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Kinetic Theory of Aggregation in Granular Flow

L. Liu∗

Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK

Abstract

 This paper presents a mathematical formulation of the aggregation kinetics in granular flow.

The traditional kinetic theory and its generalised application to granular flow does not allow for

particle size to change with time thus cannot be used to describe particle flow with aggregation

taking place. In this paper, a collision success factor, quantifying the completely inelastic collision

of particles, is introduced into the evaluation of collision rate. The kinetic transport equations are

then transformed to include source terms that account for the effects of particle size and aggregation.

The analytical solution of the collision success factor is obtained by integrating the relative velocity

distribution function over its velocity domain from 0 to a critical value which corresponds a balance

between the repulsion and attraction forces in a collision. The factor has been found to depend on

the mixture granular energy and the critical relative collision energy.

Key words: Aggregation, Collision success factor, Granular flow, Kinetic theory, Population

balance

Introduction

Attributed to the original work of Maxwell1,  2 and Boltzmann3, and further interpreted by

Chapman4,  5 and Enskog6, kinetic theory was developed to describe the transport properties and

constitutive relations of gases7. This theory was later generalised and applied to the flow of granular

materials, which consist of particulates in granular scale flowing in a system under conditions such

as fluidisation or shear, to study the behaviour and properties of granular particles8. Since the work

of Bagnold9 studying the collisions of identical spherical particles on the effects of mean shear rate

on momentum and collision frequency, the application of kinetic theory of granular flow has been

extensively investigated in engineering10-14 and fundamental physics15-22. Blinowski23 and Ogawa10
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formulated a theoretical work using velocity fluctuation. Jenkins and Savage16 attempted to extend

the theory to less elastic but identical and spherical particles. They obtained the balance equations

by using a pair distribution function. Further attempts24, 25 were also made to describe a dense

binary and nearly elastic mixture of the granular flow of spherical particles and to compare the

kinetic theory predictions with the discrete element simulation using the constitutive relations for

dense granular flow26. A review on the application of kinetic theory to gas fluidised beds with mono

dispersed particles can be found in the work of Gidaspow27. As pointed out by Sundaresan28,

formidable challenges still remain in developing continuum models to include particle size

distribution to address the balances of the transport properties in order to predict the structure such

as clusters and streamers of granular particles in various flow systems28, 29.

Despite the broad studies of kinetic theory and its constitutive relations on granular flows22, 26,

30-42, it is still true to say that the granular particles in such flows do not occur aggregation, i.e.,

completely inelastic collision; however, in granular flows with particle aggregation such as in

fluidised bed granulation43, 44, it is strongly necessary to take the completely inelastic collision into

account in the configuration of kinetic transport equations so as to allow the kinetic theory able to

predict the change of kinetic transport properties of particles such as the number density of particles

in terms of their sizes in multiple dispersed granular flow systems.

The work presented in this paper is aimed to fundamentally reconstruct the transport equations

in kinetic theory to allow particle aggregation to take place so that the theory can be applied to the

particle size enlargement processes induced by aggregation. This gives rise to the evaluation of the

collision rate that will have to take into account the completely inelastic collisions so that the kinetic

transport equations can include the source terms that are to do with aggregation.

Assumptions

In order to carry out the evaluation of the collision rate and to form the kinetic transport

equations, several assumptions are made as follows.

1. Inelastic and completely inelastic collisions.
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 It is allowed while some collisions between particles deviate slightly from full elasticity −

characterised by a coefficient of restitution e − other collisions result in a completely inelastic

process after which the colliding particles adhere to each other, and can be said to have aggregated

and led to size enlargement, characterised by a collision success factor ψ .

2. Binary collision mechanism.

 In order to evaluate the collision rate, the mechanism of the binary collision1 is adopted since it

is valid in relatively dilute systems45. This suggests when the concentration of granular particles

becomes dense and the mode that the motion of particles is induced can be identified, for instance

by shear or by fluidisation, it is necessary to replace the binary collision mechanism with the related

ones such as the shear induced coagulation46, the ortho-kinetic aggregation47, Brownian motion46

and some others as can be found in the work of Williams and Loyalka48 in order for the constitutive

relations and relevant transport equations of the theory to be valid in and applied to the specific

particulate systems.

3. Maxwell’s distribution of particles’ velocity.

 The distribution of particles’ velocity used in this paper to derive the kinetic transport equations

is regarded as Maxwellian. This distribution function captures the main features of the distribution

of particles in velocity although it is the equilibrium form in Boltzmann’s H-theorem49. It is thought

that it is reasonable to start with this function in order to see the effects of the completely inelastic

collisions on the velocity properties of the particles.

4. There is a critical relative collision velocity for the attraction and repulsion forces to reach a

balance. Any collision with relative velocity smaller than that will lead to aggregation.

 In particulate systems, where conditions exist to allow aggregation to occur that is for some of

the collisions to be completely inelastic, it is understood that some mechanism must generate

sufficient attraction force to overcome the repulsion force that would otherwise make the particles

rebound. Because the exchange of the momentum takes place during a collision and the forces are

essentially the rates of the exchanged momentum, it follows that the two forces must relate directly
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to and can be parameterised in terms of the initial relative velocity of two colliding particles. Here

we assume that there is a critical relative collision velocity at which point the balance between the

attraction and the repulsion forces is reached. This critical velocity indicates the maximum

possibility from 0 to which two colliding particles could adhere to become an aggregate. This

means that all the collisions between two kinds of particles having an initial relative velocity

smaller than the critical one will lead to aggregation.

Velocity-size Distribution Function and Its Transport Properties

),,,( tvf v rc  is defined as the probability density function of particles with v  ( v  is regarded as

the volume of individual particles, hereafter throughout the paper ‘particles v ’ means ‘particles of

volume v ’), vc (the velocity of particles v), r  (spatial coordinates) and t  (time) as the variables and

is denoted as vf . It is also called the velocity-size distribution function in this paper as velocity and

size are its two main characteristics and all the derivations made in this paper are concerned with

the properties of the two characteristics. Then, the number density of particles v , vn , is

∫==
vc vvv dftvnn cr ),,( . (1)

The total number of particles per unit spatial volume located in position r  at time t, N , is

( ) ∫=
v vdvntN ,r , (2a)

 and the total volume fraction ),( ts rε  and mass density ss ρε  ( sρ  is the average density of all

particles) of the particles are

∫=
v vs dvvnε , (2b)

∫∫ ==
v vvv vvss dvvndvnm ρρε . (2c)

where vρ  is the density of particles v . Let vφ = ),,,( tv v rcφ  be a property of particles v  in terms of

their velocity, its ensemble average value, vφ = ),,( tv rφ , along the velocity coordinate, is

v

c vvv

c vv

c vvv

v n

df

df

df
v

v

v
∫

∫
∫

==
c

c

c φφ
φ . (3)
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The ensemble average velocity of the particles v , vu = ),,( tv ru , thus becomes

v

c vvv

vv n

df
v

∫
==

cc
cu . (4)

su = ),( tru  is the bulk velocity of all particles in position r  at time t  calculated as

s

v vv

v v

v vv
s

dvvn

dvvn

dvvn

ε
∫

∫
∫ ==

uu
u . (5)

According to (5), the fluctuation velocity vC  is defined

svv ucC −= . (6)

The granular energy of particles v , vθ = ),,( tv rθ , and the mixture granular energy of all particles,

sθ = ),( trθ , are defined as

2

3
1

vvv Cm=θ , (7)

N

dvn

dvn

dvn
v vv

v v

v vv
s

∫
∫

∫ ==
θθ

θ . (8)

The diffusion velocity of particles v , vw = ),,( tv rw , can be expressed

svvv uuCw −== , (9a)

and the mixture diffusion velocity of all particles according to (5) is

0
)(

=−=
−

= ∫
∫

∫
ss

s

v vsv

v v

v vv dvvn

dvvn

dvvn
uu

uuw

ε
. (9b)

A number density weighted diffusion velocity, sw = ),( trw , is also defined as

N

dvn

dvn

dvn
v vv

v v

v vv
s

∫
∫

∫ ==
ww

w . (9c)

We now consider vf  for in a granular flow system, the Boltzmann’s equation is written as

vvvv
v

v

v
vv

v rf
v

f
m

f
t
f

=⋅
∂

∂
+⋅

∂
∂

+⋅
∂
∂

+
∂
∂ G

k
F

c
c

r
. (10)
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where vF  is the external force imposed on particles v  to maintain the flow of these particles and is

a function of vc ; vG  is called the growth rate and is a function of v . dtdvv kG = , here k  denotes

the unit vector, its direction is corresponding to that defined by the spatial coordinates, r , for

instance Cartesian, cylindrical or spherical system. It should be noted at this point, for the case that

only aggregation is occurring, 0=vG (means no molecular deposition on particles taking place).

However, we still take vG  into further consideration without losing its general applicability.

For the property vφ  of particles v , the rate of the change of this property can be obtained by

integrating (10) over the velocity domain. According to (3), the Maxwell’s transport equation is

given by

( )
vv

v
vvv

v

v

v

v
vvv

v
vvvv

vv n
v

n
vm

nn
t

nn
t

n
G

k
G

k
F

c
c

r
c

r
⋅

∂
∂

−⋅
∂

∂
+⋅

∂
∂

−⋅
∂
∂

−
∂

∂
−⋅

∂
∂

+
∂

∂ φ
φ

φφφ
φ

φ

∫=
vc vvv dr cφ .  (11a)

Re-arranging (11a), we have

( )

.G
k

F
c

c
r

c

G
k

c
r

v
v

v

v

v

v
vvv

v
vc vvv

vvvvvv
vv

n
vm

nn
t

ndr

n
v

n
t

n

v

⋅
∂
∂

+⋅
∂
∂

+⋅
∂
∂

+
∂

∂
+=

⋅
∂

∂
+⋅

∂
∂

+
∂

∂

∫
φφφφ

φ

φφ
φ

(11b)

 On the left hand side of (11b), the first two terms describe the overall change of vφ , which is

associated with the number density vn  of particles v , in time and spatial coordinates; the third term

explains the change of vn  associated with vφ  in particle size coordinate owing to the change of the

particle size itself.

 The terms on the right hand side of (11b) account for the sources for the rate of the changes

given on the left hand side of this equation. Thus, on the right hand side of (11b), the first term

describes the change of vφ  attributed to the collisions that result in the change of number density of

particles v  with respect to their velocity and size characteristics; the second and third terms explain

the change of vφ  itself in time and spatial coordinates; similarly the fourth and fifth terms describe

http://www.pdfcomplete.com/1002/2001/upgrade.htm


7

the change of vφ  itself in velocity and size coordinates due to the external force vF  and the growth

of particle size. It should be noted that on the left hand side of (11b), the overall rate of change of

vφ due to vF  in velocity coordinate, ∫ ⋅
∂
∂

v
vv

v

v
v

v

df
mc

cF
c

φ , did not appear; this is due to the

convergence of f
mv

v
v

F
φ  as vc  approaches ∞  and ∞− .

 It is worth mentioning that vvdr c  describes the rate of change of particles v  in the velocity

ranging from vc  to vv dcc + , as a result, vvv dr cφ  represents the rate of change of the property vφ

due to the change of the number of particles v  resulting from collisions. Thus, ∫
vc vvv dr cφ  measures

the rate of change of vφ  carried by all the particles v  through their velocity space. We then have

vvvvvvc vvv nnndr
v

∆+∆=∆=∫ φφφφ c . (12)

It is seen from (11a) with (12), by replacing vφ  with 1, vm , vvm c  and 2
vvcm /2, the number and

mass continuity, the momentum and the kinetic energy equations can be generated, respectively.

Notwithstanding this, for systems with the change of number density of particles vn  taking place

due to such as aggregation, or the ensemble average property vφ  not conserved, e.g., the kinetic

energy in inelastic collisions, the right hand side of this equation must be evaluated thus requires vf

to be known.

Collision Rate and the Transport of a Property of particles

 For the particles specified by size v  and velocity vc , the rate of collisions is considered in such

a way that contributes in quantity to these two characteristics. The detailed derivation of the

collision rate and the transport of a property of particles is given in Appendix. Here we only

describe those results. The collision rate is written as
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( ) ( )[ ] ( )

( )

( ) .
4

42
1

4
1'''''1

2

0

2
,

,,,2

2
2

∫∫∫

∫ ∫∫

∫∫∫

Ω⋅−

Ω⋅+

Ω⋅−−−=

−
−−−−

−

ε
σ

χψ

ε
σ

χψ

ε
σ

χψχψ

εε
ε

εεεε

εε
εε

εεεεεεεε
ε

εε
ε

εεεεεεεεε

dddgff

dddgff
M

dddgffgffer

v
v

vvvv

v

v
v

vvvv
v

v
v

vvvvvvvvvv

ckc

ckc

ckc

 (A10)

 In (A10), f  with subscripts v , ε  and ε−v  refers to the probability density function for

different kinds of particles specified by their sizes (and velocities abbreviated). Symbols with “′”

refer to the properties of reverse collisions. vv ccc −= εε  is the relative collision velocity between

particles v  and ε  and σ  is the inter-distance of the two colliding particles referring to half of the

addition of their diameters (of volume equivalent spheres). vgε  is the radial distribution function7.

veε  is given by vvv e εεε cc −=' . ψ  with subscripts specifies its value (the probability) for a particular

collision to succeed for an aggregation. χ  is the Taylor’s expansion when the sizes of two particles

are taken into account in a collision to give the relative position of the two colliding particles. ε−vM

is the mass ratio between the mass of particle ε−v , ε−vm , and the addition of the masses

)( εε mmv +− of particles ε−v  and ε , which means )/( εεεε mmmM vvv += −−− . Ωd  is the differential

angle multiplied by the square of a sphere radius to characterise the differential area of a spherical

surface with πϕωω
π π

4sin
0

2

0
==Ω ∫ ∫∫Ω

ddd , here ω  and ϕ  represent the filling angles in spherical

coordinates.

 On the right hand side of (A10), the first term describes the net increase of particles v  in terms

of their velocity characteristic attributed to the forward and reverse collisions (without changing the

number density vn of the particles in their size v ). The second term gives the birth rate of the

particles with regard to their size v , which is due to the completely inelastic collisions between

particles ε  and ε−v ; the third term shows the death rate of the particles v  owing to the completely

inelastic collisions between particles v  and any sizes of particles. Together the second and third
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terms detail the net increase of particles v  in terms of their size (number density vn of the particles

v  has been changed).

 The transport of the property vφ  is calculated as ∫ vvv dr cφ  and given by (A11) as

( )
vv

v
vvv

v

v

v

v
vv

v
v

v
vvvv

vv n
v

n
vm

nn
t

nn
t

n
G

k
G

k
F

c
c

r
c

r
⋅

∂
∂

−⋅
∂
∂

+⋅
∂
∂

−⋅
∂
∂

−
∂

∂
−⋅

∂
∂

+
∂

∂ φ
φ

φφφ
φ

φ

( )( ) ( )

( )

( ) .
4

42
1

4
1'

0

2

2
,

0 ,,,2

2

vv
v

vvvv

v
vv

vvvv
v

v

vv
v

vvvvvv

ddddgff

dgff
M

ddddgff

cckc

kc

cckc

εε
ε

εεεε

ε
εε

εεεεεεεε
ε

εε
ε

εεεε

ε
σ

χψ

ε
σ

χψφ

ε
σ

χψφφ

Ω



⋅−






⋅+

Ω⋅−−=

∫

∫∫∫ ∫

∫ ∫∫∫

∞

−
−−−−

−

(A11)

 As can be seen from the right hand side of (A11), the first term is the rate of net change of vφ

contributed from the collisions with regard to the velocity characteristic of vf  (without changing

vn ); the second and third terms together give the rate of vφ  attributed to the change of vf  in terms

of its size characteristic (with vn  changed). Thus, according to (12), we have the following relations

( )( ) ( )∫ ∫∫∫ Ω⋅−−=∆ vv
v

vvvvvvvv ddddgffn cckc εε
ε

εεεε ε
σ

χψφφφ
4

1'
2

, (13a)

( )

( ) .
4

42
1

0

2

2
,

0 ,,,2

vv
v

vvvv

v
vv

vvvv
v

vvv

ddddgff

dgff
M

n

cckc

kc

εε
ε

εεεε

ε
εε

εεεεεεεε
ε

ε
σ

χψ

ε
σ

χψφφ

Ω



⋅−






⋅=∆

∫

∫∫∫ ∫

∞

−
−−−−

− (13b)

As a simplified case for (A11), let 1=vφ , then 1'=vφ , also 0=vεψ  (without aggregation of

particles) and 0=vG  (without molecular deposition for particles’ growth), (A11) becomes

0=⋅
∂
∂

+
∂

∂
vv

v n
t

n u
r

, multiplying both sides of it by v  and integrating over v  space, we then have

0=⋅
∂
∂

+
∂

∂
ss

s

t
u

r
ε

ε . These are the typical continuity equations in multiple phase flow27 without the

change of particle size and number density taking place.
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 However, with 0≠vεψ  and vφ  becoming more complicated such as vvm c  and 2
vvcm /2,

evaluation of (13a-b), i.e., the right hand side of (A11), becomes necessary and is presented in the

next section for deriving the kinetic transport equations. It is worth noting at this stage that the

transport equations for continuity, momentum and kinetic energy for all the particles, the

conservation of mass and momentum needs to be proven and the dissipation of the kinetic energy

needs to be given since 0≠vεψ  and the restitution of coefficient veε  are involved in the evaluation,

i.e., either (13a), (13b) or both not equal to 0 thus require detailed calculation.

Kinetic Transport Equations

 To generate the kinetic transport equations, i.e., to evaluate (13a) and (13b), it is necessary to

know the mathematical form of vf . As indicated in (1), the following approximation is made

( ) ( ) ( ) vvvvv nttvntvff λλ =≅= ,,,,,,, rcrrc , (14)

where ( ) vv t λλ =,,rc  and is corresponding to the normalised velocity distribution function of

particles v . This approximation suggests a mutually independent behaviour between the particle

size and velocity expressed in vf . Thus, vλ  implies the probability of the particles with size v

appearing to have velocity vc . According to Assumption 3, vλ  takes the form of Maxwell’s

distribution, we then have

( )







 −
−








=

s

svv

s

v
vv

mmnf
θπθ 2

exp
2

22
3

uc , (15a)

where sθ  is the mixture granular energy defined in (8). It is worth pointing out that this function can

be extended to higher orders according to Chapman-Enskog’s approximation7 but it has captured

the main features of the distribution of the particles in terms of their velocity. According to (6) for

the fluctuation velocity of particles, (15a) becomes

.
2

exp
2

22
3









−








=

s

vv

s

v
vv

Cmmnf
θπθ

(15b)
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 Taking the 0th order of vεχ  (means relatively dilute systems, the distance of particles to travel

for a collision is much greater than the sizes of the particles), i.e., 1=vεχ , (A11) is changed to

( )
vv

v
vvv

v

v

v

v
vv

v
v

v
vvvv

vv n
v

n
vm

nn
t

nn
t

n
G

k
G

k
F

c
c

r
c

r
⋅

∂
∂

−⋅
∂

∂
+⋅

∂
∂

−⋅
∂
∂

−
∂

∂
−⋅

∂
∂

+
∂

∂ φ
φ

φφφ
φ

φ

( )( ) ( )

( )

( ) .
4
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1

1'
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,

,,2

0
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∫ ∫∫∫

∫ ∫∫∫
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∞

−
−

−−−
−

∞

Ω⋅−

Ω⋅+
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ελλφ
σ

ψ
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σ

ψ

ελλψφφ
σ

εεε
ε

εεε

εεεε
εε

εεεεεε
ε

εεεε
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εε

ddddgnn

ddddgnn
M

ddddgnn

vvvv
v

vvv

v

vvvv
v

vvv
v

vvvvvv
v

vv

CCkC

CCkC

CCkC

(16)

The above transformation is carried out with ( ) ( ) vvvv dtvfdtvf CrCcrc ,,,,,, =  and

( ) ( ) εεεεεε λλλλ CCkCcckc dddddd vvvvvv Ω⋅=Ω⋅ , (17)

where vv CCC −= εε  is the relative fluctuation velocity. Additionally, εCC dd v  can be changed to

the form of vcdd εCC  ( cC  is the mass centre velocity of particles v  and ε  as defined similarly to

that in (A9)) with

( )
( ) vcvc

vc

v
v dddddd εε

ε

ε
ε CCCC

CC
CCCC =

∂
∂

=
,
, , (18)

and the following expressions7

( ) ( ) ( )
.,

,
222

2

ΩΩ=Ω=

Ω==

ddCddCddddCd

ddCdddd

ccvvcvccc

vvzvyvxvv

CCCCCC

CCCCC

εεε

εεεεεε (19)

The continuity equations

 The continuity equation for the number density vn  of particles v can be obtained from (16) by

letting 1=vφ , then 1'=vφ  as follows

( )

( ) .
4

42
1

0

2

0

2
,

,,2

∫ ∫∫∫

∫∫∫∫
∞

−
−

−−−
−

Ω⋅−

Ω⋅=

⋅
∂

∂
+⋅

∂
∂

+
∂

∂

vvv
v

vvv

vvv

v v
vvv

v

vvvv
v

ddddgnn

ddddgnn
M

n
v

n
t

n

CCkC

CCkC

G
k

u
r

εεε
ε

εεε

εεεε
εε

εεεεεε
ε

λλε
σ

ψ

λλε
σ

ψ (20)
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 On the right hand side of (20), the triple integrations of the normalised Maxwell’s velocity

distribution functions ελ −v , ελ  and vλ over the domains of Ω , εC  and vC can be calculated

according to (18) and (19) for the values of cC  and vεC  ranging from 0 to ∞; (20) thus becomes

( ) ( ) .88
2
1

0

22
1

0

2
,,,

2
1

∫∫
∞

−−−−
−

−




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

 +
−







 +
=

⋅
∂
∂

+⋅
∂
∂

+
∂

∂

εσψ
πθ

εσψ
πθ

εεεε
ε

ε
εεεεεεεε

εε

εε dng
mm

mmndnng
mm

mm

n
v

n
t

n

vvv
v

vs
v

v

vvvv
v

vs

vvvv
v G

k
u

r
(21)

 This is the standard population balance equation46, 50-53 in the form of aggregation and growth

and has been widely used in the modelling and simulation of engineering particulate systems54, 55 to

predict the particle size distributions51, 53 when size enlargement events occurred.

 (21) has some interesting features presented as the following. Let ( )vξ  be a property of size v,

multiply it to both sides of (21) then integrate the equation over v  in the domain (0, ∞), also

according to (9a) for vsv wuu += , we have

( ) ( ) ( )

( ) ( )

( ) ( )
.

8

8
2
1

)(

0 0

22
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0 0

2
2
1

000

∫ ∫

∫ ∫

∫∫∫

∞ ∞

∞ ∞

∞∞∞








 +
−











 +
=

⋅
∂

∂
++⋅

∂
∂

+
∂

∂

dvdnng
mm

mmv

ddnng
mm

mm
v

dvn
v

vdvnvdv
t

nv

vvvv
v

vs

s

vvvsv
v

εσψ
πθ

ξ

εζσψ
πθ

ξ

ξξξ

εεεε
ε

ε

εζεζεζεζ
εζ

εζ

G
k

wu
r

(22)

The first term on the right hand side of (22) is obtained by exchanging the order of the integrations

for ε−v  and ε   and then letting εζ −= v  thus ),0( ∞∈ζ .

 Replacing ( )vξ  with 1 in (22), according to (2a) and (9c), the continuity equation for the total

number of particles is

( )
∫ ∫

∞ ∞








 +
−=+⋅

∂
∂

+
∂
∂

0 0

2
2
1

8
2
1)( dvdnng

mm
mmN

t
N

vvvv
v

vs
ss εσψ

πθ
εεεε

ε

εwu
r

. (23a)
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 In (23a), the term ∫
∞

⋅
∂

∂
0

dvn
v vvGk

=0 is due to the fact that vvn G → 0 as particle size v → 0

and ∞. Note in this equation, the convective flux is with velocity ss wu +  as su  is the particles

volume fraction weighted bulk velocity instead of number weighted thus the number weighted

diffusion velocity sw  is generated as an extra term. It is worth pointing out that (23a) explains the

decrease of the total number of particles in a quantitative way for the systems where aggregation

takes place.

 Similarly, let ( ) vv =ξ and vm  (note, εζεε +=+−= vv  and εζεε mmmmm vv +=+= −  the

right hand of (22) is equal to 0), the continuity equations for the volume fraction and mass density

of all particles according to (2b), (2c), 0/ =∂∂ tv , 0/ =∂∂ rv , 0/ =∂∂ tmv  and 0/ =∂∂ rvm  are

0=⋅
∂
∂

+
∂

∂
ss

s

t
u

r
ε

ε , (23b)

( ) ( ) 0=⋅
∂
∂

+
∂

∂
sss

ss

t
u

r
ρε

ρε . (23c)

 (23b) and (23c) demonstrate the conservation of the total volume and mass of particles,

respectively, for the aggregation of particles in granular flow systems.

The momentum equations

 Similar to generating the continuity equations, the establishment of momentum and granular

energy equations is as well for both the particles with a specific size v  and all the particles in the

system. The purpose to establish the equations for all the particles is to prove the conservativity

(total momentum) and dissipativity (total kinetic energy) of the particles in the case of aggregation;

and in particular to calculate the dissipation of the total kinetic energy due to the inelastic collisions

and aggregation of particles.

 For the momentum equation of particles v , by letting vvv m c=φ , after the collisions with

particles ε , the momentum of particles v  is changed to '' vvv m c=φ , thus we obtain

( ) vvvvvvvv eMmm εεεφφ Ccc +=−=− 1)'(' , (24)
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which is due to vcv M εε ccc −= , '' vcv M εεccc −= , cc Cc = , vv εε Cc = , '' vv εε Cc =  and 'vvv e εεε CC −= .

Then, the momentum equation for particles v according to (16), 0/ =∂∂ tvc , 0/ =∂∂ rcv  and

0/ =∂∂ rCv  ( vc  and vC  are not the functions of r  and t ) is

( ) ( )[ ] ( )

( )( )
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( ) ,838
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k

F
rr
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k
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r

u

 (25)

where vP  and v  are the normal solid pressure and stress tensor of particles v , respectively.

( ) ( )ivivvvv mnP CC= , (26a)

( ) ( )
jijvivvvv mn

≠
= CC . (26b)

 (25) essentially explains all the forces that are imposed on particles v , causing the change of

the momentum of these particles as a whole in time, spatial and size coordinates. The change of the

momentum of particles v  is thus attributed to the external force vF , collisions that particles v

encountered (the first term of the right hand side of (25)) and the net change of the number of

particles v  owing to aggregation (the second and third terms of the right hand side of (25)).

 The total momentum of particles can be obtained by integrating both sides of (25) over v

domain (0, ∞), the left hand side of this equation thus becomes

( ) ( ) vs
s

ssss
sss NP

t
F

rr
uu

r
u

−⋅
∂
∂

+
∂
∂

+⋅
∂
∂

+
∂

∂
ρε

ρε , (27)

where the transformation is made according to (2c), (5), (9b), sv PdvP =∫
∞

0
 and svdv =∫

∞

0
.

 To obtain the integrated terms on the right hand side of (38), it is necessary to trace back (16).

For the first term of the right hand side of (16), as )'(' vvvvv m cc −=−φφ  and the integration over the
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entire domain of size v is being made, it then represents the change of the total momentum of

particles v  and ε  due to all the collisions between them. This term can thus be written as

( )( ) ( )

( )( ) ( ) ,1''
42

1

1'
4

0 0

2

0 0

2

∫ ∫ ∫∫∫

∫ ∫ ∫∫∫
∞ ∞

∞ ∞

Ω⋅−−+−=

Ω⋅−−

dvddddmmmmgnn

dvddddmgnn

vvvvvvvv
v

vv

vvvvvvv
v

vv

ελλψ
σ

ελλψ
σ

εεεεεεεε
ε

εε

εεεε
ε

εε

CCkCcccc

CCkCcc
 (28)

which is equal to 0 as '' εεεε cccc mmmm vvvv +=+ .

  With vvv m c=φ  and εε mmm vv += − , the second term of the right hand side of (16) after

integration over v domain becomes

( )

( )∫ ∫∫∫∫

∫ ∫∫∫∫
∞

−−−−−
−

−−−

∞

−
−

−−−
−
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Ω⋅

0 ,0

2
,
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0 0

2
,

,,2

,)(
42

1

42
1

dvddddmmgnn
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M
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v v
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v
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σ

ψ
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σ

ψ

εεεεεεεεεε
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εεεεεε

εεεε
εε

εεεεεε
ε

CCkCcc

CCkCc
 (29)

in which εεεε −−+= vvvv mmm ccc  is due to the fact that vc  is the mass centre velocity of particles ε

and ε−v  as expressed in (A9). Similar treatment to that in (22) by exchanging the order of the

integrations for ε  and v  and letting ζε =−v  transforms (29) into

( )

( )∫ ∫∫∫∫

∫ ∫∫∫∫
∞

−−−−−

∞ −
−−−

∞

−−−−−

∞ −
−−−

−Ω⋅+=

Ω⋅+

0 ,0

2
,
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0 ,

2
,
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)()(
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1

)(
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1
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ψ

ελλ
σ

ψ

εεεεεεεεεε
εε

εεεεεε

εεεεεεεεεεε

εε
εεεεεε

dvddddmmgnn

dvddddmmgnn

vvvvv
v

vvv

vvvvv
v

vvv

CCkCcc

CCkCcc

( ) .)(
42

1
0 ,0

2
,

,,∫ ∫∫∫∫
∞ ∞

Ω⋅+= εζλλ
σ

ψ ζεζεεζεεζζ
ζε

ζεεζζε dddddmmgnn CCkCcc (30)

As particles ζ  and ε  in (30) are in-distinguished and the integrations over their entire domains are

being carried out, (30) can be written as

( )∫ ∫∫∫∫
∞ ∞

Ω⋅
0 ,0

2
,

,, 4
ελλ

σ
ψ εεε

ε
εεε dvddddmgnn vvvvv

v
vvv CCkCc , (31)

which is essentially the same as the integration of the third term of the right hand side of (16) over

v  domain with vvv m c=φ . Thus, the second and the third terms of the right hand side of (16) after

http://www.pdfcomplete.com/1002/2001/upgrade.htm


16

the integration over v  with vvv m c=φ  are cancelled. The momentum equation for all the particles

taking (27) forward hence becomes

( ) ( ) 0=−⋅
∂
∂

+
∂
∂

+⋅
∂
∂

+
∂

∂
vs

s
ssss

sss NP
t

F
rr

uu
r

u
ρε

ρε . (32)

 This has given a detailed mathematical proof for the conservation of the total momentum of all

the particles in a system when aggregation occurs.

The granular energy equations

 The granular energy equation of particles v  can be obtained by replacing vφ  with 2/2
vvcm  into

(16). Since the granular energy is defined with fluctuation velocity as expressed in (7) and by

carrying out the integration for the right hand side of (16) for 2/2
vvv cm=φ , for particles v , their

granular energy equation becomes
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where vq  is the heat flux defined as 2/2
vvvvv Cmn Cq = .

 As the property being transported is the actual kinetic energy ( 2/2
vvcm ) but vθ  is related to the

dot product of vC  ( vv CC ⋅ ) with also svv uCc += , it is thus seen that on the left hand side of
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(33), two extra total differential terms are generated with respect to the bulk velocity su . They are

explained as follows.

 The second group (two terms with 2
su  in {}) describes the transfer of the kinetic energy of

particles v  moving as a whole with all other particles; the third group (two terms with ( vs wu ⋅ ) in

{}) is understood as the transfer of the kinetic energy of particles v  due to their diffusion with a

velocity vw  relative to the bulk particles with the ensemble average velocity su .

 The physical meanings of other terms on the left hand side of (33) are similar to that explained

in the works of Davidson and Harrison56, Kunii and Levenspiel57 and Gidaspow27.

 The mixture granular energy of all particles can then be generated by integrating both sides of

(33) over particle size domain (0, ∞); thus the left hand side of (33) becomes
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(34)

where ∫
∞

=
0

dvvs qq , vvvn Gθ converges with v → 0 and ∞; and the terms with the dot product of

diffusion velocity vw after integration are equal to 0 according to (9b).

 For the integration of the right hand side of (33) over v , considering the terms of the right hand

side of (16), a similar treatment can be made as to that for the total momentum equation of all

particles. Therefore, the kinetic energy dissipation due to the inelastic collisions, cE∆ , the first term

of the right hand side of (16) for 2/2
vvv cm=φ , with the integrations over v  and ε  from 0 to ∞

being carried out, which indicates particles v  and ε  are in-distinguished, becomes
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As can be seen in (35), because 1≤veε  and 1≤vεψ , then 0≤∆ cE .

 The second term of the right hand side of (16) for 2/2
vvv cm=φ  with also the integration over

v  becomes
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 (36)

where ζε =−v . As 1=+ εζ MM , in (36), this term ∫ ∫
∞ ∞

×
0 0

2
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,, 42
1 ζε
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σ
ψ gnn

( ) ζελλ ζεζεεζεεζζ dddddcMcM∫∫∫ Ω⋅+ CCkC ,
22 )(

2
1  is cancelled with half of the integrated third

term of the right hand side of (16) over v with 2/2
vvv cm=φ , the kinetic energy dissipation due to

aggregation, aE∆ , is then written as
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 It is worth pointing out in (37), as the integrations over all the size and velocity domains are

being made, v , ε  and ζ  then become in-distinguishable particles, thus, 2
vvcm  can be understood

as
εζ

εε

εζ

ζζ

mm
cm

mm
cm

+
+

+

22

, then 0≤∆ aE . With suCc += ζζ , suCc += εε , εζεζ cCC Mc −=  and

εζζε cCC Mc += , after the integrations over Ω  and C carried out, (37) is
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∫ ∫
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The total kinetic energy dissipation due to inelastic collisions and aggregations thus becomes
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 In this section, because the actual velocity vc  is used and the completely inelastic collisions are

taken into account in the derivation of the kinetic transport equations, the effects of the bulk

velocity su  and the collision success factor on those transport properties particularly on those of the

individual particle phases specified by their sizes are detailed. It can be seen in (21), (23a), (25), (33)

and (41), by letting vεψ  = 0, those equation are then relaxed to the traditional ones in the classical

kinetic theory of granular flow24, 25, 27.

The Collision Frequency, Relative Velocity Distribution Function and Collision

Success Factor

 It should be mentioned that the constitutive relations7, 24, 27, which are the properties of particles

to do with the products of their velocities, for instance, the mathematical expressions for the normal

pressure, stress tensor and heat flux, and the coefficients calculated in those products such as the

shear and bulk viscosities and the granular heat conductivity, are not affected by the aggregation of
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particles thus remain the same in their forms and can be found in those references listed above.

However, it must be pointed out that in granular flow systems where the aggregation of particles

takes place, the values of those particle size related coefficients such as viscosities and conductivity

are expected to change over time since the particle size is enlarged over time.

 The collision frequency measures the number of collisions occurring to a particle in a unit time

and a unit spatial volume. The number of collisions between particles v  and ε  , vNε , used to count

the number of the collisions between the two kinds of particles occurring in a unit time and spatial

volume, is expressed as

( )∫∫∫ Ω⋅= vvv
v

vvv dddgvnnN CCkC εεε
ε

εεε λλ
σ

ε
4

2

, (42a)

after the integrations carried out, it then becomes
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where n vvNv = and εεε n=N  are the numbers of particles with size v  and ε  per unit spatial

volume, respectively. It should be noted that in (42a), for mono-dispersed systems, the right hand

side of the expression should be multiplied by ½ in order to eliminate double counting. The

collision frequencies of a particle v  to all particles ε  and to all other particles can thus be given by

(43a) and (43b), respectively.
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 The collision success factor, vεψ , was introduced to quantify the fraction of the completely

inelastic collisions between particles v  and ε  such as that seen in (A3). It is used to calculate the

number of the collisions between the two kinds of particles that leads to aggregation. From a more
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fundamental point of view, for a single collision between a particle v  and a particle ε  , vεψ  gives

the probability of this collision to succeed for an aggregation event.

 In order to obtain the analytical expression of vεψ , we now consider the collisions between

particles v  and ε , vNε , as expressed in (42a); owing to vcv dddd εε CCCC = , after the integration

over the mass centre velocity cC  carried out, (42a) is then transformed into
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So vv dCdN εε /  is the relative velocity distribution function, which is a density function that

interprets the collisions between particles v  and ε  per unit spatial volume and time by the relative

fluctuation velocity vεC  between the two kinds of particles

( ) ( ) ( ) 







+

−







+

=
sv

vv
v

sv

v
vvv

v

v

mm
CmmC

mm
mmgNN

dC
dN

θθπ
πσ

ε

εε
ε

ε

ε
εεε

ε

ε

2
exp

2
2

2
322

2
3

. (45)

The normalised relative velocity distribution function )/( vvvv dCNdNf εεεε =  combined with (42b) is

( ) ( ) ( )

( ) ( ) .
2

exp
2
1

2
exp

2
2

3
22

2
322

2
3

v
sv

vv

sv

v

v

sv

vv
v

sv

v
vvv

v

C
mm
Cmm

mm
mm

N
mm
CmmC

mm
mmgNN

f

ε
ε

εε

ε

ε

ε

ε

εε
ε

ε

ε
εεε

ε

θθ

θθπ
πσ










+
−








+

=










+
−








+

= (46)

 According to Assumption 4, the collision success factor vεψ can thus be obtained by integrating

the normalised relative velocity distribution function vfε  over the domain of vCε , ),0[ *
vCε ; here

*
vCε  is the magnitude of the critical relative collision velocity *

vεC , then
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 (47) has clearly shown the dependence of the success factor on particle sizes (as the masses of

particles v  and ε , εm  and vm , respectively, can be converted into their sizes) not only upon the
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critical relative collision velocity and the mixture granular energy sθ  of all particles in the system.

(47) also implies if vεψ  and sθ  are known, it can be used to calculate the critical relative collision

velocity – an import attribute in characterising the collisions of aggregating particles.

 Defining a critical relative collision granular energy function, ( )v

vv
v mm

Cmm
+

=
ε

εε
εθ

2

2*
* , (47) becomes
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 Since *
vεθ  is the kinetic energy property of an individual collision and sθ  is the mixture

granular energy of all the particles in a granular flow system, (48) interprets that both the individual

collision and the system’s ensemble average kinetic energy characteristics determine the success of

an aggregation. Figure 1 illustrates the change of vεψ  in sv θθε /* .

(Figure 1)

 From Figure 1, it can be seen when the value of sv θθε /*  reaches around 3.0, the dramatic

increase (to nearly 0.8) of vεψ  starts changing to a rather slow pace, which indicates that efforts on

increasing the value of sv θθε /*  to increase vεψ  will then becomes almost no efficiency and not

worth experimenting. This figure can provide such useful information to identify the range of vεψ  in

which its large value can be achieved with little effort on increasing the ratio of sv θθε /* .

 When *
vεθ  and sθ  are regarded as the mutually independent variables, a 3D plot of vεψ  versus

*
vεθ  and sθ  is given in Figure 2.

(Figure 2)

 The significance of Figure 2 is that it is able to point out the direction quantitatively to which

the best match of *
vεθ  and sθ  can give the most achievable vεψ  value; for instance, in general as

seen in this figure a large *
vεθ  and a small sθ  would give a large vεψ ; however, if large value of

*
vεθ  cannot be achieved, it is still possible to obtain a large value of vεψ  with a small value of sθ
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even the chance is slim but can still occur (indicated in the down-left corner but on the upper

surface of Figure 2).

 If for a system, aggregation is to be avoided, Figure 1 and 2 can give useful information for

how the least value of vεψ  can be obtained by changing the values of *
vεθ  and sθ .

 It can also be suggested from Figure 1 and 2, since the collision success factor depends on the

ratio of the critical relative collision granular energy to the mixture granular energy, under the

condition that the flow of the granular particles can be maintained, the way to increase the

efficiency of the successful aggregations is to increase the ratio by either reducing the turbulence of

the granular flow system or increasing the critical velocity which for instance for a gas fluidised bed

granulation system would be achieved by increasing the surface tension and viscosity of binders44.

However, it may be worth pointing out that reducing system turbulence in order to increase the

collision success factor should be taken cautiously as this may cause a system’s momentum collapse

(particles are not well suspended) thus particles may aggregate in a rather non-uniform way and

their size distribution will not change in a gradually progressive fashion. The solution of the success

factor suggests that, increasing the critical relative velocity, or, using the particles and binding

materials resulting in higher critical velocity, and keeping a degree of system turbulence to maintain

the momentum of the particles can help increase the successful collisions efficiently.

 It is also worth mentioning that (48) has established a link between the fundamental

understanding of successful particle collisions leading to aggregation and the engineering processes

of particle size enlargement owing to aggregation. (48) provides a method to quantitatively control

the growth of particle size in granular flow systems.

 Since the normalised relative velocity distribution function vfε  is given by (46), it may be

worth calculating the ensemble average relative velocity vεC  that measures the intensity of a

collision in an overall perspective.
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 It is seen in (49), the average collision intensity is related directly to the mixture granular

energy of the granular flow system and the masses of the colliding particles.

Concluding Remarks

 The work presented in this paper has given a mathematical description for the aggregation of

particles in granular flow. It is seen from those derived kinetic transport equations that, for a flow

system where aggregation of the particles takes place, those conservative equations were shown to

be able to describe the balances of the population, momentum and kinetic energy of the particles

characterised by their size and velocity. In particular the number continuity equation is transformed

into the typical population balance equation in the form of aggregation and growth; while the

momentum and kinetic energy equations for the particles of the individual phases have shown the

significance of the aggregation depending on the value of the collision success factor. It is expected

that solving the three types of conservative equations together would give a complete prediction to

the distributions of particle velocity, kinetic energy particularly to the size of particles for the

systems where the motion of particles in spatial coordinates, i.e., convection (segregation), and in

their own sizes due to aggregation, are taking place simultaneously.

 The dissipation of kinetic energy due to aggregations is expected to be highly related to the

collision success factor, the mixture velocity and granular energy of all particles. Moreover, for a

single particle phase, it also depends on the sizes of the colliding particles.

 The solution of collision success factor gives the probability of a collision to succeed for an

aggregation from the kinetic energy point of view although the critical relative collision velocity

needs further research to detail its dependency on processing materials and conditions. It is still true

to say that the success factor can provide a quantitative way to practically control the coefficient of

particle collisions that result in aggregation. It can thus be used to assess the efficiency of the

process of particle aggregation in granular flow systems.

 It needs to be mentioned that particle aggregation does not affect the mathematical forms of the

constitutive relations; however, when the probability density function is extended to the higher
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orders of the Chapman-Enskog approximation, the corresponding terms associated with the

integration of the velocity distribution function in the kinetic transport equations should also be re-

evaluated particularly for the kinetic energy dissipation and the collision success factor.

 Finally, it also needs to be pointed out that a validation of this theory is needed, which is

presented in a subsequent paper on the application of the kinetic theory of aggregation to a gas

fluidised bed granulation system.

Acknowledgements

 Financial support from the Unilever Vlaardingen Research Laboratory of the Netherlands and

the University of Sheffield is gratefully acknowledged. Thanks also made to Professor M. J.

Hounslow of the University of Sheffield for his valuable suggestions.

Notations

Roman symbols

c magnitude of actual velocity c m s-1

C magnitude of fluctuation velocity C m s-1

e restitution coefficient in the collision between particles ( - )

f velocity-size distribution function s3 m-9

F collision frequency s-1

g radial distribution function ( - )

m mass of a particle kg

M mass ratio of a particle to the total mass of the pair of collding particles ( - )

n number density of particles m-6

N total number of particles per unit volume m-3

vNε total number of collisions between particles ε and v per unit time and volume m-3 s-1

P normal pressure of particles Pa m-3

r collision rate of particles s4 m-10

t time s
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v the size of individual particles in volume m3

Vectors

c actual velocity of particles m s-1

C fluctuation velocity of particles m s-1

F the external force N

G growth rate of particles in volume size m3 s-1

k unit vector ( - )

q heat flux W m-5

r spatial position vector m

u ensemble average velocity m s-1

w number density weighted diffusion velocity of particles m s-1

Tensors

I unit tensor ( - )

stress tensor Pa m-3

Greek symbols

∆ change of properties

ε the size of individual particles in volume m3

φ property of particles in terms of their velocity

ϕ the filling angle in spherical coordinates rad

λ normalized velocity-size distribution function of particles s m-4

Ω solid angle rad

ψ collision success factor ( - )

ρ density of particles kg m-3

σ inter-distance of two colliding particles m

θ granular energy of particles J

ω the filling angles in spherical coordinates rad
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χ Taylor’s expansion

ξ  property of particles by volume size

ζ  dummy variable for ε−v m3

Superscripts

' reverse collision

* critical property

Subscripts

s ensemble particles

v the size of individual particles in volume

ε the size of individual particles in volume

vε collisions between particles ε and v
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Appendix

 The detailed derivation of the collision rate is presented in the work of Liu44, in the following

only a concise version of such a derivation is given.

 Consider two kinds of particles with sizes v and ε respectively having collisions based on the

mechanism of binary collision1 (Assumption 2) in differential elements dtdddvddd v rcc εεΩ , the rate

of the forward collisions, which results in the decrease of the number of particles characterised by

vc , is expressed in (A1). This expression also takes into the sizes of the colliding particles, i.e., if a

particle v  is situated at position r  then the colliding particle ε must be at kr vεσ+ .

( ) ( ) dtdddvdddgff vv
v

vvv rcckckr ε
σ

σ εε
ε

εεε Ω⋅+
4

2

, (A1)

Using Taylor’s expansion for ( )kr vf εε σ+ , (A1) becomes

( ) dtdddvdddgff vv
v

vvv rcckc ε
σ

χ εε
ε

εεε Ω⋅
4

2

, (A2)

where
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
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⋅+= ∑ εεε σχ f
m

m

v
m

v r
k

!
11 .

 According to Assumption 1 that some fraction vεψ  of the collisions occurred in a completely

inelastic way that leads to aggregation, (A2) can then be transformed into

( ) ( )

( ) .
4

4
1

2

2

dtdddvdddgff

dtdddvdddgff

vv
v

vvvv

vv
v

vvvv
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ε
σ

χψ

ε
σ

χψ

εε
ε

εεεε

εε
ε

εεεε

Ω⋅+

Ω⋅−
(A3)

 Similarly, the collisions between particles v  and ε  with reverse velocities 'vc  and 'εc

respectively resulting in the increase of the number of particles v  characterised by vc , taking into

account the completely inelastic collisions, can be expressed

( ) ( ) dtdddvdddgff vv
v

vvvv rcckc ε
σ

χψ εε
ε

εεεε '''''
4

''''''1
2

Ω⋅− , (A4)

where the symbols with “′” refer to the properties of the reverse collisions.

 We also have the following relations
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Subtracting (A3) from (A4) yields the net increase of the number of particles v  characterised by vc .

Also according to the relations in (A5), we have

( ) ( )[ ] ( )

( ) .
4
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1'''''1

2

2
2

dtdddvdddgff
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vv
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Ω⋅−
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 (A6)

 It is clear that the completely inelastic collisions between particles ε−v  and ε  can also result

in the net increase of the number of particles v. This is given by

( ) ,
42

1
,

2
,

,,, dtdddvdddgff vv
v

vvvv rcckc ε
σ

χψ εεεε
εε

εεεεεεεε −−
−

−−−− Ω⋅ (A7)

where ½ eliminates the double counting of the collisions, and, ε ranges from 0 to v . It is worth

pointing out that there is no reverse collisions between particles ε−v  and ε  contributing to the

increase of the number of particles v  as (A7) is only concerned with the size characteristic of ε−vf

and εf . (A7) can also be transformed into
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42

1 2
,
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(A8)

This is because
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, (A9)

where vc  is the mass centre velocity of particles ε−v  and ε , i.e., the velocity of particles v .

 Adding (A8) into (A6) yields the differential form of the number of collisions occurring to

particles v  to give the net increase of the number of particles v  in terms of their size v  and velocity

vc  characteristics. With the integrations over the domains of Ω , εc  and ε , the total number of

collisions occurring to particles v  per unit time and spatial volume is obtained
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 (A10)

 As can be seen from (A10), the first term of the right hand side is the net birth rate contributing

to the velocity characteristic of vf ; the second and third terms together give the net birth rate of

particles contributing to the size characteristic of vf .

 For a property vφ  of particles v  in terms of their velocity vc , the change of the property due to

the collisions occurring to particles v  is expressed as ∫ vvv dr cφ ; therefore, according to (A10), the

transport equation (11a) is obtained
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 where the first term on the right hand side of (A11) is gained due to
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(A12)

where 'vφ  is the property of particles v  after collisions and is the function of variables )',','( vccεΩ .

 (A12) can be understood that vφ  is being transported by the reverse collisions occurring to

particles v . Since every reverse collision must corresponds to a forward collision, the properties

with variable groups )',','( vccεΩ  and ),,( vccεΩ can be exchanged7 also 'vv gg εε =  as the radial

distribution function is considered to relate to the volume fraction of all particles only7, 9, 10, 58.
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Figure Captions

Figure 1. Dependence of vεψ  on sv θθε /* .

Figure 2. Dependence of vεψ  on *
vεθ  and sθ .
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