H

University of
HUDDERSFIELD

University of Huddersfield Repository
Liu, Lande

Kinetic theory of aggregation in granular flow
Original Citation

Liu, Lande (2011) Kinetic theory of aggregation in granular flow. AIChE Journal, 57 (12). pp. 3331-
3343. ISSN 0001-1541

This version is available at http://eprints.hud.ac.uk/id/eprint/24379/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and
* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Particle Technology and Fluidization AIChE Journal
DOI 10.1002/aic.12533

Kinetic Theory of Aggregation in Granular Flow
L. Liu

Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
Abstract

This paper presents a mathematical formulation of the aggregation kinetics in granular flow.
The traditional kinetic theory and its generalised application to granular flow does not alow for
particle size to change with time thus cannot be used to describe particle flow with aggregation
taking place. In this paper, a collision success factor, quantifying the completely inelastic collision
of particles, is introduced into the evaluation of collision rate. The kinetic transport equations are
then transformed to include source terms that account for the effects of particle size and aggregation.
The anaytical solution of the collision success factor is obtained by integrating the rel ative velocity
distribution function over its velocity domain from O to a critical value which corresponds a balance
between the repulsion and attraction forces in a collision. The factor has been found to depend on
the mixture granular energy and the critical relative collision energy.
Key words. Aggregation, Collision success factor, Granular flow, Kinetic theory, Population
balance
Introduction

Attributed to the original work of Maxwell* ? and Boltzmann®, and further interpreted by
Chapman’ ° and Enskog®, kinetic theory was developed to describe the transport properties and
condtitutive relations of gases’. This theory was later generalised and applied to the flow of granular
materials, which consist of particulates in granular scale flowing in a system under conditions such
as fluidisation or shear, to study the behaviour and properties of granular particles’. Since the work
of Bagnold® studying the collisions of identical spherical particles on the effects of mean shear rate
on momentum and collision frequency, the application of kinetic theory of granular flow has been
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extensively investigated in engineering'®** and fundamental physics™%. Blinowski** and Ogawa'°
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formulated a theoretical work using velocity fluctuation. Jenkins and Savage'® attempted to extend
the theory to less elastic but identical and spherical particles. They obtained the balance equations
by using a pair distribution function. Further attempts®* ** were also made to describe a dense
binary and nearly elastic mixture of the granular flow of spherical particles and to compare the
kinetic theory predictions with the discrete element simulation using the constitutive relations for
dense granular flow®. A review on the application of kinetic theory to gas fluidised beds with mono
dispersed particles can be found in the work of Gidaspow?’. As pointed out by Sundaresan®®,
formidable challenges still remain in developing continuum models to include particle size
distribution to address the balances of the transport properties in order to predict the structure such
as clusters and streamers of granular particlesin various flow systems® .

Despite the broad studies of kinetic theory and its constitutive relations on granular flows? 2
3042 it is still true to say that the granular particles in such flows do not occur aggregation, i.e.,
completely inelastic collision; however, in granular flows with particle aggregation such as in
fluidised bed granulation®® *, it is strongly necessary to take the completely inelastic collision into
account in the configuration of kinetic transport equations so as to alow the kinetic theory able to
predict the change of kinetic transport properties of particles such as the number density of particles
interms of their sizes in multiple dispersed granular flow systems.

The work presented in this paper is aimed to fundamentally recongtruct the transport equations
in kinetic theory to allow particle aggregation to take place so that the theory can be applied to the
particle size enlargement processes induced by aggregation. This gives rise to the evaluation of the
collision rate that will have to take into account the completely inelastic collisions so that the kinetic
transport equations can include the source terms that are to do with aggregation.

Assumptions

In order to carry out the evaluation of the collison rate and to form the kinetic transport

equations, several assumptions are made as follows.

1. Inelastic and completely inelastic collisions.
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It is allowed while some collisions between particles deviate slightly from full elasticity -
characterised by a coefficient of restitution e - other collisions result in a completely inelastic
process after which the colliding particles adhere to each other, and can be said to have aggregated

and led to size enlargement, characterised by a collision success factor y .

2. Binary collision mechanism.

In order to evaluate the collision rate, the mechanism of the binary collision” is adopted since it
is valid in relatively dilute systems®™. This suggests when the concentration of granular particles
becomes dense and the mode that the motion of particles is induced can be identified, for instance
by shear or by fluidisation, it is necessary to replace the binary collision mechanism with the related
ones such as the shear induced coagulation®, the ortho-kinetic aggregation*’, Brownian motion*®
and some others as can be found in the work of Williams and Loyalka® in order for the constitutive
relations and relevant transport equations of the theory to be valid in and applied to the specific
particul ate systems.

3. Maxwell’s distribution of particles' velocity.

The distribution of particles’ velocity used in this paper to derive the kinetic transport equations
is regarded as Maxwellian. This distribution function captures the main features of the distribution
of particles in velocity although it is the equilibrium form in Boltzmann's H-theorem™. It is thought
that it is reasonable to start with this function in order to see the effects of the completely inelastic
collisions on the velocity properties of the particles.

4. Thereis a critical relative collision velocity for the attraction and repulsion forces to reach a
balance. Any collision with relative velocity smaller than that will lead to aggregation.

In particulate systems, where conditions exist to allow aggregation to occur that is for some of
the collisions to be completely inelastic, it is understood that some mechanism must generate
sufficient attraction force to overcome the repulsion force that would otherwise make the particles
rebound. Because the exchange of the momentum takes place during a collision and the forces are

essentialy the rates of the exchanged momentum, it follows that the two forces must relate directly
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to and can be parameterised in terms of the initial relative velocity of two colliding particles. Here
we assume that there is a critical relative collision velocity at which point the balance between the
attraction and the repulsion forces is reached. This critical velocity indicates the maximum
possibility from 0 to which two colliding particles could adhere to become an aggregate. This
means that all the collisions between two kinds of particles having an initial relative velocity
smaller than the critical one will lead to aggregation.
Velocity-size Distribution Function and Its Transport Properties

f(v,c,,r,t) isdefined as the probability density function of particles with v (v is regarded as
the volume of individual particles, hereafter throughout the paper ‘particles v’ means ‘particles of

volume v’), c, (the velocity of particlesv), r (spatial coordinates) and t (time) as the variables and
Is denoted as f,. It isalso called the velocity-size distribution function in this paper as velocity and

Size are its two main characteristics and al the derivations made in this paper are concerned with

the properties of the two characteristics. Then, the number density of particles v, n,, is
n, =n(v,r,t) = Q f,dc, . (1)
The total number of particles per unit spatial volume located in position r at timet, N, is
N(r.t)=gn.av, (29
and the total volume fraction e,(r,t) and mass density e.r . (r . is the average density of all

particles) of the particles are

e = O/nvdv, (2b)

el = cnnvdv = d vnav. (20)

where r , is the density of particles v. Let f =f (v,c

\

,I',t) be a property of particles v in terms of

their velocity, its ensemble average value, (f,)=(f )(v,r,t), dong the velocity coordinate, is

. Of e, _Qf.fde, |

{f.) 5t - €)

4


http://www.pdfcomplete.com/1002/2001/upgrade.htm

The ensemble average velocity of the particles v, u,=u(v,r,t), thus becomes

chdc

0, =(e) ==

us=u(r,t) isthe bulk velocity of al particlesin position r at time t calculated as

OJVVWdV _ OJVVWdV

u.= =
Q/nvdv €

S

According to (5), the fluctuation velocity C, isdefined

C,=c,- u,.

(4)

()

(6)

The granular energy of particles v, q,=q(v,r,t), and the mixture granular energy of all particles,

g.=q(r,t), aredefined as

_1 2
qv _érn/<cv >’
Cg n,dv cgndv
qs =
Q1dv N

The diffusion velocity of particles v, w,=w(v,r,t), can be expressed
W, :<Cv>:uv - Ug,
and the mixture diffusion velocity of all particles according to (5) is

dvvvnvdv _ duv - ug)vn,av
Q/nvdv B €,

=ug-u,=0.

A number density weighted diffusion velocity, w =w(r,t), isalso defined as

dv n,dv
. = PN O,
01 dv N
We now consider f, for inagranular flow system, the Boltzmann’s equation is written as
If, + Al . f + 1 _F l

t T 77 fc, m U WK

5

(7)

(8)

(9a)

(9b)

(90)

(10)
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where F, isthe external force imposed on particles v to maintain the flow of these particles and is
afunctionof c,; G, iscalled the growth rate and is a function of v. G, = dwk/dt, here k denotes

the unit vector, its direction is corresponding to that defined by the spatial coordinates, r, for

ingtance Cartesian, cylindrical or spherical system. It should be noted at this point, for the case that
only aggregation is occurring, G, = 0(means no molecular deposition on particles taking place).
However, we still take G, into further consideration without losing its general applicability.

For the property f, of particles v, the rate of the change of this property can be obtained by

integrating (10) over the velocity domain. According to (3), the Maxwell’s transport equation is

given by

ﬂ(nv (f, >) T i qif . F q it
VN YT T o (f - vy XC. ) - Vo Vv f _ v\ s
A el nv< ‘Ht> nv<'ﬂr > K e, m, " Tk LG <'ﬂvk> G

= Qf Jdc, . (11a)

Re-arranging (11a), we have

o), 1 1
TJfﬁ)ﬂ/(f ) +'ﬂv_km’<f Gy)

= Qf Jydc, + nv<'”f v > + nv<E >cv> + nv<'”f Y >&> +<m> n,G.
it fIr fe, m/ \fwk

On the left hand side of (11b), the first two terms describe the overall change of f ,, which is

(11b)

associated with the number density n, of particles v, intime and spatial coordinates; the third term
explains the change of n, associated with f , in particle size coordinate owing to the change of the

particle size itself.
The terms on the right hand side of (11b) account for the sources for the rate of the changes
given on the left hand side of this equation. Thus, on the right hand side of (11b), the first term

describes the change of f, attributed to the collisions that result in the change of number density of

particles v with respect to their velocity and size characteristics; the second and third terms explain

the change of f, itself in time and spatial coordinates, similarly the fourth and fifth terms describe
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the change of f, itself in velocity and size coordinates due to the external force F, and the growth
of particle size. It should be noted that on the left hand side of (11b), the overall rate of change of

f,due to F, in velocity coordinate, Ql
C

i f,dc, , did not appear; this is due to the
fe, 'm,

convergence of fvi f asc, approaches ¥ and - ¥ .
m,

It is worth mentioning that r,dc, describes the rate of change of particles v in the velocity

ranging from c, to c, +dc,, as areault, f rdc, represents the rate of change of the property f,

due to the change of the number of particles v resulting from collisions. Thus, varvdcV measures

therate of change of f , carried by all the particles v through their velocity space. We then have
f,r.dc, =D{nf,)=nD{f ) +(f,)Dn, (12)

It is seen from (11a) with (12), by replacing f , with 1, m,, m,c, and m,c,?/2, the number and
mass continuity, the momentum and the kinetic energy equations can be generated, respectively.
Notwithstanding this, for systems with the change of number density of particles n, taking place

due to such as aggregation, or the ensemble average property <f V> not conserved, e.g., the kinetic

energy ininelastic collisions, the right hand side of this equation must be evaluated thus requires f,
to be known.
Collision Rate and the Transport of a Property of particles

For the particles specified by size v and velocity c,, therate of collisions is considered in such
a way that contributes in quantity to these two characteristics. The detailed derivation of the

collision rate and the transport of a property of particles is given in Appendix. Here we only

describe those results. The collision rate is written as
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2

rv:c\fﬂeevz(l_y ev')fv'felcev'gev'_(l_y )f fe a/ge\/]sz

(c., * )dwdc, de
2

+©c\®27yeve v-e e evegeve e\/e (C >*k)dV\kiC de (AlO)

2

—(‘mwfvfcevge,s (c,, * JaWdc, de.

In (A10), f with subscripts v, e and v- e refers to the probability density function for
different kinds of particles specified by their sizes (and velocities abbreviated). Symbols with “¢
refer to the properties of reverse collisions. ¢, =c, - ¢, is the relative collision velocity between
particles v and e and s is the inter-distance of the two colliding particles referring to haf of the
addition of their diameters (of volume equivalent spheres). g,, is the radial distribution function’.
e, isgivenby c,'=-e,c,, .y with subscripts specifies its value (the probability) for a particular
collision to succeed for an aggregation. ¢ isthe Taylor’'s expansion when the sizes of two particles
are taken into account in a collision to give the relative position of the two colliding particles. M,
is the mass ratio between the mass of particle v-e, m,,, and the addition of the masses
(m,_,+m,)of particlesv- e and e, whichmeans M, =m,_. /(m,, + m,). dW isthe differential
angle multiplied by the square of a sphere radius to characterise the differential area of a spherical
surface with CﬂWz 6sinwdw(§p d =4p, herew and ] represent the filling angles in spherical
coordinates.

On the right hand side of (A10), the first term describes the net increase of particles v in terms
of their velocity characteristic attributed to the forward and reverse collisions (without changing the
number density n,of the particles in their size v). The second term gives the birth rate of the
particles with regard to their size v, which is due to the completely inelastic collisions between

particles e and v - e ; the third term shows the death rate of the particles v owing to the completely

inelastic collisions between particles v and any sizes of particles. Together the second and third
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terms detail the net increase of particles v in terms of their size (number density n, of the particles

v has been changed).

The transport of the property f iscalculated as (f,r,dc, and givenby (A11) as

MnG,)) , 1 i 1, M F q it
— f - v _ v \ e f _ v
P ,(f.c.) nv< .ﬂt> <.”Ir *c> n, . xﬁ v <, (f,G,) <ﬂvk>vav

= ‘“‘fv'—fv)(l—yev)fvf Co e, Z (c * )ded\Wdc, dc,

2
+@ A\ 1 2y evefvefecev egevesez:e (CG‘V >4()(je (All)

2 .
6 V e evgev SZ/ (Cev *betjﬂ\/\ucedcv'
a

As can be seen from the right hand side of (A11), the first term is the rate of net change of f
contributed from the collisions with regard to the velocity characteristic of f, (without changing
n,); the second and third terms together give the rate of f, attributed to the change of f, interms

of its size characteristic (with n, changed). Thus, according to (12), we have the following relations

2

nOf ) = ot - T o)y o)1, 1 Cogo 28 (c * )dedWhc, dc, (133)
A\ ,\\ 1 Sev—e2
< >D’1 Qﬁ zyevefvefecevegeve 4 (Ce\/*)de
(13b)

¥
~

- Qy evaf Ce\/ge\/ (C *)jelfjv\ﬂc dC

As a simplified case for (A11), let f, =1, thenf '=1, asoy , =0 (without aggregation of

particles) and G, =0 (without molecular deposition for particles growth), (Al1ll) becomes

%+‘”l><nvuV =0, multiplying both sides of it by v and integrating over v space, we then have

]

% + 'ﬂl xe U, = 0. These are the typical continuity equations in multiple phase flow?” without the
r

change of particle size and number density taking place.
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However, with y , 1 0 and f, becoming more complicated such as mc, and mc,’ /2,
evaluation of (13a-b), i.e., the right hand side of (A11), becomes necessary and is presented in the
next section for deriving the kinetic transport eguations. It is worth noting at this stage that the
transport equations for continuity, momentum and kinetic energy for al the particles, the
conservation of mass and momentum needs to be proven and the dissipation of the kinetic energy
needsto be given sincey ,, * 0 and the restitution of coefficient e,, are involved in the evaluation,
i.e., ether (13a), (13b) or both not equa to 0 thus require detailed calculation.

Kinetic Transport Equations
To generate the kinetic transport equations, i.e., to evauate (13a) and (13b), it is necessary to

know the mathematical form of f,. Asindicated in (1), the following approximation is made
f, = f(v,cv,r,t)@1(v,r,t)l (cv,r,t)z nl,, (14

r t)=| , and is corresponding to the normalised velocity distribution function of

vl

where | (c

particles v. This approximation suggests a mutually independent behaviour between the particle

size and velocity expressed in f,. Thus, | , implies the probability of the particles with size v
appearing to have velocity c,. According to Assumption 3, |, takes the form of Maxwell’'s

distribution, we then have

3
em @ € m,-u,)u
fv =nG_——I eXp& #U’ (153)
gzpqsﬂ e qu G

where g is the mixture granular energy defined in (8). It is worth pointing out that this function can

be extended to higher orders according to Chapman-Enskog's approximation’ but it has captured
the main features of the distribution of the particles in terms of their velocity. According to (6) for

thefluctuation velocity of particles, (15a) becomes

(15b)

10
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Taking the 0" order of C,, (meansrelatively dilute systems, the distance of particlesto travel

for acollision is much greater than the sizes of the particles), i.e., ¢, =1, (Al1l) is changed to

Tlnu(fa))y, 9 <'nf > <'nf > <'nf F> 1 <'ﬂf >
e - () n (T ) n(Texe e Lo f G Y- (20 )nG
qit I >ﬂv< v v> n, qt n, aIr v n, ﬂcv m, ﬂVk >ﬂv< v V> ﬂVk NG,

s,

=n,On.g. % @iff - 1)Ly W (C. K )dWEC dC, de

2

v 1 S
+tO0——— n —=2_ ¥ ...! (C,, >k )dWdC_dC de 16
QZMV_ezy e,v—env—e ege,v—e 4 @V v-e e( ev ) e Vv ( )
¥ S 2
& nVQy el Yo % C\E\ﬁ vI vI e(Cev Xk)decedcvde
The above transformation is carried out with f(cv,v,r,t)dcV = f(CV,v,r,t)dCV and
I (c,, X )dwWhe,de, =11 .(C,, % )dwdC, dC,, (17)
where C_, =C, - C, is the relative fluctuation velocity. Additionally, dC,dC, can be changed to
the form of dC_dC,, (C, is the mass centre velocity of particles v and e as defined smilarly to
that in (A9)) with

1(c,.c.)

1(c..c.,)

dc,dc, :‘ dc.dc,, =dc.dc,,, (18)

and the following expressions’

dc,, =(dc,,),(dc,,),(dc,,), =C,*dC,aw,

(19)
dC, =C_dC_dw, dC_dC, =C_2dC,dWC_ *dC dW.

The continuity equations

The continuity equation for the number density n, of particles v can be obtained from (16) by

letting f , =1, then f ,'=1 asfollows

i, , 1 1
—~+ U +—xG
ﬂt ‘Hr Xnv v ﬂVk V= v
2
- lezy ek Ges 5" Qe Y .ol (Co K JAWKC,OC, (20)

v-e
2

-1, QY N le SZ de g ol « (Co, X )dWHC, dC,

11
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On the right hand side of (20), the triple integrations of the normalised Maxwell’s velocity

distribution functions |, ., |, and |, over the domains of W, C, and C, can be calculated

according to (18) and (19) for the values of C_ and C,, ranging from O to ¥; (20) thus becomes

fn , T T
T A 'nka

1 21
SilRc8oq (rme+me)32y : n nde- n & EhLMFM)E ane.( )
Zgg m/_err]e u ev-e eve e\v-e e e Qe m/rr]e l:l evJdeyT ev e

Thisis the standard population balance equation®® **** in the form of aggregation and growth
and has been widely used in the modelling and simulation of engineering particulate systems™ > to
predict the particle size distributions® >3 when size enlargement events occurred.

(21) has some interesting features presented as the following. Let x (v) be a property of size v,

multiply it to both sides of (21) then integrate the equation over v in the domain (0, ¥), also

according to (99) for u, =u, +w,, we have

5x( )ﬂ Vdv+ QX(V)‘l;”r (uS+WV)dv+(‘5x(v)ivavdv

vk
2
:%(S(‘SX( )W: V9SS e n n,dzde (22)
1
- Q0¥ MW% 0,96 o NN, dedv.
e G

The firg term on the right hand side of (22) is obtained by exchanging the order of the integrations
for v- e and e andthenlettingz =v- e thusz 1 (0,¥).

Replacing x(v) with 1 in (22), according to (2a) and (9c), the continuity equation for the total

number of particlesis

N1 _ 1 ¥ ¥égpg (m +m)d 2
—+—xN(u,+w,)=-= & ’ oS o NN dedv. 239)
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In (234), the term éﬂikvavdv:O is due to the fact that n,G,® O as particle sizev ® 0
v

and ¥. Note in this equation, the convective flux is with velocity u, +w, as uy is the particles
volume fraction weighted bulk velocity instead of number weighted thus the number weighted
diffusion velocity w is generated as an extra term. It is worth pointing out that (23a) explains the
decrease of the total number of particles in a quantitative way for the systems where aggregation
takes place.

Similarly, let x(v)=v and m, (note, v=v-e+e=z +e and m,=m,,+m, =m, +m, the
right hand of (22) is egual to 0), the continuity equations for the volume fraction and mass density

of al particles according to (2b), (2c), v/t =0, fv/qr =0, Im, /Nt =0 and m,/r =0 are

e + T oeu. =0, (23b)
m qr
fle.r.) +1><(e ru,)=0. (230)
T[t T[r S° STSs

(23b) and (23c) demondrate the conservation of the total volume and mass of particles,
repectively, for the aggregation of particlesin granular flow systems.
The momentum equations

Similar to generating the continuity equations, the establishment of momentum and granular
energy eguations is as well for both the particles with a specific size v and al the particles in the
system. The purpose to establish the equations for al the particles is to prove the conservativity
(total momentum) and dissipativity (total kinetic energy) of the particles in the case of aggregation;
and in particular to calculate the dissipation of the total kinetic energy due to the inelastic collisions
and aggregation of particles.

For the momentum equation of particles v, by letting f, =mc,, after the collisions with

particles e, the momentum of particles v ischanged to f ,'=m,.,", thus we obtain

fv'_fv:rn/(cv'_ Cv):rn/Me(l-i-eev)Cev’ (24)

13
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which isdueto c, =c,- M =c,- M.

eev? V eev’ :CC’CE\/:CE\/’CE\/':CE\/'and Cev:_eevcev"
Then, the momentum equation for particles v according to (16), fc,/ft=0, Yc,/fr =0 and

1C,/fir =0 (c, and C, are not the functionsof r and t) is

flnmu,), T 1 P, Tz
o tgonmu(u rw e Anmu,G )+ o7 - R
N 2
= an N, (1_ y ev)(1+ ea/)geva)qss e kde
v | 4q,mk pa,(m. +me)u%u
+ an—eney e,v—ege,v—eS e,v—e2_|_s—1 + rmuse . u y (25)
fm..m,)2 ¢ MM 0
‘ (m+mJm, )
_nQne)/evgevevlqés _a)—k-*_u e&)q m menL yde!
%) e m u b
where P, and T, are the normal solid pressure and stress tensor of particles v, respectively.
R =nm((C,)(C.)). (269)
%v = nvrn/<(Cv)i (Cv)j >i1j ) (26b)

(25) essentially explains al the forces that are imposed on particles v, causing the change of
the momentum of these particles as a whole in time, spatial and size coordinates. The change of the

momentum of particles v is thus attributed to the external force F,, collisions that particles v

encountered (the first term of the right hand side of (25)) and the net change of the number of
particles v owing to aggregation (the second and third terms of the right hand side of (25)).
The total momentum of particles can be obtained by integrating both sides of (25) over v

domain (0, ¥), the left hand side of this equation thus becomes

Tewr ), 1 >(esr uu,)+ L e N(F,), (27)

1-|- SsTSsTSs 1-|-r 1-|-r S

where the transformation is made according to (2c), (5), (9b), (S Pdv=P, and (S T,dv=1,.

To obtain the integrated terms on the right hand side of (38), it is necessary to trace back (16).

For.the first term of the right hand side of (16), asf,'-f, =m,(c,'- c,) and the integration over the

14
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entire domain of size v is being made, it then represents the change of the total momentum of

particles v and e dueto all the collisions between them. This term can thus be written as

¥ ¥ S

QMO NI~ cmm( ¢ )a-y ) . (C,, %)dwkC, dC, dedv
(28)

:%5 ”vc‘:; ,Ge, > cndrmc -mg, +mc,- mc, J1-y o ) | (Cq, % JAWIC, dC, ded,

which isequal to 0 as mc, + m,c, = m.c,'+m.c,".

With f,=mc, and m, =m, . +m,, the second term of the right hand side of (16) after

integration over v domain becomes

66 2y eyv-e ve egeve eve m V' v-e e(CW*)d\/\UCedCVdedv
2M, . 29)
N 1 Sev e A\
= Q C Ey eyv-e V enegev e mrm er e mece)l v—eI e(Ce,v—e Xk)decedcv—ededv’

inwhich mc, =mc, +m,_.C, . isdueto the fact that c, is the mass centre velocity of particles e

and v - e as expressed in (A9). Similar treatment to that in (22) by exchanging the order of the

integrations for e and v and letting v- e =z transforms (29) into

56%)/ e,\v-e Venegeveseve C‘E‘ﬁn‘l/ ere I’neC )lve e( eve*)d\/\ucedcv—ed\/de
\¥ \¥ 1 Sev e2 A\
=Q05Y eveleMbeve @M. o, e * M) ol o[C.ye K )JIWAC,AC, d(v - €)de

2

Se41 aymec, +mc,)l, ! e(C&Z >4<)d\/\ijedCZ dzde. (30)

= Q QEy ez nz nege,z

As particles z and e in (30) are in-distinguished and the integrations over their entire domains are

being carried out, (30) can be written as

Q Qy e\v V ege,v ev @’TLCV \ e(Ce,v >4()(j\/\ljc:e(jc:v(jV(je’ (31)

which is essentially the same as the integration of the third term of the right hand side of (16) over

v domain with f, =m,c, . Thus, the second and the third terms of the right hand side of (16) after
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the integration over v with f , =m,c, are cancelled. The momentum equation for all the particles

taking (27) forward hence becomes

fle.r.u 1 P, T = _
(ﬂ ), ><(esrsusus) o N(F,)=0. (32)

This has given a detailed mathematical proof for the conservation of the total momentum of all
the particles in a system when aggregation occurs.

The granular energy equations

The granular energy equation of particles v can be obtained by replacing f, with mc,” /2 into
(16). Since the granular energy is defined with fluctuation velocity as expressed in (7) and by
carrying out the integration for the right hand side of (16) for f , =mc,”/ 2, for particles v, their

granular energy eguation becomes

3
2

éflina,) , v 1'ﬂ(nvrmu ), 1 2 o Wy T0m, (ug o, )]
& X(nvqu gt IR T Anmul(u, Wv)lg e

all l I, .30
= >{nm(u w, ), ]%+ G+ R U T +2ﬂka(nquGv) nm/((C, +u,)>F,)

-} 24200, re, .
T (m, +m.)2

¥ ) 3 I
= nl-v . )oas o + 1g+3pqs(1+ee,)(us><k)>_'/de
mz b

1

1 3 . = v

+ QN oY ev-0TereS ove m/, 2pq,2 +§pqs(rne+rn/—e)32u52+4pqs(us>«)l,de
QNN e % L I

fam +m. (mm.)z € e U (mm, )2 |,

i 3 1
N :|_V2pa2 S, ¢
i m Bgrm

8. (U, xkamoz

u
6U
u
g m g

SR

- 30, (u, )+ mu 220+ )
u

u
yde, (33)
é mm, b

where q, isthe heat flux defined as q, = nvrm<CV2CV>/2.

As the property being transported is the actual kinetic energy (m,c,”/2) but q, is related to the

dot product of C, ((C,>C,)) with also ¢, =C, +u,, it is thus seen that on the Ieft hand side of
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(33), two extra total differential terms are generated with respect to the bulk velocity u,. They are
explained as follows.

The second group (two terms with u.> in {}) describes the transfer of the kinetic energy of
particles v moving as a whole with all other particles; the third group (two terms with (u »w, ) in
{}) is understood as the transfer of the kinetic energy of particles v due to their diffusion with a
velocity w, relative to the bulk particles with the ensemble average velocity u,.

The physical meanings of other terms on the left hand side of (33) are similar to that explained
in theworks of Davidson and Harrison™®, Kunii and Levenspiel®” and Gidaspow?”’.
The mixture granular energy of all particles can then be generated by integrating both sides of

(33) over particle size domain (0, ¥); thus the left hand side of (33) becomes

3 é1(Nqg, u, lefier uq
5 (Na.) , >t(Nqu)l,jI Zej—) ><(eruu)

& 1t (34)
1 M, .= 1.
+W>QS+PSW>1JS+TS'T“_ us esr s<(Cv+us)va>’

where g, = (qudv, nd,G,converges with v ® 0 and ¥; and the terms with the dot product of

diffusion velocity w, after integration are equal to 0 according to (9b).

For the integration of the right hand side of (33) over v, considering the terms of the right hand
side of (16), a smilar treatment can be made as to that for the total momentum equation of all

particles. Therefore, the kinetic energy dissipation dueto the inelastic collisions, DE_, the first term

of the right hand side of (16) for f ,=m,c,’/2, with the integrations over v and e from 0O to ¥

being carried out, which indicates particles v and e are in-distinguished, becomes

PSS i 2
DE, = Qn Qn ge, 2 (EDEHL(CV -, Xl—y o) (C, % )dwWdC, dC, dedv
2
= Z(‘S nv()¥ N, ge, SZ () rnlcvlz_ rnlcvz + m,C, 2- mecele_ y ev)l vI e (Cev )k)decedcvdedv (35)

l
e mm, u

:Snvéne(l_ ev)gevsev (
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As can be seen in (35), because e, £1 andy ,, £1, then DE_ £0.
The second term of the right hand side of (16) for f , =m,c,?/2 with aso the integration over

Vv becomes

2

\¥ N 1 S eyV-e 22\ 1 2
’ [l XK
Q Q Yy e,v—env—ene ge,v—e 4 @5 m,C, (Cev )dV\UCedededv

2 v-e’ e

2

M
\¥ \Vl Sev-e \\\1 2
= Q05 evelveMbeve @D (Mo + M) Tl o(C... . )AWHC,dC,  dedv
1

4

_ Yy n Se,v—e2 -,

Q 12y e,v—env—e ege,v—e 42_ (36)

B M, ¢, 2+ M g2+ veMCeCey (g JawniC, dC,  dedv

m..+m

\¥ \¥ 1 SEZZ \\\1 2 2

=005 e NG M,c,2+M.c2)l,1.(C., *)dwiC,dC, dedz
2

\¥ \¥ 1 SeZ \\\1 2”& rn(-ICZ Ce
+ = n : I I _{C. >)JdWdC_dC, dedz,

ngye,znz ege,z 4 CEDE nL +rne z e( ez ) e z

where v-e=z As M, +M_ =1 in (36), this term 21 n Sez
. 7 e ’ ) QQ 2y e,znz ege,z 4

@‘]‘)%(Mzczz +M_c. )1 e(Ce,z >4<)dV\AjCedCZ dedz is cancelled with half of the integrated third

term of the right hand side of (16) over v with f, =m,c,?/2, the kinetic energy dissipation due to

aggregation, DE_, is then written as

s_? 2 c,C
; @é mznjj =% 1. (c., *)awdc, dc, dedz
m, +m, 37)
E&Y g Sev el (C., % )Jawdc, dC, dedv.
Q Q 2y e,vnv ege,v 4 %m/cv Vv e e,V e v "

DE, = & &2
a _QQEy e,znz nege,z

It is worth pointing out in (37), as the integrations over all the size and velocity domains are
being made, v, e and z then become in-distinguishable particles, thus, m,c,? can be understood

2 2
C
as nL+Zn'L‘ + rne_:_:e , then DEa£O With C, :Cz +US, Ce =Ce+us’ Cz =c:c_ MeCeZ and
m, m +m

C,=C_.+M,c,, , after theintegrations over W and C carried out, (37) is
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DEa :5Q¥y e\v V egev e\v bdedv’ (38)

where

N\b)

1
2(m, +m,)

—)- i o /

Jﬁ gy fm +mu, +4“qu(“ U<me-nm

@:D> (D> (D~

(39)
L1 Zmlzme 8qszme(m me) 3V2p
= m,zme(u >k)
ymmo(moem) 2 ty)

The total kinetic energy dissipation due to inelastic collisions and aggregations thus becomes

DEd = DEc + DEa = 6 6 n,nNe Qe S e,vz[(l_ y e,v)(eev2 - 1)3. ty e,vb}jajv’ (40)

1
where a = S2P0s (M, +m,)(F
& mm g

3ét(Na,) >(Nq u )g ;e‘ﬂei_)esrsu ><(e rus’u )

28 Tt

. The mixture granular energy equation can then be expressed

(41)

UL SO S _
+ﬂ>qs+Psﬁ>Us+Ts'ﬂr Us- &I s<(c +tu )XF> DEd

In this section, because the actual velocity c, is used and the completely inelastic collisions are
taken into account in the derivation of the kinetic transport equations, the effects of the bulk

velocity u, and the collision success factor on those transport properties particularly on those of the

individual particle phases specified by their sizes are detailed. It can be seenin (21), (234), (25), (33)

and (41), by letting y ,, = O, those equation are then relaxed to the traditional ones in the classical

kinetic theory of granular flow** % ',

The Collision Frequency, Relative Velocity Distribution Function and Collision
Success Factor

It should be mentioned that the constitutive relations” **2”, which are the properties of particles
to do with the products of their velocities, for instance, the mathematical expressions for the normal
pressure, stress tensor and heat flux, and the coefficients calculated in those products such as the

shear and bulk viscosities and the granular heat conductivity, are not affected by the aggregation of
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particles thus remain the same in their forms and can be found in those references listed above.
However, it must be pointed out that in granular flow systems where the aggregation of particles
takes place, the values of those particle size related coefficients such as viscosities and conductivity
are expected to change over time snce the particle size isenlarged over time.

The collision frequency measures the number of collisions occurring to a particle in a unit time

and aunit spatial volume. The number of collisions between particles v and e , N,,, used to count

the number of the collisions between the two kinds of particles occurring in a unit time and spatial

volume, is expressed as

2

N,, = n,vn.eg,, SZ i)« (Co, % )awdC, dc, (423)

after the integrations carried out, it then becomes

1

Nev = NvNegevS G‘/ZWEZ’ (42b)
e u

where N, =n,v and N, =n_e are the numbers of particles with size v and e per unit spatial
volume, respectively. It should be noted that in (42a), for mono-dispersed systems, the right hand
side of the expresson should be multiplied by % in order to eliminate double counting. The
collision frequencies of a particle v to al particles e and to all other particles can thus be given by

(433) and (43Db), respectively.

_ N, _ 2€8pq, (m, +m, )0
I:ev - & = Negevsev & : 0 (433)
N, § mm g
(m, + m )2
_ ¥ é8pg, (m, +m, U2
F,=0)N0.Sa & - de. (43b)
© & mm g

The collision success factor, y ,, was introduced to quantify the fraction of the completely

inelastic collisions between particles v and e such as that seen in (A3). It is used to calculate the

number of the collisions between the two kinds of particles that leads to aggregation. From a more
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fundamental point of view, for a single collision between a particle v and a particle e ,y , gives
the probability of this collision to succeed for an aggregation event.

In order to obtain the analytical expression of y ,,, we now consider the collisions between
particles v and e, N,,, as expressed in (42a); owing to dC,dC, =dC_dC,,, after the integration

over the mass centre velocity C_ carried out, (42a) is then transformed into

3

2

_ € mm Ux_ , € mmcC,S U
Nev - NvNegevS ev2 2p Zé { Cev exp UdCev . (44)
( )éZp(nwnL)qu @ g 2(m +m. g

So dN,, /dC, is the relative velocity distribution function, which is a density function that
interprets the collisions between particles v and e per unit spatial volume and time by the relative

fluctuation velocity C,, between the two kinds of particles

3

2 2

dN,, _ 2 mm, U 5 € mmcC,° U
I~ Nv Ne ge/s ev 2p é { Cev exp . (45)
dc,, ( )é2p(ma+rm)qu g 2(m +m.g

The normalised relative velocity distribution function f,, =dN,, /(N,,dC,,) combined with (42b) is

¢ mm U _ 5 € mmcC, U
N,N.9.S. (20 ) 67—~ C, exp
f — ( )eZp(me"'m/)qu g- 2( +m/hsu
& N (46)

According to Assumption 4, the collision success factor y ,, can thus be obtained by integrating
the normalised relative velocity distribution function f,, over the domain of C,,, [0,C,); here

C,, - isthe magnitude of the critical relative collision velocity C,, , then
rr]errllc *2 u é rr]errllc %2 U
ev ‘] eX é_ ev ‘]

u u
2m +mYg g 2m +m, g

Co

é
Yo = Q fedeev =1- g'-*- (47)
€

(47) has clearly shown the dependence of the success factor on particle sizes (as the masses of

particlesv and e, m, and m,, respectively, can be converted into their sizes) not only upon the
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critical relative collision velocity and the mixture granular energy q, of all particles in the system.
(47) dso impliesif y ,, and g, are known, it can be used to calculate the critical relative collision

velocity —an import attribute in characterising the collisions of aggregating particles.

*2
Defining a critical relative collision granular energy function, g, = % (47) becomes
2(m, +m,)
® g, 0 g, 0
Yo =1 §1+—ze><p§- =z (48)
qs 7] qs %)

Since q,, is the kinetic energy property of an individual collision and g is the mixture

granular energy of all the particles in a granular flow system, (48) interprets that both the individual

collision and the system’s ensemble average kinetic energy characteristics determine the success of
an aggregation. Figure 1 illustratesthe change of y , in qev* /q,.
(Figure 1)
From Figure 1, it can be seen when the value of g, /q, reaches around 3.0, the dramatic

increase (to nearly 0.8) of y , starts changing to arather slow pace, which indicates that efforts on
increasing the value of g, /g, to increasey ., will then becomes almost no efficiency and not
worth experimenting. This figure can provide such useful information to identify therange of y , in
which its large value can be achieved with little effort on increasing the ratio of q,,, /q..

When g, and g, are regarded as the mutually independent variables, a 3D plot of y , versus
0. and g, isgivenin Figure 2.

(Figure 2)
The significance of Figure 2 is that it is able to point out the direction quantitatively to which

the best match of g, and g, can give the most achievabley , vaue; for instance, in general as
seen-in this figure a large q,, and a small g, would give a largey ,; however, if large value of

0., cannot be achieved, it is still possible to obtain a large value of y , with a small value of g,
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even the chance is slim but can still occur (indicated in the down-left corner but on the upper
surface of Figure 2).

If for a system, aggregation is to be avoided, Figure 1 and 2 can give useful information for
how the least value of y , can be obtained by changing the values of q,, and q..

It can also be suggested from Figure 1 and 2, since the collision success factor depends on the
ratio of the critical relative collision granular energy to the mixture granular energy, under the
condition that the flow of the granular particles can be maintained, the way to increase the
efficiency of the successful aggregations is to increase the ratio by either reducing the turbulence of
the granular flow system or increasing the critical velocity which for instance for a gas fluidised bed
granulation system would be achieved by increasing the surface tension and viscosity of binders™.
However, it may be worth pointing out that reducing system turbulence in order to increase the
collision success factor should be taken cautiously as this may cause a system’s momentum collapse
(particles are not well suspended) thus particles may aggregate in a rather non-uniform way and
their size distribution will not change in a gradually progressive fashion. The solution of the success
factor suggedts that, increasing the critical relative velocity, or, using the particles and binding
materials resulting in higher critical velocity, and keeping a degree of system turbulence to maintain
the momentum of the particles can help increase the successful collisions efficiently.

It is also worth mentioning that (48) has established a link between the fundamental
understanding of successful particle collisions leading to aggregation and the engineering processes
of particle size enlargement owing to aggregation. (48) provides a method to quantitatively control
the growth of particle size in granular flow systems.

Since the normalised relative velocity distribution function f,, is given by (46), it may be
worth calculating the ensemble average relative velocity (Cev> that measures the intensity of a

collision in an overall perspective.

1

(Ca) = Q CarfutiC :272"(””‘@;”“)‘%5 K. (49)
e u
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It is seen in (49), the average collision intensity is related directly to the mixture granular
energy of the granular flow system and the masses of the colliding particles.
Concluding Remarks

The work presented in this paper has given a mathematical description for the aggregation of
particles in granular flow. It is seen from those derived kinetic transport equations that, for a flow
system where aggregation of the particles takes place, those conservative equations were shown to
be able to describe the balances of the population, momentum and kinetic energy of the particles
characterised by their size and velocity. In particular the number continuity equation is transformed
into the typical population balance eguation in the form of aggregation and growth; while the
momentum and kinetic energy equations for the particles of the individual phases have shown the
significance of the aggregation depending on the value of the collision success factor. It is expected
that solving the three types of conservative equations together would give a complete prediction to
the distributions of particle velocity, kinetic energy particularly to the size of particles for the
systems where the motion of particles in spatial coordinates, i.e., convection (segregation), and in
their own sizes due to aggregation, are taking place smultaneously.

The dissipation of kinetic energy due to aggregations is expected to be highly related to the
collision success factor, the mixture velocity and granular energy of al particles. Moreover, for a
single particle phase, it aso depends on the sizes of the colliding particles.

The solution of collision success factor gives the probability of a collision to succeed for an
aggregation from the kinetic energy point of view athough the critical relative collision velocity
needs further research to detail its dependency on processing materials and conditions. It is still true
to say that the success factor can provide a quantitative way to practically control the coefficient of
particle collisions that result in aggregation. It can thus be used to assess the efficiency of the
process of particle aggregation in granular flow systems.

It needs to be mentioned that particle aggregation does not affect the mathematical forms of the

condiitutive relations; however, when the probability density function is extended to the higher
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orders of the Chapman-Enskog approximation, the corresponding terms associated with the

integration of the velocity distribution function in the kinetic transport equations should aso be re-

evaluated particularly for the kinetic energy dissipation and the collision success factor.

Finally, it also needs to be pointed out that a validation of this theory is needed, which is

presented in a subsequent paper on the application of the kinetic theory of aggregation to a gas

fluidised bed granulation system.
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Notations

Roman symbols

o magnitude of actual velocity ¢

C magnitude of fluctuation velocity C

€ restitution coefficient in the collision between particles

f velocity-size distribution function

F collision frequency

g radia distribution function

m mass of aparticle

M mass ratio of aparticle to the total mass of the pair of collding particles
n number density of particles

N total number of particles per unit volume

N, total number of collisions between particles e and v per unit time and volume
P normal pressure of particles

collision rate of particles

time
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Y the size of individual particles in volume
Vectors

c actual velocity of particles

C fluctuation velocity of particles

F the external force

G growth rate of particles in volume size

k unit vector

q heat flux

r spatial position vector

u ensembl e average velocity

w number density weighted diffusion velocity of particles
Tensors

T unit tensor

T stress tensor

Greek symbols

D change of properties

e the size of individual particles in volume

f property of particlesin terms of their velocity
J the filling angle in spherical coordinates

I normalized velocity-size distribution function of particles
W solid angle

y collision success factor

r density of particles

S inter-distance of two colliding particles

q granular energy of particles

w the filling anglesin spherical coordinates
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c Taylor’s expansion

X property of particles by volume size
z dummy variablefor v- e
Superscripts

' reverse collision
* critical property

Subscripts

n

ensemble particles

Y the size of individual particles in volume
e the size of individual particlesin volume
ev collisions between particles e and v
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Appendix

The detailed derivation of the collision rate is presented in the work of Liu*, in the following
only a concise version of such aderivation is given.

Consider two kinds of particles with sizes v and e respectively having collisions based on the

mechanism of binary collision® (Assumption 2) in differential elements dWtc, dvdc,dedrdt , the rate

of the forward collisions, which results in the decrease of the number of particles characterised by

C,, iIsexpressed in (Al). This expression aso takes into the sizes of the colliding particles, i.e., if a

particle v Is situated at position r then the colliding particleemust beat r +s k.

2

: (c,, % )JoWdc, dvdc,_dedrdt , (A1)

S

Using Taylor’s expansion for f, (r +s Kk ) (A1) becomes

S,

: (c,, % )JdwWdic, dvdc, dedrdt , (A2)

fV fecevgev

é g" U
where c,, = &+ é_ ig% oK xlg f. Q.
g m MmMe re g

According to Assumption 1 that some fractiony ,, of the collisions occurred in a completely

inelastic way that leads to aggregation, (A2) can then be transformed into
s 2

: (c,, % )dWtc, dvdc, dedrdt

(1_ y ev)fv fecevgev
. (A3)

: (c,, % )dwWtc, dvdc, dedr dit.

Y o fifeCole
Similarly, the collisions between particles v and e with reverse velocities c," and c,’
respectively resulting in the increase of the number of particles v characterised by c,, taking into
account the completely inelastic collisions, can be expressed
12

Ser (¢, %)dWdc, dvdc, 'dedrdt (Ad)

(l_ y ev')fv' 1:e'Ce\/'ge\/'

where the symbols with “¢ refer to the properties of the reverse collisions.
We aso have the following relations
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dw=dw,s '=s,.,C, '=-€,C, . K'=-K,

Cv':Cv+Me(1+eEv)Cev’Ce':Ce - Mv(1+eev)ce\/’ (A5)
dc,'dc,'= Mdcvdce =e,.
Tic,.c.

Subtracting (A3) from (A4) yields the net increase of the number of particles v characterised by c, .

Also according to the relationsin (A5), we have

2

[eevz(l_ y ev')fv' 1:e'Ce\/'ge\/'_ (1_ y ev)fv feCevgev]SZ (Cev Xk)d\/\dcvd\/dcededrdt

(A6)

2

-y o ff.cu0, S% (c,, > )dWic, dvdc, dedr dt.

It is clear that the completely inelastic collisions between particles v- e and e can also result

in the net increase of the number of particlesv. Thisis given by

2
1 S ev-e

— f f.c
2y e,v-e "v-e ‘e e,v-ege,v-e 4

(c..... * )awtc, . dvdc, dedr dt, (A7)
where %2 eliminates the double counting of the collisions, and, e ranges from O to v. It is worth
pointing out that there is no reverse collisions between particles v- e and e contributing to the

increase of the number of particles v as (A7) is only concerned with the size characteristic of f,

and f,. (A7) can also be transformed into

2
1 S eyv-e
Wy eyv-e 1:v—e 1:eCe,v—ege,v—e Y

v-e

(c,, % )dWHc, dvdc, dedr dit. (A8)

Thisis because

CV = Mece + MV-eCV-e’CV-e = CV - Mece,v-e’ce = CV + MV-eCe,V-e’
, A9
Copo = Co ,d(v- e)=dv,dc, dc, = Mdcvdce =1 dc dc,, (A9)
Y MV-e 1-[((:V’(:e) Vv-e

where c, isthe mass centre velocity of particles v- e and e, i.e., the velocity of particles v.

Adding (A8) into (A6) vields the differential form of the number of collisions occurring to
particles v to give the net increase of the number of particles v in terms of their size v and velocity

c, characteristics. With the integrations over the domains of W, c, and e, the total number of

collisions occurring to particles v per unit time and spatial volume is obtained
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2
r, = c‘@‘:{eef(l—y o) Co Oa - Ly o)F, e cevgev] (c., % )dwdc, de
2
Qc\biyeve vefe e,v- egevese;-e (C >(k)dv\kjc de (AlO)

2

(c * JdWdc, de.

(1) A cevgev
As can be seen from (A10), the first term of the right hand side is the net birth rate contributing

to the velocity characteristic of f,; the second and third terms together give the net birth rate of
particles contributing to the size characteristic of f,.

For a property f, of particles v in terms of their velocity c,, the change of the property due to
the collisions occurring to particles v is expressed as (f ,r,dc, ; therefore, according to (A10), the

transport equation (11a) is obtained

ﬂ(n\/ﬂifv»_l_ﬂ_t)ﬂv(f va>_ nv<m>_ nv<m>cv>_ nv<ﬂfv >&>+i>ﬂv<f va>_ <ﬂfv>>‘ﬂva

1t r fc, m,/ vk vk

2

= ‘“‘fv'—fv)(l—yev)fvf €0y 28 (c * )dedWtc, dc,

2
+d‘ﬁ A\ 1 2yevefvefecevegevese;_e (C >4()d (All)

A2M

¥
- QY e fufe o0, (c >k)deudV\Uc dc,,
where the first term on the right hand sde of (A11) is gained due to
2
c\ﬁ\ﬁ Veevz(l_ y ev') fv' fe'Cev'gev'SZ (Cev >k)d\/\ﬂcededcv
l2

= O LY &) fe'Ca'Oa' *Z (c,, % ")dw dc, ' dedc,’ (A12)

:c\ﬁ\ﬁv'(l'yev)fvfecevgev > Ce\/*)d\/\ﬂcededcv’

where f ' is the property of particles v after collisions and is the function of variables (W,c,',c,").
(A12) can be understood that f, is being transported by the reverse collisions occurring to
particles v.. Since every reverse collision must corresponds to a forward collision, the properties
with variable groups (W,c,',c,') and (W,c,,c,) can be exchanged’ aso 0o, =0, &s the radid
distribution function is considered to relate to the volume fraction of all particles only” % %,
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L

ure Captions
Figure 1. Dependence ofy _, on q,, /q..

ependence ofy , on q,, and d,.
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