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Abstract. The dynamic behavior of vehicle and track systems is studied in the presence of 

an insulated rail joint through a two-dimensional vehicle-track coupling model. The track 

system is described as a finite length beam resting on a double layer discrete viscous-elastic 

foundation. The vehicle is represented through a half car body and a single bogie. These sub-

systems are solved independently and coupled together through a Hertzian contact model, 

where the irregularity caused by the rail joint is modelled as a second order polynomial. A 

parametric study is carried out in order to understand the influence by the main track and 

vehicle parameters to the P1 and P2 peak forces. Finally, the results in terms of P2 force from 

the present model have been compared not only with measured values but also with both 

other simulated and analytical solutions and an excellent agreement between these values has 

been found. 
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1 INTRODUCTION 

There is currently a worldwide trend towards using continuously welded rails for 

minimizing the wheel-rail impact forces. Nevertheless, rail joints are still used in some areas. 

In particular, insulated rail joints are required for track electrical insulation to detect the train 

location and to isolate sections such as those near road crossings. 

When a train runs over a joint, large dynamic impact forces are developed which lead to 

vibrations in the structures and a higher probability of component fatigue and damage. Thus, 

it is clear that rail joints can affect the maintenance costs, ride comfort and running security 

on a modern railway. 

Many studies have focused on the dynamic response of the railway track under moving 

vehicles. Some of these [1-4] only consider the track system as a beam on an elastic 

foundation subjected to moving point loads. Although this approach is simple to implement, it 

is insufficient to fully model the dynamic behavior of the track and vehicle systems as it 

neglects the wheel-rail contact aspects. Some other studies [5-8] take the coupling aspects into 

account, but few [9-10] apply these aspects to model the dynamic behavior in presence of a 

rail joint. 

In this paper, a two-dimensional vehicle-track coupling model is developed. The track 

system is described as a finite length beam supported on a two-layer discrete elastic 

foundation. The vehicle is represented using a half car body. These sub-systems are solved 

independently and coupled together through the Hertzian wheel-rail contact model [5], where 

the irregularity due to the rail joint is modelled as a second order polynomial. The main 

results from the parametric study have shown that the first impact force P1 is greatly 

influenced by the wheelset mass, the rail mass and the joint angle, whereas the second peak 

force P2 is largely affected by the wheelset mass, the rail-pad stiffness, the support stiffness 

and the joint angle. Finally, the results in terms of the P2 force from this model have been 

compared not only with measured data [9] but also with both other simulated [9] and 

analytical [11-12] solutions. An excellent agreement has been found in all the comparisons. 

2 MODELLING THE VEHICLE-TRACK COUPLING SYSTEM 

The vehicle-track coupling model with an insulated rail joint is shown in Figure 1. 

 

Figure 1: Vehicle-track coupling model with an insulated rail joint. 

2.1 Fundamental assumptions 

The main assumptions are listed as follows: 
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1) Only vertical dynamic forces are considered in the model. Due to the track symmetry, 

it is possible to use a single rail in the calculation. 

2) The track system is modelled through a two-layer discretely supported ballast track 

model. A finite straight track without imperfections is considered. The number of 

beam elements considered is 40, because in this way it is possible to avoid the 

overlapping between the increasing static load during the transient time and the 

dynamic forces due to the rail joint. 

3) A half car body is considered in the vehicle model. All the masses are assumed to be 

concentrated in the centre of gravity of the corresponding element. The two wheelsets 

masses and profiles are assumed to be the same. 

4) The classical Hertzian contact model is used to couple the vehicle and track models.  

5) The rail joint is modelled through a second order polynomial as established by a 

comparison between a quadratic fit function and the experimental measurements [13].  

6) The joint fishplates contribution to the local stiffness is neglected. 

7) It is assumed that there is one contact point at each wheel.  

2.2 Modelling the track system 

The moving force is characterized by a constant value of speed S, thus the simple formula 

for the uniform linear motion has been used. A finite element (FE) analysis is developed 

approximating the deformation within an element through using nodal values of displacement 

and rotation. 

The beam has uniform flexural rigidity EI and mass per unit length m̅ . The sleepers are 

represented by their effective mass m , and assumed to be concentrated in the centre of 

gravity. The support is represented by rail-pad and ballast. The rail-pad is characterized by a 

spring of stiffness k  in parallel with a damper having viscous damping coefficient c , while 

the ballast layer is similarly represented by a spring of stiffness k  and a damper in parallel 

with constant c .  

2.3 Modelling the vehicle system 

The model used here consists of a quarter car supported by a bogie through the secondary 

suspension and a bogie supported by two half wheelsets through the primary suspension. All 

the bodies are assumed to be rigid. The car body is represented by its mass  c, the bogie by 

its mass    and its pitch moment of inertia    and the wheelset by its mass  w. Each primary 

suspension is modelled as a spring of stiffness   1 in parallel with a damper with viscous 

constant   1. Similarly, the secondary suspension is characterized by a spring of stiffness   2 

in parallel with a dashpot having viscous constant   2. 

3 RESULTS 

In order to solve the coupling system, the track parameters used are reported in Table 1. 

Variable Value Variable Value 

Mass per length unit 

(UIC60) m̅  

60.21  

[kg/m] 
Car body mass Mc 13000 [kg] 

Moment of inertia 

(UIC60) Iyy 

3.04∙10
-5

 

[m
4
] 

Bogie mass Mt 1600 [kg] 

Young’  modulu  of 

rail E 
2.11∙10

11
 [N/m] 

Bogie pitch moment of 

inertia Jt 
1560 [kg∙m

2
] 

G44 concrete sleeper 308 [kg] Wheelset mass Mw 700 [kg] 
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Variable Value Variable Value 

mass ms 

Pandrol rail-pad 

stiffness kr 

2.70∙10
8
 

[N/m] 

Primary suspension 

stiffness Ks1 
1.87∙10

6
 [N/m] 

Pandrol rail-pad 

damping cr 
2∙10

5
 [N∙ /m] 

Primary suspension 

damping Cs1 

5∙10
5
 

[N∙ /m] 

Typical support 

stiffness ks 
8∙10

7
 [N/m] 

Secondary suspension 

stiffness Ks2 
1.72∙10

6
 [N/m] 

Typical support 

damping cs 
1∙10

5
 [N∙ /m] 

Secondary suspension 

damping Cs2 
1.96∙10

5
 [N∙ /m] 

Sleeper spacing l 0.65 [m] 

Distance between the 

centre of pivot and the 

centre of wheelset lt 

1.25 [m] 

Number of beam 

elements n 
40 Wheel rolling radius r0 0.46 [m] 

Maximum joint depth D 0.01 [m] 

Hertzian contact 

constant for worn 

wheels G 

4.22∙10
-8

 [m/N
2/3

] 

Affecting length of rail 

joint L 
3.65 [m] 

Newmark Beta 

pa ame e  α 
0.25 

Travelling speed S 160 [km/h] 
Newmark Beta 

pa ame e  β 
0.50 

Time   ep ∆  5∙10
-4

 [s] 
Wilson Theta parameter 

θ 
1.40 

Table 1: Track parameters [14], vehicle parameters [15], wheel-rail contact parameters [15], rail joint parameters 

[10] and integration parameters. 

The response in term of wheel-rail contact force versus time is shown in Figure 2. It can be 

deduced that the results from the Wilson Theta integration method are higher than those from 

the Newmark Beta integration method. The peak difference is about 15%. 

 

Figure 2: Wheel-rail contact force versus time. 

P1 force 

P2 force 
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It is also possible to recognize two impact forces (P1 and P2 forces).  

The P1 force is a high frequency force (approximately 500 Hz) and it is characterized by 

high magnitude, which is found approximately 5 times bigger than the unsprung static load. It 

is associated mainly to the battering of the unsprung mass on the rail-end and is absorbed 

mainly by the rail and sleeper inertias. In the example shown in Figure 2, the force peak 

occurs 0.3 ms after crossing the joint, which is within the typical range between 0.25 ms and 

0.5 m [11]. 

The P2 force, which occurs several milliseconds after the impact, is a medium frequency 

force (approximately 30-40 Hz) and its peak is lower than the P1, around 3-3.5 times bigger 

than the static force. Contrary to the P1 force, the P2 force depends on the rail bending 

resilience and it is transmitted to the ballast, producing an acceleration of deterioration of the 

whole track system. This is the reason why the vehicle designers should reduce the unsprung 

masses as much as possible. 

The P1 and P2 forces can be determined in the first approximation as in Eqs. (1-2) [11]: 

  1  0 2α √
   me

1 
me

mu

 (1) 

 
 2  0 2α ∙ (1 

c  

4k  m  mu 
) ∙√

 

1 
m 

mu

 k mu (2) 

Where  0 is the static wheel load,  α the total joint angle, V the travelling speed,     the 

linearized Hertzian contact stiffness, P the generic load value, G the Hertzian contact 

constant,    the unsprung mass,    the effective track mass and   ,    and    the equivalent 

track system parameters defined in [11]. 

The UK   anda d G /TT0088   a e   ha  “vehicle   hall be able  o  un ove   he no mal 

range of vertical track irregularities at normal operating speeds without generating excessive 

ve  ical load  and    e  e  in  he  ail  and   ack” [12]. There is a limit only for the P2 force, 

which cannot exceed a total value of 322 kN per wheel at the maximum operative speed. This 

limit is made because this force is directly transmitted to the ballast, as said previously. In 

particular, an analytic formula has been proposed as in Eq. (3) [12]: 

  2       m   ∙ ∙  (3) 

Where Q is the maximum static wheel load, Vm the maximum normal operating speed, Mv the 

effective vertical unsprung mass per wheel, M, C and K parameters reported in [12]. 

3.1 Parametric study 

Numerical examples are shown and the effects of some parameters are investigated. The 

parameters of track, vehicle and joint models which have been used in the simulation are 

reported in Table 2. 
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 Track model Vehicle model Joint model 
P

ar
am

et
er

s Travelling speed S Travelling speed S Travelling speed S 

Rail mass per unit length m̅  Wheelset mass Mw Affected length L 

Rail-pad stiffness kr Bogie mass Mt To al join  angle 2α 

Support stiffness ks Car body mass Mc  

To al join  angle 2α Total join  angle 2α  

Table 2: Parameters of simulations. 

The integration method used is the Wilson Theta method because it gives higher values 

compared to the Newmark Beta method, as shown in Figure 2. 

In the following, only the most relevant graphs are reported.  

(a) 

(b) 
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(c) 

(d) 

Figure 3: The variation of P1 (red lines) and P2 (blue lines) forces with (a) rail-pad stiffness; (b) support stiffness; 

(c) wheelset mass; (d) joint shape fixing the total joint angle. 

From Figure 3-a, it is found that the trends of P1 and P2 forces with the rail-pad stiffness 

are different. In the case of P1 force, there is a first constant trend for low stiffness values 

(10
7
-10

8
 N/m) and then a linearly increasing trend for higher stiffness (5 10

8
-10

9
 N/m). The 

slope increases with increasing speed, from about 25% in the case of 60 km/h to about 32% in 

the case of 160 km/h. In case of P2 force, instead, there is a relatively rapid increasing trend 

for low stiffness values (10
7
-10

8 
N/m) and then a relatively slower increasing trend for higher 

stiffness (5 10
8
-10

9 
N/m) with a slope significantly lower than the first part. 

Regarding the support stiffness (Figure 3-b), it can be found that the P1 trend is relatively 

constant while the P2 grows linearly. The average slope increases with increasing travelling 

speed, from about 35% at 60 km/h to about 50% at 160 km/h. This means that decreasing the 

ballast stiffness has little effect on the P1 force, whereas it can reduce the P2 force. 

As shown in Figure 3-c, the impact of the wheelset mass is very large in both cases. In 

particular, the P1 force trend is asymptotic, that is the change of wheelset mass plays a limited 

role in that impact force for values greater than 600-800 kg. The P2 force increases 

proportionally with the wheelset mass, with the average slope increasing with increasing 

travelling speed. 

Finally, from Figure 3-d it can be deduced that both the impact forces are different in case 

of different affected length L. Thus, the dynamic response in terms of wheel-rail contact 
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forces is closely related to the actual shape of the rail joint. This conclusion is against the 

formulae proposed by the UK researchers in Eqs. (1-2), according to which the forces are 

constant for constant value of total dip angle. Therefore, those formulae can give only a rough 

estimation of the forces. 

3.2 Comparison 

The main characteristics of two different Chinese freight vehicles, C62A and C75, are 

reported in Table 3. 

Variable C62A C75 

Car body mass Mc 19250 [kg] 22950 [kg] 

Bogie mass Mt 565 [kg] 755 [kg] 

Bogie pitch moment of inertia Jt 380 [kg∙m
2
] 780 [kg∙m

2
] 

Wheelset mass Mw 600 [kg] 647.5 [kg] 

Primary suspension stiffness Ks1  - 

Primary suspension damping Cs1 - - 

Secondary suspension stiffness Ks2 1.06 10
7
 [N/m] 1 10

7
 [N/m] 

Secondary suspension damping Cs2 1.40 10
5
 [Ns/m] 1 10

5
 [Ns/m] 

Distance between the centre of 

pivot and the centre of wheelset lt 
0.87 [m] 0.87 [m] 

Wheel rolling radius r0 0.42 [m] 0.42 [m] 

Table 3: Main characteristics of C62A and C75 freight vehicles [9]. 

In Figure 4 the comparison between the results in terms of P2 force in case of C62A and 

C75 freight vehicles with increasing travelling speed is shown. In particular, for each 

travelling speed and each vehicle type five different values of the peak force are considered: 

measured data [9], simulated value [9], two different analytic solutions [11-12] and the 

present model. 

 

Figure 4: Comparison between the results in terms of P2 force in case of C62A and C75 freight vehicles. 
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It is noticeable that the results are close to each other, particularly the measured data, 

simulated values and the present model. The percentage differences between the present 

model and measured data or simulated values are reported in Table 4. 

Travelling speed [km/h] C62A C75 

 
Measured 

data [%] 

Simulated 

values [%] 

Measured 

data [%] 

Simulated 

values [%] 

30 4.5 3.2 3.2 0.8 

60 3.7 10.9 2.2 1.6 

80 6.5 4.4 3.7 0.6 

Table 4: Percentage differences between the present model, the measured data and the simulated values. 

4 CONCLUSIONS 

The primary objective of this paper is to investigate the characteristics of vertical dynamic 

response due to insulated rail joint (IRJ) through developing a comprehensive finite element 

(FE) model of vehicle-track coupling system. The two dimensional model employed has been 

established by merging three elementary models, which are the track model, the vehicle 

model and the contact model. This strategy was proven efficient to obtain an efficient 

solution. Two explicit numerical integration methods have been employed in the dynamic 

analysis. In order to achieve a reasonable model size which is compatible to the available 

computing facility, several assumptions have been made in the rail joint model, track model 

and boundary conditions.  

The wheel-rail impact mechanism can be explained through the stiffness discontinuity of 

the IRJ structure. The joint causes a geometric discontinuity in the running surface during the 

wheel passage, which therefore produces the impact in the vicinity of the gap. At impact, two 

peak contact forces develop. The main characteristics, such as the frequency and the 

magnitude, are quite different. It has been demonstrated that the lower magnitude force is the 

force that actually causes the track degradation because its characteristic frequencies match 

with the track frequencies. 

Through a series of sensitivity studies of several parameters, it was shown that the dynamic 

response can be largely improved by optimised design parameters. The parametric 

simulations have shown that the first impact force P1 is greatly influenced by the wheelset 

mass, the rail mass and the joint angle, whereas the second peak force P2 is affected by the 

wheelset mass, the rail-pad stiffness, the support stiffness and the joint angle. The model has 

outlined that the impact forces depends on the actual shape of the rail joint. Therefore, great 

reductions of peak forces values can be obtained through an appropriate joint design. 

Finally, the results in terms of P2 force from the present model have been compared not 

only with measured values but also with both simulated and analytical solutions. An excellent 

agreement between values has been found, with a maximum percentage difference of 10%. 
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