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ABSTRACT 
 

The need for energy saving within  the automotive industry becomes greater each year due to the 

continued pollution of the environment from the fossil fuels, and the amount of NOx emissions 

released in the environment from ground vehicles. Turbochargers are among those components that 

provide solutions to the energy saving for automotive vehicles, especially for the commercial 

division of ground vehicles. Significant developments in this field have been witnessed in the last 

decade using both the numerical and experimental investigations. However, the regulations of E.U 

regarding the energy saving has motivated the automotive industry to investigate new methods for 

improving the performance of turbochargers, decreasing the fuel consumption and lowering the 

emissions release in the environment from ground vehicles. Hence, this numerical investigation is 

primarily focused on the optimisation of the diffuser of a turbocharger compressor stage. 

 

The primary goal of this study is to numerically model and investigate the compressor stage of a 

turbocharger using advanced Computational Fluid Dynamics (CFD) based techniques. The model 

has been investigated at lower operating speeds i.e. 60,000rpm and 80,000rpm. Multiple Reference 

Frame (MRF) approach has been employed for simulating the steady flow of air through the 

compressor stage of the turbocharger. In an effort to optimise the diffuser geometry, non-parallel 

walls approach has been used. In this approach, the shroud side wall of the diffuser has been made 

non-parallel to the hub side wall, in a number of configurations. These configurations have been 

numerically analysed in order to evaluate the effects of pinching and diffusion, where pinching 

corresponds to diverting the shroud wall of the diffuser by a certain angle and at a certain distance 

from the inlet of the diffuser, while diffusion corresponds to the increase in the diffuser’s width at 

its outlet section, as compared to its inlet section. Both qualitative and quantitative flow analysis 

has been carried out in detail in order to find optimum diffuser geometry. Furthermore, this thesis 

provides an insight on the flow structure within a compressor stage of a turbocharger, and reveals 

possible mechanisms that affect its performance characteristics. 
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CHAPTER 1  

INTRODUCTION 

 

his chapter provides an overview of current automotive vaneless diffusers and 

their associated components. In this review, the basic performance 

parameters of an automotive turbocharger are discussed, focusing on the 

centrifugal compressor stage and exploring the mechanisms that affect the 

performance output of a turbocharger. Additionally, the importance of vaneless 

diffusers for the design and development of radial turbo-machines are discussed. 

Existing design configurations and optimisation procedures were also examined, in 

order to explore some of the key geometric characteristics that are related to the 

vaneless diffuser’s performance output.  This chapter also highlights the importance of 

the interaction of diffuser-volute, where a number of key questions are raised that 

correspond to the recent needs of turbochargers for higher efficiencies and reduction 

of package sizing. The reasons and purpose for carrying out this research, and the 

main aims of this study are emphasised in this chapter.  

 

 

 

 

 

 

 

 

 

 

 

     T      
 
 



INTRODUCTION 

Design Optimisation of a Diffuser for a Turbocharger Compressor 
By Paris Achilleos, School of Computing and Engineering, University of Huddersfield, UK (2014) 

 

2 

 

1.1 Introduction to Turbochargers 

 

Turbochargers are amongst the most complicated and sophisticated pieces of engineering that 

require high precision and are commonly used to a great extent for a variety of internal 

combustion engines. For the automotive applications, the turbocharger utilizes the waste energy 

from the exhaust gas, which is driven into the turbine housing. A typical turbocharger is shown 

in figure 1.1. 

 
 

Figure 1.1 Turbocharger [1] 

 

 

1.2 Background of Turbochargers 

 

Late in the 19
th

 century, a French Professor August Rateau invented the centrifugal compressor. 

By 1899, he had a single-stage prototype on his test stand, compressing 0.5m
3
/s of atmospheric 

air to a discharge pressure of 1.5bar (absolute) at a rotational speed of 200,000rpm (Engeda, 

1988). Prof. August Rateau (1905) built the first multistage unit with five stages on one shaft of 

the centrifugal compressor. The history of automotive turbochargers began as early as year 1885; 

Gottlieb Daimler and Rudolf Diesel (1896) investigated increase in the power output and 

reduction in the fuel consumption of their engines by recompressing the combustion air. Alferd 

Büchi, chief engineer for Sulez Brothers, Switzerland (1925), was the first to be successful with 

exhaust gas turbo-charging. This new technology was adopted by the automotive industry and 

now it has become a major research field for ground vehicles. 
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1.3 Working of a Turbocharger 

 

When the combustion process takes place in the engine, the waste energy exits in a form of 

exhaust gas. The flow enters the turbine housing from the turbine volute (as shown in figure 1.2). 

The flow enters the wheel in a radial direction, which forces the turbine to rotate at high speeds. 

This process produces torque that is delivered from the shaft to the compressor’s impeller. 

 

 
 

Figure 1.2 Working of a Turbocharger [2] 

 

As the compressor’s impeller rotates, low pressure is created upstream of the compressor section 

by the work of the impeller. Due to this low upstream pressure, the compressor section of the 

turbocharger drifts in ambient air. As the impeller of the compressor stage is rotating at high 

rpms, it transfers part of its momentum to the incident air flow, and forces the air to rotate at high 

velocities. The flow then leaves the impeller in radial direction, and the flow discharges in an 

annular passage. This passage is known as the diffuser, which is used to increase the pressure of 

the air flow by diffusing it. This is achieved because the outlet area of the diffuser is more than 

its inlet area. Usually a scroll follows the diffuser, where an attempt to collect the flow is made, 

and then the flow is directed in to the cylinders of the engine. As the turbocharger forces more 

compressed air to enter the cylinders, for a specific amount of fuel, more power can be generated 

from a smaller sized engine, with reduced emissions. This is the primary purpose of a 

turbocharger i.e. to increase the engine power without increasing the emissions from the engine.  

.  
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1.4 Components of a Turbocharger Compressor Stage 

 

The main components of a typical turbocharger’s compressor stage are discussed below. 

 

 

 Self-Recirculation Casing Treatment 1.4.1

 

Self-Recirculation Casing Treatment (SRCT) is the most modern method that increases a 

turbocharger’s operational range by interfering with the boundary layers at the entry of the 

diffuser. This is possible due to the static pressure field variations under specific operating 

conditions as suggested by Hathaway et al [3] and Sivagnanasudaram et al [4]. For a typical 

design in automotive turbochargers, the SRCT usually consists of grooves, circumferential into 

the inlet duct, with two bleeds (as shown in figure 1.3). The first bleed is before the inducer and 

the second one is after the inducer. Close to surge operating condition (which is one of the 

extremities of a turbocharger’s operation), the system recycles the low energy fluid from the 

bleed close to the impeller, and sends it back to the inducer through the first bleed. On the other 

hand, close to choke operating condition (which is the other extremity of a turbocharger’s 

operation), more flow is injected to the impeller through the bleed that is located close to the 

inducer. These two procedures can remove any kind of unsteadiness that can develop at the 

upstream of the diffuser. 

 

 

 
 

Figure 1.3 Self-Recirculating Casing Treatment [1] 
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 The Impeller 1.4.2

 

The impeller is one of the most important components of a turbocharger’s compressor stage. The 

impeller is rotated by a shaft, connected to the wheel of the turbine stage of the turbocharger. 

The impeller transfers its energy to the incoming fluid, hence increasing fluid’s energy. This is 

achieved by momentum transfer mechanism. A typical impeller of a compressor is shown in 

figure 1.4. 

 

 
 

Figure 1.4 Impeller of a Turbocharger Compressor Stage [2] 

 

The fluid flow through the impeller is three-dimensional, the s three main velocity components 

being in axial direction (Cx), in radial direction (Cr), and in azimuthal or tangential direction (Cθ). 

The incidents angle of the flow with the impeller is critical, affecting the performance of the 

compressor stage, and can generate series of instabilities, as discussed by Pinarbasi [5] and 

Japikse [6]. The shape of the blades drives the flow into a radial direction in order to discharge 

the fluid from the edge of the impeller blades. 

 

 

 Diffuser 1.4.3

 

Diffuser is also a very important component of a turbocharger’s compressor stage. A diffuser 

consists of two parallel circular plates, with a gap in between them, so that the flow of air, from 

the impeller, can pass through them. The diffusers are either vaneless or vaned. As this study 

presents investigations into vaneless diffusers only, figure 1.5 shows a typical vaneless diffuser 

for the compressor stage of a turbocharger. 
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Figure 1.5 A Vaneless Diffuser  

 

The primary aim of a diffuser is to diffuse the air flow. Diffusion converts the kinetic energy of 

the fluid into its pressure. Hence, at the outlet of the diffuser, the flow velocity is lower and the 

fluid’s pressure is higher, as compared to diffuser’s inlet. Further discussion on diffusers flow 

characteristics is presented in section 1.7. 

 

 

 Volute 1.4.4

 

The volute collects and guides the flow from the diffuser. The flow is finally discharged from the 

volute through the delivery pipe. The volute decreases the non-uniformities and turbulence of 

flow entering the delivery pipe (Aungier [7]). Typical volute geometry is shown in figure 1.6. 

 

 
 

Figure 1.6 Volute 

 



INTRODUCTION 

Design Optimisation of a Diffuser for a Turbocharger Compressor 
By Paris Achilleos, School of Computing and Engineering, University of Huddersfield, UK (2014) 

 

7 

 

The volute has a critical area on which the overall stage performance depends on. This is known 

as tongue. Its size and geometry has a significant effect on the performance of the centrifugal 

compressors. If the inclination of the tongue does not conform to the flow direction, shock losses 

and distributed flow conditions in this area will arise. 

 

 

1.5 Types and Applications of Turbochargers 

 

Turbochargers are being used in a variety of industrial applications like aerospace, marine, 

hydro-turbines, larger centrifugal chillers for commercial and industrial applications etc. 

Considering the challenges for each individual application, the turbochargers were modified 

accordingly. Different applications allow the engineers to explore in detail the geometric 

characteristics of turbochargers, and to modify each component accordingly. The main 

configuration that distinguishes the turbomachines into two divisions is the impeller design.  The 

impeller can have axial or radial configurations for the turbine choice, but the compressor stage 

consists mostly of centrifugal configuration, although depending on the application, axial-radial 

combinations can be employed. For example, axial compressors are mostly employed in the 

aerospace industry for the flight and stability purposes (figure 1.7). The use of centrifugal 

compressors is common in small airplanes and automotive vehicles (figure 1.8). 

 

 
 

Figure 1.7 Axial Compressor [8] 
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Figure 1.8 Radial Compressor [9] 

 

Automotive turbocharging requirements are different from those of gas turbines. The stability 

and flow range are the essential parameters for automotive engines. More specifically, the 

automotive engines operate from idle to full power. Automotive turbochargers are used in all the 

categories of ground vehicles i.e. commercial, private (passenger cars) and racing applications. 

Each category has its own specific needs and the turbocharger performance is adjusted 

accordingly. For example, sports cars need to achieve higher pressure ratios and efficiencies, 

with operating range being of secondary importance. On the other hand, commercial vehicle 

turbochargers (heavy-duty engines) give more priority to wider operating range, and in some 

cases sacrifice efficiency, which is the main reason why vaneless diffusers are employed instead 

of vaned diffusers. However, some subcategories of commercial vehicles require higher 

efficiencies rather than wider operating range. These kinds of modifications can be made by 

modifying the geometry of the inlet section or by employing a vaneless diffuser, depending on 

the specific needs of each application. 

 

 

1.6 Performance Characteristics of a Turbocharger Compressor Stage 

 

The two primary performance characteristics of a turbocharger compressor stage are the pressure 

ratio and the efficiency, which are described in detail below: 
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  Pressure Ratio 1.6.1

 

The compressor pressure ratio is defined as the ratio of pressure at the outlet to the pressure at 

the inlet of the compressor stage, which is represented mathematically as follows: 

 

       [
    

   
]                                                        (1.1) 

 

Figure 1.9 depicts the variations in total-to-total pressure ratio with respect to mass flow rate 

passing through the compressor stage of a turbocharger at various operating speeds. This graph is 

commonly known as a Compressor Map. The left and right extremities of pressure ratio curves 

are dictated by the surge and choke conditions respectively. 

 

 
 

Figure 1.9 Total-to-Total Pressure Ratio variations in the Compressor Stage of a Turbocharger 

 

 

 Isentropic Efficiency 1.6.2

 

The isentropic efficiency of a compressor is defined as the ratio of the isentropic work required 

to raise the pressure of a gas, to the actual work input. 

 

      
      

       
                                                    (1.2) 

 

or: 
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                                           (1.3) 

 

Using the compressible flow relationship between temperature and pressure (by substituting 

Tout,isentropic in equation (1.3)), the isentropic efficiency of the compressor can be expressed as: 

  

      
    [      

   
    ]

        
                                             (1.4) 

 

Figure 1.10 depicts the variations in total-to-total efficiency with respect to mass flow rate 

passing through the compressor stage of a turbocharger at various operating speeds. The left and 

right extremities of efficiency curves are dictated by the surge and choke conditions respectively. 

 

 
 

Figure 1.10 Efficiency variations in the Compressor Stage of a Turbocharger 

 

 

The choke is an extreme flow phenomenon represented by the right most operating points on a 

turbocharger compressor map. It is characterised by the upper limit of flow rate through the 

compressor stage, where the flow velocity reaches maximum. A further increase in the 

differential pressure across the compressor stage does not increase the flow rate through the 

compressor. 
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Surge is the other extreme flow phenomenon represented by the left most operating points on a 

turbocharger compressor map. Under surge condition, the working fluid does not possess enough 

energy to support air flow through the compressor stage. It occurs when the pressure of the 

airflow in the compressor is actually higher than what it can physically maintain. 

 

 

1.7 Flow Characteristics in a Diffuser 

 

In order to understand the flow behaviour within the diffuser of a turbocharger compressor stage, 

it is important to first visualise the geometrical configuration of a typical turbocharger 

compressor diffuser. Figure 1.11 shows a cut section of a turbocharger compressor stage. It can 

be clearly seen that a diffuser basically consistes of two parallel walls, where the flow diffuses in 

order to increase the fluid’s pressure at the outlet of the diffuser. Diffusion occurs because the 

diffuser’s outlet radius is more than a diffuser’s inlet radius, increasing the effective area for the 

flow to take place, and hence diffusing the flow. Furthermore, the two walls of the diffuser are 

known as shroud wall and the hub wall. Shroud wall is the one which is closer to the inlet of the 

compressor stage. The inlet section of the shroud wall is curved, while the outlet section is 

bulged, forming the tongue of the compressor. The hub wall is a straight wall. 

 

 
 

Figure 1.11 Cut Section of a Turbocharger Compressor Stage [9] 

 

Diffusers form a radial annular passage from the impeller tip to some limiting outer radius. It 

converts the kinetic energy of the flow that leaves the impeller to static pressure rise. In a typical 

design, a scroll will follow the diffuser where the discharge flow will be collected and conveyed 

to the engine cylinders. The main geometric parameters of the diffuser that affect the flow are the 
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cross-sectional areas at the inlet (A1) and outlet (A2) of a diffuser. Furthermore, larger the length 

of a diffuser, the less abrupt the area change would be. In automotive diffusers, it was shown that 

r2/r1 ratios higher than 1.8 results in flow losses for the system (Brown [10]), where r1 and r2 

represent the radius, from the axis of rotation, to the diffuser inlet and diffuser outlet sections 

respectively (see figure 1.12). 

 

 
 

Figure 1.12 Diffuser Geometry 

 

 

 Boundary Layer Separation 1.7.1

 

The main flow characteristic in a diffuser is the positive pressure gradient that favours the 

development of boundary layers and sometimes flow separation. Sovan [11] states that the 

positive pressure gradient depends mostly on the ratio of A2/A1 and the length of the diffuser (L). 

Increase in area ratio A2/A1 increases the positive pressure gradient. Thus, there is a higher 

possibility of boundary layer separation, and it may result in reverse flow within the diffuser and 

reduction in pressure recovery. The flow separation phenomenon in a conical diffuser is shown 

in figure 1.13. 



INTRODUCTION 

Design Optimisation of a Diffuser for a Turbocharger Compressor 
By Paris Achilleos, School of Computing and Engineering, University of Huddersfield, UK (2014) 

 

13 

 

 
 

Figure 1.13 Boundary Layer separation within a Conical Diffuser [12] 

 

 

 Increase in Length 1.7.2

 

The increase in the length of a diffuser, for a constant A2/A1 ratio, reduces the positive pressure 

gradient as well as the possibility of flow separation, and hence results in higher pressure 

recovery. If A2/A1 ratio is constant, and connected with a straight section (A2=A3), then the 

reattached point of the boundary layer will be in the section (duct) that follows (Goulas [12]). 

This can be seen in figure 1.14. 

 

 
 

Figure 1.14 Flow phenomenon when A3=A2 [12] 

 

 

 Sudden Expansion 1.7.3

 

Another example is that A2/A1 ratio remains constant, but the duct that follows the diffuser exit 

section has a bigger area i.e. A3>A2. This consideration results in a higher-pressure rise within 

the diffuser (Goulas [12]). Therefore, the sudden increase of area A3 provides a pressure rise 

with less mixing flows and losses. This can be seen in figure 1.15. 
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Figure 1.15 Flow phenomenon when A3>A2 [12] 

 

 

1.8 Diffusers Performance Optimisation 

 

The main consideration for optimal performance of a diffuser is the boundary layer separation 

that is close to the diffuser walls, and causes pressure drop within the diffuser. As the primary 

purpose of a diffuser is to increase the pressure, the pressure drop must be minimised. For a 

given A2/A1, the designer needs to investigate the formation of the boundary layer and its 

consequent separation. This can be achieved with the following recommendations by Goulas 

[12]: 

 

1. Modify/optimise the velocity distribution if it is not symmetric at the inlet of the 

diffuser. In order to achieve a symmetric velocity distribution, increase the length of 

the inlet section of the diffuser. This provides adequate time for the flow to fully 

develop and become symmetric 

 

2. Optimise the area ratio (A2/A1) and the length of the diffuser. This can be achieved by 

tuning the diffuser geometry and shape, for example to a planar shape. The boundary 

separation is thus limited in the region of high speed, and hence reduces the mixing 

effects and losses 

 

3. Intercept the boundary layer, or even use combination of the previous methods. The 

SRCT is the most modern method that is employed for interception of boundary 

layers 

 

 

1.9 Motivation 

 

The need for energy saving and emissions reduction around the globe is amongst the top 

priorities of the modern society, and as a result, greater efforts from all the industrial sectors was 

directed towards reducing the pollutants. This brings the automotive industry at the forefront for 

meeting the new regulations from the EU regarding the reduction of NOx emissions from the 
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engine systems. This study focuses on the heavy-duty engine systems, and concentrates on 

improving the turbocharger performance, resulting in overall performance improvement of the 

engine system. Turbochargers can improve the engine performance with a significant reduction 

in fuel consumption, hence reducing engine emissions. Another challenging element for the 

turbocharger optimisation is the housing size, which needs to be made more compact for better 

integrity with the automotive engine. 

 

From the general review carried out in this chapter regarding diffusers of a turbocharger 

compressor stage, key areas were identified for further investigations. These key areas focus on 

the design characteristics of the diffuser channel, and their effect on the flow structure. 

Furthermore, more in-depth research is required on the exit section of the diffuser in order to 

explore the mechanisms that affect the diffuser performance. Hence, detailed numerical 

investigations were carried out to analyse the performance of the diffuser for stable operating 

conditions, which corresponds to lower operating speeds of the turbocharger. 

 

 

1.10 Research Aims 

 

The specific research aims formulated for this research study are described in this section, 

whereas the detailed objectives are discussed after carrying out the literature review in the next 

chapter. The research aims of the current study are to: 

 

1. Analyse the flow characteristics of the baseline diffuser of a turbocharger compressor 

stage at lower operating speeds 

 

2. Develop an optimal design of the diffuser channel for turbocharger compressor stage 

 

The aforementioned aims cover a wide range of operation of the turbocharger compressor stage, 

and hence are considered satisfactory for this study. Detailed literature review is presented in the 

next chapter, focusing on the aforementioned research aims, in order to fill any gaps in the 

existing literature.  

 

 

1.11 Organisation of Thesis 

 

Based on the discussion presented in the previous sections, the current thesis is structured as 

follows: 

 

Chapter 1 provides an overview of turbocharger including diffuser related effects.. From this 

overview, the purpose for carrying out this research is described, which identifies key areas to be 

reviewed in Chapter 2. 

Chapter 2 consists of a detailed review of the research that was carried out in the area of diffusers 

optimisation. It includes the review of published literature regarding the effect of the diffuser 

geometric characteristics on the performance output of the turbochargers. Furthermore, literature 
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for automatic optimisation techniques, available from commercial software packages, was also 

presented. 

 

Chapter 3 documents the fundamental principles of Computational Fluid Dynamics (CFD). It 

includes the CFD modelling of the centrifugal compressor, including the solver settings and the 

appropriate boundary conditions that were specified. Furthermore, a detailed discussion on the 

Multiple Reference Frame (MRF) technique for rotating the impeller is discussed. 

 

Chapter 4 demonstrates the capabilities of CFD solvers in predicting the performance of a 

turbocharger compressor stage. This also includes validation of the numerical results with the 

experimental data. Furthermore, it highlights the importance of CFD as a research and 

development tool for predicting the component performance at an early stage for industrial and 

non-industrial applications. 

 

Chapter 5 consists of detailed studies on the effect of the geometrical parameters of the diffuser 

on the performance characteristics of the turbocharger compressor stage. The optimisation 

methodology was described, and different diffuser models were numerically evaluated. Based on 

the selection criteria, the optimum diffuser geometry was picked out and its complete flow 

analysis was included. The comparison of improved local and global flow characteristics against 

baseline model was highlighted in this chapter. 

 

Chapter 6 concludes the findings of this study, clearly mentioning the goals achieved and 

contributions to existing knowledge. Recommendations for future work have also been included. 
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2 CHAPTER 2                                                                         

LITERATURE REVIEW 
 

 

he following chapter provides a detailed review of the available literature in 

the field of turbochargers, with emphasis on the compressor stage. The main 

areas addressed in this chapter are associated with diffuser optimisation 

techniques for improving compressor performance. Several geometric 

characteristics that affect the performance output of a vaneless diffuser were also 

examined. Amongst the geometric variables, the focus is primarily on the diffuser 

width, its effects on the overall efficiency, and the stability of the stage. Within these 

areas, specific limitations were identified, and used to define the scope of this study. 

The specific research objectives of this thesis were outlined in an effort to improve 

the efficiency of the turbocharger compressor stage from Cummins Turbo 

Technologies (CTT). 
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2.1  Introduction 

 

In recent years, turbocharger optimisation was focused on the development of existing and new 

technologies, using both experimental and numerical techniques, concentrating on specific 

components that affect stage performance and increase the efficiency through traditional and 

modern optimisation methods. The most common components that are being improved are the 

impeller blades and the diffuser passage. The diffuser’s annular passage within the compressor 

section is a major research area for optimising the overall performance of the stage, and literature 

review of this aspect is the major focus of this chapter. This is mostly due to the low design and 

manufacturing costs associated with diffusers as compared to other components. Moreover, 

effective diffuser design can contribute to the improvement in the performance output of the 

turbocharger by increasing the efficiencies and reducing the fuel consumption. This chapter 

discusses the existing design configurations and technologies, concentrating on automotive 

applications, providing a clear and concise review of the major works conducted in this area, 

with special references of Senoon and Kinoshita [13], Jansen [14] and Japikse [15]. Additionally, 

the need for better understanding regarding the geometric construction of automotive diffusers 

was discussed. This chapter, emphasizes the effects of the specific geometric parameters on the 

compressor performance. 

 

 

2.2 Performance Characteristics of a Turbocharger Compressor Stage 

 

The previous chapter discussed the importance of a proficient design for both the impeller and 

diffuser in order to optimise the performance output of turbocharger compressors.  The initial 

work in the area of divergent sidewall diffusers was carried out by Japikse [15], who optimised 

the performance of a turbocharger compressor stage. The performance output of the divergent 

diffuser channel was reported by the author as excellent, indicating that diffusers with more axial 

length can increase the overall performance output of a turbocharger compressor stage. During 

the investigation, a diffusion process at the inlet section of the diffuser passage was noticed that 

caused pressure drop upstream of the diffuser channel. The diffusion process mentioned can be 

explained from the variation of critical flow angle φ due to the increase of A2 (b2>b1) that causes 

higher flow losses upstream of the impeller. The critical flow angle is the largest tangential angle 

with which the diffuser does not stall. As a result, the blades of the impeller had to be modified 

accordingly in order to match the requirements of the diffuser. This demonstrated the importance 

of a proficient match between impeller and diffuser for better performance output for 

turbocharger compressor stage. The published results from Japikse provided the turbocharger 

designers with an extra degree of freedom for diffuser design by diverging one wall of the 

diffuser. 

 

The proficient blend of impeller-diffuser is a major factor for the performance output, with a 

large number of researchers concentrating on this specific aspect. The optimisation of diffuser 

design is more complicated due to the mixing phenomenon that occurs at the interaction of 

diffuser with volute. The air, when discharged from the impeller, enters the diffuser passage 

where it develops a strong three-dimensional character. At the diffuser exit section, the flow 

experiences a bend of approximately 90º to enter the volute housing, resulting again in strong 
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three-dimensional flow. Optimisation of this specific section can reduce flow losses and provide 

higher static pressure rise. Literature suggests that a divergent wall diffuser has higher chances of 

flow losses resulting in the design process of non-parallel wall even more challenging (Goulas 

[12]). Still the most challenging task is to achieve an optimal match of all the three components 

for a variety of operating conditions, namely surge, choke and for several operating speeds, since 

it is known that the performance output of a turbocharger compressor stage varies with operating 

speeds.. This indicates that the flow regimes develop at each design point when the stage shifts 

from idle to full power. These variations of flow regimes need to be taken into account by the 

designer in the early stages of the design process. 

 

As discussed earlier, the performance output of turbochargers was investigated by several 

researchers, prominent among them are Senoon and Kinoshita [13], Abdelhamid [16], Dickmann 

[17], Khalifallah [18] etc. They added a wide range of information in the field of turbocharger 

compressor stage operations. Furthermore, literature indicates that full stage models, or isolated 

components models, were used in order to study the performance of a turbocharger compressor 

for optimisation purposes. These methods have advantages and disadvantages in terms of 

computational time, prototype manufacturing, accuracy etc. More specifically, for numerical 

investigations, researchers prefer to model either only the impeller or a single blade passage, 

with or without the diffuser, in order to reduce computational time. Another common technique 

is the modelling of single diffuser passages, with or without volute configuration. Similar 

approaches were also observed in experimental investigations. This variety of techniques raise a 

series of questions regarding the accuracy and correlation of the results obtained from each 

individual investigation. The variety of the techniques mentioned above can provide reasonably 

accurate results regarding the overall performance output of a turbocharger compressor stage i.e. 

pressure ratio and efficiency. However, it might provide miss-leading information because of the 

absence of coupled effects. For example, in the case of an isolated diffuser test, if the turbulence 

levels downstream of the diffuser are not modelled accurately, it might lead to errors in 

computations. In another situation, if the length or the width of the diffuser modifies during the 

optimisation process, the critical flow angle will vary as well. As a result, the turbulence levels 

upstream of the impeller vary, and need to be modelled accurately; otherwise the simulation does 

not provide accurate results regarding the performance output of the diffuser passage (pressure 

rise, boundary layer separation and kinetic energy recovery). Moreover, when modelling the 

impeller diffuser without the scroll, round up errors may appear upstream of the diffuser passage 

in terms of turbulence levels, close to the areas where interaction with volute takes place. This 

affects the kinetic energy distribution within the scroll, and the overall stability of the stage. 

Japikse [19] suggested that some of the discrepancies noticed in literature from several 

investigations were due to the different turbulence structures between the compressor and 

isolated diffuser tests. This opinion is also supported by Hoffman [20] who demonstrated that the 

pressure recovery, and the diffuser flow regime, was dependent on the initial conditions 

upstream of the diffuser, more specifically the inlet turbulence levels. However, the data 

obtained from each individual investigation can form the basis for a more general theoretical 

analysis, and contribute to the field of turbochargers.  

 

The above paragraph repeatedly underlines the importance of initial conditions upstream of the 

diffuser passage. Seng [21] also established the importance of the flow conditions upstream of 

the diffuser for turbochargers optimisation, concluding that the initial conditions upstream of a 
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diffuser passage were affected mostly by the inlet Mach number and turbulence levels, which 

also affect the flow development in circumferential direction downstream of the diffuser passage. 

Furthermore, it seems to be a major parameter for the overall performance of turbochargers, and 

it is the author’s opinion that the initial condition is the main parameter that determines the final 

flow development downstream of the diffuser. Moreover, the current investigation comments on 

the specific parameters, demonstrating both qualitatively and quantitatively, the performance of 

the current diffuser passage under several operating conditions. Literature indicates that the 

compressor performance varies at lower operating and higher operating speeds, and the 

parameters that affect this behaviour are Mach number and turbulence levels (velocity profiles 

downstream of the diffuser passage). Another important parameter is the variation of critical 

flow angle. This investigation examines the flow field at the entry of a diffuser passage that was 

modified from parallel walls to non-parallel wall diffuser. Investigations on the effects of critical 

flow angle, in terms of flow development downstream of the diffuser passage due to the variation 

of velocity profiles (turbulence levels), is also an integral part of this work. 

 

 

2.3 Existing Designs and Design Considerations 

 

The numerical investigation reported in the current study focuses on the optimisation of an 

annual diffuser passage, and a series of existing designs are discussed, exploring some of the key 

mechanisms that affect diffuser channel’s performance output. The proficient performance of 

this specific component depends on the performance output of the impeller, which is located 

upstream of the diffuser, and the volute downstream of the diffuser (Japikse [6]]). This indicates 

that the proficient matching of these components provide higher pressure ratios and efficiencies 

for the turbocharger compressor stage. This also ensures stable operating conditions and a wide 

operating range, which is more than essential for the specific operations. For this specific reason, 

a discussion regarding the flow development, upstream and downstream of the diffuser passage, 

is being carried out. 

 

Generally, in all turbomachinery applications, the impeller is known to be the most important 

element, and it is responsible for the energy transfer process. At design operating conditions, 

flow leaving the impeller has an amount of kinetic energy, which needs to be recovered in terms 

of static pressure, culminating in higher efficiencies. The kinetic energy of the flow leaving the 

impeller of a turbocharger compressor stage is equivalent to approximately 30% to 40% of the 

total work input under typical operating conditions (Japikse [23]). This kinetic energy must be 

recovered in an effective way to achieve higher static pressure rise, and efficiencies, through the 

diffuser channel. The flow leaving the impeller is highly non-uniform, with significant three-

dimensional velocity components that forms the rotating jets and wakes at the diffuser inlet 

section (Pinarbasi [24]). It is necessary to remove any kind of non-uniformities in velocity 

components to reduce the losses and achieve the maximum pressure recovery, and efficiency, for 

the stage. The flow structures upstream of the diffuser were studied by several investigators like 

Pinarbasi [24], Kämmer [25], Dickmann [17], Rohne [26], Inoue [27] etc., and led to significant 

improvements using experimental and numerical methods. 
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When the flow enters the diffuser, the flow structure that develops is dependent on the adverse 

pressure gradient due to the area ratio of the diffuser, and the volute area ratio that follows. 

Furthermore, it is known that the Mach number upstream of the diffuser has a significant effect 

on the flow structure (Seng [21]). Moreover, the volute’s performance varies for high and low 

mass flow rates, which has an impact on the diffuser performance and the flow structure (Eynon 

[22]), indicating again that the initial conditions upstream of the diffuser might be the 

determining factor for the diffuser-volute performance. The available literature provides strong 

evidence that the interaction of diffuser and volute is crucial for the overall efficiency and 

stability of the compressor stage (Sovran [11] and Japikse [15]). Furthermore, the distribution of 

kinetic energy within the volute affects the overall pressure distribution within the stage. This 

has established the importance of the geometric construction of the diffuser passage. The basic, 

and more complicated, design considerations that explore the geometric construction of a 

diffuser passage are discussed in the following paragraph. This underlines the most important 

flow parameters that are essential for the design process of a diffuser channel and also indicates 

some of the design limitations of the specific component. 
 

Traditionally, a typical turbocharger diffuser geometric construction is simple. Usually this 

consists of two parallel walls, with the main geometric characteristics that affect the performance 

and stability being the diameter ratio (r2/r1) and the width ratio (b2/b1) (figure 1.12). From the 

literature, it was observed that if the width ratio of the diffuser decreases, the critical flow angle 

increases. On the other hand, when the diameter ratio of the diffuser is increased, the critical 

flow angle is reduced. The critical flow angle is the maximum angle at which the diffuser does 

not stall (Jaatinen [28] and Abidogun [29]). 

 

A wide diffuser yields a larger area ratio, forming more severe adverse pressure gradient. This 

might lead to flow losses and pressure drops downstream of the diffuser passage. Bradshaw [10] 

has shown that increasing the radius ratio above 1.8 results in higher pressure drops and losses. 

Furthermore, the foregoing geometric characteristics have a significant contribution to the 

performance of the stage when operated under extreme conditions, namely surge. Literature 

review shows that the high diffuser diameter ratio, and stall inception lead to surge. This 

indicates that the stall is more intense for diffusers with relatively higher diameter ratios 

(Abidogun [29] and Ljevar [30]). However, contrasting opinions were expressed on the effect of 

width ratio in terms of stability by Abidogun [29]. Therefore, more detailed information is 

required on this specific aspect, with indepth exploration of the mechanisms that affect the 

stability of a wide diffuser. 

 

The limitations, mentioned in the previous paragraph, have forced the designers to optimise the 

performance of a diffuser channel by improving the initial conditions upstream of the diffuser 

passage. The most common technique that was adopted by the turbocharger manufactures is the 

pinch (figure 2.2) due to the easy design and low manufacturing costs (Jaatinen [28]). Pinch 

means that the diffuser inlet width is decreased, as shown in figure 2.1. Pinch can also be made 

at the shroud, the hub, or both the walls. Furthermore, the pinch at shroud is the most effective, 

as reported by Jaatinen, who studied a series of pinched vaneless and vanned diffusers, and claim 

that the pinch can reduce the secondary losses caused by the tip clearance flow. The authors also 

state that the pinched geometry can improve impeller performance, depending on the operating 

point and pinch configuration. According to the results from Jaatinen, the pinch contributes to 

the increase of efficiency for the stage. Although the pressure ratio increases over a wide 
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operating range, including design and low rotational speeds, there is a decrease in the pressure 

ratio at the higher rotational speeds. The higher efficiencies and the lower pressure ratios that 

were observed for the higher operating speeds are only possible for smaller impeller work. This 

underlines again the importance of impeller diffuser matching for the optimal performance of a 

turbocharger compressor stage. The pinch configurations converge and diverge at the inlet 

section of the diffuser, and as a result, the walls are not considered to be parallel anymore. This 

means that the adverse pressure gradient will be greater. Furthermore, it is known that the pinch 

forces the flow to be more radial at the inlet section of the diffuser passage, meaning a reduction 

of angular momentum. 

 

 
 

Figure 2.1 Pinched Diffuser 

 

Despite the fact that a larger adverse pressure gradient results in higher static pressure, the flow 

losses might limit the operating range of the stage at lower mass flow rates. This explains why 

traditional designs with a conical shape are not preferred in the automotive industry, although 

these were employed in aerospace and hydroturbine applications with great success (Keerthana 

[31] and Eisinger [32]). 

 

The need of higher efficiencies, to meet the regulations of EU regarding the emissions released 

from ground vehicles, forces the automotive industry to investigate alternatives designs for 

diffuser’s geometrical construction. This is achieved by exploring the interaction of diffuser-

volute, and optimising the specific components area, in order to achieve higher efficiencies 

through diffuser design, with the means of computational fluid dynamics and automatic 

optimisation techniques reported by Eisinger [32], Djebedjian [33] and Lee [34]. Complicated 

designs were achieved with higher efficiencies and stable operating conditions. With the housing 

size not being a limiting factor anymore, turbocharger designers have an extra degree of freedom 

for diffuser design. Design configurations that succeed, increase efficiency by varying the 

diffuser outlet, and this aspect will be discussed in the following paragraphs. 

 

Seng [21] developed a three-dimensional compressible flow model for predicting rotating waves 

in a diffuser, and examined a series of non-parallel wall diffusers. This was achieved by 

increasing the exit width of the diffuser from shroud wall, either with a constant area ratio (by 

varying diffuser length), or with curved shapes (elliptical), investigating several operating points. 

The author demonstrated the diffuser behaviour for several b2/b1 and L/r1 ratios, exploring the 

mechanisms that affect the diffuser performance. The author also underlined the importance of 

initial conditions upstream of the diffuser, based on the Mach number of the flow field. The 

author, however, did not examine the performance output of the diffuser for a constant area ratio. 
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As a result, the author was not able to determine the main geometric characteristics that affect 

the efficiency of the diffuser passage. This was explored to a significant extent in the current 

research work. Seng also observed behaviour of the diffuser as a function of Mach number and 

operating speed. However, Seng has not clarified the mechanisms that affect the performance 

output of the diffusers at lower and higher operating speeds. Furthermore, Zhu [35] has followed 

a similar methodology by converging and diverging the shroud wall. The results from both 

investigations suggest that the best design, in terms of both efficiency and stability, consists of 

almost parallel walls. This is most probably due to the relatively small increase of adverse 

pressure gradient. Moreover, it was also reported by Djebedjian [33] that a sudden increase of 

the diffuser width, close to the interaction zone with the volute, can help to further increase static 

pressure downstream of the diffuser. This design supports the idea that due to the sudden 

expansion near the volute, higher efficiencies can be obtained with low manufacturing cost. A 

similar design from the hub side was also found to give similar results (Kalikevych [36]). 

 

For this reason, researchers prefer to optimise the diffuser by diverging and converging the 

diffuser from the shroud wall. Lee [34] points out that the flow within the volute is important for 

the overall efficiency of the stage. Clements [37] used a vaned diffuser that employed sidewall 

divergent diffuser, and within this, all divergent channels show that the width of the channel had 

the most significant impact on stage efficiency. This aspect also needs to be investigated for 

vaneless diffuser in order to determine the mechanisms that affect the performance output of the 

diffuser and volute. 

 

Literature also indicates that the reduction of diffuser width, by diverging the shroud wall, can 

also contribute to higher efficiencies and compressor map enhancement (Adachi [38]). The need 

for further knowledge regarding the width ratios, and their effects on stable operating conditions, 

is highlighted as the main work of the present study. The unstable nature of the instabilities at the 

lower extreme of the compressor map has to be investigated under transient conditions to obtain 

meaningful results. Moreover, a more in-depth understanding of the mechanism that triggers the 

surge, and how it can be controlled, is also required. The focus of this study is to obtain 

quantitative data for a variety of b2/b1 ratios, by varying b2 in stable operating conditions, with 

top priority being the increase in efficiency. 

 

 

2.4 Optimisation of a Turbocharger Compressor Diffuser 

 

This section focuses on the optimisation methods for annular vaneless diffusers in order to 

improve the overall performance of a turbocharger compressor stage. Special emphasis was 

given to the diffuser width, and the mechanism that affect the flow field.  

 

Both vaneless and vaned pinched diffusers was studied to a great extent by Jaatinen [28], 

covering a wide range of flow situations, by varying the diffuser width from the inlet section, 

with a series of pinched geometries, shown in figure 2.2. The pinch can be applied either at 

shroud, hub or at both the walls, with a variety of shapes. The pinch from shroud wall was 

reported to be more beneficial, as the pinch geometry forces the flow leaving the impeller in the 
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radial direction. More radial flow leaving the impeller means that the Cr component of velocity is 

increased. 

 

 
                     (a)                      (b)                        (c)                      (d)                        (e) 

 

Figure 2.2 Vaneless diffuser entry configurations: a) Unpinched, b) Front Pinched, c) Rear 

Pinched, d) Double Pinched and e) Constant Area (b 1/r) [6] 

 

It is well known that the increase of radial velocity, downstream of the diffuser, propels more 

mass flow into the diffuser passage, damping any possible unsteadiness that may develop (Ljevar 

[30]). The pinch configuration was found to contribute to increase in the efficiency over a wide 

operating range. This comes, however, with a drawback in terms of increased pressure drop at 

higher operating speeds of the compressor stage, which may be related to the turbulence levels 

that develop downstream of the diffuser, due to the variation of critical flow angle. This specific 

area needs further investigation in order to determine the mechanism that causes the higher 

pressure drop at higher operating speeds. This was also observed by Japikse [19]. This might 

also be related with the larger adverse pressure gradient, due to the pinch configuration with 

b2>b1, which can lead to stronger mixing phenomena downstream of the diffuser passage, at the 

point of interaction with volute. Furthermore, it is related to the turbulence levels upstream of  

the diffuser due to the variation of critical flow angle. The variation of the velocity profiles, at 

the entry of the diffuser passage, might be the key that would lead to the understanding of the 

mechanism that causes higher pressure drop at higher operating speeds. Obviously, the geometric 

construction of a diffuser passage has a considerable impact, in terms of efficiency and pressure 

rise, on the compressor stage, due to the variation of critical flow angle, when the length and 

width of the diffuser are modified. 

 

Seng [21] and Jaatinen [28] investigated the performance output of the diffuser passage with 

linear and parabolic shapes, upstream and downstream of the diffuser passage. They concluded 

that the shape of the diffuser has considerable effect on the performance output of the 

compressor stage at specific operating points. They further state that the area ratio is the major 

geometric parameter that determines the magnitude of adverse pressure gradient, and the length 

of flow development. This was well established by Sovran [11], showing that the remaining 

geometric characteristics of the diffuser passage are mostly related to the stability of the flow 

within the diffuser passage. Furthermore, the variations of two geometric characteristics, namely 

the diffuser length and the diffuser width, affect the critical flow angle (Adidogun [25]). The 
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variations in diffuser length and its width also affect the velocity profiles downstream of the 

diffuser. Effective use of those velocity profiles might lead to further improvement of the 

performance output. 

 

Jaatinen [28] mentioned that the effective use of angular momentum, upstream of the diffuser, 

might be more beneficial for the compressor map margins, at lower mass flow rates. The present 

investigation is focused mostly at the mechanisms that result in higher efficiencies through the 

diffuser passage for design operating conditions. In order to investigate the effect of Cθ on 

compressor map enhancement at lower mass flow rates, off design conditions need to be 

investigated as well. 

 

The statement of Adidogun [25], regarding the increase of flow stability of a turbocharger 

blower with the increase of diffuser width, agrees with the findings of Senoon and Kinoshita 

[13]. However, Jansen [14] predicted a more stable blower by decreasing the diffuser width. This 

raises a contrast of opinions regarding the geometric effect of the diffuser width, in terms of 

performance output, and requires further investigation. It might be linked with the turbulence 

levels downstream of the diffuser. The difference in opinions between the authors might depend 

on the parameters that each individual researcher investigated, as mentioned by Adidogun, with 

the final conclusion being that increase of diffuser width reduces the critical flow angle, and if 

the rest of the geometric features remain constant, the resultant flow is more radial upstream of 

the diffuser passage. This might be beneficial for stabilising the diffuser passage. The stability of 

the current diffuser demonstrates different behaviours for relatively small and large variation in 

b2/b1, indicating again that the variation of critical flow angle is related to the velocity profiles at 

the entry of the diffuser, and it can contribute to stability under specific conditions. 

 

From the above literature review, the importance of effect of the inlet conditions, upstream of the 

diffuser, on diffuser performance, is obvious. Evidence for optimising the diffuser, by controlling 

flow at the outlet section and volute are reported by Adachi [38]. The author investigated a large 

sized turbocharger chiller, which is used in commercial and industrial air conditioning systems. 

The author improved the performance of the compressor by adding a resistance at the diffuser 

outlet section. The author achieved this by tuning the diffuser with a tapered passage, reducing 

the exit area, and succeeding in increasing the overall efficiency, and improvement in surge 

margin. The optimum tapered throttle ratio for the tested compressor was found to be 0.5. At a 

small tapered passage ratio (e.g. 0.25), the efficiency dropped remarkably, however the surge 

margin improved. 

 

Yang [39] has followed a similar procedure for a micro-gas turbine turbocharger compressor 

with a vaned diffuser. The author examined a series of b2/b1 configurations, by reducing the 

width b2. It was concluded that reduction of b2 can increase the overall efficiency, but the author 

did not include surge, and concentrated on stable operating range. Furthermore, the optimum 

b2/b1 ratio was found to be 0.6, and the worst performing ratio was 1.1. A backflow vortex, near 

the surface adjacent to the diffuser outlet, was reported for b2/b1=1.1, which explains the lower 

efficiency for this width ratio, in terms of flow losses. The compressor stage indicates similar 

behaviour for a width ratio of 0.8, however, for a width ratio of 0.6, the vortex disappears, and 

the flow field becomes uniform, resulting in the highest efficiency. Some of the findings of this 

work might be due to the characteristics of the specific micro-compressor, as the author reported. 
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An important aspect of this work is that the uniform flow field reduces the flow losses, and it 

was demonstrated that it is an important factor for the proficient performance of the diffuser and 

the volute. 

 

Another example of vaned diffuser, in which the diffuser width from the outlet section is 

reduced, is presented by Layth [40]. The author investigated the effect of splitter blades, and the 

main observation was the improvement of performance output, affected mostly by the nature of 

flow in the impeller, and vaned diffuser interaction. Although the total pressure downstream of 

the diffuser was found to decrease, the static pressure was found to increase. 

 

The research studies discussed above show that the overall stage efficiency can be increased with 

a reduction in b2 due to the flow phenomenon that develops in the compressor stage. The 

improvement of stall margin, with the reduction of b2/b1, may result in map enhancement for 

diffusers (Adachi [38]). Evidence for optimising the diffuser, by increasing diffuser outlet 

section, is discussed in the following paragraphs. 

 

Clement’s [37] investigation was part of a research project that was aimed to improve efficiency 

of a turbocharger compressor by using a vaned diffuser, instead of a vaneless diffuser. As part of 

the investigation, sidewall divergent diffusers were employed, which diverged from shroud. The 

author reported that the channels that employ sidewall divergence produce almost identical 

efficiency and flow range, as compared to channels of same area ratio without sidewall 

divergence. This statement points out that the diffuser width ratio is the geometric characteristic 

that affects the efficiency if the remaining geometric characteristics remain constant. This effect 

is due to the variation of A2/A1, and the corresponding adverse pressure gradient.  

 

Kalinkevych [36] examined a turbocharger compressor with a vaneless diffuser, having a width 

ratio of 1.07 (see figure 2.2). This was achieved by tuning the diffuser wall from hub side, close 

to the volute, but the author did not provide further information regarding diffuser’s geometric 

optimisation procedure. The investigation concentrated mostly on validating the three different 

methods, using a full stage turbocharger compressor. Furthermore, the author discussed the 

influence of rotating jet and wakes, at the inlet section of the diffuser, at low and high mass flow 

rates. 

 

 
 

Figure 2.3 Vaneless Diffuser Design having b2/b1=1.07 [36] 
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The numerical simulation employed the frozen rotor approach that does not allow to model jets 

and wakes, which explains some of the discrepancies in the calculated and measured results. The 

analysis of the jets and wakes need to be carried out under transient conditions, in order to 

investigate the proposed model of rotating jets and wakes for vaneless diffusers. For this 

particular reason, quantitative analysis of jets and wakes, in the current study, was avoided. 

However, the qualitative analysis shows displacement of the jets and wakes within the optimised 

diffuser, which affects the performance output of the compressor stage. 

 

A similar approach, at the outlet section of the diffuser, was used by Djebedjian [33] in his 

design that used automatic shape optimisation tools to optimise diffuser geometry. The optimum 

design employs sidewall divergent diffuser, but close to the volute, the exit area was further 

increased. This sudden expansion at the diffuser exit is similar to the one mentioned by 

Kalikevych [36]. However, the design examined by Djebedjian considered incompressible flow, 

and modelled only a single diffuser passage, and hence cannot be considered valid for 

turbocharger applications, and further exploration is required. Eisinger [32] used the Adjoint 

operator method for the automatic optimisation procedure. The use of this method considers the 

gradient-based method, meaning that the optimisation algorithms require only the evaluation of 

the objective function for a given design function. The final design consists of a divergent wall 

diffuser (b2>b1), indicating that larger area ratio yields greater adverse pressure gradient. Lee 

[34] followed a different approach regarding the automatic optimisation of diffusers. The 

methodology followed by Lee is Direct Method for Optimisation (DMO), and is a gradient-based 

approach. Even though Lee’s approach considers internal compressible flow, and can be adapted 

for turbochargers applications, it still has disadvantages, like most of the automatic optimisation 

methods do. 

 

The automatic optimisation tools discussed in the previous paragraph typically consider the 

performance output of a specific component, in order to provide the optimum design, based on 

the objective function and quality criterion. However, these tools usually do not consider the 

performance output of other components within a complex system, like a turbocharger 

compressor. 

 

Seng [21] varied the diffuser wall from shroud side, for a variety of b2/b1 values, by increasing b2 

with linear and parabolic shapes. Furthermore, the diffuser performance was examined for 

different diameter ratios. The first observation was the suppression of diffuser instability for non-

parallel walled diffusers. This agrees with the findings of Adidogun [25] regarding the effect of 

diffuser width, on the diffuser’s performance. Although constant shape at the diffuser exit results 

in more stable flow, as compared to parabolic construction, at specific operating conditions, a 

larger exit area due to parabolic shape was found to be more beneficial. The construction of the 

inlet section of the diffuser passage also plays an important role in the stability of the stage, 

suggesting that a larger area at the inlet of the diffuser can provide more stable operating 

conditions for this stage. This indicates that the most important parameter, regarding the stability 

of the diffuser passage, is the velocity profile developed at the inlet. More specifically, in case of 

parallel walled diffuser, the stability decreases with the increase in Mach number at the inlet 

section, while for the non-parallel walled diffusers, the stability increases as the Mach number 

increases (Seng [21]). Additionally, it was noticed that the distribution of kinetic energy, from 

diffuser to volute, varies for parallel and non-parallel walled diffusers, and was also observed by 
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Japikse [19]. This explains why, in the case of a non-parallel walled diffuser, a small increase of 

b2 is more beneficial in terms of stability, considering also the variation of critical flow angle. 

Zhu [35] tested a series of vaneless diffusers, with mildly divergent to strongly convergent walls, 

and found that the convergent walls result in negative pressure slope. 

 

Lee [34] investigated a vaneless diffuser, and its optimisation, by converging and diverging the 

shroud wall, and observed rapid increase in efficiency across the entire compressor map. The 

author used automatic shape optimisation tools (like Djebedjian [33] did), but followed a 

different approach. Lee examined specific controls points along the shroud wall using gradient-

based method. Designs similar to Lee were used for industrial applications, and their 

performance was considered better than parallel wall diffusers. Usually, the geometric 

optimisations of designs similar to Lee are protected by industrial patent protection policies, and 

are not published in open literature, limiting the amount of knowledge that is available. It is 

concluded from the literature review that the effective use of velocity profiles within the diffuser 

might be the key for higher efficiencies and compressor map enhancement (see figure 2.4). In-

depth analysis of the flow development and pressure distribution within a diffuser will reveal the 

mechanism that affects the diffuser performance under several operating conditions.  

 

The literature review discussed in the previous paragraphs reveals the main parameters that 

affect the stability, efficiency and operating range of a diffuser passage. These parameters are 

inlet conditions upstream of the diffuser passage and the adverse pressure gradient that is 

determined mostly from the area ratio. The formation of boundary layer, as a result of adverse 

 

 
Figure 2.4 Converging Diverging diffusers [11] 
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pressure gradient, for automotive applications was studied by Sovran [11], for conical annual 

diffusers. It was proved that the N/L of the diffuser has a significant effect, both on the inlet 

conditions, and the flow development downstream of the diffuser (figure 2.5). This also explains 

the different behaviours of parallel and non-parallel walled diffusers. In the present study, this 

approach was used but only for the shroud wall i.e. only the shroud wall was diverged at 

specified L values, which in-turn determines N values.   

 

 
 

Figure 2.5 Conical Diffuser’s Geometrical Features 

 

Eynon [22] and Japikse [15] discussed the mathematical models that can help to determine 

different behaviours of parallel and non-parallel walled diffusers, due to the kinetic energy 

distribution in the volute. Jaatinen [28] and Jiao [41] also referred to the distribution of Cθ and 

Cr, and their effects on diffuser and compressor stage performance. These studies reveal some of 

the key mechanism that increase efficiency, and result in compressor map enhancement. The 

present study is focused on examining the effects of the diffuser width ratio and pinching (shown 

in figure 2.5) on the compressor stage efficiency, for an automotive turbocharger. 

 

 

2.5 Scope of Research 

 

At present, a significant effort is directed towards understanding the mechanisms that affect the 

diffusers performance, by all the turbochargers manufactures, and a key area for the increase of 

efficiency is the optimum width ratio. Another key area in the development of the diffusers is the 

effective use of angular momentum that can have a significant effect on compressor map 

encashment. These areas define the general scope of this research, along-with the specific 

research objectives, which are described in the next section. Combining the fact that the stage 

needs to operate at different operating points makes the design process much more difficult, 

since different flow phenomena are associated with different rotational speeds. In general, this 

study examines the flow in the stable low speed operating range (i.e. 60,000 and 80,000rpm), and 

the investigations on the mechanisms that increase compressor stage efficiency. Investigating 

static pressure rise within the diffuser, and the velocity profiles developed at lower rotational 

speeds of the stage, was primarily addressed. 

 

The literature review presented in this chapter shows various geometrical variables that affect the 

performance of a vaneless diffuser, especially for non-parallel walled diffusers. These 

geometrical features include width ratios, radius ratios, axial length of the diffuser and 
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divergence angle. Hence, several configurations with different width ratio values were examined 

in the present study, with the shroud wall diverging from inlet up to 50% of the diffuser length, 

while the inlet width of the diffuser was kept constant. Furthermore, some design configurations 

that have a sudden expansion in the diffuser width, near the outlet section of the diffuser, have 

also been analysed in the present study. 

 

 

2.6 Specific Research Objectives 

 

Based on the research aims presented in the previous chapter, and after conducting a detailed 

literature review, the following objectives were formulated in order to address turbocharger 

compressor stage specific issues. The research objectives of this study are to: 

 

1. Validate the compressor stage efficiencies, at lower operating speeds, obtained from 

numerical investigations, against the experimental data 

 

2. Analyse the important flow characteristics within the compressor stage in general, and 

within the baseline diffuser in particular. 

 

3. Evaluate the performance characteristics and flow characteristics within various diffuser 

configurations, represented by different pinch locations, width ratios and sudden 

expansions 

 

4. To develop an optimal diffuser geometry, yielding highest efficiency within the range 

considered, and to analyse its flow characteristics in detail 

 

In order to satisfactorily achieve the aforementioned research objectives, this study uses 

Computational Fluid Dynamic (CFD) based techniques to numerically investigate the flow of air 

within a turbocharger compressor stage, where the CAD model of the stage was available. The 

next chapter presents the numerical modelling techniques used in this study. 
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3 CHAPTER 3 

NUMERICAL MODELLING OF A  

CENTRIFUGAL COMPRESSOR STAGE 
 

 
n order to investigate the research objectives of this study that were identified in 

the previous chapter, CFD techniques were used to computationally simulate air 

flow within the compressor stage of the turbocharger, using steady state 

approximation. The use of CFD, along with a novel methodology for capturing 

the steady flow phenomena of the centrifugal compressor, enables prediction of the 

performance output of the stage. Hence, appropriate solver settings and boundary 

conditions need to be specified, which are discussed in this chapter. The Multiple 

Reference Frame technique, used for the rotation of the impeller blades, was also 

discussed. 
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3.1 Introduction 

 

Computational Fluid Dynamics or CFD is a tool for the analysis of systems involving fluid flow, 

heat transfer and associated phenomena such as chemical reactions by means of computer-based 

simulation. The technique is very powerful and spans a wide range of industrial and non–

industrial application areas. From 1960s onwards, the aerospace industry has integrated CFD 

techniques into the design, R&D and manufacture of aircraft and jet engines. More recently, the 

method was applied to the design of internal combustion engines, combustion chambers of gas 

turbines and furnaces. Furthermore, motor vehicle manufacturers now routinely predict drag 

forces, under–bonnet air flows and the in–car environment with CFD. CFD is becoming a vital 

component in the design of industrial products and processes. 
 

The variable cost of an experiment, in terms of facility hire and/or person–hour costs, is 

proportional to the number of data points and the number of configurations tested. In contrast, 

CFD codes can produce extremely large volumes of results at no added expense, and it is very 

cheap to perform parametric studies, for instance, to optimise equipment performance. 

 

 

3.2 Working of CFD Codes 

 

There are three distinct streams of numerical solution techniques. They are finite difference, 

finite element and spectral methods. Finite volume method, a special finite difference 

formulation, is central to the most well established CFD codes. The numerical algorithms include 

integration of the governing equations of fluid flow over all the control volumes of the domain, 

discretisation or conversion of the resulting integral equations into a system of algebraic 

equations and the solution of these equations by an iterative method. 
 

CFD codes are structured around the numerical algorithms that can tackle fluid flow problems. 

In order to provide easy access to their solving power, all commercial CFD packages include 

sophisticated user interfaces to input problem parameters and to examine the results (Versteeg 

[42]). Hence, all codes contain three main elements. These are: 
 

1. Pre – Processor 

 

2. Solver Execution 

 

3. Post – Processor 
 

Pre–processing consists of the input of the flow problem to a CFD programme by means of an 

operator – friendly interface and the subsequent transformation of this input into a form suitable 

for use by the solver. The user activities at the pre – processing stage includes definition of the 

geometry of the region of interest. It is called the computational domain. Grid generation is the 

sub–division of the domain into a number of smaller, non–overlapping sub–domains. It is also 

called Mesh. Selection of the physical or chemical phenomena that needs to be modelled, 

definition of fluid properties and the specification of appropriate boundary conditions at cells, 

which coincide with or touch the domain boundary, are also included in pre–processing. 
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The solver primarily consists of setting up the numerical model and the computation/monitoring 

of the solution. The setting up of the numerical model includes the following (Pozrikidis [43]): 

 

 Selection of appropriate physical models. These included turbulence, combustion, 

multiphase etc. 

 

 Defining material properties like the fluid, solid, mixture etc. 

 

 Prescribing operating conditions 

 

 Prescribing boundary conditions 

 

 Prescribing solver settings 

 

 Prescribing initial solution 

 

 Setting up convergence monitors 

 

The computation of the solution includes: 

 

 The discretized conservation equations are solved iteratively. A number of iterations are 

required to reach a converged solution 

 

 Convergence is reached when change in solution variables from one iteration to the next 

is negligible. Residuals provide a mechanism to help monitor this trend 

 

 The accuracy of the converged solution is dependent upon problem setup, grid resolution, 

grid independence, appropriateness and accuracy of the physical model 

 

Figure 3.1 describes the working of the solver. 

 

Post processing comprises the examination of the results 

obtained and revision of the model based on these results. 

These can be further elaborated into: 

 

 Examine the results to view solution and 

extract useful data. 

 

 Visualization tools can be used to extract the 

overall flow pattern, separation, shocks, shear 

layers etc. 
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 Numerical reporting tools are used to calculate 

quantitative results like forces, moments, and 

average heat transfer co-efficient, flux 

balances, surface and volume integrated 

quantities 

 

 Are physical models appropriate? 

 

 Are boundary conditions correct? 

 

 Is the grid adequate? 

 

 Can grid be adapted to improve results? 

 

 Does boundary resolution need to be improved? 

              

 Is the computational domain large enough? 

 

Due to the increased popularity of engineering workstations, many of which have outstanding 

graphic capabilities, the leading CFD packages are now equipped with versatile data 

visualisation tools. These include domain geometry, grid display, vector plots, line and shaded 

contour plots, 2D and 3D surface plots, particle tracking, view manipulations, colour post–script 

output etc. More recently, these facilities may also include animation for dynamic result display, 

and in addition to graphics, all codes produce trusty alphanumeric output and have data export 

facilities for further manipulation external to the codes. As in many other branches of CAE, the 

graphics output capabilities of CFD codes have revolutionised the communication of ideas to the 

non–specialists. An overview of CFD modelling is presented in figure 3.2. 

 

Figure 3.2 Overview of CFD Modelling 

Figure 3.1 CFD Solver 

Solver 
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3.3 Numerical Formulation of Fluid Flow 

 

The governing equation of fluid flow represents mathematical statements of the conservation 

laws of Physics i.e.: 

 

 The mass of a fluid is conserved 

 

 The rate of change of momentum equals the sum of the forces on a fluid particle. 

(Newton’s second law) 

 

 The rate of change of energy is equal to the sum of the rate of heat addition to and the 

rate of work done on a fluid particle. (first law of thermodynamics) 

 

The fluid is regarded as a continuum. For the flow diagnostics at macroscopic length scales, the 

molecular structure of matter and molecular motions may be ignored. The behaviour of the fluid 

is described in terms of macroscopic properties such as velocity, pressure, density and 

temperature etc. These are averages over suitably large numbers of molecules. A fluid particle or 

point in a fluid is then the smallest possible element of fluid whose macroscopic properties are 

not influenced by individual molecules (Cebeci [44]). 

 

 

 Conservation of Mass 3.3.1

 

The mass balance equation for the fluid element can be written as: 

 

                                                            
                                                                                        (3.1) 

For liquids, as the density is constant, the mass conservation equation is: 

 

                                                                 (3.2) 

 
This equation describes the net flow of mass out of the element across its boundaries. The above 

equation in longhand notation can be written as: 

 
  

  
 
  

  
 
  

  
                                                   (3.3) 

 

This equation represents the steady, three dimensional mass conservation of the fluid or 

continuity at a point in an incompressible fluid (Munson [45]). 
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 Conservation of Momentum 3.3.2

 

Newton’s second law states that the rate of change of momentum of a fluid particle equals the 

sum of the forces on the particle: 

 
                                                              

                                                                                              (3.4) 
 
There are two types of forces on fluid particles. These are surface forces and the body forces. 

Surface forces include pressure and viscous forces while body forces include centrifugal, coriolis 

and electromagnetic forces. It is a common practice to highlight the contributions due to the 

surface forces as separate terms in the momentum equations and to include the effects of body 

forces as source terms (Blazek [46]). 

 

The x–component of the momentum equation is found by setting the rate of change of x – 

momentum of the fluid particle equal to the total force in the x–direction on the element due to 

surface stresses, plus the rate of increase of x–momentum due to sources. The equation is as 

follows: 
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)             (3.5) 

 

The y and z – component of momentum equation are given by: 
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 Conservation of Energy 3.3.3

 

The energy equation is derived from the first law of thermodynamics which stated that the rate of 

change of energy of a fluid particle is equal to the rate of heat addition to the fluid particle plus 

the rate of work done on the particle (Lomax [48]): 

 

 

                                              
                                              
                                                                                           

(3.8) 
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Conservation of energy of the fluid particle is ensured by equating the rate of change of energy 

of the fluid particle to the sum of the net rate of work done on the fluid particle, the net rate of 

heat addition to the fluid and the rate of increase of energy due to sources. The energy equation 

is: 

 
 

 
  

  
     (  )   [

 (    )

  
 
 (    )

  
 
 (    )

  
 
 (    )

  
 
 (    )

  
 

 (    )

  
 
 (    )

  

 (    )

  
 
 (    )

  

]  

                         (       )                                                                     
(3.9) 

 

 Equations of State 3.3.4

 

The motion of a fluid in three dimensions is described by a system of five partial differential 

equations, i.e. mass conservation, x, y and z momentum equations and energy equation. Among 

the unknowns are four thermodynamic variables, i.e. density, pressure, temperature and internal 

energy. Relationships between the thermodynamic variables can be obtained through the 

assumption of thermodynamic equilibrium. 

 

The fluid velocities may be large, but they are usually small enough that, even though properties 

of a fluid particle change rapidly from place to place, the fluid can thermodynamically adjust 

itself to new conditions so quickly that the changes are effectively instantaneous. Thus, the fluid 

always remains in thermodynamic equilibrium. The only exceptions are certain flows with strong 

shockwaves, but even some of those are often well enough approximated by equilibrium 

assumptions. The state of a substance in thermodynamic equilibrium can be described by means 

of just two state variables. Equations of state relate the other variables to the two state variables, 

i.e. density and temperature. The equations of state are: 

 

      (   )                                                   (3.10) 
 

      (   )                                             (3.11) 
 

Liquids and gases flowing at low speeds behave as incompressible fluids. Without density 

variations, there is no linkage between the energy equation, mass conservation equation and 

momentum equations. The flow field can often be solved by considering mass conservation and 

momentum conservation equations only. The energy equation only needs to be solved alongside 

the others if the problem involves heat transfer (Hoffman [48]). 
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 Navier – Stokes equations 3.3.5

 

In a Newtonian fluid, the viscous stresses are proportional to the rates of deformation. Liquids 

are incompressible; the viscous stresses are twice the local rate of linear deformation times the 

dynamic viscosity. The Navier – Stokes equations are (Patnakar [49]): 
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3.4 Pre–Processing 

 

Further details about computational fluid dynamics and difference turbulence models can be 

found in any good CFD book (Rauch [50], Barth [51], Venkatakrishnan [52], Menter [53] etc.). 

The following sections provide details of the numerical modelling that was employed in the 

present study. The CFD package that was used to achieve this is known as ANSYS [54]. At the 

time when this study was carried out, version 14.0.0 was the latest version of this package and 

hence, it was used for simulations/analysis in this thesis. The pre-processing in CFD is sub-

divided into two main categories, i.e. creation of the geometry and the meshing of the flow 

domain. This section provides details of the geometric modelling and the meshing of the baseline 

turbocharger compressor stage provided by CTT. 

 

 

 Geometry of the Compressor Stage 3.4.1

 

The baseline model, examined in the present study, has been designed by Cummins Turbo 

Technologies (CTT). The baseline centrifugal compressor stage consists of an inlet duct with 

SRCT, the impeller with seven main and splitter backswept blades, parallel walled vaneless 

diffuser, volute and outlet/delivery duct. 
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Figure 3.3 Baseline Geometry 

 

The baseline geometry has been separated in different blocks in order to control the mesh quality 

in each block, especially in the diffuser. As the Frozen Rotor approach has been employed, 

hence, the use of interfaces between these blocks is not necessary, since the computational 

domain is fixed. 

 

 

 Meshing of the Flow Domain 3.4.2

 

In CFD, the geometry needs to be divided into many small control volumes, each being called a 

mesh element, and the process as meshing. The mesh generation was performed with ANSYS 

Meshing. The flow domains were meshed with tetrahedral elements because of the complex 

geometry of the compressor stage (see figure 3.4). This method reduces the computational time 

required for creating the mesh.  
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Figure 3.4 Flow Domain Mesh (Cut-Section) 

 

As this study is focused on the performance analysis of the diffuser, a more rigorous approach 

was used for its meshing. It is a known fact that boundary layers form on the stationary walls of 

the diffuser (both shroud and hub walls). The flow phenomena within a boundary layer is very 

complex, and needs to be deciphered in order to obtain meaningful results. Hence, a structured 

mesh needs to be generated in the vicinity of these walls, which is able to capture the boundary 

layer. Hence, five hexahedral mesh layers, with increasing distance between them, moving away 

from these walls, were generated (see figure 3.5). As hexahedral mesh elements lead to lesser 

numerical diffusion, it is expected that these layers (also called inflation layers) will capture the 

boundary layers with reasonable accuracy.  

 

 

 
 

Figure 3.5 Diffuser Mesh 
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ANSYS Meshing is a full feature program that can provide smart tools for controlling the 

element size, growth development and density, on complicated curve geometries. It can also 

provide the option of local refinement after the mesh generation, for further improvement. The 

details on the quality of the mesh within the flow domain, also mentioning the number of 

elements within each block, was summarised in table 3.1. In the table, orthogonal quality shows 

how accurate the right angles were generated in hexahedral mesh elements (in the inflation 

layers), where a value of zero corresponds to worst orthogonal quality, and a value of one 

corresponds to ideal/best orthogonal quality. Values of 0.85 and 0.86 suggest that the orthogonal 

quality of the inflation layers is extremely good. Similarly, the skewness of a grid is an apt 

indicator of the mesh quality and suitability. Large skewness compromises the accuracy of the 

interpolated regions, where a value of zero corresponds to no change in shape of the elements, 

and a value of one corresponds to highly skewed elements. Values of 0.23 and 0.24 again show 

that the mesh elements are slightly too moderately skewed, confirming the good quality of the 

mesh elements within the flow domain. 

 

Table 3.1 Mesh Quality 

 

 

Diffuser 

& 

Volute 

Impeller 

Region 

Inlet 

Duct & 

SRCT 

Orthogonal  

Quality 
0.85 0.85 0.86 

Skewness 0.23 0.24 0.23 

Aspect 

Ratio 
1.88 1.87 1.86 

Number of 

Elements 
1375814 3207559 1540972 

 

Aspect ratio corresponds to the ratio of height-to-width of mesh elements. Aspect ratio of 1 

corresponds to ideal situation, whereas mesh elements with higher aspect ratios (above 10) leads 

to significantly higher numerical diffusion, and hence inaccurate results. It can be seen that the 

aspect ratio varies between 1.86 and 1.88, which suggests that the mesh quality is very good 

within the flow domain. Furthermore, the mesh was adapted using gradient adaptation method, 

providing mesh independent results. Similar procedure was also employed in Jiao [41]. ANSYS 

[39] also suggests this method for fast mesh independent results, and avoiding extensive 

computational time for mesh independence tests. 

 

 

3.5 Turbulence Modelling 

 

There are many turbulence models available in ANSYS. Each one of these turbulence models 

has their own advantages and disadvantages, which can be found out in any CFD textbook.  

Menter’s [Pozrikidis 43] SST k-ω model was preferred since it can predict separated and 

secondary flows with reasonable accuracy, which is required in this investigation. 
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The k-ω is a two equations model that is further divided into two types. The first type is called 

Standard k-ω model whereas the second type is called Shear-Stress Transport (SST) k-ω model. 

In the present study, SST k-ω model was chosen because it includes the following refinements: 

 

 The standard k-ω model and the transformed k-ε model are both multiplied by a blending 

function, and both models are added together. The blending function is designed to be 

one in the near-wall region, which activates the standard k-ω model, and zero away from 

the surface, which activates the transformed k-ε model 

 

 The definition of the turbulent viscosity is modified to account for the transport of the 

turbulent shear stress 

 

These features make the SST k-ω model more accurate and reliable for a wider class of flows 

(e.g., adverse pressure gradient flows, aerofoils, transonic shock waves) than the standard k-ω 

model. Other modifications include the addition of a cross-diffusion term in the ω equation, and 

a blending function to ensure that the model equations behave appropriately in both the near-wall 

and far-field zones. Further details of SST k-ω model can be found in any turbulence modelling 

textbook, and hence were not included here. 

 

The present problem consists of boundary layer and separated flows (adverse pressure gradients), 

combined with rotating jets and wakes. Capturing these complex flow phenomena is essential for 

the accuracy of the predicted results. 

 

 

3.6 Boundary Conditions 

 

The boundary conditions that have been  used in the present study are summarised in table 3.2. 

As the compressor stage of a turbocharger sucks in air from atmosphere, hence, atmospheric 

conditions were specified. The outlet boundary of the compressor stage was specified with a 

pressure value from the compressor map (provided by CTT) at various operating speeds 

considered in the present study. The outlet pressure was specified such that the total-to-total 

pressure ratio remains the same as in the compressor map. Furthermore, the impeller was rotated 

using an advanced technique, called Multiple Reference Frame (MRF), which is discussed in 

detail in the next section. All other walls within the flow domain were specified with stationary 

walls boundary condition with no-slip, which means that the velocity of the layer of fluid, 

adjacent to the wall, is the same as that of the wall. Hence, as the walls are stationary, the layer 

of air just next to the wall is also stationary.  
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Table 3.2 Boundary Conditions 

 

Boundary Name Boundary Type Boundary Condition 

Inlet Pressure Inlet 
Atmospheric (1atm absolute-total) at 

288.5K 

Outlet Pressure Outlet Total Pressure from Compressor Map 

Impeller Rotating Wall 60,000 & 80,000rpm using MRF 

Compressor Casing Stationary Wall No-Slip 

 

3.7 Multiple Reference Frame 
 

The Multiple Reference Frame (MRF) model, proposed by Luo [41], is the simplest approach for 

rotating a zone, such as an impeller. It is a steady state approximation in which individual cell 

zones move at different rotational speeds. The flow in each moving cell zone is solved using the 

Moving Reference Frame equations. If the zone is stationary, the stationary equations are used. 

At the interfaces between cell zones, a local reference frame transformation is performed to 

enable flow variables in one zone to be used to calculate fluxes at the boundary of the adjacent 

zone. It should be noted that the MRF approach does not account for the relative motion of a 

moving zone with respect to adjacent zones, which may be moving or stationary. The grid 

remains fixed for the computation. This is analogous to freezing the motion of the moving part in 

a specific position, and observing the instantaneous flow field with the impeller in that position. 

Hence, the MRF is often referred to as the Frozen Rotor Approach. While the MRF approach is 

clearly an approximation, it can provide a reasonable model of the flow for many applications. 

Another potential use of the MRF model is to compute a flow field that can be used as an initial 

condition for a transient Sliding Mesh calculation. This eliminates the need for a startup 

calculation. 

 

The MRF formulation that is applied to the interfaces depends on the velocity formulation being 

used. It should be noted that the interface treatment applies to the velocity and velocity gradients, 

since these vector quantities change with a change in reference frame. Scalar quantities, such as 

temperature, pressure, density, turbulent kinetic energy etc., do not require any special treatment, 

and thus are passed locally without any change. In ANSYS’s implementation of the MRF model, 

the flow domain of the compressor stage is divided into sub-domains (as discussed in 3.4.1), 

where the impeller is rotating with respect to the inertial frame. The governing equations in each 

sub-domain are written with respect to that sub-domain's reference frame. At the boundary 

between two sub-domains, the diffusion and other terms in the governing equations in one sub-

domain require values for the velocities in the adjacent sub-domain (see figure 3.6). ANSYS 

enforces the continuity of the absolute velocity to provide the correct neighboring values of 

velocity for the sub-domain under consideration. When the relative velocity formulation is used, 

velocities in each sub-domain are computed relative to the motion of the sub-domain. Velocities 
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and velocity gradients are converted from a moving reference frame to the absolute inertial 

frame. 

 

 
 
 

Figure 3.6 Multiple Reference Frame modeling 

 

 

3.8 Solver Settings 
 

Application based solver settings are required to accurately predict the fluid flow behaviour in 

the flow domain. These settings comprise: 

 

 Pressure – Velocity Coupling 

 

 Gradient 

 

 Spatial Discretisation 

 

The Navier-Stokes equations are solved in discretised form. This refers to the linear dependency 

of velocity on pressure and vice versa. Hence, a pressure–velocity coupling is required to predict 

the pressure distribution in the flow domain with reasonable accuracy. In the present study, 

SIMPLE algorithm for pressure–velocity coupling was incorporated because it converges the 

solution faster and is often quite accurate for flows in and around simple geometries such as 

spheres, cylinders etc. In SIMPLE algorithm, an approximation of the velocity field is obtained 

by solving the momentum equation. The pressure gradient term is calculated using the pressure 
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distribution from the previous iteration or an initial guess. The pressure equation is formulated 

and solved in order to obtain the new pressure distribution. Velocities are corrected and a new set 

of conservative fluxes is calculated. 

 

Gradients are needed for constructing values of a scalar at the cell faces, for computing 

secondary diffusion terms and velocity derivatives. Green–Gauss Node–based gradient 

evaluation was used in the present study. This scheme reconstructs exact values of a linear 

function at a node from surrounding cell–centered values on arbitrary unstructured meshes by 

solving a constrained minimization problem, preserving a second-order spatial accuracy. 

 

The CFD solver stores discrete values of the scalars at the cell centers. However, face values are 

required for the convection terms and must be interpolated from the cell center values. This is 

accomplished using an upwind spatial discretisation scheme. Upwinding means that the face 

value is derived from quantities in the cell upstream, or upwind relative to the direction of the 

normal velocity. In the present study, 2
nd

 order upwind schemes were chosen for pressure, 

momentum, turbulent kinetic energy and turbulent dissipation rate. The use of 2
nd

 order upwind 

scheme results in increased accuracy of the results obtained. 

 

 

3.9 Convergence Criteria 

 

Getting to a converged solution is often necessary. A converged solution indicates that the 

solution was reached a stable state and the variations in the flow parameters, with respect to the 

iterative process of the solver, have died out. Hence, only a converged solution can be treated as 

one, which predicts the solution of the flow problem with reasonable accuracy. 

 

The default convergence criterion for the continuity, velocities in three dimensions and the 

turbulence parameters in ANSYS 14.0.0 is 0.001. This means that when the change in the 

continuity, velocities and turbulence parameters drops down to the fourth place after decimal, the 

solution is treated as a converged solution. However, in many practical applications, the default 

criterion does not necessarily indicate that the changes in the solution parameters have died out. 

Hence, it is often better to monitor the convergence rather than relying on the default 

convergence criteria. 

 

In the present study, the variations of mass flow rate were monitored throughout the iterative 

process. The solution was considered converged once it became statistically steady i.e. the 

variations in mass flow rate become negligibly small between the inlet and outlet of the 

turbocharger compressor stage. The mass imbalance for industrial environments consider 

unacceptable for values more than 0.1%.  

 

After numerically simulating the flow through the compressor stage, various results were 

gathered from CFD. Detailed discussions on these results are presented in the following chapters, 

where the next chapter deals with the validation of the numerical results and the performance of 

baseline diffuser at lower operating speeds of the turbocharger.  
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4 CHAPTER 4 

PERFORMANCE EVALUATION OF THE 

BASELINE TURBOCHARGER COMPRESSOR 

STAGE 
 

 

his chapter provides an overview of CFD capabilities for predicting the 

performance output of a turbocharger compressor stage at lower operating 

speeds. The numerical results, obtained through the numerical simulations, 

have been validated against the experimental results, provided by CTT. The 

emphasis of this chapter is on the necessity of numerical investigations, with the 

efficient use of CFD, for research and development in industrial and non-industrial 

applications. 
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4.1 Flow Characteristics of the Baseline Centrifugal Compressor Stage 

 

Before analysing the baseline diffuser geometry in detail, on the performance output of a 

centrifugal stage, it is important to first analyse the general flow structure within the baseline 

compressor stage in order to develop an understanding of the local and global flow related 

parameters. The discussion presented in this section, and it’s constituted sub-sections, is limited 

to the 4
th

 design point i.e. near surge condition, at 60,000rpm. 

 

 

4.2 Benchmark Tests 

 

One of the most important steps in conducting numerical studies is the validation of the results. 

This means that the results obtained from the numerical simulations are compared against 

experimental data, to support the numerical model, which represents the physical model of the 

real world. Hence, all the geometric, flow and solver-related parameters/variables become 

important in the validation studies. The scope of this thesis comprises examination of the flow 

behaviour at lower operating speeds i.e. 60,000rpm and 80,000rpm of a turbocharger compressor 

stage. The baseline geometry was numerically investigated with a steady state approximation 

method (Multiple Reference Frame or MRF). In this section, the capabilities of MRF model, for 

predicting the performance characteristics of a turbocharger compressor stage, were 

demonstrated. 

 

Generally, the most common method for illustrating the performance of a compressor is the 

compressor map that depicts the relationship between pressure ratio (total-to-total) across the 

compressor stage, and the mass flow rate. The experimental measurements for the performance 

evaluation of the compressor stage were carried out by CTT. These results were then used for the 

validation purposes in this section. Figure 4.1 depicts this comparison at the design points 

considered throughout this study. The first design point considered is the choke condition, and 

the fourth design point considered is near surge condition. Two design points (2
nd

 and 3
rd

) are in 

between the choke and near surge points, going from choke to surge. Furthermore, percentage 

difference between the experimental and CFD results were shown in the figure 4.1 and figure 2. 

 

It can be seen that the maximum difference in both the results is observed at choke condition, 

because at this particular design point, the flow phenomena become very complex, and this point 

is normally considered as an unstable operating condition by turbocharger manufacturers. 

Overall, there is a good agreement between both the results. 
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Figure 4.1 Variations in Total-to-Total Pressure Ratio with respect to. Mass Flow Rate from both 

the Experimental and CFD results 

 

Figure 4.2 depicts the variations in isentropic efficiency (discussed in section 1.6.2) with respect 

to the mass flow rate of air passing through the compressor stage of the turbocharger, at lower 

operating speeds. As seen in figure 4.1, the maximum difference in both the results is observed at 

the choke point i.e. the 1
st
 design point considered in the present study. However, there is a good 

agreement between both the results at other design points. Hence, it can be safely argued that the 

numerical model of the compressor stage considered in the present study, with its mesh and 

solver settings, is capable of representing the real world compressor stage of the turbocharger, 

and thus can be used for further analysis of the compressor stage. 

 

 

Figure 4.2 Variations in Efficiency with respect to Mass Flow Rate from both the Experimental 

and CFD results 
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After establishing that the numerical model represents the real world model of the turbocharger 

compressor stage with reasonable accuracy, the next step is to analyse the important flow 

features within the compressor stage, in order to understand how a compressor stage behaves. 

 

 

 Static Pressure 4.2.1

 

Figure 4.3 depicts the static pressure distribution within the compressor stage at near surge 

condition and 60,000rpm. It can be seen that the static pressure is lower in the upstream of the 

impeller i.e. suction side, where the atmospheric conditions were specified (at the inlet of the 

stage). At the impeller blade tips, the static pressure of air drops below atmospheric pressure. 

The drop in pressure at the impeller blades is associated with a rapid increase in the flow 

velocity, which will be discussed in later sub-sections. As the flow enters the diffuser passage, its 

pressure starts to increase due to diffusion. Within the diffuser, the static pressure of air increases 

from 1.3atm at inlet section, to 1.4atm at the outlet section, indicating a static pressure rise of 

33% within the diffuser. Within the volute and the delivery duct, the pressure keeps on 

increasing, attaining its maximum value of 1.56atm at the outlet of the compressor stage. It can 

be clearly seen in the figure that the increase in the static pressure of air starts within the diffuser, 

indicating severe pressure gradients. 

 

 
 

Figure 4.3 Variations in absolute static pressure (in atm) at 4
th

 design point and 60,000rpm 
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 Mach Number 4.2.2

 

Figure 4.4 depicts the Mach number distribution within the compressor stage at near surge 

condition and 60,000rpm. It can be seen that the Mach number at the inlet of the stage is very 

low, indicating incompressible flow of ambient air into the compressor stage. However, as the 

flow reaches the impeller, due to the high rpm of the impeller blades, the momentum is 

exchanged from the impeller to the air flow, increasing the Mach number of air tremendously. It 

can be seen that the Mach number reaches 0.87 at the interface between the impeller exit and the 

diffuser inlet. However, within the diffuser, the Mach number starts to decrease, indicating 

diffusion process, where the kinetic energy of air is converted into pressure build-up. The Mach 

number keeps on decreasing in the volute, as the effective area of the volute increases. 

Furthermore, the variation of Mach number within the SRCT indicates recirculation of the air. 

 

 
 

Figure 4.4 Variations in Mach number at 4
th

 design point and 60,000rpm 

 

 

 Axial Velocity 4.2.3

 

Figure 4.5 depicts the axial velocity distribution within the compressor stage at near surge 

condition and 60,000rpm. It can be seen that the axial velocity is higher at the inlet section of the 

compressor stage, and keeps on increasing until it has left the impeller blades, and enters the 

diffuser. It attains a value of 120m/s within the passages formed by the impeller blades. The 

increase in axial velocity of air throughout the inlet passage of the stage is consistent with the 
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Mach number distribution, however, the subsequent decrease in axial velocity of air at the exit of 

the impeller indicates that the axial velocity component of air flow was converted into the radial 

and azimuthal components, which can be confirmed in the next sections. Hence, it can be safely 

said that the flow of air within the diffuser has negligible axial velocity. 

 

 

 

Figure 4.5 Variations in axial velocity (in m/s) at 4
th

 design point and 60,000rpm 

 

 

 Radial Velocity 4.2.4

 

Figure 4.6 depicts the radial velocity distribution within the compressor stage at near surge 

condition and 60,000rpm. It can be seen that the radial velocity is very low at the inlet section of 

the compressor stage, which means that the air flow is predominantly axial here. However, the 

radial component of the velocity starts increasing in the impeller, and attains its highest value of 

174m/s at the exit of the impeller or the entry of the diffuser. Within the diffuser, the radial 

velocity remains constant, hence, it can be safely said that the flow of air within the diffuser has 

significant radial velocity component. 
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Figure 4.6 Variations in radial velocity (in m/s) at 4
th

 design point and 60,000rpm 

 

 Azimuthal Velocity 4.2.5

 

Figure 4.7 depicts the azimuthal (tangential) velocity distribution within the compressor stage at 

near surge condition and 60,000rpm. It can be seen that the azimuthal velocity is very low at the 

inlet section of the compressor stage. However, the azimuthal component of the velocity starts 

increasing in the impeller, and attains its highest value of 281m/s at the exit of the impeller or the 

entry of the diffuser. Within the diffuser, the azimuthal velocity decreases. It further reduces 

significantly within the volute. Hence, it can be safely said that the flow of air within the diffuser 

has significant azimuthal velocity component. 

 

From the above discussion regarding the velocity components, it is concluded that the flow of air 

within the diffuser is dominated by the radial and azimuthal components of velocity, and the 

axial velocity is negligible. Figure 4.8 indicates how the air flow takes place within the diffuser. 

It can be further confirmed in the detailed analysis of the diffuser in section 4.3. As both the 

radial and azimuthal components of velocity are strong within the diffuser, it suggests that the air 

flow will attain a curved shape within the diffuser, and most probably will form air jets. 
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Figure 4.7 Variations in azimuthal velocity (in m/s) at 4
th

 design point and 60,000rpm 

 

 

 
 

Figure 4.8 Flow of air within the diffuser 
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 Static Temperature 4.2.6

 

Figure 4.9 depicts the static temperature distribution within the compressor stage at near surge 

condition and 60,000rpm. It can be seen that the static the temperature at the inlet section of the 

compressor stage is at ambient temperature i.e. 288K, and increases within the impeller section 

due to the work done by the impeller. There is also a significant increase in the temperature of air 

within the diffuser, where a temperature increase of 13K is observed. 

 

 
 

Figure 4.9 Variations in static temperature (in K) at 4
th

 design point and 60,000rpm 

 

 

4.3 Baseline Diffuser Performance Characteristics 

 

After analysing the important flow related parameters within the compressor stage, the next step 

is to evaluate the performance of the diffuser itself, both qualitatively and quantitatively, 

describing the mechanisms that affect the different flow phenomena. In order to effectively 

analyse the diffuser performance quantitatively, various measuring locations and points were 

chosen in the present study, where important flow related parameters were computed and 

critically analysed. Figure 4.10(a) depicts these locations corresponding to the overall geometry 

of the compressor stage. However, more specific details are provided in figure 4.10(b) and (c), 

looking from the inlet to the diffuser, and looking from the side of the compressor stage 

respectively. 
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For analysis purposes, measuring locations were created at four different circumferential 

locations, which are orthogonal to each other, in order to provide detailed information about the 

flow behaviour within the diffuser. 

 

 
 

(a) 

 

These four locations correspond to 0°, 90°, 180° and 270°. Then each location was further 

bisected at six different radial positions that corresponds to diffuser inlet, 20% of N, 40% of N, 

60% of N, 80% of N and diffuser outlet, where N is the length of the diffuser (figure 4.10(b)). 

Although the length of the baseline diffuser was represented by the symbol L in figure 1.13, but 

here it is represented by N. The reason for this change is that the same measuring locations were 

generated for the optimised diffuser geometry in the next chapter, where L will not remain 

meaningful, and hence a new symbol (N) was designated to accommodate both the geometries 

without any confusion. However, the N considered here is also different from N in figure 2.5 for 

conical diffusers. This is again done in order to avoid confusion. 

 

 
 

(b) 
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Because the analysis needs to be carried out within the diffuser (and not on the walls of the 

diffuser), hence measuring locations need to be created and shown from the side view of the 

compressor stage as well, which is shown in figure 4.10(c). In this figure, b2=b1 as the diffuser 

geometry is baseline (consisting of parallel walls), and xmax=b2=b1. Furthermore, x/xmax = 0.1 

represents 10% distance away from the hub wall, x/xmax = 0.5 represents midway between the 

hub and the shroud walls, and x/xmax = 0.9 represents 10% away from the shroud wall (or 90% 

away from the hub wall). The points were generated 10% distance away from the walls of the 

diffuser because one of the most important parameter that needs to be analysed is the flow 

velocity (and its components), represented by Mach number in this study. Now, as the boundary 

condition at these walls is of no-slip i.e. the flow velocity of the layer of air adjacent to these 

walls equal to that of the walls (i.e. stationary), hence, no meaningful information can be 

obtained if these measuring locations are generated at the walls. These three points were 

generated axially, at different circumferential and radial locations, in order to provide a very 

accurate estimation of the flow behaviour within the diffuser passage of the baseline 

turbocharger compressor stage. 

 

 
 

(c) 
 

Figure 4.10 Flow parameters measuring stations (a) Orientation of diffuser (b) measuring 

stations front view (c) measuring stations side view 

 

The contours of various flow related parameters that are shown in the following sections were all 

generated at the mid-section of the diffuser i.e. x/xmax = 0.5.  
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 Static Pressure 4.3.1

 

Figure 4.11 depicts the variations in the absolute static pressure within the diffuser at near surge 

condition and 60,000rpm. It can be seen that the static pressure is lower on the inlet section of 

the diffuser, and increases radially, where the maximum static pressure is observed at the outlet 

section of the diffuser. This is because the diffusion process takes place within the diffuser. The 

kinetic energy is converted into pressure due to area increase from inlet to the outlet of the 

diffuser. It can be seen that the absolute static pressure increases from 1.24atm to 1.48 within the 

diffuser. 

 

 
 

Figure 4.11 Variations in absolute static pressure (in atm) within the diffuser at 4
th

 design point 

and 60,000rpm 

 

In order to further analyse the static pressure distribution within the baseline diffuser, figures 

4.12(a-d) depict the absolute static pressure variations at various axial, radial and circumferential 

locations. It can be seen in all the plots of figure 4.12 that the static pressure is lower on the 

shroud side of the diffuser inlet, as compared to the hub side. This is because in the inlet section 

of the diffuser, on the shroud side, is slightly curved. It can be seen in figure 1.12. Furthermore, 

the flow enters from the shroud side because it the side which is in-front of the impeller, whereas 

the hub wall is to the rear of the impeller. Hence, when the flow enters the diffuser, it first gets 

interacted with the shroud wall of the diffuser. Now, as the flow path is curved, the resistance to 

the flow is less, and hence the flow velocity will be more, and the static pressure will be less. 

However, at other locations within the diffuser (radially), the static pressure distribution is 

constant indicating that there is no appreciable difference between the static pressure at the hub 

side and the shroud side. 
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Within the diffuser, radially, the static pressure increases from the diffuser inlet to the diffuser 

outlet, as is evident from all the plots of figure 4.12. However, the rate of increase of static 

pressure keeps on decreasing, indicating that maximum static pressure rise occurs within the first 

half of the diffuser radially. From these discussions, it is clear that how the flow behaves axially 

and radially within the baseline diffuser passage. However, further analysis needs to be carried 

out in order to analyse the flow behaviour in the circumferential direction. 

 

 
 

(a) 

 

 
 

(b) 
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(c) 

 

 

 
 

(d) 

 

Figure 4.12 Absolute static pressure variations within the diffuser at 4
th

 design point and 

60,000rpm corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 

 

 

 

 



PERFORMANCE EVALUATION OF THE BASELINE TURBOCHARGER COMPRESSOR STAGE 

Design Optimisation of a Diffuser for a Turbocharger Compressor 
By Paris Achilleos, School of Computing and Engineering, University of Huddersfield, UK (2014) 

 

60 

 

Table 4.1 summarises the percentage difference in absolute static pressure, circumferentially. It 

can be seen that while going from 0⁰ to 90⁰ circumferentially, the absolute static pressure 

decreases by 1% at the hub side, 0.93% at the mid-section, and 0.82% at the shroud side. Static 

pressure decreasing trends are observed from 90⁰ to 180⁰ and 180⁰ to 270⁰ also. From 270⁰ to 0⁰, 

the absolute static pressure increases in order to repeat the cycle. 

 

 

Table 4.1 Percentage differences in absolute static pressure at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ -1.00 -0.93 -0.82 

90⁰ to 180⁰ -0.57 -0.62 -0.58 

180⁰ to 270⁰ -1.02 -1.09 -0.94 

270⁰ to 0⁰ 2.65 2.70 2.40 

 

 

 Mach Number 4.3.2

 

Figure 4.13 depicts the variations in the Mach number within the diffuser at near surge condition 

and 60,000rpm. It can be seen that the air flow within the diffuser is jet shaped, confirming the 

hypothesis presented in figure 4.8. However, further information can be deduced from this figure 

i.e. there are jets of high Mach number, separated by low Mach number flow streams in-between 

them. The high Mach number jets are formed at the exit of the blade tips, whereas the lower 

Mach number streams are formed by the gaps between the blade tips, indicating that the 

maximum energy conversion takes place at the blade tips. It is clear from the figure that Mach 

number can go as high as 0.64 within the diffuser, at the conditions specified. 

 

In order to further analyse the Mach number distribution within the baseline diffuser, figures 

4.14(a-d) depict the Mach number variations at various axial, radial and circumferential 

locations. It can be seen in all the plots of figure 4.14 that most of the Mach number profiles 

match with the velocity profiles of fluid flowing between two stationary plates i.e. higher 

velocity is observed in the mid-section, whereas lower velocities are noticed in the near wall 

regions. 
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Figure 4.13 Variations in Mach number within the diffuser at 4
th

 design point and 60,000rpm 

 

This is because of the boundary layer formation at the walls, due to no-slip condition. However, 

one particular curve is of interest i.e. diffuser inlet Mach number profile in figure 4.14(a), where 

the velocity is higher on the shroud side. This is because of the curved shroud side surface at the 

diffuser inlet (as explained in the previous section). But this does not mean that the boundary 

layer is not formed on the shroud wall at the diffuser inlet; it only means that the Mach number is 

higher at the diffuser inlet, as compared to other locations within the diffuser. The other 

unconventional trends observed in the plots are due to the formation of the jets, which dominate 

the flow field within the diffuser. 

 

 
 

(a) 
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(b) 

 

 

 
 

(c) 
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(d) 

 

Figure 4.14 Mach number variations within the diffuser at 4
th

 design point and 60,000rpm 

corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 

 

Table 4.2 summarises the percentage difference in Mach number, circumferentially. It can be 

seen that while going from 0⁰ to 90⁰ circumferentially, the Mach number decreases by 3.42% at 

the hub side, increases by 4.96% at the mid-section, and again decreases by 2.33% at the shroud 

side. This is because of the shape of the Mach number profile discussed i.e. higher velocity in the 

center and lower velocity in the near wall regions. However, dissimilar trends are observed at 

other locations, indicating that the flow field is very complex, and is dictated by the presence of 

air jets emerging from the blade tips, and the subsequent flow streams formed in-between these 

jets. 

 

Table 4.2 Percentage differences in Mach number at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ -3.42 4.96 -2.33 

90⁰ to 180⁰ -1.36 1.34 17.10 

180⁰ to 270⁰ 51.00 41.93 40.53 

270⁰ to 0⁰ -5.65 -15.55 28.56 
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 Axial Velocity 4.3.3

 

Figure 4.15 depicts the variations in the axial velocity within the diffuser at near surge condition 

and 60,000rpm. It can be seen that the axial velocity component is recessive within the diffuser, 

with the highest axial velocity of 26.3m/s. However, the jets formation is again visible within the 

diffuser. Although an important flow parameter, the axial velocity component becomes 

insignificant within the diffuser. 

 

 

Figure 4.15 Variations in axial velocity (in m/s) within the diffuser at 4
th

 design point and 

60,000rpm 

 

In order to further analyse the axial velocity distribution within the baseline diffuser, figures 

4.16(a-d) depict the axial velocity variations at various axial, radial and circumferential 

locations. It can be seen in all the plots of figure 4.16 that the axial velocity values are very low, 

as compared to radial and azimuthal velocity components discussed in the following sections. 

However, the increase in the velocity at the diffuser inlet, at 0°, is clearly visible. 
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(a) 

 

 

 
 

(b) 
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(c) 

 

 
 

(d) 

 

Figure 4.16 Axial velocity variations within the diffuser at 4
th

 design point and 60,000rpm 

corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 
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Table 4.3 summarises the percentage difference in axial velocity, circumferentially. It can be 

seen that while going from 0⁰ to 90⁰ circumferentially, the axial velocity decreases by 79.06% at 

the hub side, increases almost 26.15 times at the mid-section, and again decreases by 201.57% at 

the shroud side, which shows how non-linear the relation axial velocity possess within the 

diffuser. 

 

Table 4.3 Percentage differences in axial velocity at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ -79.06 2615.22 -201.57 

90⁰ to 180⁰ -497.37 -159.31 74.23 

180⁰ to 270⁰ -431.16 134.68 117.71 

270⁰ to 0⁰ -65.05 -131.06 -78.34 

 

 

 Radial Velocity 4.3.4

 

Figure 4.17 depicts the variations in the radial velocity within the diffuser at near surge condition 

and 60,000rpm. Jets formation is clearly visible in the figure, with radial velocity reaching a 

value of 140m/s. Even the lowest value of radial velocity is still higher than the maximum axial 

velocity of the flow within the baseline diffuser. 

 

 

Figure 4.17 Variations in radial velocity (in m/s) within the diffuser at 4
th

 design point and 

60,000rpm 
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In order to further analyse the radial velocity distribution within the baseline diffuser, figures 

4.18(a-d) depict the radial velocity variations at various axial, radial and circumferential 

locations. The trends observed in all the plots of figure 4.18 are similar to the one observed in 

case of Mach number i.e. lower velocity in the near wall regions, and higher velocity at the 

diffuser inlet section, at 0⁰. 

 

 
 

(a) 

 

 
 

(b) 
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(c) 

 

 
 

(d) 

 

Figure 4.18 Radial velocity variations within the diffuser at 4
th

 design point and 60,000rpm 

corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 

 

 

Table 4.4 summarises the percentage difference in radial velocity, circumferentially. It can be 

seen that while going from 0⁰ to 90⁰ circumferentially, the radial velocity first decreases by 
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5.39% at the hub side, then increases by 6.06% at the mid-section, and finally decreases by 

1.59% at the shroud side. The trends observed in case of radial velocity are quite similar to the 

one observed in case of Mach number and axial velocity, indicating that the flow field is very 

complex, and is dictated by the presence of air jets emerging from the blade tips, and the 

subsequent flow streams formed in-between these jets. 

 

Table 4.4 Percentage differences in radial velocity at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ -5.39 6.06 -1.59 

90⁰ to 180⁰ -5.57 2.05 30.08 

180⁰ to 270⁰ 79.46 53.55 45.51 

270⁰ to 0⁰ -3.77 -19.04 33.05 

 

 

 Azimuthal Velocity 4.3.5

 

Figure 4.19 depicts the variations in the azimuthal velocity within the diffuser at near surge 

condition and 60,000rpm. It can be seen that the azimuthal velocity component is dominant 

within the diffuser, with the highest azimuthal velocity of 193.9m/s, and the flow field is dictated 

by the formation of jets emerging from the blade tips. The jet formation makes the flow 

behaviour very complex within the baseline diffuser. 

 

 

Figure 4.19 Variations in azimuthal velocity (in m/s) within the diffuser at 4
th

 design point and 

60,000rpm 
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In order to further analyse the azimuthal velocity distribution within the baseline diffuser, figures 

4.20(a-d) depict the azimuthal velocity variations at various axial, radial and circumferential 

locations. The trends observed in all the plots of figure 4.20 are similar to the one observed in 

case of Mach number, axial and radial velocity components i.e. lower velocity in the near wall 

regions, and higher velocity at the diffuser inlet section, at 0⁰. 

 

 
 

(a) 

 

 
 

(b) 
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(c) 

 

 
(d) 

 

Figure 4.20 Azimuthal velocity variations within the diffuser at 4
th

 design point and 60,000rpm 

corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 
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Table 4.5 summarises the percentage difference in azimuthal velocity, circumferentially. It can 

be seen that while going from 0⁰ to 90⁰ circumferentially, the azimuthal velocity decreases by 

1.68% at the hub side, increases by 4.37% at the mid-section, and again decreases by 3.08% at 

the shroud side. 

 

 Table 4.5 Percentage differences in azimuthal velocity at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ -1.68 4.37 -3.08 

90⁰ to 180⁰ -1.38 0.82 12.66 

180⁰ to 270⁰ 45.41 36.63 38.24 

270⁰ to 0⁰ -3.91 -13.22 25.57 

 

 

 Static Temperature 4.3.6

 
Figure 4.21 depicts the variations in the static temperature within the diffuser at near surge 

condition and 60,000rpm. It can be seen that the static temperature field is also influence by the 

velocity fields discussed earlier, where the higher velocities are associated with lower static 

temperature, and lower velocities are associated with higher static temperature. It can be seen 

that, with an operating temperature of 288K, minimum and maximum static temperatures of 

313.5K and 332.9K are observed within the diffuser, at the specified conditions (rpm and design 

point). 

 

 
 

Figure 4.21 Variations in static temperature (in K) within the diffuser at 4
th

 design point and 

60,000rpm 
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It is anticipated from the discussion that static temperature profiles will be opposite to the one 

observed in case of Mach number and velocity components. Figures 4.22(a-d) depict the static 

temperature variations at various axial, radial and circumferential locations. It can be seen in all 

the plots of figure 4.20 that most of the static temperature profiles are opposite to the velocity 

profiles i.e. lower static temperature is observed in the mid-section, whereas higher static 

temperatures are noticed in the near wall regions. However, one particular curve is of interest i.e. 

diffuser outlet static temperature profile in figure 4.22(a), where the static temperature is lower 

on the shroud side. This is because of the curved shroud side surface at the diffuser inlet, where 

the velocity is high, and hence the temperature is low. The other unconventional trends observed 

in the plots are due to the formation of the jets, which dominate the flow field within the diffuser. 

 

 
 

(a) 

 

 
(b) 
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(c) 

 

 
 

(d) 

 

Figure 4.22 Static temperature variations within the diffuser at 4
th

 design point and 60,000rpm 

corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 

 

Table 4.6 summarises the percentage difference in static temperature, circumferentially. It can be 

seen that while going from 0⁰ to 90⁰ circumferentially, the static temperature decreases by 0.03% 

at the hub side, increases by 0.11% at the mid-section, and again decreases by 0.88% at the 

shroud side. The difference seems negligible, but in-fact it is not. This is because the units of 

static pressure considered in the present study are kelvin, and hence even a 2K change 

corresponds to 0.7%, where the operating temperature is 288K. 
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Table 4.6 Percentage differences in static temperature at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ -0.03 0.11 0.88 

90⁰ to 180⁰ -0.06 -0.33 -0.79 

180⁰ to 270⁰ -0.39 -0.63 0.17 

270⁰ to 0⁰ 0.49 0.87 -0.16 

 

 

4.4 Static Pressure Recovery 

 

After analysing the flow field within the baseline diffuser in detail, this section presents the 

discussion on the static pressure recovery within the baseline diffuser. Static pressure recovery is 

an important parameter of diffuser that indicates how much the static pressure increases within 

the diffuser, in non-dimensional form. Static pressure recovery, written as Cp, is expressed 

mathematically in equation (4.1) as: 

 

     
         

        
                                                    (4.1) 

 

where Ps,2 and Ps,1 are the static pressures at the outlet and inlet sections of the diffuser 

respectively, ρ is the density of air, and V1 is the velocity magnitude of air at the inlet of the 

diffuser. The term in the denominator is also called the dynamic pressure of air. Figure 4.23 

depicts the static pressure recovery within the baseline diffuser at both the operating speeds 

considered in the present study. It can be seen that the pressure recovery increases with mass 

flow rate at both the operating speeds considered in the present study. As the mass flow rates are 

different at different operating speeds, it is difficult to directly compare the pressure recovery 

between the operating speeds, however, it can be compared with respect to the design points. It 

can be seen that the pressure recovery for the first two design points i.e. choke and near choke 

design points, is higher for higher rpm, however, for the 3
rd

 and 4
th

 design points, the pressure 

recovery is almost similar; at 3
rd

 design point it is slightly higher for 80,000rpm, and at 4
th

 design 

point, it is slightly lower. Overall, it can be concluded that the pressure recovery increases as the 

operating speed of the turbocharger increases. 
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Figure 4.23 Static Pressure Recovery within the Baseline Diffuser 
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5 CHAPTER 5                   

OPTIMISATION OF 

 DIFFUSER GEOMETRY 

 
his chapter discusses the optimisation procedure of the diffuser passage for the 

turbocharger compressor stage. The procedure places emphasis on the width 

ratio and pinching the shroud wall of the diffuser. The optimised diffuser 

geometry was chosen on the basis of maximum pressure ratio and efficiency. 

Furthermore, sudden expansion of the diffuser near the outlet is also investigated. 

Detailed qualitative and quantitative analysis of the optimised diffuser is presented in 

this chapter. The comparison between the baseline and the optimised diffuser 

geometry is the highlight of the chapter, clearly indicating the differences in the 

efficiency of the turbocharger compressor stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

T 
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5.1 Geometrical Configurations of the Diffuser 

 

Detailed literature review presented in chapter 2 points out the following: 

 

1. Width ratio (b2/b1) of the diffuser has a significant influence on the compressor stage 

efficiency, and the pressure rise within the diffuser 

 

2. Conical diffusers perform better than the parallel walled diffusers 

 

Keeping the aforementioned points in mind, and the limitations on altering the baseline diffuser 

geometry, the author has decided to investigate the effects of the width ratio, on the performance 

characteristics of the compressor stage, for various geometrical configurations. In these 

configurations, the width of the outlet section of the diffuser was increased, with respect to the 

inlet section’s width, by 5%, 7%, 13%, 18% and 33%, in order to cover a wide and practical 

range for analysis. 

 

In order to address the second point mentioned above, and keeping in mind the limitations from 

the manufacturers of the turbocharger, the shroud wall of the diffuser was pinched at various 

locations, where pinching means that the shroud wall is made non-parallel (diverging), for the 

width ratios discussed above. These pinching locations are placed at  0% (from diffuser inlet), 

10%, 20%, 30%, 40% and 50% from the inlet of the diffuser. Figure 5.1 show these pinched 

diffuser geometries for a width ratio of 1.33. Please note that the design configurations shown in 

figure 5.1 are not up to scale. 

 

 
                (a)                                                               (b) 
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   (c)                                                        (d) 

 

 
                        

 (e)                                                       (f) 

 

Figure 5.1 Pinch locations on the diffuser (a) At diffuser inlet (b) 10% from diffuser inlet (c) 

20% from diffuser inlet (d) 30% from diffuser inlet (e) 40% from diffuser inlet (f) 50% from 

diffuser inlet 
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Table 5.1 summarises the various aforementioned diffuser design considerations. 

 

Table 5.1 Diffuser design configurations for various pinch locations 

 
  
  

 Pinch at 
 

    
 

1.05 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

1.07 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

1.13 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

1.18 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

1.33 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

 

Sudden expansion of the diffuser passage was also investigated in the present study. Figure 5.2 

shows the various diffuser design configurations representing sudden expansion of the diffuser. 
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Furthermore, table 5.2 summarises the variations of the geometrical parameters considered for 

analysing sudden expansion of the diffuser. 

 

 
 

Figure 5.2 Sudden expansion of the diffuser 

 

 

Table 5.2 Diffuser design configurations for various divergent angles 

 

Pinch at 
 

    
 

Divergent Angle θ 

(°) 

0.9774 0.5 

0.9774 1 

0.9774 2 

0.9774 3 

 

 

In the next section, all these various diffuser geometries are critically analysed for pressure ratio 

across the diffusers, and the efficiency of the compressor stage. Based on the results, the 

optimised diffuser geometry was chosen, and further analysed in the later section. 
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5.2 Performance Evaluation of the Modified Diffuser Geometries 

 

Figure 5.3 depicts the variations in total-to-total pressure ratio at the design points considered in 

the present study, for various N/Nmax diffuser configurations and 5% increase in b2 with respect 

to b1, at 60,000rpm operating speed. It can be seen that as the mass flow rate increases, the 

pressure ratio across all the diffuser configurations decreases almost linearly. However, the 

pinched diffusers show higher pressure ratio compared to the baseline diffuser geometry, 

although there is no significant difference between different pinched diffusers.  

 

 
 

Figure 5.3 Variations in Pressure Ratio for various diffuser configurations for b2/b1 = 1.05 at 

60,000rpm 

 

From the forthcoming analysis, it is evident that pinching at mid-way of the shroud wall 

(N/Nmax=0.5) shows highest pressure ratio and efficiency. Hence, percentage increase in the 

pressure ratio between the baseline and N/Nmax=0.5 diffuser geometry, for b2/b1=1.05, at 

60,000rpm, is summarised in table 5.3, with an average increase of 0.25%. 

 

Table 5.3 Percentage increase in pressure ratio between baseline and N/Nmax=0.5 diffuser 

geometries for b2/b1=1.05 at 60,000rpm 

 

Operating Point 
Increase in Pressure Ratio for N/Nmax=0.5 with 

respect to Baseline 

 (%) 

1
st
 (Choke) 0.44 

2
nd

 0.29 

3
rd

 0.18 

4
th

 (near Surge) 0.11 
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Figure 5.4 depicts the variations in efficiency at the design points considered in the present 

study, for various N/Nmax diffuser configurations and 5% increase in b2 with respect to b1, at 

60,000rpm operating speed. It can be seen that as the mass flow rate increases, the efficiency 

first increases, reaching its maximum value, and then it starts decreasing. All the pinched 

diffuser geometries yield higher stage efficiency than the baseline diffuser. However, the 

distinction between the pinched diffusers is not clear. 

 

 

 

 

Figure 5.4 Variations in Efficiency for various diffuser configurations for b2/b1 = 1.05 at 

60,000rpm 

 

As already mentioned, N/Nmax=0.5 diffuser configuration shows highest percentage increase in 

efficiency and pressure ratio compared to the baseline diffuser configuration. Table 5.4 

summarises the percentage increase in the efficiency of the compressor stage, using N/Nmax=0.5 

pinched diffuser and for b2/b1=1.05, compared to the baseline diffuser configuration. It can be 

seen that appreciable increase in efficiency is noticed at all the design points, with an average 

increase in the efficiency equal to 2.34%. 

 

Table 5.4 Percentage increase in efficiency between baseline and N/Nmax=0.5 diffuser geometries 

for b2/b1=1.05 at 60,000rpm 

 

Operating Point 
Increase in Efficiency for N/Nmax=0.5 with respect 

to Baseline 

 (%) 

1
st
 (Choke) 2.77 

2
nd

 2.41 

3
rd

 2.15 

4
th

 (near Surge) 2.06 
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Figure 5.5 depicts the variations in total-to-total pressure ratio at the design points considered in 

the present study, for various N/Nmax diffuser configurations and 7% increase in b2 with respect 

to b1, at 60,000rpm operating speed. It can be seen that as the mass flow rate increases, the 

pressure ratio across all the diffuser configurations decreases almost linearly. However, the 

pinched diffusers show higher pressure ratio compared to the baseline diffuser geometry, 

although there is no significant difference between different pinched diffusers.  

 

 
 

Figure 5.5 Variations in Pressure Ratio for various diffuser configurations for b2/b1 = 1.07 at 

60,000rpm 

 

Table 5.5 summarises the percentage increase in pressure ratio across the diffuser, using 

N/Nmax=0.5 pinched diffuser and for b2/b1=1.07, compared to the baseline diffuser configuration. 

It can be seen that the pressure ratio of the pinched diffuser is, on average, 0.24% higher as 

compared to the baseline diffuser, although the percentage increase decreases from choke to near 

surge design points. 

 

Table 5.5 Percentage increase in pressure ratio between baseline and N/Nmax=0.5 diffuser 

geometries for b2/b1=1.07 at 60,000rpm 

 

Operating Point 
Increase in Pressure Ratio for N/Nmax=0.5 with 

respect to Baseline 

 (%) 

1
st
 (Choke) 0.48 

2
nd

 0.28 

3
rd

 0.14 

4
th

 (near Surge) 0.08 
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Figure 5.6 depicts the variations in efficiency at the design points considered in the present 

study, for various N/Nmax diffuser configurations and 7% increase in b2 with respect to b1, at 

60,000rpm operating speed. It can be seen that as the mass flow rate increases, the efficiency 

first increases, reaching its maximum value, and then it starts decreasing. All the pinched 

diffuser geometries yield higher stage efficiency than the baseline diffuser. However, the 

distinction between the pinched diffusers is not clear. 

 

 
 

Figure 5.6 Variations in Efficiency for various diffuser configurations for b2/b1 = 1.05 at 

60,000rpm 

 

Table 5.6 summarises the percentage increase in the efficiency of the compressor stage, using 

N/Nmax=0.5 pinched diffuser and for b2/b1=1.07, compared to the baseline diffuser configuration. 

It can be seen that appreciable increase in efficiency is noticed at all the design points, with an 

average increase in the efficiency equal to 2.23%. Furthermore, from choke to near surge design 

point, this percentage increase in efficiency decreases. 

 

Table 5.6 Percentage increase in efficiency between baseline and N/Nmax=0.5 diffuser geometries 

for b2/b1=1.07 at 60,000rpm 

 

Operating Point 
Increase in Efficiency for N/Nmax=0.5 with respect to 

Baseline 

 (%) 

1
st
 (Choke) 3.00 

2
nd

 2.40 

3
rd

 1.58 

4
th

 (near Surge) 1.95 
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Figure 5.7 depicts the variations in total-to-total pressure ratio at the design points considered in 

the present study, for various N/Nmax diffuser configurations and 13% increase in b2 with respect 

to b1, at 60,000rpm operating speed. It can be seen that as the mass flow rate increases, the 

pressure ration across all the diffuser configurations decreases almost linearly, which is 

consistent with the trends seen earlier. The pinched diffusers show higher pressure ratio 

compared to the baseline diffuser geometry, and N/Nmax=0.5 pinched diffuser configuration 

shows highest pressure ratio.  

 

 
 

Figure 5.7 Variations in Pressure Ratio for various diffuser configurations for b2/b1 = 1.13 at 

60,000rpm 

 

Table 5.7 summarises the percentage increase in pressure ratio across the diffuser, using 

N/Nmax=0.5 pinched diffuser and for b2/b1=1.13, compared to the baseline diffuser configuration. 

It can be seen that the pressure ratio of the pinched diffuser is, on average, 0.23% higher as 

compared to the baseline diffuser, although the percentage increase decreases from choke to near 

surge design points. This is also consistent with the trends observed earlier. 

 

Table 5.7 Percentage increase in pressure ratio between baseline and N/Nmax=0.5 diffuser 

geometries for b2/b1=1.13 at 60,000rpm 

 

Operating Point 
Increase in Pressure Ratio for N/Nmax=0.5 with 

respect to Baseline 

 (%) 

1
st
 (Choke) 0.45 

2
nd

 0.24 

3
rd

 0.14 

4
th

 (near Surge) 0.09 
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Figure 5.8 depicts the variations in efficiency at the design points considered in the present 

study, for various N/Nmax diffuser configurations and 13% increase in b2 with respect to b1, at 

60,000rpm operating speed. It can be seen that as the mass flow rate increases, the efficiency 

first increases, reaching its maximum value, and then it starts decreasing, which is consistent 

with the trends noticed earlier. All the pinched diffuser geometries yield higher stage efficiency 

than the baseline diffuser. However, N/Nmax=0.5 pinched diffuser configuration yields highest 

efficiency of the compressor stage. 

 

 

 
 

Figure 5.8 Variations in Efficiency for various diffuser configurations for b2/b1 = 1.13 at 

60,000rpm 

 

Table 5.8 summarises the percentage increase in the efficiency of the compressor stage, using 

N/Nmax=0.5 pinched diffuser and for b2/b1=1.13, compared to the baseline diffuser configuration. 

It can be seen that appreciable increase in efficiency is noticed at all the design points, with an 

average increase in the efficiency equal to 2.82%. 

 

Table 5.8 Percentage increase in efficiency between baseline and N/Nmax=0.5 diffuser geometries 

for b2/b1=1.13 at 60,000rpm 

 

Operating Point 
Increase in Efficiency for N/Nmax=0.5 with respect 

to Baseline 

 (%) 

1
st
 (Choke) 3.34 

2
nd

 2.73 

3
rd

 2.52 

4
th

 (near Surge) 2.69 
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Figure 5.9 depicts the variations in total-to-total pressure ratio at the design points considered in 

the present study, for various N/Nmax diffuser configurations and 18% increase in b2 with respect 

to b1, at 60,000rpm operating speed. It can be seen that as the mass flow rate increases, the 

pressure ratio across all the diffuser configurations decreases almost linearly, which is consistent 

with the trends seen earlier. The pinched diffusers show higher pressure ratio compared to the 

baseline diffuser geometry, and N/Nmax=0.5 pinched diffuser configuration shows highest 

pressure ratio. 

 

 
 

Figure 5.9 Variations in Pressure Ratio for various diffuser configurations for b2/b1 = 1.18 at 

60,000rpm 

 

Table 5.9 summarises the percentage increase in pressure ratio across the diffuser, using 

N/Nmax=0.5 pinched diffuser and for b2/b1=1.18, compared to the baseline diffuser configuration. 

It can be seen that the pressure ratio of the pinched diffuser is, on average, 0.13% higher as 

compared to the baseline diffuser, although the percentage increase decreases from choke to near 

surge design points. This is also consistent with the trends observed earlier. 

 

Table 5.9 Percentage increase in pressure ratio between baseline and N/Nmax=0.5 diffuser 

geometries for b2/b1=1.18 at 60,000rpm 

 

Operating Point 
Increase in Pressure Ratio for N/Nmax=0.5 with respect to 

Baseline 

 (%) 

1
st
 (Choke) 0.18 

2
nd

 0.16 

3
rd

 0.10 

4
th

 (near Surge) 0.09 
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Figure 5.10 depicts the variations in efficiency at the design points considered in the present 

study, for various N/Nmax diffuser configurations and 18% increase in b2 with respect to b1, at 

60,000rpm operating speed. It can be seen that as the mass flow rate increases, the efficiency 

first increases, reaching its maximum value, and then it starts decreasing, which is consistent 

with the trends noticed earlier. All the pinched diffuser geometries yield higher stage efficiency 

than the baseline diffuser. However, N/Nmax=0.5 pinched diffuser configuration yields highest 

efficiency of the compressor stage, especially near the choke condition. 

 

 
 
 

Figure 5.10 Variations in Pressure Ratio for various diffuser configurations for b2/b1 = 1.18 at 

60,000rpm 

 

Table 5.10 summarises the percentage increase in the efficiency of the compressor stage, using 

N/Nmax=0.5 pinched diffuser and for b2/b1=1.18, compared to the baseline diffuser configuration. 

It can be seen that appreciable increase in efficiency is noticed at all the design points, with an 

average increase in the efficiency equal to 2.94%. It can be further noticed that as b2/b1 is 

increasing (from previous results), the average efficiency of N/Nmax=0.5 diffuser configuration is 

increasing as well, indicating that increase in b2/b1 increases efficiency of the compressor stage. 

 

Table 5.10 Percentage increase in efficiency between baseline and N/Nmax=0.5 diffuser 

geometries for b2/b1=1.18 at 60,000rpm 

 

Operating Point 
Increase in Efficiency for N/Nmax=0.5 with respect to 

Baseline 

 (%) 

1
st
 (Choke) 3.14 

2
nd

 2.84 

3
rd

 2.61 

4
th

 (near Surge) 3.20 
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Figure 5.11 depicts the variations in total-to-total pressure ratio at the design points considered in 

the present study, for various N/Nmax diffuser configurations and 33% increase in b2 with respect 

to b1, at 60,000rpm operating speed. It can be seen that as the mass flow rate increases, the 

pressure ratio across all the diffuser configurations decreases almost linearly, which is consistent 

with the trends seen earlier. The pinched diffusers show higher pressure ratio compared to the 

baseline diffuser geometry, and N/Nmax=0.5 pinched diffuser configuration shows highest 

pressure ratio.  

 
 

 
 

Figure 5.11 Variations in Pressure Ratio for various diffuser configurations for b2/b1 = 1.33 at 

60,000rpm 

 

Table 5.11 summarises the percentage increase in pressure ratio across the diffuser, using 

N/Nmax=0.5 pinched diffuser and for b2/b1=1.33, compared to the baseline diffuser configuration. 

It can be seen that the pressure ratio of the pinched diffuser is, on average, 0.08% higher as 

compared to the baseline diffuser. It is also observed that as b2/b1 increases, the average pressure 

ratio of N/Nmax=0.5 diffuser configuration decreases. 

 

Table 5.11 Percentage increase in pressure ratio between baseline and N/Nmax=0.5 diffuser 

geometries for b2/b1=1.33 at 60,000rpm 

 

Operating Point 
Increase in Pressure Ratio for N/Nmax=0.5 with 

respect to Baseline 

 (%) 

1
st
 (Choke) 0.11 

2
nd

 0.03 

3
rd

 0.09 

4
th

 (near Surge) 0.09 
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Figure 5.12 depicts the variations in efficiency at the design points considered in the present 

study, for various N/Nmax diffuser configurations and 33% increase in b2 with respect to b1, at 

60,000rpm operating speed. It can be seen that as the mass flow rate increases, the efficiency 

first increases, reaching its maximum value, and then it starts decreasing, which is consistent 

with the trends noticed earlier. All the pinched diffuser geometries yield higher stage efficiency 

than the baseline diffuser. However, N/Nmax=0.5 pinched diffuser configuration yields highest 

efficiency of the compressor stage, especially near the choke condition. 

 

 
 

Figure 5.12 Variations in Efficiency for various diffuser configurations for b2/b1 = 1.33 at 

60,000rpm 

 

Table 5.12 summarises the percentage increase in the efficiency of the compressor stage, using 

N/Nmax=0.5 pinched diffuser and for b2/b1=1.33, compared to the baseline diffuser configuration. 

It can be seen that appreciable increase in efficiency is noticed at all the design points, with an 

average increase in the efficiency equal to 3.2%. Hence, as b2/b1 increases, the efficiency of the 

compressor stage also increases. 

 

Table 5.12 Percentage increase in efficiency between baseline and N/Nmax=0.5 diffuser 

geometries for b2/b1=1.33 at 60,000rpm 

 

Operating Point 
Increase in Efficiency for N/Nmax=0.5 with respect to 

Baseline 

 (%) 

1
st
 (Choke) 3.34 

2
nd

 2.94 

3
rd

 3.20 

4
th

 (near Surge) 3.34 
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Figure 5.13 depicts the variations in total-to-total pressure ratio at the design points considered in 

the present study, for various suddenly expanding diffuser configurations, at 60,000rpm 

operating speed. It can be seen that as the mass flow rate increases, the pressure ration across all 

the diffuser configurations decreases almost linearly. The suddenly expanding diffusers show 

higher pressure ratio compared to the baseline diffuser geometry. However, there is no 

significant difference between different suddenly expanding diffusers. 

 

 
 

Figure 5.13 Variations in Pressure Ratio for various suddenly expanding diffuser configurations 

at 60,000rpm 

 

Table 5.13 summarises the percentage increase in the pressure ratio for various suddenly 

expanding diffuser configurations, with respect to the baseline diffuser geometry. It can be 

clearly seen that all modified diffusers increase pressure ratio across them, where the maximum 

increase is noticed for the diffuser with θ=0.5. 

 

Table 5.13 Percentage increase in pressure ratio between baseline and suddenly expanding 

diffuser geometries at 60,000rpm 

 

Operating Point 

Increase in 

Pressure Ratio 

for θ=0.5 with 

respect to 

Baseline 

Increase in 

Pressure Ratio 

for θ=1 with 

respect to 

Baseline 

Increase in 

Pressure Ratio 

for θ=2 with 

respect to 

Baseline 

Increase in 

Pressure Ratio 

for θ=3 with 

respect to 

Baseline 

 (%) (%) (%) (%) 

1
st
 (Choke) 0.55 0.53 0.50 0.48 

2
nd

 0.31 0.29 0.28 0.26 

3
rd

 0.15 0.12 0.15 0.13 

4
th

 (near Surge) 0.12 0.12 0.11 0.07 

Average 0.28 0.26 0.26 0.24 
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Figure 5.14 depicts the variations in the efficiency at the design points considered in the present 

study, for various suddenly expanding diffuser configurations, at 60,000rpm operating speed. It 

can be seen that as the mass flow rate increases, the efficiency first increases, reaching its 

maximum value, and then it starts decreasing. The suddenly expanding diffusers show higher 

efficiency compared to the baseline diffuser geometry. However, there is no significant 

difference between different suddenly expanding diffusers. 

 
 

 
 

Figure 5.14 Variations in Efficiency for various suddenly expanding diffuser configurations at 

60,000rpm 

 

Table 5.14 summarises the percentage increase in the efficiency for various suddenly expanding 

diffuser configurations, with respect to the baseline diffuser geometry. It can be clearly seen that 

all modified diffusers increase the stage efficiency, where the maximum increase is noticed for 

the diffuser with θ=1. 

 

Table 5.14 Percentage increase in efficiency between baseline and suddenly expanding diffuser 

geometries at 60,000rpm 

 

Operating 

Point 

Increase in 

Efficiency for 

θ=0.5 with 

respect to 

Baseline 

Increase in 

Efficiency for 

θ=1 with 

respect to 

Baseline 

Increase in 

Efficiency for 

θ=2 with 

respect to 

Baseline 

Increase in 

Efficiency 

for θ=3 with 

respect to 

Baseline 

 (%) (%) (%) (%) 

1
st
 (Choke) 2.85 3.04 2.88 3.06 

2
nd

 2.01 2.11 2.23 2.21 

3
rd

 1.80 1.78 1.68 1.53 

4
th

 (near Surge) 2.07 2.24 1.95 1.97 

Average 2.18 2.29 2.18 2.19 
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From the above discussions, it is clear that there are two different combinations that provide 

optimised diffuser configuration. The first one is N/Nmax=0.5 with b2/b1=1.33, and the second 

one is suddenly expanding diffuser configuration with θ=1. The N/Nmax=0.5 with b2/b1=1.33 

diffuser configuration is chosen here as the optimised diffuser because this particular diffuser 

configuration yields 0.29% more efficiency than θ=1 diffuser configuration. In the next section, 

the optimised diffuser was analysed in detail, as the baseline diffuser was analysed in the 

previous chapter. 

 

 

5.3 Optimised Diffuser Analysis 

 

In order to analyse the optimised diffuser, the same measuring locations were generated as for 

the baseline diffuser in the previous chapter. However, due to the modifications in the diffuser 

geometry, the measuring locations in the downstream half of the diffuser were adjusted to 

maintain equality. This is shown in figure 5.15. It can be clearly seen that the measuring 

locations in the second (upper) half of the diffuser were adjusted in order to accurately represent 

x/xmax. 

 

 
 

Figure 5.15 Flow parameters measuring stations for the optimised diffuser 
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 Static Pressure 5.3.1

Figure 5.16 depicts the variations in the absolute static pressure within the optimised diffuser at 

near surge condition and 60,000rpm. It can be seen that the static pressure is lower on the inlet 

section of the diffuser, and increases radially, where the maximum static pressure is observed at 

the outlet section of the diffuser. This is because the diffusion process takes place within the 

diffuser. The kinetic energy is converted into pressure due to area increase from inlet to the 

outlet of the diffuser. It can be seen that the absolute static pressure increases from 1.24atm to 

1.47 within the diffuser. 

 

 
 

Figure 5.16 Variations in absolute static pressure (in atm) within the optimised diffuser at 4
th

 

design point and 60,000rpm 

 

In order to further analyse the static pressure distribution within the optimised diffuser, figures 

5.17(a-d) depict the absolute static pressure variations at various axial, radial and circumferential 

locations. Except some numerical diffusion errors, it can be seen that the static pressure is 

constant at various radial locations of the optimised diffuser, with static pressure being lower on 

the shroud side of the optimised diffuser inlet, as compared to the hub side. This is because in the 

inlet section of the diffuser, on the shroud side, is slightly curved, where the velocity is higher, 

and hence the static pressure is lower. Furthermore, the static pressure rises within the optimised 

diffuser, as observed in case of baseline diffuser as well. One obvious difference is the sudden 

jump in static pressure from 40% of N to 60% of N, which is because of the geometry of the 

optimised diffuser. From this discussion, it is clear that the flow primarily changes in 

circumferential and radial direction within the diffuser passage. However, further detailed 

analysis needs to be carried out in order to analyse the flow behaviour in the stage. 
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(a) 

 

 

 
 

(b) 
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(c) 

 

 
 

(d) 
 

Figure 5.17 Absolute static pressure variations within the optimised diffuser at 4
th

 design point 

and 60,000rpm corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 

 

 

Table 5.15 summarises the percentage difference in absolute static pressure, circumferentially. It 

can be seen that while going from 0⁰ to 90⁰ circumferentially, the absolute static pressure 

increases by 0.71% at the hub side, 0.43% at the mid-section, and 0.92% at the shroud side. The 
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same trend is observed in case of 90⁰ to 180⁰ and 270⁰ to 0⁰ also. From 180⁰ to 270⁰, the 

absolute static pressure decreases. Comparing with the baseline diffuser (table 4.1), it is clear 

that the increasing static pressure trend is dominant in case of optimised diffuser configuration. 

 

Table 5.15 Percentage differences in absolute static pressure at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ 0.71 0.43 0.92 

90⁰ to 180⁰ 0.96 0.79 0.10 

180⁰ to 270⁰ -2.08 -1.90 -1.50 

270⁰ to 0⁰ 0.45 0.71 0.62 

 

 

 Mach Number 5.3.2

 

Figure 5.18 depicts the variations in the Mach number within the optimised diffuser at near surge 

condition and 60,000rpm. It can be seen that the air flow within the diffuser is jet shaped, as 

observed in case of baseline diffuser. The high Mach number jets are formed at the exit of the 

blade tips, whereas the lower Mach number streams are formed by the gaps between the blade 

tips, indicating that the maximum energy conversion takes place at the blade tips. It is clear from 

the figure that Mach number can go as high as 0.64 within the optimised diffuser, at the 

conditions specified. 

 

 
 

Figure 5.18 Variations in Mach number within the optimised diffuser at 4
th

 design point and 

60,000rpm 
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Figures 5.19(a-d) depict the Mach number variations at various axial, radial and circumferential 

locations. It can be seen in all the plots of figure 5.19 that most of the Mach number profiles 

show higher velocity in the mid-section, whereas lower velocities are noticed in the near wall 

regions. This is because of the boundary layer formation at the walls, due to no-slip condition. 

However, one particular curve is of interest i.e. diffuser inlet Mach number profile in figure 

5.19(a), where the velocity is higher on the shroud side. This is because of the curved shroud side 

surface at the diffuser inlet (as explained in the previous section). But this does not mean that the 

boundary layer is not formed on the shroud wall at the diffuser inlet; it only means that the Mach 

number is higher at the diffuser inlet, as compared to other locations within the diffuser. The 

other unconventional trends observed in the plots are due to the formation of the jets, which 

dominate the flow field within the diffuser. 

 

 
 

(a) 

 

 
 

(b) 
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(c) 

 

 
 

(d) 

 
 

Figure 5.19 Absolute Mach number variations within the optimised diffuser at 4
th

 design point 

and 60,000rpm corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 

 

Table 5.16 summarises the percentage difference in Mach number, circumferentially. It can be 

seen that while going from 0⁰ to 90⁰ circumferentially, the Mach number increases by 27.55% at 

the hub side, increases by 4.08% at the mid-section, and decreases by 6.25% at the shroud side. 

However, dissimilar trends are observed at other locations, indicating that the flow field is very 

complex, and is dictated by the presence of air jets emerging from the blade tips, and the 

subsequent flow streams formed in-between these jets. 
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Table 5.16 Percentage differences in Mach number at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ 27.55 4.08 -6.25 

90⁰ to 180⁰ 9.05 2.83 16.99 

180⁰ to 270⁰ 7.03 12.31 16.37 

270⁰ to 0⁰ -7.64 -5.79 17.90 

 

 

 Axial Velocity 5.3.3

 

Figure 5.20 depicts the variations in the axial velocity within the optimised diffuser at near surge 

condition and 60,000rpm. It can be seen that the axial velocity component is recessive within the 

diffuser, with the highest axial velocity of 32.9m/s. However, the jets formation is again visible 

within the diffuser. Although an important flow parameter, the axial velocity component 

becomes insignificant within the diffuser. 

 

 
 

Figure 5.20 Variations in axial velocity (in m/s) within the optimised diffuser at 4
th

 design point 

and 60,000rpm 

In order to further analyse the axial velocity distribution within the optimised diffuser, figures 

5.21(a-d) depict the axial velocity variations at various axial, radial and circumferential 
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locations. It can be seen in all the plots of figure 5.21 that the axial velocity values are very low, 

as compared to radial and azimuthal velocity components discussed in the following sections. 

However, the increase in the velocity at the diffuser inlet, at 0°, is clearly visible. 

 

 

 
(a) 

 

 
 

(b) 
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(c) 

 

 

(d) 

 

Figure 5.21 Absolute axial velocity variations within the optimised diffuser at 4
th

 design point 

and 60,000rpm corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 
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Table 5.17 summarises the percentage difference in axial velocity, circumferentially. It can be 

seen that while going from 0⁰ to 90⁰ circumferentially, the axial velocity increases by 228.35% at 

the hub side, decreases by 197.69% at the mid-section, and again increases by 309.38% at the 

shroud side, which shows how non-linear the behavior axial velocity possess within the 

optimised diffuser. 

 

Table 5.17 Percentage differences in axial velocity at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ 228.35 -197.69 309.38 

90⁰ to 180⁰ -98.79 -120.15 92.56 

180⁰ to 270⁰ 149.56 -85.33 91.93 

270⁰ to 0⁰ 91.90 -120.56 115.21 

 

 

 Radial Velocity 5.3.4

 

Figure 5.22 depicts the variations in the radial velocity within the optimised diffuser at near 

surge condition and 60,000rpm. Jets formation is clearly visible in the figure, with radial velocity 

reaching a value of 138.4m/s. The radial velocity component behaviour is quite similar to the 

Mach number i.e. domination of jets and streams within the optimised diffuser. 

 

 
 

Figure 5.22 Variations in radial velocity (in m/s) within the optimised diffuser at 4
th

 design point 

and 60,000rpm 
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In order to further analyse the radial velocity distribution within the optimised diffuser, figures 

5.23(a-d) depict the radial velocity variations at various axial, radial and circumferential 

locations. The trends observed in all the plots of figure 5.23 are similar to the one observed in 

case of Mach number i.e. lower velocity in the near wall regions, and higher velocity at the 

diffuser inlet section, at 0⁰. 

 

 
 

(a) 

 

 
 

(b) 
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(c) 

 

 
 

(d) 

 

Figure 5.23 Absolute radial velocity variations within the optimised diffuser at 4
th

 design point 

and 60,000rpm corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 

 

Table 5.18 summarises the percentage difference in radial velocity, circumferentially. It can be 

seen that while going from 0⁰ to 90⁰ circumferentially, the radial velocity first increases by 

305.21% at the hub side, further increases by 0.18% at the mid-section, and finally decreases by 

18.34% at the shroud side. The trends observed in case of radial velocity are quite similar to the 
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one observed in case of Mach number, indicating that the flow field is very complex, and is 

dictated by the presence of air jets emerging from the blade tips, and the subsequent flow streams 

formed in-between these jets. 

Table 5.18 Percentage differences in radial velocity at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ 305.21 0.18 -18.34 

90⁰ to 180⁰ 7.85 1.36 31.12 

180⁰ to 270⁰ 9.81 17.08 29.05 

270⁰ to 0⁰ -24.74 -0.27 31.86 

 

 

 Azimuthal Velocity 5.3.5

 

Figure 5.24 depicts the variations in the azimuthal velocity within the optimised diffuser at near 

surge condition and 60,000rpm. It can be seen that the azimuthal velocity component is dominant 

within the optimised diffuser, with the highest azimuthal velocity of 195.7m/s, and the flow field 

is dictated by the formation of jets emerging from the blade tips. The jet formation makes the 

flow behaviour very complex within the optimised diffuser. 

 

 
 

Figure 5.24 Variations in azimuthal velocity (in m/s) within the optimised diffuser at 4
th

 design 

point and 60,000rpm 
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In order to further analyse the azimuthal velocity distribution within the optimsied diffuser, 

figures 5.25(a-d) depict the azimuthal velocity variations at various axial, radial and 

circumferential locations. The trends observed in all the plots of figure 5.25 are similar to the one 

observed in case of Mach number i.e. lower velocity in the near wall regions, and higher velocity 

at the diffuser inlet section, at 0⁰. 

 

 
 

(a) 

 

 
 

(b) 
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(c) 

 
 

(d) 

 

Figure 5.25 Absolute azimuthal velocity variations within the optimised diffuser at 4
th

 design 

point and 60,000rpm corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 

 

 

Table 5.19 summarises the percentage difference in azimuthal velocity, circumferentially. It can 

be seen that while going from 0⁰ to 90⁰ circumferentially, the azimuthal velocity increases by 
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19.54% at the hub side, increases by 6.86% at the mid-section, and then decreases by 2% at the 

shroud side. 

 

Table 5.19 Percentage differences in azimuthal velocity at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ 19.54 6.86 -2.00 

90⁰ to 180⁰ 9.74 2.76 14.10 

180⁰ to 270⁰ 3.67 10.65 12.29 

270⁰ to 0⁰ -2.74 -7.92 13.04 

 

 

 Static Temperature 5.3.6

 

Figure 5.26 depicts the variations in the static temperature within the optimised diffuser at near 

surge condition and 60,000rpm. It can be seen that the static temperature field is also influence 

by the velocity fields discussed earlier, where the higher velocities are associated with lower 

static temperature, and lower velocities are associated with higher static temperature. It can be 

seen that, with an operating temperature of 288K, minimum and maximum static temperatures of 

304.7K and 334.4K are observed within the diffuser, at the specified conditions (rpm and design 

point). 

 

 
 

Figure 5.26 Variations in static temperature (in K) within the optimised diffuser at 4
th

 design 

point and 60,000rpm 
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In order to further analyse the static temperature distribution within the optimised diffuser, 

figures 5.27(a-d) depict the static temperature variations at various axial, radial and 

circumferential locations. The trends observed in all the plots of figure 5.27 indicate that the 

static temperature is higher on the hub side, and is lower on the shroud side of the optimised 

diffuser. 

 

 
 

(a) 

 

 

 
 

(b) 
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(c) 

 

 
 

(d) 

 

Figure 5.27 Absolute static temperature variations within the optimised diffuser at 4
th

 design 

point and 60,000rpm corresponding to (a) 0° (b) 90° (c) 180° (d) 270° 

 

 

 

Table 5.20 summarises the percentage difference in static temperature, circumferentially. It can 

be seen that while going from 0⁰ to 90⁰ circumferentially, the static temperature increases by 

0.35% at the hub side, increases by 1.03% at the mid-section, and increases by 0.37% at the 

shroud side. 
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Table 5.20 Percentage differences in static temperature at various measuring locations 

 

 
x/xmax = 0.1 x/xmax = 0.5 x/xmax = 0.9 

0⁰ to 90⁰ 0.35 1.03 0.37 

90⁰ to 180⁰ -0.01 -1.00 -0.66 

180⁰ to 270⁰ -0.43 0.24 0.60 

270⁰ to 0⁰ 0.12 -0.20 -0.22 

 

 

5.4 Static Pressure Recovery 

 

After analysing the flow field within the baseline diffuser in detail, figure 5.28 depicts the static 

pressure recovery within the optimised diffuser. It can be seen that the pressure recovery 

increases with mass flow rate at both the operating speeds considered in the present study. As the 

mass flow rates are different at different operating speeds, it is difficult to directly compare the 

pressure recovery between the operating speeds, however, it can be compared with respect to the 

design points. It can be seen that the pressure recovery for the first two design points i.e. choke 

and near choke design points, is higher for higher rpm, however, for the 3
rd

 design point, the 

pressure recovery is almost similar. At 4
th

 design point, the pressure recovery is lower for 

80,000rpm. 

 

 
 

Figure 5.28 Static Pressure Recovery within the Optimised Diffuser 

 

Comparing static pressure recovery between the optimised diffuser and the baseline diffuser 

configurations reveal that the optimised diffuser configuration shows, on average, 7.4% higher 

static pressure recovery than the baseline diffuser configuration. 
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6 CHAPTER 6  

CONCLUSIONS 

  

rom the results obtained in the previous chapters, where the performance 

characteristics of the turbocharger compressor stage was evaluated using 

baseline and non-parallel walled diffusers, detailed conclusions are drawn in 

this chapter. The major achievements and contributions to the existing 

knowledge base are summarised, and wherever possible, referred back to the initial 

aims of this study. Finally, the work carried out in this study is evaluated, and 

requirements for future work, in the area of diffuser optimisation, are discussed. 
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6.1 Research Problem Synopsis  

 

The need for further optimisation of the turbochargers forces the turbocharger designers to 

explore the geometric characteristics that can increase efficiency. The diffuser passage is a 

component that not only can contribute in the increase of efficiency, but can provide more stable 

operating conditions for a turbocharger compressor stage. However, limitations were found in 

the literature review regarding the geometric construction of automotive turbocharger diffusers. 

In order to explore these limitations, especially at the outlet section of the diffuser, numerical 

investigations were carried out. 

 

In order to accurately predict the flow behaviour within a diffuser, a set of aims and objectives 

were formulated, which define the scope of this research study. A summary of the primary aims 

of the thesis is provided in the following sections, along with the major achievements and 

contributions. For reference, the detailed objectives within each of these aims were provided in 

chapter 2. With the advent of powerful computing machines, and sophisticated software, to 

analyse the flow fields, it has now become possible to computationally model a turbocharger 

compressor stage, and study the flow behavior within these machines under various operating 

conditions. 

 

 

6.2 Research Aims and Major Achievements 

 

The major achievements of this study, against the aims laid out in chapter 1, have been discussed 

here. 

 

Research Aim # 1: Analyse the flow characteristics of the baseline diffuser of a 

turbocharger compressor stage at lower operating speeds 

 

Achievement # 1: This study provides detailed CFD based analysis on the flow characteristics of 

the baseline diffuser used in automotive turbocharger compressor stage. Flow field analysis of 

important parameters revealed interesting patterns/trends, and indicated the complex velocity 

fields within the diffuser. These analyses are very crucial for the turbocharger manufacturers as it 

provides an in-depth understanding of the diffuser behavior under various operating conditions, 

especially at lower rpms of the turbocharger. Furthermore, diffuser designers can immensely 

benefit from the analysis at choke and near surge operating conditions, which are very difficult to 

predict even in real world (experimental) studies. This study has established that CFD can be 

used as an effective tool for the analysis of a turbocharger compressor stage with reasonable 

accuracy. 

 

Research Aim # 2: Develop an optimal design of the diffuser channel for turbocharger 

compressor stage 

 

Achievement # 2: The most important achievement of this study is the optimisation of the 

turbocharger diffuser channel, keeping in mind the geometrical and manufacturing constraints. 

The optimisation, and analysis, procedure adopted in this study clearly highlight the differences 
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between the baseline and the optimal diffuser configuration, and helps the diffuser designers to 

understand which geometric parameters of the diffuser that are most important in the diffuser 

optimisation studies. Furthermore, detailed qualitative and quantitative analysis helps in 

understanding the effects of various diffusers’ geometrical parameters on the important flow 

related parameters, especially the pressure recovery coefficient.  

 

6.3 Thesis Conclusions 

 

A comprehensive study has been carried out to support the existing literature regarding the 

optimisation and performance characteristics of automotive diffusers. The major conclusions 

from each facet of this research are summarised here. 

 

Research Objective # 1: Validate the compressor stage efficiencies, at lower operating 

speeds, obtained from numerical investigations, against the experimental data 

 

Validation of the numerical results, for baseline turbocharger compressor stage, with the 

experimental data shows good agreement between the two. The only significant differences have 

been noticed at the choked flow condition. As this is a very complex flow phenomena, difference 

of less than 15% shows that CFD is capable of predicting the choked flow within a turbocharger 

compressor stage with reasonable accuracy. At other operating conditions, this difference is less 

than 5%, showing that CFD predicts the flow phenomena within a turbocharger compressor stage 

with high accuracy. 

 

Research objective # 2: Analyse the important flow characteristics within the compressor 

stage in general, and within the baseline diffuser in particular 

 

Detailed flow analysis within the baseline compressor stage has been carried out in the present 

study. Both qualitative and quantitative analyses show that the static pressure is lower on the 

inlet section of the stage, and the diffuser, as compared to the outlet section of the stage, and the 

diffuser. Within the diffuser, the pressure rises radially, and the rate of increase of static pressure 

within the diffuser decreases along the length of the diffuser. Very complex flow fields have 

been observed for various velocity components, within the baseline diffuser. The main 

conclusion is that the axial velocity is recessive within the diffuser, while the radial and 

azimuthal velocities are dominant. Furthermore, the static temperature is higher where the flow 

velocity is lower, and is lower where the flow velocity is higher. 

 

Research objective # 3: Evaluate the performance characteristics and flow characteristics 

within various diffuser configurations, represented by different pinch locations, width 

ratios and sudden expansions 

 

The performance evaluation of the baseline and various non-parallel walled diffuser 

configurations show that as the mass flow rate increases, the total-to-total pressure ratio 

decreases, while the stage efficiency first increases to its maximum value, and then starts 

decreasing. Hence, the stage efficiency is lower on both the choke and near surge operating 

conditions. Furthermore, it has been noticed that by diverging the shroud wall of the diffuser, 
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both the pressure ratio within the diffuser and the stage efficiency increase. Moreover, increase 

in diffuser width ratio increases the pressure ratio and the stage efficiency. 

 

Research objective # 4: To develop an optimal diffuser geometry, yielding highest efficiency 

within the range considered, and to analyse its flow characteristics in detail 

 

After carrying out detailed numerical analysis of various non-parallel walled diffusers, it has 

been found out that a diffuser with pinched shroud wall yields optimal efficiency of the 

turbocharger compressor stage, where the shroud wall is pinched half way down the diffuser 

length. Furthermore, a width ratio of 1.33 i.e. 33% increase in the width of the outlet section of 

the diffuser, yields optimal/maximum stage efficiency and pressure ratio across the diffuser. 

 

 

6.4 Thesis Contribution 

 

The major contribution of this research study is summarised below in which novelties of this 

research are described: 

 

Contribution # 1 

One of the major contributions of this study is the detailed CFD analysis on the flow 

characteristics of the parallel walled diffuser (baseline model). The flow fields analysis of the 

major parameters that affect the performance output of a diffuser reveal mechanisms that 

influence the performance output of the diffuser especially at the two extremes of compressor 

map. Highlighting, complex flow fields developed within the diffuser and providing in-depth 

understanding of the diffuser performance under various operating conditions especially for the 

lower rpm enabled thorough understanding of the linkage between micro and macro performance 

parameters. It has been shown from literature of this study that diffusers performance varies at 

low and high rpms, however it has not been specified the mechanisms that trigger these 

variations in diffusers performance. Hence a more detail analysis of the flow fields of diffusers 

for various operating conditions is necessary. Turbocharger manufactures can benefit from the 

detailed flow field analysis which is very difficult to obtained from  experimental studies. This 

study also establishes that CFD can be used as an effective tool for predicting the performance 

output of turbocharger compressor stage with reasonable accuracy. 

Contribution # 2 

The major contribution of this study is the use of a non-parallel walled diffuser in order to study 

the performance output of a centrifugal compressor stage, emphasising the main geometric 

characteristics that contribute to efficiency. The analysis procedure adopted in this study 

highlights the differences between parallel and non-parallel walled diffusers. Flow field analysis 

of the main flow parameters (velocity fields, pressure field) indicating the mechanisms that are 

crucial for the turbochargers designers. Moreover, it provides in-depth understanding of the non-

parallel walled diffusers performance under various operating conditions corresponding to  the 

lower rotational speeds  of a turbocharger. It has been shown from literature in this study that 

most of the investigations within non-parallel walled diffuser under such operating conditions 
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use mostly experimentally techniques. Moreover most of the literatures for non-parallel walled 

diffusers do not explain r the main mechanisms that trigger the different flow phenomena within 

the diffuser for various operating conditions. Furthermore, it helps diffuser designers to identify 

which geometric and flow parameters are the most sensitive for the diffusers optimisations 

studies. 

 

6.5 Recommendations for Future Work 

 

The design and optimisation processes of diffuser passage, for a desirable compressor map, have 

been presented in the present study, such that the gaps identified in the literature could be 

bridged. In light of the concluding remarks provided in the previous section, a vast potential for 

further research in this potential area has been unlocked. The main areas identified for further 

work are described below, which are associated with further performance and design 

optimisation of compressor stage. 

 

Recommendations # 1 

 

More advanced modelling techniques are available for design and optimisation purposes, 

providing two degrees of freedom for automatic shape optimisation. Using such models can 

reduce the computational time significantly, obtaining a larger amount of quantitative data. The 

Adjoint Optimisation Algorithm, provided by ANSYS, can effectively and efficiently optimise 

the diffuser geometry with minimum computational cost. Such advance models required further 

investigation for the mesh sensitivity, since the mesh will morph during the automatic 

optimisation. Such optimisation algorithms can be very beneficial for the investigation of more 

complicated diffuser designs. 

 

Recommendations # 2 

 

The present study is based on steady state approximation of the flow field within a turbocharger 

compressor stage, where MRF technique has been employed to rotate the impeller blades. MRF 

predicts only the revolution averaged flow parameters, and cannot predict the instabilities and 

associated complex secondary flows within the diffusers. Hence, there is a need for a transient 

solver, such as Sliding Mesh technique. Sliding Mesh technique has the capability of predicting 

flow features instantaneously, which can increase the accuracy of the results tremendously. 

Furthermore, a more in-depth understanding of the actual turbocharger operation (while the 

vehicle is on road) can be obtained from such methods. 
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