual assaults. 

 

2.3 Sample isolation 

Body fluids are complex by nature.  They contain a range of components including 

enzymes, proteins and cellular debris that can interfere with BFID analysis.  Therefore it is 

important, that an appropriate isolation method is selected.  This need is exemplified by the 
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fact that many body fluids collected at a crime scene are limited and or of poor quality.  To 

further complicate matters the source of the body fluid may be unknown, especially if found 

in trace amounts at a crime scene.   

 

Therefore part of this research was focused on finding a universal isolation method for body 

fluids.  Four different isolation methods were identified.  All isolations were performed 

without specialist treatment towards specific body fluids (e.g. DTT treatment for semen). 

 

2.3.1 Dynabeads
®
 magnetic separation technology 

One method explored was the Dynabeads
®

 magnetic beads technology by Life 

Technologies.  The technology is different from other commercial bead based kits (e.g. by 

Promega and Qiagen) as the uniform spherical nature of the sample allows for 360° binding 

of samples.  Dynabeads are also paramagnetic or in other words are magnetised when a 

magnetic field is present.  This means that the separation of genetic material is far gentler 

than with methods that use centrifugation.  This is advantageous from the police and 

forensic practitioners perspective as there is a heavy backlog for processing casework 

samples. 

 

Two different isolation kits were selected: the Dynabeads® mRNA DIRECT kit, which uses 

an oligo-dT tail for isolating polyadenylated mRNA and the Dynabeads® DNA DIRECT™ 

Universal kit, which uses a silica-like chemistry  (Life Technologies, UK). 
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2.3.1.1 Messenger RNA isolation using oligo-dT beads 

The standard mRNA isolation protocol was used on all body fluids [238]. The oligo
®

 (dT)25 

beads were first prepared in this protocol.  The beads are heavier than the solution and tend 

to gather at the bottom of the tube.  Therefore homogenization is required before pipetting 

the solution into sterile 1.5 ml collection tubes (Fisher Scientific, UK). Note the beads come 

immersed in a pre-lysis/binding solution, 1 X PBS (pH 7.4).   

 

The tube is then placed onto a DynaMag™-2 magnet (Life Technologies, UK) for 30 s to 

allow sufficient time for the beads and solution to separate.  In most cases, separation of the 

beads occurs within the first 10 s of applying a magnet.  A gelatinous looking streak then 

forms along the side of the tube wall allowing for the surrounding solution to be carefully 

removed, usually with smaller filtered pipette tips.  The tube is then removed from the 

magnet to allow for the beads to separate.  An additional lysis/binding buffer containing 

strong chaotropic agents is then added to the beads. 

 

Preparation of the sample involved modification to the original protocol since it is designed 

for tissues and cultured cells.  Samples collected using filter paper were prepared by cutting 

1 cm (diameter) hole punches into collection tubes.  Samples collected using cotton swabs 

were prepared by removing the entire swab head with sterile disposable scalpels (Swann 

Morton, UK).  Samples were then treated with the same lysis/binding buffer and vortexed to 

break down the cell walls. 

 



 

73 

 

Samples then underwent mRNA extraction.  All samples were transferred into the 1.5 ml 

tubes containing Dynabeads.  Tubes were then rotated for 15 min. using an orbital shaker 

(VWR, UK) at room temperature to allow for hybridization between mRNA and oligo-dT 

beads to occur.  Sample tubes were then placed on the magnet for two min to allow for the 

mRNA/Dynabeads complex to form.  The supernatant was then carefully removed using a 

pipette.  Samples were then washed four times with two different wash buffers, during 

which the mRNA/Dynabeads complex became more compact due to removal of impurities.  

Samples were then eluted using Tris-HCl (10 mM, pH 7.5). 

 

2.3.1.2 DNA isolation using silica beads 

The standard Direct DNA isolation protocol was used to isolate DNA [239].  The protocol 

was very similar to the mRNA protocol, except the Dynabeads came readily prepared in the 

lysis/binding buffer solution. The sample preparation protocol was similar to the sample 

preparation method developed for the mRNA protocol with exception of adding 1 X PBS to 

lyse and bind the cells. 

 

Samples then underwent extraction by adding the Dynabeads to the solution in a single 

rapid pipetting action and incubated to allow for lysis and binding of the cells to occur.  

Samples were then separated with the Dynal magnet and allow for the DNA/Dynabeads 

complex to form.  The lysis/binding solution was then removed through pipetting and then 

taken from the magnet.  The sample was then washed twice with a single wash buffer to 

remove impurities.  Samples were then eluted with a low buffer to reverse the binding 

conditions.  
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2.3.2 Qiagen silica gel membrane technology 

The Qiagen silica gel membrane technology was also explored as it is commonly used 

technique amongst forensic science providers.  Two isolation kits were selected: RNeasy 

mini kit and QIAamp DNA blood mini kit (Qiagen, UK). 

  

2.3.2.1 Total RNA isolation using silica columns 

The “Purification of total RNA from animal cells using spin technology” protocol was used 

to isolate total RNA from body fluids [240].  This protocol can be divided into two steps: 

sample preparation and sample isolation.  Minimal modifications were required for this 

protocol. 

 

Samples collected using cotton swabs and filter paper were prepared in a similar manner as 

before, except a combination of high salt lysis/binding buffer and 70% ethanol were used to 

breakdown the cell walls. 

 

Samples were then transferred to RNeasy
®

 spin columns and centrifuged using a Hettich 

MIKRO temperature controlled centrifuge (VWR, UK).  Flow through from the spin 

columns was discarded.  Samples were then washed three times with two different wash 

buffers to remove impurities. Samples were then eluted in RNase-free water to reverse 

binding conditions in the silica bed. 
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2.3.2.2 DNA isolation using silica columns 

The “DNA purification from cotton swabs (spin protocol)” was used to isolate DNA [241].  

This protocol has been divided into two steps: sample preparation and sample isolation.  

Minimal modification was required for this protocol. 

 

Samples collected using cotton swabs and filter paper was prepared in a similar manner as 

before, except a combination of a high salt lysis/binding buffer, PBS (pH 7.5) and 

proteinase K were used to breakdown cell walls.  Samples were then vortexed and 

incubated.  Ethanol was then added to further promote binding. 

 

Samples were then transferred into QIAamp mini spin columns and treated in the same 

manner as the RNeasy isolation method.  They were then washed twice with two different 

wash buffers to remove contaminants and then eluted with a low salt elution buffer to 

remove the purified DNA sample from the silica bed. 

  

2.4 Sample quantification 

Sample quantification is an important step when developing a new BFID test.  This is 

because different BFID tests require different quantities and qualities of starting material.  

For instance, chemical BFID tests generally require higher volumes to work where as RNA-

based BFID tests should require lower volumes. 

 

If a new BFID test is to be developed and incorporated into existing DNA profiling 

methods, it is important that the amount of RNA required is comparable.  Current DNA 



 

76 

 

profiling kits require as little as 1.0 ng of DNA to achieve full profiles (e.g. NGM SE) [3]. 

One of the challenges with developing a new RNA-based BFID test is that there is currently 

no reliable absolute quantification test available for RNA.  However there are several 

methods available for indicating the quantity and quality of RNA including the use of 

bioanalysers and UV-Vis spectrophotometry.  Nano volume UV-Vis spectrophotometry was 

selected for assessing the quantity and quality RNA while qPCR was used to quantify the 

amount of human DNA present in samples.  

 

2.4.1 Nano volume UV-Vis spectrophotometry 

Samples were quantified using a NanoVue Plus™ spectrophotometer (VWR, UK).  The 

path length of this instrument was 0.5 mm path length and the absorbance was set to 260 

nm.  Reference measurements (e.g. elution buffer) were taken at the start of sample 

measurements to establish a baseline.  Both 260 nm/ 280nm and 260 nm / 230 nm ratios 

from each measurement were used to asses the quality of nucleic acid.  

 

2.4.2 Quantitative PCR 

Samples were also quantified for human DNA using the Investigator Quantiplex Kit 

(Qiagen, UK).  The “Quantification of DNA using the Rotor-Gene Q” protocol was 

followed [242, 243]. 

 

Since the kit is an absolute quantification method, a series of known standards were 

prepared.  A four-fold serial dilution was performed using control DNA Z1 (20 ng/µl) and 

QuantiTect nucleic acid dilution buffer. A total of seven standards were prepared.  A master 



 

77 

 

mix containing qPCR reaction mix and primer mix was then prepared and added to the 

standards, samples and no template negative control. 

 

2.5 Complementary DNA synthesis 

Complementary (cDNA) synthesis is an essential step in RNA-based BFID analysis. RNA 

must become cDNA in order to undergo PCR.  In this protocol two different primers types 

were used.  A standard reverse transcription method was used for large RNA transcripts e.g. 

mRNA (1500 to 2000 nt).  In this method a combination of RT reagents including primers 

were used to synthesize a cDNA strand. 

 

A stem-loop reverse transcription method was used for shorter RNA transcripts e.g. mature 

miRNA (18-25 nt).  The shorter length of mature miRNA makes it difficult for primers to 

bind and accurately synthesize a cDNA strand.  Either poly-T primers utilised after 

polyadenylation  (SYBR
®
 Green chemistry) or stem-loop primers (TaqMan

®
 chemistry) can 

be used for this.  In this work, stem-loop primers were selected due to their high specificity 

(e.g. of as little as one nucleotide difference) and use in forensic RNA research [244].   

  

During RT, the 3‟ of the stem-loop primer will bind to the last 6 bp of the mature miRNA 

sequence while the 5‟ end, which is artificial (in nature) will fold on itself (shown in Figure 

3).  MMLV-RT will then extend this sequence.  The stem-loop will unfold during PCR.  
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Figure 2.  A diagram showing cDNA synthesis using stem-loop primers.  During reverse transcription, the 5’ 

end of the stem-loop primer will fold onto itself while the 3’ end of the stem-loop primer will bind to the last 6 

bp in the mature miRNA sequence. The sequence is then extended using an enzyme e.g. MMLV-RT. 

 

2.5.1 Standard reverse transcription 

The RETROscript
®

 first strand synthesis kit (Life Technologies, UK) was used for mRNA 

transcripts.  Samples underwent standard reverse transcription following the RETROscript® 

protocol [245]. Samples were initially heat denatured with 50µM random decamers and 

nuclease free water on a Veriti thermocycler (Fisher Scientific, UK) for 3 min at 75 ºC to 

remove any secondary structure that may inhibit reverse transcription.  A master mix 

containing the essential components for reverse transcription (2.5 mM dNTP mix, 10X RT 

buffer, 10 units/µl RNase inhibitor and 100 units/µl MMLV-RT) were then added to the 

reaction.  Samples then underwent standard RT using the following conditions: 60 min at 42 

ºC, 10 min at 92 ºC.   

 

In all studies a negative control containing all components for reverse transcription except 

the sample template was prepared. A negative control containing all components except 

Moloney Murine Leukaemia Virus reverse transcriptase (MMLV-RT) was also prepared.  



 

79 

 

 

2.5.2 Stem-loop reverse transcription 

The TaqMan
®
 microRNA reverse transcription kit and TaqMan

®
 microRNA assays (Life 

Technologies, UK) were used for miRNA transcripts.  The protocol used was the 

“TaqMan
®
 small RNA protocol” [246].  

 

A RT master mix containing nuclease-free water, 10X reverse transcription buffer, 50 U/ l 

MMLV-RT, 20 U/ l RNase inhibitor and 100 mM dNTPs was prepared.  The mastermix, 

5X primer and extract was then combined into a single tube.  Samples then underwent stem-

loop RT on a Veriti thermocycler with the following cycling conditions: 16 °C, 30 min at 42 

°C, 5 min at 85 °C and held at 4 °C.   In all studies the same negative controls prepared as 

those in the standard reverse transcription protocol. 

  

2.6 Quantitative PCR  

As mentioned previously, there is currently no reliable method for quantifying RNA.  An 

alternative method of quantification is through the comparison of gene expression levels via 

qPCR e.g. mRNA and miRNA.  There are two different types of chemistries that can be 

used for qPCR analysis including Life Technologies TaqMan
®
 chemistry and SYBR

®
 

Green chemistries.  Many of the forensic research groups utilise these chemistry for BFID 

due to its high specificity and sensitivity and as such, has been selected for the development 

of this BFID test.  Previous research by the University of Huddersfield research team 

explored SYBR Green chemistry for RNA-based BFID analysis.  Findings from their 
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studies showed lack of specificity to mRNA targets and as such, TaqMan chemistry was 

explored in this work. 

 

2.6.1 qPCR of stem-loop RT products 

The “TaqMan
®

 small RNA protocol” used in the cDNA synthesis section 2.5.2 was also 

used for the qPCR section.  A single master mix containing 2X TaqMan
®
 universal PCR 

master mix II no UNG (Life Technologies, UK) and nuclease free water was prepared in 

triplicate for each experiment in sterile 1.5 ml tubes (shown in Table 2).  A 20X primer 

solution containing a TaqMan probe, a specific forward primer and universal reverse primer 

for miRNA (Ambion, UK) and RT product were then prepared in separate 0.2 ml PCR tube.  

A negative control containing all components of the PCR reaction apart from RT product 

was included in all studies. 

 

Samples were then transferred to MicroAmp® optical 96-well reaction plate (Life 

Technologies, UK) and sealed with a MicroAmp® clear adhesive film and applicator (Life 

Technologies, UK).  Quantitative PCR was performed on a 7500 fast real-time PCR system 

(Life Technologies, UK) using the following PCR cycling conditions: enzyme activation for 

10 min at 95 °C and 40 cycles of denaturation for 15 s at 95 °C, annealing for 60 s at 60 °C 

and an extension during the temperature ramp of annealing and denaturation steps. 
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QPCR MASTER MIX COMPONENTS 1 REACTION IN 

TRIPLICATE ( l) 

10 REACTIONS IN 

TRIPLICATE ( l) 

TAQMAN® UNIVERSAL PCR MASTER 

MIX II (2 X) NO UNG 

40.00 400.0 

NUCLEASE-FREE WATER  30.68 306.8 

TOTAL VOLUME 70.68 706.8 

 

Table 2. Showing an example of a calculated qPCR master mix when using a total of 10 reactions.  

 

2.6.2 qPCR of standard RT products 

The “TaqMan
®
 universal master mix II” protocol (Life Technologies, UK) was used to 

amplify RT product.  A qPCR reaction mix containing 2X TaqMan
®
 universal PCR master 

mix II no UNG, RT product or nuclease-free water and 20X TaqMan
®

 primer assay was 

prepared in triplicate.  A PCR negative control was also included in each study.  

Quantitative PCR reaction mixes were then transferred onto a 96-well plate and run on the 

fast 7500 qPCR machine with the following the same PCR cycling conditions as in the 

previous protocol. 

 

2.7 Data analysis  

In qPCR, quantification cycles (Cq) are used to assess gene expression levels in a sample.  

Cq is the point at which the expression of a sample is reaches above the background signal.  

It is used to indicate the amount of gene present in a sample. The ∆Cq values were 
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presented following the minimum information for publication of real-time PCR data 

(MIQE) guidelines described by Bustin (2009) [247]. 

 

There are two ways that ∆Cq was calculated.  In the presence of a reference gene, ∆Cq was 

calculated by subtracting the Cq of a reference gene by the Cq of the marker. Alternatively 

in the absence of a reference gene, the ∆Cq is calculated by subtracting the maximum 

number of cycles used by the Cq of the marker (shown below). 

  

                               ∆Cq = Cq max or reference gene – Cq marker  

  

Establishing the significance of a result or test is also important during data analysis.  There 

are number of different statistical tests that can be used in qPCR analysis (e.g. ANOVA, 

paired sample T-tests).  The statistical approach using in this work was paired sample T-

tests, with a 95% confidence interval using Minitab
® 

statistical software v17.  

 

2.8 Enzymatic tests 

Enzymatic tests are often used as initial body fluid indicators at a crime scene. Some of the 

commonly used tests include the Kastle-Meyer (KM) test for blood.  These tests are often 

labelled presumptive due their lack in discrimination towards certain plants, cleaning 

products and clothes.  Despite their limitations, enzymatic tests are regularly used at crime 

scenes and as such, have been explored in this work to compare against the new BFID test.  

Three enzymatic tests have been selected for comparison, the Kastle-Meyer (KM) and 

Leucomalachite Green (LMG) test for blood and the Phadebas
®

 test for saliva. 
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2.8.1 Kastle-Meyer and Leucomalachite Green tests 

The KM and LMG tests were used to indicate the presence of blood during limit of 

detection studies.  Blood samples undergoing KM or LMG tests were dried onto filter paper 

before use.  In each experiment a blank filter paper and filter paper with water was included 

as negative controls. KM and LMG testing was then performed by adding one drop KM or 

LMG reagent onto the stain.  A maximum of 30 s was given before adding a drop of H2O2.  

This was to monitor oxidative false positives.  The presence of blood was indicated by an 

immediate colour change; bright pink for KM and aquamarine for LMG.  

 

2.8.2 Phadebas
®
 test 

The Phadebas
®

 amylase kit (Maggle Life Sciences, UK) was used to indicate the presence 

of saliva. The Phadebas amylase test protocol was followed with minimum modification to 

the manufactures instructions [248]. Saliva deposits were collected and diluted into sterile 

15 ml BD Falcon™ tubes (VWR, UK).  The tubes were then incubated in a 37 ºC water 

bath (VWR, UK) before adding a Phadebas tablet. The tube was then vortexed and returned 

to the bath for 15 min to activate the tablet. 0.5 M NaOH (Sigma Aldrich, UK) was pipette 

into each tube to stop the reaction. Samples were then centrifuged for 5 min with a Thermo 

Scientific Sorvall ST centrifuge (Thermo Scientific, UK) before measuring the samples on a 

Cary 60 UV-Vis spectrophotometer (Agilent Technologies, UK) [249].  A standard plastic 

cuvette with a 1 cm light path was used to measure the absorbance of samples and negative 

controls. An absorbance range of 400-800 nm was selected for saliva.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Evaluating four different isolation kits for 

RNA analysis 

 

When developing a new BFID protocol for forensic casework it is crucial to use an efficient 

and effective isolation method.  This is very important to establish, as casework samples are 

often limited in both quantity and quality.  For the purposes of developing a robust test for 

forensic casework, abundant samples were used. 
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3.1 Co-isolation using magnetic bead technology 

One of the daily changes faced by forensic practitioners is working with casework samples.  

Body fluids that are generally collected from a crime scene will often be limited in quality 

and quantity.  Furthermore body fluids may be the only source available for obtaining a 

DNA profile from a suspect.  The development of a BFID test that could be used alongside 

current DNA profiling techniques would be very useful.  The ability to use the same body 

fluid stain for BFID and DNA analysis would allow the forensic practitioner to more closely 

associate the DNA profile and body fluid origin when in court.   

 

Co-analysis may be useful where it is important to know both the DNA profile and body 

fluid origin e.g. sexual assault.  It may be important to know if the blood present on a 

suspect is a result of trauma blood or menses blood due to a rape.  The ability to associate a 

DNA profile to the specific blood type may strengthen the evidentiary value within a case. 

 

The challenges that casework samples bring (e.g. limited sample quality and quantity) have 

caused forensic groups to look at alternative methods of analysis.  Co-isolation is an area 

that a number of mRNA research groups have considered as a way to overcome this 

problem [4, 156, 163, 165, 168, 173-177, 182, 185, 189, 250-260]. There are two main 

approaches.  One approach involves samples isolation by splitting DNA and RNA into two 

difference fractions.  The other approach involves isolation of one nucleic acid (e.g. DNA) 

followed by isolation of a second nucleic acid (e.g. RNA) using wash buffer that has been 

retained.  Both methods utilise either silica gel columns or organic isolations.  However one 

of the main drawbacks is the decrease in association between DNA profile and body fluid. 
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Aim 

Thus aim of this work was to develop a co-isolation method where neither the DNA or 

mRNA fraction is separated.  In this way, a DNA profile can truly be considered to 

originate from a particular body fluid and analysis time is reduced. 

 

A number of different technologies have been used to co-isolate samples.  The majority of 

research groups looking into co-isolation use spin column or organic based isolation 

methods as described previously.  Very few forensic research groups have looked into 

magnetic bead based technology to co-isolate DNA and RNA e.g. Bowden et al (2011) and 

none of these groups have explored mixing beads.   Furthermore the majority of research 

focusing on magnetic bead based technology has been non-forensic related [261-271].  Thus 

the aim of this work was to use different ratios of beads, oligo-dT and silica to co-isolate 

mRNA and DNA respectively. 

 

Experimental design 

In this study, two commercially available magnetic bead isolation kits were used for DNA 

(Life Technologies DNA Dynabeads Universal kit) and mRNA (Life Technologies mRNA 

Dynabeads Direct kit). A total of 6 different co-isolation methods were used.  The standard 

protocol for both kits served as 2 of the co-isolation methods.  Four modified protocols were 

prepared: a DNA kit using oligo-dT beads, a mRNA kit using silica beads, a DNA kit using 

a ratio of 50 oligo-dT beads:50 silica beads and a mRNA kit using a ratio of 50 oligo-dT 

beads:50 silica beads (shown in Table 3).  Saliva swabs were the focus of the study as these 

were the easiest to obtain. Samples then underwent the standard and modified isolation 
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protocols, quantified using UV-Vis spectrophotometry, cDNA synthesis and qPCR using 

KRT13 (saliva-specific), MNDA (blood-specific) and GAPDH (reference gene). 
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Standard isolation methods Modified isolation methods 

Isolation kit Magnetic beads Isolation kit Magnetic beads 

DNA Silica DNA  Oligo-dT 

mRNA Oligo-dT mRNA Silica 

  DNA 50 Silica:50 Oligo-dT  

  mRNA 50 Silica:50 Oligo-dT 

 

Table 3. Comparing the standard magnetic bead isolation methods with the modified magnetic bead isolation methods.  The standard DNA isolation method utilised 

silica beads.  The standard mRNA isolation method utilised oligo-dT beads.  The modified DNA isolation methods utilised either oligo-dT beads or a ratio of 50 silica and 

50 oligo-dT beads.  The modified mRNA isolation methods utilised either silica beads or a ratio of 50 silica and 50 oligo-dT beads.  
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3.1.1 DNA concentration in saliva swabs 

  

 
Figure 3. Showing the average DNA concentration obtained using the 6 different isolation methods. Error 

bars represent one standard deviation (n=15). 

 

Figure 3 shows the average DNA concentrations obtained using the 6 different co-isolation 

methods.  All 6 co-isolation methods gave sufficient concentrations of DNA (0.1 ng/µl), 

indicating that the 6 methods could be incorporated into current DNA profiling techniques.
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3.1.2 mRNA expression in saliva swabs 

 

 

Figure 4. Showing the relative expression of KRT13 and MNDA in 6 different isolation methods. The black 

line is indicates a set threshold of ∆Cq 5.  Error bars represent one standard deviation (n=15) 

 

Figure 4 shows the expression of KRT13 and MNDA when normalised with GAPDH in 6 

different isolation methods.  In this study KRT13 (saliva) showed the highest expression in 

using the DNA isolation method and minimal expression in the other isolation methods.  

This was surprising as it was thought that KRT13 would show the highest expression using 

the standard mRNA isolation kit. The third EDNAP collaborative exercise supported this 

finding.  MNDA (blood) showed no expression in the 6 co-isolation methods [173].  No 

amplification was observed in the negative controls.  The expression of the mRNA markers 

and reference gene were also presented separately to better understand their expression 

within saliva swabs.  
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Figure 5. Showing the expression of saliva-specific KRT13 and blood-specific MNDA across 6 different 

isolation methods in saliva swabs.  The black line is indicates a set threshold of ∆Cq 5.  Error bars represent 

one standard deviation (n=15). 

 

KRT13 presented on its own showed moderate expression with standard DNA kit and lower 

expression using the five other methods  (shown in Figure 5).  MNDA showed minimal 

amplification in all 6 methods except in the modified protocol using the DNA kit with 50 

silica : 50 oligo-dT  beads, which KRT13 showed moderate expression.  The third EDNAP 

collaborative exercise also supported the moderate levels of expression and discrimination 

within saliva deposits [173]. 
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Figure 6. Showing the GAPDH expression across 6 different isolation methods.  The black line is indicates a 

set threshold of ∆Cq 5.  Error bars represent one standard deviation (n=15). 

 

GAPDH when presented on its own showed moderate expression in one of the standard 

isolation methods and in one of the modified methods (shown in Figure 6). GAPDH showed 

low expression levels in the remaining isolation methods.  Bowden et al (2011) agreed with 

the GAPDH expression levels shown in the standard isolation protocols. 
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Discussion 

The aim of this work was to develop a unique co-isolation method using two commercially 

available DNA and mRNA kits; Life Technologies Dynabeads Universal DNA direct kit 

and mRNA direct kit.  Four modified methods were developed: DNA isolation kit with 

oligo-dT beads, mRNA isolation kit with silica beads, DNA isolation kit with 50 silica : 50 

oligo-dT beads, mRNA isolation kit with 50 silica: 50 oligo-dT beads. 

 

Of the six isolation methods, the standard isolation methods performed the best.  KRT13 

showed moderate levels of specificity towards saliva.  The third EDNAP collaborative 

exercise supported the level of specificity of KRT13. MNDA (blood specific) showed 

minimal amplification across six isolation methods [173].  The studies from this result 

demonstrated that co-isolation method was not necessary. 
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3.2 Isolation using silica gel membrane technology 

The use of RNA-based BFID tests is currently being considered in forensic investigations. 

A number of forensic research groups have shown mRNA to be stable under a number of 

conditions e.g. aged, post-mortem, in-vitro for years at a time [158, 193-195, 272, 273].   As 

a result, many of these research groups have tailored their work to develop and implement 

mRNA BFID into forensic casework [155-157, 173-177]. 

 

Despite the tremendous efforts that have been put toward developing mRNA BFID and the 

work supporting the stability of mRNA, a handful of these research groups have begun to 

use microRNAs for BFID e.g. Hanson et al (2009), Zubakov et al (2010), Courts and 

Madea (2011) and Wang et al (2013).  MicroRNAs possess a number of very attractive 

qualities from a casework perspective.  They are generally highly abundant and their short 

sequence length (18-25 nt) makes them prime candidates for casework samples, which are 

often limited and poor in quality.  They also play a key role in gene regulation and as a 

result have been rapidly sought out for BFID. 

 

Aim 

Consequently the aim of this work was to explore miRNA analysis as a potential BFID 

method for its potential use in forensic casework. Hanson et al (2009), Zubakov et al 

(2010), Courts and Madea (2011), Wang et al (2013) have utilised either total RNA or 

miRNA isolation kits for their miRNA BFID methodologies.  Although this approach is 

logical the study here explores and compares DNA isolation and total RNA isolation.  The 

ability to use a DNA isolation method over total RNA isolation would provide an advantage 
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that none of the other groups have.  It would allow for the practitioners to integrate miRNA 

analysis with more ease as they would be able to continue to use their existing 

methodologies for DNA profiling without the additional sample handling steps. 

 

Experimental design 

Thus two commonly used DNA and total kits were used in this study (e.g. the QIAGEN 

silica-gel membrane chemistry).  Bloodstains and saliva swabs were collected and isolated 

using the total RNA or DNA kits.  Samples then underwent human DNA quantification, 

cDNA synthesis and qPCR using miR-451 (blood) and miR-205 (saliva).  Negative controls 

were also included in this study. 
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3.2.1 MicroRNA expression in DNA and total RNA kits 

 

 

Figure 7. Showing the expression of miR-451 and miR-205 in bloodstains isolated using the DNA and total 

RNA isolation kits.  Error bars represent one standard deviation (n=6).  

 

Body fluid specificity was demonstrated using both the DNA and total RNA isolation kits 

(shown in Figure 7).  In both kits miR-451 showed significantly more expression in blood 

than miR-205 (P<0.001).  Hanson et al (2009) and Courts and Madea (2011) support this 

finding.  No amplification was detected in the negative controls.  A similar experiment was 

performed for saliva swabs. 
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Figure 8. Showing the expression of miR-205 and miR-451 from saliva swabs isolated with the DNA and 

total RNA isolation kit.  Error bars represent one standard deviation (n=6). 

 

Body fluid specificity was demonstrated using both the DNA and total RNA isolation kits 

(shown in Figure 8).  In both kits miR-205 showed significantly more expression than miR-

451 (P<0.001).  Surprisingly in both experiments (shown in Figures 7 and 8), the DNA 

isolation method gave significantly more expression of miRNA than with the total RNA 

isolation method (P<0.05).   
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3.2.2 MicroRNA expression during different stages of sample 

isolation   

 

To establish where the miRNA was being retained, the wash steps from each of the kits also 

underwent isolation.  Blood and saliva swab samples underwent the same process as 

described previously, with the exception that all of the wash steps were retained and 

underwent isolation as well.  A total of 6 blood and saliva samples were used in this study.  

Negative controls were also included. 

 

 

Figure 9. Showing the expression of miR-451 and miR-205 in bloodstains using the DNA isolation kit.  Error 

bars represent one standard deviation (n=6).   
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Figure 10. Showing the expression of miR-451 and miR-205 in bloodstains using the total RNA isolation kit. 

Error bars represent one standard deviation (n=6).  

 

A similar experiment was performed for saliva swabs (shown in Supplementary section in 

the Appendix).  A similar pattern was seen, with miR-205 giving the highest expression of 

miRNA in the eluent.  No known research groups have studied the expression of miRNA 

during the wash and elution steps of sample isolation [185]. 
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3.2.3 MicroRNA analysis of unknown samples 

 

Since the aim in this study was to evaluate the use of miRNA analysis within a forensic 

context, a series of blood and saliva swabs underwent a blind process to simulate forensic 

samples.  Blood and saliva samples underwent the same sample process as mentioned 

previously, with the exception that the sample origin was not known.  Four samples were 

used in this study and labelled: A, B, C and D.  Negative controls were included in this 

study.  

 

 

Figure 11. Showing the expression of miR-451 and miR-205 4 unknown body fluids (n=4). Error bars 

represent one standard deviation.  Results indicate A = Saliva swab, B = Bloodstain, C = Bloodstain, D = 

Saliva swab (n=3). 
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Results  

Body fluid specific expression was shown and correctly identified in all of the samples 

tested; A = saliva swab, B – bloodstain, C = bloodstain and D = saliva swab (shown in 

Figure 11).   No amplification was observed in the negative controls.  The findings from this 

study demonstrated the potential capability of using miRNA analysis for BFID in forensic 

casework.  
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3.2.4 MicroRNA analysis of saliva swabs  

A final study was performed to increase sample numbers.  Saliva swabs were the focus of 

this work due to ease of sample access.  Samples underwent the same analysis process as 

before, except only with the DNA isolation kit.  Negative controls were also included in this 

study. 

 

 

Figure 12. Showing the miR-205 and miR-451 expression in saliva swabs using the DNA isolation kit.  Error 

bars represent one standard deviation (n=11). 

 

  

Marker miR-205 showed significantly more expression in saliva than miR-451, as observed 

previously (shown in Figure 12).  No amplification was observed in the negative controls. 

Hanson et al (2009), Zubakov et al (2010), and Courts and Madea (2011) support this 

finding. 
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Discussion 

The aim of this study was to evaluate mRNA and miRNA analysis using different isolation 

methods.  In the previous study using mRNA (Section 3.1.1), a co-isolation method was 

utilised.  The findings showed that co-isolation of mRNA and DNA using a unique 

combination of magnetic beads; was not a requirement for BFID.  Also since the aim of this 

chapter was to evaluate isolation methods in RNA analysis, it was important to explore 

miRNA as a body fluid indicator.  

 

Thus the aim of this section of work was to explore miRNA analysis for BFID.  Blood and 

saliva swabs were the focus of this study as it was the easiest to obtain out of the other 

forensically relevant body fluids (e.g. semen, vaginal material).  Markers miR-451 for blood 

and miR-205 for saliva was selected as a starting point.  The selection was based on both 

forensic and non-forensic related literature as well as through the main repository for 

microRNAs (miRBase).   

 

In all of the studies performed relating to miRNA analysis e.g. DNA vs. total RNA 

isolations, expression of miRNA during wash steps of isolation, blind process and 

increasing sample numbers: miR-451 and miR-205 showed specificity to blood and saliva 

respectively.    

 

There were a number of new findings shown in this section of the work.  The major finding 

in this work was the expression of miRNA in DNA isolations.  The major forensic research 

groups working on miRNA analysis e.g. Zubakov et al (2010), Hanson et al (2009), Courts 

and Madea (2011) utilised total RNA or miRNA isolation kits for miRNA.  Although their 
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standpoint was logical, from a casework perspective it was thought that it might complicate 

current DNA profiling methods.  Thus the first aim of this work was to compare the 

effectiveness of two common DNA and total RNA isolation kits (described in Chapter 2).  It 

was hypothesised that since the conditions e.g. buffers for each kit were optimised to isolate 

either DNA or total RNA, that it would be likely that the total RNA isolation method would 

yield the highest amount of RNA.  However a comparison of expression of miR-451 and 

miR-205 in blood and saliva revealed significantly more expression in the DNA isolation 

kit than the total RNA isolation kit (P<0.05).  The level of miRNA expression shown using 

the DNA isolation kit was surprising.  There also was a significant difference between the 

two kits (∆Cq 2-3).  The potential impact of this find is substantial in the area of forensic 

casework.  It gives the practitioner the choice to use either a DNA or total RNA isolation 

method without compromising their main aim, which is often to obtain a DNA profile.  

 

It has been mentioned in the Qiagen protocols, and has been observed by forensic research 

groups e.g. Zubakov et al (2010), Wang et al (2013) and the EDNAP collaborative 

exercises 1-5, that total RNA isolation kits can also isolate DNA and conversely the same 

for DNA kits.  However it appears that these groups have missed this finding, that higher 

recovery of miRNA can be achieved using DNA isolation kits. 

 

One might argue whether the expression shown was microRNA. However given the 

specificity of the chemistry that was used, e.g. TaqMan, it is highly likely that the 

expression is microRNA. As mentioned earlier, the combination of the stem-loop primer 

and TaqMan chemistry is highly specific.  It also comprises of a synthetic strand (not found 

in nature), which will bind upon itself via primer dimer formation.  Thus the resulting 

product is truly that of the target of interest and is one of the major advantages of using 
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TaqMan over other chemistries such as SYBR Green. Furthermore no amplification was 

observed in the negative controls suggesting that the product is likely to be microRNA. An 

additional method of confirmation would be to send these products through sequencing.   

 

The high expression of miRNA found in the DNA extracts lead this work to the next study; 

establishing where the miRNA was being most recovered.  For comparative purposes, a 

similar experiment was prepared with the total RNA isolation kits.  It was hypothesised in 

this experiment that the majority of non-target genetic material e.g. RNA would be lost 

during the wash steps as this is the stage where sample purification occurs.  What was 

observed in the study was completely different.  The majority of miRNA was released 

during the elution step.   

 

The findings from this study could mean a number of things.  It could mean that the miRNA 

because it is so small becomes entwined with DNA during lysis/binding step.  Thus when 

samples are washed the miRNA remains intact.  There is also a competing hypothesis.  A 

significant amount of microRNA may be being lost during the wash steps. The wash steps 

contain powerful chaotropic agents e.g. Guanidine hydrochloride, which can cause PCR 

inhibition. However since microRNAs are generally high in abundance (e.g. 50,000 

copies/cell), the loss of microRNAs may still mean that there is still enough eluted during 

the wash step.  

To explore the potential of microRNA analysis within forensic casework, samples also 

underwent a blind process whereby the miRNA markers would be used to identify a body 

fluid.  At this stage only single source samples were used, as the complexity that mixtures 

can add to interpretation was not needed.  The blind process showed successful 

identification of blood and saliva samples showing the potential of using miRNA analysis 
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within forensic casework.  It is important to note that because the aim is to use this within 

forensic casework, the use of additional body fluid specific markers and identification of 

reference genes are likely to be needed. 

 

Finally to demonstrate the differentiating capabilities of miR-205 and miR-451 in saliva and 

blood, samples numbers were increased.   The results from this study showed successful 

identification of saliva using these markers.  Since the aim of this work is to develop an 

RNA analysis method for use in forensic casework, a wider range of body fluids and body 

fluid specific markers needed.  Thus the next chapter focuses on screening of such markers 

for BFID. 
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Conclusions 

In this work, the identification of body fluid using miRNA analysis was explored.  Two 

different body fluids and miRNA markers were explored to assess this test.  Also two 

different isolation kits; DNA and total RNA isolation kit were explored.  The results 

indicated successful use and application of miRNA analysis in forensic casework. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 

Developing a miRNA panel for a miRNA 

analysis 
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4.1 MicroRNA marker screening 

Body fluid specific screening forms a crucial step in developing a miRNA analysis method 

for use in forensic casework.  There are two fundamental factors that need to be addressed 

when screening miRNA markers.  First it is important to establish which miRNA markers 

are highly expressed in specific body fluid.  Second is dependent on the specificity of that 

marker.  If the miRNA marker is found to be body fluid specific or show no expression in 

other body fluids, then the test for that particular body fluid is ready.  If the miRNA marker 

shows high expression in one body fluid but also some expression in other body fluids then 

it is important to determine their body fluid differentiation capability e.g. whether additional 

markers will be needed to identify a particular body fluid.  Both factors are essential when 

establishing a new RNA-BFID test, as without specificity or differentiation capability of 

such markers it is not possible to develop a test. There are a handful of miRNA research 

groups working on miRNA BFID [230, 231, 234-236]. 

 

The majority of the research in screening miRNA markers has gone into the identification 

of blood and saliva markers e.g. Zubakov et al (2010), Courts and Madea (2011), Wang et 

al (2013) and Bai et al (2013). They utilised different chemistries e.g. TaqMan
®
 or SYBR

® 

green to identify body fluid specific miRNA markers (shown in Table 1).  Thus for the 

purpose of developing a unique or original panel for this miRNA BFID method, miRNA 

markers for blood and saliva were explored. 

 

One tissue type that has not been explored extensively in miRNA screening is skin.  The 

majority of skin related miRNAs are related to non-forensic based research e.g. cancer 

[208].  It is worth noting that identification of skin markers has been made through mRNA 
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analysis [18, 27, 184].  However since the aim in this project is to develop a miRNA 

analysis method this is not of much relevance. 

 

Two other body fluids that are of major forensic interest are vaginal material and semen.  

Vaginal material has been difficult to identify and distinguish, as its cellular material e.g. 

epithelial cells are very similar to those found in saliva.  Consequently in forensic casework 

it is difficult to differentiate vaginal material from saliva.  Hanson et al (2009) and Zubakov 

et al (2010) identified potential miRNA markers for this.  However again because different 

chemistries were used and the aim of this work is to create both a unique and highly 

discriminative panel of miRNA markers the identification of such miRNA marker was 

explored.   

 

Semen poses a different set of challenges to the other body fluids.  The majority of the 

genetic material is found encased in the sperm head, which is firmly held together by di-

sulphite bonds.  Generally, special treatment using strong agents such as DTT is needed to 

release this material.  In cases where an individual has been vasectomised or is azoospermic 

this can give identification of semen additional challenges.  Identification of semen will be 

reliant on the seminal fluid.  Thus identification of a marker present in semen was also 

explored.  Hanson et al (2009), Zubakov et al (2010) and Wang et al (2013) have identified 

potential markers but for the same reasons previously mentioned with the other body fluids, 

a semen or seminal fluid miRNA marker was explored. 

Aim 

The aim of this study was to build on the existing panel of body fluid specific miRNA 

markers from the previous chapter by identifying suitable miRNA markers for BFID. 
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Experimental design 

A total of 13 different miRNA markers were screened with 6 different body fluids (shown 

in Table 4). Five different donors were used in this study based on sample availability.  All 

body fluids underwent sample collection, DNA isolation, cDNA synthesis and qPCR.  A 

random set of RT and PCR controls were included in each study. 
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Body fluid miR marker Mature miR sequence miRBase accession ID Reference(s) 

Blood miR-451a AAACCGUUACCAUUACUGAGUU MIMAT0001631 [196, 200, 230, 235, 274-279] 

Blood miR-16 UAGCAGCACGUAAAUAUUGGCG MIMAT0000069  [230, 280-282] 

Saliva miR-205 UCCUUCAUUCCACCGGAGUCUG MIMAT0000266 [200, 230, 235, 237, 283-292] 

Saliva miR-658 GGCGGAGGGAAGUAGGUCCGUUGGU MIMAT0003336 [230] 

Skin miR-203 GUGAAAUGUUUAGGACCACUAG MIMAT0000264 [200, 208, 235, 291, 293, 294] 

Skin miR-194 UGUAACAGCAACUCCAUGUGGA MIMAT0000460 [208, 294] 

Skin miR-224 CAAGUCACUAGUGGUUCCGUU MIMAT0000281 [208, 294] 

Skin miR-335 UCAAGAGCAAUAACGAAAAAUGU MIMAT0000765 [208, 294] 

Seminal fluid miR-891a UGCAACGAACCUGAGCCACUGA MIMAT0004902 [231, 237]  

Seminal fluid miR-588 UUGGCCACAAUGGGUUAGAAC MIMAT0003255 [232] 

Vaginal material miR-617 AGACUUCCCAUUUGAAGGUGGC MIMAT0003286 [231] 

Vaginal material miR-372 AAAGUGCUGCGACAUUUGACGU MIMAT0000724 [200, 230, 287, 295, 296] 

Vaginal material miR-124a CGUGUUCACAGCGGACCUUGAU MIMAT0004591 [230, 237, 297] 

 

Table 4. Showing 13 candidate miRNA markers selected for BFID including their mature sequence, miRBase accession ID and referenc
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4.1.1 Blood 

 

 

Figure 13. Showing the expression of 13 different miRNA markers in bloodstain.  The black line at ∆Cq 5 

represents a threshold.  Values above this line were considered expression while values below this line were 

considered background amplification.  Error bars represent one standard deviation (n=5). 

 

Three potential miRNA markers were identified for blood: highly expressed miR-451 and 

miR-16 and moderately expressed miR-194 (shown in Figure 13).  Two of the three 

markers were selected for the final body fluid panel: miR-451 and miR-194 (as described 

more later in this chapter).  Marker miR-16 was not included as it showed similar levels of 

body fluid differentiation as miR-451.  No amplification in the negative controls was 

observed in this study.  Marker miR-194 was identified as a new marker for identifying 

blood.  The inclusion of miR-451 in this panel was strongly supported by other research 

groups in this field e.g. Hanson et al (2009), Courts and Madea (2011), Zubakov et al 

(2010).   
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4.1.2 Saliva swabs 

  

 

Figure 14. Showing the specificity of 13 different miRNA markers in saliva swabs. The black line at ∆Cq 5 

represents a threshold.  Values above this line are considered expression while values below this line are 

considered background amplification.  Error bars represent one standard deviation (n=5). 

 

A combination of two or more markers is needed to identify saliva swabs (shown in Figure 

14).  One potential saliva swab marker that could be included in this panel is miR-205 (as 

described more later in this chapter).  Marker miR-205 showed a high level of expression in 

saliva swabs when compared to the miRNA markers below the set threshold of ∆Cq 5 

(shown in Figure 14).  The identification of one potential marker, miR-205 was strongly 

supported by the work of Hanson et al (2009), Courts and Madea (2011).    
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4.1.3 Saliva deposits 

 

 

Figure 15. Showing the specificity of 13 different miRNA markers in saliva deposits. The black line at ∆Cq 5 

represents a threshold.  Values above this line are considered expression while values below this line are 

considered background amplification.  Error bars represent one standard deviation (n=5).  

 

A combination of two or more markers is also needed to identify saliva deposits (shown in 

Figure 15).  The same marker selected for the identification of saliva swabs, miR-205 could 

also be used to establish the presence of saliva (as described more later in this chapter).  

Additional markers could then be used to differentiate between other body fluids. The 

identification of miR-205 as one of the potential markers was supported by the work of 

Hanson et al (2009) and Courts and Madea (2011).   
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4.1.4 Skin 

 

 

Figure 16. Showing the specificity of 13 different miRNA markers in skin. The black line at ∆Cq 5 represents 

a threshold.  Values above this line are considered expression while values below this line are considered 

background amplification.  Error bars represent one standard deviation (n=5). 

 

A miRNA marker was not identified for skin (shown in Figure 16).  High expression was 

seen in one of the five of the potential skin markers tested; miR-203.  However its high 

expression seen in saliva swabs, saliva deposits and blood did not make it suited identifying 

skin.  Candidate skin markers from this study were eliminated (as described more later in 

this chapter).  This research was the first efforts made to identify a skin miRNA marker for 

forensic BFID.   
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4.1.5 Semen 

 

 

Figure 17. Showing the specificity of 13 different miRNA markers in semen.  The black line at ∆Cq 5 

represents a threshold.  Values above this line are considered expression while values below this line are 

considered background amplification.  Error bars represent one standard deviation (n=5). 

 

Marker miR-891a was identified as a potential marker for identifying semen (shown in 

Figure 17).  Marker miR-891a showed significantly high levels of expression when 

compared to the markers below the set threshold of ∆Cq 5.  A single miRNA marker was 

identified for semen (as described more later in this chapter).  The use of miR-891a as a 

potential semen marker was supported by Zubakov et al (2010) and Wang et al (2013). 
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4.1.6 Vaginal material 

 

 

  

Figure 18. Showing the specificity of 13 different miRNA markers in vaginal material. The black line at ∆Cq 

5 represents a threshold.  Values above this line are considered expression while values below this line are 

considered background amplification.  Error bars represent one standard deviation (n=5). 

 

A combination of two markers was identified for vaginal material  (shown in Figure 18).  

Markers miR-224 and miR-335 showed high levels of expression when compared to the 

markers below the set threshold of ∆Cq 5.  Markers miR-224 and miR-335 were selected 

for the final miRNA panel (as described more later in this chapter).  No other miRNA based 

research groups have combined miR-224 and miR-335 as vaginal material markers (shown 

in Table 1).   
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4.1.7 miR-451 

 

 

Figure 19. Showing the specificity of miR-451 across 6 different body fluids The black line at ∆Cq 5 

represents a threshold.  Values above this line are considered expression while values below this line are 

considered background amplification.  Error bars represent one standard deviation (n=5). 

 

Marker miR-451 was the first of two markers selected from this study to identify blood 

(shown in Figure 19).  Marker miR-451 showed higher expression in blood than in any of 

the body fluids tested.  However its expression in all the other body fluids were above the 

set threshold, and as such a second blood marker was included. 

  



120 

 

4.1.8 miR-194 

 

 

Figure 20. Showing the specificity of miR-194 across 6 different body fluids The black line at ∆Cq 5 

represents a threshold.  Values above this line are considered expression while values below this line are 

considered background amplification.  Error bars represent one standard deviation (n=5). 

 

Marker miR-194 was the second of two markers selected to identify blood (shown in Figure 

20).  It showed moderate levels of expression in blood.  Its expression in the majority of the 

other body fluids was below the set threshold.  Marker miR-194 could differentiate blood 

from saliva swabs, deposits and skin.  Also depending on sample variability, miR-194 could 

differentiate vaginal material and semen.  A discriminative pair of blood markers: miR-451 

and miR-194 was identified.  A new blood marker was identified in this work, miR-194. 

Zubakov et al (2010), Courts and Madea (2011) and Wang et al (2013) support this work 

for using miR-451 as a blood marker. 
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4.1.9 miR-205  

 

 

Figure 21. Showing the specificity of miR-205 across 6 different body fluids The black line at ∆Cq 5 

represents a threshold.  Values above this line are considered expression while values below this line are 

considered background amplification.  Error bars represent one standard deviation (n=5). 

 

One potential marker was identified for saliva (shown in Figure 21).  Marker miR-205 

could be used to indicate the presence of saliva.  It could also be used to potentially 

differentiate saliva swabs and saliva deposits from vaginal material.  However additional 

markers will be required to differentiate saliva swabs from saliva deposits and skin.  Marker 

miR-205 was identified as a potential marker for identifying saliva swabs and saliva 

deposits.  Zubakov et al (2010), Courts and Madea (2011) and Wang (2013) support this 

work for using miR-205 as a saliva marker.  Additional markers will need to be selected to 

differentiate saliva swabs from saliva deposits and skin. 
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4.1.10 miR-224 

 

 

Figure 22. Showing the specificity of miR-224 across 6 different body fluids The black line at ∆Cq 5 

represents a threshold.  Values above this line are considered expression while values below this line are 

considered background amplification.  Error bars represent one standard deviation (n=5). 

 

Marker miR-224 was one of two markers selected to identify vaginal material (shown in 

Figure 22).  It showed high levels of expression in vaginal material.  Marker miR-224 could 

be used to differentiate vaginal material from blood, saliva deposits, skin and semen.  Since 

miR-224 did show expression in saliva swabs, a second miRNA marker for vaginal material 

was selected. 
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4.1.11 miR-335 

 

 

Figure 23. Showing the specificity of miR-335 across 6 different body fluids The black line at ∆Cq 5 

represents a threshold.  Values above this line are considered expression while values below this line are 

considered background amplification.  Error bars represent one standard deviation (n=5). 

 

Marker miR-335 was the second of two markers selected from this study to identify vaginal 

material (shown in Figure 23).  It showed moderate levels of expression in vaginal material.  

It could be used to differentiate vaginal material from saliva swabs, saliva deposits and skin.  

Also depending on variability in samples, it could be used to potentially differentiate 

vaginal material from blood and semen.  A discriminative pair of vaginal material markers: 

miR-335 with miR-224 was identified.  Both miR-335 and miR-224 were identified as new 

markers for vaginal material.   
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4.1.12 miR-891a 

 

 

Figure 24. Showing the specificity of miR-891a across 6 different body fluids The black line at ∆Cq 5 

represents a threshold.  Values above this line are considered expression while values below this line are 

considered background amplification.  Error bars represent one standard deviation (n=5). 

 

MicroRNA marker, miR-891a was identified as a semen specific marker (shown in Figure 

24).  It showed moderate levels of expression in semen and could be used to differentiate 

semen from blood, saliva swabs, saliva deposits, skin and vaginal material.  A semen 

specific marker was identified for miRNA analysis.  Zubakov et al (2010) and Wang et al 

(2013) support this work for using miR-891a to differentiate from the body fluids tested. 
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 Blood Saliva swabs Saliva deposits Skin Semen Vaginal material 

miR-451 18.01 7.33 9.85 10.14 8.24 9.53 

miR-194 8.42 0.63 1.97 0.18 3.50 3.23 

miR-205 6.48 9.11 7.64 7.74 6.39 12.79 

miR-224 0.37 6.95 2.28 0.04 2.85 13.83 

miR-335 4.10 1.17 0.26 0.00 3.16 7.06 

miR-891a 0.00 0.00 0.66 0.00 8.80 1.32 
 

 

Table 5. Showing the panel of miRNA markers. The average ∆Cq values were shown in all of the boxes.  Green boxes indicate identification of a body fluid.  Yellow 

boxes indicate the average ∆Cq values above the set threshold of ∆Cq 5.  Red boxes indicate ∆Cq values below the set threshold of ∆Cq 5. 
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Discussion 

The aim of this work was to develop a highly discriminative panel of miRNA markers for 

miRNA analysis using six commonly encountered body fluids and tissues in forensic 

casework: blood, saliva swabs, saliva deposits, skin, semen and vaginal material.   

 

A total of 13 different miRNA markers were selected for the screen: miR-451 and miR-16 

(blood); miR-205 and miR-658 (saliva swabs and saliva deposits); miR-124a, miR-372 and 

miR-617 (vaginal material); miR-891a and miR-588 (semen); and miR-194, miR-203, miR-

224 and miR-335 (skin).   

 

Of the 13 miRNA markers tested, six were identified as body fluid specific, either 

singularly or using a combination of two markers: miR-451 and miR-194 (blood); miR-205 

(saliva); miR-224 and miR-335 (vaginal material); and miR-891 (semen) (shown in Table 

5).  No markers were identified for skin. 

 

The remaining seven miRNA markers were eliminated on the basis of: lack of specificity 

(e.g. miR-203), commonality in expression patterns (e.g. miR-16 exhibited similar levels of 

expression as miR-451) or low expression (e.g. miR-658, miR-124a, miR-372, miR-617 and 

miR-588). 

 

The differentiation capabilities of each marker or marker set were as follows: a combination 

of markers, miR-451 and miR-194 were able to differentiate blood from the other five body 

fluids types tested.  One potential marker was identified for differentiating saliva from 

vaginal material.  However it was determined that additional markers would be needed to 
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differentiate saliva swabs from saliva deposits, skin and seminal fluid.  A combination of 

markers, miR-224 and miR-335 were able to differentiate vaginal material from the other 

five body fluid types tested.  A single marker, miR-891a was identified for differentiating 

semen from the other five body fluid types tested (shown in Table 5). 

 

The following miRNA markers were novel in this study: miR-194, originally selected for 

skin, was found to be blood-specific in this study.  None of the other research groups in this 

area e.g. Hanson et al (2009), Zubakov et al (2010), Courts and Madea (2011), Wang et al 

(2013) and Bai et al (2013) have used miR-194 to identify blood.  A combination of 

markers was used to identify and differentiate blood.  Marker miR-451 showed high 

expression in blood, however it also showed expression in all of the other body fluids 

tested.  Consequently if this test was to be applied to casework samples this would be 

problematic and the level of expression of miR-451 in blood may be proportional to the 

expression found in the other body fluids.  As such, a second marker was included for the 

identification and differentiation of blood.  Zubakov et al (2010) and Courts and Madea 

(2011) also support the use of a second marker.  The selection of a second marker was 

based on the expression levels of all the markers in the other body fluids.  It was initially 

thought that miR-16 might be a suitable second marker for blood.  However upon closer 

study at the expression of miR-16 in all the other body fluids, it exhibited similar expression 

levels as miR-451.   

 

Therefore it was felt that two markers showing the similar result would be redundant and 

not sufficient for further differentiation. Furthermore its relatively high expression in all of 

the other body fluids, except in skin made it potentially not suited for differentiation.  

Interestingly on a side note the low expression of miR-16 in skin in comparison to all of the 
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other body fluids could be useful for identifying skin.  However additional markers for 

identifying skin would also be needed in case it was found to be exhibited in other body 

fluids such as sweat or urine.   

 

The second marker selected for identification and differentiation of blood was miR-194.  

Initially this had been selected as a potential skin specific marker.  However its low 

expression in skin made it unsuitable as a skin miRNA marker.  Figure 20 shows the 

expression of miR-194 in all of the body fluids.  It showed moderate levels of expression 

but lower levels of expression in all of the other body fluids.  It is worth noting that a high 

variation was observed in miR-194 in both vaginal material and semen, possibly due to the 

lack of prior sample normalisation. So caution may need to be taken in interpretation.  

Nevertheless the combination of miR-451 and miR-194 made a discriminative pair for the 

differentiating blood from all of the other body fluids tested.  When comparing the 

expression of miR-451 and miR-194 by body fluid is worth noting that although miR-451 

exhibited relatively high expression in all samples, miR-194 showed expression above the 

set threshold in blood.  

  

Identification of saliva swabs and saliva deposits and skin was particularly challenging and 

is currently still a work in progress.  One potential marker was selected from this screen, 

miR-205.  This was because it had been previously shown to be sufficient for differentiating 

saliva swabs from blood.  Zubakov et al (2010), Courts and Madea (2011) and Wang et al 

(2013) support this finding of using miR-205 as one marker and support the use of 

additional markers for identifying saliva.  In their work they had identified two other 

candidate markers, one of which was part of our panel e.g. miR-203.  However since miR-

203 exhibited similar levels of differentiation as miR-205 it was eliminated from the panel.  
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Thus it can be concluded that more studies need to be made to identify and distinguish 

between saliva swabs, saliva deposits and skin.    

 

A combination of two different markers was identified for differentiating vaginal material 

from all other body fluids tested.  Marker miR-224 showed high expression in vaginal 

material and low expression in all other body fluids types except saliva swabs.  Saliva 

swabs showed lower expression than vaginal material however it crossed the set threshold, 

thus a second miRNA marker was included. The second marker selected, miR-335 showed 

moderate levels of expression (similar to miR-194), however it showed lower expression in 

all of the other body fluids e.g. values did not cross the set threshold.  Again if the 

expression of miR-224 and miR-335 are observed by body fluid it was seen that miR-335 

only crosses the threshold in vaginal material.  Marker miR-224 showed high expression in 

vaginal material and moderate levels of expression in saliva swabs but in no other body 

fluids.  However the differentiation of vaginal material and saliva swabs can be determined 

by averaging the two expression levels.  In other words the average expression level of 

miR-224 and miR-335 will cross the set threshold in vaginal material but will not cross the 

threshold in saliva swabs (shown in Figure 14 and 18).  Two new vaginal material markers 

originally selected for skin were identified in this study. Also briefly worth mentioning, 

miR-617, which was also a candidate marker for vaginal material, however it was 

eliminated on the basis that it did not cross the set threshold. 

 

The final marker that formed part of the panel was miR-891a. It was the one marker that 

was found to be semen specific or in other words no expression was seen in any of the other 

markers.  Both Zubakov et al (2010) and Wang et al (2013) supported this finding.  An 

additional marker was explored for seminal fluid; miR-588.  However minimal expression 
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was seen in semen and all of the other body fluids and was eliminated from this panel.  

Weber et al (2010) support this finding to a degree as it was identified as a highly expressed 

and specific seminal fluid marker.  However it appeared that it was eliminated in the final 

panel of markers based on its ability to discriminate from other body fluids.  The difference 

in expression observed by Weber et al (2010) and this study may be down to a couple of 

factors.  One is the chemistry that was used, Weber et al (2010) used SYBR green based 

chemistry to identify their panel of body fluid specific miRNA markers.  Another factor is 

sample; Weber et al (2010) used seminal fluid where as in this study semen was used.  It 

may be that the ratio of miR-588 when compared to miR-891a is lower in semen than in 

seminal fluid.   

 

An additional factor to consider in this study was sample variation.  There was high degree 

of both inter and intra-variability seen in the miR-224 and miR-335 expression in vaginal 

material and miR-891a expression in semen.  There are a number of possible explanations 

for the high variability in these results.  Sample normalisation was performed according to 

volume rather than concentration.  This approach was taken to more closely simulate 

casework samples.  However it may have resulted in more variation between the samples.  

Environmental factors may also have contributed to the variation observed across the 

samples.  For instance varying levels of bacterial contamination may have been present due 

to the sampling regions, resulting in different levels of miRNA expression in the body 

fluids.  The high variation seen may have also been down to individual variation.  In other 

words, the expression of miR-224, miR-335 and miR-891a may naturally vary between 

different individuals in vaginal material and semen respectively.  
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Furthermore it is important to add that although a panel of discriminative miRNA markers 

were identified for miRNA analysis, the criteria for the markers to be used in forensic 

casework will need to be adapted.  For instance it is apparent that though the set threshold is 

suited for abundant samples it will most likely need to be adapted e.g. lowered for casework 

samples.  Also with the high variability observed in casework samples (e.g. sample quality 

and quantity), reference gene will with no doubt be needed.    It is however paramount to 

first establish a panel of miRNA markers within abundant samples before proceeding onto 

this next step. 

 

Another approach that could be used to help identify miRNA markers may be to begin 

categorizing miRNA markers according to functional roles.  For instance, highly expressed 

marker miR-451 for blood was also expressed in the other body fluids tested.  This may 

suggest that miR-451 has a common functional role within these body fluids.  Similarly 

could be said for miR-224 for vaginal material that was highly expressed in vaginal material 

but was expressed lower in the other body fluids (still above the set threshold). 

 

Conclusions 

A discriminative panel of miRNA markers was identified for miRNA analysis was 

identified for blood (miR-451 and miR-194), saliva swabs and saliva deposits (miR-205), 

vaginal material (miR-224 and miR-335) and semen (miR-891a) for use in forensic 

casework.  



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5  

The applications of miRNA analysis 

 

Establishing the strengths and limitations of a miRNA BFID test is very important as with the 

development and improvement of any test.  There are several key questions that need to be 

addressed. Firstly is this miR BFID test sensitive, specific and stable enough to correctly 

identify a body fluid? Secondly is this test comparable, stronger or weaker to current 

methodologies in use? Lastly is it possible to determine the components of a mixture especially 

as body fluids are often found in this form?  
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5.1 Sensitivity of miRNA analysis with enzymatic tests 

Establishing the sensitivity of a test is very important.  It gives an indication of the strengths 

and limitations of a test in context with existing methodologies.  It also gives the forensic 

practitioner an indication of the best test to apply to a casework sample e.g. presumptive vs. 

confirmative tests. 

 

It is also a requirement under quality procedures to establish the limit of detection. The 

technical and legal requirements (e.g. ISO17025 the international standard of lab accreditation) 

associated with introducing a new method must be met in order for it to be incorporated into a 

forensic laboratory [42].  

 

Sensitivity is often described as the point which a target e.g. miRNA marker can no longer be 

detected or the limit of detection (LOD) [247].  Sensitivity is also described as the point at 

which a target (e.g. miRNA marker) is detected but falls below the range of size standards or 

the limit of quantification (LOQ).  Since samples in this work were quantified by relative 

quantification (RQ) rather than absolute quantification (AQ), markers in this study were 

assessed by LOD. 

  

In forensic casework, it is common practice to test samples with presumptive methods before 

proceeding with confirmatory techniques.  Presumptive tests play an important role in forensic 

casework.  They allow forensic practitioners and police to decide which confirmative tests to 

perform within a limited budget and time frame.   
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One of the main limitations of presumptive tests used in forensic casework is their sensitivity.  

A wide range of sensitivities have been reported for both presumptive blood tests: Kastle-

Meyer (KM), Leucomalachite Green (LMG) and presumptive saliva tests: Phadebas [38, 39, 

41, 42, 57, 59-62].  An equally or more sensitive BFID test would be advantageous in forensic 

casework. 

 

Despite the rapid efforts shown by many mRNA (e.g. Juusola et al 2003, Alvarez et al 2004, 

Fleming et al (2010), EDNAP collaborative exercises 1-5 (2011-2014)) and miRNA (e.g. 

Hanson et al (2009), Zubakov et al (2010), Haas et al (2011), Wang et al (2013) and Li et al 

(2014)) research groups to incorporate RNA BFID analysis into current forensic casework, it 

appears only one study has compared the sensitivity of RNA analysis (e.g. mRNA analysis with 

presumptive tests) [168]. 

 

Furthermore none of these miRNA research groups have assessed the sensitivity of miR-451, 

miR-205 in miRNA analysis or assessed the sensitivity of reference genes.  The lack of such 

studies is surprising as reference genes are one of the main methods used for assessing the 

relative expression levels of different miRNAs and mRNAs.   

 

Aim 

Thus there were two main aims in this work.  The first aim was to assess the sensitivity of 

miRNA analysis with three presumptive tests: Kastle-Meyer (KM)), Leucomalachite Green 

(LMG) and Phadebas.  Both the KM and LMG tested were selected on the basis that they are 

used internationally in by forensic practitioners and police forces [42, 298, 299]. The Phadebas 
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test was also selected for similar reasons.  The second was to assess the sensitivity of miRNA 

analysis using markers miR-451, miR-205 and RNU44 (shown in Table 6). 

 

Experimental design 

There were two different experiments performed in this section.  The first experiment assessed 

the sensitivity range of the KM, LMG and Phadebas tests.   Dried bloodstains were used for the 

KM and LMG tests while saliva deposits were used for the Phadebas test.  A 10-fold serial 

dilution was performed on both sample types.  Samples then underwent KM, LMG and 

Phadebas testing.  

 

The second experiment assessed the sensitivity range of miR-451 and miR-205 in blood and 

saliva deposits.  The sensitivity range of RNU44 was also assessed in both body fluids as no 

previous research had been performed.  A 10-fold serial dilution was performed on both sample 

types.  Samples then underwent DNA isolation, cDNA synthesis and qPCR.  

 

During the course of both studies a total of 5 different blood and saliva donors were used.  Both 

positive controls (e.g. undiluted blood and saliva samples) and negative controls (e.g. blank 

filter paper, RT and PCR controls) were also included. 
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Reference gene Sequence NCBI Accession no. References 

RNU44 CCU GGA UGA UGA UAG CAA AUG CUG ACU GAA CAU 

GAA GGU CUU AAU UAG CUC UAA CUG ACU 

NR_002750 [231, 233, 235] 

 

Table 6. Showing the reference gene selected for BFID including its sequence, NCBI accession number and reference.
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5.1.1 Kastle-Meyer, Leucomalachite Green and Phadebas tests 

Both the Kastle-Meyer (KM), Leucomalachite Green (LMG) tests showed a sensitivity range 

between 1 in 100 – 1 in 10,000 dilutions in bloodstains (shown in Table 7).  A similar range 

was also observed for the Phadebas
® 

(PAT) test in saliva deposits.  All positive and negative 

controls performed as expected.  Cox et al (1991), Grodsky et al (1951), Webb et al (2006), 

Tobe et al (2007) and Johnston et al (2008) support this sensitivity range observed for blood.  

Willot (1980), Kipps and Whitehead (1975), Auvdel (1986), Keating and Higgs (1994), 

Hedman et al (2011) support this sensitivity range observed for saliva deposits. 
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 Neat 1 in 10 1 in 100 1 in 1,000 1 in 10,000 1 in 100,000 1 in 1,000,000 

KM +(5) +(5) +(5) +(3) -(0) -(0) -(0) 

LMG +(5) +(5) +(5) +(3) -(0)  -(0) -(0) 

PAT +(5) +(5) +(5) +(2) -(0) -(0) -(0) 

 
Table 7. Showing the sensitivity of KM, LMG and Phadebas

® 
(PAT) when tested on neat, 1 in 10, 1 in 100, 1 in 10,000, 1 in 100,000 and 1 in 1,000,000 dried bloodstains or 

saliva deposits respectively.  Positive reactions were indicated with a plus sign (+), while no reaction was indicated with a minus sign (-).  Parentheses containing numeric 

values indicate the total number of positive reactions (n=5). 
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5.1.2 miRNA analysis on blood 

 

 
 

Figure 25. Showing the sensitivity of miR-451 in blood when normalised with reference gene RNU44.  Blood was 

diluted 1 in 10, 1 in 100, 1 in 1,000, 1 in 10,000 and 1 in 100,000 and 1 in 1,000,000.  Marker miR-205 was 

included to assess performance of the test.  Error bars represent one standard deviation (n=3). 

 

The sensitivity range of miR-451 and miR-205 in blood when normalised with RNU44 was 

between neat and 1 in 10 dilutions (shown in Figure 25).  The sensitivity range for miR-451 

was surprising, as it had previously exhibited high levels of expression within blood.  It was 

hypothesised that the expression in RNU44 was affecting the expression level in miR-451.  No 

amplification was observed in the negative controls in the sensitivity studies with blood and 

saliva deposits. 
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Figure 26. Showing the sensitivity of miR-451 in blood when presented on its own.  Blood was diluted 1 in 10, 1 

in 100, 1 in 1,000, 1 in 10,000, 1 in 100,000 and 1 in 1,000,000.  Marker miR-205 was included to assess the 

performance of the test.  Error bars represent one standard deviation (n=3). 

 

To test this hypothesis, miR-451 and miR-205 were presented without the reference gene 

(shown in Figure 26).  Marker miR-451 showed moderate expression in neat blood.  It also 

showed expression in all of the dilutions.  Marker miR-451 showed a lower sensitivity range 

between 1 in 100 and 1 in 1,000 (P<0.05).  Thus supporting the hypothesis that RNU44 had 

affected the results. 

 

The sensitivity range of miR-451 was determined in this study to be between 1 in 100 and 1 in 

1,000 dilutions.  Thus indicating that a different blood marker may be needed for more diluted 

blood.   No other research groups have explored the sensitivity of miR-451.  
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Figure 27. Showing the sensitivity of RNU44 in blood when presented on its own.  Blood was diluted 1 in 10, 1 in 

100, 1 in 1,000, 1 in 10,000 and 1 in 100,000 and 1 in 1,000,000.  Error bars in this study represent one standard 

deviation (n=3).  

 

RNU44 was also present on its own (shown in Figure 27).  RNU44 showed low expression in 

neat blood.  RNU44 showed a higher sensitivity range between neat and 1 in 10 (P<0.05).  

Thus supporting the hypothesis that RNU44 had affected the sensitivity range of miR-451. 

 

RNU44 was a suitable reference gene for neat blood samples and was supported by Zubakov et 

al (2010) and Wang et al (2012).  However this study demonstrates the need for a different 

reference gene for diluted blood.  No other research groups have explored the sensitivity of 

RNU44 in blood. 
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5.1.3 miRNA analysis on saliva deposits 

 

 

Figure 28. Showing the sensitivity of miR-205 in saliva deposits when normalised with reference gene RNU44.  

Saliva deposits were diluted 1 in 10, 1 in 100, 1 in 1,000, 1 in 10,000 and 1 in 100,000.  Marker miR-451 was 

included to assess the performance of the test.  Error bars represent one standard deviation (n=3). 

 

A similar sensitivity study was performed using saliva deposits (shown in Figure 28).  The 

sensitivity range of miR-205 was between 1 in 100 and 1 in 1,000 (P<0.05).  It was 

hypothesised that RNU44 had affected the sensitivity of miR-205 and miR-451 based on the 

expression levels seen between the neat and diluted saliva samples.  
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Figure 29. Showing the sensitivity of miR-205 in saliva deposits when presented on its own. Saliva deposits were 

diluted 1 in 10, 1 in 100, 1 in 1,000, 1 in 10,000 and 1 in 100,000.  Error bars represent one standard deviation 

(n=3). 

 

To test this hypothesis, miR-205 and miR-451 was presented on its own (shown in Figure 29).  

Marker miR-205 showed high expression in neat saliva deposits.  It also showed expression in 

all of the dilutions.  The sensitivity range of miR-205 was the same as in the previous figure; 

and could no longer be distinguished after 1 in 1,000 dilutions (P>0.05).   

 

The sensitivity range of miR-205 was determined in this study to be between 1 in 100 and 1 in 

1,000 dilutions.  Thus indicating that a different saliva deposit marker may be needed for more 

diluted saliva.   No other research groups have explored the sensitivity of miR-205. 
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Figure 30. Showing the sensitivity of RNU44 in saliva deposits when presented on its own.  Saliva deposits were 

diluted 1 in 10, 1 in 100, 1 in 1,000, 1 in 10,000 and 1 in 100,000.  Error bars represent one standard deviation 

(n=3). 

 

RNU44 was also presented on its own (shown in Figure 30).  RNU44 showed high expression 

in the neat saliva deposits.  The sensitivity range of RNU44 was between 1 in 10 and 1 in 100, 

which was 10-fold higher than miR-205. 

 

RNU44 was a suitable reference gene for neat saliva deposits and was supported by Zubakov et 

al (2010) and Wang et al (2013).  However this study demonstrates the need for a different 

reference gene for diluted saliva deposits. No other research groups have explored the 

sensitivity of RNU44 in saliva deposits. 
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Discussion 

There were two aims in this section.  The first was to assess the sensitivity of miRNA analysis 

with three presumptive tests: KM, LMG and Phadebas test.  The second was to assess the 

sensitivity of individual markers miR-451, mir-205 and RNU44 in blood and saliva deposits.   

 

In the presumptive studies the overall sensitivity range for the KM, LMG and Phadebas tests 

were similar to sensitivity ranges reported for blood by Cox et al (1991), Grodsky et al (1951), 

Webb et al (2006), Tobe et al (2007) and Johnston et al (2008) supported this sensitivity range 

for blood between 1 in 100 and 1 in 10,000.  Similarly the sensitivity ranges reported for saliva 

by Willot (1980), Kipps and Whitehead (1975), Auvdel (1986), Keating and Higgs (1994), 

Hedman et al (2011); support the range in saliva.  This range was expected in these tests as 

different preparation methods (e.g. dry vs. wet samples), protocols and tests (e.g. purchasing a 

test vs. making a test in the lab) were used. 

 

In the miRNA analysis studies the sensitivity of the body fluid specific markers was more 

sensitive than the reference genes.  The sensitivity range of miR-451 in blood and miR-205 in 

saliva deposits was between 1 in 100 and 1 in 1,000.  The sensitivity range of RNU44 in blood 

was between neat and 1 in 10 while the sensitivity range of RNU44 in saliva deposits was 

between 1 in 10 and 1 in 100.   

 

In this study miRNA analysis was less sensitive than presumptive tests: Kastle-Meyer, 

Leucomalachite Green and Phadebas.  This was surprising as it was thought that a confirmatory 

method would be more sensitive than presumptive tests.   
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The sensitivity range for miR-451, miR-205 and RNU44 may be down to a few factors.  It may 

be an indication of the sensitivity of the TaqMan chemistry.  Markers miR-451, miR-205 and 

RNU44 were selected on the basis of high expression in abundant blood and saliva samples. A 

high expression level in this work was considered to be in the range of ∆Cq 11 and above.  The   

average expression levels in miR-451 in blood and miR-205 in saliva were very similar.  

Markers miR-451 and miR-205 with the TaqMan chemistry gave an average ∆Cq of 11.5 in 

neat blood and neat saliva deposits respectively.  The sensitivity range of miR-451 in blood and 

miR-205 in saliva deposits was between 1 in 100 and 1 in 1,000.  It is not unreasonable to see 

that the detection limit of the TaqMan chemistry was within that range given the expression 

levels. Similarly, RNU44 with the TaqMan chemistry gave an average ∆Cq 3.75 in neat blood 

and ∆Cq 9.8 in neat saliva.  Thus explaining why the sensitivity range of RNU44 in saliva 

deposits was lower (1 in 10 - 1 in 100) than in blood (neat - 1 in 10).  These findings were 

supported by Zubakov et al (2010) who found similar levels of sensitivity using two different 

TaqMan blood markers.   

 

Another factor that may have affected the sensitivity range was the samples.  Bloodstains and 

saliva deposits were used, as they were similar to the sample types that may be encountered at 

crime scene.  Samples were also not normalised before cDNA synthesis to also mimic the 

variation that may occur when receiving crime scene samples.  However this lack of 

normalisation may have affected the overall sensitivity of this test.  It is worth noting however 

that Zubakov et al (2010) found similar levels of sensitivity in their studies even with 

normalisation.  So perhaps this may have been down more to the TaqMan chemistry.   

 

It would be interesting to assess the sensitivity of miRNA analysis using SYBR
®

 green 

chemistry to see whether the sensitivity range in miR-451 and miR-205 would be similar, lower 
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or higher than the TaqMan
®
 chemistry.  Both Courts and Madea (2011) and Hanson et al 

(2009) have successfully identified a strong panel of miRNA markers using this chemistry.  

However as previously mentioned, neither of these groups has looked into the sensitivity of 

their chosen markers.   

 

It is also clear that the use of miR-451, miR-205 and RNU44 is sufficient for comparing neat 

blood and saliva deposits.  However the use of such markers and reference genes will need to 

be adapted if they are to be used in forensic casework.  The use of perhaps additional markers 

or different markers may be needed where limited sample is available. 

 

Conclusions 

In this study, miRNA analysis was determined to be less sensitive than the KM, LMG and 

Phadebas tests.  The use of miR-451, miR-205 and RNU44 was sufficient for differentiating 

neat blood and neat saliva deposits.  However when applied in context of forensic casework, 

where samples are often low in quantity and quality, it was determined that additional or 

different blood and saliva markers would be needed.   

 

Also found equally important was the expression of the reference gene.  The expression of 

RNU44 was sufficient in neat saliva deposits where as it showed significantly lower sensitivity 

in neat blood, affecting the overall sensitivity of the results.  The need for a good reference 

gene was further emphasized by the variability observed in casework samples.   It is 

particularly important that the reference gene shows similar expression levels to the body fluid 

specific miRNA markers, if a body fluid is to be identified.     
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5.2 Specificity of miRNA and mRNA analysis 

Species specificity is another important factor to establish.  There are times in forensic 

casework where body fluids from human and animals are present.  Many cases include but are 

not limited to animal cruelty and abuse e.g. bestiality, dog-fighting rings and neglect.  In other 

cases, the presence of body fluids from animals may be subtle e.g. domestic animals or 

livestock.  Body fluids from animals may also be present in the home if animal meat has been 

prepared.  Thus it is important to establish whether or not the blood at a crime scene is human 

or not, particularly if the incident took place in a kitchen where animal meat has been prepared.    

 

RNA analysis methods (e.g. miRNA or mRNA) may offer different levels of specificity. 

MicroRNA analysis uses short transcripts (18 to 25 nt) where as mRNA analysis uses longer 

transcripts (1500 to 2000 nt).  The differences in sequence length alone can mean that total 

number of possibilities for a single miRNA targeting a single or multiple mRNAs is increased.  

Conversely the longer lengths of mRNA may mean that it is more specific.  In addition a 

number of mRNA have exhibited high tissue specificity in humans where as miRNA have not.   

 

Although a few studies on mRNA and miRNA specificity have been explored, none have 

compared miRNA analysis with mRNA analysis [153, 173, 175, 177, 231, 300, 301].  None of 

the research groups who have identified RNU44 as a suitable reference gene in humans have 

assessed its specificity amongst other species [231, 234, 235].  Also no miRNA research groups 

have explored the species specificity of miR-451 within a casework context e.g. expression of 

animal blood from animal meat. 
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Aim 

Therefore there were three aims in this study: to compare the specificity of miRNA analysis 

with mRNA analysis, explore the specificity of miR-451 in bloodstains within a casework 

context and to explore the specificity of RNU44. 

 

Experiment 

Bloodstains were the focus of this work as it was the easiest to obtain.  Bloodstains from: 

Gallus gallus (chicken), Bos primigenious (cow), Cervidae (deer), Culpea pallassi (herring), 

Phasianinae (pheasant) and Sus scrofa (pig) were purchased from a butcher.  Blood samples 

were dried onto filter paper before undergoing DNA isolation, cDNA synthesis and qPCR.  

MicroRNA analysis was performed using miR-451 and RNU44 while mRNA analysis was 

performed using HBB and GAPDH. During the course of this study, a total of 14 different 

animal blood samples.  Positive (e.g. human) and negative controls were also included. 
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5.2.1 Specificity of mRNA analysis 

 

 

Figure 31. Showing the expression of HBB in chicken, cow, deer, herring, human, pheasant and pig when 

normalised with GAPDH.  Error bars represent one standard deviation (n=3). 

 

In the mRNA species specificity study, HBB showed high levels of expression when 

normalised with GAPDH (shown Figure 31).  HBB showed no expression in the other body 

fluids.  Haas et al (2011 and 2012) support the species specificity of HBB in blood.   In this 

study, no amplification was seen in the negative controls.  Also, the expression of GAPDH and 

HBB were presented individually to assess their specificity towards the 7 different species. 
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Figure 32.  Showing the expression of GAPDH in in chicken, cow, deer, herring, human, pheasant and pig when 

presented on its own.  Error bars represent one standard deviation (n=3). 

 

GAPDH presented on its own showed expression in all animals except chicken (Figure 32).  

The highest levels of expression were seen in pig and human and gave shigher levels of 

expression in these animals than in the other animals tested (P<0.05).  

 

In this work, GAPDH did not show species specificity in the 7 different animal blood tested.  

However GAPDH did exhibit high levels of expression in pig and human.  Juusola et al (2003), 

Wang et al (2012), NCBI (2010) using GAPDH as a human reference gene supports this 

finding. 
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Figure 33. Showing the expression of HBB in chicken, cow, deer, herring, human, pheasant and pig when 

presented on its own.  Error bars represent 1 standard deviation (n=3).   

  

HBB presented on its own showed human specificity in blood (shown in Figure 33).  Haas et al 

(2011 and 2012) support human specificity of HBB in blood.  This finding also supports the 

theory that mRNA is more specific than miRNA. 
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5.2.2 Specificity of miRNA analysis 

 

 

Figure 34. Showing the expression of miR-451 across in chicken, cow, deer, herring, human, pheasant and pig 

when normalised with RNU44.  Error bars represent one standard deviation (n=3). 

 

In the miRNA species specificity study, miR-451 showed the highest expression in deer and 

herring when normalised with RNU44 (shown in Figure 34).  Moderate levels of miR-451 

expression were seen in all other species.  No amplification was observed in the negative 

controls.  

 

Surprisingly, human gave one of the lowest levels of miR-451 expression in this study. To 

better understand the behaviour of the markers, the expression of miR-451 and RNU44 were 

presented separately. 
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Figure 35. Showing the expression of miR-451 in in chicken, cow, deer, herring, human, pheasant and pig when 

presented on its own.  Error bars represent one standard deviation (n=3).   

 

When miR-451 was presented on its own the results appear much clearer (shown in Figure 35).  

The results were very similar to the normalised results shown previously.  Deer gave the 

highest expression of miR-451.  However human gave the second highest expression of miR-

451.   Moderate levels of miR-451 expression were seen in all other species tested.  

 

In this study miR-451 was found expressed in all of the species tested suggesting it was not 

species specific.  A study by Life Technologies support the finding that the miR-451 was not 

human-specific [302]. 
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Figure 36. Showing the expression of RNU44 in in chicken, cow, deer, herring, human, pheasant and pig when 

presented on its own.  Error bars represent one standard deviation (n=3). 

 

The most striking aspect of RNU44 when presented on its own was its expression in human 

(shown in Figure 36).  RNU44 in human showed significantly higher expression levels than in 

all of the other species (P<0.05).  It was clear that the high expression seen in RNU44 and miR-

451 in human and variation in expression of both markers in the other species was affecting the 

overall expression in the results. 

 

In this study, RNU44 was identified as a potential human specific reference gene amongst the 

species tested.   It also highlighted the importance of finding a reference gene that is equally 

expressed amongst the species that are tested.  No studies have been performed exploring the 

species specificity of RNU44 or reference genes for that matter. 
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Discussion 

There were three aims in this work.  The first was to compare the specificity of miRNA 

analysis with mRNA analysis.  The second was to assess the species specificity of miR-451 as 

it has not been explored within a casework context e.g. its expression in blood derived from 

animal meat.  Also, since no work has been published exploring the species specificity of 

RNU44, this was also assessed. 

 

In the mRNA species specificity study HBB showed human specific expression in blood. This 

was expected as HBB, is the ß-subunit of haemoglobin in human and primates [230].  Hanson 

et al (2009) and Haas et al (2011) also support the finding that HBB was human specific in 

blood.  The findings from this study also support the theory that mRNA is more specific than 

miRNA.  

 

In the mRNA species specificity study GAPDH showed high levels of expression in pig and 

human.  Studies have identified GAPDH as a human specific reference gene through human 

post mortem tissue studies [154, 303, 304].  Thus it was expected GAPDH showed high 

expression levels in human. Although these studies have shown that GAPDH is specific to 

human it was not surprising to see GAPDH highly expressed in pig [305]. 

 

In the miRNA species specificity study miR-451 was expressed in all of the species tested, 

suggesting that it was not specific in blood. Life Technologies support the finding that miR-451 

was not species specific [302]. 

. 
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In the miRNA species specificity study a potential human specific reference gene was 

identified; RNU44.  This could be very useful for identification of human blood at a crime 

scene where blood from livestock is present.  For instance in a murder where blood is present 

but it is not certain whether the blood is from meat cut on a kitchen counter top or whether the 

blood is human.   

 

In this study, miRNA analysis was found to be less sensitive than mRNA analysis.  These 

findings were supported by Life Technologies (2014) who found miR-451 to be non-species 

specific.  This finding was further by a study by Li et al (2014) who also found that miRNA 

was not species specific (using a different blood marker miR-16).  Zubakov et al (2010) ( also 

found miRNA to be non-species specific (using a different blood marker miR-144).  Zubakov 

et al (2010) non-species specificity was particularly interesting as miR-144 is clustered closely 

to miR-451 (<10kb) [306].  Generally miRNAs that are clustered near one another have similar 

co-regulation functions [307].   It could possibly be inferred that if miR-451 and miR-144 have 

similar functions, that it may also share other similar characteristics in species specificity.  This 

possibility is supported by the fact the miR-451 and miR-144 originate from the same primary 

miRNA sequence.   

 

A number of miRNA markers have been identified for BFID. However a limited number of 

tests have been performed on the species specificity of these markers.  Thus it may be a case of 

identifying which of or if any of the miRNA markers identified are species specific.  It may 

also be important to identify species-specific reference genes.  Alternatively there may need to 

be a combination of both species specific miRNA markers and reference genes needed in order 

to resolve where the body fluid of human origin.  It is likely that the latter is going to be needed 
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as the expression levels of both miRNA markers and reference genes will be more difficult to 

interpret with casework samples which are often limited in both quantity and quality.   

 

The potential for using miRNA analysis for casework related to species is still promising.  It 

has been identified in this work that miR-451 was not specific towards the species tested, 

however a potential human specific reference gene was identified.  Therefore it could be 

possible to more closely associate a DNA profile with a particular body fluid e.g. blood.  It 

would be useful to be able to expand the capability of miRNA analysis with different species 

by identifying miRNA markers or reference genes that are specific to other species types. 

 

It is evident that the use of miRNA analysis within species studies is still in its infancy.  The 

studies that have performed for miRNA analysis have been limited by a combination of 

collecting high sample numbers, sample types and identify suitable markers.  A collaborative 

exercise could be of use to help resolve this issue.   
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Conclusions 

In this study, miRNA analysis was found less specific to mRNA analysis. However its use 

within casework remains positive.  The identification of a potential human-specific reference 

gene in this study and lack of species specificity observed in the miRNA marker identified for 

blood have shown the potential of the use of miRNA analysis in cases relating to species 

specificity.  The combination of both species-specific miRNA BFID markers and species-

specific reference genes may provide a powerful test for body fluid discrimination. 
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5.3 MicroRNA stability 

The issue of stability in RNA analysis is an important issue to investigate, not only because of 

the rigorous requirements in forensics, but also to address the general stigma of instability 

associated with RNA analysis. Stability can be described in a forensic context, as the minimum 

requirement is that the microRNA can survive within a stain for the time between deposition of 

the stain and extraction and subsequent analysis in the laboratory. Given, the uncertainties 

typically associated with crime scenes, such a length of time can be highly variable and in 

many cases, may be unknown. Ideally, it would be useful if microRNA could survive in a stain 

for years, thus including cold case capability within this technique.  

 

It is important to establish the stability of miRNA markers so that the forensic practitioner can 

make a judgment as to whether or not to carry out a test given the case circumstances. For 

example, if it is demonstrated that miRNA may not persist after 6 months, and a case is 

considered where the stain is 1 year old, then the practitioner can decide not to carry out the 

test, thus minimising wastage. Conversely, if the stain in question is 4 months old, then it 

would be worth considering miRNA analysis on the sample.  

 

Given the recent study in which mRNA was detected in a 23 year old blood stain, it is not 

unreasonable to expect the same for a miRNA marker, especially given that microRNA is 

considered to be more stable than mRNA [195]. Thus it is a reasonable hypothesis that miRNA 

could survive for even longer than 23 years. However, given the short duration of a typical 

PhD, this is not a hypothesis that could be explored as a part of this study. It is possible to 

obtain older sample from police forces or the Forensic Science Service Archives; however, it is 
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considered a priority to establish the test on fresher samples (e.g. 1 year old) first, before going 

for more challenging samples. 

A handful of research groups have explored the stability of RNA within a forensic context e.g. 

Zubakov et al (2010), Courts and Madea (2011), Lindenbergh et al (2012), Wang et al (2013), 

EDNAP collaborative exercises 2-3. 

  

Aim 

The aim of this work was to establish the stability of miRNA when exposed to a variety of 

different environmental conditions such as UV-light exposure and temperature changes. 

 

Experiment 

In this study, bloodstains stored over a period of 24 hours, 1 week, 2 months, 4 months, 6 

months and 1 year were used.  A total of 3 blood donors were used for this study.  Blood 

underwent DNA isolation, cDNA synthesis and qPCR analysis targeting miR-451, miR-205 

and reference gene RNU44.  
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5.3.1 miRNA stability 

 

 

Figure 37. Showing the expression of miR-451 in bloodstains stored for a period of 24 hours, 1 week, 2 months, 4 

months, 6 months and 1 year when normalised with RNU44.  Error bars represent one standard deviation (n=3). 

 

In this miRNA stability study there was no difference in miR-451 expression shown between 

the 24 hr and 1-year bloodstain (shown in Figure 37).  To better understand the expression of 

miR-451 and RNU44 was presented on its own.  Also, no amplification was observed in the 

negative controls.   
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Figure 38. Showing the expression of miR-451 in bloodstains stored for a period of 24 hours, 1 week, 2 months, 4 

months, 6 months and 1 year when presented on its own.  Error bars represent one standard deviation (n=3). 

 

The expression of miR-451 presented on its own showed similar levels of expression in all 

bloodstains (shown in Figure 38).  Again no difference was observed between the 24-hour 

bloodstain and 1-year-old bloodstain.  

 

In this study miR-451 was stable in 1-year old bloodstains.  Both Zubakov (2009) and Courts 

and Madea (2011) support the stability of miR-451.  Wang et al (2013) supported the variation 

in miR-451 expression in bloodstains.    
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Figure 39. Showing the expression of RNU44 in bloodstains stored for a period of 24 hours, 1 week, 2 months, 4 

months, 6 months and 1 year when presented on its own.  Error bars represent one standard deviation (n=3). 

 

The expression of RNU44 presented on its own showed varying levels of expression across the 

bloodstains (shown Figure 39).  No other work has been published exploring the stability of 

RNU44 over a long period of time. 
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Discussion 

The aim of this work to assess the stability of miR-451 in bloodstains stored over a period of 24 

hours, 1 week, 2 months, 4 months, 6 months and 1 year.  Zubakov et al (2010) supported the 

finding that miR-451 was stable in 1-year-old bloodstains.  Courts and Madea (2011) also 

supported the stability of microRNA in 1-year-old bloodstains and used miR-16 as a blood-

specific marker. 

 

Bloodstains stored over a period of 24 hours, 1 week, 2 months, 4 months, 6 months and 1 year 

showed minor variation in miR-451 expression.  Wang et al (2013) also supported these 

findings, observing minor fluctuation in expression levels in a 24 hour vs 1 month stain (∆Cq 

2-3).  There may be a number of reasons why the bloodstains from this study showed minor 

variation in miR-451 expression. 

 

One possibility may be down to the samples.  In this study, bloodstains were stored on the 

windowsill and as such were exposed to diurnal conditions (e.g. regular periods of light and 

dark) as well as changes in temperature.  This may have caused variation in miRNA expression 

level e.g. seasonal changes.  Additionally the sample number in this study was limited.  The 

samples used were originally for a different stain-age study.  A single bloodstain from different 

donors was used and as such the difference in miR-451 expression levels may have been a 

result of natural variation observed between individuals. 

 

The minor variation in expression levels may be characteristic of the particular miRNA marker.  

For instance, miR-451 may exhibit significantly lower levels of expression if stored over a 

certain period of time e.g. 4-6 months. It may also be characteristic within the body fluid type 
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e.g. a specific expression pattern may be observed for a blood using a blood specific miRNA 

marker, where as the expression of a saliva specific miRNA marker may be different within 

that same sample.   

 

RNU44 also showed moderate variation in expression across all bloodstains.  Again the 

variability observed may be due variation in sample or a characteristic trait of RNU44 as 

previously discussed with miR-451.       

 

This study has shown that miRNA analysis has the potential to be incorporated in to forensic 

casework.  Markers miR-451 and RNU44 showed a high level of stability in 24 hour old to 1 

year old bloodstains.  The exact age of the bloodstain could not be determined in this study.  

However given the natural variation that may be observed in crime scene stains it may not be 

realistic to establish the exact age of the stain.  It would however it helpful if a general range 

for particular miRNA markers and reference genes could be established.  Then there could be a 

certain degree of confidence that could be included when reporting a result. 

 

Also from a casework standpoint, it may be more logical or appropriate to use miRNA analysis 

as it is potentially more stable than mRNA analysis.  This may become more evident if a wider 

range of aged stains is incorporated e.g. 5 years, 10 years and 15 years.  The forensic 

community is slow to accept new methodologies and since BFID continues to play an 

important role within this framework, it is thought that miRNA analysis would be more suitable 

for aged body fluids.     
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Conclusions 

In this study, miR-451 and RNU44 exhibited stability from bloodstains stored from 24 hour to 

1 year.  The results from this study demonstrate the potential for incorporating miRNA analysis 

into existing framework.  The innate stability of miRNA may provide an advantage over 

mRNA, especially where samples are severely degraded or aged.   
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5.4 MicroRNA analysis of mixed body fluids  

When developing a miRNA BFID test it is important to establish whether or not the test is 

suited for forensic casework samples.  Mixed body fluids form a large portion of samples 

collected at crime scenes e.g. sexual assaults.   Therefore it is important to ensure that 

miRNA analysis can be applied to mixtures. 

 

Forensic practitioners often encounter a wide spectrum of mixtures at a crime scene.  This 

range covers anything from 1:1 mixtures up to and above 20:1 mixtures. Mixtures also 

become increasingly difficult to interpret when there is multiple contributors involved e.g. 

two or more people. 

 

The ability to identify the body fluid origin from a mixture is highly subjective.  This is 

often due to the complex nature of body fluids and perhaps is the main reason why it has not 

been explored in research.  There have been a handful of group who have looked into 

resolving mixtures using mRNA analysis [4, 156, 168, 169].  However there have been no 

extensive studies performed e.g. Courts and Madea (2011), which have attempted to resolve 

mixtures using miRNA analysis e.g. such as the resolution of mixing ratios. 

 

Aim 

The aim of this study was to assess whether or not miRNA analysis could be used to resolve 

mixtures. 
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Experimental design 

In this study, blood and saliva swabs were collected.  A series of 1:1, 2:1 and 5:1 mixtures 

was then prepared, where blood was major components and saliva was minor component 

and conversely where saliva was major and blood was minor. Samples then underwent 

cDNA synthesis and qPCR using miR-451, miR-205 and RNU44.  A total of 4 different 

blood and saliva donors were used during the course of this study.  Positive controls from 

single source body fluids (e.g. blood, saliva) and negative controls were included 
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5.4.1 miRNA analysis with mixtures 

 
Figure 40. Showing the expression of miR-451 and miR-205 in blood and saliva (swab) mixtures.  Mixing 

ratios of 1 blood:1 saliva, 2 blood:1 saliva, 5 blood:1 saliva, 10 blood: 1 saliva, 2 saliva:1 blood, 5 saliva:1 

blood and 10 saliva: 1 blood were used in this study. For clarity, blood is shown in red and saliva is shown in 

blue (n=3). 

 

Figure 40 shows the results from the mixtures study.  It was seen that the single-source 

controls for blood and saliva performed as expected e.g. the blood control miR-451 showed 

more expression in blood than miR-205.  No amplification was observed in the negative 

controls.  A different pattern of expression was shown in the mixtures.  In the mixtures 

where saliva was the major component and blood was the minor component, miR-205 

showed more expression than miR-451.  In the mixed samples where blood was the major 

component and saliva was the minor component and where there were equal ratios of blood 

to saliva, miR-205 showed more expression than miR-451.  Also none of the mixing ratios 

were maintained.  
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Figure 41. Showing the expression of miR-451 and miR-205 when normalised with reference gene RNU44. 

Mixing ratios of 1 blood:1 saliva, 2 blood:1 saliva, 5 blood:1 saliva, 10 blood: 1 saliva, 2 saliva:1 blood, 5 

saliva:1 blood and 10 saliva: 1 blood were used in this study. For clarity, blood is shown in red and saliva is 

shown in blue (n=3). 

 

 

To resolve this issue RNU44 was incorporated into this study (shown in Figure 41).  Single 

source controls performed as expected.  An improvement was observed in the mixing ratios 

where saliva was the major component and blood was minor component.  However miR-

205 still gave more expression in the blood major and saliva minor mixtures and in the 1:1 

mixture. 
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Figure 42. Showing the expression of RNU44 in the blood and saliva (swab) mixtures when normalised with 

the 1:1 mixture control and RNU44.  Mixing ratios of 1 blood:1 saliva, 2 blood:1 saliva, 5 blood:1 saliva, 10 

blood: 1 saliva, 2 saliva:1 blood, 5 saliva:1 blood and 10 saliva: 1 blood were used in this study.  For clarity, 

blood is shown in red and saliva is shown in blue (n=3). 

 

Figure 42 shows the expression of miR-451 and miR-205 after sample normalisation with 

reference gene RNU44.  Both single source controls performed as expected.  The 1:1 

mixture showed similar levels of miR-451 and miR-205.  All major and minor components 

of each body fluid type could now be identified e.g. where blood was the major component 

and saliva was the minor component, miR-451 showed more expression in blood than miR-

205.  Conversely the same pattern was observed where saliva was the major component and 

blood was the minor component.  The mixing ratios however were not maintained.   
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Figure 43. Showing the expression of RNU44 in blood and saliva (swab) mixtures when presented on its own. 

Mixing ratios of 1:1, 2:1, 5:1 and 10:1 were studied.  For clarity, single-source body fluids were highlighted 

in light grey, while mixed body fluids were highlighted in dark grey (n=3). 

 

To understand this further the expression of the reference gene was presented on its own 

(shown in Figure 43).  No difference was seen between the RNU44 expression in the single-

source blood control or the single-source saliva control.  All mixtures showed more 

expression of RNU44 than in the single-source controls for blood and saliva. 
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Discussion 

The aim of this work was to establish whether miRNA analysis could resolve mixtures: 1 

blood:1 saliva, 2 blood:1 saliva, 5 blood:1 saliva, 10 blood:1 saliva, 2 saliva:1 blood, 5 

saliva:1 blood, 10 saliva:1 blood. 

 

In this study both the major and minor components of the mixtures were identified.  A brief 

study by Courts and Madea (2011) on mixed blood and saliva (e.g. no mixing ratios 

explored) support these findings that both body fluids could be identified.  However mixing 

ratios in this study were not maintained.   This may have been a result of sample 

preparation.  Samples in this study were prepared according to volume rather than 

concentration to more closely reflect casework samples.  Since the DNA concentration of 

our single-source blood and saliva samples averaged at about 0.1 ng/μl and 5 ng/μl 

respectively, it was not unreasonable to assume that the copy numbers of miR-451 and miR-

205 would vary within these body fluids.   

 

Limited studies have been performed on miRNA copy numbers in these body fluids.  For 

instance, there appears to be no studies published on the copy number of miR-205 within 

saliva.  However there have been a couple of studies on the copy number of miR-451 within 

blood found that miR-451 had an average copy number of 1972 copies per cell in blood 

[308, 309]. 

 

The copy number within a mixture can affect the expression of the overall result, especially 

if a higher copy number is inputted into a reaction.  However, this variable along with not 

knowing the composition of a mixture is going to be present in many casework samples.  



 

175 

 

Therefore, caution needs taken when interpreting mixed body fluids when using a miRNA 

BFID test.   

 

In terms of casework applications, this study has shown the potential for incorporating 

miRNA analysis into current framework.  Both the major and minor components have been 

identified.  It may be possible to identify body fluid mixing ratios provided the starting 

input is know. Thus strengthening the overall ability to associate a miRNA analysis with 

current DNA profiling methods.   

 

Mixed body fluids are commonly encountered in cases of sexual assault e.g. where issues of 

consent may occur.  The identification of vaginal material and semen may not be difficult 

with the capabilities of DNA profiling available to distinguish between male and females.  

However it may be useful when there are low levels of these body fluids present, especially 

when a substantial amount of time has passed before collecting the body fluids such as in 

cases of non-consensual intercourse.  

 

Other scenarios where the identification of mixtures may be useful include scenarios such as 

in a kidnap or abduction.  The suspect may claim that the presence of the victims DNA may 

be from casual contact e.g. skin or saliva at the bar.  Then it may be important to know if the 

body fluid origin is from skin or saliva or something else, such as vaginal material.    
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Conclusions 

This study demonstrates the first comprehensive study on mixtures using miRNA analysis.  

At the very minimum this test has allowed identification of the major and minor 

components of body fluids.  It also has shown the potential to identify mixing ratios of body 

fluids and its use on casework samples. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

Discussion 
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6.1 Discussion 

The aim of this study was to explore the forensic applications of RNA analysis in the 

context of body fluid identification. Several aspects were included in this study, including 

the development of co-isolation and single isolation strategies, screening and selecting RNA 

markers, and finally applying the characterising of RNA markers within various sample 

conditions such as those commonly encountered in forensic casework. Such conditions 

include low-level amounts of samples, non-human samples, degraded samples, and mixed 

body fluid samples.  

 

Co-isolation of a sample has shown to be an important step when analysing forensic 

casework to ensure that both the DNA profile and RNA profile are not being compromised 

and to avoid sample wastage. The latter is particularly important in low-trace samples. 

Initially efforts were focused on developing a novel technique for the co-isolation of DNA 

and mRNA utilising magnetic beads. Six isolation/extraction techniques were explored, two 

of which were commercially available and four of which were modifications. The principle 

behind the modifications was that silica-like beads were used for isolating DNA and oligo-

dT coated beads were used for isolating mRNA with a poly-A tail. A combination of both 

beads in an extraction mix should allow for the isolation of both. Of the six techniques, it 

was demonstrated that the silica-beads isolation technique was the best one for the recovery 

of both DNA and mRNA. This was supported by Bowden et al (2011) who isolated DNA 

before isolating total RNA from the lysis fraction during DNA isolation from Promega‟s 

magnetic bead technology (DNA IQ system). 
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The same principle was explored for miRNA and DNA isolation using spin gel membrane 

columns; however, it was quickly shown that miRNA was still present within the eluent 

following isolation. The precise reason is unknown, but it was felt that it was either down to 

the miRNA being „tangled‟ with the bound DNA, or that it was binding to the silica 

membrane whilst the miRNA was still double-stranded. During the biogenesis of miRNA, 

the miRNA strands is a stem-loop structure for a relatively long time until just before it is 

fully mature. Thus it is quite possible that primary or precursor miRNA strands that are 

being isolated rather than mature miRNA. Whilst this finding was somewhat unexpected, it 

is considered to be beneficial to forensic casework. Firstly, it requires no modification of the 

extraction step, meaning that all forensic laboratories already have the DNA extraction 

procedures laid down and validated.  

 

Secondly, it brings in cold-case capability. If a specific specialised technique is required for 

the isolation of miRNA, then that means sample that have previously been extracted cannot 

undergo miRNA analysis. Consequently, this finding is of enormous impact. It does not 

necessarily means that DNA extraction should automatically be done for miRNA analysis. 

It may well be that a specific miRNA extraction kit (such as Qiagen‟s miRNeasy kit, Life 

Technologies mirVana™ kit) would be better, but what this study demonstrates is that it is 

possible to go back to the DNA extract and carry out miRNA analysis.  This does not only 

apply to cold-cases, but in cases where the requirement for body fluid identification was not 

determined at the pre-assessment stage (mainly due to lack of a defence hypothesis or 

staged reporting).  Consequently, on the back of this research, subsequent miRNA analysis 

has been carried out on DNA extracts. As far as is known, no other research group has 

published work relating to the miRNA analysis on DNA extracts. 
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The next stage of this study was the screening and evaluation of miRNA markers. At the 

time, there were minimal studies in this area, with much of the marker screening being 

conducted by Hanson et al (2009), Zubakov et al (2010), Courts and Madea (2011) and 

Wang et al (2013).  In addition, such miRNA marker screens had been carried out with total 

RNA or miRNA isolation kits, rather than DNA isolation kits. Thus, it was necessary to 

conduct a search for the appropriate markers.  

 

Following an extensive search of literature in forensic genetics and cancer research using 

the microRNA registry miRBase, a large panel of markers were selected (shown in Table 4) 

[221, 223, 306, 310].  A total of 6 different miRNA markers were then selected based on 

identification and differentiating capability for blood  (miR-451 and miR-194), semen 

(miR-891a), saliva swabs and saliva deposits (miR-205) and vaginal material (miR-224 and 

miR-335).  No miRNA markers were identified for skin (shown in Table 8).    

 

Blood Saliva swabs Saliva deposits Vaginal material Semen 

miR-451 miR-205 miR-205 miR-224 miR-891a 

miR-16   miR-335  

 
Table 8. Showing the body fluid specific miRNA markers and differentiating capabilities in blood, semen, 

saliva swabs and saliva deposits and vaginal material. Green boxes indicate identification and differentiation 

to all other body fluids.  Orange boxes indicate partial identification and differentiation to the other body 

fluids. 

 

One major observation is that due to the nature of the samples, it was very difficult to find a 

marker that could definitively identify the presence or absence of a particular marker, with 

the exception of miR-891a for semen.  However, it was much easier to find markers that 

could differentiate between body fluids. In most cases a combination of markers allowed 
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differentiation of body fluids.  For instance the significantly higher expression of miR-451 

and moderate expression of miR-194 could be used to say that a stain was most likely blood 

rather than saliva, skin, vaginal material or semen.   Similarly, the combination of miR-224 

and miR-335 to identify and differentiate vaginal material from the other body fluids tested.  

Skin was the only body fluid, which could not be identified or differentiated from the 13 

microRNA markers tested.  Alternatively it was thought that the absence of marker miR-16 

in skin and presence in all of the other body fluids could be used as a potential marker for 

skin.  However this is not ideal given the quality and quantity or nature of forensic 

casework samples.  Thus further studies on developing a panel of miRNA markers is 

currently being explored by other members of the University of Huddersfield Forensic 

Genetics Research Group.   

 

Furthermore since the overall aim of this work is to develop a microRNA BFID test for use 

in forensic casework, in addition to miRNA markers, suitable reference genes are currently 

being explored.  Research by another member of the University of Huddersfield Forensic 

Genetic Research Group has identified three potential reference genes for blood, saliva, 

semen and vaginal material:  small nucleolar RNU7, RNU44 (which was also identified in 

this research as a potential reference gene for abundant and mixed body fluids e.g. blood 

and saliva) and RNU47.   

 

After the identification of markers for blood and saliva (miR-451 and miR-205, 

respectively), these were subject of further study.  The main reason behind this was the 

relative ease of obtaining such samples.  It was much more difficult to obtain semen and 

vaginal material sample, due to the intimate nature of such samples.  Therefore, to further 

assess the validity of miRNA analysis in forensic casework, just blood and saliva were used. 
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 A number of factors were explored to assess the applications of this test in forensic 

casework, including sensitivity.  The issue of sensitivity is an important as it should perform 

at least with equal sensitivity as current tests.  10-fold serial dilutions of blood and saliva 

deposits samples conducted and it was identified that the sensitivity range of the enzymatic 

tests were lower than that of the miR tests.  However, it was subsequently identified that 

miR-451 was still being detected in blood at much lower levels (1 in 100 and 1 in 1,000) 

than the KM and LMG test 1 in 100 and 1 in 10,000 and the same for miR-205 (1 in 100 

and 1 in 1,000) in saliva deposits than the Phadebas
® 

test 1 in 100 and 1 in 10,000.   

 

One of the main limiting factors in miRNA analysis was the reference gene (RNU44).  The 

sensitivity range of RNU44 in blood was between a dilution of neat and 1 in 10 while the 

sensitivity range of RNU44 in saliva deposits was between a dilution of 1 in 10 and 1 in 

100.  Although there are couple of research groups who are currently searching for 

reference genes for miRNA analysis (e.g.. Gomes et al (2013) and Sauer et al (2014)) none 

have explored the sensitivity of their chosen reference genes.  Consequently, it was 

established that the identification of the correct miRNA reference gene was a crucial stage.  

Thus other members of the University of Huddersfield Forensic Genetics Research Group 

are currently conducting efforts to identify highly abundant reference genes for low-level 

samples.  The initial findings suggest that once an appropriate reference gene has been 

identified, then the miRNA based BFID test should have a lower sensitivity than the current 

enzymatic tests. 

 

Another important area to explore was specificity.  As mentioned previously, the transcript 

length of mature microRNA (18-25 nt) is shorter than mRNA (1500 to 2000 nt).  The 
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shorter sequence length of miRNA may mean that the total number of possible targets for 

mRNAs is higher.  In forensic casework, this can pose challenges in the interpretation of 

human body fluids if other animal body fluids are present e.g. in crimes that have taken 

place in a kitchen.  A study exploring the species specificity of miR-451 in blood from 

seven different animals (e.g. cattle, chicken, deer, herring, human, pheasant and pig) 

showed lack of specificity in all animals.  Life Technologies (2014) and Zubakov et al 

(2010) supported this finding.  Interestingly in this study, RNU44 exhibited specificity 

towards human blood than in blood from the other animal types.  The human specificity 

exhibited in RNU44 may be especially useful in cases where blood from these animal tested 

in this study may also be present.   

 

Another factor to explore was stability.  Stability is the ability of the RNA molecule to stay 

intact over a period of time.  Messenger RNA has had a notorious reputation for being 

unstable, however, this has been shown to be a minor issue in forensic casework.  The main 

reason is that the crime scene stains are usually dry and as such all intra-cellular processes 

(such a ribonuclease activity) have stopped.  At a theoretical level, miRNA should be more 

stable then mRNA, due to its short size.  A limited study was conducted on a 1-year-old 

blood-stain, and it was shown that the levels of miR-451 in the one year old stain were not 

significantly different from the fresh blood stain.   

 

Whilst not unexpected, this study offered an element of reassurance that the miRNA marker 

can at least survive the transit from the crime scene to the laboratory without any loss of 

material.  It should be noted that the 1-year-old stain tested was dry and stored under 

periods of light and dark.  It is possible that different conditions may affect the stability of 

the miRNA marker.  However, as long as the stain is dry, then it should not have a 
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detrimental effect.  In addition, RNU44 also showed stability in bloodstains 1-year-old 

bloodstains, which is beneficial for casework samples that are 1-year-old.  It is important to 

note that the use of RNU44 must be used with caution in low-level blood and saliva samples 

as demonstrated previously in the sensitivity work.  Other members of the University of 

Huddersfield Forensic Genetics Research Group are exploring the stability of miRNA and 

RNU44 further. 

 

One major issue with BFID and one that is becoming increasingly problematic with 

increasing sensitive DNA profiling kits, such as NGM SElect and further with GlobalFiler 

and Promega Fusion is the one of mixtures. DNA mixtures are common and will become 

increasingly common with the adoption of „DNA17‟ (NGM Select kit) [3].  Consequently, 

the impact of mixed body fluids upon miRNA analysis was explored. The absolute 

minimum criterion for a BFID test is that it should be able to identify the presence of a 

mixture.  It is very important to establish as in worst cases a mixture may be mistaken as a 

single source body fluid, which would consequently render this test unusable. Thus, a series 

of blood/saliva mixtures were prepared from a 1:1 through to a 10:1 mixture. Single source 

controls were included. When the BFID test was performed, it was quickly realised that the 

incorporation of a reference gene was crucial. In this case RNU44 was used. It was then 

realised that normalisation with a mixture containing equal volumes of blood and saliva 

extracts were required. This control (along with the reference gene) was used to normalise 

the expression levels and takes into account the variations in amount of genetic material 

between different body fluids. 

 

Once completed, it could be seen that not only was the BFID test capable of identifying 

body fluid mixtures, it was also capable of identify the major body fluid and the minor body 
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fluid. The mixing ratios were not maintained post-amplification, however, this is considered 

to be a minor issue at this stage.  It is first important to establish whether the miRNA 

markers identified for single-source body fluids can be applied to mixtures.   

As stated earlier, it was also obvious that the presence of an endogenous control was a 

crucial step, thus it maybe that a more appropriate endogenous control could allow for the 

„mirroring‟ of mixing ratios between DNA mixtures and body fluid mixtures.  

 

6.2 Novel work 

The majority of the work performed in this study could be argued as being novel as no one 

else has carried out this miRNA work using DNA extracts.  However, the main novel 

aspects were defined into three areas. 

 

The first novel aspect in this work was the exploration of different magnetic bead ratios for 

co-isolation of DNA and mRNA and the co-isolation of miRNA and DNA using a single 

DNA isolation kit.  The second novel aspect was the discriminative panel of body fluid 

specific miRNA markers for blood (miR-451 and miR-194); saliva (miR-205); vaginal 

material (miR-224 and miR-335) and semen (miR-891a).   

 

The final novel aspect of this work was in the area of casework applications.  The sensitivity 

of miR-451, miR-205 and RNU44 was explored in bloodstains and saliva deposits.  The 

species specificity of miR-451 and RNU44 was explored in different animal bloodstains.  

The stability of miR-451 and RNU44 in aged bloodstains exposed to light and dark 

environments was also explored.  Lastly a BFID strategy for resolving body fluid mixtures 

was developed.  
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6.3 Future work 

It is clear that there is a substantial amount of work to be carried out in the application of 

miRNA analysis body fluid identification. Whilst a lot of issues have been touched upon 

and explored in this study, further work is certainly required. 

 

New miRNA markers are being identified on a regular basis, leading to the regular 

expansion of the miRNA repository, miRBase. Consequently, continual miRNA marker 

screening is required. One set of markers that require particular attention is the 

identification of an appropriate endogenous control as described earlier in this chapter.  

Other areas that need to be explored include the sensitivity of the selected miRNA markers.  

In the findings from the sensitivity results it was thought that the sensitivity of miRNA and 

reference genes was limited by both the TaqMan chemistry and the abundance within a 

sample types. Future work exploring the sensitivity of the miRNA markers and reference 

genes is needed in order to use this test in forensic casework.  The stability of miRNA and 

reference genes was another area that was studied.  It was demonstrated in this work that 

miRNA and reference genes were stable in 1-year-old bloodstains exposed to both light and 

dark.  It would be interesting to establish at the point which the stability in both miRNA and 

reference genes is lost, particularly when additional or other environmental factors are 

present such as bacteria, RNases, humidity and temperature. 

 

Finally, since mixed body fluids form a large part of samples recovered at crime scenes it 

would be useful to explore a different combination of body fluid mixtures e.g. vaginal 

material and semen, vaginal material and saliva; and menstrual blood and trauma blood as 
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the main application or purpose of developing this test is to be incorporated into forensic 

casework. 

In this study a highly discriminative microRNA body fluid identification test was developed 

for blood, saliva, semen and vaginal material.  The exploration of different co-isolation 

strategies showed that this method could be integrated not only into current DNA 

methodologies but also be applied to a range of casework samples including cold-case, low 

level, different animal species, aged (1-year-old) and mixtures.  Thus demonstrating that a 

miRNA BFID is a powerful tool for forensic casework.  
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Appendices 



 

 

Supplementary information – mature miRNA sequences 

miR-451      miR-16 

    
 

 

Figure 44. Showing the predicted mature miRNA sequences highlighted in red for miR-451 (left) and miR-16 

(right) highlighted in red. Images taken from miR map [311]. 

 

miR-205      miR-658 

    

 

 

Figure 45. Showing the predicted mature miRNA sequences for miR-205 (left) and miR-658 (right) highlighted 

in red. Images taken from miR map [311]. 



 

 

miR-203      miR-194 

                       

 

Figure 46. Showing the predicted mature miRNA sequences for miR-203 (top left), miR-194 (top right) and miR-

224 (bottom left) highlighted in red. Images taken from miR map [311]. 

 

miR-224      miR-224 

                              
 

 

Figure 47. Showing the predicted mature miRNA sequences for miR-224 (left) and miR-335 (right) highlighted 

in red. Images taken from miR map [311]. 



 

 

miR-617      miR-372 

                                     

   

Figure 48. Showing the predicted mature miRNA sequences for miR-224 (left) and miR-335 (right) highlighted 

in red. Images taken from miR map [311]. 

 

miR-124a     miR-588 

                

 

Figure 49. Showing the predicted mature miRNA sequences for miR-124a (left) and miR-588 (right) highlighted 

in red. Images taken from miR map [311]. 



 

 

Supplementary information – miRNA species expression 
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miR-451      X     X  X 

miR-16      X     X  X 

miR-205      X X  X X X  X 

miR-658      X        

miR-203      X     X   

miR-194      X X  X X X X  

miR-224      X        

miR-335      X   X  X   

miR-588      X        

miR-617      X        

miR-372      X        

miR-124a      X        

miR-891a      X        

 

 

Table 9. Showing the species specificity of the 13 miRNA markers used for screening. The letter X indicates 

expression for a particular species.  Data provided by the Life Technologies website [300]. 
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miR-451       X X   X   

miR-16      X X     X X 

miR-205      X X X  X X X  

miR-658         

miR-203      X X       

miR-194       X   X X X X 

miR-224         

miR-335  X       

miR-588  X       

miR-617  X       

miR-372  X       

miR-124a    X     

miR-891a         

 

 

Table 9 continued: Showing the species specificity of the 13 miRNA markers used for screening. The letter X 

indicates expression for a particular species.  Data provided by the Life Technologies website [300].
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miR-205      X    X X X X     X X 

miR-658          

miR-203       X      X 

miR-194      X    X X  X     X X 

miR-224      X         

miR-335      X      X      X 

miR-588          

miR-617          

miR-372       X   

miR-124a                  X 
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Table 9 continued: Showing the species specificity of the 13 miRNA markers used for screening. The letter X 

indicates expression for a particular species.  Data provided by the Life Technologies website [300]. 
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miR-451   X    X  

miR-16  X  X   X X 

miR-205  X X  X X   

miR-658   X      

miR-203   X    X  

miR-194   X X   X  

miR-224         

miR-335   X    X  

miR-588   X      

miR-617         

miR-372   X      

miR-124a    X   X  

miR-891a         

 

Table 9 continued: Showing the species specificity of the 13 miRNA markers used for screening. The letter X 

indicates expression for a particular species.  Data provided by the Life Technologies website [300].



 

 

Supplementary graphs – Chapter 3 

 

Figure 50. Showing the expression of miR-205 and miR-451 in saliva swabs using a DNA isolation kit (n=6). 



 

 

 

 

 

Figure 51. Showing the expression of miR-205 and miR-451 in saliva using the total RNA isolation method 

(n=6). 



 

 

Supplementary graphs – Chapter 4 

miR-16 

 

 

 

Figure 52. Showing the specificity of miR-16 in 6 different body fluids.  The black line at ∆Cq 5 represents a 

threshold.  Values above this line are considered expression while values below this line are considered 

background amplification.  Error bars represent one standard deviation (n=5). 

 



 

 

miR-658 

 

 

 

Figure 53. Showing the specificity of miR-658 in 6 different body fluids.  The black line at ∆Cq 5 represents a 

threshold.  Values above this line are considered expression while values below this line are considered 

background amplification.  Error bars represent one standard deviation (n=5). 

 



 

 

miR-203 

 

 

 

Figure 54. Showing the specificity of miR-203 in 6 different body fluids.  The black line at ∆Cq 5 represents a 

threshold.  Values above this line are considered expression while values below this line are considered 

background amplification.  Error bars represent one standard deviation (n=5). 

 



 

 

miR-617 

 

 

 

Figure 55. Showing the specificity of miR-617 in 6 different body fluids.  The black line at ∆Cq 5 represents a 

threshold.  Values above this line are considered expression while values below this line are considered 

background amplification.  Error bars represent one standard deviation (n=5). 

 



 

 

miR-372 

 

 

 

Figure 56. Showing the specificity of miR-372 in 6 different body fluids.  The black line at ∆Cq 5 represents a 

threshold.  Values above this line are considered expression while values below this line are considered 

background amplification.  Error bars represent one standard deviation (n=5). 

 



 

 

miR-124a 

 

 

 

Figure 57. Showing the specificity of miR-124a using 6 different body fluids.  The black line at ∆Cq 5 represents 

a threshold.  Values above this line are considered expression while values below this line are considered 

background amplification.  Error bars represent one standard deviation (n=5). 

 



 

 

 miR-588  

 

 

 

Figure 58. Showing the specificity of miR-588 using 6 different body fluids.  The black line at ∆Cq 5 represents a 

threshold.  Values above this line are considered expression while values below this line are considered 

background amplification.  Error bars represent one standard deviation (n=5). 

 



 

 

Supplementary graphs – Chapter 5 

 

 

Figure 59. Showing the expression of miR-451 and miR-205 in 1 blood:1 saliva, 2 blood:1 saliva, 5 blood:1 

saliva, 10 blood:1 saliva, 2 saliva:1 blood, 5 saliva:1 blood and 10 saliva:1 blood mixtures when normalised with 

RNU24 (n=3). 



 

 

 

 

 

Figure 60. Showing the expression of miR-451 and miR-205 in 2 blood:1 saliva, 5 blood:1 saliva, 10 blood:1 

saliva, 2 saliva:1 blood, 5 saliva:1 blood and 10 saliva:1 blood mixtures when normalised with the RNU24 and 

the 1 blood:1 saliva mixture (n=3). 



 

 

 

 

 

Figure 61. Showing the RNU44 expression on its own in 2 blood:1 saliva, 5 blood:1 saliva, 10 blood:1 saliva, 2 

saliva:1 blood, 5 saliva:1 blood and 10 saliva:1 blood mixtures (n=3).



 

 

Supplementary data – miRNA panel 

Blood 

miR-16 miR-451 miR-205 miR-658 miR-124a miR-372 miR-617 miR-891a miR-588 miR-194 miR-203 miR-224 miR-335

Bloodstain	A 18.30 18.06 8.94 0.00 0.49 1.05 2.41 0.00 0.00 8.82 10.77 0.89 4.11

Bloodstain	B 17.89 16.70 8.01 0.00 0.00 0.08 2.59 0.00 0.00 8.72 11.36 0.00 3.19

Bloodstain	C 18.84 20.98 5.69 0.00 0.68 0.43 2.61 0.00 0.00 8.94 10.95 0.71 4.95

Bloodstain	D 17.94 16.18 3.79 0.00 0.00 0.18 2.84 0.00 0.00 8.26 10.53 0.00 3.41

Bloodstain	E 18.94 18.12 5.95 0.00 0.38 0.09 1.71 0.00 0.00 7.35 10.75 0.25 4.83

Mean 18.38 18.01 6.48 0.00 0.31 0.37 2.43 0.00 0.00 8.42 10.87 0.37 4.10

SD 0.49 1.86 2.03 0.00 0.30 0.41 0.43 0.00 0.00 0.65 0.31 0.41 0.80  

 

Table 10. Showing the ∆Cq data from Chapter 4 miRNA screen in bloodstains



 

 

Saliva swabs 

miR-16 miR-451 miR-205 miR-658 miR-124a miR-372 miR-617 miR-891a miR-588 miR-194 miR-203 miR-224 miR-335

Saliva	swab	A 11.07 8.61 9.45 0.28 0.63 0.11 2.57 0.00 0.00 1.59 12.45 6.76 1.42

Saliva	swab	B 10.10 6.58 9.08 0.00 0.00 0.51 1.36 0.00 0.00 0.56 12.47 6.17 1.15

Saliva	swab	C 10.39 6.98 10.16 0.00 1.04 0.59 1.16 0.00 0.00 0.98 13.18 7.46 1.41

Saliva	swab	D 9.98 7.34 8.09 0.00 0.00 0.00 0.39 0.00 0.00 0.02 8.77 7.01 1.20

Saliva	swab	E 10.57 7.13 8.78 0.00 0.00 0.00 0.89 0.00 0.00 0.00 8.54 7.33 0.67

Mean 10.42 7.33 9.11 0.06 0.33 0.24 1.28 0.00 0.00 0.63 11.08 6.95 1.17

SD 0.43 0.77 0.77 0.13 0.48 0.29 0.81 0.00 0.00 0.67 2.24 0.51 0.31  

 

Table 11. Showing the ∆Cq data from Chapter 4 miRNA screen in saliva swabs.



 

 

Saliva deposits 

miR-16 miR-451 miR-205 miR-658 miR-124a miR-372 miR-617 miR-891a miR-588 miR-194 miR-203 miR-224 miR-335

Saliva	deposit	A 10.78 8.11 7.81 0.00 0.55 0.60 0.00 0.00 0.00 3.25 10.51 5.38 0.00

Saliva	deposit	B 11.24 9.06 7.65 0.04 2.51 1.31 0.00 0.00 0.00 3.18 11.29 5.30 1.28

Saliva	deposit	C 10.85 13.15 9.02 1.33 2.08 0.00 0.00 0.00 0.00 1.49 8.67 0.00 0.00

Saliva	deposit	D 6.80 10.95 7.81 0.00 0.00 0.00 1.12 3.29 0.66 1.43 10.55 0.00 0.00

Saliva	deposit	E 5.45 7.96 5.92 0.00 0.08 0.00 1.80 0.00 0.00 0.50 8.65 0.71 0.00

Mean 9.02 9.85 7.64 0.27 1.04 0.38 0.58 0.66 0.13 1.97 9.93 2.28 0.26

SD 2.70 2.20 1.11 0.59 1.17 0.58 0.84 1.47 0.29 1.20 1.20 2.81 0.57  
 

 

Table 12. Showing the ∆Cq data from Chapter 4 miRNA screen in saliva deposits.



 

 

Skin 

miR-16 miR-451 miR-205 miR-658 miR-124a miR-372 miR-617 miR-891a miR-588 miR-194 miR-203 miR-224 miR-335

Skin	A 2.66 8.36 6.00 0.00 0.22 0.14 2.99 0.00 0.00 0.25 8.24 0.00 0.00

Skin	B 4.68 10.54 8.03 0.00 0.00 0.00 5.47 0.00 0.00 0.66 8.61 0.00 0.00

Skin	C 4.72 10.58 7.89 0.00 0.34 0.43 2.09 0.00 0.00 0.00 9.64 0.20 0.00

Skin	D 2.30 9.04 9.00 0.00 0.00 0.00 2.02 0.00 0.00 0.00 10.18 0.00 0.00

Skin	E 6.30 12.18 7.76 0.00 0.00 0.00 1.90 0.00 0.00 0.00 10.44 0.00 0.00

Mean 4.13 10.14 7.74 0.00 0.11 0.11 2.89 0.00 0.00 0.18 9.42 0.04 0.00

SD 1.65 1.49 1.09 0.00 0.16 0.19 1.50 0.00 0.00 0.29 0.96 0.09 0.00  

 

Table 13. Showing the ∆Cq data from Chapter 4 miRNA screen in skin.



 

 

Semen 

miR-16 miR-451 miR-205 miR-658 miR-124a miR-372 miR-617 miR-891a miR-588 miR-194 miR-203 miR-224 miR-335

Semen	A 8.17 7.44 5.87 1.69 3.65 5.93 3.85 11.35 2.72 3.12 8.13 4.03 3.56

Semen	B 8.90 9.88 7.01 0.00 0.00 0.71 1.77 8.35 0.00 3.84 9.09 2.50 2.66

Semen	C 8.15 10.05 6.47 0.00 0.00 0.11 2.24 3.44 0.00 0.61 10.07 0.00 0.44

Semen	D 10.21 7.22 6.38 4.59 4.36 10.26 6.07 7.84 3.63 4.07

Semen	E 10.57 6.60 6.24 2.96 4.74 6.39 10.60 3.85 7.77 4.10 5.07

Mean 9.20 8.24 6.39 1.16 1.22 3.22 3.73 8.80 0.91 3.50 8.58 2.85 3.16

SD 1.14 1.61 0.41 1.44 2.10 2.62 1.84 3.20 1.57 1.96 0.98 1.72 1.75  
 

Table 14. Showing the ∆Cq data from Chapter 4 from the miRNA screen in semen.



 

 

Vaginal material 

 

 

Table 15. Showing the ∆Cq data from Chapter 4 miRNA screen in vaginal material. 



 

 

miR-451 

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-451 18.06 8.61 8.11 8.36 11.46 7.44

16.70 6.58 9.06 10.54 10.11 9.88

20.98 6.98 13.15 10.58 10.79 10.05

16.18 7.34 10.95 9.04 8.04 7.22

18.12 7.13 7.96 12.18 7.23 6.60

Mean 18.01 7.33 9.85 10.14 9.53 8.24

SD 1.86 0.77 2.20 1.49 1.81 1.61  

 

Table 16. Showing the ∆Cq data from Chapter 4 miR-451 in 6 different body fluids. 

 

 

miR-194  

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-194 8.82 1.59 3.25 0.25 7.24 3.12

8.72 0.56 3.18 0.66 3.95 3.84

8.94 0.98 1.49 0.00 0.00 0.61

8.26 0.02 1.43 0.00 0.00 6.07

7.35 0.00 0.50 0.00 4.95 3.85

Mean 8.42 0.63 1.97 0.18 3.23 3.50

SD 0.65 0.67 1.20 0.29 3.18 1.96  

 

Table 17. Showing the ∆Cq data from Chapter 4 miR-194 in 6 different body fluids.  

 

 

miR-205 

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-205 8.94 9.45 7.81 6.00 16.14 5.87

8.01 9.08 7.65 8.03 10.44 7.01

5.69 10.16 9.02 7.89 15.21 6.47

3.79 8.09 7.81 9.00 10.11 6.38

5.95 8.78 5.92 7.76 12.07 6.24

Mean 6.48 9.11 7.64 7.74 12.79 6.39

SD 2.03 0.77 1.11 1.09 2.75 0.41  

 

Table 18. Showing the ∆Cq data from Chapter 4 miR-205 in 6 different body fluids. 

 



 

 

miR-224 

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-224 0.89 6.76 5.38 0.00 12.73 4.03

0.00 6.17 5.30 0.00 7.25 2.50

0.71 7.46 0.00 0.20 19.01 0.00

0.00 7.01 0.00 0.00 16.92 3.63

0.25 7.33 0.71 0.00 13.25 4.10

Mean 0.37 6.95 2.28 0.04 13.83 2.85

SD 0.41 0.51 2.81 0.09 4.50 1.72  

 

Table 19. Showing the ∆Cq data from Chapter 4 miR-224 in 6 different body fluids. 

 

 

miR-335 

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-335 4.11 1.42 0.00 0.00 6.44 3.56

3.19 1.15 1.28 0.00 1.27 2.66

4.95 1.41 0.00 0.00 14.04 0.44

3.41 1.20 0.00 0.00 9.49 4.07

4.83 0.67 0.00 0.00 4.07 5.07

Mean 4.10 1.17 0.26 0.00 7.06 3.16

SD 0.80 0.31 0.57 0.00 4.94 1.75  

 

Table 20. Showing the ∆Cq data from Chapter 4 miR-335 in 6 different body fluids. 

 

 

miR-891a 

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-891a 0.00 0.00 0.00 0.00 0.01 11.35

0.00 0.00 0.00 0.00 0.00 8.35

0.00 0.00 0.00 0.00 0.45 3.44

0.00 0.00 3.29 0.00 2.20 10.26

0.00 0.00 0.00 0.00 3.93 10.60

Mean 0.00 0.00 0.66 0.00 1.32 8.80

SD 0.00 0.00 1.47 0.00 1.72 3.20  

 

Table 21. Showing the ∆Cq data from Chapter 4 miR-891a in 6 different body fluids. 

 

 



 

 

miR-16 

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-16 18.30 11.07 10.78 2.66 17.04 8.17

17.89 10.10 11.24 4.68 10.12 8.90

18.84 10.39 10.85 4.72 15.03 8.15

17.94 9.98 6.80 2.30 0.00 10.21

18.94 10.57 5.45 6.30 12.31 10.57

Mean 18.38 10.42 9.02 4.13 10.90 9.20

SD 0.49 0.43 2.70 1.65 6.64 1.14  

 

Table 22. Showing the ∆Cq data from Chapter 4 miR-16 in 6 different body fluids. 

 

 

miR-658 

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-658 0.00 0.28 0.00 0.00 1.39 1.69

0.00 0.00 0.04 0.00 0.00 0.00

0.00 0.00 1.33 0.00 0.12 0.00

0.00 0.00 0.00 0.00 1.39

0.00 0.00 0.00 0.00 3.68 2.96

Mean 0.00 0.06 0.27 0.00 1.32 1.16

SD 0.00 0.13 0.59 0.00 1.48 1.44  

 

Table 23. Showing the ∆Cq data from Chapter 4 miR-658 in 6 different body fluids. 

 

 

miR-203 

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-203 10.77 12.45 10.51 8.24 18.32 8.13

11.36 12.47 11.29 8.61 15.53 9.09

10.95 13.18 8.67 9.64 12.75 10.07

10.53 8.77 10.55 10.18 0.00 7.84

10.75 8.54 8.65 10.44 16.26 7.77

Mean 10.87 11.08 9.93 9.42 12.57 8.58

SD 0.31 2.24 1.20 0.96 7.31 0.98  

 

Table 24. Showing the ∆Cq data from Chapter 4 miR-203 in 6 different body fluids. 



 

 

miR-588 

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-588 0.00 0.00 0.00 0.00 0.00 2.72

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.66 0.00 0.00

0.00 0.00 0.00 0.00 2.91

Mean 0.00 0.00 0.13 0.00 0.58 0.91

SD 0.00 0.00 0.29 0.00 1.30 1.57  

 

Table 25. Showing the ∆Cq data from Chapter 4 miR-588 in 6 different body fluids.  

 

 

miR-124a  

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-124a 0.49 0.63 0.55 0.22 0.72 3.65

0.00 0.00 2.51 0.00 1.18 0.00

0.68 1.04 2.08 0.34 0.67 0.00

0.00 0.00 0.00 0.00 0.00

0.38 0.00 0.08 0.00 3.46

Mean 0.31 0.33 1.04 0.11 1.21 1.22

SD 0.30 0.48 1.17 0.16 1.33 2.10  

 

Table 26. Showing the ∆Cq data from Chapter 4 miR-124a in 6 different body fluids. 

 

 

miR-372 

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-372 1.05 0.11 0.60 0.14 2.58 5.93

0.08 0.51 1.31 0.00 0.00 0.71

0.43 0.59 0.00 0.43 1.19 0.11

0.18 0.00 0.00 0.00 0.00 4.59

0.09 0.00 0.00 0.00 3.83 4.74

Mean 0.37 0.24 0.38 0.11 1.52 3.22

SD 0.41 0.29 0.58 0.19 1.67 2.62  

 

Table 27. Showing the ∆Cq data from Chapter 4 miR-372 in 6 different body fluids. 



 

 

miR-617 

Blood Saliva	swabs Saliva	deposits Skin Vaginal	material Semen

miR-617 2.41 2.57 0.00 2.99 4.54 3.85

2.59 1.36 0.00 5.47 2.98 1.77

2.61 1.16 0.00 2.09 2.31 2.24

2.84 0.39 1.12 2.02 0.00 4.36

1.71 0.89 1.80 1.90 4.51 6.39

Mean 2.43 1.28 0.58 2.89 2.87 3.73

SD 0.43 0.81 0.84 1.50 1.87 1.84  

 

Table 28. Showing the ∆Cq data from Chapter 4 miR-617 in 6 different body fluids.  


