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Abstract 

 

Multiphase flow can be defined as the simultaneous flow of a stream of two or more phases. 

Solids-in-water flow is a multiphase flows where solids and liquid are both present. Due to the 

density differences of the two phases, the results for such flow is often to have non-uniform 

profiles of the local volume fraction and local axial velocity for both phases in the flow cross-

section. These non-uniform profiles are clearly noticeable in solids-in-water stratified flow with 

moving bed for inclined and horizontal pipelines. However in many industrial applications, such 

as oil and gas industry, food industry and mining industry, multiphase flows also exist and it is 

essentially important to determine the phase concentration and velocity distributions in through 

the pipe cross-section in order to be able to estimate the accurately the volumetric flow rate for 

each phase.  

This thesis describe  the  development of  a novel non-intrusive flow meter that can be used for 

measuring the local volume fraction distribution and local axial velocity distributions of the 

continuous and discontinuous phases in highly non-uniform multiphase flows for which the 

continuous phase is electrically conducting and the discontinuous phase is an insulator. The 

developed flow meter is based on combining two measurement techniques: the Impedance cross 

correlation ICC technique and the electromagnetic velocity profiler EVP technique. 

Impedance cross correlation ICC is a non-invasive technique used to measure the local volume 

fraction distributions for both phases and the local velocity distribution for the dispersed phase 

over the pipe cross-section, whilst the electromagnetic velocity profiler EVP technique is used to 
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measure the local axial velocity profile of the continuous phase through the pipe cross-section. 

By using these profiles the volumetric flow rates of both phases can be calculated. 

A number of experiments were carried out in solid-in-water flow in the University of 

Huddersfield solids-in-water flow loop which has an 80 mm ID and an approximately 3m long 

working section. ICC and EVP systems were mounted at 1.6 m from the working section inlet 

which was inclined at 0 and 30 degree to the vertical. The obtained result for the flow parameters 

including phase volume fraction and velocity profiles and volumetric flow rates, have been 

compared with reference measurements and error sources of difference with their reference 

measurements have been identified and investigated. 
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1. CHAPTER 1: Introduction  

 

1.1  Introduction 

The aim of this research is to develop a novel technique that can be used to measure the local 

axial velocity distributions and the local volume fraction distributions of the continuous and 

discontinuous phases in highly non-uniform multiphase flows (specifically flows which contain 

simultaneous streams of two phases). Here the continuous phase will be considered as 

electrically conducting and the discontinuous phase is an insulator. From these distributions the 

volumetric flow rates of both phases can be calculated.  

Measurement of the different phase flow rates in multiphase flow is highly important in oil and 

gas recovery, chemical, mining, food processing and nuclear industries. Around the world, 

scientists with diverse backgrounds, as well as engineers from different specialities, have 

engaged with the problem of how to measure the different parameters of multiphase flow. 

1.2  Multiphase Flow Properties 

In order to understand the measurement challenges in multiphase flows, it is necessary to define 

the basic properties.   

The properties of single-phase flows are relatively well understood and the volumetric flow rate 

can be defined as: 

dAvQ
A

           Equation  1-1 

where v is the axial flow velocity and A is the area cross-section.  
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In multiphase flow, where many phases may be present, it is vital to precisely monitor the 

distributions of the time averaged local volume fraction j  and the time averaged local velocity, 

jv , of the thj  phase to enable quantification of its flow rate jQ . 

For example, in two-phase flow where the water is the continuous phase and either solids or oil 

is the dispersed phase, the volumetric flow rate for both phases can be define as: 

dAvQ
A

ddd            Equation  1-2 

dAvQ
A

www            Equation  1-3 

where d and w  respectively represent the local volume fraction of the dispersed phase (solid 

or oil) and the continuous phase (water) , while dv  and wv  respectively represent the local axial 

velocity of the dispersed phase (solid or oil) and the continuous phase (water). 

 For two-phase flow the relation between d  and w is: 

1 wd            Equation  1-4 

Thus, in two phase flow, it is necessary to find the local volume fraction distribution of only one 

phase in order to determine the other. Based on Equation  1-4, the volumetric flow rate for the 

continuous phase (water) can be written as: 

dAvQ
A

wdw   )1(           Equation  1-5 

Knowing these basic terms will help to understand the development of this thesis.  



3 

 

1.3  Multiphase Flow Regimes 

1.3.1 Gas-in-Liquid Flow 

The geometrical configurations taken by vertical upward gas-in-liquid flows in a pipe have been 

divided by, for example, Martyn [1] into four main regimes, see Figure  1.1. In the description 

below, the liquid flow rate is assumed to be constant: 

-  Bubble flow: In which liquid is the continuous phase and a dispersion of bubbles flows within 

this liquid continuum. Usually, the bubbles have non-uniform size and have complex motions.    

- Slug flow: As the gas flow rate increases, the bubbles become large, referred to as Taylor 

bubbles [2], and start to have bullet-shapes and a diameter which is similar to the size of the 

pipe diameter. These large bubbles are often interspersed with a dispersion of smaller bubbles.   

- Churn flow: As the gas flow rate becomes higher still, the Taylor bubbles break down and the 

flow starts to become chaotic.  

- Annular flow: At even higher gas flow rates, the liquid flows as an annular film on the tube 

wall and the gas flows in the centre. Usually, some of the liquid phase is entrained as small 

droplets in the pipe core.   

Because of the complexities of multiphase flow, a wide variety of flow regime classifications can 

be found in the literature [1, 3-10], in addition to those described above. 
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Increasing Gas flow

Bubble flow Slug flow Churn flow Annular flow  

Figure ‎1.1 Flow regimes in vertical gas-liquid flows [1] 

In the previous literature  [1, 3-10] the flow patterns for vertical and horizontal multiphase flows 

are determined using different measurement techniques, some of which will be presented in more 

detail in Chapter Two. With vertical flow, the flow patterns when averaged over time are 

generally axisymmetric since the gravitational force acts parallel to the direction of the flow. 

However, in horizontal flow, in which the gravitational force is orthogonal to the flow direction, 

the flow patterns show asymmetric distributions including stratified or stratified wave flow, in 

which the more dense liquid phase tends to occupy the lower part of the horizontal pipe and the 

gas phase tends to occupy the upper part of the horizontal pipe. 

1.3.2 Solids-in-Fluid Flows 

The presence of a solids phase increases the complexity of the flow, Henthorn et. al., [11] used 

mica flakes, non-spherical sand and spherical glass beads having the same density and equivalent 

volumes as the solids in vertical solids-in-air flow. In this investigation the continuous phase was 

air and the dispersed phases were sand and glass. Henthorn et. al. found that the particle shape 
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and size could have a great effect on the flow regime. It was concluded that the greater drag 

forces on the less spherical particles significantly slowed the velocity of the solid particles.   

In vertical solids-in-air flow, Lee and Durst [12] used spherical glass beads with four different 

diameters ( 0.1 mm, 0.2 mm, 0.4 mm and 0.8 mm) to examine the particles‟ motion in turbulent 

flow.  The experimental results showed that the mean velocity profiles of the particles becomes 

close to being more constant across the pipe cross section as the particle diameter increases. 

Furthermore, the results showed a clearly recognizable particle-free region near the pipe wall 

which is increased as the particle diameter increased.  

Alajbegovic et. al., [13] investigated solids-in-water vertical flow using solid spheres of ceramic 

and polystyrene using a Laser-Doppler Anemometer (LDA). In this investigation the continuous 

phase was water and the dispersed phases were ceramic and polystyrene. Both sets of spheres 

had diameters of 2.23 mm diameter, the ceramic spheres had a density of 2450 kgm
-3

 while the 

polystyrene spheres had a density of 32 kgm
-3

. The velocity profiles for both sets of spheres 

showed a shallow peak at the centre of the pipe cross-section.  

Alajbegovic et. al., [13] also presented the local volume fraction profiles for the ceramic beads 

for a number of flow conditions. The results showed that the local volume fraction profiles of the 

ceramic beads at low liquid flows were almost uniform across the pipe. However, the local 

volume fraction increased at the centre of the pipe as the fluid velocity increased. Alajbegovic et. 

al., presented results obtained by Sakaguchi et. al., [14] to support their findings that at higher 

liquid speed, the particles tend to move to the pipe centre. However this result depended on the 

size, shape, density and concentration of the solids and also the pipe diameter. Furthermore, both 

sets of authors agreed that there is a region free of particles close to the pipe wall. Bartosik and 

Shook [15]  investigated solids-in-water vertical flow using sand particles as a dispersed phase 
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and water as continuous phase. They found that the concentration profiles for sand particles 

which were finer than those used by Alajbegovic et, al., were more uniform across the pipe 

cross-section. The global mean particle volume fractions used by Alajbegovic et. al., were less 

than 8% ,which is near to the mean solids volume fraction used in the experiments described in 

the current study( see Section  7.2.1).        

In Horizontal/Inclined solids-in-liquid flow, the local velocity distribution and the local 

volume fraction distribution of each phase will depend on the density of the particles and the 

flow rate of the mixture. Due to gravitational forces, the more dense the particles the more likely 

they are to sink to the lower side of the pipe. Doron and Barnea [16] reviewed a number of 

studies to obtain a solids-liquid flow pattern map, see Figure 1.2. They grouped together flow 

patterns which have similar distributions and characteristic behaviours and derived three main 

flow patterns, see Figure  1.2: 

a. Fully suspended flow: at high mixture flow rates, the solid particles tend to be suspended 

across the pipe section. The flow pattern may be subdivided into two sub-patterns:   

(1) pseudohomogeneous suspension, when the solids are distributed nearly uniformly across the 

pipe cross-section. This pattern is happen when the mixture velocities are usually very high,   

(2) heterogeneous suspension flow, this pattern occurs when the solids concentration gradient is 

in the direction perpendicular to the pipe axis, with a higher particle concentration travelling at 

the lower part of the pipe cross-section, see Figure  1.2a.  

b. Stratified flow with moving bed: at lower mixture flow rates, the solids particles accumulate 

at the bottom of the pipe, forming a packed layer. The packed layer moves along the lower side 

of the pipe pushed by the liquid flow.  The upper side of the pipe is occupied by a 

heterogeneous mixture which travels faster than the moving bed.  
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 c. Stratified flow with stationary bed: in this case there will be three layers of particles inside 

the pipe cross section.  A stationary bed at the bottom of pipe (this happens because the mixture 

flow rate is to too slow to move all the immersed particles), a separate moving layer on top of 

the stationary layer and above that a heterogeneous mixture which travels fastest.  

Direction of flow

Direction of flow

Direction of flow

a. Heterogeneous suspension flow

b.  Flow with moving bed

c. flow with a stationary bed

Concentration Profile

Concentration Profile

Concentration Profile
 

Figure ‎1.2 Schematic views of flow patterns and concentration distributions in a horizontal pipe   

 

The study of stratified solids-in-water flow in inclined pipes is more complicated than for 

either horizontal or vertical flow. In inclined pipes, various flow patterns can be obtained 

depending on the particle and liquid densities, global mean in-situ volume fraction and the angle 

of inclination from the vertical [17]. Figure  1.3 shows a photograph of upward solids-in-water 

flow in a pipe inclined at 30
o
 to the vertical. This photograph was taken using a high speed 

camera in the University of Huddersfield flow loop. Videos which were also obtained from the 
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high speed camera show that there is a continuous variation of the solids velocity from the upper 

to the lower sides of the inclined pipe. This variation produced three layers of solids travelling 

with different velocities and directions: (i) the bottom bed layer (maximum solids concentration) 

can experience reverse flow and travel downwards with a velocity ua. (ii) the separated moving 

layer on top of the bottom bed travels up the pipe with a speed ub, and (iii) the heterogeneous 

mixture above this travels with the greatest upword velocity, uc.  Additionally, the videos show a 

circulation phenomenon which helps the particles to travel upward in the overall flow direction.  

 

 

Figure ‎1.3 Photograph of upward solids-in-water flow in pipe inclined at 30º to the vertical  

 

For highly non-uniform stratified flow, such as the inclined solids-in-water flow described 

above,  it is very important to measure the local solids volume fraction distribution and the local 

ua 
ub 

uc 
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solids and water velocity distributions in order to determine the volumetric flow rates accurately 

for both phases, the total volumetric flow rates sQ  and wQ  (for solids and water respectively) 

associated with the profiles presented in Figure  2.4 and Figure  2.7  can be expressed as:  

dxdyvQ yxsyxss ,, )()(          Equation  1-6 

dxdyvQ yxwyxsw ,, )()1(           Equation  1-7 

Solids-in-liquid stratified flow is highly important in different industrial processes. Section  1.4 

shows application examples of the solids-in-liquid flow in: the oil and gas industry, and the food 

processing, mining and water treatment industries.      

1.4  Multiphase Flow Applications in Industrial Processes 

1.4.1 Oil and Gas Industry 

Probably the largest area of interest in current multiphase flow measurement research is for oil 

and gas production.  

Presently, separation technology has a very important role in process industries where large and 

expensive separators are used to split the mixture into its various phases which are then metered 

individually. The installed cost of a separator will vary depending on the flow parameters (e.g 

flow rate, temperature, pressure and the chemistry of the flow) and the location of the 

installation; onshore, offshore or subsea. The typical cost of a separator varies between 1 to 5 

US$ million [3]. Additionally, for offshore installations, the operational costs associated with a 

test separator can reach as much as 350k US$ per year[3].  

Due to the high cost of the separation processes, there remains in the energy sectors a need for 

non-invasive and effective multiphase flow meters to replace conventional test separators for the 

management of unprocessed different phases for long distance transportation.   
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The typical cost of multiphase flow meters (MFM) is generally less than that of conventional test 

separators, between 100k – 500k US$, although the cost of the  MFM will depend on whether it 

is located topside or subsea, the size of the MFM and the measurement technique used. 

It has been estimated that for a subsea development located 10 km from the host platform the use 

of MFMs reduces the cost of the test line by 62% and helps improve production management 

with a 6-9 % gain in the value of the oil recovered [18]. It was also estimated that the operational 

expenses for a MFM can be as high as 25% of its original cost for the first year and then reduce 

to 10k – 40k US$ per year for both offshore and topside applications [19]. 

Generally oil, gas, and water can be produced from the same well, although in deep and 

ultradeep water, the oil and gas production effectively involves many solid deposits such as 

hydrates, asphaltenes, emulsions and waxes [20-25]. These heavy solid deposits, in many 

instances, move from the well tubing to flow lines and to production separators, pumps, strainers 

and other fluid-handling equipment, creating further operational problems. As a result, for many 

cases, oil wells are completely shut down after being plugged by these heavy materials, which in 

turn causes great reduction in production volume and expensive operational problems, see Figure 

 1.4 and Figure  1.5. Different methods are currently in use for reducing the blocking problems 

e.g. by adding chemical solutions or controlling the pressure, temperature and concentration of 

the flow, yet these methods are dependent on knowing the concentration and velocity profiles for 

the different flowing phases [26]. 
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Figure ‎1.4 A large gas hydrate plug formed in a subsea hydrocarbon pipeline.[26] 

 

 

Figure ‎1.5 Pipe blocked due to the paraffin and asphaltene buildup inside the walls of the pipes[27] 

   

Additionally, during the oil drilling process, drilling mud is pumped into the oil well through the 

drill pipe. This fluid lubricates the cutting bit and helps to clean the well bore by carrying to the 

surface the drilling cuttings produced at the base of the well [28].  
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In some cases, there is a need for directional well drilling in order to reach to the geological 

target zone, see Figure  1.6.  With directional well drilling, the higher cuttings concentration will 

lie at the lower side of the borehole which may partially block the fluid flow and hence lead to 

inadequate hole cleaning [17]. Thus a high pressure hydraulic pump is required for effectively 

cleaning the annular hole [20]. In order to select a suitable hydraulic system to control the 

volumetric cuttings flow rate, the mud and solids velocity and concentration distributions are 

required.   

Well hole

Drill Pipe
Cutting Bed

Well hole

Drill Pipe

Cutting Bed

 

Figure ‎1.6 Schematic diagram of directional well drilling 

 

1.4.2 Food Processing  

Food transportation within a plant using pipes often includes solids-in-liquid multiphase mixture 

flows. Non-Newtonian fluids carrying solid particles of size between 3-20 mm diameter and 

volume fraction as high as 60% may occur within food transportation and processing [29]. 
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Sterilising a solids-liquid mixture is one application of multiphase flow. The typical continuous 

sterilisation plants consist of three main sections: heating, holding and cooling. The flow mixture 

is pumped into the heating section at an appropriate rate to bring it to a suitable temperature, and 

maintain it at this temperature long enough to ensure the required sterility [30].  

Temperature control in sterilisation plants (see Figure 1.7) is very important to prevent excessive 

nutrient degradation and quality loss of the product. Particle motion in a fluid is complex as the 

particles may rotate and move radially within the holding tube which will affect the convective 

heat transfer between the particles, the liquids and the containing tubes.  The convective heat 

transfer coefficient will be a function of the relative velocity between the flowing solids and 

liquid phases, commonly known as the slip velocity [29-32]. The size of any steriliser process 

required for a given thermal duty will be determined by two factors: (i) the rate of heating of the 

particles, which will be controlled by a combination of the interfacial heat transfer and thermal 

conductivity of the particles and (ii) the velocities of the solids and liquids which will affect both 

solids-liquid heat transfer coefficient and the residence time of both phases.   
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Figure ‎1.7 Schematic diagram of sterilisation plant 

 

Based on the previous, it is very important to measure the velocity and volume fraction of both 

phases to control the heating process. 

1.4.3 Mining Industry 

In the mining industry, water is often used to carry important materials such as cement, coal, iron 

ore, cobalt, copper, manganese over long distances. Additionally, hydraulic transport is often 

used to carry the product to other sites either for further treatment or for shipping, see Figure  1.8.  
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Figure ‎1.8 Deep sea mining system [33] 

“Head loss” is considered one of the most important parameters especially in deep-ocean mining 

systems where it is plays an important role in the requirements of deep-sea mining hydraulic 

pumps and optimization of mining systems. Many factors such as fluid characteristics, space 

configuration of flexible hose and fluid−solid coupling affect the “head loss” [34].  

Wang et. al. [34], studied the head loss of transport systems powered by a hydraulic pump. Based 

on the research results they concluded that to reduce the head losses and improve the efficiency 

of deep-ocean mining hydraulic pumps, sand volumetric concentrations Cv and mixture velocity v 

must be restricted to a suitable range (e.g. 10%−25% and 2.5−4 m/s respectively). Similar effects 

of the mineral content and the velocity of the internal fluid on the head losses were also reported 

by Wang et. al.,  [35]. Thus, measuring the volume fraction and velocity profiles for slurry in 

deep-sea mining is important in terms of increasing the efficiency of the hydraulic system. 
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1.4.4 Water Treatment 

Water treatment (removing the solids from the solid-in-liquid flow) is one of the many 

applications involved in the water processing industry. Different treatments exist such as belt 

press separation and centrifugal filtering. Design of any separation system must consider all 

stages of pre-treatment, solids concentration, solids separation, and post-treatment. Pre-treatment 

is used when there is difficulty in filtering slurries and it involves changing the nature of the 

suspended solids by either chemical or physical means, or by adding a polymer to the suspension 

[36] where the polymer aggregates the suspended particles in the water. The quantity of polymer 

mass flow rate needed is related to the solids mass flow rate. Therefore, measuring the solids 

mass flow rate is very important to avoid unnecessary cost, which can reach millions of dollars, 

and to reduce the possibility of adding a polluting level of polymer to the water stream [37, 38].   

1.5  Overall Research Aim 

The overall aim of this research is to design and implement a novel non-intrusive two-phase flow 

meter which can be used in a non-uniform multiphase flow, e.g. solids-in-water flow, to measure 

the in-situ volume fraction distributions of both phases, the velocity profiles of both phases and 

the volumetric flow rates for both phases. Such a flow meter could potentially be used for the 

applications given in section 1.4. Ideally, this flow meter could be   i) low cost, ii) easy to use 

and iii) have no sophisticated algorithms needed to analyse the acquired data.  

1.6  Objectives 

The objectives for the current research are: 

 Develop a flowmeter to measure the local solids and water volume fraction distributions, 

local solids and water velocity distributions and solids and water volumetric flow rates.  

 Investigate suitable algorithms to analysie the data collected from the flow meter to 

obtain the distributions mentioned above.    
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 Integrate the flowmeter with a microcontroller unit to convert it to a standalone unit 

without a PC.      

Chapter two gives details of previous measurement techniques for obtaining the global and local 

volume fraction and the global and local velocity of the dispersed continuous phases. 

Additionally, it is gives an overview of techniques currently used in commercial multiphase flow 

meters. 

1.7 Contributions to Knowledge 

The work contained in this thesis makes the following novel contributions to knowledge: 

 Build and design the ICC device to measure the local solids fraction profiles, local solids 

velocity profiles and solids volumetric flow rate. 

 Integrating the ICC device and EVP technique to give a two phase flowmeter for 

determining: (i) local solids and water volume fraction profiles, (ii) local solids and water 

velocity profiles and (iii) solids and liquid volumetric flow rates. It is believed that this 

last contribution represents a major step forward in two phase flow measurement for 

vertical and inclined (stratified) solids-in-water flows. 

 The ICC/EVP system is considerably low cost, and have no sophisticated algorithms 

needed to analyse the acquired data. This latter feature enables the proposed system to 

avoid the error which could happen due to the reconstructed imaging process and hence 

increased the accuracy of the system. 

 Development and demonstration of a new measurement methodology, Area 

Methodology, for analysing data collected from the ICC flow meter in vertical two phase 

flow at low dispersed phase volume fraction. 
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 Integration of the ICC device with a microcontroller, converting it to a stand-alone unit 

capable of measuring the solids volume fraction distributions through the pipe cross-

section. 
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2. CHAPTER 2: Literature Review 

 

2.1  Introduction  

The need for a reliable method to accurately measure multiphase flow parameters has motivated 

research for about the last 25 years. Multiphase flows are defined as the simultaneous flow of 

two or more phases in direct contact in a given system. A solids-liquid flow is a multiphase flow 

where a solids phase, such as particulate sand, and a liquid phase, such as oil or water, are 

present. Multiphase flows can be any combination of flowing phases, e.g. gas-liquid, gas-solids, 

liquid-solids and gas-liquid-solids. Additionally,  multiphase flows may also have more than one 

component of the same phase, e.g. liquid-liquid, such as oil and water [39].  

Based on the declared needs of industry and the expertise, equipment and laboratory space 

available at the University of Huddersfield, the current investigation will be on the measurement 

of volume fraction and velocity distributions in two-phase solids-in-liquid flow. 

The present literature review will concentrate on the techniques used in non-nuclear-based 

systems i.e. electrical, differential pressure and electromagnetic.  

2.2  Multiphase Flow Measurement Methods 

2.2.1 Differential Pressure Devices 

Differential pressure (DP) devices have been widely used in multiphase flow metering and have 

been described by many authors [40-48]. DP devices include orifice plates, nozzles, V-cones and 

Venturi meters.  Provided the instrument can be properly calibrated, with reproducible upstream 

flow conditions and steady flow, a good degree of accuracy can be obtained. It is simple in 

operation, easy to handle and of low cost.  
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A simple differential pressure measurement in a straight pipe is non-invasive and can provide a 

measurement of the mean fluid density m in vertical and inclined pipes in multiphase flow. 

Assuming that the lines connecting the tapping to the DP cell are water filled, the pressure 

drop P  across pressure tappings is given as [44, 45, 49-54]: 

 coscos gLFgLP wm         Equation  2-1 

mw
gL

FP







cos
         Equation  2-2 

where F  is the frictional pressure loss between the pressure tappings, L is the separation of the 

pressure tappings, m  is the mixture fluid flow density, w  is the water density, g is the 

acceleration due to gravity and is the angle of inclination from the vertical. And so from 

Equation 2-1 the mixture fluid flow density m  can be obtained from the pressure drop P . The 

frictional pressure loss F is determined using the Darcy-Weisbach equation as [54]: 

D

UfL
F hPw

2cos2 
         Equation  2-3 

where the pipe friction factor Pf  depends solely on the pipe Reynolds Number ,
hU  is the mean 

flow velocity and D  is the working-section. 

In the current investigation, the mixture fluid flow density m  is used to obtain the reference 

solids volume fraction s  for flows in vertical and inclined pipes as shown in Equation 2-4: 

wsssm  )1(          Equation  2-4 
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where s  is the mean solids volume fraction and s  is the solid density. The detailed theory of 

DP technique is given in Section  6.3.2.  

2.2.2 Electrical Conductance Techniques 

The Electrical Conductance (EC) method has been developed to measure the dispersed phase 

volume fraction and dispersed phase velocity in two- or three-phase systems. The EC technique 

measures the electrical conductivity of a mixture, such as solids-in-water flow and oil-in-water 

flow, usually assuming that the solids (or oil) represent a non-conductive phase and the water 

present represents a continuous conductive phase. Based on the measurements of the fluid 

conductivity, the volume fractions for both phases and the velocity of the dispersed phase can be 

determined, see  2.2.2.2. These types of flow meters offer a high frequency response with a low 

initial cost.  

The relationship between the dispersed phase volume fraction 
d  and the fluid conductivity can 

be expressed according to Maxwell‟s relationship [55] as:   

wd

wd
d

wm

wm

22 
















        Equation  2-5 

where 
m  is the measured conductivity of the mixture, 

w is the conductivity of water only and 

d  is the conductivity of the dispersed phase. Equation 2-2 assumes that the particles are 

uniformly sized spheres and are in an ordered arrangement at a low volume fraction so that the 

electrical field around each particle is unaffected by other particles present in the flow. In the 

current study non-conducting spherical plastic beads of 4 mm diameter were used as the 

dispersed phase. Thus d  in Maxwell‟s relationship is effectively zero and Equation  2-5 reduces 

to: 
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Equation  2-6 can be re-arranged in the term of the dispersed phase volume fraction as: 
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22
         Equation  2-7 

Cory [56] reported a wide range of formulas used by different researchers to measure the 

dispersed phase volume fraction, these formulas varied according to the diameters and shapes of 

the particles forming the dispersed phase and volume fraction. However, Cory used the relation 

shown in Equation 2-7.     

2.2.2.1 Global Volume Fraction Measurement  

Various researchers [57-60] have shown that many different electrode arrangements can be used 

for successful solids/oil volume fraction global measurement, see Figure  2.1.  

Figure  2.1 (a) represents a two phase flow meter with a single sensor comprising two ring 

electrodes separated by a fixed axial distance L. This type of flow meter is used to measure the 

global volume fraction only for the dispersed phase in continuous conductive phase. While 

Figure  2.1 (b) represents a two phase flow with two sensors and each sensor containing two 

electrodes. This type of flowmeter is used to measure the global volume fraction and the global 

velocity for the dispersed phase in continuous conductive phase. 
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Figure ‎2.1 Different electrode arrangements in Electrical conductance probe  

As shown in Figure  2.1 the flush mounted electrodes are fully in contact with the conductive 

continuous phase. The global measurements are correct only when the flow is fully developed 

and has uniform velocity profile and uniform volume fraction profile for both phases [57-60]. In 

order to measure the phase volumetric flow rates with higher accuracy in highly non-uniform 

flow in inclined two phase flow (refer to Figure  2.4 and Figure  2.7), the non-uniform volume 

fraction distributions for both phases and the non-uniform distributions velocity for both phases 

are required, see section  1.3.2. 

2.2.2.2 Local Volume Fraction Measurement Using Conductance Techniques 

Lucas and Cory [54] used a 6 electrode local probe to measure the solids velocity distribution 

and solids volume fraction distribution in vertical and inclined solids-in-water flows, see Figure 

 2.2. These distributions were obtained by traversing the local probe throughout the flow cross 

section. A homogenous mixture of solid beads, (mean solids diameter 4 mm and density 1340 

(a) (b) 
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kgm
-3

), and water was pumped into 80 mm ID pipe line working section. The mean solids 

volume fraction s  in these experiments reached 0.3.  
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Figure ‎2.2 The 6-electrodes local probe 

 

b a 

Buffer  

Excitation electrode 

Ground electrode 



25 

 

 

Sensor C in the 6 electrodes probe was used to measure the changing in the electrical 

conductivity of a mixture. Where the mixture conductivity 
m  is obtained using Equation 2-8:  
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        Equation  2-8 

        

Based on Maxwell‟s relationship, the local solids volume fraction distribution is obtained by 

substituting Equation 2-8 into Equation 2.7.  

According to Cory, solids volume fraction s  profiles in vertical flow show only small variations 

across the flow cross-section. While in pipes inclined at 30 degrees to the vertical s  varied 

strongly from the lower side of pipe being much higher than on the upper side, see Figure  2.3 

and Figure  2.4 .   

    

 

Figure ‎2.3 The solids volume fraction distribution in a vertical pipe measured by electrical conductance probe, solids –in- 

water flow [56], the coloured bar represents the magnitude of the solids volume fraction  
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Figure ‎2.4 Solids volume fraction distribution in pipe inclined at 30 degree to the vertical measured by electrical 

conductance probe for solids –in- water flow [56], the coloured bar represents the magnitude of the solids volume fraction  

 

These flow profiles show qualitative agreement with previous results reported [13, 61, 62].  

Using the cross correlation technique, see section  2.2.2.3, sensor A and sensor B were used to 

measure the time travel   of the solids passing two points ( a and b) spaced along the direction 

of flow. The profiles of the solids velocity distribution obtained by Cory can be seen in Figure 

 2.6 and Figure  2.7. 

2.2.2.3 Velocity Measurement Using Electrical Conductance Techniques 

Cross correlation has been used for flow velocity measurement by a wide variety of researchers 

[54, 63-67]. The basic principle of cross correlation flow metering is to measure the time of 

travel of a disturbance passing two points spaced along the direction of flow. The output voltages 

from the upstream and downstream sensors represent the electrical conductivity of the fluid 

mixture flow inside the pipe. The electrical conductivity fluctuations are caused as the dispersed 

phase passes through the upstream sensor and then the downstream sensor as shown Figure  2.5. 

Lower side of 

the inclined pipe 

Upper side of 

the inclined pipe 
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Figure ‎2.5 Electrical conductivity fluctuations in upstream and downstream sensors  

 

The output voltages from the sensors changes according to these conductivity fluctuations. The 

time delay between these changes in output signal is approximately equal to the time taken for 

the particle to travel between the sensors. In order to calculate the time delay, the cross 

correlation function is calculated from a long record of data from the sensor using the following 

formula: 

   

T

xy dttytx
T

R
0

)()(
1

)(ˆ          Equation  2-9 

Where T  is the time period over which the signals )t(x and )t(y are sampled, and   is the 

relevant time delay. Note that the cross correlation function has a maximum value at the time 

  
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delay   such that )t(x and )t(y   are well matched. Using , the velocity of the dispersed 

phase is calculated as: 



L
v             Equation  2-10 

Figure  2.6 and Figure  2.7 shows the solids velocity distributions obtained by Cory using the 6 

electrode local probe [25], the results show that for vertical flow the solids velocity sv  has small 

variation across the central portion of the pipe cross section.  

 

 

Figure ‎2.6 The solids velocity distribution in vertical pipes measured by cross-correlation for solids –in- water flow[56], 

the coloured bar represents the magnitude of  solids velocity 
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Figure ‎2.7 Solids velocity distribution in pipes inclined at 30 degree to the vertical measured by cross-correlation for 

solids-in-water flow [25], the coloured bar represents the magnitude of  solids velocity 

In inclined flow, the velocity at the lower side of the inclined pipe can be negative and a reverse 

flow can occur, see Figure  2.7. However moving towards the upper side of the pipe the velocity 

becomes positive. The results of Cory‟s experiments show a similar behaviour to the results 

obtained by visual observation and by a high speed camera. Additionally, these results shown 

qualitative agreement with results reported by [49-51].  

2.3 Tomographic Imaging Techniques  

Process Tomography is a non-invasive measurement technique used to provide the 

concentration, or density distribution and/or velocity distribution of at least one phase of a 

multiphase system. Tomography imaging techniques generally can be divided into two main 

systems [3]: 

1. Nuclear-based imaging systems using either ionising radiation, such as gamma-rays and X-

rays, or non- ionising imaging techniques such as nuclear magnetic resonance imaging. 

2.  Non-nuclear – based systems which use electrical (resistance or capacitance), optical, 

ultrasonic or microwave techniques. 

Lower side of  

the inclined pipe 
Upper side of  

the inclined pipe 
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This literature review of tomography techniques concentrates on the non-nuclear – based 

electrical techniques (resistance and capacitance) and the impedance cross correlation technique. 

2.3.1 Electrical Resistance Tomography 

Electrical Resistance Tomography (ERT) is a non-intrusive technique used to map the flow 

conductivity across the interior of a flow pipe. In ERT systems the electrodes are mounted 

around the pipe circumference and are in direct contact with the flow, refer to Figure  2.8. An 

electrical current is injected into the flow between pairs of electrodes and the resulting potential 

distribution is measured between other electrode pairs. The larger the number of sources and 

receivers the higher spatial resolution of the image produced.  

 

 

Figure ‎2.8 ERT 16-electrode system 

 

The governing equation for the most of ERT systems can be expressed as [68]: 

0)],(),(.[  yxyx          Equation  2-11 

Current injection  I 

V Voltage measurement  
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where )y,x(  is the conductivity distribution in the sensing field and )y,x(  is the electrical 

potential distribution.  

The number of voltage measurements depends on the number of electrodes mounted in the ERT 

array, for example, there are 2/)1n(nM   independent pairs of voltage measurements for n 

electrode sensors. That means there are M equations in the form of Equation 2-8. which shown 

the relationship between the j
th

 voltage measurement j  on the boundary for a small 

conductivity change i  in the i
th

 pixel as follows [68]: 

i

P

i

jij S   
1

,          Equation  2-12 

Here j,iS  is a normalised sensitivity coefficient relating changes in the conductivity in the i
th

 

pixel to changes in the j
th

 boundary voltage measurement ( j = 1,2,..M) and P is the total number 

of pixel in the flow cross-section. 

Equation  2-12 can be re-written in the form of a matrix as: 

]][[][   S          Equation  2-13 

where   is a boundary potential difference matrix, S  is the sensitivity matrix and is the 

conductivity matrix. The negative sign indicates that the boundary voltage measurements 

decrease as the conductivity increases. Equation 2-10 can be re-arranged to reconstruct the 

conductivity matrix    [68]: 
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][][][ 1   S          Equation  2-14 

ERT has difficulties of soft-field phenomena and an ill-conditioned sensitivity matrix, it 

therefore requires a huge amount of computing power to accurately reconstruct the conductivity 

image using iterative algorithms [63–65].   

From the conductivity distribution obtained by ERT, the local dispersed phase volume fraction 

d  can be obtained using Maxwell‟s relationship, Equation 2-7. 

Dual-plane ERT can be used also to determine the dispersed phase velocity by adding a second 

plane (plane a) with a known axial distance L from the first plane (plane b), see Figure  2.9. By 

using point-by-point cross correlation techniques, the dispersed phase velocity distribution can 

be obtained in multiphase flows in which the continuous phase is electrically conducting [9].  
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Figure ‎2.9 Dual- Plane Electrical Resistance Tomography 
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The continuous time domain correlation function in Equation  2-9 can be expressed in discrete 

form as: 

)()(
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, kpakb
N

pR
T

k

nnnxy  




       Equation  2-15 

where )(ˆ
, pR nxy  is the cross correlation function for a frame delay p  and pixel index n, T is the 

number of cross-sectional images for which )(ˆ
, pR nxy is calculated, )(kbn and )( kpan  are the 

conductivity values obtained from upstream sensor b (associated with n
th 

 pixel from image k) 

and downstream sensor a (associated with n
th 

 pixel from image p+k) respectively.  

The cross correlation peak max, )](ˆ[ pR nxy  occurs at frame number max,np . Hence, the axial velocity 

for the dispersed phase in n
th 

 region is given as: 

sampn
np
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L
v

][
)(

max,

         Equation  2-16 

where samp  is the time interval between successive pairs of frames.  

The point-by-point cross correlation technique is based on the assumption that flow trajectories 

in planes a and b are parallel to each other and perpendicular to the sensor planes. However, this 

assumption ignores the fact that the flow trajectories of dispersed phase exhibit a complex three-

dimensional behavior [9]. To over-come this problem , the signal from one pixel in plane b is 

somehow better correlated with the a signal from a non-axially corresponding pixel on the plane 

a [9]. The pixel from plane a is chosen from the axially corresponding pixel and its neighbours, 

This method of known as Best Pixel Correlation, Figure  2.10. 
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Figure ‎2.10 ERT Best Pixel Correlation to obtain axial flow velocity 

The maximum value of the normalised cross correlation function ( jnbaR ,,
ˆ )max of jnbaR ,,

ˆ is 

determined for all  j (where values of  j are in the range n+1, n+2, n+3,…, and represent pixels 

in the immediate vicinity of the n
th

  pixel in plane b). The pixel in plane a for which ( jnxyR ,,
ˆ )max 

has the greatest value (pixel q) is assumed to be the location where dispersed particles from pixel 

n in plane b predominantly arrive at when reaching plane a [9]. 

The x and y coordinates of pixels n and q enable a unit vector in the direction of the local 

dispersed phase velocity at n to be determined. Thus, the magnitude of the local dispersed phase 

velocity npv )(  at n is given by[9]: 
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np
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

           Equation  2-17 

where qp,  is the transit time of the flow signature passing the two sensing planes b and a. qp,  is 

calculated from the sampling time and the appropriate number of frames. 

Plane a 

Plane b 
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2.3.2 Electrical Capacitance Tomography 

 Electrical Capacitance Tomography (ECT) is also a non-intrusive technique used by many 

researchers [68-80] to measure the spatial distribution of a dielectric phase inside multiphase 

flow. This technique is based on measuring the capacitance between the sensing electrodes 

mounted around the pipe circumference and converting these measurements into an image of the 

permittivity distribution using a suitable algorithm. A typical ECT system contains three main 

units: a multi-electrode sensor, sensing electronic circuits to measure the capacitances for all 

possible electrode configurations, electrode switching circuit and a PC unit for hardware control 

and data processing, refer to Figure 2-11. 

 

 

  

 

 

Figure ‎2.11 8-ECT electrode system  

 

The governing equation for an ECT system can be expressed as [68]: 

0)],(),(.[  yxyx          Equation  2-18 
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where ),( yx  is the permittivity distribution in the sensing field and )y,x(  is the electrical 

potential distribution.       

Similar to ERT, the number of capacitance measurements M depends on the number of 

electrodes mounted in the ECT array. The limitation of the number of capacitance measurements 

M often leads the sensitivity matrix to be ill-conditioned which generates measurement error and 

noise.    

 To reduce the above difficulties, a number of reconstruction algorithms have been developed. 

Yang and Peng [78] reviewed the most common reconstruction algorithms and categorized them 

into two groups: non-iterative (or single step) and iterative algorithms. They concluded that 

currently, most algorithms used in ECT systems are based on a simplified linear mathematical 

model. However, because ECT systems are essentially non-linear [78], future investigation is 

needed for nonlinear techniques for both forward problem modelling and image reconstruction. 

ECT is used industrially to measure the concentration distribution of the dielectric materials 

(oils, plastics, minerals etc.) in multiphase flow systems [81]. The concentration distribution is 

measured and captured at high frame rates. The cost of ECT systems vary from £12,500 for a 

basic single plane version to as much as £65,000 for a high-speed two phase flow measurement 

system [81].  

Since both ERT and ECT systems are governed by similar partial differential equations, the 

reconstruction algorithms for both tomographic techniques have many similar features. More 

details about reconstruction algorithms in ERT and ECT systems can be found in Dyakowski et 

al., [82] which presents a review of electrical tomography (ERT and ECT) systems for the 

investigation and monitoring of gas-in-liquid and solids-in-liquid flows.   
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This review includes explanations of the methods of measurements and reconstruction 

algorithms for both ERT and ECT systems.    

2.3.3 Impedance Cross-Correlation Device 

The Impedance Cross-Correlation (ICC) device is non-intrusive device developed by Lucas and 

Al-Hinai [49-51] to measure the local mixture conductivity in different regions of the flow cross-

section. This ICC device consists of two arrays of electrodes separated by an axial distance of 50 

mm. Each array contains eight electrodes. The ICC device is similar to ERT systems, however it 

has lower implementation cost and needs no sophisticated algorithms to analyse the acquired 

data.  

Based on Maxwell‟s relationship (Equation 2-4), the ICC device uses variations in the local 

conductivity to estimate the local dispersed phase volume fraction distribution. Additionally, 

from the variations in the local conductivity of the mixture at two axially separated locations the 

ICC is able to measure the local velocity distribution of the dispersed phase using the cross 

correlation method. Using the distributions of the local dispersed phase volume fraction )( d  

and local axial velocity )( dv , the dispersed phase volumetric flow rate can be estimated as 

shown by the following equation: 

nnd
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i

ndd AvQ )()(
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


 

        

Equation  2-19 

where nA  is the area of n
th

 pixel. 

ICC devices can be applied to measure the dispersed phase in flows such as gas-in-water, oil-in-

water and solids-in-water.  
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Al-Hinai used an ICC device in solids-in-water flow using three inclinations; 0°, 15° and 30° to 

the vertical [49].The results for the solids volume fraction distributions and solids velocity 

distributions showed similar shape profiles as the results obtained by Cory [54, 56]. 

2.3.4 Summary of the Tomographic Techniques 

The theory of tomographic techniques is based on measuring the distribution of a local physical 

property of flow and relating it to the dispersed phase volume fraction. The number of 

measurements depends on the number of the sensors mounted around the pipe, these 

measurements are taken around and across the pipe depending on the chosen electrode 

configurations. After measurements have been obtained, the local properties of the flow cross-

section can be determined using a reconstruction algorithm, refer to Figure  2.12.  

  

Figure ‎2.12 Principle of reconstruction in tomography technique 

 

As shown in Figure  2.12, the reconstructed image does not necessarily represent the real 

distribution of the dispersed phase inside the pipe. The differences are due to the fundamental 

physics of the tomographic technique which depends on whether “hard-field” or “soft-field” 

tomography is used. In soft-field tomographic techniques, the sensing field distribution depends 

on the distribution of physical properties inside the medium and requires intensive computational 

Multiple measurements 

 

 

 

Reconstruction algorithm 

 

 



39 

 

power for imaging reconstruction. However, the hard-field techniques, i.e gamma-ray 

measurements method, is considerably less complicated than the “soft-field” due to a line-of-

sight between the emitter of the energy waves and the sensors[87]. 

In general, electrical process tomography such as ECT and ERT systems use the “soft-field” 

measurement technique, and thus requires intensive and expensive computational power to 

reconstruct the image.  

2.4 Electromagnetic Flow Meter in Multiphase Flow 

The Electromagnetic Flow Meter (EMFM) has been used successfully for over 40 years to 

measure the velocity of an electrically conducting fluid in single phase flow. The 

electromagnetic flow meter is based upon Faraday's Law, which states that the voltage induced 

across any conductor as it moves at right angles through a magnetic field is proportional to the 

velocity of that conductor. For axisymmetric flow, the electrical potential difference U between 

electrode A and electrode B (refer to Figure  2.13) can be written as the following equation [39]: 

DBvU            Equation  2-20  

where v  is the mean velocity of the conductor fluid, B is the density of magnetic flux and D is 

the internal pipe diameter. 
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Figure ‎2.13 Schematic diagram for electromagnetic flowmeter, dashed lines represent the magnetic field direction  

 

The liquid volumetric flow rate lQ in a single phase flow can be calculated as: 

4

2D
vQl


           Equation  2-21 

By combining Equation  2-20  and Equation  2-21, the relation between the liquid volumetric flow 

rate lQ   and the measured electrical potential difference U can be written as: 

B4

D
UQl


           Equation  2-22 
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The accuracy of the measured volumetric flow rate depends on the axial symmetry of the fluid 

velocity profile. Thus, the accuracy of the volumetric flow rate given by Equation 2-21 can be 

reduced in the case of non- axisymmetric velocity profiles. Due to this limitation, the majority of 

manufacturers‟ guidelines recommend that the MFMF be installed with a straight run in of 

upstream pipe of adequate length, (e.g. at least five pipe diameters away from any flow 

disturbance such as a bend), to achieve fully developed velocity profiles [83].    

Some thirty years ago, Bernier and Brennen [84] investigated the use of electromagnetic flow 

meters in two-phase flows. They concluded that a homogeneous two-phase flow e.g. bubbly flow 

would give rise to a potential difference TPU as : 

)1(

U
U

sp

TP






          Equation  2-23 

where spU is the potential difference that would be if the liquid flowed on its own and  is the 

new void fraction of the second, non-conducting phase. Based on Equation  2-23, the potential 

difference TPU  can be defined according to the fluid volumetric flow rate lQ   as: 
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U l

TP          Equation  2-24 

Measurement of TPU  allows the liquid flow rate to be found (assuming   is known) but it does 

not provide the local axial velocity distribution. EMFMs using the above measurement principle 

are correct only when the flow is fully developed and has uniform velocity profile and uniform 

volume fraction [85-87]. Therefore, this measurement technique will not be sufficient for highly 

non-uniform volume fraction for both phases and highly non-uniform velocity for continuous 

phase as occur in inclined two phase flow (refer to Figure  2.4 and Figure  2.7).   
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To avoid these limitations, many researchers have tried to developed a multi-electrode 

electromagnetic flow meter to obtained more accurate mean velocity measurements [83, 87-96]. 

These devices obtain the continuous phase velocity profiles through the pipe cross-section using 

suitable signal processing of the electrical potential difference distribution on the non-conducting 

boundary.  Horner [89, 90] designed a 16 electrode electromagnetic flow meter device to 

measure the fluid velocity over the pipe cross-section. He concluded that conventional two-

electrode EMFM devices perform accurately with axially symmetric flow but produced 

unacceptable error if there are severe flow distortions, e.g. downstream of bends and valves as 

reported by Wang et al.,  [65]. Horner also states that the error in velocity measurements is 

reduced and the accuracy of measurements increased by increasing the number of electrodes and 

using two perpendicular magnetic fields. 

Leeungculsatien et al., [87, 95, 97] investigated water velocity profiles in water flow and solids-

in-water two-phase flows using an Electromagnetic Velocity Profiler (EVP). The EVP consisted 

of a non-conducting pipe wall with an array of eight electrodes fitted flush with the inner pipe 

wall and which are spaced equally around the 80 mm ID pipe (refer Figure  6.9).  

EVP is based on existing electromagnetic flow meter theory and is used to obtain the local axial 

water velocity distribution in the flow cross-section.  

2.5 Review of Commercial Multiphase Metering Systems  

Research projects in the early 1980‟s resulted in the first commercial Multiphase flow meters 

focused on applications for the oil and gas industry [3]. The metering of multiphase flows 

depends on successfully combining two or more measurement technologies and techniques such 

as electromagnetic, DP and Cross-correlation to obtain flow velocities. The typical accuracy of 

the current in-line flow meters for multiphase flow measurements are around ±10% for each 
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individual phase. Different measurements techniques were used in MFMs to measure the 

parameters of the multiphase flow and the phase characteristics [98].  

This section presents a review of some commercial multiphase flow meters used or tested in gas 

and/or oil production. In the following review, it‟s worth defining the terms used to avoid 

confusion and ambiguity: 

 Absolute error:  result of a measurement minus a true value of the measurand. 

 Relative error: absolute error of measurement divided by a true value of the measurand. 

 Water cut: is the ratio of the water produced compared to the total volume of the liquids 

produced.  

 water in liquid ratio (WLR): is the water volumes flow rate relative to the total liquid volume 

flow rate. 

2.5.1 Roxar Multiphase Meter, MPFM 2600: 

In February 2009, Roxar launched its third generation multiphase flow meter based on its new 

ZectorTM technology [99]. The MPFM2600 is based on a combination of systems such as the 

venturi meter to measure the total volumetric flow rate, density measurements (gamma system 

required when the gas volume fraction is above 90%) and capacitance sensor technology to 

measure the mean volume fraction in the flow cross-section and local volume fraction. In 

addition, the mean axial velocity of the dispersed phase is obtained using a cross-correlation 

technique. The operating range of the MPFM2600 is between 0-100 % water in liquid ratio 

(WLR) and 0-100% gas volume fraction (GVF). Typical system uncertainties (the dispersion of 

the readings) for the multiphase mode are given as [99] 

 Liquid rate: +/-3.5 % relative error. 

 Water cut (the ratio of water produced compared to the total volumetric flow of liquids 

produced): +/-2.5 % absolute error. 
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 Gas rate: +/- 6 % relative error. 

2.5.2 Framo Multiphase Flow Meter 

Framo Engineering AS in Norway developed a multiphase flow meter based on a multiple-

energy level gamma fraction meter and a venturi momentum meter to determine the oil, water 

and gas fractions and their different flow rates [100]. The device has a flow mixer to provide a 

homogeneous flow to the metering section, thus making it independent of the type of flow 

regime. According to multi-meter tests which took place at Norsk Hydro's Porsgrunn research 

facility, the meter performed well over a wide operating envelope, including gas volume 

fractions up to 98%, the top of the testing range, and up to 100% water cut.  

2.5.3 Schlumberger VX Technology 

Schlumberger VX multiphase flow meters are designed to measure oil, gas, and water flow rates 

without prior separation. The instrument is based on nuclear detector technology where gamma 

ray energy is used to obtain the mean volume fractions of the dispersed phase across the cross-

section of a venturi throat, while the total volumetric flow through the venturi is found using a 

differential pressure transmitter [101].  

2.5.4 Summary of commercial multiphase flow meters 

The amount of published information on the performance of the various multiphase flow meters 

is very limited and comparison is far from being an easy task. Usually this is due to the devices 

being protected by commercial secrecy and patents. However, it has been found that commercial 

multiphase metering systems tend to use a gamma ray densitometry technique to determine the 

volume fractions of the dispersed phase across the cross-section of the flow meter. However, due 

to concerns about the health of personnel and the high cost of such systems, multiphase flow 
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meter research continues to try to develop non-radioactive flow measurement techniques such as 

the electrical tomographic techniques.  

2.6  Research Methodology to be adapted in the present Investigation  

- A review of existing techniques for measuring multiphase flows has been presented, including 

the DP cell technique, intrusive measuring techniques and tomographic techniques. 

- The DP cell technique is used to measure the mean volume fraction for the dispersed phase. It 

has been widely used in multiphase flow metering and it shows good accuracy. Thus, in the 

current investigation it was decided to use the DP cell as a global measurement technique to 

obtain the reference mean solids volume fraction.  

- A review of solids/oil local volume fraction profiles and local solids velocity profiles has been 

presented. These profiles were obtained using intrusive measuring techniques. In the current 

investigation, the presented profiles will be used to evaluate measured solids-in-water flow 

parameters. 

- Most current techniques such as electrical tomography only provide information on the local 

volume fraction and local axial velocity of the dispersed phase. Tomographic techniques such 

as ERT and ECT systems use complicated imaging reconstruction algorithms and require 

intensive and expensive computational power to process the measured signal and reconstruct 

the images.  

- The EMFM review shows that conventional EMFM only provides the mean velocity of the 

conducting fluid in the flow cross-section. This measurement can produce a significant error in 

the continuous phase volumetric flow rate in multiphase flow especially if the volumetric flow 

rate of a particular phase has to be obtained by integrating the product local phase volume 

fraction and the local phase velocity in the flow cross-section.  
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- The ICC device is used to obtain the local volume fraction profiles of both the dispersed and 

continuous phases and local axial velocity profiles of the dispersed phase. By integrating these 

profiles, the volumetric flow rate for the dispersed phase is estimated.  

- The ICC device is similar to ERT systems, however it is less expensive than ERT and ECT 

systems and needs no sophisticated algorithms to analyse the acquired data. This latter feature 

enables the ICC device to avoid the error which could happen due to the reconstructed imaging 

process and hence increased the accuracy of the system[49-51]. 

Based on the above, for the current investigation, the ICC device will be used to obtain the 

local axial velocity distribution of the solids and the local volume fraction distribution of both 

phases in the flow cross-section and this is where the research work in this thesis is 

concentrated. Detailed theory will be explained in Chapters three and four. 

- The EVP is a new technique used to obtain the local axial velocity distribution of the 

electrically conducting continuous phase.  

2.7 Summary 

In the current investigation, the local volume fraction distribution and local velocity 

distribution of the dispersed phase obtained using the ICC device will be combined with the 

measured continuous phase velocity distribution obtained by the EVP device to obtain the 

volumetric flow rate for both phases. The detailed operation procedure of the EVP for 

obtaining the local water velocity is described later in Section  6.4.1, additionally, the detailed 

theory for combing ICC and EVP will be explained in Section  6.4.2. 

2.8 Thesis Overview 

This section provides brief a description of the contents for each chapter in this thesis. 
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Chapter 3 This chapter describes the measurements methodologies used in the current 

investigation. The methods are “Centre of Action” (CoA) and “Area 

Methodology” (AM). Additionally, this chapter also describes the use of a 

commercial finite element analysis (FEA) software package, COMSOL 

Multiphysics, which was used to perform simulations of the Impedance 

Cross Correlation device to determine the influence of its physical 

geometry on its real world behaviour. 

  

Chapter 4 This chapter describes the design and implementation of the Impedance 

Cross Correlation (ICC) device which can be used in solids-water pipe 

flows to measure the in-situ volume fraction distributions of both phases 

and the local solids velocity distribution. The local solids velocity in the 

interrogated region is obtained by cross-correlation between the two 

electrode arrays. Additionally, the local in-situ solids volume fraction is 

obtained from the mean mixture conductivity in the region under 

interrogation.  

  

Chapter 5 This chapter describes the microcontroller design and programming 

routines which enable the ICC device to be used as a standalone unit 

without a PC. This chapter also describes the setup of PC based software 

for operating the ICC device in order to measure the solids velocity 

profiles. 
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Chapter 6 This chapter presents the experimental apparatus used in the investigations, 

including the multiphase flow loop facility, the reference measurement 

instruments used in this study: the pressure gradient method and its 

calibration and the gravimetric flow measurement system and their 

calibration. The Electromagnetic Velocity Profiler EVP flow meter is 

described together with an explanation of the integration of the ICC device 

and EVP flow meter.  Finally, this chapter presents the flow conditions 

which were used in the experiments. 

  

Chapter 7 This chapter presents the experimental results and discusses the solids-in-

water flow parameters for vertical and inclined solids-in-water flows.  

  

Chapter 8 This chapter presents the conclusions of the thesis and suggests further 

work with recommendations and suggestions for a more advanced version 

of this technique.  
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3. CHAPTER 3: ICC Measurement Methodology 

 

3.1  Introduction 

This chapter describes the Measurement Methodology which is used by the Impedance Cross 

correlation (ICC) device to investigate the solids parameters in vertical and inclined solids-in-

water flows. The ICC is used to measure the in-situ volume fraction distributions of both phases 

and the local solids velocity distribution in solids-water pipe flows. The ICC device comprises 

two arrays of electrodes, separated by an axial distance of 50 mm. Each array contains eight 

electrodes equally spaced over the internal circumference of the inner flow tube. The 

Measurement Methodology is divided into two main techniques known as: Centre of Action 

(CoA) and Area Methodology (AM). Both techniques are based on calculating the electrical 

current flow in the region bounded by electrodes in the ICC instrument, which in turn enables the 

spatial distributions of sensitivity to changes of conductivity in the flow cross section to be 

determined for different electrode configurations. 

- The Centre of Action (CoA) technique is used to measure the solids parameters in stratified 

solids-in-water flows encountered in horizontal and inclined pipes. Using the sensitivity 

distribution profile for each electrode configuration, the boundaries of the effective sensing 

region for a given electrode configuration can be determined. Note that the boundary of the 

effective sensing region for a given electrode configuration is arbitrarily defined as the line 

along which the sensitivity to change in conductivity is 10% of the maximum sensitivity for 

that configuration. Each effective sensing region has a “Centre of Action” which can be taken 

as an indicator of how far the sensing field extends into the fluid. In this technique, the 

measured solids parameters were assigned to the corresponding CoA positions. The detailed 

explanation for CoA technique is shown in section 3.4.1. 
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- The Area Methodology (AM) technique is used to measure the solids parameters in vertical 

solids-in-water flows. The AM technique divides the pipe cross-section into pre-defined sub-

areas. The boundary outline of each sub-area for a given electrode configuration depends on 

the sensitivity distribution for the electrode configuration. This technique also depends on a 

sensitivity parameter   obtained from the sensitivity distribution, the detailed explanation for 

the AM technique is given in section 3.4.3. 

This chapter also describes the use of a commercial Finite Element Analysis (FEA) software 

package, COMSOL Multiphysics, to simulate the electrical current flow in the ICC instrument. 

This study provides an overview of the modelling process by discussing the model geometry, 

material properties, boundary conditions and the simulation outcomes. Although the ICC has two 

arrays of electrodes, it is necessary to use only one array of electrodes to simulate the electrical 

current flow for a particular electrode configuration. 

This chapter is divided into four sections: 

Section  3.2 describes the COMSOL simulations of the ICC instrument defining the model 

geometry and the physical boundary conditions for the model and model meshing. 

Section 3.3 describes the sensitivity distributions of the results for different electrode 

configurations.  

Section  3.4 describes the Centre of Action (CoA) and Area Methodology (AM) techniques for 

measurements made using the ICC device. 

Section  3.5 presents the summary for chapter three.  
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3.2  COMSOL Software Package 

COMSOL Multiphysics software is a powerful Finite Element (FEM) and Partial Differential 

Equation (PDE) solution engine which is widely used in fluid dynamics, electromagnetics, heat 

transfer. It also includes AC/DC and RF modules[102]. The ICC simulation can be divided into 

three steps:  defining the model geometry, defining the physical boundary conditions for the 

model and defining model meshing for the simulation  

3.2.1 Defining the Model Geometry 

COMSOL Version 3.5a was used in the present investigation. The AC/DC module was chosen 

from the main COMSOL platform. The model was built using the 3D space dimension capability 

as shown in Figure  3.1 

 

Figure ‎3.1 COMSOL platform showing 3D capability of the AC/DC Module 

 

This modelling was based on the geometry of a pre-existing ICC geometry. The ICC device 

consists of two arrays of eight electrodes separated by an axial distance of 50 mm. In each array 
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the electrodes are mounted equidistantly around the internal circumference of the 80 mm internal 

diameter pipe carrying the flow. Each electrode had dimensions of 10 mm long in the 

circumstantial direction x 5 mm high in the axial flow direction x 1.5 mm thick (refer to Section 

4.2). Since Array A and Array B have identical electrode arrangements, it was decided to use just 

one array to simulate the electrical current flow inside the pipe. 

The following steps were used to model an eight electrodes array:  

>> A work plane was generated by opening the Work-Plane Settings dialog box from the Draw 

menu and then clicking the Quick tab to create a work plane (Gemo2) in the XY plane. A 2D 

model was sketched in Gemo2.  

To model the eight electrodes, eight isosceles triangles were drawn with the same point for their 

apexes as shown in Figure  3.2.  Two circles (80 mm and 82 mm diameter) with the apex of the 

triangles as their centre were drawn to represent the electrode thicknesses. The triangles were 

equally spaced around the circles with the angle at the apex of each isosceles triangle being 

30.65º.  
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Figure ‎3.2 the 2D geometry used to model the eight electrodes 

 

>> The “Difference” icon   was used to delete all common areas between the triangles and 

the two circles. Thus eights electrodes where created with a thickness equal to the difference in 

radii of the two circles (1.5 mm) and length 10 mm: note that the real surface area of the ICC 

electrode is 10 mm circumferentially and 5 mm longitudinally (z direction), see Section 4.2. 

The 80 mm circle represents the boundary of water media (e.g. the pipe wall). The 2D model was 

extended by 5 mm in the z direction using: 

>> Opening the Extrude dialog box from the Draw menu and inserting the distance of 5 mm 

into the ” Extrusion” parameter. 

The final geometrical model in Gemo1 is in 3 dimensions as shown in Figure  3.3. 

10 mm 

21.4mm 
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Figure ‎3.3 Array geometry of eight electrodes of dimensions: 10x 5x1.5 mm arranged equidistantly around an 80 mm 

diameter pipe 

3.2.2 Defining the Physical Boundary Conditions For The Model   

Before beginning the simulation, the boundary conditions and local sub-domain conditions need 

to be defined for the eight electrode array shown in Figure  3.3. For example, the electrical 

conductivity used for the stainless-steel was 4.032 S/m. The conductivity of the water inside the 

flow pipe was set at 0.016 S/m (160 S/cm) which is the conductivity of the tap water used in the 

experiments described later in this thesis.    

Since there are no current sources in the flow cross section, the distribution of electrical potential 

  in the flow cross section is found by solving the following equation [49]: 
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.( ) 0              Equation  3-1 

where  is the local electrical conductivity. 

The local electrical current density j is given by: 

  j           Equation  3-2 

The electrical potential   and electrical current density j need to be determined in order to find 

the sensitivity distribution profile for each electrode configuration see section 3.3. 

Section 3.3 details the boundary conditions set for the eight electrodes. The boundary conditions 

were inserted using the Boundary setting dialog box from the Physics menu. 

3.2.3 The Model Mesh and Simulation  

In finite element modelling, the meshing process divides the active area/volume of the model 

into a number of sufficiently small elements that a converged approximation solution can be 

achieved. The size and the numbers of elements will vary according to the complexity of the 

model geometry, the computing power available, the time allowable for the computation process, 

the required accuracy of the outcome and the investigation methodology. 

A mesh convergence technique is used to ensure that i) the solution obtained in the study is as 

close as possible to reality and ii) there is a balance between accuracy and computing resources. 

 The model was tested by increasing the number of mesh elements n and measuring the current 

density at the face of one test electrode. The shape of the mesh element is chosen to be prism 

with triangular base. This type of layer has an advantage when resolving the boundary layer 

efficiently. 
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Figure  3.4 shows the variation in current density at the face of the test electrode for different 

mesh element densities. 

 

 

Figure ‎3.4 A plot of current density A versus mesh element number n  

As shown in Figure  3.4, there was no great change in current density results as the number of 

mesh elements increased beyond approximately 10964 elements. Due to the limitations of the 

computing power, the solution process sometimes failed when 29039 elements were used but 

always failed for 30821 mesh elements.  

Based on the mesh convergence test result in Figure  3.4, the mesh geometry for the present 

model was decided to be 21741 „fine‟ mesh elements as shown in Figure  3.5. 

n= 21741 n= 10964 
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Figure ‎3.5 The finite element mesh for the eight electrode model 

 

The geometrical model shown in Figure 3.5 was solved using the “Solve problem” icon from 

the Solve menu and took approximately 5 minutes execution time for each model investigation to 

reach to a solution. The solution was run using desktop PC with the Intel® Core™2 processor 

and installed RAM memory 4 GB. 

3.3  Sensitivity Distribution - Investigation and Analysis 

In the present study of solids-in-water flow, water is considered as the continuous conducting 

phase while the solids are considered as the dispersed phase with zero electrical conductivity. 

Different electrode configurations were simulated however, when the ICC device is used to sense 

regions inside the pipe, three electrode configurations were chosen based on how far the sensing 

field extends into the pipe cross section.    
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 In each configuration one electrode or two adjacent electrodes are excited, all the other 

electrodes are earthed. Although all of the other electrodes were at earth potential, some were 

simulating as “virtual earth” electrodes whilst other were simulating “true earth” electrode (see 

the section below). 

Each of the three configurations is rotated in eight steps of 45
o
 to make measurements over the 

entire cross-section area of the pipe.  

The three electrode configurations were:   

 Configuration I (see Table 3-1): in this configuration, only one electrode is excited with the 

next electrode selected as a virtual earth (ve) measurement electrode. The remaining six 

electrodes are earthed (E). For example, in rotational position-1, electrode 1 is the excitation 

electrode and electrode 2 is the measurement electrode (ve), with electrodes 3, 4, 5, 6, 7 and 8 

connected to ground (E). Seven similar arrangements are possible by simple rotation of the 

arrangement, see Table  3-1. 

 Configuration II (see Table 3-2): in this configuration, only one electrode is excited and the 

nearest electrode on either side are used for virtual earth measurements (ve). The remaining 

five electrodes are earthed (E). For example, in rotational position-1, electrode 1 is the 

excitation electrode, electrodes 2 and 8 are the measurement electrodes and electrodes 3, 4, 5, 

6 and 7 are connected to ground. Again seven similar arrangements are possible by simple 

rotation of the first arrangement, see Table  3-2.  

 Configuration III (see Table 3-3): in this configuration, two adjacent electrodes are excited 

and the two adjacent electrodes are used for virtual earth measurements (ve). The remaining 

four electrodes are earthed (E). For example, in rotational position-1 electrodes 1 and 2 are the 

excited, electrodes 3 and 8 are the measurement electrodes and electrodes 4, 5, 6 and 7 
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earthed (E). Again seven similar arrangements are possible by simple rotation of the first 

arrangement, see Table  3-3. 

Table ‎3-1 Electrodes states for Configuration I 

Configuration I 

Rotational position (n) Excitation (V
+
) Virtual earth (ve) Ground (E) 

n=1 Electrode 1 Electrode 2 Electrode 3,4,5,6,7 and 8 

n=2 Electrode 2 Electrode 3 Electrodes 1,4,5,6,7 and 8 

n=3 Electrode 3 Electrode 4 Electrodes 1,2,5,6,7 and 8 

n=4 Electrode 4 Electrode 5 Electrodes 1,2,3,6,7 and 8 

n=5 Electrode 5 Electrode 6 Electrodes 1,2,3,4,7 and 8 

n=6 Electrode 6 Electrode 7 Electrodes 1,2,3,4,5 and 8 

n=7 Electrode 7 Electrode 8 Electrodes 1,2,3,4,5 and 6 

n=8 Electrode 8 Electrode 1 Electrodes 2,3,4,5,6 and 7 

 

Table ‎3-2 Electrodes states for Configuration II 

Configuration II 

Rotational position (n) Excitation (V
+
) Virtual earth (ve) Ground (E) 

n=1 Electrode 1 Electrodes 2 and 8 Electrodes 3,4,5,6 and 7 

n=2 Electrode 2 Electrodes 3 and 1 Electrodes 4,5,6,7 and 8 



60 

 

n=3 Electrode 3 Electrodes 4 and 2 Electrodes 1,5,6,7 and 8 

n=4 Electrode 4 Electrodes 5 and 3 Electrodes 1,2,6,7 and 8 

n=5 Electrode 5 Electrodes 6 and 4 Electrodes 1,2,3,7 and 8 

n=6 Electrode 6 Electrodes 7 and 5 Electrodes 1,2,3,4 and 8 

n=7 Electrode 7 Electrodes 8 and 6 Electrodes 1,2,3,4 and 5 

n=8 Electrode 8 Electrodes 1 and 7 Electrodes 2,3,4,5 and 6 

 

Table ‎3-3 Electrodes states for Configuration III 

Configuration III 

Rotational position (n) Excitation (V
+
) Virtual earth (ve) Ground (E) 

n=1 Electrodes 1 and 2 Electrodes 3 and 8 Electrode 4,5,6 and 7 

n=2 Electrodes 2 and 3 Electrodes 4 and 1 Electrodes 5,6,7 and 8 

n=3 Electrodes 3 and 4 Electrodes 5 and 2 Electrodes 1,6,7 and 8 

n=4 Electrodes 4 and 5 Electrodes 6 and 3 Electrodes 1,2 ,7 and 8 

n=5 Electrodes 5 and 6 Electrodes 7 and 4 Electrodes 1,2,3 and 8 

n=6 Electrodes 6 and 7 Electrodes 8 and 5 Electrodes 1,2,3 and 4 

n=7 Electrodes 7 and 8 Electrodes 1 and 6 Electrodes 2,3,4 and 5 

n=8 Electrodes 8 and 1 Electrodes 2 and 7 Electrodes 3,4,5 and 6 
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The geometrical model shown in Figure  3.6 was used to calculate the sensitivity distribution for 

each configuration and rotational position. For a given plane the sensitivity of the sensing field of 

a given electrode configuration was calculated at 12 discrete positions (or elements denoted H1 

to 12) in the flow cross section (see Figure  3.6).  

 

Figure ‎3.6 the 12 numerous positions (or elements) in the flow cross-section  

In these simulations, the flow cross-section was assumed to be filled with water (the conducting 

medium) of conductivity equal to 0.016 S/m and material of zero conductivity with a 15 mm 

diameter was inserted, in turn, at positions H1 to H12 to simulate the presence of a non-

conducting particle of the dispersed phase.  

The sensitivity parameter iS  at each position was calculated as follows 

ioutwouti VVS )()()(          Equation  3-3 
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where woutV )( is the value of the output voltage (from a simulation of the conductance 

measurement circuit see Figure  3.7) when only water is present, and ioutV )(  is the value of the 

output voltage when a non-conducting  particle is present at the i
th

  location  given above. 

inverter amplifier

R2

Rf

_

+

Vout

E

veV(t)

 

Figure ‎3.7 Simulation of the conductance measurement circuit 

 

The output voltage outV  from the simulated conductance measurement circuit is found using 

f

out

R

R

tV

V 2

)(
           Equation  3-4 

where fR  is the fluid resistance between the excitation electrodes and the virtual earth electrodes 

and 2R is the feedback resistance for the inverting amplifier and ( )V t  represents the amplitude of 

the simulated excitation signal.  

Introducing the non-conducting particle into the simulated sensing field results in a change in the 

current density, see Figure  3.8. Introducing the non-conducting particle increases the fluid 
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resistance and hence the output voltage outV  from the simulated conductance measurement circuit 

will decrease.   From this, the fluid resistance fR  can be calculated using the equation:  

 
( )

f

V t
R

I
           Equation  3-5 

where I is the total, or integrated, current density over the virtual earth measuring 

electrodes(denoted as ve in Figure 3.8). 

 I is calculated as: 

 dxdyiI           Equation  3-6 

where i is the current density at the virtual earth electrode surface.  

 

 

Figure ‎3.8 Simulated current flow between the electrodes, (the electrode 1 is excitation electrode V(t) and electrode 2 is the 

measurement electrode (ve), and electrodes 3,4,5,6,7 and 8 are connected to ground (E). 

Because of the circular symmetry of the electrode arrangement it was necessary to test only one 

rotational position to determine the sensitivity distribution for any of the given Configurations 

(  = I, II or III).  

a) Simulated current density when the nylon rod is 

inserted into position H2   

b) Simulated current density for the water only 
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Sections  3.3.1 to 3.3.3 show the sensitivity distribution results for the three configurations 

described in Table  3-1, Table  3-2 and Table  3-3. 

3.3.1 Sensitivity Distribution Result for Configuration I 

The resolution of the sensitivity distribution depends on the number of measurement points at 

which the sensitivity parameters are calculated. The following sensitivity distributions were 

obtained using 12 measurement points. These 12 measurements points were enough to obtain the 

needed sensitivity distributions for the centre of action measurement method.  

 The sensitivity parameters (S1 to S12) which were obtained by Equation 3-3 were each assigned 

to the central coordinate for the relevant hole position shown in Figure  3.6. For each 

Configuration (  = I, II or III ) and n rotational position, the 12 sensitivity parameters were 

interpolated into 80x80 elements (side of 1 mm) in order to obtain the sensitivity distributions 

through the pipe cross section, see the MATLAB program in Appendix B.  

The interpolation method which was used in this study was MATLAB 4 griddata method V4 

[103]. The V4 interpolation algorithm is based on the Green function of the biharmonic operator 

[104]. The advantage of this method is that it is easily applied to interpolation problems in three 

or more dimensions and also it helped to extend the interpolation of the 12 sensitivity parameter 

data to the pipe wall [104].    

Figure  3.9 represents the sensitivity distribution for Configuration I at rotational position 1. In 

this figure, the x axis and y axis represent the coordinates of the sensitivity parameters while the 

colour bar represents the sensitivity value.  
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As shown in Figure  3.9, the highest sensitivity for Configuration I and rotational position 1 

occurs at positions H1 and H2. However, the sensitivity parameter rapidly reduces with distance 

from H1 and H2 to a minimum value and will give little or no indication of the presence of non-

conducting material at positions H3 to H12. This happened because H1 and H2 were the closest 

positions to the electrode 1 (V (t)) and electrode 2 (ve).     

3.3.2 Sensitivity Distribution Result for Configuration II 

Figure  3.10 represents the sensitivity distribution for Configuration II at rotational position 1. As 

shown in Figure  3.10, the highest sensitivity for Configuration II (rotational position 1) occurred 

at position H1. At this position, the non-conducting material was close to the excitation electrode 

(electrode1). However, the sensitivity parameter reduced towards the measurement electrodes 

(electrodes 2 and 8) and reached a minimum value adjacent to the earth electrodes. 

 

Figure ‎3.9 Configuration I sensitivity distribution for rotational position 1  

(Electrode 1 is excited electrode V(t), electrode 2 is measurement electrode (ve), and electrodes 3,4,5,6,7 and 8 are 

earthed (E)) (The right hand part of figure is simply for reference showing the positions H1 to H12) 
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3.3.3 Sensitivity Distribution Result for Configuration III 

Figure  3.11 represents the sensitivity distribution for Configuration III at rotational position 1. It 

was again found that the sensitivity is highest close to the excitation and virtual earth electrodes 

and lowest close to the earthed electrodes. Figure  3.11 suggests Configuration III has an effective 

sensing region which is larger than for Configurations I and II.  However, even Configuration III 

gives little information about the region at the centre of the pipe.  

 

 

 

 

 

 Figure ‎3.10 Configuration II sensitivity distribution for rotational position-1  

(Electrode 1 is excitation electrode V(t), and electrodes 2 and 8 are measurement electrodes (ve) and electrodes 3,4,5,6 

and 7 are earthed (E)) (The right hand part of figure is simply for reference showing the positions H1 to H12) 
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Section  3.4 discusses the two measurement methodologies used to analyse the measured data. 

Both depend on the sensitivity distributions shown in Figure  3.9, Figure  3.10 and Figure  3.11.   

3.4  Measurement Methodology  

3.4.1 Centre of Action (CoA): Calculation and Analysis 

A boundary of the effective sensing region in each Configuration ( IIIor  II I, ) and the thn  

rotational position ( 8  to1n ) can be arbitrarily defined as 10% of the maximum sensitivity 

distribution (see Al-Hinai 2010) [49]. Each effective sensing region may also be assumed to have 

a “Centre of Action” which can be taken as an indicator of how far the sensing field extends into 

the fluid. For example, if the COA is close to the pipe wall, this means that the effective sensing 

region will not be sensitive to the presence of non-conducting particles in the centre of the pipe. 

Conversely, for an effective sensing region that extends well into the pipe, the CoA will be 

nearer to the centre of the pipe. In a two-dimensional system, the CoA coordinates can be 

defined using Equation  3-7 and Equation  3-8. 

Figure ‎3.11  Configuration III sensitivity distribution for rotational position-1  

(Electrodes 1 and 2 are excitation electrodes V(t), and electrodes 3 and 8 are measurement electrodes (ve) and electrodes 4,5,6 

and 7 are earthed (E)) (The right hand part of figure is simply for reference showing the positions H1 to H12) 
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The co-ordinate accuracy for the Centre of Action (CoA) depends on the resolution of the 

sensitivity distributions in Figures 3-9, 3-10 and 3-11. Therefore For the 
th  electrode 

Configuration ( IIIor  II I, ) and the thn  rotational position ( 8  to1n ) , the sensitivity 

distribution in Figures 3-9, 3-10 and 3-11 were gridded into 80x80 elements with (side of 1 mm).  

The x co-ordinate for the Centre of Action (CoA) for the effective sensing region can be defined 

as: 

                                  








N

1i

N

1i

i

,

x

)(

ii

ii

n

sa

sa

Cx 
         Equation  3-7 

           

 

 

where: nCx ,)(   is the x – co-ordinate of the CoA for Configuration   and rotational position n , 

ix  is the distance in the x direction to the thi  element in the sensitivity distribution profile, ia  is 

the area of the thi element, is  is the sensitivity parameter for the thi element for Configuration   

and rotational position n  and N is the total number of elements (of side 1mm) in the flow cross-

section. Similarly the y co-ordinate of the Centre of Action for Configuration  and rotational 

position n may be calculated from: 








N

1i

N

1i

i

,

y

)(

ii

ii

n

sa

sa

Cy 
         Equation  3-8 

                                           

 

 

where nCy ,)(   is the y – co-ordinate of the CoA for Configuration   and rotational position n   

and iy  is the distance to the thi  element in sensitivity distribution profile.  
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The equations defining the CoA are identical in form to the equations defining the centre of mass 

in a two-dimensional system, with the product for ia  and is  element replacing the mass mi for 

that element.  

By repeating the same steps for 
th  electrode Configuration ( IIIor  II I, ) and the thn  

rotational position ( 8  to1n ), the coordinates of 24 different CoAs were calculated, see Figure 

 3.12. The x and y coordinates of the CoA is also shown in Appendix A Table 9.1.   
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Figure ‎3.12 Location of CoA for Config-I, II and III for each of the eight possible electrode rotational positions 

 

The measured local solids volume fraction ns ,)(   and the local solids velocity nsv ,)(  , see 

Sections 4.3.1 and 4.3.2, were assigned to their corresponding centre of action. In order to find 

the solids volume fraction distributions ICCs,  and the solids velocity distribution ICCsv , , the 24 
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measurement values were interpolated through the pipe cross section using MATLAB 

4griddata method V4.     

3.4.2 Limitation of CoA Method for Low Volume Fraction in Vertical Solids-In-Water Flow 

The CoA method was previously applied successfully by Al-Hinai [50] to measure volume 

fraction in vertical and inclined flow with a mean solids volume fraction s  between 0.15 to 0.3. 

In the present investigation, the author also used the CoA technique to measure the solids volume 

fraction in vertical flow with mean solids volume fraction s less than 0.08. It is shown in 

chapter 7 that there is a significant error in the measured mean solids volume fraction s   using 

the CoA method for vertical flow for s < 0.08. Based on the fact that in vertical flows at low 

mean solids volume fractions the dispersed phase local volume fraction distribution tends to have 

a power law shape with the greatest solids volume fraction at the centre of the pipe flow [13], an 

obvious reason for this significant measurement error is the lack of precision in measuring the 

local solids volume fraction at the centre of the pipe due to the poor presentation of the “sensing 

field” into the flow cross section, even when Configuration II and Configuration III were used. It 

is important to find a new technique that can measure the solids volume fraction near to the pipe 

centre. Section  3.4.3 describes a new methodology developed by the author to measure the solids 

volume fraction in a greater proportion of the pipe cross section.    

In inclined flow, where the stratification of the phases take place, the CoA technique tends to 

give more accurate results than vertical flow even when solids volume fraction is low. The 

reason behind this is that since the solids more dense than water, the majority of the solids sink 

to the bottom of the pipe. And this basically means that the majority of the solids volume fraction 

will lay inside the sensing field of Configuration I. Therefore, use of Configuration I will be 

adequate to measure the solids volume fraction inside the pipe cross section.  
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3.4.3 Area Methodology (AM) Technique 

A new investigation was carried out using new and different electrode configurations in order to 

obtain an effective sensing region near to the pipe centre.  A higher resolution for the sensitivity 

parameter is needed for the AM technique; therefore a new COMSOL simulation was used to 

assess the sensitivity parameters for a small non-conducting particle of the dispersed phase. 

Using the same simulation steps as described in sections 3.2 and 3.3, the flow cross-section was 

assumed to be filled with water (the conducting medium) and material of zero conductivity with 

a 10 mm diameter  inserted, in turn, into 41 positions (denoted E1 to E41), see Figure  3.13. 

 

Figure ‎3.13 The 41 positions (or elements) in the flow cross-section 

The AM technique is used to divide the pipe cross-section into defined sub-areas. Each sub-area 

has a local solids volume fraction which is obtained either by direct measurement or by 

mathematical calculation as will be shown later in section 3.4.3.2. Additionally each sub-area has 

a local solids velocity which is measured by the cross correlation technique.   
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The boundary outline of these sub-areas is defined based on the sensitivity distributions of 

Configuration I and Configuration IV (where Configuration IV is a new configuration which is 

used to obtain an effective sensing region near to the centre of the pipe, see Section  3.4.3.1). This 

technique is also depends on a sensitivity parameter   obtained from the sensitivity distribution 

for Configuration IV. 

3.4.3.1 Sensitivity Distribution Result for Configuration IV 

In Configuration IV there is one excitation electrode and one virtual earth (ve) electrode however 

the virtual earth (ve) is not the adjacent electrode to the excitation electrode but the next one 

along, see Figure  3.14. Thus if the excitation electrode is electrode 1 the virtual earth is electrode 

3. As previously the remaining electrodes, 2, 4, 5, 6, 7 and 8 are earthed (E). Obviously there are   

seven similar possible arrangements obtained by simply rotating the configuration in steps of 45 

degrees around the pipe, see Table  3-4.  The sensitivity distribution for Configuration IV is 

shown in Figure  3.14 

Table ‎3-4 Electrode states for Configuration IV 

Configuration IV 

Rotational position (n) Excitation (V
+
) Virtual earth (ve) Ground (E) 

n=1 Electrode 1 Electrode 3 Electrode 2,4,5,6,7 and 8 

n=2 Electrode 2 Electrode 4 Electrodes 1,3,5,6,7 and 8 

n=3 Electrode 3 Electrode 5 Electrodes 1,2,4,6,7 and 8 

n=4 Electrode 4 Electrode 6 Electrodes 1,2,3,5,7 and 8 

n=5 Electrode 5 Electrode 7 Electrodes 1,2,3,4,6 and 8 
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n=6 Electrode 6 Electrode 8 Electrodes 1,2,3,4,5 and 7 

n=7 Electrode 7 Electrode 1 Electrodes 8,2,3,4,5 and 6 

n=8 Electrode 8 Electrode 2 Electrodes 1,3,4,5,6 and 7 

 

Figure  3.14 shows that the maximum sensitivity for Configuration IV is primarily around the 

excitation and measuring electrodes (1 and 3 respectively). The sensitivity parameter is reduced 

to one half of the maximum value in the arc between electrodes 1 and 3 as shown in Figure  3.14 , 

and reaches a minimum value at the ground electrodes, including electrode 2.  

A boundary of the effective sensing region for Configuration IV and the 
thn  rotational position 

( 8  to1n ) can again be arbitrarily defined as 10% of the maximum sensitivity distribution 

shown in Figure  3.14, therefore, it was assumed that the measured solids volume fraction using 

Configuration IV and rotational position n (n=1 to 8) represents the mean solids volume fraction 

,n B in the hatched region in Figure3.15b. 
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Figure ‎3.14  Configuration IV sensitivity distribution for rotational positions-1 (41 position present) 

(Electrode 1 is excitation electrode V(t), electrode 3 is the measurement electrode (ve), and electrodes 2,4,5,6,7 and 8 are 

earthed (E)) 
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Figure ‎3.15 the effective sensing region for Configuration IV, rotation position n 

The mean solids volume fraction ,n B  in the hatched region can be expressed as [56]:   

n

B

i
n

Bn dB
B

n

 
1

,          Equation  3-9 

where Bn  is the area of the hatch region and i  is the solids volume fraction for the sub-area i. 

Where area Bn  is divided into sub-areas i, as will be explained later in section 3.4.3.2.     

Since there was a variation in the sensitivity parameters between electrodes 1 and 3, it was 

assumed that the sensitivity parameter    needs to be added into Equation 3-9. Where  i  and 

area magnitude of sub-area i can be considered as a weighting factor to the measured solids 

volume fraction.  

Based on this assumption, Equation 3-9 can yield to: 

n

B
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where n  is the mean sensitivity of Configuration IV rotational position n,  i  is the mean 

sensitivity parameter for each of the sub-areas i. Note that the subscript i will re-define later 

based on the type of Configuration I or IV and rotational position n.   

The discrete formula of Equation 3-10 is: 





7

1

,

i

iiinnBn aB          Equation  3-11 

where ai is the area of each sub-area/ pixel. The sub-area ai will re-define and re-samples later 

based on the type of Configuration I or IV and rotational position n. 

Next Section 3.4.3.2 will illustrate the steps of dividing region Bn into 7 sub-areas and the 

measurements procedure of the solids volume fractions and solids velocity.  

3.4.3.2 AM Measurement Procedure 

The pipe cross-section is divided into sub-areas (or pixels) dependent upon the boundaries of the 

“effective sensing regions” for Configurations I and IV. The AM measurement procedure can be 

explained by three stages: 

- Stage1: defines the boundaries of the sub-areas near the pipe wall and their correlated local 

solids volume fraction. This was done by using the “effective sensing regions” of 

Configuration I rotational position n. 

- Stage2: defines the boundaries of the sub-areas deeper in the pipe centre and estimates the local 

solids volume fraction correlated to these sub-areas. This was done by overlapping the 

“effective sensing regions” for Configurations I and IV. The local solids volume fraction in the 

deeper sub-areas was calculated using a mathematical calculation shown in Equation 3-16.   

- Stage3: carries out an investigation to measure the solids volume fraction near the pipe centre.   
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The following stages demonstrate the procedure: 

1. Stage 1: 

This stage shows the steps of defining the boundaries of the sub-areas near the pipe wall and 

their correlated solids volume fraction.   

Figure  3.16 represents the sensitivity distribution for Configuration I at rotational position 1. The 

sensitivity distribution was obtained using the “41 position” shown in Figure  3.13.  
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Figure ‎3.16 the sensitivity distribution for Configuration I using forty-one elements of 10 mm diameter. 

The boundary of the “effective sensing region” of Configuration I was defined using the 

sensitivity distribution shown in Figure  3.16. Configuration I was used to measure the solids 

volume fraction near the pipe wall. In order to define the sub-areas beside the pipe wall, the 

boundaries of Configuration I, for rotational positions 1, 2 and 8, were overlapped as shown in 

Figure  3.17. Combining these three regions produced three areas of overlap denoted as A8,1, A1 

and A1,2 where: 
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 8,1A represents the overlap area associated with the boundaries of the two rotational positions 8 

and 1. 

 
1A  represents the area only associated with the boundaries of rotational position 1 

 1,2A  represents the overlap area associated with boundaries of the two rotational positions 1 and 

2 . 

 

 

Figure ‎3.17 the area boundaries for Configuration_I (Rational positions 1,2 and 8) 

The coordinates of the CoA for Configuration I rotational position 1 lies within area A1, thus the 

solids volume fraction 1  in area A1 can be assumed to be the same as the measured volume 

A8,1  

A1 

A1,2 
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fraction of Configuration I rotational position 1. The solids volume fraction in areas A8,1 and A1,2 

may be defined as: 

1 8
1,8

2

 



           Equation  3-12 

1 2
1,2

2

 



           Equation  3-13 

where 8 and 2 represent the measured solids volume fraction of Configuration I at rotational 

position 8 and rotational position 2 respectively. Rotating in steps of 45° covers the remaining 

seven positions, see Figure  3.18. The subscripts in Equation  3-12 and Equation  3-13 will change 

according to each rotational position. 
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Figure ‎3.18 Total boundaries of the Configuration I, rotational positions n=1 to 8  

Figure  3.18 shows the 16 sub-areas near to the pipe wall. Where each of these sub-areas has a 

local solids volume fraction and a local solids velocity (the AM measurements for the local 

solids velocity will be explained later in section 3.4.3.3).   

2. Stage 2: 

This stage shows the steps to define the deeper sub-areas into the pipe centre and the calculations 

of their related solids volume fraction.  

The boundary outline for Configuration IV in Figure  3.19 b is now used in conjunction with the 

boundary outlines for Configuration I in Figure  3.19a. Accordingly, new sub-areas are produced 

and denoted as „B’, see Figure  3.20. 
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Figure ‎3.19 a)The boundary of the effective sensing region using Configuration I, rotational position n=1 to 8 ,b) The 

boundary of the effective sensing region using Configuration IV, rotational position n=1  

 

 

Figure ‎3.20 Areas under Configuration I , n=1 to 8 and Configuration IV , n=1 
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From Figure  3.20 the hatched line represents the effective sensing region of Configuration IV at 

rotational position 1. The sensitivity parameter   in each sub-area was calculated using 

MATLAB software and Excel Microsoft as will be shown later in this section.  The new terms in 

Figure  3.20 are defined as: 

 B1,8 is the area of overlapping of Configuration IV, rotational position 1 and Configuration I, 

rotational position 8. This area has a solids volume fraction equal to 8 from Configuration I 

rotational position 8, see Figure  3.18 . Additionally, this area has a mean sensitivity parameter 

denoted as 1,8 . 

 B1,3 is the overlapped area of Configuration IV , rotational position 1 and Configuration I, 

rotational position 3. This area has a solids volume fraction equal to 3  from Configuration I 

rotational position 3, see Figure  3.18 . Additionally, this area has a mean sensitivity parameter 

denoted as 1,3 . 

 B1,0 is the associated with Configuration IV , rotational position 1 only and dose not overlap 

any of the areas associated with Configuration I. This area has a solids volume fraction denoted 

as 1,0   and a mean sensitivity parameter denoted as 1,0 . 

 B1 is the whole area covered by effective sensing region of Configuration IV, rotational 

position 1 (the entire hatched area in Figure  3.20 and Figure  3.19). 

 1 is the mean sensitivity parameters for effective sensing region of Configuration IV, 

rotational position 1 

 1,B  is the measured value for the mean solids volume fraction in area B1 using Configuration 

IV at rotational position 1. 
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 1,8,1  is the mean sensitivity parameter in area A8,1. The subscript 1,8,1 refers to the region of 

Configuration IV (rotational position 1), region of Configuration I (rotational position 8) and  

region of Configuration I (rotational position 1) respectively.  

 1,2,3  is the mean sensitivity parameter in area A2,3 . The subscript 1,2,3 refers to the region of 

Configuration IV (rotational position 1), region of Configuration I (rotational position 2) and  

region of Configuration I (rotational position 3) respectively.  

 1,1  is the mean sensitivity parameter in area A1. The subscript 1,1 refers to the region of 

Configuration IV (rotational position 1) and region of Configuration I (rotational position 1)  

respectively.  

 1,2  is the mean sensitivity parameter in area A2. The subscript 1,2 refers to the region of 

Configuration IV (rotational position 1) and region of Configuration I (rotational position 1)  

respectively.  

 1,3  is the mean sensitivity parameter in area A3. The subscript 1,3 refers to the region of 

Configuration IV (rotational position 1) and region of Configuration I (rotational position 3)  

respectively.  

In order to calculate the mean sensitivity parameter   in each sub-area, a MATLAB program 

was used to define the boundary of the effective sensing region for configuration IV rotational 

position 1, see Figure 3.21. The results of the sensitivity parameters were saved in an 80x80 

matrix named as sensitivity_matrix and transferred into an Excel sheet. Hence, each sub-area 

was excluded and the mean sensitivity parameter   was calculated by taking the average of the 

sensitivity parameter for the N (side of 1 mm) pixels, see Table 3-5. 
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Figure ‎3.21 the sensitivity distribution for Configuration IV rotational position 1  

Here, it is important to emphasise that it is the solids volume fraction 1,0  in pixel B1,0 , refer 

Figure  3.20, that needs to be determine.  

Using Equation 3-11, the results of the solids volume fraction for both Configurations I and IV 

were combined together into a single generalised relationship as shown by Equation 3-14.   
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Equation 3-14 can be written in terms of rotational position n=1 for Configuration IV as 

follows:- 

0,10,10,133,13,1
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Equation  3-15 

Equation 3-15 can re-arranged in the term of 0,1  as: 
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   Equation  3-16 

The remaining  local solids volume fractions ( 0,2  to 0,8 ) can simply be calculated  by rotating 

Configuration IV in step of 45° and using Equation 3-16 for each rotation, see Figure 3.22. 
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Figure ‎3.22 the boundary layer for Configuration IV, rotational position n ( n= 1 to 8) 
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The measured solids volume fraction ( 1 to 8 ) and calculated solids volume fraction ( 0,1 to 

0,8 ) are assumed to be located at the related Centres of Action CoA for Configuration I and 

Configuration IV respectively. The x and y coordinates for each CoA was obtained by applying 

Equations 3-7 and 3-8 (see section 3.4.1) to the sensitivity distributions of Configuration I (see 

Figure  3.16 ) and Configuration IV (see Figure  3.21). While 2,1  to 1,8 were located of the 

centroids of sub-areas 2,1A to 
1,8A , see Figure  3.23. The x and y coordinates of the sub-areas 

centroid ( 2,1A to 
1,8A ) was determined using solid-work software. 

 

Figure ‎3.23 the centroid positions for the sub-areas 2,1A to 
1,8A   
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The x and y coordinates associated with 1 to 8 ( areas A1 to A8), 0,1 to 0,8  ( areas A1,0  to   

A8,0 ) and 2,1 to 1,8  ( areas A1,2  to  A8,1) are shown in Figure  3.26. 

The values of the parameters which are shown in Equation 3-12 can be seen in Table 3-5 

Table ‎3-5 the parameters values which are shown in Equation 3-11 

Equation 3-11 parameters Values 

A1 and A8 141.2 mm
2
 

A8,1 and A2,3 165.5 mm
2
 

B1,8 and B1,3 39 mm
2
 

B1,0 474.2 mm
2
 

B1 1165.4 mm
2
 

1  0.0159 V 

1,8,1  0.026 V 

1,2,3  0.024 V 

1,1  0.0168 V 

1,2  0.0145 V 

1,3  0.013 V 

1,8  0.015 V 

1,0  0.012 V 

 

3. Stage 3  

Stage 3 was intended to investigate new configurations to find the local solids volume fraction 

distribution near the pipe centre with high sensitivity. These configurations failed to achieve the 

desired result because the measurement electrodes cannot detect the non-conductive elements at 

the middle of the pipe. Thus, in order to determine the solids‟ parameters at the pipe centre, a 

linear relationship was assumed between the measured solids parameters in stages 1 and 2 and 

selected points near the pipe centre ( LPn, n=1 to 8). A linear relationship was assumed between 

the local solids volume fraction in An-1,n and Bn,0 and LPn+1 (n=1 to 8), see Figure 3.24.  
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Figure ‎3.24 the linear relationship line between An-1,n and Bn and LPn+1 

 

 For vertical flow previous literature [15,16] shows that the solids volume fraction profile varies 

from being a “power law” shape for  > 0.08 to a flat shape for  > 0.15. For  < 0.15 the local 

solids volume fraction increases approximately linearly from near the pipe wall to mid-way to 

the pipe center, see Figure  3.25. For  > 0.15 the local solids volume fraction will have a 

relatively constant value throughout the pipe cross section.  
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Figure ‎3.25 the solids volume fraction profiles obtained by Alajbegovic[15] and Al-Hinai [49] 

 

As shown in Figure  3.25, assuming a linear relationship (black line) between the solids volume 

fractions at A4,5 and B4,0 will still give reasonable values for the solids volume fraction at point 

LP5. Therefore, it was assumed that the local solids volume fraction 5LP at LP5 is given by: 

bmxLP 5           Equation  3-17 

where the magnitude of the slop m and the intercept b are depends on the values of the solids 

volume fractions at A4,5 and B4,0 .  

At 0º inclination, the solids flow profile is an axisymmetric profile. Therefore, the linear 

assumption between the solids volume fraction at An,n+1 , Bn,0 and LPn can be still applied in order 
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to measure the  LPn . The magnitude of the slope m and the intercept b of the linearity are 

depends on the values of the solids volume fractions at An,n+1 and Bn,0 , see Figure  3.24. 

AM technique gives 32 solids volume fraction iAMs )( , (i=1 to 32) measurements inside the pipe 

cross-section, the x and y coordinates of these 32 points can be seen in Appendix A Table 9.2.   
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Figure ‎3.26 x and y coordinates of 32 measurements points 

 

The area methodology technique was used effectively to measure the solids parameters in 

vertical solids-in-water flow, see Chapter 7 (Sections 7.2 and 7.3). However in solids-in-water 

flow inclined at 30º to vertical, the AM technique shows non-realistic values of solids volume 

fraction, the reason being that the AM can be only applied to the axisymmetric flows. The full 

explanation for the AM limitation is given in Section 3.4.4. 
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3.4.3.3 Solids Velocity Measurement Using Area Methodology 

The Area Methodology technique was used with the cross correlation technique in order to 

determine the solids velocity distribution in solids-in-water vertical flow. The measured solids 

velocity was assigned to the CoAs of Configurations I and IV rotational position n( n=1 to 8). 

This represents the solids velocity in areas A1, A2,…, A8 and B1,0, B2,0,…., B8,0.  

The solids velocity in areas A8,1  may be defined as: 

2

18
1,8

vv
v


           Equation  3-18 

where 8v  and 1v   represent the solids velocities measured by cross correlation techniques, see 

section 4.3.2, for areas A8 and A1 respectively. Following the same steps, the velocities in areas 

A1,2 , A1,2 ,…., A7,6 were defined. 

The previous literature review [15,49,56] shows that in vertical solids-in-water flows the solids 

velocity profiles have flat shapes. That means the solids velocity always has approximately the 

same values across the pipe cross section. Therefore the assumption of the linear relationship 

between the solids volume fraction at points An,n+1 , Bn,0  and LPn is still valid for the solids 

velocity measurement. Rotating in steps of 45°, the total solids velocities LPnv (n=1 to 8) were 

calculated.     

In order to obtain the solids velocity distribution ICCsv ,  and the solids volume fraction 

distribution ICCs, , the 32 measurement points of the solids velocity  iAMsv )( ,   and the solids 

volume fraction iAMs )( ,  (i=1 to 32) were interpolated through the pipe cross section using 

MATLAB 4griddata method V4.    
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3.4.4 Limitation of AM Technique 

In solids-in-water flow inclined at 30° to the vertical, the solids volume fraction s  varies as a 

function of y-coordinate, where 
s  is much greater at the lower side of the pipe than the upper 

side. For the 30º inclined flow the AM managed to obtain a solids distribution inside the pipe, 

though it didn‟t produce realistic distributions. This failure could be due to the large variation in 

solids volume fraction between the lower and upper sides of the pipe. The validity of relationship 

in Equation 3-9 is highly dependent upon an axisymmetric solids concentration distribution in 

the flow cross section. Additionally, Equation 3-11 is also highly dependent on the mean 

sensitivity parameter . Any small error in   will effect 
s  especially if 

s  is relatively high, 

e.g. if it reaches 65-70 % at lower side of the pipe.    

For the current study, the solids-in-water flow parameters were investigated for inclinations of 

0°, and 30° degrees from the vertical. Based on the previous CoA and AM investigation, it was 

decided to use CoA methodology in inclined flow, while AM methodology was used in vertical 

flow.  

3.5  Summary 

 The COMSOL software was used to to simulate the sensitivity changes with dispersed phase 

for different Configurations I, II, III and IV  , see Section  3.2. 

 An element with zero conductivity was used to simulate a dispersed phase. The sensitivity 

parameter was calculated using Equation 3-2 .   

 The sensitivity distributions of Configurations I, II, III and IV   were rotated in steps of 45° 

in order to cover the total pipe cross-section. 
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 The boundary of the effective sensing region in each Configuration ( I, II, III and IV  ) and 

the thn  rotational position ( 8  to1n ) can be defined as 10% of the maximum sensitivity 

distribution, Section 3.3. 

 The x and y co-ordinates for the CoAs are calculated using Equation  3-7 and Equation  3-8, 

see Section  3.4.1. The measured solids parameters are assumed to be assigned to the x and y 

co-ordinates of the CoA.  

 CoA technique provides 24 measurement points for each solids volume fraction and solids 

velocity inside the pipe. The 24 measured parameters were interpolated later through the pipe 

cross section to obtain the solids volume fraction distribution and the solids velocity 

distribution.  

 CoA has a limited capability to measure low solids volume fraction in vertical flow see 

Section 3.4.3, though it worked effectively in inclined flow, section 3.4.1.  

 Due to the CoA limitation in vertical flow, a new technique (Area methodology) was 

proposed by the author in order to measure the low solids volume fraction in solids-in-water 

vertical flow.  

 The AM technique was based on dividing the pipe cross section into sub-areas. Where each of 

these sub-areas has a particular solids volume fraction and solids velocity obtained by direct 

measurement or mathematical calculations, see section 3.4.3.   

 The AM has in total 32 measurement points inside the pipe cross section. The 32 measured 

parameters were interpolated later through the pipe cross section to obtain the solids volume 

fraction distribution and the solids velocity distribution. 

 AM technique has a limited capability to measure solids volume fraction in inclined flow see 

Section  3.4.3, though it worked effectively in vertical flow, see Section  3.4.3.  
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 For the current study, it was decided to use CoA methodology in inclined flow and AM 

methodology in vertical flow. 
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4. CHAPTER 4: Implementation of the Impedance Cross 

Correlation Flow Meter 

 

4.1  Introduction 

This chapter describes the design and implementation of an Impedance Cross Correlation (ICC) 

flow meter which can be used in solids-water pipe flows to measure the in-situ volume fraction 

distributions of both phases and the local solids velocity distribution. The ICC flow meter 

comprises two arrays of electrodes, each array can be arranged in different configurations as 

described in Section 3.3. Changing the electrode configuration changes the electric field, and 

hence the region in the flow cross-section that is interrogated. The local solids velocity in the 

interrogated region is obtained by cross-correlating between the two electrode arrays. The local 

in-situ solids volume fraction is obtained from the mean mixture conductivity in the region under 

interrogation. A number of “interrogated regions” are used to obtain the solids velocity profile 

and the in-situ solids volume fraction profile in the flow cross-section. This process is carried out 

for each flow condition to be investigated. The in-situ water volume fraction, w   is readily 

obtained from the measured in-situ solids volume fraction, s  , by simple subtraction 

( sw  1 ). 

4.2  ICC Design and Construction 

The ICC device is used to determine the distribution of the local solids velocity sv  the 

distributions of the local solids volume fraction s  and hence the distribution of the local water 

volume fraction w . The ICC device consists of two arrays of eight electrodes separated by an 

axial distance of 50 mm. In each array the electrodes are mounted equidistantly around the 
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internal circumference of the pipe carrying the flow, see Figure 4.1. Every electrode in each 

array can be selected to be either “excitation”, “measurement” or “earth”.  

 

 

 

 

      Conductance Circuit  

 

Figure ‎4.1 Schematic diagram for the ICC flow meter 

 

The ICC device has similar features to dual-plane electrical resistance tomography (ERT) 

systems because both techniques consist of two electrode arrays mounted around the pipe. 

However in contrast to ERT systems, the ICC device has low implementation costs and needs no 

sophisticated algorithms to analyse the acquired data. In the present study of solids-in-water 

flow, water is the continuous conductive phase while the solids are considered to be the 

dispersed phase with zero electrical conductivity. For the ICC device to produce sensing regions 

inside the pipe, the states of each array are changed according to four predefined configurations, 

see Section 3.2 , These configurations can each be rotated (in steps of 45º) to one of eight 

positions (n=1 to 8) to allow measurement over the cross-sectional area of the pipe. In Figure 

 4.1, the excitation (V
+
) electrodes in array A and B are connected to S1 and S3 respectively and 

the ve electrodes in array A and B are connected to points S2 and S4 respectively. The earth (E) 
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electrodes are grounded. The chosen configuration of electrodes was obtained using the electrode 

selection circuit described in Section 4.2.3, and shown schematically in Figure 4.1. 

4.2.1 The ICC Body Design 

The body of the ICC consisted of two parts: a stainless steel casing and an inner flow tube, see 

Figure  4.2. The stainless steel casing was to protect the inner structure and electrode connections 

and to electrically shield the electrodes from external sources of electrical noise. The flow tube is 

a tube machined from Polyether Ether Ketone (PEEK) material, which is non-conducting. The 

flow tube has an 80 mm internal diameter matching the pipe carrying the solids-in-water flow 

and is 310 mm long.  

Two arrays of electrodes measured the fluid velocity using a cross correlation technique. The 

value of the axial array separation L of the two arrays in the present investigation was 50 mm. 

The selection of the optimum axial separation  L  between the two electrode arrays was based on 

a survey of previous work carried out by Deng et al., [105].  According to this study, for an 80 

mm diameter pipe the optimum distance  L  between the two electrodes arrays for the purpose of 

determining the flow velocity by cross-correlation should be 50 mm centre to centre, a result 

which was obtained by experimentally varying the distance between two electrode arrays 

incrementally and observing which separation gave the best results, see also S.Al-Hinai [49]. 

  



98 

 

Stainless steel casing ICC flow tube 
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Figure ‎4.2 ICC stainless steel casing and inner flow tube 

 

Each array contained eight electrodes equally spaced over the internal circumference of the inner 

flow tube. Each electrode had dimensions of 10 mm long x 5 mm wide x 1.5 mm thick, see 

Figure  4.3. While the electrodes were close enough to give an adequately detailed picture of the 

flow in the pipe, the electrode arrangement prevented interference between the electrode 

connections in the space among the ICC flow tube and stainless steel casing.  
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Figure ‎4.3 Electrode assembly inside the inner flow tube  

 

As shown in Figure  4.3, a hole was drilled through the tube wall and a rectangular groove 1.5 

mm deep and 5 mm wide was cut in the inner face of the flow tube to take the stainless steel 

electrodes. Each electrode has a long threaded pin on its back that passed through the wall of the 

tube. Each electrode was mechanically fixed firmly into its position using a washer and nut. The 

copper wires carrying the excitation and measurement signals were attached to the pin and 

gripped using a second nut.   

10 mm 

1.5 mm 

5 mm 
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Array A

Array B

 

Figure ‎4.4 Photo of Impedance Cross – Correlation device  

 

Figure  4.4 shows a photo of the body of the ICC device, note that the flow tube has four 

electrode arrays in preparation for possible future investigations. In the present investigation only 

arrays A and B were used. 

 

 

 



101 

 

4.2.2 Conductance Circuit Design 

A circuit was designed and built to measure the conductance of the multiphase mixture between 

the V
+
 and ve electrodes, sequentially for each of the eight rotational positions and, for each 

configuration. The schematic diagram, Figure  4.5, shows the main stages of the circuit for 

measuring the conductance of the multiphase mixture at each of the two electrode arrays. It is 

made up of two main stages. As the channels, for both arrays A and B, are the same it is only 

necessary to describe one channel. 

 

 

 

Figure ‎4.5 Schematic diagram of the conductance measurement circuit 
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1. Stage1: 

Since the ICC has two arrays (A and B), it was necessary to ensure that there was no cross-talk 

between Channel A and Channel B. A switching mechanism was built to ensure that the V
+
 

electrodes in array A (connected to point S1, see Figure 4-1) and the V
+
 electrode in array B 

(connected to point S3, see Figure 4-1) were connected alternately to the excitation source V(t). 

This meant that both arrays were never active at the same time, see Figure  4.6, (i.e. when array A 

is active, array B is not), and so cross-talk between the two arrays was prevented.   

 

 

Figure ‎4.6 The excitation signals in array A (red signal denotes


aV ) and array B (blue signal denotes


bV ) 

 

The switching mechanism, see Figure  4.7, consisted of an XR-2206 function generator (working 

in a similar manner to a 555 timer) and two MAX 303 high speed analogue switches.  The XR-

2206 fed the two MAX 303 analogue switches with a 100 kHz switching frequency which 

represents the two states: low (0) and high (1), and which switched the 10 kHz excitation source 

V(t) alternately between array A and array B as shown in Figure  4.6.  
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Figure  4.7 shows the MAX 303 analogue switches in the normally open configuration i.e. where 

the output from XR-2206 was at the low state (0). 

 

Figure ‎4.7 Switching mechanism with low state (0) 

 

As shown in Figure  4.7, at low state, S1 is connected to the excitation signal )(tV  while S2 is 

connected to the negative input of the channel B inverting amplifier. Depending upon the 

electrode configuration selected, one or more electrodes in Channel B will also be connected to 

point S1 as described in Section 4.2.3. At the low state, the output voltage (Vout,B) of the inverting 

amplifier in channel B will be representative of the fluid mixture conductivity between the 

excitation and virtual earth electrodes in channel B. Also during the low state, point S3 is earthed 

while point S4 is connected to the negative input of the inverting amplifier for channel A and 
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also is short circuited to the output of this inverting amplifier. This design methodology also 

helps to reduce interference between array A and array B. 

When switched to the high (1) state, the configuration of the MAX 303 analogue switches acts as 

shown in Figure  4.8. 

 

Figure ‎4.8 Switching mechanism with high state (1) 

 

In the high state (1) in array A, S3 is connected to the excitation signal )(tV  and S4 is connected 

to the negative input of the channel A inverting amplifier. Additionally, the output (Vout,A) of the 

inverting amplifier in channel A will be activated since the output from the channel A amplifier 

is no longer short circuited to the inverting input. Meanwhile, S1 is earthed and S2 is connected 
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to the negative input of the inverting amplifier for channel B and also to the output of this 

inverting amplifier. The conductance circuit in Figure  4.7 and Figure  4.8 can be simulated as 

shown in Figure 4-9. Figure 4-9 represents the conductance circuit simulation for channel B 

only. Note that Channel A has a similar simulation as Channel B.  
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Rf
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ve
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S2
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Figure ‎4.9 simulated conductance circuit for channel B 

Figure 4-9 shows the conductance circuit used to measure the change in conductivity of the flow 

inside the tube, where  Rf  is the electrical resistance of the fluid between the excitation 

electrode(s) and the virtual earth electrode(s) and R2 is the feedback resistance of the inverting 

amplifier.  

Ry is the electrical resistance of the fluid between the excitation electrode(s) and the grounded 

electrode(s), while Rx is the electrical resistance of the fluid between the virtual earth electrode(s) 

and the grounded electrodes. 

 Since Ry has no effect on the operation of the amplifier, the current equation of the conductance 

circuit can be written as: 

(Vout,B) 
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+ 

 

Vve 

 
Rin 
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inx IIII  21          Equation  4-1 

 

where: 2I  is the feedback current, 1I  is the current between the V(t) and Vve,  xI  is the current 

between the ve and ground and inI  is the internal amplifier current. The Vve voltage can be 

written as: 

A

V
V

Bout
ve

,
           Equation  4-2 

          

where: A is the open loop amplifier gain. 

Equation  4-1 can re-write in term of the voltages and resistances as follows: 

x

ve

in

veBoutve

f

veb

R

V

R

V

R

VV

R

VV







2

,
       Equation  4-3 

Substituting Equation 4-2 into Equation 4-3:  

x

Bout

in

BoutBoutBout

f

Boutb

R

AV

R

AV

R

VAV

R

AVV )/()/()/()/( ,,

2

,,, 










   Equation  4-4 

 

Equation 4-4 can be simplified as: 

f

b

xinf

Bout
R

V

ARARARARR
V

)(
]

11111
[

22

,


      Equation  4-5 

       
 

                                                                                    
The relation between ,out BV  and V

+
 can be obtained by re-arranging Equation 4-5: 
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

 
 
 

   
         

     Equation  4-6 

   

When the open loop gain A is very high, (which is the case for the LF356 amplifier used in the 

present study) Equation  4-6 can be simplified to:  

, 2out B

b f

V R

V R
            Equation  4-7 

                                                                    

And so the fluid resistance Rx in Figure 4.9 can be ignored. Note that Equation  4-7 is the same 

equation used in the COMSOL simulation to calculate the sensitivity parameter, see section 3.2. 

2. Stage2:  

Figure 4-10 shows stage 2 of the conductance measurement circuits. Since Stage 2 in channel A 

and Channel B are the same it is only necessary to describe one.  
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Figure ‎4.10 Stage 2 of the conductance circuit (a) and (b) for both channels B and A respectively, (c) is the output signal 

from low pass filter, (d) is the output signal from the AD630 precision rectifier and (e) is the output signal from the low 

pass filter and DC offset adjuster    

(a) 

(b) 

(c) (e) (d) 

Low pass filter  AD360 precision rectifier  Low pass filter and DC offset adjuster 

 

Low pass filter  AD360 precision rectifier  Low pass filter and DC offset adjuster 

(Vout,B) 

 

(Vout,A) 
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In Channel B, the output signal ,out BV  from the inverting amplifier passed through a low pass 

Butterworth filter with a cut-off frequency of 150 kHz to remove any high frequency noise 

which produced by the high speed switching between the two arrays A and B, Figure 4-10c . An 

AD630 integrated circuit was used as a precision rectifier, see Figure 4.10. 

The main purpose of the AD630 was to perform full wave rectification on the ,out BV  voltage 

signal, refer Figure 4.10d. This signal was then fed into a low pass Butterworth filter with cut-off 

frequency of 200 Hz to give a DC output voltage VB, refer Figure 4.10e. A DC offset adjuster 

was used during the setting-up procedure to adjust the output signal VB to zero when air only was 

present in the pipe and hence the mixture conductivity ( m ) was effectively zero. 

The output signal from Channel B can be written as:       

,B out BV kV           Equation  4-8 

Where k  represent the circuit gain. 

The same circuit design was applied to channel A, where VA represents the output signal from 

Channel A. 

In this study, the solids volume fraction was obtained using the output single VB from Channel B, 

while the solids velocity was determined using the cross correlation technique between the 

output signals VA and VB , see Section  4.3 .  

4.2.3 Electrode Switching Circuit 

Since the ICC flow meter has two electrode arrays, two electrode selection circuits were 

designed to control the state of each electrode inside each array, see Figure  4.1. The electrode 

selection circuits were designed to be able to select any electrodes from a given array (A or B) 
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and connect them to the excitation V
+
 (potential points S1 and S3 in Channel A and B 

respectively), virtual earth measurement ve (points S2 and S4 in Channel A and B respectively) 

or to earth E potential.  

Each electrode selection circuit has three 74AC573 latch chips denoted as Latch1 to Latch3 in 

array B and Latch4 to Latch6 in array A. Each one of these chips is fed with eight defined signals 

and one latch signal. The latch output response to the received signal depends upon the state of 

the Latch Enabled (LE) input.  Additionally, each electrode selection circuit has 24 DG-403 high 

speed analogue switches to control the eight electrodes in each array.  

Note that, if the i
th

 electrode in array B is set to a given potential (V
+
, ve or E) then the 

corresponding electrode in array A is also set to the same potential.  

Fourteen digital outputs (D/I1 to D/I14) from a VM1 Microcontroller were used to control the 

two electrode selection circuits, see section 5.3.1. Digital outputs D/I1 to D/I8 were used to set 

the defined signals to all the six latches input ( Dm_j )
th

 (m=1 to 8, j =1 to 6 where j represents 

the Latch label and m is the electrode number), see Figure  4.11. As an example, in the electrode 

selection circuit of array B, the digital signal from D/I1 is connected to D1_1 in Latch1, D1_2 in 

Latch2 and D1_3 in Latch3. Meanwhile, the same digital signal from D/I1 is also connected to 

D1_4 in Latch4, D1_5 in Latch5 and D1_6 in Latch6 in the electrode selection circuit of array A, 

see Figure 4.11. The latch outputs (Qm_j)
th

 (m=1 to 8, j = 1 to 6) in response to the received signal 

depended upon the state of the Latch Enabled input (LE1 to LE6) where LE1 to LE6 are 

controlled by D/I9 to D/I14 respectively. 
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Q1-1

D-Type Latch1

Q2-1 Q3-1 Q4-1 Q5-1 Q6-1 Q7-1 Q8-1

D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 D8-1D1-1 LE-1

D-Type Latch2

Q2-2 Q3-2 Q4-2 Q5-2 Q6-2 Q7-2 Q8-2

D2-2 D3-2 D4-2 D5-2 D6-2 D7-2 D8-2

Q1-2

LE-2

D-Type Latch3

Q2-3 Q3-3 Q4-3 Q5-3 Q6-3 Q7-3 Q8-3

D2-3 D3-3 D4-3 D5-3 D6-3 D7-3 D8-3

Q1-3

LE-3D1-3D1-2

H L L

Digital Output 

from VM1 

D/I1

D/I9

D/I2 D/I3 D/I4 D/I5 D/I6 D/I7 D/I8

D/I10 D/I12D/I11 D/I13 D/I14

Q1-1

D-Type Latch4

Q2-1 Q3-1 Q4-1 Q5-1 Q6-1 Q7-1 Q8-1

D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 D8-1D1-1 LE-4

D-Type Latch5

Q2-2 Q3-2 Q4-2 Q5-2 Q6-2 Q7-2 Q8-2

D2-2 D3-2 D4-2 D5-2 D6-2 D7-2 D8-2

Q1-2

LE-5

D-Type Latch6

Q2-3 Q3-3 Q4-3 Q5-3 Q6-3 Q7-3 Q8-3

D2-3 D3-3 D4-3 D5-3 D6-3 D7-3 D8-3

Q1-3

LE-6D1-3D1-2

H L L
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from VM1 

D/I1
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D/I2 D/I3 D/I4 D/I5 D/I6 D/I7 D/I8

D/I10 D/I12D/I11 D/I13 D/I14

Array A

Array B

 

 

 

 

Figure ‎4.11 schematic diagram for the 6 D type Latch connected to fourteen Digital outputs (D/I1 to D/I14) from VM1 

microcontroller 

 



112 

 

 

The latch setup mechanism can be summarised as shown in Figure  4.12 below: 

i=1 to 3

Digital Input

Set : (D/I1 to D/I8)

Latches:

If i=1: Latch1 & latch4 (array B and Array A ) activated  

If i=2: Latch2 & latch5 (array B and Array A ) activated 

If i=3: Latch3 & latch6 (array B and Array A ) activated

If i=3
Array B: D/I11 High
Array A: D/I14 High

If i=2
Array B: D/I10 High
Array A: D/I13 High

If i=1
Array B: D/I9 High

Array A: D/I12 High

Set : LE Low

 

Figure ‎4.12 The latch setup mechanism for arrays A and B 
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Each electrode array (A or B) in the ICC meter has an input from each of the three latches. The 

selection of the electrode configurations is operated by the DG-403 analogue switches (see 

Figure  4.13). The output of this circuit is connected to the S1 (V
+
) and S2 (ve) in the conductance 

circuit (see Figure  4.1). As mentioned earlier, there are three states to be chosen in order to define 

the electrode status. Table  4-1and Table  4-2 show the truth tables of the selection of the three states 

for arrays B and A respectively. 

 

Table ‎4-1: Truth table for mth electrode in array B 

Electrode status Qm_1 Qm_2 Qm_3 

Excitation electrode (V
+
) H  L  L  

Virtual earth measurement electrode (ve) L L L 

Earth (E) L H L 

 

Table ‎4-2 Truth table for mth electrode in array A 

Electrode status Qm_4 Qm_5 Qm_6 

Excitation electrode (V
+
) H  L  L  

Virtual earth measurement electrode (ve) L L L 

Earth (E) L H L 

where: H is state High (1), L is state Low (0) and m is the electrode number (m=1 to 8). 
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Based on the truth table, the electrode m in each array can be connected to one of three potentials 

(V
+
, ve and E). The schematic diagram in Figure  4.13 is used to explain the operating principles 

of the electrode selection circuit when connecting electrode 1 to the excitation signal V
+
 of 

channel B (i.e. to point S1 of the channel B ). 

V+ ve

Elec1

S1 S2

Q1-1

D-Type Latch1

Q2-1 Q3-1 Q4-1 Q5-1 Q6-1 Q7-1 Q8-1

D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 D8-1D1-1 LE-1

D-Type Latch2

Q2-2 Q3-2 Q4-2 Q5-2 Q6-2 Q7-2 Q8-2

D2-2 D3-2 D4-2 D5-2 D6-2 D7-2 D8-2

Q1-2

LE-2

D-Type Latch3

Q2-3 Q3-3 Q4-3 Q5-3 Q6-3 Q7-3 Q8-3

D2-3 D3-3 D4-3 D5-3 D6-3 D7-3 D8-3

Q1-3

LE-3D1-3D1-2

H L L

Digital Input

D/I1

D/I9

D/I2 D/I3 D/I4 D/I5 D/I6 D/I7 D/I8

D/I10 D/I12D/I11 D/I13 D/I14

(DG-403)1

(DG-403)2

(DG-403)3

SW-1

SW-2

SW-1

SW-2

SW-1

SW-2

 

Figure ‎4.13 Electrode 1 connected to Excitation signal V+, Array B 

 

Taking electrode 1 in array B as an example: 



115 

 

- Connected to excitation voltage (V
+
): 

According to Table  4-1, to connect electrode 1 to excitation V
+
, Q1_1 in Latch1 is set to High and 

Q1_2 in Latch2 and Q1_3 in Latch3 are set to Low, see Figure  4.13. This arrangement closes the 

high speed analogue switch (DG-403)1 leading to the SW-1 terminal and opens SW-2. Since Q1_2 

in Latch2 and Q1_3 in Latch3 are set Low, the analogue switches (DG-403)2 and (DG-403)3 

remain at normally open configuration (SW-1 open and SW-2 close). This configuration of 

switches sets electrode 1 to excitation.  

- Connected to virtual earth measurement (ve) 

To connect electrode 1 to the virtual earth measurement (ve), Q1_1 in Latch1, Q1_2 in Latch2 and 

Q1_3 in Latch3 are set Low, see Figure  4.14. This arrangement allows the analogue switches 

(DG-403)1, (DG-403)2 and (DG-403)3 to stay at normally open configuration (SW-1 open and 

SW-2 closed). This configuration of switches sets electrode 1 for virtual earth measurement (ve). 
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V+ ve

Elec1

S1 S2

Q1-1

D-Type Latch1

Q2-1 Q3-1 Q4-1 Q5-1 Q6-1 Q7-1 Q8-1

D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 D8-1D1-1 LE-1

D-Type Latch2

Q2-2 Q3-2 Q4-2 Q5-2 Q6-2 Q7-2 Q8-2

D2-2 D3-2 D4-2 D5-2 D6-2 D7-2 D8-2

Q1-2

LE-2

D-Type Latch3

Q2-3 Q3-3 Q4-3 Q5-3 Q6-3 Q7-3 Q8-3

D2-3 D3-3 D4-3 D5-3 D6-3 D7-3 D8-3

Q1-3

LE-3D2-3D2-2

L L L

SW-1

SW-2

SW-1

SW-1

SW-2

SW-2

 

Figure ‎4.14 Electrode 1 connected to virtual earth measurement (ve), array B 

 

- Connected to earth  (E): 

To connect electrode 1 to earth (E), Q1_2 in Latch2 is set High while Q1_1 in Latch1 and Q1_3 in 

Latch3 are set Low, see Figure  4.15. With this arrangement, the high analogue switch (DG-403)2 

is activated causing the SW-1 terminal to be closed and SW-2 to be opened. Since Q1_1 in Latch1 

and Q1_3 in Latch3 are set Low, the analogue switches (DG-403)1 and (DG-403)3 remain at 
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normally open configuration (SW-1 open and SW-2 closed). This grounds electrode 1, see 

Figure  4.15.  

 

V+ ve

Elec1

S1 S2

Q1-1

D-Type Latch

Q2-1 Q3-1 Q4-1 Q5-1 Q6-1 Q7-1 Q8-1

D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 D8-1D1-1 LE-1

D-Type Latch

Q2-2 Q3-2 Q4-2 Q5-2 Q6-2 Q7-2 Q8-2

D2-2 D3-2 D4-2 D5-2 D6-2 D7-2 D8-2

Q1-2

LE-2

D-Type Latch

Q2-3 Q3-3 Q4-3 Q5-3 Q6-3 Q7-3 Q8-3

D2-3 D3-3 D4-3 D5-3 D6-3 D7-3 D8-3

Q1-3

LE-3D2-3D2-2

L H L

SW-1

SW-2

SW-2

SW-2

SW-1

SW-1

 

Figure ‎4.15 Electrode 1 connected to ground (E) , array B 
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An array of LEDs was used in the circuit to indicate the status of the electrodes. Each column of 

LEDs represented the three states (excitation, virtual earth measurement and earth) of each electrode, 

see Figure  4.16. Since there are two electrode arrays, two identical LED circuits were used.  

 

 

Figure ‎4.16 the electrode selection circuit 

 

The electrode selection circuits were integrated with a microcontroller (VM1) in order to set the 

electrodes states according to different configurations as described in Section3.3 and Section 

4.2.3.  The full integration method and program are explained in Chapter Five.  

Excitation Measurement  

Ground 
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4.3  Theory of Measurement 

4.3.1 Volume Fraction Measurement 

The local solids volume fraction s measured by the ICC device is given by Maxwell‟s 

relationship, see Section 2.2.2 

mw

mw
s











2

22
         Equation  4-9 

Substituting Equation  4-8 into Equation  4-7  yields the output voltage VB  in the conductance 

circuit:  

 b

f

B V
R

R
kV 2          Equation  4-10 

The relationship between the electrical resistance of the fluid fR  and the fluid 

conductivity, can be defined as: 

fgR

1
           Equation  4-11 

where g is the cell constant. Therefore, the output voltage VB in Equation  4-10 can be re-written 

in terms of the fluid conductivity  using : 

gVRkV bB

 2          Equation  4-12 

 BB KV            Equation  4-13 

Where BK represents the constant of the system  
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In practical operation, for a given Configuration   and a given rotational position n , a 

conductance measurement circuit is used to measure the local solids volume fraction ns ,)(   

using: 

 
nmnw

nmnw

ns

,,

,,

,
)()(2

)(2)(2





 







         Equation  4-14 

          

 

Where: nw ,)(   is the electrical conductivity of the water for a given Configuration   and a 

given rotational position n . The local volume fraction nw ,)(   of the water at the relevant CoA is 

then given by nsnw ,, )(1)(    . 

nw ,)(   and nm ,)(   can be defined in terms of output voltages for Configuration   and a given 

rotational position n : 

nwnBnwB KV ,,,, )()()(           Equation  4-15 

nmnBnmB KV ,,,, )()()(           Equation  4-16 

where nwBV ,, )(   is the output voltage from channel B when water is the only fluid present in the 

tube and nwBV ,, )(   is the output voltage from channel B when the mixture of solids and water 

fluid is present in the tube. The method of measurement assumes that the system constant nBK ,)(   

doesn‟t change with time or for different water conductivities. Therefore, dynamic tests were 

carried out to check the invariability of the system constant nBK ,)(  , see Section 4.4. 

Substituting Equation  4-15 and Equation  4-16 into Equation  4-14 gives: 
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 
nmBnwB

nmBnwB

ns
VV

VV

,,,,

,,,,

,
)()(2

)(2)(2











         Equation  4-17 

In the present study, Equation  4-17 was used to calculate the local solids volume fraction  
ns ,

  

for a given Configuration   and a given rotational position n . 

4.3.2 Solids Velocity Measurement 

A cross correlation technique was used to determine the dispersed phase velocity in solids-in-

water flow. For a given configuration and rotational position, The DC output voltages nA tV ,))((   

and nB tV ,))((   were cross correlated to provide information on the local solids velocity of a two 

phase flow  at the particular region of the flow cross-section „interrogated‟ at planes A and B. 

The cross correlation function for the dispersed phase in each interrogated region can be written 

as: 

dttVtV
T

R nB

T

nAn ,

0

,, )))((())((
1

)(           Equation  4-18                   

Where   is the configuration type, n is the rotation number, nA tV ,))((  is the output voltage from 

channel A at time t, nB tV ,)))(((   is the output voltage from channel B at time (t+ ),   is the 

delay time and T is the total time period for which data is acquired. 

As the delay time   varies from 0 to the total time period T, the value of cross correlation 

function )(,  nR will change, attaining a maximum value when     is equal to p  the mean time 

for the perturbations in the measured conductance of the flow to travel from array A to array B. 

Thus,  p  can be found by determining the value of   at which )(,  nR is a maximum.  The local 

velocity nsv ,)(  in each interrogated region is given by: 
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np

ns
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,
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)(





    

where  is the configuration, n is the rotational position and L is the axial distance between 

arrays A and B. 

4.4 Dynamic Testing of The ICC System 

Dynamic tests were performed to check the operation of the ICC device and to assess the 

linearity of the conductance circuit output voltages to different water conductivities.  

4.4.1 The Calibration of the Conductance Circuit  

The variation of the conductance circuit output voltages with water conductivity was examined 

by using distilled water with known amounts of sodium chloride (NaCl) added. The ICC device 

was filled with low conductivity distilled water (of measured conductivity 2 µS/cm). The 

conductivity was increased by gradually adding small amounts of NaCl (nearly 22 mg each time) 

to water. At each step the water conductivity was measured using a conductivity meter and 

plotted against the output voltage VB of array B for the three Configurations (  I, II and III) and 

eight rotational positions (n= 1 to 8), see Figure  4.17, Figure  4.18 and Figure  4.19. 
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Figure ‎4.17 Calibration curve for water conductivity and output voltage of array B for 

Configuration I and rotational positions n=1 to 8 

Figure ‎4.18 Calibration curve for water conductivity and output voltage of array B for 

Configuration II and rotational positions n=1 to 8 
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Figures 4.16, 4.17 and 4.18 show a linear relationship between water conductivity w  and the 

output voltage  VB  of the conductance circuit. Where nBK ,)(   represents the slop between the 

output voltage and the water conductivity, w . This linearity confirms that the value of the 

system constant nBK ,)(   in Equation  4-15 and Equation  4-16 remains constant for different water 

conductivities. This confirmation is essentially important to prove that our assumption of 

invariability of the system constant nBK ,)(   is valid for the solids volume fraction derivation, 

refer to Equation 4-12 to Equation 4-15.  

4.5  Summary 

- A non-intrusive ICC instrument which can be used to determine the distribution of the local 

solids velocity ( sv ), the distributions of the local solids volume fraction ( s ) and the local 

Figure ‎4.19 Calibration curve for water conductivity and output voltage of array B for 

Configuration III and rotational positions n=1 to 8 

(VB,III,n) vs w  

V
o

lt
a
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water volume fraction ( w where sw  1 ) in solids-in-water flow has been designed and  

built. 

- The ICC device consists of a non-conducting flow tube with an internal diameter of 80 mm. 

The flow tube was constructed from Polyether Ether Ketone (PEEK). Rectangular grooves 

were cut in the internal face of the flow tube to take stainless steel electrodes see  Section  4.2.1. 

- The ICC device used in this study has two arrays of electrodes, separated by an axial distance 

of 50 mm. Each array contains eight electrodes mounted over the internal circumference of the 

tube carrying the flow. The electrodes were mechanically fixed firmly into their positions using 

a washer and nut. 

- The ICC device has two electrode selection circuits which were designed to allow selection of 

any electrodes from a given array (A or B) and connect them to excitation (V
+
), measurement 

(ve) or earth (E) in the corresponding channel (A or B) of the conductance measurement 

circuit. refer to Section  4.2.3. Based on the truth Tables 1 and 2, the electrode m in each array 

can be connected to one of three potentials (V
+
, ve and E).   

- The electrode selection circuits were controlled using fourteen digital inputs applied from a 

VM1 microcontroller, refer to Chapter Five. 

- The ICC device has a conductance circuit to measure the conductance of the multiphase 

mixture between the V
+
 and ve electrodes, sequentially for each of the eight rotational 

positions, for a given configuration. 

- The conductance tests included testing the output voltages of the conductance circuit for 

different water conductivities. This was a test to determine whether the voltage output was 

linear with changes in conductivity due to the presence of a dispersed solid phase in the fluid 

flow. 
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- For a given configuration and rotational position, the local solids volume fraction s measured 

by the ICC device is given by Maxwell‟s relationship, refer Equation  4-9. 
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5. CHAPTER 5: Impedance Cross Correlation Flow Meter 

Measurements Using A PC and Stand-Alone Microcontroller 

 

5.1  Introduction 

Chapter 4 described the design and manufacture of the ICC flow meter and the measurement 

procedures. The ICC system requires processing units to control the electrode selection circuit 

using the digital outputs D/I 1 to D/I 14 (refer to Figure 4.11), and to record and analyse the 

output signals VA and VB in order to determine volume fraction and velocity for the dispersed 

phase.  

This chapter introduces two systems which combine to make the processing unit. The first 

system is a stand-alone online processing unit (VM-1 microcontroller [106]) which does not 

require connection to a computer, and the second system which is an online/offline processing 

unit and which requires integration of the VM-1 microcontroller with a National Instruments 

data acquisition card and PC running LABVIEW software.  

The stand-alone unit VM-1 can dynamically process and analyse the measurements made to 

obtain the solids volume fraction. The VM-1 consists of a controller board, an analogue module 

and a display module. All the electrode “state selection” and measuring analysis routines are 

programmed into the controller board using the VENOM programming language (downloaded 

from the website www.microrobotic.co.uk) see Section 5.3.3. The microcontroller chooses the 

configuration and rotates it to each of the eight rotational positions for arrays A and B, and 

measures the required voltages. After capturing the data, the microcontroller performs the 

necessary analysis to obtain the solids volume fraction. The results are presented on the LED 

 Quarter Video Graphics Array  QVGA display module  whose dimensions are 320×240 pixels 

http://www.microrobotic.co.uk/
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[106]. A user can interact with the ICC device and send commands using a touch screen on the 

QVGA display module.  

To measure the solids‟ velocity with a high degree of accuracy, the data needs to be collected at 

a high sampling rate (see Section  5.4). Due to the low sampling rate of the VM-1 unit, a PC 

based measurement system was used to collect the measured data from arrays A and B at 2000 

samples/second and perform all of the necessary analysis to obtain the solids velocity 

distributions. Using such PC based measurement the results can be processed either online or 

offline.  

5.2  VM-1 Microcontroller  

The VM-1 is a credit-card-sized embedded controller intended for intelligent instruments [106] 

and using Venom-SC programming language protocols it can accommodate Analogue and 

Digital I/O, graphical user interfaces (GUI), data and text files and many other functions.  

 

Figure ‎5.1 VM-1 Microcontroller and I/O acquisition board 

I/O acquisition board 

VM-1 microcontroller 
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The VM-1 microcontroller unit consists of an application board, which provides access to RS232 

serial ports, graphic display interfaces, a I
2
C bus and terminals for mounting the VM-1 

microcontroller, see Figure  5.2. The RS232 serial port1 is used for downloading instructions onto 

the VM-1 microcontroller. The allows the data acquisition unit to communicate with the VM-1 

microcontroller. To display the obtained results, the graphic display interfaces the VM-1 

microcontroller with the Quarter Video Graphics Array (QVGA) display. The CPU resources for 

VM-1 include:  

• 16-bit Hitachi H8S processor running at 16MHz. 

• 512K RAM – battery backed. 

• 512K Flash (supplied separately) for Venom-SC and user application. 

The I/O Resources for VM-1 have: 

• 10 x Pulse I/O Channels (6 PWM, 4 Pulse counting), 

• 2 x Quadrature shaft encoder inputs, 

• 8 x 10-bit Analogue inputs. 

• 2 x 8-bit Analogue outputs, and 

• 42 x Digital I/O. 

The I/O capabilities of the VM-1 were used to control the electrode selection circuits by sending 

14 Digital outputs to latches of array A and array B, (refer to Section 5.3.1).  

The following section describes the procedure of integration and programming structure using 

the VM-1. 
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5.3  ICC Integration with VM-1  

5.3.1 VM-1 and electrode selection circuit  

Section  4.2.3 shows the design of the electrode selection circuit. Based on this design, these 

circuits need 14 digital inputs to set the two electrode arrays into a defined configuration. The 

VM-1 microcontroller was used to control the electrode selection circuit by providing the 14 

digital outputs are denoted: A, B, C, D, E, F, G, H, I, J, K, L, O, and P. The VM-1 changes the 

status of the digital inputs (A to H) according to the Truth Table 4-1, and then activates the 

latches (Latch1 to Latch6) using the six remaining digital lines (I, J, K, L, O, and P). The digital 

outputs I and J are used to excite the Latch Enabled (LE) inputs of Latch1 and Latch 4 

respectively, the digital outputs K and L are used to excite the Latch Enabled (LE) inputs of 

Latch 2 and Latch 5 respectively, and the digital outputs O and P are used to excite the Latch 

Enabled (LE) inputs of Latch 3 and Latch 6 respectively. 

For the purpose of programming, the status of the electrodes, which can be confirmed by the 

LED arrays, were defined by a one digit number as follows:  

1 - denotes connected to excitation signal (V
+
),  

2 - denotes connected to virtual earth measurement (ve), and  

3 - denotes connected to earth (E). 

Taking as an example that the desired electrode configuration is Configuration I and rotational 

position n=1 (refer to Section  3.3.1), the status of the eight electrodes (ELE_ST) will be (1, 2, 3, 

3, 3, 3, 3, 3), i.e. electrodes 1 in both array A and B are set as excitation electrode, while 

electrodes 2 will be the measurement electrode and electrodes 3 to 8 will be connected to earth.  
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Figure ‎5.2 Electrodes selection circuits integrated with VM-1 microcontroller 

 

To set up the six latches, three arrays were created and denoted as:  

- Latch1: this array was used to set Latch 1 in array A and Latch 4 in array B,  

- Latch2: this array was used to set Latch 2 in array A and Latch 5 in array B, and  

- Latch3: this array was used to set Latch 3 in array A and Latch 6 in array B. 
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Based on the Truth Tables in Section  4.2.3, the three arrays were set either high (1) or low (0) as 

demonstrated in the following commands: 

 

TO LATCH_STEUP  

[  

wait50  

IF ELE_ST. element(M) = 1 then [lath1. element (M) := 1 ]  

IF ELE_ST. element(M) = 1 then [lath2. element (M) := 0 ]  

IF ELE_ST. element(M) = 1 then [lath3. element (M) := 0 ]  

wait50  

IF ELE_ST. element(M) = 2 then [lath1. element (M) := 0 ]  

IF ELE_ST. element(M) = 2 then [lath2. element (M) := 0 ]  

IF ELE_ST. element(M) = 2 then [lath3. element (M) := 0 ]  

wait50  

IF ELE_ST. element(M) = 3 then [lath1. element (M) := 0 ]  

IF ELE_ST. element(M) = 3 then [lath2. element (M) := 1 ]  

IF ELE_ST. element(M) = 3 then [lath3. element (M) := 0 ]  

]  

End  

;Where m = 1 to 8  

 

 

 

 

Figure ‎5.3 VM1 commands to set arrays states for the three latches 
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Table 5-1 shows the latches set up according to electrode Configuration I, rotational position n=1  

Table ‎5-1 Latches set up for Configuration I, rotational position 1 in array A and array B 

Electrode Electrode status Latch1 Latch2 Latch3 Digital Output 

1 1= (V
+
) 1 0 0 A 

2 2 = (ve) 0 0 0 B 

3 3= (E) 0 1 0 C 

4 3= (E) 0 1 0 D 

5 3= (E) 0 1 0 E 

6 3= (E) 0 1 0 F 

7 3= (E) 0 1 0 G 

8 3= (E) 0 1 0 H 

 

The digital outputs (A, B, C, D, E, F, G and H) to the electrode selection circuits were changed 

three times, see Table 5-1. For each electrode arrangement, data from array A and array B was 

collected and analysed, refer to Sections 5.3.2 and 5.3.3.  

5.3.2 Data acquisition unit  

To obtain accurate readings, a 12-bit analogue I/O acquisition board was integrated with the 

VM-1 microcontroller. The I/O acquisition board has a standard micro-robotics I2C bus 

connector - note that this bus is a communication line between the data acquisition unit and the 

VM-1 microcontroller on the application board. The 12-bit acquisition board comprises:  
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 8 channels of 12-bit analogue input, and 

 2 channels of 12-bit digital I/O port.  

The 12-bit AC/DC will measure single polarity signals in the range 0 V to the 5 V ( the reference 

voltage). Two channels of the 12-bit analogue input are connected to channels A and B in the 

conductance circuit to obtain the measured output signals VA and VB (refer to Section ‎4.2.2) 

respectively.  

5.3.3 Programming structure  

Venom was the „object oriented‟ translation of the language that ran on the Micro-Robotics 

Scorpion Control Computer[106]. Venom-SC was developed for writing small-to-medium sized 

control applications on the VM-1 microcontroller and provides high processing speed whilst 

maintaining small code size and flexibility as an interpreter. „SC‟ stands for „Semi-Compiled‟ 

which means that the code is partly compiled, but not all the way down to built-in machine code. 

The Venom-SC language has multitasking built-in which gives all tasks equal priority to run 

simultaneously, being interchanged by the task manager with little external control. This feature 

makes the system efficient and easy to manage[106].  

5.3.3.1 Procedure for Operating the ICC Device with a Stand-alone VM-1 Microcontroller  

The VM-1 microcontroller was used to select the desired electrode states based on pre-defined 

configurations. Using the I/O board, the data from channel B were collected to measure the 

solids volume fraction for all eight rotational positions and display the results on the LCD 

graphics panel, see Figure  5.4.  

The programing flow chart for the ICC device and VM-1 microcontroller is shown in Figure  5.5. 

In order to measure the solids volume fraction s , the reference measurements of the output 
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voltage 
nwBV ,, )(  from channel B, when water only is present in the pipe, need to be collected, 

refer to Section  4.3.1.  

 

Electrode selection circuits

Conductance circuit 

VM1 Microcontroller 

12-bit analogue I/O 

acquisition board 

ICC Device

 

Figure ‎5.4 ICC device integrated with VM-1 microcontroller 

 

The program starts by calibrating the ICC device with tap water only in the tube. By pressing the 

virtual key „Start‟ on the touchscreen, the mean value n,w,B )V(   of 5000 measurements was 

collected at 500 samples per second for all Configurations  and rotational positions n as 

follows:  
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5000

)V(

)V(

5000

1i

n,w,B

n,w,B






         Equation  5-1 

where 5000 is the number of samples.  

Before the ICC device starts running, the number of cycles C, over which it is required to find 

the mean mixture output voltage 
n,m,B )V(   for each Configuration   and rotational position n, is 

input to the microcontroller. Additionally, the program allows the user to choose the desired 

configuration and the desired distributions (solids volume fraction distributions or voltage 

distributions). By pressing the virtual key „Start‟ on the touchscreen, the ICC device starts 

running and the mean values n,m,B )V(   is collected for the selected Configurations   (where 

 =I, II or III) and rotational position (n=1 to 8); where n,m,B )V(   is defined by:  

5000*C

)V(

)V(

5000*C

1i

n,m,B

n,m,B






         Equation  5-2 

Where C is the numbers of cycles.  

For each selected Configurations   (where  =I, II or III) and rotational position n, the solids 

volume fraction  
n,s 

  was calculated as follows: 

 
n,m,Bn,w,B

n,m,Bn,w,B

n,s
)V()V(2

)V(2)V(2











         Equation  5-3 

The results  
n,s 

 are displayed on the touch screen for each C.  
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distributions  
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Choose Configuration: 
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Calculate  
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Display the chosen function selected configurations   (where 

 =I,II or III)  and rotational positions n 

 

 Figure ‎5.5 Flow chart for VM-1 microcontroller software 
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5.4  PC Based Measurement System 

In the present investigation, a cross correlation technique was used to measure the solids velocity 

in solids–in-water flow. For a cross correlation system, the axial separation of the two array 

sensors (L) and the sampling period ( s ) have a great effect on the accuracy of the velocity 

measurement. Equation  5-4 shows the relationship between the actual velocity actv  and the 

measured velocity estv  obtained using cross correlation and the flowmeter parameters as 

described above. This relationship is explained in detail in [56] 

L

v

v
v

acts

act
est 





1

         Equation  5-4 

where s =1/f and f  is the sampling frequency.  

Equation  5-4 shows that, in order to make estv  as close as possible to actv , the term 
L

vacts  needs 

to be as small as possible. In fact s  was set to 5 x 10
-4

 seconds (frequency of 2000 Hz) so that 

for a separation of L = 50 mm, 
L

s  was equal to 0.01s/m and hence estv  will be within 1% of 

actv . In Ideal conditions, this is the best accuracy that is achievable from the system.   

The VM-1 microcontroller has a sampling rate limited to less than 250 samples/second for two 

channels( A & B ), thus a PC based measurement system was used to collect the signals data 

from arrays A and B at 2000 samples/second using an NI USB-6343 DAQ board with a 

LABVIEW and MATLAB software platform, and the PC as host computer. This system was 

linked to the VM-1 microcontroller, which was used to select the desired Configuration   and 

rotational position n, see the flow chart in Figure  5.7.    
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The schematic diagram, Figure  5.6, shows the PC based measurement system, including VM-1 

microcontroller and ICC device. 

Electrode selection circuits

Conductance circuit 
PC 

Labview and Matlab

VM1 

Microcontroller

NI USB-6343 

DAQ Board

ICC Device PC base measurement system

 

Figure ‎5.6 ICC device integrated with VM-1 and PC based measurement system 

 

The NI USB-6343 DAQ data acquisition unit has thirty two 16-bit analogue inputs (AI) 

channels, forty eight digital I/O channels and four 32-bit counter/timers. The NI board could 

control the electrode selection circuits and simultaneously collect data from arrays A and B. 

Because the VM-1 was integrated with the electrode selection circuits in the earlier stages of this 

investigation, Therefore, the electrode selection circuits were controlled by the VM-1 

microcontroller and NI board was used to collect the measured data from the two arrays. 
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Figure ‎5.7 The flow chart diagram for PC based measurement system 
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Using LABVIEW and the NI board, the data from arrays A and B were collected for a one 

minute sampling duration T at sampling rate 2000 samples/second. Using the MATLAB 

program, VA and VB were processed and analysed to determine the cross correlation function and 

provide the delay time p  , see Section   4.3.2, and information concerning the solids passing 

between the two arrays. Using p , the solids velocity for a given configuration and rotational 

position was found. 

The LABVIEW program allows the measurements to be processed in either online or off-line 

mode. The offline mode can be used if the data needs further analysis.    

5.5 Summary  

- A stand-alone microcontroller for the ICC has been designed and constructed.  

- Online analysis software has been written for a VM-1 microcontroller using the Venom-SC 

programing language with a predetermined electrode status (refer to Section  5.3 ).  

- The ICC stand-alone system consists of a VM-1 microcontroller, an application board, an LCD 

graphics panel with a resistive touch screen (QVGA module) and a data acquisition module. 

- The routine in Appendix (B) was downloaded onto the VM-1 memory. The VM-1 

microcontroller controls electrode selection and collects output signal data from the 

conductance circuit (VB).  

- Using the output signal VB from channel B, the solids volume fraction  
n,s 

  was determined 

for each Configuration   and rotational position n, refer Section  5.3.3.1. The results are 

presented on the LCD graphic panel. The QVGA module is used to display the 

calculated  
n,s 

 .  

- Due to VM-1 sampling limitations, a PC measurement system was used to calculate the solids 

velocity distributions. 
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- The PC measurement system consists of a data acquisition unit (NI USB-6343 DAQ Board) 

and a host computer. The programming routine was written in LABVIEW programming 

language using MATLAB sub-routines. 

- A VM-1 microcontroller was used to select the desire Configuration   and rotational position 

n. 

- The program processed the voltages VA and VB obtained via the NI acquisition unit and 

performed all the necessary calculations to determine the solids velocity (refer to 5.4).  

- For enhanced accuracy, the data was collected at a sampling frequency of 2000 Hz. (refer to 

Section  5.4)  

- The LABVIEW program allowed for offline analysis by saving the data in text files and 

process the saved data using a MATLAB program.  
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6. CHAPTER 6: Multiphase Flow Loop Facility and 

Experimental Procedure 

 

6.1  Introduction: 

In order to test the performance of the proposed flow meter with an actual multiphase flow 

through it, a flow loop was used. This chapter presents the experimental apparatus used in the 

investigations, including the multiphase flow loop facility and the reference measurement 

instruments used in this study.  

This chapter is divided into four main sections: 

Section 6.2 shows the flow loop facility. This facility is capable of carrying solids-in-water flows 

at different solids and water flow rates and different solids volume fractions. In addition, the 

working section of the flow loop could be positioned at different inclination angles to the 

vertical. 

Section 6.3 shows the reference measurement instruments used in this study. It also describes: i) 

the pressure gradient method which is used to measure the mean reference solids volume fraction 

dps,  and its calibration, (refer to section 6.3.2) and ii) the gravimetric flow measurement system 

which is used to measure the reference solids volumetric flow rate refsQ ,  and the reference water 

volumetric flow rate refwQ ,    and its calibration, (refer to section 6.3.3). 

In the current investigation, an Electromagnetic Velocity Profiler (EVP) system was used to 

measure the local axial velocity distribution of the water in solids-in-water flow. Section 6.4 

describes the background theory of the Electromagnetic Velocity Profiler (EVP) flow meter 
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(section 6.4.1) together with an explanation of the integration of the ICC device and EVP flow 

meter (section 6.4.2).  

Section 6.5 presents the flow conditions which were used in the experiments and experimental 

data acquisition and analysis. 

6.2  Flow Loop Facility 

The University of Huddersfield flow loop is shown in Figure  6.1 and Figure  6.2 and can be 

arranged to produce single-phase “water only flows” or solids-in-water multiphase flows by 

operating the relevant pumps. The working-section of the pipe is 80 mm internal diameter and 

approximately 3 m long and can be inclined at an angle   to the vertical (where 0º ≤ ≤60 º) . 

See Figure 6.1. 

The flow loop is capable of generating solids-in-water flows via two methods: 

1. Method I: Operating the solids pump only and opening valve 2 only, refer to Figure  6.1. 

2. Method II: Operating both the solids and water pumps and opening both valves 1 and 2, 

refer to Figure  6.1. 

The flow rates of solids and water can be varied by adjusting valve 1 and adjusting the speed of 

solids pump, refer to Figure  6.1. In solids-in-water flow, non-conducting spherical solid beads of 

4 mm diameter with density of 1340.8 kgm
-3

 were used. These solids were mixed homogenously 

using a stirrer mounted above the solids and water reservoir before being pumped to the 

working-section (see Figure  6.1).  
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Figure ‎6.1 Schematic of University of Huddersfield multiphase flow loop
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b) EVP System at vertical position 

c) Gravimetric flow measurement system   

 

a) ICC inclined at 30º to vertical 

Figure ‎6.2 Photographs of the University of Huddersfield multiphase flow loop  
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The solids-in-water flow passes through the working-section into a separator. The separator 

consists of a tank containing a rectangular cross-section chute of stainless steel mesh which 

separates the phases. The phases then pass into two individual conical stainless steel hoppers. 

Baffles are positioned along the separator to slow down the mixture flow velocity and so 

improve the efficiency of the separation (Figure  6.3). 

Solids-in-water flow

SolidsWater

Baffles

Chute stainless steel 
mesh

Water

Separator tank 

 

Figure ‎6.3 schematic diagram for the stainless steel mesh separator 

Each of the two hoppers is suspended on a load cell allowing the total mass of each separated 

phases to be measured. Pneumatically actuated ball valves are installed in-line at the outlet of 

each hopper. By closing the ball valves and measuring the rate of mass increase in each hopper, 

the solids and water mass and volumetric flow rates ( refsQ ,  and refwQ , ) can be obtained as 

described in (Section  6.3.3).  
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A Differential Pressure (DP) sensor mounted across one metre length of the working section 

provides a reference measurement of the solids volume fraction dps,  (see Section 6.3.2). A 

flushing system ensures that no air is trapped in the transducer or measurement lines. This helps 

to eliminate errors in the measured mean reference solids volume fraction dps,   and to protect 

the transducer from being damaged due to the water hammer effect. Filling the measurement 

lines with water helped to eliminate the chance of obtaining a hydraulic shock which is known as 

the water hammer effect.   

For the current investigation, working section inclinations of 0° and 30° degrees from the vertical 

were used and the 400 mm long tube in which the ICC and the EVP were installed was placed 

1.6 m from the inlet of the working section. 

6.3  Reference Measurement Devices 

The flow loop was instrumented to provide reference measurements of solids-in-water flow 

parameters, these reference measurements were, (i) the mean solids volume fraction, dps, , (ii) 

the solids volumetric flow rate refsQ ,  and (iii) and the water volumetric flow rate, refwQ , , in the 

working section.  

This section describes the reference measurement devices that were used for this purpose.  

6.3.1 Turbine Meter 

The turbine meter is installed in the water line as shown Figure  6.1. By operating the water pump 

and opening valve 1 (valve 2 closed) water is pumped through the turbine meter into the work-

section. The turbine meter was used to measure the volumetric flow rate of the single-phase 
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“water only” flow by counting the rotation frequency
rf  of the turbine rotor. The water 

volumetric flow rate wQ  is given by:  

 rw KfQ            Equation  6-1 

Where K  is the calibration factor of the turbine meter and is equal to 0.0462 m
3
h

-1
Hz

-1   

(according to the manufacturer‟s calibration certificate). The turbine meter was used to help 

calculate the pipe friction factor, Pf , which is used to measure the reference mean solids volume 

fraction dps,  as described in Section  6.3.2.  

6.3.2 Differential Pressure Sensor 

In the current investigation, a Differential Pressure (DP) cell, Yokogawa EJA 110A, was used to 

measure the mean reference solids volume fraction dps,  in the flow cross-section. The DP cell 

was installed on the flow loop as shown in Figure  6.4 to measure the differential pressure along a 

one metre length of the working-section.  

 

 

Figure ‎6.4 Schematic of the differential pressure connection 
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For two phase flow solids-in-water flow: 

21 cos PFgLP m           Equation  6-2 

where 1P  and 
2P  are the upstream and downstream static pressures at points 1 and 2 

respectively, m  is the mean density of the fluid, g  is the acceleration of gravity (9.81 m/s
2
), L  

is the distance between the upstream and downstream pressure tapping 1 and 2,   is the 

inclination angle and F  is the frictional pressure loss along L .   

The differential pressure P  measured by DP cell when it is connected to the flow tube via 

water filled lines is given by: 

)cos( 21  gLPPP w         Equation  6-3  

 cos)( 21 gLPPP w         Equation  6-4 

where ρw is the water density. 

Substituting Equation  6-2  into Equation 6-4:  

 coscos gLFgLP wm         Equation  6-5 

Equation  6-5 can be written as: 

mw
gL

FP







cos
         Equation  6-6 

The density of the mixture can be expressed as: 

wsssm  )1(          Equation  6-7 
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Where s  is the mean solids volume fraction, s  is the solid density.  

Substituting Equation 6-7 into Equation 6-6 gives: 

wsssw
gL

FP



)1(

cos



       Equation  6-8 

wwssw
gL

FP






)(

cos
       Equation  6-9 

)(
cos

wss
gL

FP






        Equation  6-10 

Re-arrange Equation 6-10 

)(cos ws

s
gL

FP







         Equation  6-11 

where P  is the differential pressure measured by the dp cell. 

On the basis of work by Cory [56] and Al-Hinai [49], it is acceptable to a first approximation to 

assume that a single-phase friction factor could be used to represent the frictional pressure loss 

F  in the present investigation. Cory [56] and Al-Hinai [49] found that the Darcy-Weisbach 

equation is the best empirical relation for pipe-flow resistance. The Darcy-Weisbach equation 

applied to a circular pipe gives the frictional pressure loss as: 

D

UfL
F hPw

2cos2 
         Equation  6-12 

where the pipe friction factor, Pf  depends solely on the pipe Reynolds Number ,
hU  is the mean 

or “homogeneous”  flow velocity and D  is the working-section diameter (80 mm). According to 
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Cory [56] and Al-Hinai [49] the single-phase pipe friction factor 
Pf  for the flow loop at the 

University of Huddersfield is 0.007. In solids-in-water flow, the mean flow velocity 
hU  in 

Equation  6-12 (the “homogeneous velocity” or mixture superficial velocity) is given by: 

A

QQ
U

refwrefs

h

,, 
          Equation  6-13 

where 
refsQ ,

 and 
refwQ ,

 are obtained using the gravimetric hopper system described in Section 

 6.3.3 and A is the working-section cross-sectional area. The mean reference solids volume 

fraction dps,  in the flow cross-section is obtained from Equation  6-11 , Equation  6-12 and 

Equation  6-13 . 

A current-to-voltage converter circuit (refer to Figure  6.5) was used to convert the Yokogawa DP 

cell output signal (4 mA – 20 mA) to 1 V – 5 V for the differential pressure range 0 – 40 inches 

water gauge. In this circuit, Rref1 is a 250 Ω ±1% high precision resistor. The voltage drops 

across this resistor is fed into two buffer amplifiers. The outputs from the two buffers are 

connected to the input of a unity gain differential amplifier as shown Figure  6.5. The output 

voltage hv  of the differential amplifier was connected to the NI USB-6343 DAQ Board. 
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Figure ‎6.5 Schematic of current-to-voltage converter circuit 

Figure  6.6 shows the results for voltage output from the current-to-voltage converter circuit for 

differential pressures in the range 0 to 40 inches water gauge . 

 

Figure ‎6.6 Calibration plot for Yokogawa DP cell 

 

From Figure  6.6, the differential pressure ,ΔP, (Pascal) is obtained using: 
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1000*81.9*)
100

54.2
)(04.101.10(  hvP       Equation  6-14 

where hv  is the output voltage from the current-to-voltage converter circuit  

The differential pressure P  from Equation 6-14 is used in Equation 6-11 to obtain the mean 

volume fraction dps,  of the solid phase in multiphase flow.  

6.3.3 Gravimetric Flow Measurement System 

In a solids-in-water flow, the reference solids volumetric flow rate refsQ ,  and the reference water 

volumetric flow rate refwQ ,  can be obtained using gravimetric methods. As shown in Figure  6.1, 

the solids-in-water flow passes through a separator which separates the different phases into 

stainless steel hoppers. Each hopper has a pneumatic ball valve at its base and is suspended from 

a load cell. Both the load cells and the valve control system are interfaced to a PC. By closing the 

valve and recording the time taken to fill the hopper with a given phase, the mean mass flow rate 

for a given phase M can be calculated immediately. Using the measured mean mass flow rate 

M and the density of the phase, w or s , the volumetric flow for the phase can be calculated as: 



M
Q


           Equation  6-15 

A correction to compensate for the effect of water adhering to the surface of the beads is 

presented in Section 6.2.3.3. 
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6.3.3.1 Hopper Load Cell Calibration 

The load cell for each hopper was calibrated by incrementally adding known masses of water to 

the hopper and recording the output voltage signal from the hopper load cell. For each hopper the 

mass was added in equal increments for the full range of the load cells, i.e. 0kg to 45kg. To 

ensure the repeatability and accuracy, the calibration was carried out twice for each hopper 

during this project.  

The hopper calibration curves show a good linear relationship between the added masses and the 

load cell output voltages for each hopper, see Figure  6.7. 

 

Figure ‎6.7 Hoppers load cell calibration curve 

Using linear regression, the relationship between the masses (
sM  and 

wM  for solids and water 

respectively) and the hopper load cell output voltages (
sV  and 

wV  for solids and water 

respectively) were: 

ss VM 055.13491.51          Equation  6-16 
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ww VM 563.12653.49          Equation  6-17 

6.3.3.2 Operation of the Gravimetric Flow System 

Both load cells and the pneumatic ball valves were interfaced with a PC to measure Vs and Vw. 

The valve at the base of the hopper was closed and the time taken for a given mass of material to 

collect in the hopper was measured, from which the mass flow rates of the solids and water were 

obtained. The program determined the mass flow rates according to the following steps: 

- The pneumatic ball valves are closed and the control program starts to sample each load cell 

continuously. As the mass in the water hopper reaches a set lower limit,
lwM ,
, the program 

starts a timer. Similarly for the solids hopper, as the mass of the solid reaches its set lower 

limit,
lsM ,
 second timer starts.  

- When the mass in the water hopper reaches an upper set limit, 
uwM ,
, the program halts the first 

timer and measures the time taken, wT . The same process occurs for the solids hopper giving 

the time taken sT .  

- The pneumatic ball valves are then opened ready for a new measurement to be made. 

Using the measured time intervals and the corresponding measured masses, the solids reference 

volumetric flow rate refsQ ,  and water reference volumetric flow rate refwQ ,  can be obtained as: 

ss

lsus

refs
T

MM
Q






,,

,          Equation  6-18 

Where s is the solid density which is 1340.8 kgm
-3

. 
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ww

lwuw

refw
T

MM
Q






,,

,          Equation  6-19 

Where w is the water density which is 1000 kgm
-3

.  

For each flow condition, thirty values of  refsQ ,  and refwQ ,  were taken to eliminate random 

errors which could occur during testing , the flow loop was left for 1 minute after each reading 

and 5 minutes after any change in flow conditions to make sure that the flow profile had 

stabilised. More detailed explanations can be found in Cory [56].   

6.3.3.3 Correction Methodology for the Solids Reference Volumetric Flow Rate Qs,ref 

The separation method used in the current investigation cannot separate the solids from the water 

with complete efficiency. This happens because some water will always adhere to the surface of 

the solid particles and so will be carried into the solids hopper.  The volumetric flow rate of 

excess water into the solids hopper is Qw,exc. As such, the solids volumetric flow rate needs to be 

corrected using a correction factor. For the current investigation, refwQ ,  was much higher than 

refsQ ,  and this made wT  much lower than sT . Which means that even with water excess in the 

solids hopper, the ratio of Qw,exc / refwQ ,  through the wT  period is very small and can be negated. 

The excess mean volume fraction   of the water inside the solids hopper and mixture flow 

density 
ws,  can be defined as 

corrsexcw

excw

UU

U

,,

,


          Equation  6-20 

The mean density of the solids-in-water mixture inside the solids hopper can be defined as:  
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corrsexcw

excwwcorrss
ws

UU

UU

,,

,,
,







         Equation  6-21 

where excwU ,  is the final excess volume of the water attached to the solid particles and corrsU ,  is 

the final correct volume of the solid particles. Combining Equation 6-18 and Equation 6-19, the 

mean mixture density in the hopper can be written as: 

 wsws  )1(,
        Equation  6-22 

The total volume of the mixture ToTU  in the hopper during the time ΔTs can be defined as: 

excwCorrsToT UUU ,,          Equation  6-23 

Using Equation 6-20, excwU , can be written as  








1

,

,

Corrs

excw

U
U          Equation  6-24 

Substituting Equation  6-24 into Equation 6-21 gives: 













)1(
1,




CorrsToT UU         Equation  6-25 

)1(,  ToTCorrs UU          Equation  6-26 

By multiplying the both side of Equation 6-26 with time ΔTs, Equation 6-26 can be written in 

terms of volumetric flow rates as: 
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)1(,  ToTCorrs QQ          Equation  6-27 

where 
CorrsQ ,

 is the correct solids volumetric flow rate, and ToTQ  is total volumetric flow rate of 

the mixture flow into the solids hopper, furthermore ToTQ  can be defined as: 

ws

refs

ToT

M
Q

,

,




           Equation  6-28 

where refsM ,
  is the mean measured mixture mass flow rate and 

ws, is the mean mixture density, 

moreover refsM ,
  can be defined as: 

srefsrefs QM ,,           Equation  6-29 

where 
refsQ ,

 is the solid  reference volumetric flow rate obtained by the hopper measurement 

(see section  6.3.3.2). Substituting Equation  6-29 into Equation  6-28 gives Equation 6-30: 

ws

refss

ToT

Q
Q

,

,




          Equation  6-30 

Using Equation  6-30 , 
CorrsQ ,

 in Equation  6-27 can be written as following  

)1(
,

,

, 





ws

refss

Corrs

Q
Q         Equation  6-31 

)1(
))1((

,

, 








ws

refss

Corrs

Q
Q        Equation  6-32 

CorrsQ ,
 in Equation  6-32 can be re-arranged as following  
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




       Equation  6-33 

where 




















 ))(

1
(1

1

s

w








 represents the correction factor for the hopper measurements. 

 

J. Cory [50] carried out an investigation to measure the amount of the water carried into the 

solids hopper and found   to be 0.05. Knowing the solids and water densities, the correction 

factor was calculated to be equal to 0.962. 

6.4  Electromagnetic Velocity Profiler (EVP) 

In the work described in this section solids-in-water flows were investigated, the local axial 

velocity distribution of the water being measured using a novel instrument known as an 

Electromagnetic Velocity Profiler (EVP). The EVP was designed, constructed and used by Lucas 

and Leeungculsatien [87, 95, 107] based on existing electromagnetic flow meter theory. The 

EVP was used to obtain the local axial velocity distribution of electrically conducting continuous 

phase (water) in the flow cross-section.  

The local axial velocity distribution of the solids and the local volume fraction distribution of 

both phases were measured using the ICC flow meter. Experimental results were obtained for the 

water and solids velocity and volume fraction profiles in upward vertical flow and upward flow 

inclined at 30 degrees to the vertical, in which non-uniform velocity and volume fraction profiles 

occur. 
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6.4.1 Background Theory of the Electromagnetic Velocity Profiler 

The fundamental basis of electromagnetic flow meters is that charged particles in a conducting 

medium, which moves in a magnetic field, experience a Lorentz force acting in a direction 

perpendicular to both the material‟s motion and the applied magnetic field. Shercliff [108] 

showed that the local current density j  in the fluid is governed by Ohm‟s law in the form  

 

)( BvEj           Equation  6-34 

 
           
 

where  is the local fluid conductivity, v  is the local fluid velocity, and B  is the local magnetic 

flux density. The expression )( Bv  represents the local electric field induced by the fluid 

motion, whereas E  is the electric field due to charges distributed in and around the fluid. For 

fluids where the local conductivity variations are relatively minor i.e. of the order of about 10:1 

(the multiphase flows under consideration in this study) Shercliff simplified Equation  6-34 and 

showed that the local potential U  in the flow can be obtained by solving 

 

)(2
Bv U          Equation  6-35 

            
   

For a circular cross section flow channel bounded by a number of electrodes, with a uniform 

magnetic field of flux density B  normal to the axial flow direction, it can be shown with 

reference to Shercliff that, in a steady flow, the potential difference jU  between the 
thj  pair of 

electrodes is given by an expression of the form 

 

 dxdyyxWyxv
a

B
U jj  ),(),(

 

2


       Equation  6-36 
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where ),( yxv  is the steady local axial flow velocity at the point ),( yx  in the flow cross section, 

jyxW ),(  is the so-called „weight value‟ relating the contribution of ),( yxv  to jU  and a  is the 

internal radius of the flow channel. It is shown in [95, 107] that Equation  6-36 can be discretised 

to give: 

 





N

i

iijij Awv
a

B
U

1 

2


         Equation  6-37 

           
 

where iv  is the mean axial velocity in the thi  of N  regions (or „pixels‟) into which the flow cross 

section is divided, iA  is the cross-sectional area of the thi  region and ijw  is a weight value 

relating jU  to iv . Provided that the number of potential difference measurements jU  and the 

number of regions are both equal to N, Equation  6-37 can be inverted using matrix theory to 

enable estimates of the local axial flow velocity iv  in each of the N pixels to be determined from 

the N potential difference measurements jU  made on the boundary of the flow: 

UWAV
1][

2


B

a
         Equation  6-38 

                                                                                                                           

 
 

where V is a single column matrix containing the pixel velocities iv , W  is a square matrix 

containing the relevant weight values ijw , A is a diagonal matrix containing information on the 

pixel areas iA , and U  is a single column matrix containing the measured potential differences 

jU  for a given imposed velocity profile. 

The EVP device (see Figure  6.9a) was used to investigate the solids-in-water two phase flow 

when the flow cross-section was divided into seven pixels, see Figure  6.9b. Pixel 1 was at the top 
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of the flow cross-section and pixel 7 was at the bottom. This pixel arrangement was chosen 

because, for many stratified flows of interest, variations in the axial velocity tend to occur in a 

single direction (i.e. in the y  direction in Figure  6.9b). For measurements in horizontal or 

inclined solids-in-water flows the line joining e5 to e13 would be in the direction from the 

uppermost side of the included pipe to the lowermost side.  

A Helmholtz coil was used to generate a uniform magnetic field over the flow cross section. At 

the plane of the electrodes, where 0z , the magnetic flux density vector was always 

perpendicular to both the fluid flow direction and to the chords joining the electrode pairs. The 

flow pipe was machined from Delrin and had an internal radius of 80 mm. Delrin is a non-

conducting and non-magnetic material with a relative permeability of 1. Additionally, Delrin has 

a very low coefficient of friction so the internal surface of the flow pipe was smooth which 

helped to reduce friction and viscous drag at the interface of the water and internal pipe wall. 

 Each coil forming the Helmholtz coil was constructed from copper wire with a diameter of 

0.776 mm and a current rating of 1.62A for normal operation [107]. A Helmholtz coil driver 

circuit was used to generate the periodic magnetic field, see Figure  6.8, from Helmholtz coil by 

switching a high voltage, high current power source using Solid-State Relays. Using the periodic 

magnetic field helped to eliminate the chemical reactions (electrochemical effects) between the 

measurement electrodes and the metered fluid. Additionally, in the case of using AC magnetic 

flux density, the flow creates potential differences which are proportional to the product of the 

instantaneous magnetic field and the instantaneous flow velocity.  Furthermore, these potential 

difference are of different frequencies to the non-flow induced noise voltages measured by the 

detection circuitry. Therefore using the periodic magnetic field helps to avoid  signal interference 

from these “ noise potentials” [107]. 
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Figure ‎6.8 the magnetic flux density with time over one excitation cycle 

 

 

The electrodes were made from low permeability stainless steel with high corrosion resistance. 

For the experiments described in Chapter Eight, the EVP device was used to measure the mean 

in-situ water velocity wv  in each of the seven pixels shown in Figure  6.9b. 
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Table  6-1 shows the areas and corresponding optimum electrode pairs for the seven geometrical 

regions (pixels) shown in Figure  6.9b.     

Table ‎6-1 Appropriate electrode pairs for EVP geometry shown in Figure 6.7b 

Area Ai (m
2
)  Electrode pair Uj 

Region 1 (i=1) 1.738e
-4

  Pair 1 (j=1) e4 – e6 

Region 2 (i=2) 6.267e
-4

  Pair 2 (j=2) e3 – e7 

Region 3 (i=3) 1.077e
-3

  Pair 3 (j=3) e2 – e8 

Region 4 (i=4) 1.264e
-3

  Pair 4 (j=4) e1 – e9 

Region 5 (i=5) 1.077e
-3

  Pair 5 (j=5) e16 – e10 

Region 6 (i=6) 6.267e
-4

  Pair 6 (j=6) e15 – e11 

Region 7 (i=7) 1.738e
-4

  Pair 7 (j=7) e14 – e12 

(a) Region areas  (b) Electrode pair  
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Figure ‎6.9 a) Electromagnetic Velocity Profiler ; (b) Schematic diagram of the flow pixels, the electrode arrangement 

and the direction of the magnetic field 
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The flow induced voltage refU between the j
th

 electrode pair was measured using the circuit 

shown in Figure  6.10 which consisted of two voltage followers and a differential instrumentation 

amplifier with a gain of 996. Seven such circuits were required, one for each electrode pair.  The 

measured induced voltage, after division by the circuit gain, was used in Equation  6-38 to 

determine the local water velocity in each pixel.   
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Figure ‎6.10 Electronic circuit used for measuring the flow induced voltage difference between each electrode pair 

 

In normal operation a VM-1 microcontroller was used to control the EVP system and make 

measurements. A coil current monitoring circuit was also designed to continuously monitor the 

Helmholtz coil current ic , so that compensation could be made in the coil current, and hence the 

magnetic flux density, arising from variations in the coil temperature.   

The overall setup for the electromagnetic velocity profiler system is shown in Figure  6.11. 
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Figure ‎6.11 Online measurement electromagnetic velocity profiler 

 

More detail for the EVP structure / signal measurement and analysis can be found in Lucas and 

Leeungculsatien [87, 95, 107].    

6.4.2 Integration of ICC and EVP  

Figure  6.12 shows the design of the two-phase flow meter for obtaining the individual 

volumetric flow rates of the solids and water phases. The two-phase flow meter system includes 

the EVP measurement instruments described above (see Section  6.4.1) and ICC (refer chapter 3). 

This system is limited to flows in which the continuous phase is electrically conducting and the 

discontinuous phase is an insulator.  
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The principle of operation of the combined measurement system, composed of the ICC device 

For two-phase solids-in-water flow, the ICC device is used to obtain the local volume fraction 

and the local flow velocity distribution of the dispersed phase. The volumetric flow rate of the 

dispersed phase can be expressed as: 

dAvQ ICCs

A

ICCsICCs ,,,           Equation  6-39 

          

where ICCs,  and ICCsv ,  represent respectively the interpolation of the measured local solids 

volume fraction  and  the measured local solids velocity  across the pipe section, see section 

6.5.2.3. 

The EVP is used to obtain the local axial velocity distribution of the electrically conducting 

continuous phase. The local volume fraction distribution of the dispersed phase obtained using 

the ICC device is used with the measured continuous phase velocity distribution to obtain the 

continuous phase volumetric flow rate as: 

dAvQ iEVPw

A

iICCsEVPw )()1( ,,,           Equation  6-40 

 

It should be noted that the EVP device uses a seven pixel Configuration denoted from region 1 to 

region 7, see Figure  6.9b.  For the purpose of integration, the local volume fraction distribution 
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Figure ‎6.12 Two phase flow meter system 
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of the dispersed phase obtained using the ICC device (refer to Figure 7-2 to 7-4 and 7-6 to 7-8) is 

integrated in each of the seven regions in order to determine the mean in-situ solids volume 

fraction in each of the regions 1 to 7.  Based on the above, Equation 6-38 can be written in the 

term of the seven regions as: 

iiEVPw

i

iICCsEVPw AvQ )()()1( ,

7

1

,, 


         Equation  6-41 

where iEVPwv )( ,  is the mean in-situ water velocity for the i
th

 region and iA)(  is the area for the i
th

 

region ( where i= 1 to 7), see Table 6-1.        

  

6.5  Experimental Procedure 

The experimental procedure used in the present investigation can be divided into two sections: (i) 

defining the solids-in-water flow conditions which were used through the experimental 

procedures and (ii) experimental data acquisition and analysis.  

6.5.1 Solids-in-Water Flow Conditions 

The ICC and EVP flow meters were installed in the working section of the flow loop at a 

distance of 1.6 m from the inlet. The DP cell was mounted to measure the differential pressure 

along a one meter length as shown in Figure  6.1.  

For inclinations of 0° and 30° degrees to the vertical, different flow conditions were selected 

using Arrangements I and II (see Section  6.1). The choice of the conditions depended on the 

stability of the flow inside the working section and the range of variation of the solids and water 

volumetric flow rates. For each of the conditions, the reference solids and water volumetric flow 
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rates were measured using the gravimetric flow measurement system (see Section  6.3.3).  Table 

 6-2 shows the solids and water volumetric flow rates for each flow condition. 

 

Table ‎6-2 Flow conditions used in the current investigation 

Flow 

Condition 

 

 

 

Angle of 

inclination 

  to the 

Vertical 

 

Solid 

Volumetric 

flow rate 

refsQ , (m
3
h

-1
) 

Water 

volumetric flow 

rate 

refwQ , (m
3
h

-1
) 

fm1 0 0.494 7.307 

fm2 0 0.63 10.574 

fm3 0 0.698 10.311 

fm4 0 0.828 11.534 

fm5 0 0.944 11.975 

fm6 0 0.935 13.817 

fm7 0 0.788 11.977 

fm8 0 1.023 11.788 

fm9 30 0.467 8.666 

fm10 30 0.623 10.196 

fm11 30 0.706 12.01 

fm12 30 0.723 13.718 

fm13 30 0.939 11.072 

fm14 30 1.116 11.431 
 

(0 Hz means the water pump was switched off) 

6.5.2 Data Acquisition and Analysis 

As described in Section 4.2.3, the ICC flow meter is controlled by electrode switching circuits 

which allow selection of each Configuration   and rotational position n . 

6.5.2.1 The Solids Velocity Measurement 

The ICC device was configured as a dual-plane system to measure the solids velocity 

measurements which were simultaneously acquired from the two electrode arrays (A and B) as 

shown in Section  5.4. For both Centre of Action (CoA) and Area Methodology (AM) techniques, 
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the output signals from the channel A (array A) and channel B (array B) were cross correlated to 

provide the local solids velocity of the flow at the „interrogated‟ flow cross-sections.  

Both the local solids velocity  
nsv ,)(   obtained by CoA and the local solids velocity  

iAMsv )( ,
  

(i=1 to 32) obtained by Area Methodology were interpolated into 80x80 elements (side of 1 mm) 

in order to obtain the solids velocity distributions through the pipe cross section, see the 

MATLAB program at Appendix C. For the current study, the interpolation method was 

MATLAB 4 griddata method V4 which is based on the Green function of the biharmonic 

operator. 

For each flow condition, a set of data from channels A and B was collected at 2000 samples / 

second and saved to be analyzed offline using a MATLAB program. The program code is shown 

in Appendix C code_1.  

6.5.2.2 The Solid Volume Fraction Measurement 

In inclined solids-in-water flow, channel B in the conductance measurement circuit is used to 

measure the local mixture conductivity nm ,)(   and this value of local mixture conductivity is 

assigned to the corresponding CoA, at positions nCx ,)(   and nCy ,)(   , for a given Configuration 

  and rotational position n. This local mixture conductivity can be used to estimate the local 

solids volume fraction ns ,)(   by invoking the simplified form of Maxwell‟s equation for the 

conductivity of a mixture [55]: 

 
nmnw

nmnw

ns

,,

,,

,
)()(2

)(2)(2





 







         Equation  6-42 

where w  is the electrical conductivity of the water.  
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The Area Methodology method (AM), refer to section 3.4.3, was used to measure the local solids 

volume fraction distribution in solids-in-water vertical flow. The obtained solids volume fraction 

iAMs )( , (i=1 to 32) were assigned to the corresponding 32 positions inside the pipe cross section, 

see Figure  3.26.  

Similarly as for the solids velocity measurement, the local solids volume fraction ns ,)(  obtained 

using the CoA method and the local solids volume fraction 
iAMs )( , obtained by AM were 

interpolated into 80x80 elements (side of 1 mm) in order to obtain the solids volume fraction 

distributions throughout the pipe cross section. 

Both the VM-1 and the NI card were used to collect data and analyse it. The data was collected 

for 60 seconds for each Configuration   and rotational position n  using 500 samples / second for 

VM-1 and 2000 samples /second for NI card. It was found that there was a good agreement 

between the VM-1 solids volume fraction results and the solids volume fraction results obtained 

by NI card.  

6.5.2.3 Measurement of the Solids Volumetric Flow Rate  

The ICC solids volumetric flow rate 
ICCsQ ,

 for each flow condition was obtained by integrating 

the local solids volume fraction and local solids velocity data in the flow cross-section according 

to the following equation: 

dAvQ ICCs

A

ICCsICCs ,,,           Equation  6-43 

where 
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- For the solids-in-water inclined flow, ICCs,  and ICCsv ,  represent respectively the interpolation 

of the local solids volume fraction ns ,)(    and the local solids velocity nsv ,)(   across the pipe 

section. Where ns ,)(   and nsv ,)(  where obtained by the Centre of Action CoA technique.   

- For the solids-in-water vertical flow, ICCs,  and ICCsv ,  represent respectively the interpolation 

of the local solids volume fraction iAMs )( , (i=1 to 32) and the local solids velocity 
iAMsv )( ,
 

across the pipe section. Where 
iAMs )( ,  and 

iAMsv )( ,
where obtained by the Area Methodology 

technique.   

6.5.2.4 Reference Measurements for Solid Velocity 

The reference solids volume fraction dps,   and the volumetric flow rates (
refsQ ,

 and 
refwQ ,

 ) 

were obtained using the measurement technique as described in Sections  6.3.2 and  6.3.3. It is 

possible to calculate a reference solids axial refsv ,  using dps,  and 
refsQ ,

 as shown below: 

dps

refs

refs
A

Q
v

,

,

,


          Equation  6-44 

where A is the pipe cross-section area. 

 

It should be noted that dps, , refsv , ,
refsQ ,

 and 
refwQ ,

 are global measurements, so comparison of 

the measurements made by the ICC and EVP systems will require integration of the relevant 

quantities within the pipe cross-section area as shown in the following equations: 
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dA
A

A

ICCsICCs  ,,

1
          Equation  6-45 

, ,

,

,

s ICC s ICC

A
s ICC

s ICC

A

v dA

v
dA








        Equation  6-46 

dAvQ ICCs

A

ICCsICCs ,,,           Equation  6-47 

 

dAvQ EVPw

A

ICCsEVPw ,,, )1(          Equation  6-48 

 

where A is the pipe cross-section area. 

6.6  Summary 

In this chapter, the capabilities of the Huddersfield University multiphase flow loop have been 

described. As shown in Section 6.1, the flow loop can deliver single- phase or multiphase flows 

to the working-section at different solids-water flow rates. In solids-in-water flow, several 

reference instruments have been introduced to validate the results obtained from the EVP and 

ICC systems. In brief summary: 

  A turbine meter is used to measure the volume flow rate from which pipe friction factor Pf is 

derived in order to measure the reference mean solids volume fraction dps,  see Sections  6.3.1 

and  6.3.2. 

 A differential pressure sensor is used to measure the mean reference solids volume fraction 

dps,  in the flow cross-section (Section  6.3.2). 

 Gravimetric flow measurements are used to measure the reference solids volumetric flow rate 

refsQ ,  and the reference water volumetric flow rate refwQ ,  (Section ‎6.3.3). 

 An Electromagnetic Velocity Profiler (EVP) based on the fundamental electromagnetic theory 

that charged particles in a conducting material which moves in a magnetic field, experience a 
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Lorentz force acting in a direction perpendicular to both the material‟s motion and the applied 

magnetic field is described. 

 The EVP device was used to measure the mean in-situ water velocity wv  in each of the seven 

pixels shown in Figure  6.9b. 

 The Impedance Cross Correlation (ICC) device was used to determine the distribution of the 

local solids velocity sv  and the distributions of the local solids volume fraction s  and the local 

water volume fraction w  (where sw  1 ).  

 A combined ICC/EVP two phase flow meter has been designed and built which can be used in 

solids-in-water two phase pipe flows to measure the volume fraction distributions of both 

phases, the velocity profiles of both phases and the volumetric flow rates of both phases.  

 The reference solids axial refsv ,  is calculated using the measured reference mean solids volume 

fraction dps,  and the measured reference solids volumetric flow rate refsQ , (Section ‎6.5.2.4). 

 Finally, the ICC and EVP measurements were integrated over the pipe cross-section area in 

order to compare with the global results obtained from reference devices as shown in Section 

 6.5.2.4.  

 

 

 

 

 

 

 



176 

 

7. CHAPTER 7: Results and Discussion  

 

7.1  Introduction 

This chapter presents the experimental results for the solids-in-water flow parameters obtained 

using the ICC and EVP systems. The experimental methodology is described in Section 6.5. The 

results cover the range of solid-in-water flow conditions fm1-fm14 listed in Table 6-2 and 

described in Section 6.5.1. 

7.2  Solids Volume Fraction Measurement 

7.2.1 Solids-in-Water Upward Flow in Vertical Pipe 

Al-Hinai [49] used the ICC flow meter to measure the solids volume fraction distributions in 

solids-in-water upwards flow in a vertical pipe. In vertical solids-in-water flow, the mean 

reference solids volume fraction for his flow conditions was between 0.15 and 0.30 and Al-

Hinai‟s results shows that the solids volume fraction s has small variations across the pipe 

cross-section, see Figure (7-1). 

 

Figure ‎7.1Local solids volume fraction profiles for flow in a vertical pipe obtained by Al-Hinai[49] ,
s = 0.21 
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For the current investigation the mean reference solids volume fraction was between 6 and 8 %, 

therefore it is expected there will be a differences in solids distribution between the two 

investigations.   

A number of experiments were carried out in this investigation to measure the local solids 

volume fraction distribution using the Centre of Action method, but this method produced 

unacceptable errors which reached 70%. The reasons for this are explained in Section  3.4.2. Thus 

a new methodology (Area Methodology) was used to measure the local solids volume fraction 

distribution inside the pipe cross-section for vertical flow. The Area Method and measurement 

procedure are described in Section 3.4.3. There are a total of 32 local solids volume fraction 

iAMs )( ,  measurements, each assigned to the corresponding x and y coordinates, see Figure  3.26. 

By interpolating these 32 measured solids volume fractions over the pipe cross-section, 3D solids 

volume fraction distribution profiles were obtained for flow conditions fm1-fm8 as shown in 

Figure  7.2 to 7.5.   

 Figure  7.2 to 7.5 present the solids volume fraction distributions for vertical flow using the Area 

Methodology technique. 
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Figure ‎7.2 Solids volume fraction distributions for upward flow in vertical pipe, flow conditions fm1 and fm2 (Table 6-2) 
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Figure ‎7.3 Solids volume fraction distributions for upward flow in vertical pipe, flow conditions fm3 and fm4 (Table 6-2) 
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Figure ‎7.4 Solids volume fraction distributions for upward flow in vertical pipe, flow conditions fm5 and fm6 (Table 6-2) 
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Figure ‎7.5 Solids volume fraction distributions for upward flow in vertical pipe, flow conditions fm7 and fm8 (Table 6-2) 

 

The profiles of the solids volume fraction distributions for the eight flow conditions fm1-fm8 

presented in Table 6-2 show a bell shape with a marked decrease in solids volume fraction 

ICCs, close to the pipe wall due to the “wall effect”. This wall effect was reported by Cory [56],  
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Asakura et. al., [109] and Alajbegovic et. al., [13] for vertical solids-in-water flow. Complete 

cross-sectional profiles for low solids volume fractions in vertical upward flow could not be 

found in the literature, although, Cory (1999)[56] and Al-Hinai [49] have presented solids 

volume fraction  distributions with a mean value s  up to 30 % which showed only small 

variations of s  across the central area of the flow cross-section.  

Using the solids volume fraction distribution profiles shown in Figure  7.2 to Figure  7.5, the mean 

solids volume fraction in each of the regions 1 to 7 (see Figure 6.9b) were found and are plotted 

in Figure  7.6.  
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Figure ‎7.6 Solid volume fraction profiles for upward vertical flow in each of the seven flow regions shown in Figure 6-7b 

 

Figure  7.6 shows that the local solids volume fraction profiles follow a symmetrical bell shape or 

„power law‟ curve. These profiles match previous studies by Alajbegovic et. al., [13] and 

Sakaguchi et. al., [14] for solids-in-water vertically upward flows, see Figure 7.7, and Lucas and 

Panagiotopulos [110] for bubbly oil-in-water vertically upward flow.  
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Figure ‎7.7 Volume fraction profiles of the ceramic beads in water in solids-in-water vertical flow using three different 

flow rate values, Alajbegovic et. al., [13] 

 

Both results in Figures 7.6 and 7.7 show that the solids volume fraction has low values near the 

pipe wall and tends to increase toward the pipe centre. However, there is a different in solids 

volume fraction profiles shape between the two experiments, and this could be due to the 

difference in solids type and density and fluid flow rate. 

For the current experiment, the non-conducting spherical solid beads of 4 mm diameter with 

density of 1340.8 kg/m
-3

 were used and the minimum water flow rate was 2 kg
3 

/s (7.3 m
3
/h).  

Whilst, Alajbegovic et. al., [13] used 2 mm ceramic practices with a density of 2.45 kg/m
-3

 .  

The experiments performed in oil-in-water flows by Panagiotopuolos et. al, [111, 112] showed 

that for low dispersed phase volume fractions ( d < 0.08 which is the same as the current flow 

conditions), the oil tends to migrate toward the pipe centre which may represent an equilibrium 

position for the dispersed phase in very low volume fraction flows. 

Radial position r/R 

V
o

lu
m

e 
fr

a
ct

io
n

 %
 

Fluid flow rate 1.095 [kg3/s] 

Fluid flow rate 1.469 [kg3/s] 

Fluid flow rate 1.723 [kg3/s] 
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In 2009 Panagiotopuolos et. al, [111, 112] used a dual-sensor conductance probe to measure the 

local axial oil velocity distribution and the local oil volume fraction distribution in vertical, oil-

in-water bubbly flows in an 80 mm diameter vertical pipe. A simple DC amplifier circuit was 

used to measure the fluid conductance between the tip of the relevant needle and the probe body. 

Panagiotopoulos showed that when the mean oil volume fraction B < 0.08, the oil volume 

fraction distribution is approximately a `power law' in shape as show in Figure  7.8. 

 

 
Figure ‎7.8 Local oil volume fraction B  versus r/D for values of mean oil volume fraction less than 0.08, 

 B (diamonds)=  0.068, B (squares)= 0.056 [111] 

 

Using results obtained by Beyerlein et al., [31], Panagiotopoulos et al showed that for very low 

dispersed phase volume fraction flow in co-current, upward, bubbly two phase flows where the 

superficial velocity of the continuous phase is greater than zero, it is possible to have a radial 

hydrodynamic force on particles of the dispersed phase. They concluded that the particles will 

tend to move toward the pipe centre, which may represent an equilibrium position for dispersed 

phase particles in very low volume fraction flows. This produces a low pressure region in their 

wakes and hence additional oil droplets will be drawn towards the pipe centre. 
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This behaviour is also reported in [9, 113]. This may be an explanation of the shape for the solids 

volume fraction profiles shown in Figure  7.6. 

The solids volume fraction profiles in Figure  7.6 were used to calculate the water volume 

fraction distribution in the seven regions as shown in Section  7.4.4. 

7.2.2 Solids-in-Water Upward Flow in Pipe Inclined at 30
 
  to the Vertical 

For the 30
 
  degree inclined flow, the Centre of Action method was used to measure the solids 

parameter for the solids-in-water flow, see section 3.4.2. The Centre of Action method was 

chosen based on the experimental results for the solids volume fraction as shown later through 

this section.  

Configuration I, II and III were used to obtain the solids volume fraction distributions profiles for 

flow conditions, fm9-fm14, see Table 6-2. For each flow condition, using a given Configuration 

  and a given rotational position, n, the solids volume fraction ICCs, was obtained using 

Maxwell‟s equation for the conductivity of a mixture[55]:  

 
nmnw

nmnw

nICCs

,,

,,

,
)()(2

)(2)(2
,





 







        Equation  7-1 

For the 
th  electrode Configuration ( IIIor  II I, ) and the 

thn  rotational position ( 8  to1n ), 

there are a total of 24 local solids volume fraction  
,s n

 measurements, each assigned to the 

corresponding CoA position nCx ,)(  , nCy ,)(   see Section 3.4.1. By interpolating these 24 measured 

solids volume fractions over the pipe cross-section, 3D solids volume fraction distribution 

profiles were obtained for flow conditions fm9-fm14 as shown in Figure  7.9 to Figure  7.11.   
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Figure ‎7.9 Solids volume fraction distributions for upward flow in pipe inclined at 30º to the vertical, for flow conditions 

fm9 and fm10 (Table 6-2) 
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Figure ‎7.10 Solids volume fraction distributions for upward flow in pipe inclined at 30º to the vertical, for flow conditions 

fm11 and fm12 (Table 6-2) 



186 

 

-40

-20

0

20

40

-40

-20

0

20

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

x-cord of centre of action

Solids volume fraction distribution , fm13

y-cord of centre of action

 

S
o
lid

s
 v

o
lu

m
e
 f

ra
c
ti
o
n

0 0.1 0.2 0.3 0.4 0.5 0.6

-40

-20

0

20

40

-40

-20

0

20

40

0

0.2

0.4

0.6

0.8

1

 

x-cord of centre of action

Solids volume fraction distribution , fm14

y-cord of centre of action

 

S
o
lid

s
 v

o
lu

m
e
 f

ra
c
ti
o
n

0 0.1 0.2 0.3 0.4 0.5 0.6  

Figure ‎7.11 Solids volume fraction distributions for upward flow in pipe inclined at 30º to the vertical, for flow conditions 

fm13 and fm14 (Table 6-2) 

 

As expected, Figures 7.9 to 7.11 show that the solids volume fraction ICCs,  is a function of the y 

co-ordinate, where 
s  at the lowest side of the inclined pipe is much greater than at the upper 

side due to the fact that solids particles are more dense than water. These measured profiles agree 

with visual observation of the solids-in-water flow through the Perspex working section of the 

flow loop, see Figure  7.12 and Figure  7.13. The measured solids volume fraction profiles show 

qualitative agreement with previous experimental profiles obtained by Cory [56] and Al-Hinai 

[49]. 
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Figure ‎7.12 Photo of solids-in-water flow in pipe inclined at 30º to 

the vertical obtained using high speed camera 

 

 

 

Figure  7.14 presents the mean solids volume fraction in the regions 1 to 7 (see Figure 6.7b) for 

flow conditions fm9 to fm14.  The mean solid volume fraction of each region was found using 

the solids volume fraction distribution profiles in Figure  7.9 to Figure  7.11. 

 

Figure ‎7.14 Solid volume fraction profiles for upward flows in pipes inclined at 30° to the vertical 

 

Figure ‎7.13 The y axis relative to the pipe cross-section 

from upper side of pipe (A) to lower side of pipe (B) 

Gravity 

y-axis 

A 

B 

A 

B 
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The solids volume fraction profiles shown in Figure  7.14 demonstrate that for upward flow in 

pipes inclined at 30
º
 degrees to the vertical, the upper regions of the flow cross-section (regions 

1, 2 and 3 in Figure 6.7b) contain only a very small proportion of the solid particles present, i.e. 

these regions were mostly occupied by water. However, the solids volume fraction increased 

towards the lower regions in the pipe, reaching a maximum in region 7. The maximum measured 

value of the solids volume fraction in region 7 was 0.68 for flow condition fm10 (0.623 refsQ ,  , 

10.196 refwQ ,  and 0.19 dps, ) while the minimum value was 0.21 for flow condition fm12 

(0.723 refsQ , , and 13.718 refwQ ,  and 0.08 dps,  ) . 

7.3  Solids-in-Water Velocity Measurements  

This section shows the results for solids and water velocity profiles obtained by the ICC flow 

meter and the EVP system in upward vertical and inclined solids-in-water flow. 

7.3.1 Solids-in-Water Profile for Upward Flow in Vertical Pipe 

7.3.1.1 Solids velocity profiles using ICC flow meter 

 The local solids velocity was obtained by cross correlation between the two electrode arrays. In 

vertical flow, the Area Methodology (refer to Section 3.4.3) was used in order to find the local 

solids velocity iAMsv )( ,  at 32 measurement points inside the pipe cross section, see Section 

3.4.3.3. The local solids velocity iAMsv )( ,  was interpolated through the pipe section using 

MATLAB 4griddata method.  

The solids velocity distribution for a given flow condition fm1 to fm8 in vertical solids-in-water 

flow, see Table  6-2, is presented in the following figures. 
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Figure ‎7.15  Solids velocity distributions for upward flow in vertical pipe for flow conditions fm1 and fm2 
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Figure ‎7.16 Solids velocity distributions for upward flow in vertical pipe for flow conditions fm3 and fm4 
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Figure ‎7.17 Solids velocity distributions for upward flow in vertical pipe for flow conditions fm5 and fm6 
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Figure ‎7.18 Solids velocity distributions for upward flow in vertical pipe for flow conditions fm7 and fm8 
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The solids velocity profiles shown in Figure  7.15 to Figure  7.18 indicate only small variations of 

ICCsv ,  over the cross-section. These profiles are flatter than those of the volume fraction ICCs,  

and show no drop in velocity at the wall pipe.  

The velocity profiles show good agreement with the experimental profiles reported by Cory [56] 

and Al-Hinai [49], see Figure 2.8.  

Cory reported previous research which showed a drop in solids velocity near the pipe wall due to 

the “wall effect”, and this drop become more pronounced as the mean solids axial velocity sv  is 

increased. However, these trends are not noticeable either in the current investigation‟s velocity 

profiles or in the Cory (1999)[56] and Al-Hinai(2010)[49] velocity profiles. 

Additionally, the profiles mentioned above are flatter than the solids velocity profiles obtained 

by Alajbegovic et. al., [13] for solids-in-water vertical flow, Figure  7.19 and the oil velocity 

profile obtained by Panagiotopuolos et. al, [111, 112] for oil-in-water vertical flow, Figure  7.20. 

 

Figure ‎7.19 Velocity profiles of ceramic beads in water in solids-in-water vertical flow, Alajbegovic et. al., [13] for 

different fluid flow rate 
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Figure ‎7.20 Local oil velocity versus r/D for values of mean oil volume fraction less than 0.08, 

 B (diamonds)=  0.068, B (squares)= 0.056 [111] 

 

7.3.1.2 Water Velocity Profiles for Vertical Upward Flow Using the Electromagnetic Velocity 

Profiler 

This section describes the experimental tests carried out using the EVP system to obtain the 

water velocity profile for solids-in-water flow (see Section  6.4). The EVP and ICC flow meter 

used the same flow loop experimental arrangement and flow conditions. With the working-

section vertical, the EVP system was placed 1.6 m from the inlet so that the measurement plane 

of the EVP was the same as for the ICC flow meter. The operating procedure and the velocity 

calculations associated with the EVP system instrument are explained in Section 6.4. 

The reconstructed local axial velocity profiles of the water in vertical solids-in-water flow are 

shown in Figure  7.21(b). 
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Figure ‎7.21 Reconstructed water velocity and solids velocity in solids-in-water upward flow in vertical pipe for the 7 flow 

regions shown in Figure 6.7(b) and flow conditions fm1 – fm8 

 

A MATLAB program was used to divide the solids velocity distribution, Figure  7.15 to Figure 

 7.18, into 7 regions shown in Figure  6.9b and determine the mean solids velocities in each of 

these regions.  

Figure  7.21(a) shows similar behaviour for the different axial solids velocity profiles when the 

solids have a uniform velocity across the pipe. 

In all of the vertical upward flows, the water velocity profiles ( refer to Figure 7.21b) showed 

relatively small variation over the pipe cross-section. The reconstructed water velocities, ,w EVPv , 

shown in Figure  7.21(b) are relatively uniform across the pipe for the different flow conditions.  

(b) The water velocity profiles in 7 pixels (a) The Solids velocity profiles in 7 pixels 
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The comparison between the solids velocity ,s ICCv  and water velocity ,w EVPv  for each of solids-in-

water conditions can be seen in Figure  7.22 to 7.25. 
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Figure ‎7.22 Reconstructed water and solids velocities for upward flow in vertical pipe for flow conditions fm1 and fm2  
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Figure ‎7.23 Reconstructed water and solids velocities for upward flow in vertical pipe for flow conditions fm3 and fm4 
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Figure ‎7.24 Reconstructed water and solids velocities for upward flow in vertical pipe for flow conditions fm5and fm6 
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Figure ‎7.25 Reconstructed water and solids velocities for upward flow in vertical pipe for flow conditions fm7 and fm8 

 

The slip velocity between the solid phase and water phase can be clearly noticed in flow 

conditions fm1, fm2, fm3 and fm6 where the water is travelling faster than the solids. Though in 

conditions fm4, fm5, fm7 and fm8 the profiles show that the solids phase and water phase are 

travelling with relatively similar velocities. The reason behind the similarity in solids and water 

velocities in these cases could be that the EVP system gives underestimated values for the water 

velocity. As shown in Section 6.4.1, the measured induced voltage is divided by the circuit gain 

before using it in Equation 6-38. Therefore, the water velocity results are highly dependent upon 

the calculated circuit gains which may vary due to the effects of temperature on passive 

component in the amplifier in circuits.     
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The underestimated values could be seen clearly in the comparison between the EVP water 

volumetric flow rate   ,w EVPQ   and the reference water volumetric rate ,w refQ  for the fm1 to fm5 

flow conditions (see section  7.4.4). 

7.3.2 Solids-In-Water Upward Flow Inclined 30˚ to the Vertical   

7.3.2.1 Solids Velocity for Upward Flow in Pipe Inclined At 30
º
 to the Vertical Using ICC Flow 

Meter 

The ICC flow meter for measuring solids-in-water flow was mounted in the working section of 

the flow loop with the working section inclined at 30
º
 to the vertical. Configurations I, II and III 

were used to find the solids velocity profiles over the pipe cross-section. The six flow conditions 

were fm9-fm14 (see Table 6-2). Figures 7.21 to 7.23 show the interpolated local axial solids 

velocity profiles obtained from the ICC flow meter (note the reversal of the x and y axes 

compared with Figure  7.9 to Figure  7.11). 
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Figure ‎7.26 Solids velocity distributions for upward flow in pipe inclined at 30º to the vertical. Flow conditions fm9 and 

fm10  
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Figure ‎7.27 Solids velocity distributions for upward flow in pipe inclined at 30º to the vertical. Flow conditions fm11 and 

fm12 
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Figure ‎7.28 Solids velocity distributions for upward flow in pipe inclined at 30º to the vertical. Flow conditions fm13 and 

fm14 
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The profiles of sv  for upward flows inclined at 30
º
 to the vertical show that ,s ICCv varies as a 

function of the y coordinate (see Figure  7.12 and Figure  7.13). For inclined upward flow, the 

measured local axial solids velocity sv  is a minimum at the lower side of the inclined pipe 

(where the mean density of the solids–water mixture was a maximum due to the high local solids 

volume fraction, see Figure  7.14) and is a maximum value at the upper side. Figure  7.26, for 

flow conditions fm9 and fm10, shows a negative axial solids velocity at the bottom of the pipe 

due to solid particles flowing backwards down the pipe. These results agree with visual 

observations of the flow and previous experimental profiles obtained by Cory [56] and Al-Hinai 

[49].  

Using the data shown in Figure  7.26 to Figure  7.28, the mean solids velocity in each of the seven 

regions was calculated and the results are presented in Figure  7.29(a). 

7.3.2.2 Water Velocity Profiles for Upward Flow in Pipe Inclined At 30
º
 to the Vertical Using 

the Electromagnetic Velocity Profiler (EVP) 

Using the same experimental setup described in Section 7.3.1.2, the EVP was used to measure 

the water velocity for upwards solids-in-water flow with the pipe inclined at 30
º
 to the vertical. 

Figure 7.29b shows the results obtained for the seven regions of flow cross-section.  
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Figure ‎7.29 Reconstructed water and solids velocities for upwards solids-in-water flow with pipe at 30° to the vertical 

 

Figure  7.29(a) shows that the local axial solids velocity decreases as moving  from the upper side 

of the pipe (region 1) to the lower side (region 7)  - the solids have a much lower velocity in 

region 7 than they do in region 1. The water velocity profile, Figure 7.24(b), shows a similar 

behaviour. For all flow conditions from fm9 to fm14 (except fm12 where s  is small) it is seen 

that at the lower side of the inclined pipe, in fluid region 7, the water velocity is negative (reverse 

flow occurs).  As we move towards the upper side of the pipe the velocity becomes positive.  

Figure  7.30 to Figure  7.32 show the comparison between solids and water velocity in the seven 

regions for each flow condition. 

 

(b) Water velocity profiles in the 7 regions (a) Solids velocity profiles in the 7 regions 
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Figure ‎7.30 Reconstructed water and solids velocities for upward vertical flow, flow conditions fm9 and fm10 
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Figure ‎7.31 Reconstructed water and solids velocities for upward vertical flow, flow conditions fm11 and fm12 
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Figure ‎7.32 Reconstructed water and solids velocities for upward vertical flow, flow conditions fm13 and fm14 

 

At the lower side of the inclined pipe sv is negative or close to zero - the solids particles are 

flowing down the pipe - but the total solids volumetric flow rate is upward. Thus the solids 

which flow down the pipe must at some stage be re-circulated into the upward flow. This was 

noticed through the cross correlation analysis in region 6 and region 7 where the data from 

channel A and B was taken for 60 seconds, then the data was divided and cross correlated for 

every 2 seconds. The results show that sv  has both negative and positive values. The positive 

values represent the velocity of the re-circulated solids flow upwards in the working section.  

The re-circulation phenomenon was also observed by high speed camera and previously reported 

by Cory [56] and Al-Hinai [49]. 
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The water velocity near the lower side of the pipe is also affected by the re-circulation 

phenomenon. As the solids re-circulate, the local water velocity is close to zero and this was 

observed in region 7 in Figure  7.30 to Figure  7.32. 

It is clear from Figure  7.30 to Figure  7.32 that at region 6 and region 7, the solids velocity was 

higher than water velocity, which is considered to be an unexpected occurrence. This could have 

happened because these two regions were highly subject to re- circulation phenomena which 

affected the cross correlation results for at least region 7 which in turn gave 
,s ICCv results in those 

regions higher than the reality.  

At the upper side of the pipe the solids velocity sv and water velocity wv  were at a maximum and 

almost reached 1.4 ms
-1 

(see Figure  7.32, flow condition fm14, region 1).  

The similarities in behaviour of the solids and water velocities suggest that the water velocity 

profiles and solids velocity profiles obtained from the EVP and ICC instruments during the 

current investigation are realistic. 

7.4  Comparison of Experimental Results Acquired By the ICC and EVP 

Systems with Reference Measurements 

To evaluate the performance of the ICC and EVP systems for solids-in-water flow, the integrated 

values of s , sv  and wv were calculated and compared with reference measurements. 

For the purposes of the quantitative comparison, the errors could be defined as following: 

percentage error: 

.

x

meas refper

ref

x x

x



          Equation  7-2 
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where 
x

per  is the percentage error in x. .measx  is the integrated measured parameter obtained  

using the ICC or EVP system, refx  is the corresponding relevant reference measurement. 

absolute error: 

refmeas

abs

x xx  .          Equation  7-3 

where abs

x is the absolute error in x. 

standard deviation of the percentage error: 

n

ni

i

per

x
per

ix

per

x








 0

2

, )( 

         Equation  7-4 

 

where n is the number of flow conditions for which the error was calculated,  
per

x  is the mean 

percentage  error. 

 

standard deviation of the absolute error 

n
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i

abs

x
abs

ix
ABS

x


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

 0

2

, )( 

         Equation  7-5 

where n is the number of flow conditions for which the error was calculated,  
abs

x  is the mean 

absolute  error. 

7.4.1 Solids Volume Fraction Results 

The aim of this section is to evaluate the accuracy of the results of the ICC measured solids 

volume fraction 
s . This evaluation can be done by comparing the measured ICC mean solids 

volume fraction ICCs,  with the the reference mean solids volume fraction dps,  measured using 
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the DP cell. This was done for flow conditions fm1 to fm14. The solids volume fraction 

distributions profiles shown in Sections  7.2.1 and  7.2.2 were used to find ICCs,  using Equation 

 7-6. 

dA
A

A

ICCsICCs  ,,

1
          Equation  7-6 

7.4.1.1 The Error of the Solids Volume Fraction Results in Vertical Flow 

The integrated solids volume fraction ICCs,  data obtained from the ICC device for each vertical 

upward flow condition, and the relevant values for dps, , are presented in Table  7-1. 

Table ‎7-1 Integrated solids volume fraction data from ICC and reference devices for vertical upward flow 

 

 

Flow 

condition 

(see Table 

6-2) 

Solid  

volumetri

c 

flow rate 

refsQ ,  
(m

3
h

-1
) 

Water 

volumetric 

flow rate 

refwQ ,  
(m

3
h

-1
) 

Mean 

solids 

volume 

fraction 

ICCs,  

obtained 

Using 

ICC 

Mean solids 

volume 

fraction 

dps,  

obtained 

Using 

DP cell 

The 

solids 

volume 

fraction 

% 

error
per

  

The 

solids 

volume 

fraction 

absolute 

error 
abs

  

fm1 0.422 7.3070 0.063 0.080 -21.3% -0.017 

fm2 0.532 10.574 0.058 0.065 -10.8% -0.007 

fm3 0.638 10.311 0.072 0.074 -2.7% -0.002 

fm4 0.762 11.534 0.066 0.071 -7.0% -0.005 

fm5 0.872 11.975 0.071 0.065 8.7% 0.006 

fm6 0.807 13.817 0.061 0.058 3.8% 0.002 

fm7 0.717 11.977 0.055 0.065 -15.3% -0.010 

fm8 0.882 11.788 0.063 0.068 -7.3% -0.005 

Standard deviation for the percentage error             
per

  9.14% 

Standard deviation for the absolute error             
abs

  0.006 
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7.4.1.2 The Error of the Solids Volume Fraction for Upward Flow in a Pipe Inclined At 30
º
 to the 

Vertical  

The integrated solids volume fraction values obtained from the ICC device for each upward flow 

condition for the pipe inclined at 30° to the vertical, and the relevant DP cell reference 

measurements, are presented in Table  7-2 

Table ‎7-2 Integrated solids volume fraction data from ICC and reference devices for upward flow in pipe inclined at 30º 

to the vertical. 

Flow 

condition 

(see Table 

6-2) 

Solid  

volumetri

c 

flow rate 

refsQ ,  
(m

3
h

-1
) 

Water 

volumetric 

flow rate 

refwQ ,  
(m

3
h

-1
) 

Mean 

solids 

volume 

fraction 

ICCs,  

obtained 

Using 

ICC 

Mean solids 

volume 

fraction 

dps,  

obtained 

Using 

dp cell 

The 

solids 

volume 

fraction 

% 

error
per

  

The 

solids 

volume 

fraction 

absolute 

error 
abs

  

fm9 0.467 8.666 0.193 0.220 -12.2% -0.027 

fm10 0.623 10.196 0.189 0.190 -0.5% -0.001 

fm11 0.706 12.010 0.133 0.118 12.7% 0.015 

fm12 0.723 13.718 0.068 0.080 -15.0% -0.012 

fm13 0.939 11.072 0.170 0.178 -4.5% -0.008 

fm14 1.116 11.431 0.172 0.187 -8.0% -0.015 

Standard deviation for the percentage error             
per

  9.08 % 

Standard deviation for the Absolute error             
abs

  0.012 

 

7.4.1.3 Discussion of the Solids Volume Fraction Error,   

Figure 7.28 shows the percentage error per

 for the ICC measurements of solids volume fraction 

plotted against the reference value dps,  measured using the DP cell, for both vertical and 

inclined pipes. 
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Figure ‎7.33  Percentage error
per

 plotted against the reference solids volume fraction  dps,  measured using the DP cell
 

Inspection of Figure  7.33 shows that the error per

  in ICCs, , as compared with dps,  in vertical 

flow, varied from 8.7% to -21.2% with a mean value of 
per

 equal to – 6.4% and a standard 

deviation std

  
equal to  9.14% . It should be noted that the reference solids volume fraction was 

more or less constant at approximately 0.06.  

For inclined flow, the error per

  varied from 12 % to -15% with a mean value of 
per

  -4.6 % and 

standard deviation per

 of 9.08%. The reference solids volume fraction for inclined flow varied 

from about 0.08 to about 0.22.  

The results show the largest percentage error per

  occurred for vertical flow when the mean 

volume fraction dps, was 0.08.   

Figure  7.34 shows the absolute error abs

 for ICC measurements of solids volume fraction plotted 

against the reference value dps,  measured using the DP cell, for both vertical and inclined 
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flows. For vertical flow, abs

 varied from 0.0056 to -0.017 with a mean value for 
abs

 of -0.004, 

and for flow at 30
º
 to the vertical, abs

 varied from 0.015 to -0.027 with a mean value for 
abs

 of  

-0.008.  

 

Figure ‎7.34  absolute error
 

abs

  plotted against the reference solids volume fraction  dps,  measured using the DP cell  

For the majority of flow conditions (except fm5, fm6 and fm11), the results obtained for ICCs,  

were underestimated relative to the reference volume fractions dps, . This could simply be due to 

the accuracy of the reference measurements. From the survey of previous work [55], the 

accuracy of the reference dp cell measurements depends upen the superficial velocity 
hU   shown 

in Equation 6-10. From a visual inspection, at some flow conditions such as fm1,fm2 and fm9, 

there was constant water flow into the water hopper but a pulsing of the solids flow into the 

solids hopper. Additionally, as shown in Section  6.3.3.3, the separation in not entirely efficient 

for all flow conditions. The above reasons suggest that the assumption of constant 
hU may be 

incorrect and hence this may have produced an error in the dp cell measurements. The very low 

values of the absolute error abs

  show that the in general the value of solids volume fraction 

obtained from ICC device were quite accurate, despite the percentage error being large.  
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7.4.2 Solids-in-Water Velocity Results 

The mean solid velocity 
,s ICCv  and mean reference solids velocity 

,s refv  are obtained using 

Equations 7-5 and 7-6: 

, ,

,

,

s ICC s ICC

A
s ICC

s ICC

A

v dA

v
dA








        Equation  7-7 

,

,

,

s corr

s ref

s dp

Q
v

A 
          Equation  7-8 

7.4.2.1 The Percentage Error of Solids Velocity for Vertical Upward Flow 

Table ‎7-3 Integrated solids velocity from ICC measurements and reference velocity measurements for vertical upward 

flow of solids-in-water in vertical pipe 

 

Flow 

condition 

(see Table 

6-2) 

Solid 

volumetri

c 

flow rate 

refsQ ,  
(m

3
h

-1
) 

 

Water 

volumetric 

flow rate 

refwQ ,  
(m

3
h

-1
) 

Mean 

solids 

velocity 

,s ICCv  

obtained 

Using 

ICC 

Mean solids 

velocity 

,s refv  

obtained 

using 

 ,s corrQ  and 

dps,  

The 

solids 

velocity 

% 

error
per

v  

The 

solids 

velocity 

absolute 

error 
abs

v  

m/s 

fm1 0.494 7.307 0.367 0.331 10.8% 0.035 

fm2 0.630 10.574 0.525 0.518 1.3% 0.007 

fm3 0.698 10.311 0.478 0.504 -5.1% -0.025 

fm4 0.828 11.534 0.640 0.623 2.7% 0.017 

fm5 0.944 11.975 0.692 0.776 -10.7% -0.080 

fm6 0.935 13.817 0.74 0.861 -14.0% -0.120 

fm7 0.788 11.977 0.716 0.648 10.4% 0.067 

fm8 1.023 11.788 0.758 0.804 -5.7% -0.040 

Standard deviation for the percentage error             
per

v
 

8.6 % 

Standard deviation for the Absolute error             
abs

v
 

0.059 
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7.4.2.2 Absolute Error in Solids Velocity for Upward Flow in Pipe Inclined At 30
º
 to the Vertical  

 

Table ‎7-4 Integrated solids velocity from ICC measurements and reference velocity measurements for upward flow of 

solids-in-water in pipe inclined at 30º to the vertical 

Flow 

condition 

(see Table 

6-2) 

Solid 

volumetri

c 

flow rate 

refsQ ,  
(m

3
h

-1
) 

 

Water 

volumetric 

flow rate 

refwQ ,  
(m

3
h

-1
) 

Mean 

solids 

velocity 

,s ICCv  

obtained 

Using 

ICC 

Mean solids 

velocity 

,s refv  

obtained 

using 

 ,s corrQ  and 

dps,  

The 

solids 

velocity 

% 

error
per

v  

The 

solids 

velocity 

absolute 

error 
abs

v  

m/s 

fm9 0.467 8.666 0.16 0.11 45.4 % 0.05 

fm10 0.623 10.196 0.21 0.175 21.73 % 0.038 

fm11 0.706 12.01 0.28 0.31 -11.08% -0.035 

fm12 0.723 13.718 0.43 0.48 -9.33% -0.045 

fm13 0.939 11.072 0.25 0.28 -10.22% -0.028 

fm14 1.116 11.431 0.26 0.31 -18.43% -0.058 

Standard deviation for the percentage error             
per

v
  

22.86 % 

Standard deviation for the Absolute error m/s            
abs

v
 

0.04 
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7.4.2.3 Discussion of the Solids Velocity Error, v  

 

Figure ‎7.35  Percentage error
per

v plotted against the reference solids velocity  
,s refv  measured using ICC device 

Figure  7.35 shows that the percentage error per

v  for vertical upward solids-in-water flow varied 

from 10.4% to -14.1 % with a mean value of 
per

v  equal to -1.2 % and the percentage error 

standard deviation per

v  was 8.6%.  As shown in Equation  7-8 , the estimation of  
,s refv  depends 

on ,s corrQ  and  dps,  , however these reference measurements have their own sources of errors 

(see, for example Section 7.4.1.3) which will feed into the reference solids velocity calculations.    

For inclined flow, the percentage error per

v  in fm9 and fm10 is high, possibly because either i) 

the errors in the reference measurements as shown in per

v  results for the vertical flow, or ii) 

because these two flow conditions were subject to re-circulation which affected the cross 

correlation results for at least region 7 (see Section  7.3.2.2) which gave 
,s ICCv results in those 

regions higher than the reality. Additionally, the reference solids velocity 
,s refv  in fm9 and fm10 

is low which means that any tiny changes between the measured velocity values and reference 

velocity values will produce a high percentage error.  
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Note that 
,s ICC in these regions is high and was used to calculate the

,s ICCv . However the effect of 

the re-circulation reduces as the mean flow is faster for the remainder of the flow conditions. 

The relation between abs

v and 
,s refv  can be seen in Figure  7.36 

 

Figure ‎7.36 Absolute error
abs

v plotted against the reference solids velocity  
,s refv  measured using ,s corrQ  and dps,  

 

Figure 7.36 shows the absolute error abs

v for ICC measurements of solids velocity plotted against 

the reference solids velocity  
,s refv   measured using Equation  7-8, for both vertical and inclined 

flows. For vertical flow, abs

v varied from 0.067 to -0.12 with a mean value for 
abs

v of -0.018, and 
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for flow at 30
º
 to the vertical, abs

v varied from 0.05 to -0.058 with a mean value for 
abs

v of                     

-0.013. These results show that the solids velocity obtained by the ICC device is quite good.   

7.4.3 Solids Volumetric Flow Rate Results Obtained Using the ICC Flow Meter 

In this section, the ICC solids volumetric flow rate ,s ICCQ was compared with the ,s corrQ  to 

evaluate the system performance.  

Section (6.3.3.1) shows how the solids reference volumetric flow rates were obtained, and 

Section (6.3.3.3) shows how the correction factor was estimated. The reference solids volumetric 

flow rate ,s refQ  was corrected as: 

, ,0.962*s corr s refQ Q          Equation  7-9 

7.4.3.1 Solids Volumetric Flow Rate Error Qs  for Upward Flow in Vertical Pipe 

The integrated solids volumetric flow rate values from the ICC device for the different flow 

conditions for a vertical pipe, and the relevant reference data, are presented in Table  7-5 
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Table ‎7-5 Comparison of the Qs   between  corrected solids volumetric flow rate ,s corrQ  and ICC solids volumetric flow 

rate ,s ICCQ   for upward vertical flow 

 

7.4.3.2 Solids Volumetric Flow Rate Error Qs  for Upward Flow in Pipe Inclined At 30
º
 to the 

Vertical  

The integrated solids volumetric flow rate values from the ICC device for upward flow in a pipe 

inclined at 30
º
 to the vertical, and the relevant reference data, are presented in Table  7-6 

Flow 

condition 

(see Table 

6-2) 

Solid 

volumetri

c 

flow rate 

refsQ ,  
(m

3
h

-1
) 

 

Water 

volumetric 

flow rate 

refwQ ,  
(m

3
h

-1
) 

Solid 

volumetri

c 

flow rate 

,s ICCQ  

obtained 

Using 

ICC 

Corrected 

Solids 

volumetric 

flow rate 

,s corrQ   

 

The 

solids 

volume-

tric flow 

rate  % 

error
per

Qs  

The 

solids 

volume-

tric flow 

rate  

absolute 

error 
abs

Qs  

m
3
/h 

fm1 0.494 7.307 0.422 0.475 -11.0% -0.052 

fm2 0.630 10.574 0.532 0.606 -12.1% -0.073 

fm3 0.698 10.311 0.638 0.671 -4.9% -0.032 

fm4 0.828 11.534 0.762 0.796 -4.3% -0.034 

fm5 0.944 11.975 0.872 0.908 -3.9% -0.035 

fm6 0.935 13.817 0.807 0.899 -10.2% -0.091 

fm7 0.788 11.977 0.717 0.758 -5.3% -0.040 

fm8 1.023 11.788 0.882 0.984 -10.3% -0.101 

Standard deviation for the percentage error             
per

Qs  3.2 % 

Standard deviation for the absolute error   m
3
/h            

abs

Qs  0.025 
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Table ‎7-6 Comparison of the Qs   between  corrected solids volumetric flow rate ,s corrQ  and ICC solids volumetric flow 

rate ,s ICCQ   for upward flow in pipe inclined at 30º to vertical  

 

7.4.3.3 Discussion of the Solids Volumetric Flow Rate Error Qs  

The ICC solids volumetric flow rate ,s ICCQ  was calculated using values for  ,s ICC  and ,s ICCv   

found by integrating across the pipe cross-section: 

dAvQ ICCs

A

ICCsICCs ,,,           Equation  7-10 

It should be noted that any errors in ,s ICC and ,s ICCv  will influence ,s ICCQ . Figure  7.37 shows the 

solids volumetric flow percentage errors pre

Qs  compared with the corrected solids volumetric 

flow rates for all 14 flow conditions.   

Flow 

condition 

(see Table 

6-2) 

Solid 

volumetri

c 

flow rate 

refsQ ,  
(m

3
h

-1
) 

 

Water 

volumetri

c flow rate 

refwQ ,  
(m

3
h

-1
) 

Solid 

volumetric 

flow rate 

,s ICCQ  

obtained 

Using 

ICC 

Corrected 

Solid 

volumetric 

flow rate 

,s corrQ   

 

The solids 

volume 

tric flow 

rate  % 

error
pre

Qs  

The solids 

volume 

tric flow 

rate  

absolute 

error 
abs

Qs  m
3
/h 

fm9 0.467 8.666 0.508 0.449 13.1% 0.050 

fm10 0.623 10.196 0.695 0.599 16.0% 0.090 

fm11 0.706 12.01 0.687 0.679 1.2% 0.008 

fm12 0.723 13.718 0.66 0.695 -5.1% -0.035 

fm13 0.939 11.072 0.856 0.903 -5.2% -0.047 

fm14 1.116 11.431 1.07 1.073 -0.3% -0.003 

Standard deviation for the percentage error              
per

Qs  8.7 % 

Standard deviation for the Absolute error    m
3
/h           

abs

Qs  0.05 
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Figure ‎7.37  Percentage error
per

Qs plotted against the corrected reference solids volume fraction  
,s corrQ  

 

 

For vertical flows, per

Qs  varied between -3.87% to -12.1%, indicating that ,s ICCQ  is always less 

than the reference measurements possibly due to errors occurring in the separation process. It is 

shown in Section 6.2.3 that the separation is not entirely efficient because solid particles will 

always carry an amount of water on their outer surface into the solids hopper. From a visual 

inspection of the separator there was constant water flow into the solids hopper even when there 

was no solids flow. These results indicate that the assumed water volume fraction γ (Section 

6.2.3.3) used to correct the reference solids volumetric flow rate could be higher than 0.05 .  

For the pipe inclined at 30
º
 to the vertical pre

Qs  varied between -5.2 % to 15.9 %. For flow 

conditions fm9 and fm10 the errors were largest probably due to the velocity in regions 6 and 7 

being overestimated. As mentioned in Sections  7.3.2.2 and  7.4.2.3, re-circulation phenomena 

produced an error in velocity measurements for regions 6 and 7, which affected the volumetric 

flow rate measurements. However, for the remainder of the flow conditions, the re-circulation 

/h 
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effects were reduced due to the increased flow velocity, and that reduced the errors for flow 

conditions fm11 to fm14.  

The relation between abs

Qs and  
,s corrQ  can be seen in Figure  7.38 

 

Figure ‎7.38  Absolute error
abs

Qs plotted against the corrected solids volumetric flow rate 
,s corrQ  

7.4.4 Water Volumetric Flow Rate Results 

The EVP was used to measure the water velocity ,w EVPv  in solids-in-water flow, using the 

technique of dividing the pipe cross-section into 7 regions as shown in Figure 6.7b. The 

measurement methodology is explained in Section 6.4.2. The EVP used the ICC solids volume 

fraction profiles (see Figure  7.6 and Figure  7.14) to determine the water volume 

m
3
/h
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fraction ,w EVP in each of the 7 regions, note that , ,1w EVP s ICC   .  The water volumetric flow 

rate can be estimated using: 

 


7

1
,,, )()1(

n
nnEVPwnICCsEVPw AvQ         Equation  7-11 

where nA  is the cross section area of each of the 7 regions (see Table  6-1) 

7.4.4.1 Water Volumetric Flow Rate Error Qw  for Vertical Flow 

The integrated water volumetric flow rate values from the EVP device for each of the upward 

vertical flow condition, and the relevant reference data, are presented in Table  7-7 

Table ‎7-7 Comparison of Qw  with reference water volumetric flow rate ,w refQ  and EVP water volumetric flow 

rate ,w EVPQ   for upward flow in vertical pipe 

 

 

Flow 

condition 

(see Table 

6-2) 

Solid 

volumetric 

flow rate 

refsQ ,  
(m

3
h

-1
) 

 

Water 

volumetric 

flow rate 

refwQ ,  
(m

3
h

-1
) 

Water 

volumetric flow 

rate 

,w EVPQ  

(m
3
h

-1
)  

Obtained using 

EVP 

Water 

volume- 

tric flow 

rate  % 

error
per

Qw  

Water 

volume-tric 

flow rate  

absolute 

error 
abs

Qw  

m3/h 

fm1 0.494 7.307 6.867 -6.0% -0.439 

fm2 0.63 10.574 10.23 -3.2% -0.343 

fm3 0.698 10.311 9.300 -9.8% -1.010 

fm4 0.828 11.534 10.831 -6.1% -0.702 

fm5 0.944 11.975 11.660 -2.6% -0.310 

fm6 0.935 13.817 14.100 2.1% 0.283 

fm7 0.788 11.977 12.388 3.4% 0.411 

fm8 1.023 11.788 12.820 8.8% 1.038 

Standard deviation for the percentage error m
3
/h 

per

Qw  5.6 % 

Standard deviation for the Absolute error   m
3
/h  

abs

Qw  0.623 
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7.4.4.2 Water Volumetric Flow Rate Error Qw  for Upward Flow in Pipe Inclined At 30
º
 to the 

Vertical  

The integrated solids volumetric flow rate values from the EVP device for upward flow in pipe 

inclined at 30
º
 to the vertical, and the relevant reference data, are presented in Table  7-8 

Table ‎7-8 Comparison of Qw  with reference water volumetric flow rate ,w refQ  and EVP water volumetric flow 

rate ,w EVPQ   in pipe inclined at 30º to the vertical 

 

 

 

 

 

 

 

 

7.4.4.3 Discussion of the Water Volumetric Flow Rate Error, Qw  

The EVP water volumetric flow rate ,w EVPQ  was calculated using the water volume fraction 

 ICCs,1  and water velocity ,w EVPv  integrated through the pipe cross-section as shown in 

Section 6.4.2.  The same condition applied here as for the solids volumetric flow rate 

calculations that is, any errors in water volume fraction  ICCs,1   or water velocity ,w EVPv  will 

Flow 

condition 

(see Table 

6-2) 

Solid 

volumetri

c 

flow rate 

refsQ ,  
(m

3
h

-1
) 

 

Water 

volumetric 

flow rate 

refwQ ,  
(m

3
h

-1
) 

Water volumetric 

flow rate 

,w EVPQ  

(m
3
h

-1
)  

Obtained using 

EVP 

Water 

volume-

tric flow 

rate % 

error
per

Qw  

Water 

volume- tric 

flow rate  

absolute 

error 
abs

Qw  

m3/h 

fm9 0.467 8.666 9.638 11.2% 0.972 

fm10 0.623 10.196 11.087 8.7% 0.891 

fm11 0.706 12.010 12.661 5.4% 0.651 

fm12 0.723 13.718 14.064 2.5% 0.346 

fm13 0.939 11.072 11.860 7.1% 0.788 

fm14 1.116 11.431 12.158 6.4% 0.727 

Standard deviation for the percentage error        
per

Qw  2.69 % 

Standard deviation for the Absolute error   m
3
/h  

abs

Qw  0.2 
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affect the ,w EVPQ  calculations. Values for per

Qw listed in Table  7-7 and Table  7-8 are presented 

Figure  7.39 

 

Figure ‎7.39 Percentage error
pre

Qw plotted against the reference water volumetric flow rate  
,w refQ  measured using the 

hopper system
 

 

The percentage errors presented in Figure  7.39 are heavily reliant on the accuracy of the local 

volume fraction distribution obtained by the ICC instrument and the reference water volumetric 

flow rate obtained from the gravimetric flow measurement system. However, the ,s ICC for 

vertical flow was less than 0.080, which meant per

Qw could be highly reliant on the reference water 

volumetric flow rate and the accuracy of water velocity ,w EVPv . The ,w EVPQ for conditions fm1 to 

fm5 were underestimated, but as the flow increased the ,w EVPQ  started to be overestimated. This 

could mean that use of an EVP system leads to an underestimation of ,w EVPv . This behaviour was 

also observed in Leeungculsatien‟s experiments [83] for single phase flow using the EVP 

,m
3
/h

 

,m
3
/h 
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system. Leeungculsatien used 6 different flow conditions and 5 of them indicated that that ,w EVPv  

is underestimated.  Additionally, in the present investigation, the reconstructed water and solids 

velocity profiles show that the EVP system underestimated ,w EVPv for flow conditions fm4, fm5, 

fm7 and fm8, see Figure  7.22 to Figure  7.25. 

For inclined flow, due to the high values of ,s ICC in the flow conditions investigated, the 

percentage errors are likely to be very reliant on the accuracy of the local volume fraction 

distribution and the reference water volumetric flow rate. The mean solids volume fraction 

percentage error  
per

  for the flow in the pipe at 30
º
 to the vertical was -4.6 %. Flow condition 

fm9 showed the maximum error of 11.2 % where per

 in the same condition was 12.2 %. 

In this investigation, the reference water volumetric flow rate was assumed to be accurate and 

did not need correcting. However, as shown above some of the water emerging from the flow 

loop outlet section entered the solids hopper which would result in a small underestimation of the 

reference water volumetric flow rate obtained from the gravimetric flow measurement. 

The relation between abs

Qw and 
,w refQ   can be seen in Figure 7.40.  
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Figure ‎7.40 Absolute error 
abs

Qw  plotted against the reference water volume fraction  
,w refQ  measured using the hopper 

system 

 

Multiphase flow meters are commercially available but expensive and the error could be as high 

as 10% (which was the accuracy achieved by the techniques described in this thesis). For 

example, the typical relative error of the Roxar subsea multiphase meter [99] were  +/- 4 %  for 

the liquid flow rate and  +/- 8 % for the gas flow rate.  

 

,m
3
/h

 

,m
3
/h 



223 

 

7.5  Summary 

The ICC flow meter and the EVP system can be used for in-situ measurements of volume 

fraction distribution, velocity profiles and volumetric flow rates for both phases of solids-in-

water two phase pipe flows. 

The solids volume fraction distributions in vertical flow had the shape of a power law 

distribution, where the solids particles tended preferentially to be located towards the centre of 

the pipe. However, in a pipe inclined at 30° to the vertical, the solids volume fraction at the lower 

side of the inclined pipe is much greater than at the upper side. 

In vertical solids-in-water two-phase-flows, the local solids velocity and water velocity are 

uniformly distributed over the flow cross-section. However, in a 30° inclined working-section, 

the local solids velocity and water velocity distributions are highly non-uniform.  

To obtain an accurate value for the solids volumetric flow rate it is necessary to integrate the 

local solids velocity distributions and the local solids volume fraction distributions over the flow 

cross-section.  

In vertical flow the maximum error in the solids volumetric flow rate was -12.1%, while in a 30° 

inclined working-section, the maximum error in the solids volumetric flow rate was 15.9%.  

The local water volume fraction was obtained using the local ICC solids volume fraction given 

by , ,1w EVP s ICC   . The water volumetric flow rate was determined by integrating the local 

water volume and local water axial velocity over the 7 flow regions shown in Figure6.7b. 

The maximum error in the water volumetric flow rate estimates was -9.8% in vertical flow and 

11.2% in flows inclined at 30° to the vertical.  
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It should to be noticed that a large component of the errors in solids and water volumetric flow 

rates were almost certainly due to the inaccuracies in measurements made with the gravimetric 

reference system. 

The mean error in the solids volumetric flow rate at 0° and 30° inclination is -7.7% (refer to 

Table  7-5) and +3.2% (refer to Table  7-6) respectively. 

 The mean error in the water volumetric flow rate at 0° and 30° inclination is -1.6% (refer to 

Table  7-7) and +6.8% (refer to Table  7-8) respectively.  

In vertical solids-in-water flow, the Area Methodology AM shows more accurate results than the 

Centre of Action CoA method. In vertical low mean solids volume fraction flow, i.e. 08.0 , 

the CoA method produced an error in the solids volume fractions results which reached 70%. 

Yet in inclined solids-in-water flow, the Area Methodology methods shows unrealistic value for 

the solids volume which fraction reached 6.1 . Unlike Area Methodology, the Centre of 

Action method shows more accurate results for the solids volume fraction measurement.  The 

reason for the differences between the two methods is explained in Sections 3.4.2 and 3.4.4.   

The magnitude of the mean errors in solids and water volumetric flow rates using the ICC 

instrument in conjunction with EVP instrument were relatively small, the combined technique is 

believed to be helpful in improving the accuracy of current two-phase flow metering technology. 
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8. CHAPTER 8: Conclusions and Future Work  

 

8.1  Conclusions 

This thesis has presented a study of the development of a novel non-intrusive multiphase flow 

meter for measuring flow parameters for two-phase, highly non-uniform solids-in-water flow in 

vertical and inclined pipes. The flow meter that has been developed is based on the integration of 

two measurement techniques: Impedance Cross Correlation and an Electromagnetic Velocity 

Profiler. 

The impedance cross correlation flow meter is a novel and non-intrusive device and able to 

measure the solids and water local volume fraction distributions, the solids local velocity 

distribution and the solids volumetric flow rate in highly non-uniform solids-in-water flow. The 

ICC device consists of two electrode arrays separated by an axial distance of 50mm. each array 

has eight electrodes equi-spaced around the pipe wall.  

The ICC device has two electrode selection circuits which were designed to allow selection of 

any electrodes from a given array (A or B) and connect them to the excitation signal (V
+
), 

measurement circuit (ve) or earth (E) in the corresponding channel (A or B) of the conductance 

measurement circuit, refer to Section 4.2.2. Based on the truth Tables 4.1 and 4.2, the electrode 

m in each array was connected to one of three potentials (V
+
, ve and E). The ICC device has a 

conductance circuit to measure the conductance of the multiphase mixture between the V
+
 and ve 

electrodes, sequentially for each of the eight rotational positions, for a given configuration. 

Using the measured conductance for a given configuration and rotational position, the local 

solids volume fraction s  is measured using Maxwell‟s relationship, see Equation  4-9.  
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For a given configuration and rotational position, the DC output voltages )(, tVA n  and )(, tVB n  

were cross correlated to provide information on the local solids velocity of a two phase flow, 

refer to Section  4.3.2 

Standalone and computer based ICC systems have been developed. The standalone ICC system 

can be operated without any computer interaction after all the programming routines had been 

download onto the microcontroller memory. The standalone ICC system can be used to measure 

the solids volume fraction for a given configuration and rotational positions (n=1 to 8) and 

display the results on a LCD screen. This is extremely useful as an industrial unit where space is 

limited. Due to limitations in the sampling frequency of the microcontroller, a computer based 

system was used to cross correlate the DC output voltages )(, tVA n  and )(, tVB n  and provide 

information on the local solids velocity of a two phase flow. 

Two measurements approaches were used with the ICC: the Area Method and Centre of Action 

Method. Both techniques depend on finding the sensitivity distribution for each electrode 

configuration and determining the measured solids and water parameters for those distributions. 

A successful COMSOL computational model of the ICC flow meter was achieved to investigate 

which electrode configurations interrogated deepest into the flow cross-section. The model was 

used to calculate the sensitivity distribution for different electrode configurations: 

 Configuration I (see Table  3-1): in this configuration, only one electrode is excited with an 

adjacent electrode selected as the virtual earth measurement (ve) electrode. The remaining six 

electrodes are earthed (E). For example, in rotational position-1, electrode 1 is the excitation 

electrode and electrode 2 is the measurement electrode (ve), with electrodes 3, 4, 5, 6, 7 and 8 
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connected to ground (E). Seven similar arrangements are possible by simple rotation of the 

arrangement. 

 Configuration II (see Table  3-2): in this configuration, only one electrode is excited and the 

two adjacent electrodes are used for virtual earth measurements. The remaining five 

electrodes are earthed (E). For example, in rotational position-1, electrode 1 is the excitation 

electrode, electrodes 2 and 8 are the measurement electrodes and electrodes 3, 4, 5, 6 and 7 

are connected to ground. Again seven similar arrangements are possible by simple rotation of 

the first arrangement.  

 Configuration III (see Table  3-3): in this configuration, two adjacent electrodes are excited 

and the two adjacent electrodes are used for virtual earth measurements (ve). The remaining 

four electrodes are earthed (E). For example, in rotational position-1 electrodes 1 and 2 are the 

excited, electrodes 3 and 8 are the measurement electrodes and electrodes 4, 5, 6 and 7 

earthed (E). Again seven similar arrangements are possible by simple rotation of the first 

arrangement. 

The boundary of the effective sensing region in each Configuration ( IIIor  II I, ) and the thn  

rotational position ( 8  to1n ) was arbitrarily defined as 10% of the maximum sensitivity. Each 

effective sensing region has a Centre of Action which can be taken as a measure of how far the 

sensing field extends into the fluid. The x and y coordinates for each Centre of Action in the 

three configurations for each of the eight rotational positions can be calculated using Equations 

3-5 and 3-6 in Section 3.4.1. 

 Centre of Action CoA was used to measure the solids parameters in solids-in-water stratified 

flow inclined at 30˚ to the vertical. However, The Centre of Action method was found to have 

limited capability with low solids volume fraction in vertical flow, though it worked effectively 



228 

 

for inclined flows, see Section  3.4.2. An obvious reason for this is the lack of precision in 

measuring the solids parameters at the centre of the pipe. Thus a new measurement technique 

(Area Method) was developed to measure the solids-in-water parameters for vertical flow. 

The Area Method (AM) is based on dividing the pipe cross-section into defined sub-areas. The 

boundary outline of these regions depends on the sensitivity distributions of  the configurations 

(A new configuration, Configuration IV, was used to obtained an effective sensing region 

extending deeper toward the centre of the pipe, see Section  3.4.3.1). This technique will depend 

on a sensitivity parameter   obtained from the sensitivity distribution for Configuration IV, see 

Section 3.4.3.2. 

 Configuration IV (see Table  3-4): is similar to Configuration I, but while Configuration IV 

has only one excitation electrode and only one virtual earth (ve), the virtual earth is not the 

adjacent electrode but the next one along. Thus if the excitation electrode is electrode 1 the 

virtual earth is electrode 3. As previously the remaining electrodes, 2, 4, 5, 6, 7 and 8 are 

earthed (E). Obviously seven similar arrangements are possible by simple circular rotation. 

The Area Method has a limitation when measuring the solids volume fraction in inclined flow, 

see Section 3.4.4. In solids-in-water flow inclined at 30° to the vertical, the solids volume 

fraction 
s  is much greater at the lower side of the pipe than the upper side. This happened due 

to the fact that 
s  is effected by the gravity and varies as a function of the y co-ordinate. This 

failure of the AM could be due to the large variation in solids volume fraction between the lower 

and upper sides of the pipe. The relationship in Equation 3-12 is used to measure the solids 

volume fraction 0,n  at position Bn,0  and it is highly dependent on a symmetric solids‟ 

distribution in X and Y co-ordinates. Additionally, the relationship in Equation 3-12 is also 
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highly dependent on the mean sensitivity parameter . Any small error in   will effect 
s  

especially if 
s  is relatively high, e.g. if it reaches 0.65-0.70 at the lower side of the pipe.    

Based on the above it was decided to use the CoA to determine the solids‟ parameters in solid-in-

water inclined flow only and to use the Area Method to determine the solids‟ parameters in solid-

in-water vertical flow.  

This thesis has also presented a novel non-intrusive multiphase flow meter for measuring highly 

non-uniform velocity profiles in single-phase flows in vertical and inclined two-phase flows. The 

developed flow meter is a multi-electrode electromagnetic device called the Electromagnetic 

Velocity Profiler (EVP). The EVP consists of a non-conducting flow tube of 80 mm ID, with 

sixteen stainless steel electrodes mounted flush and equi-spaced around the pipe wall, a 

Helmholtz coil, and the associated electronic and electrical circuitries, see Section 6.3.  

Using the multiphase flow loop at the University of Huddersfield an experimental investigation 

was carried out of the performance of the combined ICC/EVP instruments for solids-in-water 

multiphase flows. Reference measurements of the mean reference solids volume fraction dps,  in 

the flow cross-section (Section  6.3.2), the reference solids volumetric flow rate, refsQ , , and the 

reference water volumetric flow rate, refwQ , (Section ‎6.3.3) were obtained.  

By combining the ICC/EVP techniques into a two-phase flow meter the volume fraction 

distributions of both phases, the velocity profiles of both phases and the volumetric flow rates for 

both phases were measured for solids-in-water two-phase pipe flows. 

In solids-in-water 30°inclined flow to the vertical, the solids volume fraction profiles show 

that a very small proportion of solids particles are present at the upper regions of the flow cross –
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section (region 1, 2 and 3 in Figure  6.9). The solids volume fraction increased towards the lower 

side of the pipe reaching a maximum in region 7. The reference solids volume fraction for 

inclined flow varied from about 0.08 to about 0.22. The comparison between the mean 

measurement results ICCs,  and the reference results dps,  for the solids volume fraction shows 

that the percentage error per

  varied from 12 % to -15% with a mean value of 
per

  -4.6 % and 

standard deviation per

 of 9.08%.  

Additionally, the experimental results show that the local axial solids and water velocity both 

decrease as moving from the upper side of the pipe to the lower.    

For inclined flow, the mean percentage solids velocity error
per

v  was 3.01% with percentage 

standard deviation per

v of 22.86%.While the mean absolute solids velocity error
abs

v  was 0.013 

m/s with absolute standard deviation abs

v of 0.04 m/s. 

The solids velocity percentage error in fm9 and fm10 is high, possibly because either i) the errors 

in the reference measurements ( dps,  and refsQ , ) which were used to determine the mean 

reference solids velocity refsv ,   or ii) because these two flow conditions were subject to re-

circulation which effected the cross correlation results for at least region 7 (see Section  7.3.2.2) 

which gave 
,s ICCv results in those regions higher than the reality.  

The local solids volume fraction distributions and the local solids axial velocity distributions 

show qualitative agreement with previous experimental profiles obtained by Cory [56] and Al-

Hinai [49]. 
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In solid-in-water vertical flow, the solids volume fraction profiles show a bell shape with a 

marked increase in solids volume fraction ICCs,  close to the pipe centre and decreases toward 

the pipe wall due to the “wall effect”. However, the solids velocity profiles and the water 

velocity profiles have only small variation of ICCsv ,  over the pipe cross-section. 

The solids volume fraction percentage error per

  in ICCs, , as compared with dps,  in vertical 

flow, varied from 8.7% to -21.2% with a mean value of per

  – 6.4% and standard deviation std

  

of 9.4%. While the solids volume fraction absolute error abs

  is varied from 0.005 to -0.017 with 

a mean value of per

  -0.004 and absolute standard deviation abs

  
of 0.006. 

The local solids volume fraction profiles in vertical flow match previous profiles obtained by 

Alajbegovic et. al., [13] and Bartosik and Shook [15]. 

Additionally per

v  for vertical upward solids-in-water flow varied from 10.4% to -14.1 % with a 

mean value of
per

v  -1.2 % and percentage error standard deviation per

v 8.6%. The mean absolute 

solids velocity error
abs

v  was 0.013 m/s with absolute standard deviation abs

v of 0.04 m/s. 

Again, the local solids axial velocity distributions for the current study show qualitative 

agreement with previous experimental profiles obtained by Cory [56] and Al-Hinai [49]. 

Using the ICC device, the solids volumetric flow rate can be estimated by integrating the local 

solids velocity profiles and local solids volume fraction profiles through the pipe cross section. 

The EVP was used to measure the water velocity ,w EVPv  in solids-in-water flow. Additionally, the 

EVP used the ICC local solids volume fraction profiles (see Figure  7.6 and Figure  7.14) to 
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determine the local water volume fraction ,w EVP , note that , ,1w EVP s ICC   .  The water 

volumetric flow rate can be estimated by integrating the local water velocity profiles and the 

local water volume profiles through the pipe cross section. 

For solids-in-water vertical flows, the solids volumetric flow rate ,s ICCQ results obtained by the 

ICC device were always less than the reference measurements. The percentage error for the 

solids volumetric flow rate  pre

Qs  varied between -3.87% to -12.1%, with a mean solids 

volumetric flow rate percentage error 
per

Qs -7.7%. 

The percentage error for the water volumetric flow rate  per

Qw  varied between -9.8% to 8.8%, 

with a mean water volumetric flow rate percentage error  
per

Qw -1.68%.  

For the pipe inclined at 30
º
 to the vertical pre

Qs  varied between -5.2 % to 15.9 % with a mean 

value 3.2%. While the 
per

Qw varied between 2.5 % to 11.2 % with a mean value 6.8%.  

For solids-in-water pipe flows the solids and water velocity profiles and the solids and water 

local volume fraction distributions are all highly non-uniform, especially when the flow pipe is 

inclined at 30
º
 to the vertical. Nevertheless the two phase flow meter was able to measure solids 

and water volumetric flow rate to about +/-10 % of references reading. It is expected that the 

magnitude of these errors will be substantially reduced when better reference measurements of 

the solids and water volumetric flow rates can be made.  

The achieved results show that the performance of the techniques described in this thesis can be 

matched with the existing commercial multiphase flow meter for vertical and inclined (stratified) 

solids-in-water flows. 
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8.2  Future Work 

The results of the current investigation and the conclusions reached, suggest a number of 

avenues for further work: 

 The Area Method needs to be investigated using solids-in-water vertical flow with high mean 

solids volume fraction to evaluate its performance. Additionally, more investigation is needed 

for find other suitable configurations which can interrogate deeper into the flow cross-section.   

 Using the Centre of Action CoA method, the ICC device shows a good performance in 

stratified upward flow with a moving bed in pipes inclined at 30
º
 to the vertical; it is 

recommended that the ICC be applied to the investigation of horizontal stratified solids-in-

water flows. 

 The ICC device is used to measure the dispersed phase parameters in two-phase solids-in-

water flow and it is recommended to investigate the performance of the ICC in liquid-liquid 

oil-water flows, since oil-in-water flow is one of the most common and important multiphase 

flow types in the oil industry. 

 In inclined non-uniform solids-in-liquid flow, the flow structure is changing through different 

pipe work sections depending on the mixture flow rates. Therefore, it is recommended that the 

use of more than 2 electrode arrays be investigated. For example 4 arrays as shown in Figure 

8-1 would be expected to provide a better indication of any wave structures in the flow that 

occur while measurements are being made.  

It could also be better to use 3 earthed electrode rings to achieve symmetric electrical 

distributions and eliminate the interface between the electrode arrays. 
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Figure ‎8.1 Suggested four electrode array flow meter. 

 

Additionally, Using more than 8 electrodes (i.e 16) would increase the number of 

measurements and give greater precision to the calculated flow pattern and its parameters. 

 

 The electrodes geometry was rectangular with dimensions of 10 mm long x 5 mm wide x 1.5 

mm thick. Investigations are needed to examine the effects of electrode size and shape on 

measurement accuracy.  

 The reference measurements devices used on the University of Huddersfield flow loop need 

to be improved: a better separation method or a sensor in the solids hopper to measure the 

volumetric flow rate of the water emerging with the solids, refer to Figure 8.2. 

Grounded 

electrode rings 

Array A 

Array B 

Array C 

Array D 
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Figure ‎8.2 Schematic diagram of the water level sensor inside the solids hopper 

 

Figure  8.2 shows the level sensor inside the solids hopper. The system consists of two parallel 

copper strips mounted on a layer of insulating material and fixed over the wall of the hopper.  

An electrical connection between the strips will form as water start filling the solids hopper.   

The fluid electrical resistance  Rf  between the strips will be related to the level of water in the 

hopper, H. By using the same circuit conductance shown in Figure  4.9, the relation between 

the output voltage Vout from the conductance circuit and the water level can be found. 

For the current investigation, the level of water in the solids hopper is always less than the 

level of the solids because the mixture has already been partially separated. Therefore the 

Two copper strips 
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exact relationship between the water volumes emerged inside the solids hopper and the output 

voltage Vout from the conductance circuit can be determined using experimental calibration.  

The calibration can be carried out by adding dry solids to the hopper and then adding 

measured volumes of water whilst recording the value of Vout given by the conductance 

circuit. 

 The ICC /EVP system could be combined with a density flowmeter to measure the parameters 

of the multiphase flow i.e. oil-gas-water flow. The density flowmeter, refer to Figure  8.3 , is 

used to measure the fluid mixture density.  

 

 

Figure ‎8.3 schematic diagram of the density flowmeter 

 

The density flowmeter in Figure  8.3 shows a horizontal pipe of radii R1 and R2 of length L 

supported rigidly at both ends. By measuring the deflection of the pipe , the fluid mixture 

density f  is determined. The deflection at the centre of the span is given by[]: 
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 2 2 2 4

2 1 1

4 4

2 1

( )1

384 1/ 2 ( )

p fR R g R g L

E R R

    
 


      Equation  8-1 

where p is the density of the pipe material, kg/m
3
 , f  is the density of the fluid mixture, 

kg/m
3
 , g is the gravity m/s

2
 and E  is the modulus of elasticity of the pipe material.  

The mixture fluid density f in oil-gas-water flow is defined as: 

f o o w w g g                 Equation  8-2 

where o , w and g represent respectively the volume fraction of the oil, water and gas. 

o , w and g  represent respectively the density of the oil, water and gas. 

Since g is very small compared with water and oil density, therefore, the term g g  in 

Equation 8-2 can be neglected. Hence Equation 8-2 can be re-written as: 

f o o w w               Equation  8-3 

In three phase flow condition, it is only needed to measure the volume fraction for two phases 

in order to find the third one as shown below: 

wg  1          Equation  8-4 

Equation 8-4 can be re-written in term of the water volume fraction as: 

 1w o g              Equation  8-5 

The ICC device can be used to measure the dispersed volume fraction in oil-gas-water 

multiphase flow. The measured volume fraction for the dispersed phase represents the gas and 

oil volume fractions. Therefore, the measured volume fraction from the ICC device can be 

written as: 

ICC o g             Equation  8-6 
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By solving Equation 8-6, Equation 8-5 and Equation 8-3, the volume fraction of the three 

phases can be determined. 

The ICC device can be also used to measure the dispersed velocity in oil-gas-water 

multiphase flow using cross correlation technique. The signal obtained by the ICC represents 

the oil and gas signals. By filtering these signals, the velocity of both oil and gas can be 

found. 

Additionally, the EVP system can be used to measure the water velocity in oil-gas-water 

multiphase flow. By integrated the velocity and volume fraction for all phases through the 

pipe across section, the volumetric flow rate can be easily determined. 
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10. Appendix A 

10.1  CoA Coordinates for Configuration I, II and III 
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Figure ‎10.1 Location of CoA for Config-I, II and III for each of the eight possible electrode rotational positions 

 

Table ‎10-1 CoA coordinates for Configuration I, II and III for each of the eight possible electrode rotational positions per 

configuration.  

Configuration _I X - coordinate  Y - coordinate 

Rotational position 1 -23 -24.9 

Rotational position 2 1.5 -35.6 

Rotational position 3 25 -21.1 

Rotational position 4 33 3.7 

Rotational position 5 24 24 
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Rotational position 6 -0.1 34.1 

Rotational position 7 -24 23 

Rotational position 8 -33 -0.8 

Configuration _II X - coordinate  Y - coordinate 

Rotational position 1 -22 -12 

Rotational position 2 -8 -26 

Rotational position 3 14 -20 

Rotational position 4 26 -8 

Rotational position 5 24 12 

Rotational position 6 8 26 

Rotational position 7 -12 24 

Rotational position 8 -24 8 

Configuration _III X - coordinate  Y - coordinate 

Rotational position 1 -10 -12 

Rotational position 2 2 -15 

Rotational position 3 12 -12 

Rotational position 4 18 0.8 

Rotational position 5 14 12 

Rotational position 6 2 20 

Rotational position 7 -12.1 14 

Rotational position 8 -18 2 
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10.2 The Coordinates of the 32 Measurements Points (Area Methodology)  
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Figure ‎10.2 X and Y coordinates of the 32 measurements points 

 

Table ‎10-2 X and Y coordinate shown in Figure 9-2 

32 Points X - coordinate Y - coordinate 

A1 -29.22 -13.24 

A2 -11.30 -30.02 

A3 13.24 -29.22 

A4 30.024 -11.30 

A5 29.22 13.24 

A6 11.30 30.02 

A7 -13.24 29.22 

A8 -30.02 11.30 

A8,1 -36.07 0.93 

A1,2 -26.16 -24.85 
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A2,3 0.93 -36.07 

A3,4 24.85 -26.16 

A4,5 36.07 -0.93 

A5,6 26.16 24.85 

A6,7 0.93 36.07 

A7,8 -24.85 26.16 

B1,0 -17.6 -15.1 

B2,0 -1 -23 

B3,0 15.1 -17.6 

B4,0 23 -1 

B5,0 15.1 17.6 

B6,0 1 23 

B7,0 -17.6 15.1 

B8,0 -23 1 

LP1 -10 0 

LP2 -7 -7 

LP3 0 -10 

LP4 7 -7 

LP5 10 0 

LP6 7 7 

LP7 0 10 

LP8 -7 7 
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11. Appendix B 

 
1. Code-1: this code is used to determine the solids velocity. The Labview program used to 
collect the data from channels A and B at1 min sampling time and 2000 samples/second. the 
program save the collected data as lvm file into two columns.    
 

clc; 
clear all; 
close all; 
 
load('D:\yousif2012\yousif\t4-3-configur1-rot8-34hz-test.lvm'); loading the the lvm file  
 
N=2*2048; %Number of samples 
T=N/2000;  %Sampling time  
 
cha= t4-3-configur1-rot8-34hz-test (1:N,2);% define the data for channel A 
chb= t4-3-configur1-rot8-34hz-test (1:N,1);% define the data for channel B 
 
tempcha = mean(cha); 
tempchb = mean(chb); 
 
 
cha = cha(1:N)-tempcha;  % Linear the data in order to remove the DC offset 
chb = chb(1:N)-tempchb; % Linear the data in order to remove the DC offset 
c1 = xcorr(chb,cha);         % cross correlated channel A and channel B 
figure(2); 
t=linspace(-T,T,2*N-1); 
plot(t,c1) 
xlabel('Time (s)'); 
ylabel('C.C. Function'); 
TITLE('34 Solid Pump + 0 Water Pump'); 
[m I] = max(c1); 
m 
t(I) 
V(1)=(0.05/t(I)); % Calculate the velocity V=L/t(I), where t(I) is the delay time. 
time_d(1)=t(I); 
figure(1); 
t=linspace(0,T,N); 
plot (t,cha,'green') 
hold on 
plot (t,chb,'red') 
xlabel('Time (s)'); 
ylabel('Vout'); 
TITLE('34 Solid Pump + 0 Water Pump'); 
legend('cha','chb'); 
  
for i=1:28 % loop to determine the velocity every 2 seconds 
 
cha= t4-3-configur1-rot8-34hz-test (i*N:(i+1)*N,2); 
chb= t4-3-configur1-rot8-34hz-test (i*N:(i+1)*N,1); 
  
tempcha = mean(cha); 
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tempchb = mean(chb); 
  
cha = cha(1:N)-tempcha; 
chb = chb(1:N)-tempchb; 
c1=xcorr(chb,cha); 
figure(i+2); 
t=linspace(-T,T,2*N-1); 
plot(t,c1); 
xlabel('Time (s)'); 
ylabel('C.C. Function'); 
TITLE('34 Solid Pump + 0 Water Pump'); 
[m I] = max(c1); 
m 
t(I) 
V(1+i)=(0.05/t(I)); 
time_d(i+1)=t(I); 
figure(i+30); 
t=linspace(0,T,N); 
plot (t,cha,'green') 
hold on 
plot (t,chb,'red') 
xlabel('Time (s)'); 
ylabel('Vout'); 
TITLE('34 Solid Pump + 0 Water Pump'); 
legend('cha','chb'); 
  
end 
 
 
2. Code-2: This code is used to draw the solids velocity and volume fraction distributions in 
3-D figure,   
 

close all; 
clear all; 
clc; 
 
load('C:\Documents and Settings\sengymm\Desktop\ICC \36\wyz.txt')% loading wxz file where 
the first column in the x coordinates for the CoA, second column is the Y coordinates for the 
CoA, and the third column represent the volume fraction values.    
 
[xx,yy]=meshgrid(min(-40):2:max(40),min(-40):2:max(40)); 
 x=wyz(:,1); 
 y=wyz(:,2); 
  z=wyz(:,3); 
zz=griddata(x,y,z,xx,yy,'V4'); 
zz(xx.^2 + yy.^2>= 1600) = 0; ;% define the pipe cross-section x

2
+y

2
=r^

2
 

figure(1)       
surf(xx,yy,zz) 
axis square; 
xlabel('x-cord of centre of action'); 
ylabel('y-cord of centre of action'); 
zlabel('Solids Volumr fraction'); 
TITLE('38Hz Solid Pump + 50Hz Water Pump'); 
 COLORBAR('vert') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
load('C:\Documents and Settings\sengymm\Desktop\ICC\36\wyzv.txt') % loading wxzv file 
where the first column in the x coordinates for the CoA, second column is the Y coordinates for 
the CoA, and the third column represent the Velocity values.    
[xxv,yyv]=meshgrid(min(-40):2:max(40),min(-40):2:max(40)); 
 xv=wyzv(:,1); 
 yv=wyzv(:,2); 
 zv=wyzv(:,3); 
zzv=griddata(xv,yv,zv,xxv,yyv,'v4'); 
zzv(xxv.^2 + yyv.^2>= 1600) = 0;% define the pipe cross-section x

2
+y

2
=r^

2
 

surf(xxv,yyv,zzv) 
 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


