Research demonstrates the importance of perceptual-cognitive skills, such as pattern matching, anticipation, and decision making in numerous sports, including badminton (Abernethy & Russell, 1987), baseball (Burroughs, 1984), basketball (Allard, Graham, & Paarsalu, 1980), handball (Johnson & Raab, 2003), rugby (Lorains, Ball, & MacMahon, 2013), soccer (Ward & Williams, 2003), squash (Abernethy, 1990), tennis (Haskins, 1965), and volleyball (Borgeaud & Abernethy, 1987). While other factors may be important (e.g., visual search patterns), the accuracy and/or speed with which athletes anticipate their opponent’s intentions and/or decide on an appropriate course of action, as assessed in domain-specific tests designed to simulate and represent real-world sporting demands have been shown to be the best and most reliable predictors of skilled performance in the field (see Mann, Williams, Ward, & Janelle, 2007). Moreover, several studies indicate that when training is based on expert models of superior performance, these skills can be improved and transfer to the field (e.g., Fadde, 2009; Ward, Suss, & Basevitch, 2009). In most elite and everyday sports training contexts, expensive research technology (such as eye-tracking equipment) is not always available to practitioners that would help us better understand the cognitive basis of, and ecological constraints of anticipation and decision-making in a way that could be leveraged to tailor training to improve individual and team performance. However, other technologies are now becoming more readily available to support the development of perceptual-cognitive skills. This is particularly timely, because although there is a growing body of research demonstrating the trainability of perceptual-cognitive skills in sport and their transfer to the field, few researchers have attempted to translate this research into accessible and useful training tools for everyday coaches and athletes (for an example, see Belling, Suss, & Ward, 2014). Moreover, research on the validation of such perceptual-cognitive or decision-making skill training tools is startlingly absent from the literature, not just from research on human factors in sport, but in human factors more broadly. In this research, we review what has worked in the past, what can be leveraged by simple and effective tools for accessible devices (e.g., personal computer, tablet), and how powerful these tools can be by reviewing changes in real world performance following their implementation. An NCAA Division 1 baseball team was given access to Axon Sports Cognitive Training for hitting in baseball for the 2013 season. Batting statistics are compared from the 2012 season, without training present, and 2013 season, with training present. The results suggest that batting improved during the season when cognitive training was available to the players. Implications for future research and application are discussed.
Downloads
Downloads per month over past year