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Abstract 

A novel electronic signal Measurement System (MS) based on one-dimensional 

chaotic maps (Logistic Map (LM) and Tent Map (TM)) has been developed, 

analysed and tested. Firstly, an in-depth theoretical analysis of each map was 

performed using MATLAB based computation, and the results demonstrated that the 

high sensitivity, to initial conditions, of each map was suitable for small signal 

change detection and measurement. A new 3D representation of chaos map output 

for varying initial input was also developed allowing the suitability of any one-

dimensional chaotic map to be determined.  

An electronic implementation of the chaotic maps, using low noise and low cost 

components was developed along with a feedback and a series based MS. The 

implementations were tested and the experimental results demonstrate a matching 

within ±1 %, between theory and the electronic implementations, both maps 

exhibiting behaviour identical to the theoretical maps, ranging from fixed point 

stability, periodicity and chaos. 

Each map implementation was tested separately and as part of a complete MS and 

the results reveal that the proposed measurement technique can detect and measure 

input signals changes as low as 5    over a 10 V input range, which yields a greater 

resolution than a MS using an 20 bit Analogue to Digital Converter (ADC) over the 

same input range. 

The main advantage of the presented MS is that the accuracy of the measurement is 

independent of the input range which is not the case with classical approach to 
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measurement based on conditioning circuitry followed by an ADC as the minimum 

detectable change is directly proportional to the input range.  
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1  Introduction 

1.1 Background 

Measurement of physical quantities is essential in the majority of technical devices 

as almost every electronic system requires the magnitude of one or more parameters 

to be determined in order to perform specific tasks. The quantity and quality of 

signal measurement required for systems have grown drastically with the advance of 

technology. For example, modern cars, although performing the same task as the 

older models are fitted with an increasing number of sensors to enhance user comfort 

and safety; the measured parameters can range from critical; engine temperature, 

collision detection and oil level to less critical; ambient temperature and seat 

position. For some applications, the improvement in measurement quality (accuracy, 

precision) represents the main factor to the overall system performance; this can be 

the case in pollutant, earthquake or explosive detection etc., where the sensitivity and 

accuracy of a system is critical.                

In order to measure any physical variable a Measurement System (MS) is required. 

With the increasing need for high accuracy systems, the ability to detect small 

amplitude changes of a given parameter has become a key factor. Low level signal 

parameter change measurement is challenging due to practical limitations such as 

interferences from external sources, sensor limitations, in terms of accuracy, and 

other errors inherent to the electronic circuitry (limited resolution, noise generated 

by the components).   
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As MS are designed to achieve improved performances in terms of sensitivity and 

accuracy, the overall complexity of the system is increased which generally 

increases the overall cost. In a classical approach to a MS, the physical quantity 

being measured is converted to a proportional electric signal (voltage or current) and 

adapted to a given system value range before being digitalised using an Analogue to 

Digital Converter (ADC). This general method gives satisfactory results in the 

majority of cases but becomes inefficient when small input signal changes have to be 

detected over a large input range, as the minimum detectable change is directly 

proportional to the resolution of the ADC being used. This means that higher 

resolutions ADCs which are generally more expensive are required to determine 

small parameter changes thus increasing the overall cost of the system. To palliate 

the loss of resolution with increased input signal range, a specific MS has to be used 

with resolution independent from the input range. In this thesis, a chaos based MS 

has been developed and tested for the purpose of eliminating the need for expensive 

ADCs when a small change of input signal has to be detected over a large input 

range.  

1.2 Chaos and Measurement 

Chaos as a means of measurement is generally perceived to be counterintuitive as the 

essence of chaos is the inability to predict the future state of a system with absolute 

certainty. Starting from the second half of the 20
th

 century the study of chaos has 

brought a new insight on a phenomenon that was long believed to be random 

uncorrelated variations (noise), namely the high sensitivity to initial conditions. The 

phenomenon was observed in various fields ranging from economics: the evolution 
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of cotton prices, biology: the evolution of population of foxes and meteorology: the 

evolution of weather conditions (G.L.Baker and J.P.Gollub, 1990).  

The high sensitivity to initial conditions was first mentioned by French 

mathematician Henri Poincaré in 1890; while studying a three-body problem where 

the motion of three bodies has to be determined at any particular point in time from 

initial data (individual mass, position and velocity). Poincaré showed that the motion 

of the bodies is highly sensitive to initial conditions. The significance of this 

discovery remained unnoticed until 1961 when the mathematician and meteorologist 

Edward Lorenz observed a similar phenomenon while running weather prediction 

algorithms on a computer (Gleick, 1988). After evaluating a weather prediction 

model for many hours, Lorenz wanted to confirm the results by rerunning the 

simulation, but in order to shorten the time required for the simulation Lorenz 

entered a result from a printout table from the middle of the original dataset. 

Limiting the result to three decimal places, Lorenz assumed that the rounding error 

would be insignificant. The results obtained from the second run where at first 

similar to the initial simulation before diverging completely. Lorenz then realised 

that the weather prediction model was highly sensitive to initial conditions and that a 

small change between two starting conditions produced, after a number of iterations, 

completely different results. This discovery changed meteorology as Lorenz 

concluded that accurate weather prediction for long periods of time is subsequently 

impossible. The impact of his discovery wasn’t limited to meteorology, but also 

influenced other scientific fields where similar phenomena where observed and led 

to the creation of a new science named: “chaos theory” (Ingraham, 1991). 

Sometimes referred to as the “butterfly effect”, this phenomenon is the main feature 

of chaotic systems. The name of the phenomenon came from the title of a talk given 
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by Edward Lorenz in 1972: “Does the flap of a butterfly’s wings in Brazil set off a 

tornado in Texas?” (Lorenz, 1972).  

As opposed to stochastic (non-deterministic) systems where the behaviour is 

randomly affected by external forces (noise), the behaviour of a chaotic system is 

deterministic and is part of its inherent dynamics. What may appear as noise is in 

fact following simple rules yet exhibiting complex behaviour. Contrary to a 

stochastic process where the following data cannot be predicted but only guessed 

using statistical analysis, the following data of a chaotic system can be predicted and 

the accuracy of the prediction can be infinite if the initial values of the chaotic 

system are known with infinite accuracy. To relate that to the weather models used 

in meteorology, the weather could be accurately predicted for years if the model and 

the initial data used (i.e. temperature, wind speeds, pressure etc.) were infinitely 

accurate with infinite number of points (Ingraham, 1991).   

In this work the fundamental idea is to reverse the process of the high sensitivity to 

initial conditions and use simple mathematical expressions which exhibit chaotic 

behaviour to measure small variation of input signals. If a small change of starting 

conditions produces a large change at a later stage, the process can be reversed and 

the large change at a given time can be used to accurately determine a small change 

in the starting conditions.  

The simplified block diagram in Figure 1-1, shows how a chaos based MS can be 

structured. The physical variable is first converted into a usable electric signal before 

being fed to a chaotic map, which takes advantage of the high sensitivity to initial 

conditions to detect small variations of the input signal. This enables the MS to 

detect small variations of the physical quantity being measured.   
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Sensor Chaotic Circuit

Control / Processing 
and Storage

Measured 
Parameter 

 
FIGURE 1-1 SIMPLIFIED BLOCK DIAGRAM OF A CHAOS BASED MS 

 

The simplest mathematical models exhibiting chaotic behaviour are referred to as 

chaotic maps. Chaotic maps have been implemented electronically for various 

applications such as; practical approach to the study of chaotic phenomena, 

cryptography and algorithmic ADCs. Chaotic maps can be multidimensional or One-

Dimensional (1D); all maps exhibit high sensitivity to initial conditions with the 

main difference being the number of parameters defining the map. Single parameter 

(1D) chaotic maps are ideal for electronic implementation due to the general 

simplicity of the circuitry required to implement the maps resulting in lower overall 

cost and reduced inherent system noise.        

1.3 Aims and Objectives 

The aim of the present work was to analyse, design, implement and assess a chaos 

based MS that can detect and measure small electric signal changes independently of 

the input range. The objectives fulfilled during this work were as follow: 

 Identify the suitable chaotic function to be implemented as part of a MS 

One-dimensional (1D) chaotic maps were analysed using computation. The possible 

use of the chaotic maps for signal measurement was evaluated with MATLAB 
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simulation and a method to quantify the input signal change was proposed for two 

chaotic maps: Logistic and Tent Map.  

 Implement the chaotic functions and compare the characteristics with 

theory 

The two selected chaotic maps were implemented electronically: although some 

electronic implementations of one-dimensional chaotic maps are available in 

literature (Campos-Cantón et al., 2009, Eguchi et al., 2000, Suneel, 2006) the 

proposed implementations were designed for this specific application in order to 

reduce the noise and obtain a viable MS by increasing the sensitivity of the system. 

The electronic implementations performance characteristics were compared with 

those of the theoretical maps to ascertain the accuracy and correlation between the 

theory and the practical implementations.  

 Build the MS and assess the performance   

A new method of signal measurement using chaotic maps was proposed. The 

performance of the designed MS was assessed and the maps were compared to find 

the solution that produces the most advantageous performance in terms of signal 

detection and measurement.   

1.4 Original Work  

The fundamental basis of the work presented in this thesis is original and has led to a 

patent application: British Patent Application n◦ 1309585.4. The main areas of 

original contribution are: 
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 Analysis of the high sensitivity to initial conditions of two 1D chaotic maps 

with the use of MATLAB computation software.  

 A novel three-dimensional (3D) representation of the divergence between 

two closely located starting conditions, for the entire input range of 1D 

chaotic maps has been developed. This will enable the high sensitivity of any 

1D chaotic map to be analysed.  The MATLAB code developed for this 

purpose can be used for any further work associated with the “butterfly 

effect” of 1D chaotic maps. The use of the developed 3D representation is 

not limited to measurement and electronics as the high sensitivity to initial 

conditions is present in many fields such as neurology, meteorology and 

biology.      

 New electronic implementations of the two selected 1D chaotic maps, 

specifically designed for the measurement of small signal variations, have 

been developed, characterised and optimised. The proposed circuit 

implementations could also be used for any application requiring chaotic 

behaviour. 

 Two topologies of the measurement system have been proposed with the 

associated hardware and software and the differences between the two 

methods were assessed.   

 A means of detecting or quantifying the magnitude of input signal change 

was proposed for each map. Two methods were developed; a calibration 

method for the Logistic Map and a mathematical method for the Tent Map.   
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1.5 Document Structure 

This document is structured in the following manner: 

 

 In the second chapter the classical method of measurement is presented and 

the main sources of error are identified, this is then followed by an 

introduction to chaos, one dimensional chaotic maps and high sensitivity to 

initial conditions of chaotic systems. Methods and techniques used to identify 

actual chaotic behaviour are introduced, finally the chapter is concluded with 

the application of chaos in electronics in general and particularly in ADCs 

and measurement systems. 

 The 3
rd

 chapter explains the proposed technique for the realisation of a novel 

measurement system which utilises the high sensitivity to initial condition 

associated with chaotic systems. 

 Following the explanation of the proposed signal measurement technique, the 

4
th

 chapter focuses on the implementation of the chaotic one-dimensional 

maps and the chaos based measurement system. 

 Chapter 5 assesses the electronic implementations developed in the previous 

chapter by comparing practical results with theoretical behaviour of each 

map. 

 In chapter 6 the measurement capability of the proposed MS is evaluated 

with practical measurements in order to assess the overall performance.  

 Finally the results obtained in chapters 5 and 6 are discussed in chapter 7 

 In the last chapter the author suggests some possible further work followed 

by a conclusion about the overall achievements.    
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2  Theory and Literature Review 

The traditional techniques used to measure physical quantities are initially presented, 

followed by the main sources of errors associated with Measurement Systems (MS). 

An introduction to “chaos” is then presented followed by One-Dimensional (1D) 

chaotic maps and the techniques used to evaluate whether the behaviour achieved in 

a practical system is truly chaotic. Finally, a review of chaos applied in electronics, 

communications and Analogue to Digital Converters (ADC) is presented. 

2.1 Classic Methods of Measurement  

The typical MS is generally composed of several elements in order to convert a 

physical variable into a measured value that can be displayed or utilised by an 

electronic system, as shown in Figure 2-1 (Dyer, 2001, Morris, 2001). 

 

Transducer 
Conditioning 

Element

Data Acquisition 
and Processing 

Transmission, 
Display or Control 

Physical 
Variable

 
FIGURE 2-1 BLOCK DIAGRAM OF THE ELEMENTS COMPOSING A MEASUREMENT SYSTEM 
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 Transducer: common to most MSs, usually generates an analogue output 

proportional to the physical parameter being measured; covered by the 

following definition. A transducer is a device which provides a usable output 

in response to a specific physical quantity (Norton, 1969). Some examples of 

transducers are: Piezoelectric sensors for vibration measurement, Hall Effect 

sensors for magnetic field measurement, thermocouple probes for 

temperature measurement, ultra sound sensors for distance measurement etc. 

Transducers are an essential part of a MS as the physical parameter being 

measured has to be converted to an electric signal before undergoing 

conditioning (Morris, 1993, Neubert, 1975).       

 Variable conditioning element: adapts the signal provided by the transducer 

to a suitable format, for example the Piezoelectric transducer generates an 

electrical charge in response to mechanical movement, the electric charge 

cannot be displayed directly, used to control a system or stored in memory. 

Thus, the charge has to be conditioned / converted to a proportional voltage 

or a current that can be exploited by the following stage of the MS. The 

conditioning circuitry is generally specifically designed for a given 

transducer (Morris, 2001).  

 Data acquisition and processing: in most modern MS the data obtained from 

the conditioning circuitry is converted into a digital format. This allows the 

data processing, display and storage with the use of Microcontrollers ( C) or 

computers (Schmid, 1970). In order to convert the signal from the analogue 

to the digital domain the quantisation is performed by an Analogue to Digital 

Converter (ADC). ADCs are mainly characterised by resolution which can 

range from 1-bit to more than 30 bits. The resolution of the ADC indicates 
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the number of discrete values (digital values) it can produce over the range of 

analogue values which means that the accuracy of the MS is dictated by the 

resolution of the ADC as any variations lower than one digital step of the 

ADC will be undetectable by the MS (Morris, 2001, Dyer, 2001).  

 Transmission, display or control: once the data is processed, the system can 

either transmit the data, display for direct visualisation, store, or control a 

variable in the case of a control system. The practical limit of sensitivity for 

any MS is determined by specific factors such as the sensor sensitivity, the 

intrinsic noise of the circuitry and the resolution of the ADC used for the 

digitalisation of the signal (Morris et al., 2012).   

The performances of the transducers are inherent to the construction of the 

transducer and are generally independent of the other sections of the MS such are the 

conditioning circuitry and the ADC. The transmission, display or control section 

doesn’t influence the overall performance of the MS as no additional information is 

created during that process where the information is transmitted in order to be 

accessible to the user or used to control a system. The following sections will discuss 

the parts of the MS that affect the performance of the MS to detect small variation of 

the input signal, this will be followed by a discussion on the conditioning circuitry 

and the limits to measurement set by the noise which is inherent in all electronic 

circuitry used for signal conditioning, followed by the limitations of the ADC.  

2.1.1  Conditioning Circuitry  

The conditioning circuitry, as defined in the previous section is used to adapt the 

signal originating from a transducer to a format that can be digitalised by an ADC. 

The signal is converted to a voltage with a range scaled to the input range of the 
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ADC used within the MS. The conditioning circuitry inevitably adds noise and errors 

to the analogue signal which limits the overall MS performance as data can be 

corrupted by the noise. For this reason, the conditioning circuitry requires rigorous 

design and the use of high performance, low noise components adapted to the 

required performance of the MS. In many applications the conditioning circuitry is 

composed of amplifiers, with each component generating inherent noise, which in 

turn reduces the performance of the MS. The theoretical limit for a MS in terms of 

performance is set by the thermal noise of the resistors used in the circuit (Keithley-

Instruments, 2004, Lax et al., 2006) as any signal variation lower than the thermal 

noise will be below the noise floor and therefore undetectable by the system. It is 

important to avoid the use of high value resistors (R) as the root mean square (rms) 

thermal noise voltage (E) is determined by the expression (2-1) known as Johnson 

noise (Horowitz and Hill, 1989) so that for a given temperature, the thermal noise is 

proportional to the value of the resistor.  

 

   √      

 

(2-1) 

 

Where k is the Boltzmann’s constant (              ), T is the absolute 

temperature in Kelvin (K) and B is the noise bandwidth in   .  

Although, the theoretical measurement limit of any physical parameter is set by the 

thermal noise the main source of noise in most circuitry is generally due to the active 

components such as Operational amplifiers (Op-amps). Op-amp noise is determined 

by three main components: shot (current) noise, voltage noise,  and thermal noise 

(Texas-Instruments, 2009, Horowitz and Hill, 1989). The shot and voltage noise are 
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specific to a particular Op-amp model, whilst the thermal noise is set by the resistors 

used to set the gain of the Op-amp.  

 Current noise: current noise is converted to voltage noise when flowing 

through a resistor. Ideally, to minimise the effects of current noise the source 

resistors should be kept to a low value. An Op-amp with low voltage noise 

can have a high current noise which can generate proportionally more noise 

if the source impedance is not minimised.   

 Voltage noise: Input voltage noise is bandwidth dependent and measured in 

   √  . The voltage noise is always referred to the input which means that 

the noise is multiplied by the Op-amp gain. The voltage noise dominates in 

most cases where the source impedance in low as the thermal noise and 

current noise will be negligible in comparison.  

 Source resistors: The resistors connected to the Op-amp generally contribute 

significantly to the overall noise content. The first component is the Johnson 

noise of the resistor as shown in expression (2-1), and secondly the resistor 

can generate additional noise through the conversion of the Op-amp current 

noise to voltage noise, which can dominate the overall noise value if the 

impedance of the resistor is high.  

The characteristic of the Op-amp noise (this is the case for voltage noise and current 

noise) is composed of two main sections; a flat region where the noise is constant 

over frequency, this region is referred to as white noise region and a region where 

the noise is inversely proportional to the square root of the frequency, commonly 

referred to as 1/f noise. The main characteristic of interest in Figure 2-2 is the 

‘corner’ frequency where the 1/f noise and the white noise are equivalent. Thus it 
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can be observed that for frequencies lower than the corner frequency the overall 

noise is dominated by 1/f noise and above by the thermal noise. A lower corner 

frequency means that the Op-amp has lower overall noise; this is typically the case 

for low frequency applications.  

The graph in Figure 2-2 represents the equivalent voltage noise at the input of the 

TL071 Op-amp (Texas-Instruments, 2005); this allows the noise at the output of any 

Op-amp based amplifier to be calculated by multiplying the noise for a given 

bandwidth by the gain of the Op-amp.  

 
FIGURE 2-2 EQUIVALENT INPUT NOISE VOLTAGE OF A TL071 OPERATIONAL AMPLIFIER 

(TEXAS-INSTRUMENTS, 2005)  

 

All sources of noise present at the output of the conditioning circuitry are referred to 

as the ‘noise floor’; which is the overall inherent noise, thus any input signal above 

the noise floor can be identified and conversely any input signal below the noise 

floor (lower amplitude) will be concealed by the noise, which will make the 
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measurement challenging as the system will be unable to differentiate between the 

noise and the signal. 

In addition to noise, other errors are created by the conditioning circuitry such as 

offset voltages, offset voltage drifts or gain errors. Just as noise, the offsets are 

generally specified in the datasheets of different Op-amps and the use of low offset 

Op-amps is required for high accuracy MS. To maintain a low gain error, the 

common practise is to use resistors with minimal tolerance and/or trimming 

potentiometers.  

The gain of amplifiers composing the conditioning circuitry should be set to match 

the ADC input range whilst avoiding over amplification, which can lead to 

additional errors (saturation of the amplifier or a signal out of the ADC input range)     

As identified in this section, the conditioning circuitry is a critical part of any MS 

and requires careful design in order to minimise the noise and errors introduced by 

different components. The next element that composes the classic MS is the data 

acquisition which will be discussed in the following section.  

2.1.2  Data Acquisition 

The data acquisition is an essential element of the MS as the analogue signal has to 

be converted to digital data in order to allow processing. The data quantisation is 

generally performed using an Analogue to Digital Converter (ADC). The ADC is 

used to convert analogue signals to discrete time digital values, thus the overall 

accuracy of the MS is highly dependent of the ADC performance (Razavi, 1995). An 

ADC produces a digital output D, as a function of the analogue input A as shown by 

expression (2-2). 
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(2-2) 

 

Whilst the input can take an infinite number of values within the specified input 

range of the ADC, the output of the ADC is limited to a restricted number of digital 

values (codes) set by the resolution of the ADC. Thus an ADC must convert each 

input value to an output code which is an approximation of the input. The ADC 

conversion of an analogue signal is illustrated in Figure 2-3 (Plassche, 1994), where 

the input voltage is sampled using a 4 bit and a 5 bit ADC. Due to the higher 

resolution, the 5 bit ADC has a lower voltage step (Q) as defined by expression 

(2-3), which allows a more accurate representation of the input signal. Figure 2-3 

also shows that a greater ADC resolution (number of bits) will yield a more accurate 

digital representation of the analogue input signal.   

 
FIGURE 2-3 ANALOGUE SIGNAL SAMPLED USING 4 BIT AND 5 BIT ADCS 
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1 binary value, known as the Least Significant Bit (LSB). The voltage step can be 

calculated using expression (2-3) and illustrated in Figure 2-3. 

 

 
   

    

 
 

 

(2-3) 

 

Where       is the Full Scale Range input voltage, determined by expression (2-4) 

and N is the number of digital values that the ADC output can take for a range of 

analogue values at the input and is defined by expression (2-5). 

                     

 

(2-4) 

 

Where        is the highest analogue value and         the lowest analogue value at 

the input of the ADC. 

       

 

(2-5) 

 

Where M is number of bits representing the resolution of the ADC.  

For an ADC to detect an input signal change, and thus yield a digital output change, 

the value of   needs to be of lower amplitude than the input signal change whilst 

ensuring that the      remains large enough for the given application. This can be an 

issue for high accuracy applications requiring extensive input ranges (Craig, 1995). 

Figure 2-4 illustrates this problem; a varying analogue signal is applied at the input 

of an ADC. In cases where the variations in the input signal are smaller than the   of 

the ADC the output code generated by the ADC remains constant, which means that 

the MS is unable to detect the signal variations.  
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FIGURE 2-4 UNDETECTED INPUT SIGNAL VARIATIONS DUE TO LIMITED ADC RESOLUTION 

 

The solution to this problem is to use an ADC with a higher resolution value which 

will increase the cost as the price is proportional to the resolution of the ADC which 

will also require resistors with lower tolerances and higher performance op-amps for 

the conditioning of the signal thus further increasing the price of the MS. The change 

of ADC often requires the redesign of the MS (hardware and/or software). Another 

possibility is the use of a techniques called oversampling that has been developed to 

increase the resolution of ADCs (ATMEL, 2005).  This method involves taking 

multiple samples of the input signal to obtain an increased resolution via algorithms 

implemented in software.  The main issue with the oversampling is the high penalty 

on the sampling rate, as a result the minimum sampling rate required for the over 

sampling technique is significantly higher than the Nyquist frequency as shown in 

expression (2-6). 

                             (2-6) 
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Where n is the additional number of bit of resolution.  

Additionally the input signal must contain enough noise to toggle the LSB of the 

ADC in order for the oversampling technique to work. In cases where the input 

signal is containing low level of noise; artificial noise must be added to the input 

signal which requires additional circuitry.  

The problem of limited ADC resolution within a MS is further illustrated by the 

following example:  

A MS equipped with a 10 Bit ADC used to detect a 0.1    change in the input 

signal over a voltage range of     to     .  Applying expressions (2-5) N = 1024, 

which for a      of     ,  yields a   of       . In this case the ADC is unable to 

detect a 0.1    signal change as the minimum signal change required to modify the 

output of the ADC is       . Thus a 18 bit ADC is required. 

2.1.3  Measurement Method Summary 

In the classic approach to MS the main sources of errors have been identified; in the 

conditioning circuitry, a particular attention should be given to the noise of each 

component in order to optimise the performance of the MS. Similarly, the selection 

of the ADC is paramount and the resolution of the ADC should be selected in 

relation to the amount of signal variation to be measured.  

In cases where a MS, capable of detecting small variations over an extended input 

range is required, the use of a high resolution ADC is essential, which will 
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drastically increase the overall cost of the MS and in some cases require an 

unrealistically high resolution (>32 bit).    

After highlighting the sources of errors associated with the conditioning circuitry and 

the limitations in terms of performance associated with the use of ADCs, the next 

section will introduce the subject of chaos and show where it has been implemented 

in electronic systems. Finally, the next section will also demonstrate how chaotic 

behaviour can be used in a MS as a means of detecting small signal variations over a 

large input range, thus addressing the issue of ADC resolution and input signal range 

previously identified.      

2.2  Chaos 

Chaos behaviour can be observed in any nonlinear system that exhibits irregularity 

and unpredictability as well as high sensitivity to initial conditions commonly known 

as the “butterfly effect”(Ingraham, 1991). Although, being deterministic (non-

random) and sometimes following simple equations chaotic systems can display 

complex behaviour which, significantly never repeats. Chaos can be observed in 

simple mechanical systems such as the motion of a pendulum, it also materialises 

everywhere in nature, from the turbulences of a water flow to the evolution of 

populations (Gleick, 1988). When studying dynamical systems in 1913 Henri 

Poincaré noted that in some cases a really small change in initial condition can 

produce a disproportionally large change at the output of the system, which makes 

prediction impossible as the initial conditions of a practical system can never be 

known with absolute accuracy (G.L.Baker and J.P.Gollub, 1990). Real interest in the 

subject of chaos started in 1963 with the publication by the meteorologist and 
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mathematician Edward Norton Lorenz of the paper called “Deterministic 

Nonperiodic Flow” in which the author shows a simplified convection model and 

concluded that the sensitivity to the initial conditions makes the long term weather 

prediction impossible (Lorenz, 1963). 

The mathematical models with chaotic behaviour referred to as “chaotic maps” can 

be separated using two main criteria; the time domain (continuous or discrete) and 

the number of space dimensions (one, two or three dimensional). 

Contrary to continuous maps where the evolution of the map is described using 

differential equations, discrete time maps are not continuous time functions and the 

solutions of the map can be calculated with the use of iteration, which makes the 

computation resource requirements significantly lower.  

The number of dimensions of a chaotic map defines the number of parameters 

present within the map. From that aspect, one-dimensional (1D) maps are the 

simplest form of chaotic maps as only one parameter is used in the map which thus 

makes the calculation and implementation relatively simple. 

Combining the two criteria of classification of chaotic maps, it can be concluded that 

the discrete 1D maps are more suited to electronic system implementation due to the 

ease of computation of discrete maps and the low complexity of single parameter 1D 

maps. 

The next section will thus discuss three different 1D maps which have relatively 

simple structures and detail the behaviour of each.          
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2.3 Discrete One-dimensional Chaotic Maps 

Discrete 1D chaotic maps also called 1D difference equations or 1D iterated maps 

are the simplest mathematical expressions that exhibit chaotic behaviour. For this 

reason 1D maps are often used in the study and application of chaos. 1D maps are 

mathematical expressions that model the evolution through iteration of a single 

variable. A typical one-dimensional map is of the form shown in equation (2-7). 

              

 

(2-7) 

 

Where      is the state of the system at iteration  ,      is the state of the system at 

iteration n+1 and   is a parameter which can vary from map to map and in some 

cases the value of which can lead the map to chaotic behaviour. 

The relative simplicity of discrete 1D chaotic maps makes them an ideal means of 

applying chaos, thus discrete 1D maps have been implemented electronically to 

obtain means of practically studying chaos (Suneel, 2006, Campos-Cantón et al., 

2009). Discrete 1D maps are also used in different fields, such as biology to describe 

biological systems; this is particularly the case for the Logistic Map (LM) which has 

been used as a discrete-time demographic model for population modelling in 

resource limited environments (May, 1976). In medicine, 1D chaotic maps have 

been used to model neurons as it has been shown that neurons can exhibit chaotic 

behaviour (Harth, Zeller et al., 1995). In chemistry, 1D maps have been used to 

analyse chemical reactions such as the Belousov–Zhabotinsky (BZ) reaction (R. H. 

Simoyi, 1982) or more recently as an abstract model for evolution (Usychenko, 

2011). Discrete 1D maps have also been used in information processing systems 

such as artificial neural networks (Nozawa, 1992, Song et al., 2007), communication 
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encrypting where the high sensitivity to initial condition is exploited to encrypt data 

(Kocarev and Jakimoski, 2001, Martinez-Nonthe et al., 2012), electronic logic gates 

(Murali et al., 2005) and random number generation (Cristina et al., 2012, Kanso and 

Smaoui, 2009, Nejati et al., 2012, Luca et al.). All these applications show that 

discrete 1D maps are powerful tools used for modelling and information processing.  

More details about applied chaos are available in section 2.4.   

In the following sections three commonly studied, discrete 1D chaotic maps are 

presented; the Logistic Map, the Tent Map and the Bit Shift Map. To analyse the 

behaviour of each chaotic map, two approaches were taken; the bifurcation diagram 

and the time series.  The bifurcation diagram shows the behaviour of the map for 

different values of the map parameter and thus illustrating which parameter values 

cause a map to exhibit chaotic behaviour. The time series enables an analysis of the 

behaviour of the map for a fixed parameter value allowing a visual analysis of the 

complex behaviour.    

2.3.1  The Logistic Map 

The Logistic Map (LM), given by the difference equation (2-8) was initially 

introduced as a discrete-time demographic model by the biologist Robert May to 

model the population of rabbits and foxes (May, 1976). The LM is analogous to the 

logistic equation created by the mathematician Pierre François Verhulst (Miner, 

1933) and is a discrete 1D nonlinear map with the transfer characteristic shown in 

Figure 2-5.  

                                  (2-8) 

 

http://en.wikipedia.org/wiki/Robert_May,_Baron_May_of_Oxford
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Where     is the present state of the LM,       is the next state and   is the parameter 

of the LM that can be set to a value from 0 to 4.  

 

 
FIGURE 2-5 TRANSFER CHARACTERISTIC OF THE LOGISTIC MAP 

 

The simplicity of the LM combined with complex behaviour makes the LM the ideal 

example of how relatively simple mathematical models can exhibit chaotic 

behaviour.  

A commonly used technique to demonstrate that a map displays chaotic behaviour is 

the bifurcation diagram which displays the behaviour of the map for variations of the 

parameter  . 

 Bifurcation Diagram 

The bifurcation diagram generated for the LM, using MATLAB, is given in Figure 

2-6, with the map being iterated 10000 times for every value of   from 0 to 4. It can 

be observed that for       the output remains at zero and for        the 

output is constantly increasing. The first output signal oscillations appear for     

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Xn

X
n
+

1



43 

 

where the output starts to oscillate between two fixed points. At approximately 

        the first period doubling occurs, as shown in Figure 2-7 (expanded region 

of Figure 2-6), the output is now oscillating between 4 points. The period doubling is 

an important feature of the LM and is referred to as the “route to chaos”. This 

feature is not only inherent to the LM but it can be observed in other maps and 

chaotic systems (G.L.Baker and J.P.Gollub, 1990). The next period doublings are 

visible in Figure 2-8 which is an expanded region of the full bifurcation diagram, and 

occurs at 3.543 and at 3.564 respectively. As   increases the period doublings get 

closer until an infinite number of bifurcation is reached at approximately 3.569, 

finally leading to chaos.  

 
FIGURE 2-6 COMPUTED BIFURCATION DIAGRAM OF THE LOGISTIC MAP 

 

Although the LM behaves chaotically after a given value of the parameter   is 

reached, the chaotic behaviour stops for periodic gaps named windows of periodicity 

in which the output exhibits periodic oscillations, as shown in the bifurcation 

diagram Figure 2-9. As   is increased from 3.82 towards 3.83 the output leaves chaos 

and goes back to periodicity, once   reaches approximately 3.841 the period 
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doubling starts again and the map proceeds to exhibit chaotic behaviour again at 

approximately 3.842. As   is further increased, the output remains chaotic and 

occupies more of the output range until the output takes up the entire output range at 

  = 4. If the value of   is greater than 4 the output of the LM will diverge to minus 

infinity and will no longer exhibit chaotic behaviour. This phenomenon is often 

referred to as “exiting condition” or “extinction” in reference to population 

modelling (Miner, 1933).       

 

 
FIGURE 2-7 BIFURCATION DIAGRAM OF THE LOGISTIC MAP FROM   =3.4 TO   =3.5  
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FIGURE 2-8 BIFURCATION DIAGRAM OF THE LOGISTIC MAP FROM   =3.5 TO   =3.6  

 

 
FIGURE 2-9 BIFURCATION DIAGRAM OF THE LOGISTIC MAP FOR   =3.8 TO   =3.9  

 

 Time Domain Analysis 

An analogous analysis of the LM behaviour can be accomplished in time domain by 

displaying the output of the map for a given number of iterations and by varying the 
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parameter  . Figure 2-10 shows four different graphs plotted for different values of  . 

The Y axis represents the output    of the LM against the number of iterations on 

the X axis.  In Figure 2-10(a)   is set to 2.2, it can be observed after three iterations 

that the output settles to a constant value, this result is consistent with the bifurcation 

diagram shown in Figure 2-6. As   is increased to 3.3 the output starts to oscillate 

between two values as displayed in Figure 2-10(b), and oscillates between four 

points in Figure 2-10(c), as   is set to 3.52 which further validates the behaviour 

observed in the bifurcation diagram. Finally, in Figure 2-10(d)   is set to 3.8 and the 

random-like evolution of the time series shows that the LM behaves chaotically. At r 

= 4 the output occupies the entire output range while for values of r greater than 4 

the map no longer exhibits chaotic behaviour and reaches an exiting condition. 

 
FIGURE 2-10 BEHAVIOUR OF THE LOGISTIC MAP FOR DIFFERENT VALUES OF   
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 High Sensitivity to Initial Conditions   

As previously stated, the main characteristic of chaos is the high sensitivity to initial 

conditions, which can be analysed using simulations. Firstly, the map is iterated for a 

given input and the values of    are stored to obtain a signature representing the 

input, then a relatively small change is applied to the input and the map is reiterated 

with the results of the two signatures being subtracted to obtain the difference, 

enabling the point of divergence to be ascertained. In Figure 2-11 the input   is set to 

0.6, the parameter   is set to 3.8 in order for the LM to behave chaotically, and the 

map is iterated 50 times (shown as plot a1). The same process is performed once 

again but with a small change of 0.0001 added to the input   and represented by plot 

a2. The results of the iterations are then subtracted and displayed as (a0). It can be 

observed that from iteration 1 to iteration 11 the two signatures are very close in 

amplitude. The divergence between the two signals is visible at iteration 8 and the 

divergence grows exponentially after this point. In Figure 2-12 the change between 

the two input values is reduced to     , with the point of divergence being observed 

after 23 iterations, which demonstrates that the number of the iteration at which the 

two time series diverge is larger for smaller difference of initial conditions of the 

LM. This is further demonstrated in Figure 2-13 where the change in initial 

conditions is as small as        and the two signals diverge after a greater number 

(approximately 68) of iterations. Although there is a pattern between the iteration 

when the divergence occurs and the amount of change it is impossible to extrapolate 

a relationship between the amount of change and the iteration number using this 

analysis, due to the fact that the analysis is performed for a single input rather than a 

full input range. An extensive analysis of the high sensitivity to initial condition of 

the TM using a novel computational analysis is presented in Chapter 3.  
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FIGURE 2-11 SENSITIVITY TO INITIAL CONDITIONS OF THE LOGISTIC MAP FOR A      

CHANGE. 

 

 
FIGURE 2-12 SENSITIVITY TO INITIAL CONDITIONS OF THE LOGISTIC MAP FOR A 

     CHANGE. 
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FIGURE 2-13 SENSITIVITY TO INITIAL CONDITIONS OF THE LOGISTIC MAP FOR A       

CHANGE. 

 

The theoretical behaviour of the LM was explained by analysing the time domain 

behaviour, the bifurcation diagram and the chaotic proprieties. This was mainly 

performed using MATLAB simulations to compute and present the different aspects 

of the LM. The next section will focus on another discrete 1D chaotic map, namely 

the Tent Map (TM), as it is relatively simple to implement and just as with the LM, it 

exhibits chaotic behaviour. 

2.3.2  The Tent Map 

The TM is a piecewise linear function composed of two straight lines contained 

within the interval       yet the TM exhibits complex behaviour including 

periodicity and chaos (G.L.Baker and J.P.Gollub, 1990). The TM function is given 

by equation (2-9) where the parameter   sets the slope / gradient of the lines and can 

be varied anywhere within the interval 1 to 2. The effect of the value of   will be 
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discussed further in this chapter. The TM was named after its tent-like triangle 

transfer characteristic shown in Figure 2-14. 

 

     {
                              

 

 

                       
 

 

    

 

(2-9) 

     

 
FIGURE 2-14 TENT MAP TRANSFERT CHARACTERISTIC 

 

 Bifurcation Diagram of the Tent Map 

The bifurcation diagram of the TM is shown in Figure 2-15, where the behaviour of 

the TM is set with the parameter  .  As the parameter   is increased from 1 to 2 the 

TM displays a complex behaviour ranging from fixed point stability to periodicity 

and finally chaos. The bifurcation diagram shows successive branches similar to the 

period doubling cascade of the LM (from   = 1 to 1.42), rather than being single 

lines the outlines of the TM are chaotic attractors bounded within a subset of the 

interval [0,1], this interval is sometimes referred to as Orbit (Lynch, 2004). As the 

parameter   is increased towards 2 the output swing increases in range until the 
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entire [0,1] interval is taken. Unlike the LM the bifurcation diagram of the TM does 

not exhibit any windows of periodicity which makes it even more suitable for 

applications where chaotic behaviour needs to be maintained. Ideally, the parameter 

  should be set to 2 as this is the point where the sensitivity to initial condition of the 

TM is highest (Lynch, 2004). A problem arises in practical implementation when 

setting   at exactly 2, as a small amount of noise could produce an exiting condition 

in which case the TM will no longer behave chaotically as   or the input signal are 

outside the limits due to the noise. This situation can be avoided by setting   close to 

2 with a margin greater than the noise of the practical implementation. For example 

if the parameter is set to 1.99, a margin of 0.01 (which is in most cases greater than 

the noise present in practical implementation as discussed later in section 5.7) will 

insure that the TM remains highly sensitive to initial conditions whilst preventing 

any exiting conditions.  

 
FIGURE 2-15 TENT MAP BIFURCATION DIAGRAM  
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 Time Domain Behaviour and High Sensitivity to Initial Conditions   

The TM and the LM are topologically conjugate which means that the behaviour of 

both maps is similar under iteration (Alligood et al., 1997). The time domain 

behaviour of the TM being similar to that of the LM, hence the time domain analysis 

is not shown in this thesis. 

Similarly, because of the analogous behaviour under iteration between the TM and 

the LM the high sensitivity to initial conditions of the TM produces results 

comparable to the LM shown in section 2.3.1, with further analysis carried out in 

Chapter 3. 

2.3.3  The Bit Shift Map 

The Bit Shift Map (BSM) sometimes referred to as Bernoulli map or Doubling map 

is a discrete pricewise-linear 1D chaotic map expressed by equation                        

(2-10) with a transfer characteristic shown in Figure 2-16. Contrary to the TM and 

the LM where the parameter of the map can be varied, the parameter of the BSM is a 

constant set to two. The name of the BSM comes from the fact that if the input of the 

map is written in binary form, after each iteration, the output is obtained by shifting 

the bits to the right and replacing the last bit on the left by a zero. From this feature it 

can be observed that the simulation of the BSM using computation is problematic as 

the rounding of the computer will eventually cause any input number to produce a 

zero after a given number of iterations as the binary expansion will be limited in 

length, this is not an issue when it comes to practical implementation as the values 

present at the input will always be irrational (infinite binary expansion). Similarly to 

the TM and the LM, the BSM needs an accurate setting of the parameter   to two in 
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order to avoid exiting conditions. Due to a fixed value of the parameter  , a 

bifurcation diagram cannot be obtained.   

 

                                      (2-10) 

 

 
FIGURE 2-16 BIT SHIFT MAP TRANSFER CHARACTERISTIC  

 

 Time Domain Behaviour and High Sensitivity to Initial Conditions  

In time domain, the output of the BSM takes the entire output range in the interval 

[0,1] which is the case for the TM for     and for the LM when      To 

demonstrate the high sensitivity to the initial conditions of the BSM, four time series 

were computed using MATLAB. Firstly, an input signal was iterated through the 

BSM followed by a signal with an added difference ( ) of 0.001. The two time series 

are shown in Figure 2-17 (plot a1) and the divergence between them is displayed in 

plot a2. It can be seen that the time series are divergent approximately at iteration 8. 

Two additional time series were computed but this time with   of 0.0000001 as 
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shown in (b1). The divergence between the two time series is shown in (b2) which 

occurs after approximately 17 iterations demonstrating that the divergence between 

two time series occurs later when   is reduced.     

 
FIGURE 2-17 HIGH SENSITIVITY TO THE INITIAL CONDITIONS OF THE BIT SHIFT MAP 

 

2.3.4  Summary 

The investigation of three discrete 1D chaotic maps has shown that all maps, despite 

having a simple characteristic equation, exhibit chaotic behaviour and indicates that 

the time/iteration of divergence between two neighbouring starting points is 

proportionally linked to the amount of change between the two points.    

In addition to the similarity between the BSM and the TM, the BSM requires an 

accurate parameter setting which is not the case for the LM and the TM where the 

parameters can be varied within a given region without systematically leading to 

exiting conditions. In practical implementations, the noise and component tolerances 
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limit the accuracy at which the parameter can be set. In that aspect the LM and TM 

are superior to the BSM for the purposes of this work. 

Since the BSM is a piecewise linear map similarly to the TM, the BSM will not be 

considered for implementation in the present thesis, as the work will be focused on 

the LM and the TM in order to evaluate the different characteristics.  

The next section will focus on a means of ascertaining chaotic behaviour in 

dynamical systems, this presented technique will be used further in this work to 

identify chaotic behaviour in electronic implementations.    

2.4 Applied Chaos 

Chaos has been applied across a variety of disciplines, which is particularly the case 

for one-dimensional maps, due to the relative simplicity which makes them 

particularly suitable for electronic implementations.  

2.4.1  Electronic Implementation of Chaos 

One-dimensional (1D) chaotic maps have been used in electronics as random 

number and noise generators (Díaz-Méndez et al., 2009, Katz et al., Tanaka et al., 

2000, Vázquez-Medina et al., 2009, Kanso and Smaoui, 2009, Nejati et al., 2012, 

Callegari et al., 2005). The output of chaotic circuits occupies the entire output 

interval in a random-like manner with a relatively flat spectrum response which 

makes the 1D maps suitable for random number and white noise generators. For 

example, Díaz-Méndez et al. (2009) have developed and simulated an analogue 

electronic implementation of the Logistic Map (LM); the spectral density and the 

statistical distribution exhibited by the circuit were similar to that for white noise 
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which proves that the LM can be used as a noise generator. The implementations 

available in literature for this purpose are using Complementary Metal Oxide 

Semiconductor (CMOS) technology to simplify the integration in a single Integrated 

Circuit (IC), for example, Tanaka et al. (2000) have successfully implemented noise 

generators based on both the LM and the TM in a single IC. The results obtained are 

similar to the noise generator proposed by Díaz-Méndez et al. (2009) and 

demonstrate the noise like characteristic of the spectral distribution of the electronic 

implementations. Another noise generator was proposed by Leonardo et al. (2012), 

but this time rather than using analogue circuitry to generate analogue noise, the 

authors have implemented a TM based digital noise generator using a Field-

Programmable Gate Array (FPGA). A variation of the TM was implemented in order 

to generate a 13 bit representation of a random natural number, the resources 

required in the FPGA where limited to 3 multipliers and 2 adder modules.  The 

results obtained demonstrate that the 1D map based noise generator performs as 

expected and that the statistical distribution is uniformly spread. 

In Murali et al. (2005) a 1D chaos map was used for an experimental realisation of a 

logic gate, although the experiment was successful the main purpose was to prove 

that 1D map can be used as basic computational elements.  In another instance, 

chaos has been used to improve the capture range of a Phase Lock Loop (PLL); 

where an external modulating input was used to set the unlocked PLL into a chaotic 

regime that overlaps the original capture range. The chaos inducing modulation was 

then turned off, allowing the original dynamics of the PLL to capture the signal. 

(Bradley, 1993).  

Many electronic implementations of chaotic 1D maps are available in literature with 

the main purpose being the practical approach to the analysis and study of chaos 
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with no specific application given by the authors  (Campos-Cantón et al., 2009, 

Eguchi et al., 2000, Suneel, 2006, Edang et al., 2011, Hernandez et al.). 

2.4.2  Chaos in Cryptography 

Communication systems are used to transmit a message (information) from a 

transmitter to a receiver; before transmitting, the message should be formatted for 

suitable transmission and encrypted if the security of the transmission is of concern.  

The broad spectrum of the chaotic maps used to create random number and noise 

generators can also be used to design Spread-Spectrum (SS) communication 

systems. In SS communications, the power of the signal is spread out over a wide 

frequency band to avoid narrowband interference. The security is increased since the 

carrier signal is no longer a single spike in the frequency spectrum, making it 

electronically difficult to monitor and detect. A proposed chaos based system was 

used as a SS code on the transmitter and receiver end in order to spread the 

bandwidth of the transmitted signal, effectively increasing the signal robustness to 

noise and signal jamming (Setti et al., 2002).  

In Kocarev (2001) the similarities between classical cryptography systems and the 

high sensitivity to initial condition of chaotic system are shown. For this reason, 

chaos has also been used to create cryptographic algorithms, for example a method 

using the LM has been proposed in literature to simplify the design of chaos based 

cryptographic systems along with a step by step procedure for designing 

cryptographic systems using chaotic maps (Kocarev and Jakimoski, 2001). In 

another paper an optical chaos based secure communication system has been 

designed using a discrete implementation of the LM, incorporating a pulse position 
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modulation scheme together with the LM chaotic map to encrypt the signal (Singh 

and Sinha, 2010).  

Additional instances of chaos being used for communication or cryptography include 

but are not limited to, image encryption (Pareek et al., 2006, Patidar et al., 2009)  

and analysis of cellular neural networks behaviour (Zou and Nossek, 1993). 

2.4.3  Chaos Based ADCs 

Chaos has been applied to measurement and particularly to implementation of 

ADCs, where the ADCs created using chaotic maps are named algorithmic ADCs 

which rely on the piecewise-linear characteristic of 1D maps to double and fold the 

signal on each iteration. Algorithmic ADCs generate either a binary or a Gray-code 

representation of the sampled analogue signal, with the binary ADCs being based on 

the Bit Shift Map (BSM) while the Gray-code ADC are based on the TM (Kennedy, 

1995).    

 Bit Shift Map ADC  

The BSM can be used as an ADC as the output is a binary expansion of the sampled 

analogue signal. To do so a comparator is added at the output of the function so that 

the output is compared against a reference signal. If the signal is higher than the 

reference the output of the comparator is set to 1, else the output is set to 0. After 

each of the iterations the LSB, that has been generated, is shifted by 1 to the right 

and the remaining is iterated through the map to generate the next bit. This process is 

repeated N times until a N bit binary expansion is obtained. The input analogue 

voltage is then expressed as shown in expression (2-11). 
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                             (2-11) 

 

 

 
FIGURE 2-18 WORKING PRINCIPLE OF THE ADC BASED ON THE BIT SHIFT MAP  

 

Figure 2-18 illustrates the working principle of the algorithmic ADC based on the 

BSM Map. Each iteration adds one binary digit that represents the input voltage    

(Kennedy, 1995, Kapitaniak et al., 2000). For example if the value of the  input 

voltage is between 0.75 and 0.875 the first bit   will be set to 1 as the input x is 

higher than the threshold of 0.5 the second bit    will also be set to 1 as      is 

greater than the threshold. Finally the third bit    is set to 0 as         is lower than 

the threshold. ADCs based on the BSM have been implemented in literature (Qingdu 

and Qifeng, 2012).  
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 Tent Map ADC 

Similarly to the BSM the TM can be used to create an ADC which generates a Gray-

code expansion of the analogue input signal. After each iteration the output of the 

TM circuit is compared to a 0.5 threshold. If the output is lower than the threshold 

the bit is set at 1, else the bit is set at 0. After each iteration the bits are shifted to the 

left. This process is shown graphically in Figure 2-19.      

 

 
FIGURE 2-19 TENT MAP BASED ADC 

 

Gray-code algorithmic ADCs implemented using the TM are considered superior in 

term of performance to binary-code ADCs (implemented using the BSM). This is 

due to the fact that only one bit is changing at any time in a Gray-code ADC for an 

input signal change equivalent to 1 LSB. In a binary ADC a signal change around 

the threshold voltage (0.5 V) can cause many bits to change in cascade which can 

introduce transient errors that are difficult to correct (Arayawat et al., 2008). Another 
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advantage of the ADCs based on the TM is the improved tolerance to offset error 

compared to BSM based ADCs (Signell, 2005, Signell et al., 1997); this is due to the 

fact that in a BSM ADC the offset errors are always amplified with a positive gain 

which produces an accumulation of the offset errors. Alternatively, in the TM based 

ADC the amplification is switching between positive and negative gain which 

reduces the offset errors allowing a design of an ADC with improved resolution 

compared to BSM based ADCs. Gray-code ADCs have been implemented with 

different architecture such as voltage-mode where the ADC circuitry is dealing with 

voltages  (Arayawat et al., 2008) and current-mode where the signals propagating 

through the ADC are currents rather than voltages which allows for a simplified 

Integrated Circuit (IC) implementation  (Pouliquen et al., 1991, Wilamowski et al., 

2006, Chaikla et al., 2006). 

 Summary 

Algorithmic ADCs produce accurate results only if the parameters that define the 

maps behaviour are precisely set; in the case of the TM the parameter   should be set 

to exactly 2 and the voltage reference for the threshold to 0.5. If any error is 

introduced to the parameters the error will grow exponentially and coding errors will 

appear (Kapitaniak et al., 2000, Kennedy, 1995). If the parameter   is set to exactly 

2 (required) a small amount of noise can set the parameter to   >2, which will cause 

the map to diverge to 0 (exiting condition). The algorithmic ADCs generate accurate 

results if the components are ideal and noiseless and the parameters set accurately. 

This explains the low resolution of the ADCs developed using this technique. 

Wilamowski et al. (2006) proposed a TM based current-mode ADC with an IC 

implementation with limited resolution of 5 bits. A similar ADC architecture was 

used by Lu (2011) to design and simulate a 10 bit ADC. In general, chaos based 
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ADC are limited to a maximum of 12 bits (Keng and Salama, 1994, Hai et al., 2010) 

which makes them impossible to use for application where an extended input range 

combined with the ability to detect small variation of input signal is required.  

2.4.4  Chaos Based Measurement System 

A limited number of chaos based MS are available in literature; in fact the author is 

aware of only two main methods of measurement based on chaos (Chernukha, 1996, 

Hu and Liu, 2010, Wang et al., 1999). Wang et al. (1999) have shown that a chaotic 

Duffing oscillator can be used to detect weak signals and that the system was 

immune to noise. The parameters of the chaotic Duffing oscillator are set so that the 

oscillator operates near a bifurcation point. If any weak signal is added to the system, 

the oscillator will leave the chaotic region and go into a region where it will alternate 

between chaos and non-chaos.  The length of time spent in the non-chaotic state is 

then used to approximate the weak signal present within the system. This principle 

was used to increase the sensitivity of a metal detector; due to the high sensitivity to 

sinusoidal signals and the immunity to noise the chaotic Duffing oscillator allows the 

faster detection of small metal particles present in food (Hu and Liu, 2010). The 

drawback of the proposed system is that it can only be used for detection of 

sinusoidal signals as the amplitude of the detected signal cannot be accurately 

quantified due to the oscillator having only two states: chaotic or periodic.    

The second method presented by Chernukha (1996) which the author refers to as 

“synergic measurement method” two chaotic systems based on the LM and a chaotic 

oscillator are presented in order to improve the measurement accuracy of sensors 

parameters. The chaotic circuit is connected between the sensors and the ADC to 

provide conditioning circuitry with improved performance over the conventional 
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approach. The physical parameter being measured modifies a given parameter of a 

sensor, which in turn varies a parameter of the chaotic circuit. Because of the high 

sensitivity to the initial condition of the chaotic system this results in a significant 

change at the output of the chaotic system, allowing the MS to detect small 

variations of the measured parameter. The drawback of the proposed method is the 

increased amount of samples required to increase the accuracy as the author states 

that approximately 500 samples are required to improve the resolution by 2 bits. 

Unfortunately, other publications written by the same author that fully explains the 

above method are not accessible in English. Despite interesting theoretical and 

simulation results the two methods mentioned above have not been implemented and 

remain theoretical.    

2.5 Lyapunov Exponent 

The Lyapunov Exponent (LE), named after the Russian mathematician Aleksandr 

Mikhailovich Lyapunov, is used to estimate the sensitivity to initial conditions (i.e. 

the degree of chaotic behaviour) in chaotic systems (G.L.Baker and J.P.Gollub, 

1990). The LE of a map indicates the rate at which two initial states diverge after a 

given number of iterations and can be calculated using the expression                               

(2-12). 
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Where   is the LE,    the iteration number and          the derivative of the chaotic 

map. If the LE value of a map is negative two neighbouring points will converge and 

http://en.wikipedia.org/wiki/Aleksandr_Lyapunov
http://en.wikipedia.org/wiki/Aleksandr_Lyapunov
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the map will not exhibit chaotic behaviour, if the LE is positive two neighbouring 

points will diverge exponentially and the map is highly sensitive to initial condition 

and thus chaotic. This makes the LE the ideal tool to ascertain the presence of chaos 

in a given dynamical system.  

To demonstrate the use of the LE as a means of ascertaining the presence of chaos, 

Figure 2-20 shows the LE for the LM as function of the parameter  . As   is 

increased from 0 to 3.569 the LE remains negative which is expected as the 

bifurcation diagram shows that the TM is not chaotic. At   values above 3.569, the 

LE becomes positive showing that the map is chaotic. Finally, in the range where 

           the LE is mainly positive with some areas where the LE goes below 

0 due to the windows of periodicity as explained in section 2.3.1 and illustrated in 

Figure 2-9. 

 
FIGURE 2-20 VARIATION OF THE LYAPUNOV EXPONENT FOR THE LOGISTIC MAP 
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The following section will explain how the LE can be used to ascertain the presence 

of chaos for experimental data which will allow the test of electronic 

implementations developed further in this work, to be performed.   

2.5.1  Lyapunov Exponent Estimation  

In order to estimate the LE from an experimentally obtained time series, different 

methods should be used as the parameters and the nature of the chaotic system 

cannot be known accurately. The method used to estimate the LE from the time 

series is a direct method proposed by Rosenstein et al. (1992) based on the modified 

Wolf algorithm (Wolf et al., 1985) developed in (Sato et al., 1987, J.Kurths and 

H.Herzel, 1987) and uses the average exponential growth of the prediction error 

between two neighbouring points. The expression of the prediction error is given by 

equation (2-13) (Parlitz, 1998). For more in depth details, the mathematics behind 

the algorithm can be found in the original paper proposed by Rosenstein (1992). 

According to (Rosenstein et al., 1992, Wolf et al., 1985) to increase accuracy, a 

longer time series is required.  
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            (2-13) 

 

Where     is the closest neighbour of the point   , k is the number of time steps 

used for the estimation of the LE and n in the iteration number.  

After calculating the prediction error from the experimental data it is plotted and the 

exponential region is used to approximate the LE by measuring the slope of the 

linear part of the graph. If the slope is negative the separation between the two 
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neighbouring point is not exponential and the system is not chaotic, alternatively if 

the slope is positive the separation is exponential, which indicates a high sensitivity 

to initial conditions i.e. chaos.  

An example of the LE estimation from a prediction error is shown in Figure 2-21, 

where the slope of the line shows the theoretical LE of the chaotic time series, whilst 

the practical LE can be approximated using the linear region of the estimated LE 

curve. This method will be used later in the work to ascertain the presence of chaos 

in the proposed electronic implementation of the chaotic maps.   

 
FIGURE 2-21 LYAPUNOV EXPONENT ESTIMATION USING THE PREDICTION ERROR METHOD 

 

The theoretical LE for the LM when the parameter   is set to 4 is equivalent to the 

BSM LE and the TM LE when the parameter      and is equal to 0.693 (J.-P. 

Eckmann and D. Ruelle, 1985). 
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2.6 Conclusion 

This chapter introduced the structure of MS and reviewed the limitations inherent to 

conditioning circuitry and ADCs. An introduction to chaos followed by a review of 

two 1D chaotic maps was shown, with the typical behaviour being evaluated using 

bifurcation diagrams and time domain analysis. The next section of the chapter 

focused on applied chaos and particularly on the use of chaos in electronics; ADCs 

and measurement systems. The main source of error that limits the performance of 

chaos based ADCs were evaluated to be the inaccuracy of the parameters and 

threshold voltages within the implemented system. The chapter was concluded by an 

explanation of the high sensitivity to initial condition of chaotic maps and the use of 

Lyapunov Exponent (LE) to determine the presence of chaos from the analysis of 

experimental data. 

From the literature review carried out in this chapter the following has been 

concluded: 

 

 Classical measurement systems are limited by the sensor performance, the 

noise of the conditioning circuitry and the performance of the ADC. As the 

range of the input signal increases the sensitivity of the system decreases due 

to the quantisation of the ADC (step size).  

 Chaos has been used in electronics and particularly in algorithmic ADCs; the 

performance of which are limited due to parameter and threshold errors. 

 Two theoretical measurement systems based on chaotic circuits have been 

presented in literature without practical implementation.  
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The next chapter will introduce a novel measurement technique based on the high 

sensitivity to initial conditions of one-dimensional chaotic maps that can be used to 

measure small variations of input signals utilising a low resolution ADC. The 

proposed technique is not reliant on the need for highly accurate parameter values 

and the sensitivity to signal change is independent of the input range.    
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3 Proposed Signal Measurement 

Technique 

The proposed Measurement System (MS), based on a one-dimensional (1D) chaotic 

map, uses the high sensitivity to initial condition, as presented in the previous 

chapter, to measure small input signal changes. The technique differs from a 

conventional approach to signal measurement by quantifying the difference between 

two signals rather than determining the absolute value of a sample. This enables the 

accurate detection and measurement of small input signal changes which is totally 

independent of input signal range. In the previous chapter the analysis of a single 

input with different signal changes was performed in order to demonstrate that the 

moment (iteration) of divergence between the two input time series (signals) was 

apparently inversely proportional to the amount of change. In order to ascertain the 

feasibility of the proposed MS, the fundamental requirement for the linearity of 

divergence needed to be evaluated for a given change throughout the entire input 

range. The linearity of divergence is not verifiable with a single divergence graph as 

given previously (Figure 2-11), which shows only the divergence between two time 

series representing two samples. In order to visualise the divergence over the full 

normalised input range (0 to 1) a Matlab simulation has been carried out to generate 

the 3D graph that illustrates the divergence between the time series throughout the 

entire input range. The developed Matlab code used to generate the 3D graphs is 

available in Appendix B. This novel 3D visualisation technique allows the analysis 

of the high sensitivity to initial conditions of any chaotic map throughout the entire 

input range, which makes it a powerful tool for the study of chaotic maps. 
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The simulation was performed by taking 10000 input sample points evenly spaced 

throughout the entire input range. The maps were iterated and each time series 

obtained was subtracted from time series, for the same points plus a given signal 

change ( ). The divergence for each sample was then displayed to produce a 3D 

graph, as shown in Figure 3-2 for the Logistic Map (LM). The flowchart of the 

algorithm used to generate the 3D graph is show Figure 3-1. 

Start

Input = 0

Store 1st signature

Input ≥ 1 ?

Input = input + Δ 
Iterate map N times

Store 2nd signature

Subtract signature 1 
from signature 2 
and store result

END

Iterate map N times

Input = Input - Δ + 
1/resolution 

No

Display all 
signatures in a 3D 

graph

  

FIGURE 3-1 FLOWCHART OF THE 3D DIVERGENCE GRAPH  
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The parameter  , given in equation (2-8) for the LM, was set to 4 (chaotic region) 

and a change ( ) of 0.0001 was applied for every input value. The graph shows that 

whilst being relatively linear the divergence varies between inputs. Any signal lying 

in the range of 0 to 0.1 and 0.9 to 1 will diverge earlier (iteration 3 to 5) than signals 

in the range of 0.1 to 0.9 ; this issue can be avoided by only utilising the region 0.1-

0.9 of the normalised input range. Additional graphs showing different view angles 

for different values of   are shown in Appendix B. 

  

 
FIGURE 3-2 SENSITIVITY TO INITIAL CONDITIONS OF THE LOGISTIC MAP FOR  =4. 

 

In order to determine the difference in the sensitivity to the initial conditions for the 

TM based system, the 3D divergence graphs shown in Figure 3-3 was produced in 

the same manner as the LM based graph. The divergence of the TM is linear 

throughout the entire input range, for a TM parameter    set to 1.99 (chaotic region) 

and a change of 0.0001  applied for 10000 points throughout the whole input range. 
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The two graphs (Figure 3-3 (a) and (b)) represent the same data viewed from 

different angles where the divergence is visible from iteration 6 for any input value. 

In this aspect the TM is more suitable for the design of the small signal change 

detection MS as the full input range can be utilised. Additional 3D graphs are 

available in Appendix C presenting the behaviour of the TM to different values of  . 

 
FIGURE 3-3 DIVERGENCE OF THE TM FOR THE ENTIER INPUT RANGE 

 

3.1 Quantifying Input Signal Change 

The LM and TM implementations are both capable of detecting small variations of 

input signals, but in order to define a viable measurement system the amount of 

change between the two signals should be quantifiable. To quantify the amount of 

change between two input signals when using the LM, a threshold has to be set on 

the amount of divergence at a given iteration. Thus the iteration sample at which the 

threshold is reached is used to determine the amount of change between the two 

samples. The calibration can be performed using the 3D divergence graph previously 

developed as shown in Figure 3-4.When   is varied the threshold is reached at 
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different iteration numbers, by using the relationship between   and the number of 

iterations when the threshold is reached the system can estimate the change between 

two input signals.     

 
FIGURE 3-4 LM DIVERGENCE GRAPH WITH SET THRESHOLD FOR A    OF 0.0001 

 

The disadvantage of this method is that the threshold has to be defined using 

simulation and calibration techniques. However, this requirement is removed when 

the TM is used since the simple piecewise linear characteristic of the map means that 

the difference between two input signals can be calculated for the divergence at a 

given iteration using the formula given by expression (3-1). 

 
   

 

  
 (3-1) 

         

Where   is the amount of change between the two input signals,   is the divergence 

between the two time series at iteration   and   is the parameter of the TM. The 

equation has been derived using the following process: 
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The gain of the TM is set by the parameter  , the amplification factor, which means 

that the total amplification after N iterations is   . Thus, if two input values, 

separated by a difference ( ) are separately iterated through the map, the   will aslo 

be amplified by    . Hence to determine the value of   between two signals, the 

divergence   at a given iteration N should be divided by the overall gain obtained 

through the iteration process.   

To illustrate the process of calculating  ,the parameter   was set to 1.99, a random 

input was taken and the time series was displayed in Figure 3-5. The dotted green 

and blue lines show the values for the original input and input with an added 10  V 

change respectively. The divergence between the two time series is represented by 

the red full line.   

 

 
FIGURE 3-5 DIVERGENCE BETWEEN TWO SAMPLES 

 

With an ideal MS, the difference between two signals could be estimated with an 

unlimited accuracy, however, in practical applications different errors and noise will 
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limit the performance of the proposed MS. The following section will identify all the 

errors associated with the chaos based measurement system and the impact of each 

error will be quantified.   

3.1.1  Measurement Errors 

The errors inherent to the proposed MS have been identified as being associated with 

the following aspects: 

 Errors due to the resolution of the ADC: As shown in the previously section, 

the estimation of the difference between two input signals is performed using 

the divergence between the signatures representing the signals. The 

resolution of the ADC will introduce errors ( 
 

 
 step size) as the output of 

the chaotic map is sampled after each iteration to produce the signatures 

(time series).  

 Errors due to the TM symmetry: The TM being symmetrical, some errors are 

possible when two signals are symmetrically placed on each side of the TM 

triangle transfer characteristic.  

In addition to the sources of errors shown above, the following aspects of the 

measurement process have been identified as possible further sources of errors:  

  Error due to the number of iteration: The measurement should be taken after 

a given number of iteration to avoid the loss of information due to the folding 

of the chaotic map. This will allow an accurate estimation of  . 

 Error due to the amount of divergence between two signatures: Similarly to 

the number of iterations, the divergence between two signatures used to 
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estimate   is important to reduce measurement error as the folding of the 

map can produce significant errors.     

In this section, the sources of errors are analysed and the optimal values for the 

number of iterations and the amount of divergence are calculated in order to obtain 

an accurate measurement by minimising measurement errors.  

 Errors due to ADC resolution 

With unlimited number of decimals the calculated  , using expression (3-1), will 

match the real   but in real applications, the data used for the estimation of   will be 

limited in terms of accuracy by the resolution of the ADC used within the MS. The 

error between the simulated   and the    calculated, taking into account the 

resolution of the ADC is shown in Figure 3-6. The sample was limited to 3 decimal 

places to take into account the restricted resolution of the ADC (10 bit), used to 

sample the signals in the practical implementation. The error as a percentage of the 

estimated value of  , is displayed with the dotted line while the error in volts is 

shown using a full line. For the first 6 iterations the divergence (   being smaller 

than one LSB of the ADC the calculation yields     which meant that the system is 

unable to calculate   (change undetectable by the ADC). At iteration 7,   is greater 

than 1 LSB and therefore large enough to be measured by the ADC; the   is 

calculated with an error of 19.1%. The error decreased significantly as the number of 

iterations increased, this is due to the   being considerably greater than the LSB of 

the ADC. By iteration 13 the error has reduced to less than 1% and reaches the 

lowest value at iteration 15 with an error of -0.02% representing an error of only 

2    for a   of 10   . After iteration 15 the folding of the TM causes the 

measurement of the divergence to be inaccurate due to the error increase. The data 
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used to create Figure 3-5 and Figure 3-6 is available in Table A-1 in Appendix A. 

These results demonstrate that a   of 10    could be detected to within       using 

the proposed technique utilising a low resolution ADC.  

 

 
FIGURE 3-6   ESTIMATION ERROR  

 

 Errors due to the Tent Map symmetry  

Given the symmetrical nature of the TM, two different input signals that are 

equidistant from of the peak of the TM triangle will produce identical time series. 

For example, the input value 0.49 and the input value 0.51 will produce the same 

time series and only the first values (the initial input value) are different, given by 

equation (4-9) and illustrated in Figure 3-7. The two time series for     are shown 

in Figure 3-8, the data used to produce the graph is available in Appendix A, Table 

A-2. Although the two inputs are separated by 0.02, the two time series are identical 

from iteration 1 meaning that the divergence will not occur (in a noiseless system). 
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FIGURE 3-7 TWO INPUTS WITH IDENTICAL OUTPUT VALUES 

 

 
FIGURE 3-8 TWO IDENTICAL TIME SERIES FROM TWO DIFFERENT INPUTS 
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throughout the entire input range. This allowed the effect on the estimation of   to be 

analysed. In Figure 3-9 the amount of divergence   is shown for iteration 1, 2, 3 and 

6 for a   of 50   . A point of significant reduction in divergence  , which will be 

referred to as “Null” (D) is visible in iteration 1 then the number of nulls increases 

with the number of iterations following expression  (3-2).     

         

                                      

(3-2) 

 

The width of the null is equal to the amount of change   at the input as shown in 

Figure 3-10, where   was set to       . The fact that the width of a null is equal to 

the change between two input signals, the probability of being at a null can be 

calculated using expression (3-3).  

 
         

  

 
       (3-3) 

      

Where   is the input range,   the input change and   the number of nulls for a given 

iteration  .  

From expression (3-3), in order to minimise the probability of being at a null,   

should be decreased by reducing the number of iteration whilst the input range   

should be maximized. For a   of 100    the probability P(Null) is 0.06% when the 

measurement is taken at iteration 6.  As shown in Figure 3-8, the null occurs when 

the time series reach a value close to one which on the next iteration (iteration 2 in 

Figure 3-8) generates values close to zero. This pattern can be used by the MS to 
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detect the presence of nulls in the measurement and thus compensate and identify the 

signal change more accurately given further investigation. 

 
FIGURE 3-9 NUMBER OF NULLS FOR DIFFERENT VALUES OF N 

 

 
FIGURE 3-10 WIDTH OF A NULL FOR AN INPUT CHANGE OF       
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 Errors associated with the number of iterations 

The number of iterations performed by the system is directly linked with the 

accuracy of the measurement: Figure 3-11 shows error magnitude in the calculation 

of   against the iteration number for different values of  . As expected the lower the 

difference ( ) between two inputs the higher the iteration (N) required to determine 

  with an acceptable degree of accuracy. For a change of 10    the error decreases 

to an acceptable 1% at iteration 13. It takes 10, 9 and 8 iterations to reach the same 

level of accuracy for a change of 50   , 100    and 200    respectively. 

Furthermore for a change of 0.5      can be estimated to within 0.5% from iteration 

1 as the change ( ) can be detected with the ADC without any iteration.   can be 

estimated with an error of less than 0.02% even when the time series used for the 

calculation are sampled with an ADC that limits the values to 3 decimals. The 

accuracy of the   estimation is independent of the amount of change between the 

input signals.  

 
FIGURE 3-11 DELTA ESTIMATION ERROR AGAINST NUMBER OF ITERATIONS 
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As shown in expression (3-1), to estimate    the MS requires three parameters; the 

value of the TM parameter  , the iteration number N and the value of the divergence 

between the two samples at any given N. In the case of an autonomous MS, the 

system should be able to determine the measurement, which is closest to the actual 

value of  , yielding the highest accuracy possible. For this reason, an analysis to 

determine when the MS should estimate   has been carried out showing the errors 

associated with each parameter.    

 Errors due to the amount of divergence between two signatures 

The following analysis graph (a) in Figure 3-12 shows the error in estimating   

against the amount of   between the two time series for different values of  . If   is 

below 0.03 the error is greater than  1% and as   increases towards 0.3 the error 

decreases to less than  0.1%. Finally, above 0.3 the folding of the TM occurs and   

increases again. The graph (b) Figure 3-12 shows an enlarged section of the “low 

error area” demonstrating that the lowest error is achieved when   is in the interval 

[0.2-0.3]. This value can be used to configure the MS to estimate   as soon as   

enters the low error interval.  

In Figure 3-13 the effect of the parameter   on the estimation of   is shown. The 

parameter   was initially set to 1.99 and varied with a         change to simulate 

any error that can arise in the real electronic implementations, between the desired 

set value of the parameter   and the real value. Sample difference ( ) was set to 50 

   and the effect on the estimation error was simulated: it appears that in the low 

error interval the error on the estimation of   remains within      , which 

corresponds to an estimated   of 50            .  
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FIGURE 3-12 DELTA ESTIMATION ERROR VS AMOUNT OF DIVERGENCE FOR DIFFERENT   

 

 
FIGURE 3-13 DELTA ESTIMATION ERROR FOR DIFFERENT VALUES OF THE PARAMETER   
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In this section, the mechanism of quantifying the change of input signal was 

discussed and a new means of measuring small variations of input signal using one-

dimensional (1D) chaotic maps was proposed followed by the analyses of sources of 

measurement errors associated with the proposed system. Finally, the error analysis 

enables the optimal number of iterations and amount of divergence to be determined 

and used by the MS in order to obtain an accurate estimation of the input signal 

change. The next section will show the different topologies used for the proposed 

MS. 

3.2 System with Feedback 

In order for the MS to enable successive iterations to be performed, through an 

electronic implementation, feedback is generally utilised. 

3.2.1  System with Feedback Experimental Setup 

The individual maps were placed in a feedback system to allow iterations and data 

storage, as shown in Figure 3-14. The sampling frequency was set to 100Hz. The 

system operates as follows: 

 The system samples the 1
st
 input and iterates the chaotic map (N iterations); 

the result of every iteration is converted to a digital word and stored 

developing a signature or data set related to the input sample. 

 A 2
nd

 input is sampled and iterated, converted and stored (2
nd

 signature). 

 The signature (data set) for the first sample is then subtracted from the 

signature (data set) for the 2
nd

 sample. 
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 The resulting difference signature obtained is then used to determine the 

amplitude of the change between the two successive samples, as the 

number of iterations, before the two signatures diverge, is proportional to 

the relative difference between the samples.  

 The sample difference is measured and not the absolute value. 

 The data storage and the subtraction are all performed by a microcontroller 

( C). 

The system implementation and technical details are explained in section 4.2.1.  

Switch

Chaotic Map

Feedback
Low resolution 

ADC
Signature 
Storage

Control Circuitry

Input

Microcontroller

 
FIGURE 3-14 BLOCK DIAGRAM OF THE PRESENTED ITERATED SYSTEM 

 

The configuration given in Figure 3-14 has been used to assess the performance of 

the chaotic maps and as the main implementation of the MS. The series 

implementation has been used to demonstrate that higher levels of sensitivity can be 

achieved by eliminating the errors generated due to the feedback process. 
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3.3  Series System 

In the series system feedback circuitry is not required as the signal is propagated 

through consecutive chaotic maps implementation, which enables faster response 

times due to the removal of the need for clocking and eliminates errors generated by 

the feedback circuitry (sample and hold errors). The main drawback of the series 

system compared to the iterated system is that the circuitry required to perform a 

given number of iteration is larger and increases with the number of maps placed in 

series. Also the number of calculations (series propagation) is set by hardware which 

prevents any software modifications of the number of iterations.   

3.3.1  Series System Experimental Setup 

The series system operates in a similar way as the iterated system, the main 

difference is that the central circuitry is required to route the output of each map to 

the ADC via multiplexing. In Figure 3-15 a block diagram of a series system with 

three identical chaotic maps is illustrated. The block diagram has been limited to 

only 3 maps for clarity. The series system works as follows: 

 The 1
st
 measurement is taken by sampling the output of each map starting 

with map A and continues through to C. This is performed sequentially by 

multiplexing the analogue input being sampled in software. 

 The data obtained from sampling the output of each map is used to form a 

signature (data set) for the 1
st
 signal sample. 

 The same procedure is performed for the next input signal sample.   
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 The signature from the first sample is then subtracted from the 2
nd

 sample 

signature. 

 The modulus of the result obtained is then used to determine the difference 

between the two samples, as the number of iterations, before the two 

signatures diverge, or the amount of divergence after N iterations is 

proportional to the relative difference between the samples. 

 The sample difference is measured and not the absolute value. 

 The data storage and the subtraction are all performed by a Microcontroller 

( C). 

 

Chaotic Map A

Low resolution ADC Signature Storage

Control Circuitry

Input
Chaotic Map B Chaotic Map C

Multiplexer or Analogue Inputs

Microcontroller

 
FIGURE 3-15 SERIES SYSTEM BLOCK DIAGRAM 

3.4 Conclusion  

This chapter analysed how the high sensitivity to initial conditions of one-

dimensional chaotic maps can be used for the measurement of small signal changes. 

The working principle of the proposed technique was defined and analysed with the 

following significant points identified: 
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 A novel way of visualising the divergence of one-dimensional chaotic maps 

was proposed using a three dimensional (3D) graph, developed specifically 

for this application. 

  From the 3D representations of the divergence for the LM and the TM it was 

determined that the TM yielded a relatively linear response throughout the 

entire input range. Whereas the input range of the LM has to be limited to 

avoid early divergence due to non-linearity near the extremities of the input 

range as illustrated in Figure 3-2 and Figure 3-3. 

 A method of quantifying the change between two input samples has been 

proposed in expression (3-1), which is related to the number of iterations and 

the size of signature divergence. 

 The sources of errors associated with the proposed system have been 

identified and the impact of each error has been assessed and methods of 

minimising the errors have been proposed. 

 The analysis has also shown that “nulls” (point of lower divergence) can 

appear on the response of the TM around the threshold voltage.  

 The number of nulls presents over the entire input range and the probability 

of reaching a null during a measurement have been expressed by equations                                       

(3-2) and (3-3) respectively. The probability of reaching a null during a 

measurement has been identified as iteration dependent. 

 A method of identifying when nulls occur has been presented to avoid flawed 

measurements.  

Finally two possible implementations of a chaos based MS where proposed which 

are based on the feedback and series system.  
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The following chapter will discuss the practical implementation of the proposed 

maps and the overall MS.   
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4 Measurement System 

Implementation  

This chapter focuses on the electronic implementation of the Measurement System 

(MS) proposed in Chapter 3. Firstly, an electronic implementation of the Logistic 

Map (LM) and the Tent Map (TM) are proposed followed by the full implementation 

of the two MS topologies; feedback and series.  

4.1 One-Dimensional Maps Implementation 

This section will discuss the electronic implementation of the LM and the TM, 

which are two of the simplest mathematical expressions exhibiting chaotic behaviour 

making them ideal for electronic implementation. As the circuitry required to 

implement the maps is relatively simple, a low noise implementation is achievable, 

which is paramount for MS.    

4.1.1  Logistic Map Implementation   

For the design and implementation of the LM; the initial step was to investigate an 

electronic circuit based on the implementation available in literature (Suneel, 2006). 

The electronic circuitry was then assessed to ascertain that the system exhibits the 

characteristics and behaviour identified in the theoretical LM model. Subsequently, 

the behaviour was established by collecting systems measurements to obtain the LM 

parabola, the bifurcation diagram and the time series.    
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The prototype of the LM was implemented using readily available low cost 

electronic components as shown in Figure 4-2. The LM equation implemented is the 

modified version to enable an input range of 0 V to 10 V instead of the normalised 0 

V to 1 V input range of the classic LM given in expression (2-8). The modified LM 

shown in equation (4-1) is identical to the original LM the only difference being the 

scaling factor. 

                  (4-1) 

       

Where     can vary from 0 to 0.4 which is equivalent to a variation of   from 0 to 4 in 

the classic LM shown in equation (2-8). 

Scaling up the LM does not change the behaviour but solely the input and output 

range which allows the Measurement System (MS) to detect variation of input signal 

over a wider input range. In order to obtain the expression in equation (4-1), using 

electronic circuitry, three main circuit blocks were used as shown in Figure 4-1; one 

subtractor and two multipliers. The first multiplier (multiplier (A)) multiples the 

input by the parameter    to obtain     . The subtractor subtracts the input from a 10 

V reference to obtain        . Finally, the second multiplier (B) multiples the 

results from the previous blocks to generate the modified LM expression (4-1). 
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FIGURE 4-1 BLOCK DIAGRAM OF THE LM IMPLEMENTATION 

 

Figure 4-2 shows the circuit diagram of the proposed implementation; which uses 

three OP27 operational amplifiers (Analog-Devices, 2003) and one AD633JN 

analogue multiplier (Analog-Devices, 2012) along with several passive components. 

The passive components used for power supply decoupling and noise filtering are 

omitted from the schematic to keep the schematic clear.  The 10 V reference voltage 

was produced using a low noise AD587 voltage reference IC (Analog-Devices, 

2007); not shown in the simplified schematic. The full schematic is shown in 

Appendix G and some notes regarding the selection of components are available in 

Appendix H.  
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FIGURE 4-2 SIMPLIFIED SCHEMATIC OF THE MODIFIED LM. 

 

In Figure 4-2, U1 is an op-amp configured as a unity gain buffer to insure that R7 

and RV1 are not loading the input     . The input      is scaled by the constant    

set by the potential divider configuration R7 and RV1 following the expression                     

(4-2);    can be set anywhere between 0 and 0.4 by varying the position of RV1. 

 
          

    

        
       

                    (4-2) 

 

 

Where α is a variable representing the position of the potentiometer ranging from 0 

(minimum) to 1 (maximum). U3 is an operational amplifier configured as a 

difference amplifier with a transfer function given by the expression                        

(4-3). 

 

 
            (

         

         
)    ( 

  

  
)                           (4-3) 
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The resistors R1 to R4 are set to identical values so that the signal at the inverting 

input of U3 is subtracted from the signal at the non-inverting input. Hence, in this 

case the expression (4-3) can be simplified to the expression (4-4), with the reference 

voltage (Ref) set to 10 V. 

                                                   (4-4) 

         

The outputs from U1 and U3 are multiplied using an AD633JN analogue multiplier 

IC (U2). With a transfer function according to the manufacturer datasheet (Analog-

Devices, 2012) given in expression (4-5).  

 
        

              

  
   

                             (4-5) 

 

 

In the LM implementation, X2, Y2 are connecter to ground since the inputs of the 

multiplier are single ended (not differential). Z is also connected to ground as no 

offset is required.  This simplifies the expression (4-5) to the expression (4-6).  

 
       

     

  
 (4-6) 

     

The input X1 is connected to         and the input Y1 to        , which yields the 

expression (4-7). 

 
       

           

  
 (4-7) 

  

Since the internal circuitry of the AD633JN multiplier (U2) divides the output by 10, 

       is amplified by U4, configured as a non-inverting amplifier with a gain set to 
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10, in order to obtain the modified LM.  The transfer characteristic of the overall 

circuit is expressed by (4-8). 

 
             (

           

  
) (   

  

  
)            (4-8) 

 

Resistors R6 and R5 are set to obtain a gain of 10 which gives the final transfer 

characteristic of the whole circuit to match the modified LM as expressed in (4-1). 

In this section an electronic implementation of the modified LM was presented; 

using readily available components the transfer characteristic obtained is identical to 

the modified LM expression in (4-1). The full schematic of the LM implementation 

is shown in Appendix G. Contrary to other implementations available in literature 

such as the circuit presented by Suneel (2006) the proposed implementation uses a 

single multiplier which simplifies the circuit and reduces the inherent noise as 

discussed further in section 5.7. 

4.1.2  Tent Map Implementation  

The TM circuit was also constructed using readily available low noise components; 

the block diagram of the proposed TM implementation is shown in Figure 4-3 and is 

constructed using four main circuit blocks; level shifter, half wave rectifier, amplifier 

and adder. The input to the circuit is propagating through two paths shown as (1) and 

(2). Path (1) is composed of an amplifier to create the line shown as (1). Path (2) is 

composed of the level shifter and half wave rectifier to create the transfer function 

shown as (2) in Figure 4-4. This section of the circuit implements the 0.5 V threshold 

voltage (set by the reference voltage) required to generate the overall transfer 

characteristic of the TM; the two transfer characteristics obtained from (1) and (2) 
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are inverted and added to obtain the overall transfer characteristic of the TM. The 

schematic of the proposed implementation is shown in Figure 4-5. Some components 

are omitted to simplify the schematic. The full schematic is available in Appendix G 

along with note regarding the components selection in Appendix H.   
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FIGURE 4-3 BLOCK DIAGRAM OF THE TM IMPLEMENTATION 
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FIGURE 4-4 CONSTRUCTION OF THE TM TRANSFER CHARACTERISTIC 
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FIGURE 4-5 SCHEMATIC OF THE PROPOSED IMPLEMENTATION OF THE TM 

 

The upper branch of the circuit (shown as (2) in Figure 4-3 and Figure 4-5) is 

composed of two blocks constructed around the level shifter (U1) and the half wave 

rectifier (U2) in Figure 4-5. The input signal is applied to a summing amplifier (U1) 
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to shift by an amount equal to Vref. The resistor values R1, R2 and R4 are identical 

so that the transfer function can be expressed as (4-9).   

                 (4-9) 

 

The output of the half wave rectifier constructed around U2 has two conditions; 

when the input is greater than 0 V the output is 0 V and when the input is below 0 V 

the output is inverted and amplified by a gain set using RV2, R5 and R3. Because of 

the shifting introduced by the previous stage (U1) the threshold is moved from 0 V 

to -Vref giving an overall response expressed by equation (4-10).   

 

    {
   | 

       

  
   |                                      

                                                                     
   

 

(4-10) 

 

For the lower path (1) the transfer function given by equation (4-11) is achieved 

using an inverting amplifier with the gain set by RV1, R6 and R7.   

 
     

       

  
    

(4-11) 

        

Paths (1) and (2) are summed using the summing amplifier constructed around U4 as 

expressed in (4-12). 

                 (4-12) 

 

Finally, substituting expressions (4-10) and (4-12) for      and     respectively 

gives expression (4-13).  
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(4-13) 

 

Where R3 and R5 are set to obtain a gain close to -2, while the resistors R6 and R7 

are set to obtain a gain of approximately 4. Inverting and adding the two gains (from 

paths (1) and (2)) gives a gain of -2 on the second half of the TM characteristic.  

RV1 and RV2 are used to vary the gains of the two paths (1) and (2) respectively in 

order to set the parameter of the TM. The reference voltage was produced using a 

low noise ADR130 voltage reference IC (Analog-Devices, 2013); not shown in the 

simplified schematic. Vref is set to -0.5 V which gives the original expression of the 

TM shown in expression (4-14). 

 

     {
                              

 

 

                       
 

 

    

 

(4-14) 

 

 

After implementing the LM and the TM the next section will discuss the 

implementation of the two different topologies of Measurement System (MS). 

4.2  Measurement System Implementation 

In this section the feedback and series measurement system (MS) are implemented. 

4.2.1  Feedback System Implementation  

The working principle of the feedback system was explained in section 3.2.1 and 

was implemented electronically as per the block diagram presented in Figure 3-14, 
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the schematic implementation is shown in Figure 4-6.  The system design was 

divided into three sections; a switch between the input and the feedback, a feedback 

path and the control and storage circuitry. The control circuitry, ADC and memory, 

are all embedded within a PIC32MX460L  C: on a Mikroelektronika LV32MX v6 

development board, and programmed using Microchip MPLAB environment along 

with a C32 compiler. A graphic Liquid Crystal Display (LCD) with touch screen 

provides a graphical user interface by displaying the state of the system. Appendix H 

discusses the requirements of the  C. For the digital outputs and analogue inputs the 

following configuration was used:  

 Two digital outputs are used to control the switching between the input and 

the feedback.  

 Further digital outputs are used to control the sample and hold circuitry of the 

feedback and to discharge (reset) the sample and hold capacitors before the 

next sample is taken.  

 An analogue input was used to sample the chaotic map output and convert to 

digital data using the internal 10 bit ADC.  

The sampled data was stored in the internal memory and transferred to an external 

USB memory in a Comma-Separated Values (CSV) format to allow the data to be 

analysed and displayed using MATLAB.  

The switching and the sampling process were implemented as follows: 

 The Switching circuit block (A) between the input and the feedback (B) was 

implemented using the DG211 analogue switch IC (Maxim, 2006). The 

DG211 being a normally closed switch, a logic "0" closes the switch whilst a 

logic "1" opens the switch.  
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 The feedback block (B) was implemented with two LF198 Sample and Hold 

(S/H) circuits (U6, U7) along with two low leakage 0.1  F capacitors to 

reduce errors in the feedback path. The switches SW1 and SW2 are used to 

connect and disconnect the input or the feedback to the input of the chaotic 

map using pins RC2 and RC3 of the  C.  

 The S/Hs are controlled via the  C pins (RC4 and RC5). The S/H capacitors 

where selected to provide low leakage and low dielectric absorption error 

(Texas-Instruments, 2000). The dielectric absorption can produce significant 

errors by offsetting the following sample (Analog-Devices, 2008).  In 

addition to the use of polypropylene capacitors, to eliminate any errors due to 

remaining charge in the S/H capacitors two N-channel MOSFETS (Q1 and 

Q2) were connected in parallel with C1 and C2 to provide full discharge of 

the capacitors. A comparator (U1) is used to drive Q1 and Q2, as  C output 

pins are unable to drive the MOSFETs directly due to insufficient output 

voltage. After each series of iterations, before the next input in fed to the 

chaotic map the  C triggers the comparator and switches on the MOSFETs, 

C1 and C2 are short-circuited which removes any remaining charge. 
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(B)

(A)

 
FIGURE 4-6 SCHEMATIC OF THE FEEDBACK SYSTEM FOR MAP ITERATION 

 

 
FIGURE 4-7 CONTROL SIGNALS FOR THE ITERATED MEASUREMENT SYSTEM 

 

The signals of a typical run of the iterated MS are shown in the oscilloscope screen 

capture in Figure 4-7. The signal number is shown on the left hand side of the graph 

while the scale for each signal (in volts per division) is displayed at the top. Signals 
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(2) and (4) represent the control signals for the S/H (RC4 and RC5) respectively. 

Signal (3) is used to control the switching between the input and the feedback (RC2); 

RC3 is not represented as it is the opposite of RC2. Finally, signal (1) represents the 

output of the comparator U1 (RC6). The iterative process follows the steps described 

below: 

 Firstly the input is connected to the chaotic map and the resultant output 

signal is stored in the capacitors by sending a pulse to the S/Hs with RC4 

then RC5.  

 The input is then disconnected before the feedback is connected to the 

chaotic map.  

 After a delay specified for the signal to propagate through the map circuit the 

output signal is stored in the S/H capacitors. The pulses for the S/Hs are 

repeated N times which generate the iterations.  

 After each iteration the output signal is sampled, digitised and stored in the 

internal memory of the  C. Once the set number of iterations N is reached 

the input is reconnected and the feedback disconnected.  

 The MOSFETS are activated to remove any remaining charge from the 

capacitors. 

 The MS is then ready for the next measurement. 

4.2.2  Series System Implementation  

In the series implementation no switching of feedback is required; the input of the 

system and the outputs of each map are connected to a separate analogue input of the 

ADC as shown in Figure 4-8. The development board and the  C used to perform 

the ADC function and the measurement are the same as for the feedback system as 
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shown in section 4.2.1. The schematic of the given map is copied and connected in 

series as shown in the block diagram of the series implementation in Figure 4-8: the 

actual schematic of the series system is not shown due to its simplicity.  The  C used 

has 16 analogue inputs which mean that the MS is able to perform up to 16 

measurements of chaos map outputs, without an additional multiplexer. The 

propagation of the signal is not controlled by the  C as the signal propagates freely 

through each map. The signature is constructed by sampling the output of each map. 

Chaotic Map 1
Input

Chaotic Map 2 Chaotic Map N

PIC32MX460L

Analogue 
input 1

Analogue 
input 2

Analogue 
input N

 
FIGURE 4-8 BLOCK DIAGRAM OF THE SERIES SYSTEM  

           

4.3 Conclusion 

The first section of this chapter focused on the practical implementation of two one-

dimensional chaotic maps, the Logistic and the Tent map respectively. The design 

process was undertaken to develop an electronic system based on the mathematical 

expression of each map; to do so, a block diagram was produced followed by the 

electronic implementation of the maps. The transfer function of each functional 

block was used to analyse the overall transfer characteristic of the proposed 

implementation and to ascertain the matching accuracy between the presented circuit 

and the associated mathematical expression.   
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High performance, yet readily available components were used to obtain a circuit 

that yields increased overall MS performance, by reducing the overall noise whilst 

avoiding expensive and hard to source components. 

The second section explains the implemented feedback and series MS. The feedback 

system requires switching circuitry and S/Hs for the iterations whereas the series 

system requires multiple identical implementation of the map circuitry which creates 

a relatively cumbersome MS if a large number of stages are required.      

The following chapter will assess the performance of the developed 

implementations.  
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5  Performance Analysis of 

Implemented Chaotic Maps  

This chapter focuses on the performance analysis of the LM and the TM. To assess 

the performance, the electronic implementations will be compared to the theoretical 

maps using the following measurements:  

 Transfer characteristic: this will assess the accuracy of the practical 

implementation compared to the theory (transfer characteristic).  

 Bifurcation diagram: the bifurcation diagram will allow the behaviour of 

the proposed implementations to be visualised for variations of the map 

parameter. The bifurcation diagram obtained practically for each map should 

match the theoretical bifurcation diagrams shown in section 2.3 and exhibit 

all the characteristic of the theoretical maps ranging from single point 

stability, periodicity and chaos.       

 Time series: the time series will be measured and analysed to demonstrate 

the behaviour over time of the proposed hardware implementations.  

 Lyapunov Exponent: the data of the time series will be used to estimate the 

Lyapunov Exponent (LE) of the maps. The estimation of the LE from the 

experimental time series will allow the chaotic nature of the proposed 

implementations to be ascertained. 

 Noise measurement: the noise measurement will be used to quantify the 

amount of noise inherent to each implementation. This is critical to any MS 
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as the magnitude of the noise components will determine the performance 

limit of the MS in terms of signal change that can be accurately determined. 

5.1 Transfer Characteristic 

To obtain the transfer characteristic of each map, the input of the electronic chaos 

map implementation under test was connected to a signal generator which was set to 

produce a sinusoid voltage signal. A DC offset was applied to enable the signal to 

swing between 0 and the highest voltage of the chaos map input range, which 

corresponds to a 10 V pk-pk input signal with a 5 V offset for the LM and a 1 Vpk-

pk input signal with a 0.5 V offset for the TM. A Data Acquisition Device (DAQ) 

from National Instruments NI 6254 (National-Instruments, 2007) with 16 bit 

resolution was used to sample the input and output of the circuit. The setup for the 

measurement is illustrated in Figure 5-1.  

Map Under Test

SineWave
with DC offset 

16 Bit DAQ 
Channel 1

16 bit DAQ 
Channel 2

 
FIGURE 5-1 TRANSFER CHARACTERISTIC MEASUREMENT SETUP. 

 

The DAQ software was used to retrieve the data from the two channels as a Comma-

Separated Values (CSV) file which was then plotted using Matlab and compared to 
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the ideal transfer characteristic of each map to measure the error between the 

practical and the computed ideal characteristic.    

5.2  Logistic Map Transfer Characteristic 

The experimental data was plotted to obtain a graph of the input signal versus the 

output, which represents the transfer characteristic of the electronic implementation. 

The theoretical parabola representing the LM for r = 4 (normalised) was plotted on 

the same graph to enable a comparison between the two plots, shown in Figure 

5-2(a). With the two plots being closely matched, no significant differences were 

observed, hence for this reason the error between the practical results and the 

theoretical parabola is measured and displayed separately in Figure 5-2(b).  

 
FIGURE 5-2 MEASURED VS THEORETICAL LOGISTIC MAP PARABOLA. 

 

From Figure 5-2(b) it can be noted that the maximum error in the LM practical 

results is 1.5% and that the majority of the errors are contained within a ±1% band, 
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which demonstrates the accurate fit between the measured characteristic and the 

theory. The fact that the transfer characteristics are closely matched proves that the 

electronic implementation of the LM designed in section 4.1.1 is performing as 

defined by the LM equation as in expression (2-8).    

5.3  Tent Map Transfer Characteristic 

The parameter   (from equation (2-9)) was set as near to the value of 2 as could be 

achieved and the measured transfer characteristic is shown in Figure 5-3 (a) along 

with the computed ideal transfer characteristic of the TM. The error between the two 

graphs representing the mismatch between the ideal characteristic and the measured 

characteristic was obtained by subtracting the ideal characteristic from the measured 

characteristic. The error given in Figure 5-3 (b) contained within     across the 

whole input range which once again demonstrates the close fit of the practical 

implementation to that specified by the theory. 

 
FIGURE 5-3 MEASURED VS THEORETICAL TENT MAP CHARACTERISTIC 
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5.4  Bifurcation Diagram 

The Bifurcation diagram, as discussed in section 2.3, illustrates the behaviour of a 

chaos map for different values of the associated scaling parameter. For every value 

of the scaling parameter the map under test was placed into the feedback system as 

presented in section 3.2 and iterated 100 times. The first 10 iterations where 

discarded in order to display the long term behaviour of the map and remove any 

initial transient values. The map was iterated using a  C board and the output was 

measured using the internal 10 bit ADC. Finally the measurement of each iteration 

was stored as a CSV file and displayed using MATLAB. The bifurcation diagram 

obtained experimentally was compared with the computed bifurcation diagram of 

each map to quantify the matching between the practical electronic implementation 

and the theory.    

5.4.1  Logistic Map Bifurcation Diagram 

The bifurcation diagram of the electronic implementation of the LM shown in Figure 

5-4 is indicating all the characteristics of the theoretical map ranging from fixed 

point stability, periodic oscillations and chaos. The parameter   (in equation (2-8)) 

was varied from 2 to 4 (normalised) by increments of 0.05. Figure 5-5, shows the 

theoretical bifurcation diagram of the LM computed using MATLAB. The practical 

data is closely relates to the data generated by computation, with the main difference 

being the unclear bifurcation from fixed point to 2 point oscillation at about   = 2.9. 

As described in (Erguler and Stumpf, 2008) the effect of noise on the behaviour of 

the LM is visible on the bifurcation diagram in a way that the bifurcation points 

become "blurred". This effect is clearly visible on the transition between single point 
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stability and periodic oscillations. An additional effect of noise on the LM behaviour 

is the possibility that the system theoretically diverges to ±∞ which can be triggered 

when the parameter   is set to exactly 4. However, in a practical system, noise can 

increase the input signal to exceed the input range, which can lead to an exiting 

condition. In this work the parameter   was set close to 4 but not exactly 4 in order to 

use the chaotic behaviour of the LM whilst avoiding exiting conditions.  

 
FIGURE 5-4 MEASURED BIFURCATION DIAGRAM OF THE LM 
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FIGURE 5-5 COMPUTED LM BIFURCATION DIAGRAM 

5.4.2  Tent Map Bifurcation Diagram 

The proposed implementation of the TM was designed to operate with a parameter   

set to 2 or close to 2. For this reason it is impossible to vary   throughout the whole 

input range. The values for the resistors and potentiometers were selected to enable 

the parameter   to be varied from 1.945 to 2, and resulted in the practical limitation 

which restricted the measurement range of the parameter  ; the partial bifurcation 

diagram is shown in Figure 5-6(b). The TM was iterated 100 times, the first 10 

samples were removed to suppress any transient response and keep the long term 

behaviour. As expected from the theoretical bifurcation diagram shown in Figure 

5-6(a) when the parameter   is set to 2 the range of the output signal occupies the 

entire output. The amplitude of the output signal decreases as the parameter   is 

reduced from 2 to 1.995 and further reduces as the parameter   is decreased towards 
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1.94. The experimental results are consistent with the theoretical bifurcation 

diagram.     

 
FIGURE 5-6 TENT MAP EXPERIMENTAL BIFURCATION DIAGRAM 

5.5 Time Series 

The time series of chaotic maps displays the evolution of the output signal over a 

given number of iterations N. The value of the parameter (  for the LM and   for the 

TM) sets the behaviour of the maps. The output could be stable, periodic or chaotic 
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as explained in section 2.3.1. To generate the time series, each map was placed in the 

feedback system presented in section 3.2. The input of the map under test was 

connected to the KROHN-HITE 511 DC voltage reference/calibrator which provides 

a stable and accurate DC voltage (see Appendix E). The output of the KROHN-

HITE 511 was set to an arbitrary value within the input range of the map under test 

and the map iterated multiple times. The output after each iteration was sampled 

using a 10 bits ADC available in the  C, and the data stored as a CSV file and 

displayed using MATLAB. The parameter of the map under test was set to a value 

that allows chaotic behaviour and the obtained time series used to ascertain the 

presence of chaos, first visually and then through the use of Lyapunov Exponent 

(LE).  

5.5.1  Logistic Map Time Series 

The parameter   is set to 3.99 (0.399 for the modified map) so that the behaviour of 

the map would exhibit chaos; Figure 5-7 shows the experimental time series 

obtained from the electronic implementation of the LM with the output showing non 

periodic behaviour and is contained between 1 and 0. This result is consistent with 

the bifurcation diagram of the system shown in Figure 5-5.  
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FIGURE 5-7 LOGISTIC MAP EXPERIMENTAL TIME SERIES 

 

5.5.2  Tent Map Time Series 

The time series of the TM output, in Figure 5-8, shows the evolution of the map 

under iteration with the parameter   set to 2, in order to obtain a chaotic behaviour; 

Figure 5-8 shows that the experimental time series occupies the entire output range 

going from 0 to 1 V which is expected for a parameter set to 2 as shown by the 

bifurcation diagram of the TM in Figure 2-15. The experimental time series obtained 

was used in the following section to ascertain the presence of chaos by estimating 

the LE value.    
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FIGURE 5-8 TENT MAP EXPERIMENTAL TIME SERIES 

  

5.6  Lyapunov Exponent 

A simple visual inspection of the time series is not sufficient to ascertain the chaotic 

behaviour of the electronic implementation; hence the LE method is used, as 

explained in section 2.5.1. 

If the LE of a time series is positive then the system is chaotic (G.L.Baker and 

J.P.Gollub, 1990). To estimate the LE it is assumed that the equation emulated by 

the electronic implementation is unknown, thus the estimation will take into account 

any errors between the electronic implementation and the theoretical map. To 

demonstrate that the method used for the LE is valid, a non-chaotic time series was 

initially analysed. The map used was the LM and the parameter   was set to 3.35 to 

be in the region of non-chaotic behaviour. The measured time series is shown in 

Figure 5-9 and the estimated prediction error in Figure 5-10. It can be observed (in 

Figure 5-9) that after a short transient the output of the LM oscillates between two 

points, and also in Figure 5-10 it is not possible to estimate the value LE, since there 
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is no exponential separation between the two neighbouring points. Additionally, the 

LE is not consistently positive, which confirms that the system is not sensitive to 

initial conditions, and thus not chaotic.  

 
FIGURE 5-9 LOGISTIC MAP TIME SERIES FOR R = 3.35 

 
FIGURE 5-10 PREDICTION ERROR FOR A NON-CHAOTIC TIME SERIES 
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5.6.1  Logistic Map Lyapunov Exponent 

The number of samples taken for the LE estimation was set to N = 500 as 

recommended in literature (Rosenstein et al., 1992, Wolf et al., 1985), and analysed 

using MATLAB to generate the prediction error plot shown in Figure 5-11. After a 

transition from k = 0 to k = 2 (k is the number of time steps used for the estimation 

of the LE) the two neighbouring points start to diverge exponentially before 

plateauing and decreasing from k = 7, which separation is due to the folding of the 

map. The slope m is positive and the result obtained indicates that the LE of the 

electronic implementation is 0.79, for a parameter   of 3.99, as shown in Figure 

5-11. 

 
FIGURE 5-11 ESTIMATION OF THE LYAPUNOV EXPONENT FROM THE PREDICTION ERROR 
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TABLE 5-1 ESTIMATED AND THEORETICAL LYAPUNOV EXPONENT FOR THE LM 

Number Of 

Simples 

Estimated 

Lyapunov exponent 

Theoretical 

Lyapunov Exponent 

% Error 

N = 500   = 0.79   = 0.693 13.9 

 

The error between theoretical and estimated LE is 13.9%; this degree of accuracy is 

acceptable considering that the time series was obtained experimentally with limited 

data and measurement noise. Similar results were obtained in literature (Rosenstein 

et al., 1992). The estimated LE is positive which demonstrates that the electronic 

implementation of the LM exhibits high sensitivity to initial conditions and therefore 

that the system is chaotic.  

5.6.2  Tent Map Lyapunov Exponent 

To ascertain if the TM implementation behaves chaotically the time series from 

Figure 5-8 was used to estimate the LE. The graph of the LE estimation is shown in 

Figure 5-12, where the slope of the prediction error equals 0.80 from k = 2 to k = 10 

(linear region). After k = 10 the folding of the map occurs causing the prediction 

error to fluctuate, this has no effect on the LE estimation as the measurement is taken 

on the linear region.    
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FIGURE 5-12 TENT MAP LYAPUNOV EXPONENT ESTIMATION  

 

Table 5-2 shows the results error of the positive LE estimation, yielding an error of 

15.4% which is also consistent with the results obtained in literature (Rosenstein et 

al., 1992) and defines the system as chaotic. 

TABLE 5-2 ESTIMATED AND THEORETICAL LYAPUNOV EXPONENT FOR THE TM 

Number Of 

Samples 

Estimated 

Lyapunov exponent 

Theoretical 

Lyapunov Exponent 

% Error 

N = 500   = 0.80   = 0.693 15.4 
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5.7  Noise Measurement 

To assess the performance of the chaos map implementation the noise of the system 

was quantified, as the inherent noise will determine the sensitivity of the system. 

The noise of the electronic implementations was measured using the following 

procedure; 

 The input of the map under test was grounded and the noise at the output was 

measured using a HP 3562A Dynamic Signal Analyser (DSA) (Agilent, 

1985).  

 In order to minimise external noise sources the circuit under test was placed 

in an earthed metallic box to provide adequate shielding.  

 To prevent any DC offset being generated by the map under test, a 20  F 

decoupling capacitor was connected between the circuit and the signal 

analyser.  

 The measurement data was extracted using a General Purpose Interface Bus 

(GPIB) to USB interface cable.  

 The noise floor of the DSA was measured by connecting a 50 Ω BNC 

terminator to the input of the DSA, and measured over 3 decades ranging 

from 10    to 10     (Figure 5-13).  

 In order to obtain an accurate reading a separate measurement was taken for 

each decade and the results were combined into a single graph. The 

averaging process was set to 50 samples to obtain an accurate measurement 

whilst keeping the measurement time within a reasonable limit.  
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The noise floor of the 3562A DSA given in Figure 5-13, appears to have a step-like 

characteristic which is due to the use of different internal circuitry for each decade. 

In the low frequency region (10 – 100 Hz) some noise spikes are visible; the highest 

being due to the mains pickup at 50 Hz. The noise floor of the DSA is contained 

within 100   √    and thus for a noise measurement to be accurate the noise being 

measured should be at least 1   √    (an order of magnitude above the noise floor).  

 
FIGURE 5-13 MEASURED NOISE FLOOR OF THE HP 3562A DSA 

 

When the noise signal being measured was lower than     √   , a low noise 

preamplifier with a gain of 1000 was used to avoid any measurement errors due to 

the contribution of the DSA noise.  

To calculate the overall noise     in terms of Voltage Root Mean Square (     ) 

from the noise spectrum the formula in expression (5-1), can be applied.  
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      √∫         
     

    

 

 

(5-1) 

             

Where        and      are the high and low frequencies of interest respectively and 

SD is the noise spectral density.  

In the case when the value is relatively constant for all the frequencies, the 

expression (5-1) can be simplified as shown in expression (5-2).  

 

          √    (5-2) 

   

Where   is the bandwidth and   the noise bandwidth coefficient which is set 

according to the order of filter used to limit the bandwidth ( ) as shown in Table 5-3. 

TABLE 5-3 EQUIVALENT NOISE BANDWIDTH COEFFICIENT 

Filter Order Equivalent noise bandwidth 

coefficient (K) 

1
st
 Order 1.57 

2
nd

 Order 1.11 

3
rd

 Order 1.05 

Ideal Filter (Brick Wall) 1 

 

5.7.1  Logistic Map Noise Measurement  

The equivalent voltage noise measurement for the LM is shown in Figure 5-14 with 

the noise centred between       √    and      √    and several harmonics from 

the mains (50 Hz) visible.  
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Applying expression (5-2) to the data within Figure 5-14, for a bandwidth of 1 kHz 

limited by a 2
nd

 order filter gives:         351    which converts to           

      , applying a factor of 6.6; (the standard deviation on the noise Gaussian 

distribution). The high sensitivity to initial conditions of the LM makes the 

detection, with certainty, of any signal changes lower in amplitude than the inherent 

noise of the system, difficult as the noise causes the time series to diverge before the 

input signal. In order to identify the major component noise contribution and thus 

reduce the noise of the overall system, the noise of each component has been 

evaluated given in Table 5-4. The information was determined from the datasheets or 

calculated using the relevant expressions (Analog-Devices, 2003, 2012, 2013). The 

resistors used are of low value (maximum 10   ) to maintain low Johnson voltage 

noise as given by expression (2-1) (Horowitz and Hill, 1989). 

From Table 5-4 it is clear that the AD633JN is the main source of noise in the LM 

implementation; as explained in the section 4.1.1 the AD633JN divides the product 

of the two inputs by a factor of 10 before the output. This, therefore forces the use of 

an amplifier with a gain of 10 resulting in the noise being amplified by a value of 10. 

Hence, the AD633JN contributes 185         which is of the same order of 

magnitude as the LM overall noise measured using the DSA (           ).   
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FIGURE 5-14 MEASURED NOISE OF THE LM 

 

TABLE 5-4 NOISE FOR COMPONENTS USED IN THE LM IMPLEMENTATION. 

 

Component 

Name 

 

Equivalent noise voltage 

 

          

 

           

         

OP27      √   0.1    0.7    

AD633JN        √   28    185    

10   

Resistor         √   0.45    3    

AD587 - - 4    

 

The noise measurement for the LM electronic circuit demonstrates that the overall 

noise of the implementation is predominantly due to the AD633JN analogue 
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multiplier, thus, in order to reduce the overall noise, the next section discusses an 

improved version of the TM implementation using discrete analogue multipliers.  

5.7.2  Improved Logistic Map Implementation  

To improve the sensitivity of the LM, alternatives to the AD633JN were investigated 

in order to reduce the overall noise. Alternative analogue multiplier ICs are available 

but none presents a significant improvement in terms of noise over the AD633JN. 

However the fact that signals being multiplied in the LM are positive, allows the use 

of a simpler multiplier, namely the One-Quadrant (1Q) multiplier. Compared to the 

four-quadrant configuration, used by the AD633JN, where the input and output 

signals can be negative or positive the 1Q multiplier can only multiply positive 

signals. The main advantage of the 1Q multiplier is the simplicity of the circuitry. 

The solution adopted to replace the AD633JN is a semi-discrete 1Q multiplier 

implemented using two matched transistor pairs and four precision operational 

amplifiers; the simplest form of analogue multiplier shown in Figure 5-15. This 

configuration uses a Gilbert cell to compute the product of two numbers (Analog-

Devices, 2009).  
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FIGURE 5-15 ONE-QUADRANT PRECISION ANALOGUE MULTIPLIER  

 

The transfer characteristic for the multiplier in Figure 5-15 is given by expression 

(5-3) (National Semiconductors, 1994). 

 
      

       

   
 

(5-3) 

 

In the LM implementation, the input (Z) is connected to a 1V reference, therefore the 

transfer characteristic becomes the product of (X) and (Y). The noise of the 

multiplier was measured using the DSA and is shown in Figure 5-16, but as the noise 

floor was below that of the DSA, a low noise amplifier with a gain of 1000 was used 

to amplify the noise from the multiplier to reduce measurement error.  A Low Pass 

Filter (LPF) with a cut-off frequency of       was added to the multiplier to reduce 
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the overall noise. Besides harmonics due to the mains interference, the noise 

spectrum is constant from       to       which enables expression (5-2) to be used 

to calculate the rms noise voltage. The noise for a bandwidth of       and a 2
nd

 

order LPF is approximately 35       which is in the region of a fifth of the 

AD633JN noise. Another advantage of this multiplier is that the product is not 

divided by a factor of 10, thus eliminating the need for amplification, which further 

reduces the noise. Hence the overall noise floor has been reduced, compared to the 

AD633JN, by a factor of 50. Figure 5-17, shows the improved LM circuit 

implementation.  

To demonstrate the gain in terms of noise performance the noise of the improved 

LM was measured as given in Figure 5-18. The noise floor is now equivalent to the 

noise of the one-quadrant multiplier, which means that the multiplier is still the main 

source of noise in the circuit. By applying expression (5-2) the noise is determined as 

7       or 46.3        . Figure 5-19 shows the equivalent voltage noise of the two 

implementations (AD633JN multiplier against the 1Q multiplier).   
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FIGURE 5-16 NOISE OF THE ONE-QUADRANT MULTIPLIER 

       

 
FIGURE 5-17 SIMPLIFIED SCHEMATIC OF THE IMPROVED LM 
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FIGURE 5-18 NOISE OF THE IMPROVED LM 

 
FIGURE 5-19 NOISE OF PREVIOUS IMPLEMENTATION VS INPROVED IMPLEMENTATION 
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5.7.3  Tent Map Noise Measurement 

The equivalent voltage noise spectrum of the TM is shown in Figure 5-20; by 

applying the expression (5-2) the noise at the output of the TM is 1.4       or 

9.3        . This peak to peak noise figure is significantly lower than the noise of 

46.3         for the improved LM implementation by a factor of 5. This 

improvement is due to a circuitry used to implement the TM that does not require an 

analogue multiplier and the noise roll-off is due to low-pass filters implemented 

within the TM to reduce the overall noise. The lower noise will enable the TM to 

detect input signal change significantly lower than those of the LM. 

 
FIGURE 5-20 NOISE OF THE TM IMPLEMENTATION 
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5.8 Conclusion 

The performance of the proposed implementations of the LM and the TM has been 

analysed and it has been shown that the practical performance closely matches the 

theoretical maps in terms of transfer characteristic, bifurcation diagrams, time series 

and LE. 

The transfer characteristics for the LM and the TM are matched to the theory, within 

1.5% and 1% respectively while the bifurcation diagrams display the same behaviour 

as the theoretical maps. The LE for each map was used to ascertain the presence of 

chaos and the results demonstrate a positive LE for each implementation, which 

proves the presence of chaos in the electronic circuits.  

Finally, the noise measurements for, the original implementation of the LM, are 

relatively high at 2.3         . Hence, to reduce the overall noise, the main source 

of noise in the circuit was identified (AD633JN analogue multiplier) and an 

improved implementation of the LM was presented using a 1Q analogue multiplier. 

The overall noise was reduced by a factor of approximately 50 to 46.2        .  

The noise measurement for the TM yields a noise value of 9.3         which is 

significantly lower than the noise of the LM due to the simplicity of the TM 

circuitry, where there is no requirement for an analogue multiplier. Therefore, the 

low noise of the TM circuit, compared to the LM implementation, enables the TM to 

measure input signal changes significantly lower than those of the LM.        

The following chapter will discuss the measurement capability and the performance 

of the proposed Measurement System (MS).  
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6  Measurement System Results 

In this chapter the Logistic Map (LM) and the Tent Map (TM) are integrated into the 

proposed MS to assess the overall performance in terms of divergence measurement, 

which is the basic criterion for small signal measurement and detection. The 

divergence measurements are as follows: 

 Divergence between two signals: This measurement will verify the working 

principle of the MS as it will enable the ability of the different 

implementations of the MS to detect and/or measure small variations of the 

input signal to be evaluated.    

 Divergence through the entire input range: This measurement will gauge 

the ability of the MS to maintain a consistent measurement for the same 

amount of input change throughout the entire input range. An ideal MS should 

have a perfect linearity throughout the whole input range.   

 Divergence for different magnitudes of input change: This measurement 

will show the accuracy of the MS for different input signal amplitude 

changes.  

For each input signal the MS system was iterated and the result of each iteration was 

sampled and stored using the  C. The same operation was then performed for each 

input signal with an additional input change. These system measurements were 

individually performed for each LM and TM implementation in a feedback based 

MS and then for a series implementation.  
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This chapter is divided in two main sections, firstly the LM is placed in the MS and 

the performance is measured. This is then followed by the performance of the MS 

based on the TM.  

6.1 Divergence Between Two Signals 

In order to measure the divergence between the input signals, and ensure 

consistency, repeatable and accurate signals are required, the input voltage was set 

using a DC voltage reference/calibrator (KROHN-HITE 511) with the following 

characteristics: 

 Absolute accuracy of 10 ppm (0.001%) 

 Voltage range from 100  V to 10 V 

 Resolution of 1 ppm of the range (0.0001%) 

 2          noise  

The full specifications can be found in Appendix E. 

The resolution of the 511 DC reference enables voltage increments of 100  V, which 

is more than one order of magnitude lower than the smallest signal change being 

measured by the MS.   

6.1.1  Logistic Map  

To determine how the LM diverges for a known input change the LM was placed in 

the feedback MS as explained in section 3.2, the voltages were normalised, (i.e. 

scaled down by a factor of 10), to enable a direct comparison between the simulation 

and the practical results.  
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To test the LM implementation an arbitrary input value of 0.3430 V was set and after 

running (iterating) the system and recording the time series the input voltage was 

then increased by 500    and the system was re-run and the data stored. In Figure 

6-1(a) the two time series are displayed with the divergence displayed in (b). The 

divergence between the two time series is obtained by subtracting the second time 

series from the first. Two signals are considered to be divergent after a separation of 

more than 5    (for a 0-1   normalised range). The divergence threshold was set so 

that the ADC (with a Least Significant Bit (LSB) of 1 mV) used can detect a 

divergence without any ambiguity due to noise and ADC errors. It can be observed 

that the two time series start to diverge from iteration 4, and the size of the 

divergence increases until iteration 8, at iteration 9 the two time series are 

uncorrelated and the information is irrecoverable.    

 
FIGURE 6-1 TIME SERIES AND DIVERGENCE FOR A 500 V CHANGE. 
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Figure 6-2 displays the divergence for a   = 500    (green) along with the 

divergence for   = 200    (red). As expected the time series diverge at an earlier 

iteration when the signal change ( ) is increased. Table 6-1 shows the iteration at 

which the divergence occurs and also shows that practical results and theory yield 

the same results.  To ascertain the minimum detectable change the LM was tested 

with the following procedure; the DC reference was set to a fixed value and the LM 

was run with the same sample multiple times. Ideally the time series obtained should 

match exactly but as discussed in the previous section (5.7) the noise will limit the 

LM sensitivity and the time series will diverge for a constant input signal, due to 

system noise. The amount of divergence between the time series enables the 

sensitivity of the system namely the minimum input change that can be detected, to 

be established.     

 
FIGURE 6-2 DIVERGENCE FOR TWO DIFFERENT INPUT CHANGES. 

 

 

0 5 10 15 20
0

100

200

300

400

500

600

700

800

900

1000
Divergence

D
iv

e
rg

e
n
c
e
 (

m
V

)

Iteration (N)



137 

 

 

TABLE 6-1 PRACTICAL AND COMPUTED DIVERGENCE 

Input Change ( ) 

Computed Divergence 

(Iteration Number) 

Practical divergence     

(Iteration Number) 

200 µV 5 5 

500 µV 4 4 

 

Firstly, the LM was run 5 times with a fixed input and the respective time series 

obtained are shown in Figure 6-3. It can be observed that during the first 14 iteration 

there is no visible divergence between the time series but at iteration 15 the 

divergence becomes detectable i.e. above 5 mV. The minimum detectable change 

can be quantified by running the system multiple times for a fixed input, the two 

time series that are the most divergent can be taken in order to establish a “noise 

band”. Then a known change is applied to the input signal and if the resultant time 

series obtained is outside the “noise band” the input change can be detected. The 

change is reduced until the time series enters the “noise band” which means that the 

system is unable to discriminate between the input change and the noise. The 

amplitude of input change before the time series enters the “noise band” is defined as 

the sensitivity of the system as is illustrated in Figure 6-4.    
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FIGURE 6-3 LM MULTIPLE RUNS FOR A FIXED INPUT 

 

 
FIGURE 6-4 USE OF THE “NOISE BAND” TO MEASURE THE SENSITIVITY OF THE LM 
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To determine the sensitivity of the LM based MS using the “noise band”, the LM 

was iterated 8 times for 4 different input signals and the process was repeated 10 

times for each input signal. A reference signal set at 0.2 V and three signals 

separated by a   of 50   , 100    and 200    yielding voltages of 0.20005  , 

0.2001   and 0.2002   respectively. The time series obtained are presented in Figure 

6-5. To visualise the noise bands for each sample, Figure 6-6 shows an amplified 

section of the noise band for each sample at iteration 8. The clearance between the 

reference signal noise band and the noise band of the signal with   = 200    is 

24   , which is a greater amplitude than the noise bands contained within a 15    

region. This indicates that the system can detect a   of 200    without any 

ambiguity. The clearance between the reference sample noise band and the noise 

band for   = 100    is 8    which is lower than the noise band of 15   . In this 

case the system is unable to differentiate a divergence due to inherent noise from a 

divergence that occurred from a   of 100   . However, due to the clearance of 8 mV 

being in the region of the 15 mV noise band, the system can detect a   of 100    by 

the use of averaging. Moreover, a number of samples can be taken successively and 

averaged for each iteration, to reduce the noise brand and enables the detection of   

= 100   . Finally, Figure 6-6 shows that for a   of 50    the noise band overlaps 

with the reference input voltage and the 100      which means that the detection of 

a 50    change would require extensive use of averaging technique. However, the 

main drawback of averaging is that the time required for the system to perform one 

measurement is proportional to the number of samples taken. This means that a 

measurement taken at 1000 samples per second with 10 averaging samples is 

equivalent to a measurement at 100 samples per second. This is not an issue for 



140 

 

applications where the input signal is close to DC but it can be a problem for signals 

with frequencies of 1     and above.       

 
FIGURE 6-5 MULTIPLE TIME SERIES FOR DIFFERENT INPUT SAMPLES 
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FIGURE 6-6 NOISE BAND AT ITERATION 8 FOR DIFFERENT INPUT SAMPLES 

6.1.2  Tent Map 

This section focuses on the divergence of two time series for two input samples for 

the TM and enables the proposed technique, developed in 3.1, to be tested 

experimentally. Samples are taken randomly across the input range for different 

input changes in order to test the theory, and particularly to test the performance of 

the feedback MS based on the TM by using equation (3-1). An example of two time 

series taken with a 200    difference is shown in Figure 6-7(a) while the divergence 

between the two time series is displayed in (b). The exponential growth of the 

divergence is clearly visible from iteration 6 to iteration 12; however after iteration 

12 the folding of the map occurs and the information is consequently irrecoverable.    
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FIGURE 6-7 DIVERGENCE BETWEEN TWO TIME SERIES WITH A 200   CHANGE 
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noise measurement performed in the previous section the noise of the TM should not 

exceed 9.3    but the measurement of   shows much greater error than expected, 

which is due to the errors introduced by the feedback loop of the system. This 

feedback error is not measurable for the LM since the noise produced by the LM is 

of greater amplitude than the errors introduced by the sample and holds (S/H) used 

in the feedback loop.  

TABLE 6-2 TM CHANGE MEASUREMENT WITH FEEDBACK SYSTEM 

Real Change 

(   

Iteration of Divergence 

(N) 

Measured Change 

(   

Error Between Real 

  and Measured   

5    

4 5    0% 

4 5    0% 

1    

6 1    0% 

6 1    0% 

500    

8 510    2% 

8 516    3.2% 

200    

8 211    5.5% 

8 213    6.5% 

50    

10 70    40% 

10 66    32% 

20    

11 44    120% 

11 37    85% 

 

Since the errors introduced by the feedback system are significant in amplitude 

compared to the intrinsic noise of the TM, the next measurements performed on the 

TM MS will be completed using the series implementation of the MS, Table 6-3 
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shows the measurement results obtained with the series system: the error has 

decreased to 19 %  for a   of 20 µV compared to 120% error on the system with 

feedback loop. The system can detect a input signal change of 50 µV with a high 

degree of confidence as the error is limited to 8 %. 

TABLE 6-3 TM CHANGE MEASUREMENT WITH SERIES SYSTEM 

Real Change 

(   

Iteration of Divergence 

(N) 

Measured Change 

(   

Error Between Real 

  and Measured   

5    

4 5    0% 

4 5    0% 

1    

6 1    0% 

6 1    0% 

500    

8 504    0.8% 

8 503    0.6% 

200    

8 202    1% 

8 203    1% 

50    

10 54    8% 

10 53    6% 

20    

11 24    19% 

11 24    19% 

10    

12 14.3     43% 

12 13.9    39% 
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6.2 Divergence Against Input Signal Range 

To evaluate the divergence of the practical implementation across the input signal 

range, the following procedure was carried out: the input signal was varied from 0 to 

1 (normalised) with steps of 0.05 V and with a   of 500   . The two time series 

obtained for each step and for the step plus change were subtracted to obtain the 

divergence, which allows the absolute value of the divergence for the entire input 

range to be mapped.  

6.2.1  Logistic Map 

As shown in Figure 3-2; the divergence of the LM for a given input change is not 

uniform throughout the entire input range; the time series diverge earlier at the 

extremities of the input range. This feature of the LM map can be avoided by 

reducing the input range to 0.1-0.9 of the normalised input range. Figure 6-8(a) and 

(b) show the experimental data of the LM divergence where the whole input range is 

represented for an input change of       . The iteration at which divergence occurs 

is constant (iteration seven) from 0.1 to 0.9 of the input range, and for input regions 

0 to 0.1 and 0.9 to 1, divergence occurs at iteration five. Figure 6-8(a) and (b) 

represent the same data with two different angles in order to allow a better 

visualisation of the non-linearity at the extremities of the input range. From Figure 

6-8(b) it can be seen that the LM present a high degree of linearity of divergence 

from 0.1 to 0.9 of the normalized input range. To further demonstrate this Figure 

6-8(c) and (b) display the same experimental data but with a reduced input range (0.1 

to 0.9).    
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FIGURE 6-8 EXPERIMENTAL DIVERGENCE OF THE LM FOR A CHANGE OF     V: (A) AND (B) 

FOR THE ENTIRE INPUT RANGE. (C) AND (D) FOR A RANGE LIMITED TO 0.1-0.9 

 

6.2.2  Tent Map 

In section 6.1.2, the measurements in Table 6-2 have shown that the errors 

introduced by the feedback in the iterated MS limits the performance of the TM, 

therefore the measurement of divergence for the entire input range has been carried-

out only on a series configuration. This allows for improved performances by 

eliminating noise added by the S/H circuitry. 

As shown in Figure 6-9, the divergence for a given input change is consistent 

throughout the entire input range which is ideal for a MS. This feature of the TM 

previously shown with the aid of computation in Figure 3-3, is a significant 

advantage over the behaviour of the LM. The divergence for a 250    change is 
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visible from iteration six and reaches more than 60    at iteration eight. The 

measurement for the estimation of the input change should be carried out at iteration 

seven or eight as this will be the most appropriate trade-off between estimation 

accuracy and probability of reaching a null reduction as explained in section 3.1.  

 
FIGURE 6-9 EXPERIMENTAL DIVERGENCE OF THE TM FOR A 200 V CHANGE FOR THE ENTIRE 

INPUT RANGE. 

 

6.3 Divergence Against Input Signal Change 

The final measurement carried out on each MS was the divergence against the 

amount of change between two input signals. The test procedure is different for each 

map as the method used to determine   varies.  

 LM based MS measurement procedure:  the input was set to an arbitrary value 

within the linear range of the map (0.1 to 0.9). The time series obtained for the 

given input signal was stored then the signal was increased by a given amount 

( ) and resultant time series obtained and stored. The divergence between the 

two samples was calculated by subtracting the two time series and the 

iteration at which the absolute value of the divergence exceeded a set 

threshold was recorded and plotted on a graph. This process was repeated for 
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different input changes until a graph of the divergence against the amount of 

change was produced. 

 TM based MS measurement procedure: different points where taken 

throughout the entire input range, with a   ranging from 10    to 1    and 

the error between the measured and real   value was calculated for each input. 

This will allow the sensitivity of the system to be determined. 

6.3.1  Logistic Map 

Figure 6-10 shows the iteration at which the divergence occurs for a given  ; the full 

line represents the computed divergence whilst the dotted line shows the practical 

results. As the divergence is exponential the x axes is set to a logarithmic scale 

which means the “divergence versus change” data forms a straight line. Ideally the 

divergence of the practical implementation should follow that same line as the 

computed, however the practical results follow the computed divergence line until a 

change of approximately 100    is applied. At this point the noise inherent to the 

systems makes the time series diverge before the signal change ( ). This result is 

consistent with the “noise band” measurement discussed in section 6.1.1, where it 

has been shown that the LM is limited to approximately 100    of detectable change 

due to the inherent noise of the electronic implementation.      
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FIGURE 6-10 LOGISTIC MAP DIVERGENCE VS CHANGE 

6.3.2  Tent Map 

The proposed implementation of the TM has shown excellent divergence linearity 

throughout the entire input range hence the following measurements will determine 

the performance of the series based TM MS across different values of input change 

( ). Different points have been taken with   ranging from 10    to 1    and the 

error between the measured and real   was calculated for each measurement and 

displayed as in Figure 6-11. The measurement error remains negligible for a   of 

1    as the noise of the system is insignificant compared to the   being measured. 

For   values lower than 1    the error starts to rise as the   being measured is of a 

similar magnitude to the inherent noise of the TM implementation. The error remains 

below 19% for a   of 20    before rising to over 40% as   is reduced to 10    

which represents a noise floor of approximately 4   .   
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FIGURE 6-11 MEASUREMENT ERROR VS CHANGE FOR THE SERIES IMPLEMENTATION OF THE 

TM BASED MS 
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can measure input signal changes of 100    with an error of 3% and 20    

with an error of 19% with the use of the series implementation which 

represents a sensitivity of 4   . 

 With a sensitivity of 4    independently of the input range, the voltage step 

size of the proposed chaos based MS is superior to an 20 bit ADC over a 10 V 

input range.  

The next chapter will discuss the results obtained from the MS and the performance 

of the proposed implementations. 
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7  Discussion   

The theoretical analysis of the one-dimensional chaotic maps demonstrates that the 

high sensitivity to initial conditions, which characterises chaotic behaviour, can be 

used to detect or measure small variation between signal samples. Two different 

approaches in order to quantify the change of input signal for two one-dimensional 

chaotic maps have been proposed. For the LM, the magnitude of change can be 

quantified by setting thresholds on the amount of divergence; this technique is more 

suitable for a detection system that would require only a few thresholds rather than a 

measurement system as the thresholds are set experimentally for each 

implementation which can be time consuming. For the TM; the equation (3-1), 

proposed by the author can be used to measure the difference between two signals 

which does not require any calibration making the MS based on the TM superior to 

the one utilizing the LM.       

The results obtained from the newly developed electronic implementations of the 

two one-dimensional chaotic maps, demonstrate a ± 1% matching compared to the 

theoretical maps. The practical results show an identical behaviour in all aspects; 

transfer characteristics, bifurcation diagrams, and time series. The chaotic 

performance of each map was demonstrated by estimating the Lyapunov Exponent 

applying the Wolf method available in literature (Wolf et al., 1985).  

The experimental results obtained for the proposed MS demonstrate that the LM and 

the TM can be used as part of a MS to detect or measure small changes of input 

signals. The LM implementation is capable of detecting signals in the order of 

hundreds of    whilst the TM can measure signals changes higher than 4   . The 
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sensitivity of the MS is independent of the input range which means that an increase 

in the input range does not affect the sensitivity of the measurement. This feature of 

the proposed MS makes it superior to the existing alternatives which are based on 

linear amplifier coupled to an ADC. In the classical approach to signal measurement, 

the sensitivity of the MS is directly proportional to the input range, for instance if the 

input range is doubled, the sensitivity of the system is reduced by the same factor. In 

general, to palliate the loss of sensitivity, the ADC is replaced by an ADC with 

higher resolution which increased the cost of the MS or requires the replacement of 

existing equipment. Alternatively, the suggested MS can be used with an input range 

as high as permitted by the power supply and components ratings without suffering 

any degradation of its performance.          

The two topologies for MS investigated in the work were the feedback and series 

based system. The feedback system or iterated system uses feedback to iterate the 

initial input signal multiple times through the same electronic implementation of the 

map. This allows a flexible control over the number of iterations. In contrast the 

series implementation is configured so that the signal propagates through multiple 

circuit implementation of the same map. From the results for the prototype 

implementations using low cost electronics, the series implementation provides 

higher performance than the feedback system as the noise produced by the feedback 

limits the overall performance of the MS. The feedback error is not an issue when 

the LM is used as the inherent noise of the implementation is higher than the errors 

introduced by the feedback. To take advantage of the lower noise implementation of 

the TM, a MS based on the TM should be constructed using the series topology, the 

drawback for improved performance is the increased amount of components and the 

reduces flexibility when it comes to setting the number of iterations. The 
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performance of the MS could be further improved by different methods such as 

replacing some of the electronics with improved ICs or by integrating multiple maps 

on a single IC.      

A novel signal measurement system (MS) based on one-dimensional chaotic map 

has been proposed for the measurement and detection of small signal changes. This 

thesis considers for the first time the electronic hardware implementation of a 

complete MS based on chaotic maps and develops the theory associated with such a 

system. The developed MS has led to a patent application (n◦ 1309585.4). The 

proposed MS is radically different from the classic approach to signal magnitude 

measurement as the measurement performed results in a measure of a signal change 

rather than an absolute value. Such a system could be used in many applications 

including: 

 Relative value measurement: applications where the absolute value is not of 

importance but where a small difference between two signal samples needs to 

be measured. The main advantage over a classical approach is that the 

detectable change of signal (resolution) is independent of the input range thus 

allowing for greater dynamic range/ resolution ratio. For example, a strain 

gauge can be used to detect small strain variations over a wide initial signal 

range thus effectively increasing the resolution compared to a classic MS 

using the same ADC. Time series representing user defined strain thresholds 

can be set and the input signal monitored in order to detect when the strain 

drifts above or under the fixed limit. This example is not limited to strain 

measurement and can be applied to any physical quantity such as temperature 

or pressure. The proposed MS could also be used in safety applications where 
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thresholds are set on critical parameters in order to trigger an alarm or stop 

machinery when the working conditions are outside the set limits.  

 Increased data acquisition capability: the proposed MS can be used to 

improve the detection capability of existing data acquisition systems. For 

example, an acquisition board equipped with an existing low resolution (8-bit 

or 12-bit) ADC can be expanded, with the addition the proposed MS, to 

obtain signal change detection levels in the order of 20-bits by effectively 

increasing the detectable step size of the system. The added advantage is that 

the relative resolution of the overall acquisition system will be increased as 

well as the approximate absolute measurement values still being available.   

The results obtains are very promising and given further development could lead to a 

MS that offers significant performance and/or cost advantage over other 

measurement techniques for many applications. 
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8 Conclusion and Further Work 

8.1 Conclusion 

The main conclusions of this thesis are: 

a) One-dimensional chaotic maps as a mean of measurement have been 

successfully investigated using MATLAB.  

 

b) A novel 3D graphical representation of the high sensitivity to initial condition 

of one-dimensional chaotic map has been presented allowing a graphical 

visualisation of the phenomena. The developed visual representation in not 

limited to the Logistic and Tent maps and can be used to analyse the high 

sensitivity to initial conditions of any one-dimensional chaotic map.  

 

c) Two one-dimensional chaotic maps (Logistic map and Tent map) have been 

analysed and a novel low noise electronic implementation of the maps has 

been developed and presented. 

 

d) A mean of quantifying the change of input signal was proposed for each map 

and the advantages and drawback of using each map have been assessed.  

 

e) The proposed implementations have been tested using the transfer 

characteristic, bifurcation diagram, time series and Lyapunov Exponent 

showing a matching between theory and experimental results. The results 
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demonstrate a matching within     between theory and the practical 

implementations. 

 

f) Two measurement systems topologies have been proposed and designed; the 

series and the feedback topology. The two topologies where assessed and the 

following conclusions were drawn: the feedback topology develops higher 

inherent noise levels than the series topology. The series topology requires 

more hardware and offers less flexibility than the feedback topology.   

 

g) The developed electronic circuit representing the chaotic maps have been 

integrated into a measurement system. 

 

h) The sources of errors associated with the proposed measurement system have 

been identified and assessed. Means of mitigating some of the identified 

errors have been proposed.  

 

i) The proposed measurement systems have been assessed practically and the 

results shown that the small variation of input signals can be measured. The 

results demonstrate that the MS based on series implementation are superior 

in terms of detectable input signal change compared to a feedback system. 

The most favourable performance have been obtained using the TM based 

series topology: the measurement system was able to detect signal changes as 

low as 4   using a 10bit ADC with a step size (LSB) of 10mV for a 10V 

input range.  
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8.2 Further Work 

The author of this thesis would like to propose the following further work: 

 

 Investigate possible improvement to the electronics implementations of the 

TM in order to reduce noise which would increase the sensitivity of the 

proposed MS. Moreover, the possibility of implementing the MS using 

switched capacitor technique could be investigated; this could possibly lead to 

single IC integration thus reducing cost and potentially increase the sensitivity 

of the MS by lowering the noise for the feedback system.  

 

 Further investigation regarding the behaviour of one dimensional chaotic map. 

This could potentially lead to alternative methods of using the high sensitivity 

to initial conditions as a mean of measuring small signals. 

 

 Investigating the “nulls” that theoretically appear in the behaviour of the TM, 

and quantify the effects in the implemented system. 

 

 Investigate the possibility of improving the performance of chaos based ADC 

using the proposed MS.   
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Appendix B: MATLAB code developed to generate the 3D divergence graph for the 

LM along with divergence graphs for different input signal change. 

Appendix C: MATLAB code developed to generate the 3D divergence graph for the 

TM along with divergence graphs for different input signal change. 

Appendix D: Main C program developed for the PIC32MX460L using MPLAB. 

Appendix E: Datasheet of the KROHN-HITE 511 DC voltage reference/calibrator.  

Appendix F: Patent files submitted as part of the patent application n◦ 1309585.4. 
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Appendix A 

The data generate using MATLAB and used to create the graphs for the estimation 

error in section 3.1.1(Figure 3-5 , Figure 3-6 and Figure 3-7) and the time series for 

two different input signals are shown: 

TABLE A-1 SIGNAL CHANGE ESTIMATION ERROR 

Iteration 

Number (N) 
1

st
 Sample 2

nd
 Sample Divergence   

  Calculated 

using data 

rounded  to 

the 3
rd

  

decimal place 

Error (%) 

between 

the real   
and the 

calculated 

  

0 0.37690 0.37691 0.00001 0 100 

1 0.7500 0.75005 0.00002 0 100 

2 0.49740 0.49739 0.00004 0 100 

3 0.98990 0.98982 0.00008 0 100 

4 0.02009 0.02025 0.00016 0 100 

5 0.03998 0.04030 0.00031 0 100 

6 0.07957 0.08019 0.00062 0 100 

7 0.15835 0.15959 0.00124 8.091E-06 19.1 

8 0.31513 0.31758 0.00246 8.132E-06 18.7 

9 0.62710 0.63200 0.00489 1.022E-05 -2.16 

10 0.74205 0.73231 0.00974 1.027E-05 -2.68 

11 0.51331 0.53269 0.01938 9.803E-06 1.97 

12 0.96849 0.92992 0.03857 1.011E-05 -1.12 

13 0.06268 0.13944 0.07675 1.003E-05 -0.32 

14 0.12475 0.27748 0.15274 1.002E-05 -0.17 

15 0.24825 0.55220 0.30395 1E-05 -0.02 

16 0.49403 0.89111 0.39708 6.564E-06 34.4 

17 0.98312 0.21668 0.76644 6.364E-06 36.4 

 

TABLE A-2 IDENTICAL TIME SERIES FOR TWO DIFFERENT INPUT VALUES 

Iteration 

(N) 
0 1 2 3 4 5 6 7 8 9 

 0.49 0.98 0.04 0.08 0.16 0.32 0.64 0.72 0.56 0.88 

 0.51 0.98 0.04 0.08 0.16 0.32 0.64 0.72 0.56 0.88 
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Appendix B 

MATLAB code developed to generate the 3D divergence graph (Chapter 3) of the 

LM is presented. The code was written using MATLAB 7.11 (R2010b). Some 

divergence graphs generated using the code are also shown. 

Matlab code: 

clc;                  % Clear command window and workspace  
clear; 

 
%********************* setting simulation parameters 

****************** 

  
r=4;       % set the parameter of the LM          
change = 0.0002;  % set the change 
resolution = 100000; % set the number of points  
addnoise = 0;  % simulation with noise If 1 
averaging = 1;    % set to 1 for no averaging 

  
loopvar = 1;        % 
n = 1;       % 
averageloop = 0;      % 
finalresult = zeros(51,100000);   % initialise variables  
finalresultsinglerun =  zeros(51,100000);  % 
signatures = zeros(1,resolution);   % 
signaturesT = zeros(1,resolution);   % 

  
if addnoise  
          noiseresult = zeros(1,resolution*40+1000);  
        while (n < resolution*40+1000)     % generate noise if 

required  
                x = (mean(randn(100,1))*0.000012); 
                x = x'; 
                noiseresult(n) = x;   
                n = n + 1; 
        end  

       
        n=1;   
end        
 

%**************************** Main Loop 

******************************* 

         
 while(loopvar<=(resolution)-1)  % set the main loop 

      
        a1=[0:50];  
        n=1; 
        x= (loopvar/resolution); 

         
   for averageloop = 1:averaging   
      n=1; 
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      x = (loopvar/resolution); 
    while(n<=51) 

         

         
        if addnoise == 1;     %check if noise is to be added  
        noise = noiseresult(loopvar*20-20+(n*averageloop)); %take      

     %noise from           %the noise           %matrix 
        else 
            noise = 0; 
        end 
         x = x+ noise;        
        a1(averageloop,n) = r*(x)*(1-x); % iterate the equation and 

add                                             % noise if required 
        x = a1(averageloop,n); 
        n = n + 1; 
    end    
   end   
   if averaging > 1         % apply averaging if required 
     a1 =  mean (a1); 
   end  
        a2 = [0:50];  
        n=1; 
        x= ((loopvar/resolution)+change);  
      for averageloop = 1:averaging   
      n=1;   
      x= ((loopvar/resolution)+change); 
   while(n<=51) 

                  
       if addnoise == 1;                 %check if noise is to be 

added  
        noise = noiseresult(loopvar*20+(n*averageloop));    %take 

noise             %from the           %noise             %matrix 
       else 
            noise = 0; 
       end 
        x = x+ noise; 
        a2(averageloop,n) = delta*(x)*(1-x); 
        x = a2(averageloop,n); 
        n = n + 1; 
   end 
      end 

       
   if averaging > 1 
     a2 =  mean (a2); 
   end 

      
%**************** Add the iterations of the divergence 

**************** 

 
   end  
    n=1;  
    suma = a1-a2;  
    suma = suma'; 
    finalresult(:,loopvar) = suma; 
    finalresultsinglerun (:,loopvar) = a1; 
    loopvar = loopvar + 1; 

 end 

   
n=1; 
 resolution = resolution - 1; 
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 surf(finalresult(1:20,1:resolution-

10),'DisplayName','finalresult(1:20,1:resolution)');figure(gcf)         

% generate 3d graph of the divergence 

 

 

 

Divergence Graphs for different values of   and input ranges: 

  

LM divergence full normalised range with 

  = 0.0001 

LM divergence 0.1 to 0.9 normalised 

range with   = 0.0001 
  

 
 

LM divergence full normalised range with 

  = 0.00001 

LM divergence 0.1 to 0.9 normalised 

range with   = 0.00001 
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Appendix C 

MATLAB code developed to generate the 3D divergence graph of the TM (Chapter 

3) is presented followed by 3D graphs representing the divergence of the TM. 

Matlab code: 

clc;                          %clears the command window and the  

clear;    %workspace b4 every run 

 
%********************* setting simulation parameters 

****************** 

 
delta=2;                      %sets the parameter of the tent map 
change = 0.0001;              %sets the change  
resolution = 10000;           %number of simulation points  
addnoise =0;                  %0 = no noise/ 1 = with noise 

  

  
loopvar = 1;                    %some variables used for the loops  
n = 1; 
testvariable = 1; 

  
finalresult = zeros(40,200000); %declaration of tables  
signatures = zeros(1,resolution); 
StartingSignatures = zeros (40,resolution); 
StartingSignatures2 = zeros (40,resolution); 
 %*********** Generate noise and store it in a table (only if 

addnoise = 1)**************** 
if addnoise                                              
          noiseresult = zeros(1,resolution*80+1000);  
        while (n < resolution*80+1000)                     
                x = (mean(randn(100,1))*0.000012);        
                x = x'; 
                noiseresult(n) = x;   
                n = n + 1; 
        end  
        n=1;   
end   

  

  

  
%************ Main Loop ******************************************** 

  

  
while(loopvar<=resolution-1) 

     
    a1=[0:39];  
    n=1; 
    x= (loopvar/resolution);   %sets the input value 

       
 while(n<=40) 
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        if addnoise == 1;         %check if noise should be added  
            noise = noiseresult(loopvar*20-20+(n));   %take noise 

from          %the noise matrix 
        else 
            noise = 0; 
        end 
            x = x ;    
        if x < 0.5 
            x1 = delta*x+ noise; 
            x2 = 0; 
        end 

  
        if x >= 0.5  
            x2 = delta*(1-x)+ noise; 
            x1 = 0; 
        end 

         
        x = x1+x2; 
        a1(n) = x; 
        n = n + 1; 

  
 end 

  

  
    a2 = [0:39];  
    n=1; 
    x= ((loopvar/resolution)+ change);  

       
  while(n<=40) 

         
        if addnoise == 1;     %check if noise is to be added  
            noise = noiseresult(loopvar*20+(n));     %take noise from 

         %the noise matrix 
        else 
            noise = 0; 
        end 

         

   
        if x < 0.5 
            x1 = delta*x+ noise; 
            x2 = 0; 
        end 

  
        if x >= 0.5  
            x2 = delta*(1-x)+ noise; 
            x1 = 0; 
        end 

         
        x = x1+x2; 
        a2(n) = x;   
        n = n + 1; 

  
  end 
   if loopvar == 3769;      % extract one signature for analysis  
       signature(:,4) = a1; % loopvar sets the signature to be 

analysed  
       signature(:,5) = a2;            
       signature(:,6) = a1 - a2; 
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       signature(:,7) = abs(signature(:,6)); 
   end  

 
    n=1; 
    StartingSignatures (:,loopvar) = a1; 
    StartingSignatures2 (:,loopvar) = a2;  
    suma = a1-a2;  
    suma = suma'; 
    finalresult(:,loopvar) = suma;         %storage of the 

divergence 
    loopvar = loopvar + 1; 
end 

  
%********Add the iterations of the divergence******************** 
while (n<resolution)    
signatures(1,n) = sum (abs(finalresult(1:1,n))); 
n=n+1; 
end 
n=1; 

  
while (n<resolution)    
signaturesIT(1,n) = (abs(finalresult(1,n))); 
n=n+1; 
end 
n=1 

  
%***************** create the 3D divergence Graph**************** 

  
resolution = resolution - 1; 
surf(finalresult(1:20,1:resolution-

10),'DisplayName','finalresult(1:25,1:resolution)');figure(gcf) 
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Divergence Graphs for different values of  : 

  

TM divergence full normalised range with   

= 0.001 

TM divergence full normalised range 

with   = 0.0001 
  

  

TM divergence full normalised range with   

= 0.00001 

TM divergence full normalised range 

with   = 0.000001 
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Appendix D 

The main C program developed for the PIC32MX460L using MPLAB is given. The 

program uses the I/Os to control the chaotic MS, the internal ADC to sample the data 

and the USB mass storage capability to store the data on an external USB memory. 

A colour LCD display with an integrated touch screen was used, to create a graphical 

user interface. The block diagram of the    system is shown below. 

      PIC32MX460L         LCD & TOUCH 
SCREEN

USB MASS STORAGE

I/Os

1D Chaotic 
Map

Switches and 
Sample & 

holds

ADC

 

 Main Program: 

//List of includs 
#include "MainDemo.h" 
#include "MainDemoStrings.h" 
#include "USB/usb.h" 
#include "USB/usb_host_msd.h" 
#include "USB/usb_host_msd_scsi.h" 
#include "MDD File System/FSIO.h" 
 
/////////////////////// Configuration bits///////////////////////////// 
#pragma config FPLLODIV = DIV_1, FPLLMUL = MUL_20, FPLLIDIV = DIV_2, FWDTEN = 
OFF, FCKSM = CSECME, FPBDIV = DIV_8 
#pragma config UPLLEN   = ON            // USB PLL Enabled 
#pragma config UPLLIDIV = DIV_2         // USB PLL Input Divider 
#pragma config OSCIOFNC = ON, POSCMOD = XT, FSOSCEN = ON, FNOSC = PRIPLL 
#pragma config CP = OFF, BWP = OFF, PWP = OFF 
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////////////////////////Variable declaration//////////////////////////  
SHORT startscreen=0; 
SHORT chaosscreen=0; 
GOL_SCHEME*    yellowScheme;                 // alternative yellow style 
scheme     
int channel8; // conversion result as read from result buffer 
unsigned int channel15; 
unsigned int offset; // buffer offset to point to the base of the idle buffer 
int x; 
int tempo; 
int iteration; 
int y; 
int z; 
int testvar; 
char set,log=0,RUN=0,column=0; 
char temp[10]; 
int signatur[500]; 
int NumberOfIterations=50; 
int pbClk; // Variable for UART 
FSFILE * myFile; 
BYTE myData[512]; 
size_t numBytes; 
volatile BOOL deviceAttached; 
 
extern const FONT_FLASH GOLMediumFont;   // medium font 
extern const FONT_FLASH GOLSmallFont;   // small font 
 
void StartScreen();        // draws intro screen 
void ChaosScreen();                             // draws chaos screen  
 
///////////////////////////////////////////////////////////////////////////// 
//                            DEMO STATES       
///////////////////////////////////////////////////////////////////////////// 
typedef enum { 
 
intro, 
chaos 
 
} SCREEN_STATES; 
///////////////////////////////////////////////////////////////////////////// 
//                       GLOBAL VARIABLES FOR DEMO 
///////////////////////////////////////////////////////////////////////////// 
SCREEN_STATES  screenState =     intro; // current state of main demo state 
machine  
SETTIME_STATES  settimeState =     defo; // current state of main demo state 
machine  
////////////////////////////////////////////////////////////////////////////// 
//                            IMAGES USED 
////////////////////////////////////////////////////////////////////////////// 
// internal flash image 
extern const BITMAP_FLASH batimage; 
extern const BITMAP_FLASH bat2; 
extern const BITMAP_FLASH sun; 
//////////////////////////////////////////////////////////////////////////////
/ 
//      MAIN PROGRAM                                      
//////////////////////////////////////////////////////////////////////////////
/ 
int main(void) 
{ 
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   TRISD = 0x0000; ////PORT D set as output for the control of the Chaotic 
map*************************** 
   PORTD = 0; 
#if defined(__PIC32MX__) 
        { 
            int  value; 
     
            value = SYSTEMConfigWaitStatesAndPB( GetSystemClock() ); 
     
            // Enable the cache for the best performance 
            CheKseg0CacheOn(); 
     
            INTEnableSystemMultiVectoredInt(); 
     
            value = OSCCON; 
            while (!(value & 0x00000020)) 
            { 
                value = OSCCON;    // Wait for PLL lock to stabilize 
            } 
 
  //PORTD=0xffff; 
        } 
 
    #endif 
 
deviceAttached = FALSE; 
//Initialize the stack 
USBInitialize(0); 
 
 
GOL_MSG msg;     // GOL message structure to interact with GOL 
INTEnableSystemMultiVectoredInt();  // USE best performance 
SYSTEMConfigPerformance(GetSystemClock());// get clock and set best 
performance 
AD1PCFG = 0xccff;    // ADC pins configuration 
GOLInit();      // initialise graphics library & 
TouchInit();      // initialise the touch panel 
AD1PCFG = 0xccf8;    // reconfigure ADC pins 
 
yellowScheme = GOLCreateScheme();   // create yellow style scheme 
yellowScheme->Color0 = BRIGHTYELLOW; 
yellowScheme->Color1 = YELLOW; 
yellowScheme->EmbossDkColor = RGB565CONVERT(0xFF, 0x94, 0x4C); 
yellowScheme->EmbossLtColor = RGB565CONVERT(0xFD, 0xFF, 0xB2); 
yellowScheme->TextColor0 = RGB565CONVERT(0xAF, 0x34, 0xF3); 
yellowScheme->TextColor1 = RED; 
 
PORTB=0x4000;   //and set it at one to power the USB port (make sure that the 
corresponding switch is one (SW12)) 
 
StartScreen(); // display the main screen 
 
log=0; 
 
while(1) 
{         
if (RUN==0) 
{ 
  //USB stack process function 
        USBTasks(); 
        //if thumbdrive is plugged in 
        if(USBHostMSDSCSIMediaDetect()) 
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        { 
            deviceAttached = TRUE; 
            //now a device is attached 
            //See if the device is attached and in the right format 
            if(FSInit()) 
            { 
                //Opening a file in mode "w" will create the file if it 
doesn't 
                //  exist.  If the file does exist it will delete the old file 
                //  and create a new one that is blank. 
                myFile = FSfopen("test.csv","w"); 
 
                //Write some data to the new file. 
 
   FSfwrite("Signature",1,4,myFile); 
   FSfwrite(",",1,1,myFile); 
   FSfwrite("Signature",1,2,myFile); 
   FSfwrite("\r\n",1,4,myFile); 
   FSfclose(myFile); 
   RUN=2; 
 
            } 
        } 
 
} // end if (log=0) 
 
 
if (RUN ==1) 
 
{ 
 //////////////////////////Start of iterations/////////////////// 
PORTDbits.RD8 = 1;   //FeedBack disconnected 
for(tempo=0;tempo<100;tempo++); 
PORTDbits.RD9 = 0;   //input connected 
for(tempo=0;tempo<100;tempo++); 
 
 
 
PORTDbits.RD10 = 1; //Master S&H is sampling 
for(tempo=0;tempo<200000;tempo++); 
PORTDbits.RD10 = 0; //Master S&H is holding 
 
for(tempo=0;tempo<1000;tempo++); 
 
PORTDbits.RD11 = 1; //Slave S&H is sampling 
for(tempo=0;tempo<200000;tempo++); 
PORTDbits.RD11 = 0; //Slave S&H is holding 
 
for(tempo=0;tempo<80000;tempo++); 
 
channel8 = ADCGetPot(); 
signatur[0] = channel8; 
for(tempo=0;tempo<100;tempo++); 
 
PORTDbits.RD9 = 1;   //input disconnected 
for(tempo=0;tempo<100;tempo++); 
PORTDbits.RD8 = 0;   //Feedback connected 
 
for(tempo=0;tempo<100000;tempo++); 
 
////////////////////SETS the Number of Iterations for the Chaotic Map 
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for (iteration=0;iteration<NumberOfIterations;iteration++) 
 
{ 
PORTDbits.RD10 = 1;    //Master S&H is sampling 
for(tempo=0;tempo<200000;tempo++); 
channel8 = ADCGetPot(); 
signatur[iteration+1] = channel8; 
for(tempo=0;tempo<100;tempo++); 
PORTDbits.RD10 = 0;    //Master S&H is holding 
 
for(tempo=0;tempo<1000;tempo++); 
 
PORTDbits.RD11 = 1;    //Slave S&H is sampling 
for(tempo=0;tempo<200000;tempo++); 
PORTDbits.RD11 = 0;    //Slave S&H is holding 
 
for(tempo=0;tempo<50000;tempo++); 
 
for(tempo=0;tempo<50000;tempo++); 
} 
 
PORTDbits.RD8 = 0;     //Feedback disconnected 
for(tempo=0;tempo<100;tempo++); 
PORTDbits.RD9 = 0;     //input connected 
for(tempo=0;tempo<100;tempo++); 
 
PORTDbits.RD15 = 1;     //Discharge the Sample and Hold Capacitors 
for(tempo=0;tempo<500000;tempo++); 
PORTDbits.RD15 = 0; 
 
     //USB stack process function 
USBTasks(); 
if(USBHostMSDSCSIMediaDetect())    //if thumbdrive is plugged in 
{ 
deviceAttached = TRUE; 
 
     //now a device is attached 
     //See if the device is attached and in the      //right format 
if(FSInit()) 
{ 
myFile = FSfopen("data.csv","a"); 
 
FSfwrite("\r\n",1,4,myFile); 
 
for (iteration=0;iteration<NumberOfIterations+1;iteration++) 
 
{      //Write the data on the USB drive 
 
signatur[iteration] = signatur[iteration]*3.22265625; 
FSfprintf (myFile, "%#2u",signatur[iteration]); 
FSfwrite("\r\n",1,4,myFile); 
 
} 
FSfclose(myFile); 
RUN=2; 
} 
} 
} 
 
if(GOLDraw())  {             // Draw GOL objects 
     // Drawing is done here, process messages 
TouchGetMsg(&msg);       // Get message from touch screen 
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GOLMsg(&msg); 
} 
 
}   // END while(1) LooP 
}   // END MAIN 
 
/****************************GOL Msg CallBack 
subroutine*************************/ 
WORD GOLMsgCallback(WORD objMsg, OBJ_HEADER* pObj, GOL_MSG* pMsg) 
 
WORD objectID,ident; 
objectID = GetObjID(pObj); 
ident = GetObjID(5); //get the static text ID 
 
switch(objectID) 
{ 
 
case 15 :                                // If button pressed go back to main 
screen 
if(objMsg == BTN_MSG_PRESSED) 
{ 
screenState = intro; 
} 
return 1; 
 
 
} 
return 1; 
 
case 10 :                         //chaos BUTTON IS PRESSED 
if(objMsg == BTN_MSG_PRESSED) 
{ 
screenState = chaos; 
 
} 
return 1; 
 
case 56 :             //Run BUTTON IS PRESSED 
if(objMsg == BTN_MSG_PRESSED) 
{ 
RUN = 1; 
 
} 
return 1; 
 
case 60 :                         //iteration + BUTTON IS PRESSED 
if(objMsg == BTN_MSG_PRESSED) 
{ 
NumberOfIterations++; 
 
} 
return 1; 
 
case 61 :                         // iteration - BUTTON IS PRESSED 
if(objMsg == BTN_MSG_PRESSED) 
{ 
NumberOfIterations--; 
 
} 
return 1; 
break; 
} 



181 

 

 
return 1;              // Process message by default 
} 
/*********************End GOL Msg CallBack 
subrouine***************************/ 
 
WORD GOLDrawCallback()/*****GOL Draw CallBack 
subroutine***********************/ 
{ 
     
 switch(screenState){ 
            case intro: 
if (startscreen==0) {StartScreen();}  // create window and buttons 
 
x = GOLFindObject(5);         t 
DmSetValue(x, voltage); 
SetState(x,DM_DRAW); 
voltage = (channel8*0.0322265625); 
 
y = GOLFindObject(7); 
DmSetValue(y, voltage2); 
SetState(y,DM_DRAW); 
voltage2 = (sec); 
 
return 1;  // draw objects created 
 
case chaos: 
if (chaosscreen==0) {ChaosScreen(); 
} 
y = GOLFindObject(62); 
DmSetValue(y, NumberOfIterations); 
SetState(y,DM_DRAW); 
return 1; 
 
 } 
                         
return 1; 
                    
} 
 
/************************End GOL Draw CallBack 
subroutine*********************/ 
 
void StartScreen()/*************Main Screen 
Subroutine***************************/ 
 
{ GOLFree(); 
WndCreate(1,     // ID 
0,0,GetMaxX(),GetMaxY(),  // whole screen dimension 
WND_DRAW,     // set state to draw all 
NULL,      // icon 
"Chaos MS tool",           // text 
NULL);     // use default GOL scheme 
 
 
 
BtnCreate(10,                     // object’s ID 
5, 160, 210, 195,       // object’s dimension 
0,                      // radius of the rounded edge 
BTN_DRAW,               // draw the object after creation 
NULL,                   // no bitmap used 
"Choatic Map",                // use this text 
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yellowScheme);                // use yellow style scheme 
 
 
DmCreate(5,             // ID 
30,60,200,90,             // dimension 
SLD_DRAW,     // has frame and centre aligned 
voltage,2,1,                  // to display the value of voltage 
NULL);                   // use given scheme 
 
 
 
 
DmCreate7,              // ID 
30,90,200,120,              // dimension 
SLD_DRAW,     // has frame and centre aligned 
voltage,2,0,                  // to display 078.9 
NULL);                   // use given scheme 
 
 
startscreen=1; 
 
chaosscreen=0; 
 
} 
/***************************END Main screen 
subroutine***************************/ 
 
/***************************USB application 
handler******************************/ 
BOOL USB_ApplicationEventHandler( BYTE address, USB_EVENT event, void *data, 
DWORD size ) 
{ 
switch( event ) 
{ 
case EVENT_VBUS_REQUEST_POWER: 
// The data pointer points to a byte that represents the amount of power 
// requested in mA, divided by two.  If the device wants too much power, 
// we reject it. 
return TRUE; 
 
case EVENT_VBUS_RELEASE_POWER: 
// Turn off Vbus power. 
// The PIC24F with the Explorer 16 cannot turn off Vbus through software. 
//This means that the device was removed 
deviceAttached = FALSE; 
return TRUE; 
break; 
 
case EVENT_HUB_ATTACH: 
return TRUE; 
break; 
 
case EVENT_UNSUPPORTED_DEVICE: 
return TRUE; 
break; 
 
case EVENT_CANNOT_ENUMERATE: 
***** USB Error - cannot enumerate device 
return TRUE; 
break; 
 
case EVENT_CLIENT_INIT_ERROR: 
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USB Error - client driver initialization error 
return TRUE; 
break; 
 
case EVENT_OUT_OF_MEMORY: 
USB Error - out of heap memory return TRUE; 
break; 
 
case EVENT_UNSPECIFIED_ERROR:   // This should never be generated. 
USB Error - unspecified  
return TRUE; 
break; 
 
default: 
break; 
} 
return FALSE; 
} 
} 
//END OF PROGRAM 
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Appendix E 

The datasheet of the KROHN-HITE 511 DC voltage reference/calibrator is 

presented. 
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Appendix F 

This Appendix contains the patent files submitted as part of the patent application. 

British Patent Application n◦ 1309585.4 

Patent application:  

 

Improved Method of Measuring Signal Change and System 

Including the same 

 

The present invention relates to a high precision measurement 

system for measuring changes in one or more signals.  

Although the following invention relates to measuring signal 

changes in relatively low value sensors, the person skilled in the 

art will appreciate that the present system can be applied to any 

device that generates an output signal.  

In conventional measurement systems, low amplitude parameter 

change measurement is a challenge due to noise and inherent 

measurement system errors.  The traditional approach to the 

problem is for the measurement  system to include a sensor to 

convert the physical parameter into a signal, typically a voltage 

signal, followed by conditioning circuitry to adapt to the 

appropriate input range of a high resolution analogue to digital 

converter (ADC).   

The practical limitation of accuracy  for any measurement is 

determined by specific factors such as sensor sensitivity, 

intrinsic noise and ADC performance in terms of bit resolution 

and range.  
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Therefore, small changes in input signal can only be detected 

and/or measured using relatively expensive and sensitive 

equipment.  

It is therefore an aim of the present invention to provide an 

improved method of measurement that addresses the 

abovementioned problems.  

It is a further aim of the invention to provide a sensor 

apparatus or system that addresses the abovementioned 

problems. 

It is a yet further aim of the invention to provide a method of 

signal change measurement that addresses the abovementioned 

problems. 

In a first aspect of the invention there is provided a method of 

measuring signal change including the steps of:  

- performing at least one calculation or iteration step based on 

one or more chaos functions on a first input signal, or sample 

of a signal, to produce a first iteration value;  

- performing a second iteration step by repeating the at least 

one calculation or iteration step based on one or more chaos 

functions on the first  iteration value to produce a second 

iteration value;  

- performing a third and/or further iteration steps whereby the 

previous or earlier iteration value undergoes the at least one 

calculation or iteration step based on one or more chaos 

functions to generate the third and/or further iteration values;  

- storing iteration values generated from the first input signal  

or sample of said first input signal ; and 

- performing at least one calculation  or iteration step based on 

one or more chaos functions on at least a second input signal, 
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or sample of a second signal, to produce a first iteration value 

from the second input signal;  

- performing a second iteration step for the second input signal 

by repeating the at least one calculation or iteration step based 

on one or more chaos functions on the first  iteration value 

from the second input signal to produce a second iteration 

value; 

- performing a third and/or further iteration steps for the 

second input signal whereby the previous or earlier iteration 

value undergoes the at least one calculation  or iteration step 

based on one or more chaos functions to generate the third 

and/or further iteration values;  

- storing iteration result values generated from the second input 

signal, or part of said second signal ; 

- subtracting one set of iteration values generated from either 

the first or second input signal from the corresponding 

iteration values generated from the other input signal wherein 

the number of iterations before the difference between the 

iteration result values increases is proportional to the relative 

difference between the first input signal  and the second input 

signal and/or samples thereof. 

Typically the stored iteration values generated from the first 

input signals, or portions thereof, form a first sample signature 

and/or the stored iteration values generated from the second 

input signals, or portions thereof, form a second s ample 

signature.  

Further typically, implementing the abovementioned method 

using electronic circuitry and/or an integrated circuit allows 

high detection resolution that is independent of the input 

range.  As it is the difference between the inputs that is 

measured and not the absolute value of each input, relatively 
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low cost sensors can be modified to enable small signal 

changes, for example in the region of 20 V, to be accurately 

measured. 

 

Preferably the iteration values and/or sample signatures are 

converted to digital data or a digital word.  Typically the 

iteration values are converted to any one or any combination of 

digital words, binary codes, reflected binary codes (Gray codes) 

and then stored.  Further typically an analogue to digital 

converter (ADC) is used to convert the values. 

In one embodiment the stored digital words for each ite ration 

form a signature or data set related to that particular input 

signal or sample of said signal.  

Typically it is the number of iterations before the two 

signatures diverge that is proportional to the relative difference  

between the input signals or samples of said signals.  

Typically, it is possible to obtaining a higher resolution than 

that which can be achieved using a standard, comparably 

priced, ADC based system. The ADC, in this system, is not 

directly sampling the input signal or data, but rather the data at 

the output of the chaotic function.  This allows a detection of 

changes smaller than if the ADC was connected in a 

conventional way to the input, using a linear amplification and 

ADC combination.  

In one embodiment the one or more chaos functions includes a 

one dimensional (1D) discrete chaotic map.  Preferably the 

Chaos function is a Tent Map as shown below.  

 

Tent Map Equation. 
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     {
                              

 

 

                       
 

 

                       equation (1) 

 

Where Xn represents the normalised input (typically 0 to 1), r is 

the fixed multiplying factor in the range (typically 1.8 to 2)  

In one embodiment the chaos function includes the Logistic 

Map function. 

Logistic Map Equation 

 

Xn+1 = rXn(1 – Xn)                                                         equation (2) 

 

Where Xn and Xn+1 are the current and next input values 

respectively. r is the scaling factor set to make the function 

chaotic and avoid windows of periodicity , typically between 

3.97 and 4. 

The fundamental advantage of this signal measurement system, 

over typical ADCs, is that the size of the signal change that can 

be measured is independent of the range, thus increasing input 

signal range increases the overall resolution . 

This high precision signal change detection and measurement 

system utilises the fundamental characteristic of high sensitivity 

to initial conditions, exhibited by the chaotic function. This 

normalised behaviour of the function means that an equivalent 

high detection resolution can be achieved that is independent 

of input range. 
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Typically the calculations or iteration steps are repeated ten 

times.  Further typically the calculations are repeated for ten 

iterations to form the input signal/sample signature.  

 

In a second aspect of the invention there is provided an 

apparatus to measure the difference between a first and at least 

a second signal and/or samples of a signal,  said apparatus 

including circuitry to;  

- perform at least one of calculation based on one or more 

chaos functions on a first input signal sample , to produce a 

first iteration value whereby said apparatus performs an 

iteration calculation by repeating the at least one calculation 

based on one or more chaos functions on the first iteration 

value to produce a second iteration result value, perform a 

third and/or further iteration steps whereby the previous or 

earlier iteration result value undergoes the at le ast one 

calculation based on one or more chaos functions to generate 

the third and/or further iteration result values , 

- perform at least one of calculation based on one or more 

chaos functions on at least a second input signal sample, to 

produce a first iteration value from the second input signal , and 

to perform an iteration step for the second input signal by 

repeating the at least one calculation based on one or more 

chaos functions on the first  iteration value from the second 

input signal to produce a second iteration result value, perform 

a third and/or further iteration steps for the second input 

signal whereby the previous or earlier iteration result value 

undergoes the at least one calculation based on one or more 

chaos functions to generate the second and/or further iteration 

result values; and further includes;  

memory means to store the iteration result values generated 

from the first and second input signals; and 
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- either subtract the iteration result values from the first input 

signal sample from the corresponding iteration values generated 

from the second input signal sample, or vice versa wherein the 

number of iterations before the difference between the 

iteration values increases is proportional to the relative 

difference between the input samples.  

 

In one embodiment the iteration steps are performed by 

circuits in series rather than repeating the c alculation on the 

same circuit.  

In one embodiment the data storage and/or subtraction is 

performed by a microcontroller.  The person skilled in the art 

will appreciate that the data storage and/or subtraction steps 

can be performed with any device/component capable of data 

storage and simple mathematical operations. This includes any 

one or any combination of Field Programmable Gate Arrays 

(FPGAs), microcontrollers, microprocessors with additional 

memory, and specialised Integrated Circuits (IC).  

In one embodiment the system is substantially integrated into a 

single IC and/or connected to a data acquisition board to store 

the signatures and/or perform the calculations using at least 

one computer means. 

In one embodiment the apparatus is coupled to and/or 

integrated with a sensor output.  An example of such a sensor 

is a strain gauge.  Typically the gauge output is connected to 

the apparatus signal input.  

In an alternative embodiment the apparatus is coupled to 

and/or integrated with a data acquisition board.  

In a third aspect of the invention there is provided a 

measurement system comprising taking a first  input sample and 

performs calculations based on a  chaos function, said 
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calculations are repeated for a number of iterations with the 

result of each iteration being converted to a digital reference or 

word and stored, the stored digital words, for each iteration, 

form a signature or data set related to the input sample , and a 

second input sample is taken and iterated, and the data is 

stored giving a second signature  wherein the signature from the 

first sample is  subtracted to the signature from the second 

sample the result of which is then used to determine the 

difference between the two samples as the number of iterations 

before the two signatures diverge is proportional to the relative 

difference. 

Specific embodiment of the invention are now described with 

reference to the following figures, wherein:  

Figure 1 shows a system illustrating the ite rations of a tent map 

function; 

Figure 2 shows a schematic of a chaos function based 

measuring system with feedback in accordance wi th one aspect 

of the invention;  

Figure 3 shows one embodiment of the implementation of a 

tent map in accordance with the invention;  

Figure 4 shows one embodiment of the implementation of a 

logistic map in accordance with the invention;  

Figure 5 shows a graph of determining sample difference in  

accordance with the invention;  

Figure 6 shows the divergence of the tent map for a 50 µV 

signal change across a full normalised input range;  

Figure 7 shows the theoretical and practical divergence of the 

system versus the input change;  

Figure 8 shows a series implementation of the Tent Map 

function in accordance with one embodiment of the invention;  
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Figure 9 shows a hybrid series/feedback implementation of the 

Tent Map function in accordance with one embodiment of the 

invention; 

Figure 10 shows a schematic representing a strain gauge;  

 

Figure 11 shows a circuit diagram for a Tent Map electronic 

circuit implementation.   

Figure 12 shows a graph demonstrating sensitivity to initial 

condition change of 1x10 -4 for the Logistic Map function;  

Figure 13 shows a graph illustrating signature deviations for 

input signals and a 1x10 -4 change for the Logistic Map;  

Figure 14 shows a circuit diagram for a Logistic Map elec tronic 

circuit implementation.  

Figure 15 shows a graph of measurement system input change 

detection compared to theoretical analysis.  

 

Chaos theory is based on functions/systems that have widely 

diverging outputs for small differences in initial conditions, 

often termed the ‘butterfly effect’. This means that the long -

term response of the system cannot be predicted with any 

degree of certainty due to very small parameter changes. 

However, the divergence between two chaotic responses can be 

used to accurately define the difference between that two input 

signals. The Tent Map (TM) function exhibits such behaviour 

and has been investigated and implemented, electronically, in 

this work.  

There have been previous implementations  of the TM and other 

chaotic functions using electronic circuits, however, some of 

these implementations are purely educational with no real 
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application.  Figure 1 shows a system illustration of a TM 

function as used in associated literature.  

The TM function, along with the Bit Shift/Doubling Map 

(BSM), has been used to measure signals in the form of an 

Analogue to Digital Convertor (ADC). These methods rely on 

the piecewise-linear characteristic of the one dimensional (1D) 

maps to double and fold the signal on each iteration. After each 

iteration the digital output is shifted to the left until a binary 

word that represent the input signal is obtained (binary word 

for the BSM and Gray-code for the TM).  However, inherent 

practical system errors grow exponentially limiting the 

resolution. A chaos function scaling factor above the ideal, due 

to noise, would cause the output to diverge to either supply rail 

- known as the ‘exiting condition ’ or ‘extinction’.  

The fundamental aspect of the method, presented here, of 

signal measurement is that it relies on the difference between 

two input signals rather than the absolute value of a given 

signal, which makes it robust to any inaccuracy within th e TM 

parameters. 

This approach adopted herein is not to design an ADC but to 

detect small signal changes using an implementation that takes 

into consideration noise and errors encountered within 

practical systems. Rather than relying on producing a logic 

output of a 0 or 1 after each iteration (or stage) the output is 

sampled using a low resolution ADC. The digital word for each 

iteration is stored in the system memory so that after N 

iterations a unique N Bytes signature is obtained for a given 

input. This signature can then be compared with any other 

signature to determine the difference between them using the 

divergence. Errors introduced by the feedback loop can be 

eliminated by implementing the system in a  cascaded/series 

configuration.   
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The present system takes the 1st input sample and performs 

calculations based on the chaos function, as shown in figure 2. 

These calculations are repeated , via the feedback loop, for a 

number of iterations (typically 10) with the result of each 

iteration being converted to a digital word and stored. The 

stored digital words, for each iteration, form a signature (data 

set) related to the input sample.   A second input sample is 

taken and iterated, and the data is stored giving a second 

signature.  The signature from the fi rst sample is then 

subtracted from the second sample signature.  The result 

obtained is then used to determine the difference between the 

two samples as the number of iterations before the two 

signatures diverge is proportional to the relative difference.   

The sample difference is measured and not the absolute value.   

The data storage and the subtraction are all performed by a 

microcontroller.  

The discrete, 1D Chaotic map, implemented electronically and 

tested, was the Tent Map, containing the basic system 

functional blocks, as shown in figure 3  

The main advantage, of this system, is the possibility of 

obtaining a higher resolution than that which can be achieved 

using a standard, comparably priced, ADC based system. The 

ADC, in this system, is not directly sampling the input data but 

rather the data at the output of the Tent map. This allows a 

detection of changes smaller than if the ADC was connected in 

a classic way, using a linear amplification and ADC 

combination. 

In figure 4 5, a0 represents the Tent map behaviour over 20 

iterations, for a normalised initial input condition of x = 0.6 , a1 

is the behaviour for an initial input condition of x = 0.60005, 

a2 is the difference between a0 and a1; showing the divergence. 

The number of iterations before a0 diverges from zero enables 

the initial sample difference to be determined.  
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Figure 5 6, shows that the number of iterations required, to 

measure a specified input signal change, is constant across the 

full input signal range. Hence, the measurement system is input 

signal amplitude independent.  

The Tent map is not the only, one dimensional (1D), discrete 

chaotic map that can be use in the given system. Successful 

implementation of the 1D, discrete Logistic Map (LM) 

containing the basic system funct ional blocks, as shown in 

figure 6, for the same application, has also been achieved. 

However, the LM and other related functions generally require 

multiplication circuitry, in the practical implementation. The 

multiplication circuitry generates relatively  large quantities of 

noise, compared to other system blocks used, and thus 

introduces high noise levels into the overall system. 

Consequently, the induced noise distorts the output and 

reduces the sensitivity of the system to small input signal 

changes. This means the system output signature divergence 

occurs earlier (fewer iterations) than predicted by theory, for a 

small input signal change.  

The simplicity of the TM (no multiplication circuitry required) 

enables basic electronic circuitry to be used, whic h only 

introduces relatively low levels of noise into the system. Hence 

the achieved performance of the practical implementation is 

close to the ideal, mathematically simulated, response of the 

TM.  

The current discrete component implementation of the syst em 

can detect changes in input samples of approximately 50 V, 

hence for a 10 V range (typical input voltage range for the 

system), the resolution is higher than that which can be 

achieved using a conventional 16-bit resolution ADC (10/216 = 

152.6 µV per step). This system requires only a lower 

resolution, low cost 8-bit ADC to convert the TM response to a 

digital signal for storages and processing.  
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Although the design is implemented using a microcontroller 

with a built-in ADC and discrete components, the full system 

could be designed on a single IC. This would further reduce 

induced noise from circuitry within the system, meaning that 

smaller input signal changes could be accurately determined. 

Figure 7 shows that the theoretical minimum signal change that  

can be measure, by the system, is limited by the noise of the 

practical implementation and not the TM function.  

By removing the need for feedback the detectable input change 

as low as 20μV have been achieved. This was made possible by 

eliminating the errors introduced by the feedback, namely the 

sample and hold circuit. The circuit without feedback is shown 

in Figure 8. Multiple TM circuits have been placed in series so 

that the signal, instead of being iterated can propagate through 

the circuits. The signature is obtained by sampling between 

each TM circuit..  

Hybrid series/feedback implementation: Combining the 

feedback and series systems into one system, shown in figure 9,  

using 2 to 8 series stages and feedback will enable flexibility 

and sensitivity to be optimised for different applications. The 

feedback system enables flexibility in iterations without the 

need to modify the circuitry, whilst the series stages, enables 

high levels of sensitivity to be achieved whi lst operating at 

higher speeds. 

 

Applications of the invention include:  

 

Small Change Physical Parameter Measurement  

A typical area of application for the signal change measuring 

system is that where a small variation in the output signal from 

a physical parameter sensor is required as opposed  to absolute 
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values. For example, a strain gauge can be used to detect small 

strain variations over a wide initial signal range. The method 

normally used for this application is shown in Figure 10.  

The change in strain, to be measured, creates a change of  

resistance at the terminals of the strain gauge, which is 

relatively small (typically in the order of tens of mΩ) compared 

to the typical nominal value of the strain gauge of 350 Ω, for 

example. The gauge is placed in a Wheatstone bridge resistor (R 

Ω equal to the nominal strain gauge resistance) configuration in 

order to convert the strain gauge resistance variation, which is 

proportional to the strain applied, into a voltage. The voltage is 

then amplified by an instrumentation amplifier (low noise and 

high precision) before being adapted/conditioned to the input 

range of the ADC. This conditioning circuit is generally 

application and ADC dependent and requires relatively high 

cost precision amplifiers. However, the system is able to 

determine absolute value measurements to high precision levels 

but requires expensive high resolution ADCs.  

If a small change in the strain, equivalent to an extension of 

0.00001% over a  10% extension/compression range, occurs 

then the minimum resistance variation of 0.0007 Ω over a range 

of ±35 Ω needs to be detected. The maximum voltage at the 

output of the Wheatstone bridge in the, given example, was 

calculated to be ± 0.119V. Using a 16-bit ADC the minimum 

voltage change that can be detected is determined as being 

equal to 76.3 µV for a 5 V reference (5/2 16). Given the 

conditioning circuitry, the minimum ADC step sizes equates to 

3.66 µV bridge output voltage (minimum required to maintain 

full ADC range), which is equivalent to a 1mΩ change, which in  

turn is equivalent to a  1.43 micro strain change. However, since 

the measurement accuracy of the new system is 20 µV a strain 

change of less than 1 micro strain can be detected. Hence, 

because of a need for detecting small changes over a wide 
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absolute range, the 16-bit resolution of the ADC is not high 

enough. In fact for the conventional system a more costly 18 -

bit ADC to attain the same level of accuracy (1 micro strain) 

would be required.  

 

Increased Data Acquisition Capability.  

Initial investigations indicate that the new signal change 

measurement system can be used to improve the detection 

capability of existing data acquisition systems. For example, an 

acquisition board equipped with an existing 8 -bit or 12-bit 

ADC can be expanded, with the addition the new system, to 

obtain resolution levels in the order of 18-bits. The added 

advantage is that the resolution of the overall acquisition 

system will be increased as well as the approximate absolute 

measurement values still being available.    

The skilled person will appreciate that the electronic circuit 

implementation of the Tent Map chaotic function, using low 

cost components, as shown by the simplified circuit in figure 

13 enables signal changes in the region of 20 V to be 

accurately measured. The potential range of applicati ons for 

this system is very large.  The integration of the measurement 

systems onto a single IC will improve the level of accuracy and 

lower costs, thus increasing the scope of potential applications.  

In a final example a high precision signal measurement  system 

utilising the Logistics Map chaos function is presented.  

Essentially a novel, high precision signal change measurement 

system based on the Logistic Map (LM) has been developed, 

analysed and tested. The measurement technique util ises the 

high sensitivity to initial conditions characteristic of the one 

dimensional Chaotic function. Investigations into the behaviour 

of the LM function, using Matlab, demonstrated that the 
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deviation between successive output iterations for two or more 

input signal samples is proportional to the size of the 

difference between them. An electronic prototype of the LM 

based measurement system has been developed, using low cost 

electronic devices, and the results demonstrate a strong 

relationship to the simulations, thus input  signal changes can 

be accurately detected and quantified. Analysis of the 

measurement system has shown that input signal changes of 

100 µV can be determined, equivalent to 16 -bit ADC 

resolution, over a 10V input range. The fundamental 

characteristic difference compared to typical ADC devices is 

that the size of the signal change that can be measured is 

independent of the input range, thus increasing the input signal 

range increases the resolution. This system is highly suited to 

applications where the detection of low amplitude signal sample 

change is of higher importance than the absolute value.  

Introduction:  To accurately observe, test and control any physical 

variable, a high resolution ‘measurement system (MS)’ is 

required. In most engineering systems, low amplitude parameter 

change measurement is challenging due to practical noise 

limitations and inherent measurement system errors . In the 

classical approach to the problem, the MS consists of a sensor 

to convert the physical parameter into typically a vo ltage signal, 

followed by conditioning circuitry to adapt to the appropriate 

input range of a high resolution ‘analogue to digital converter 

(ADC)’ .  The practical limitation of accuracy for any MS is 

determined by specific factors such as sensor sensitivit y, 

intrinsic noise and ADC performance in terms of bit resolution 

and range. This high precision signal change detection and 

measurement system utilises the fundamental characteristic of 

high sensitivity to initial conditions, exhibited by the chaotic 

function. This normalised behaviour of the function means that 

an equivalent high detection resolution can be achieved that is 

independent of input range.  
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Chaos:  Chaotic behaviour can be observed in many non-linear 

systems that exhibit irregularity and unpred ictability and show 

high sensitivity to initial conditions, commonly known as the 

‘butterfly effect’.  Although, deterministic and commonly 

following simple algorithms, chaotic systems display complex 

behaviour, which in contrary to a linear system, the res ultant 

divergence between two close starting parameter values is 

exponential. This property is thus used to detect small changes 

in the initial input conditions taken from a sensor. The simplest 

way of investigating this phenomenon is to use a discrete ‘on e-

dimensional (1D)’ chaotic map – ‘ logistics map (LM)’.   

   

Logistics map:  The LM, is analogous to the logistics equation 

created by the mathematician Pierre François Verhulst and 

given by the difference equation  (2).  

The behaviour of one dimensional chaot ic functions has been 

widely studied and a number of implementations and 

applications have been proposed, over a wide range of different 

disciplines, such as optics, communications and electronic 

engineering. In a simple electronic implementation of the LM 

has successfully been used to design a secure communication 

system.  

The 1D tent map and dyadic functions have been used to 

measure signals in the form of an ADC, where the piecewise -

linear characteristics are doubled and folded. The binary word 

is obtained from each successive iteration (logic 1 above the 

threshold and 0 below). These ADC signal measurement 

methods would only produce high resolution digital outputs, if 

the respective scaling parameter and the threshold are ideal 

values. However, inherent practical system errors grow 

exponentially limiting the resolution . Furthermore, a scaling 
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factor above the ideal, due to noise, would cause the output to 

diverge to either supply rail - known as the ‘exiting condition’ 

or ‘extinction’.  

This presented implementation is the first instance of a chaos 

function being used for signal change detection and is 

insensitive to system noise and parameter accuracy.  

Signal change measurement technique:  Matlab simulations were used 

to determine the validity of the measurement system based on 

the 1D LM chaos function. Firstly, the input value Xn is applied 

to the LM function and the resulting output fed back (iterated) 

a number of times, with the corresponding signature (output 

value per iteration) stored. A small change i s applied to the 

input and the analysis re-run, where the resultant signature of 

the second analysis is subtracted from the first to obtain the 

difference signature. The iteration point where divergence 

occurs between the respective signatures was found to  be 

proportional to the amplitude of the change in successive input 

signal samples.  

In figure 12, the input Xn was set to 0.6 of the normalised input 

range and the map iterated 20 times (a1). The process was 

repeated for Xn = 0.6001, and iteration signature (a2) 

subtracted from (a1) giving the difference (a0). It can be 

observed that from iteration 1 to 6 there is no significant 

deviation in the two signatures a1 & a2; however divergence 

increases for subsequent iterations. By reducing the amount of 

deviation between successive input signal samples, it was noted 

that the iteration at which divergence occurs is proportional to 

the size of the sample difference. Simulations demonstrated 

that sample changes of magnitudes 1x10 -12  or less, exhibit 

signature divergence proportional to the input sample change.  

In order for this signal change, measurement technique to be 

valid, two successive samples taken at different times and at 
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different amplitudes, but with the same difference should 

diverge at the same iterat ion with the same magnitude range. 

To determine the consistency and repeatability of the 

technique, a three dimensional simulation graph was developed, 

as shown in figure 13, where the signature divergence over the 

full normalised input range, given a 1x10 -4 change, is shown. It 

can be observed that the iteration where the divergence is 

above a specified threshold is constant in the normalised input 

signal range of 0.1 to 0.9. The non-linear regions  0.1 and  

0.9, exceed the threshold at an earlier iterat ion, hence these 

input ranges were avoided in the implemented signal 

measurement system.  

 

System implementation: The LM function, given in equation 1, was 

implemented utilising readily available low cost electronic 

components, as shown by the simplified c ircuit in figure 14, 

using equation (3); the scaled LM equation for a 10 V input 

range.  

 

                      Xn+1  = rXn(10-Xn)                      equation (3) 

 

This LM circuit is incorporated into a microcontroller based 

feedback system, which utilises  a low 8-bit ADC to enable 

storage of the signatures but not used to detect the input signal 

change. Extensive analysis of the practical system demonstrates 

a strong correlation with the Matlab simulations, with the 

minimum change that can accurately be de termined in the 

practical system, after 6 iteration, being 1x10 -4 ,  as shown in 

figure 15. The computed and measured results in figure 15, 

show the number of iterations where the accumulated deviation 
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between successive signatures, due to input signal diffe rence, 

exceeds a specified threshold.  

The signal change of 100 µV that can currently be detected, is 

limited by the practical system induce noise, which is 

dominated by the multiplier circuitry.  

The theoretical Matlab analysis, shown in figure 15, 

demonstrates that by reducing induced signal noise through 

improved circuit implementation, signal change detection an 

orders of magnitude lower is possible. Further improvements in 

the multiplier design and increased signal range, should enable 

signal changes in the region of < 1x10 -5 – 20-bit resolution, to 

be achievable.  

 

Conclusions :  

A signal change measurement system based on the 1D LM 

chaos function has been successfully developed using low cost 

electronic devices. The system can accurately and consistently  

measure signal changes of 100 µV in the region of 1 V to 9 V 

of a 10 V input range, equating to a 16-bit ADC resolution. The 

fundamental advantage of this signal measurement system, over 

typical ADCs, is that the size of the signal change that can be 

measured is independent of the range, thus increasing input 

signal range increases the overall resolution.  
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Figures for the patent application: 
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Appendix G 

The full schematics of the LM and the TM are shown, starting with the LM: 
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Schematic of the TM: 
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Appendix H 

The component selection process is shown. 

Operational amplifier: 

The OP27 was selected for the low input noise characteristic compared to FET input 

op-amps, the low voltage drift and high availability; the OP27 is easily sourced from 

any component supplier and is available in most labs. The table below shows the 

comparison of key parameter against another commonly found op-amp; the TL071. 

Parameter OP27 TL071 

Input offset Voltage 10 µV 3 mV 

Input Noise at 

1kHz 

3 nV/√Hz 18 nV/√Hz 

Temperature 

Voltage Drift 

0.2 μV/°C 18 μV/°C 

   

Analogue Multiplier: 

Analogue multipliers are seldom used which limits their availability compared to 

other components such as op-amps. Besides being easy to find the AD633JN has 

similar performance compared to other analogue multipliers. 

Voltage references: 

The voltage sources used for the electronic implementations of the chaotic maps are 

the ADR130 and the AD587. The two main criteria of selection were; low noise and 

high precision. The ADR130 and AD587 have a typical output noise of only 3 μV 
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and 4 μV respectively which is low compared to other voltage reference ICs. 

Additionally, both voltage references possess an optional noise reduction mechanism 

allowing for increased noise performance by the use of an external capacitor. Low 

noise performance combined with high accuracy (±0.35% for the AD130 and 

±0.05% for the AD587) makes the two voltage sources ideal for chaos map 

implementations.  

Sample and Hold: 

The sample and hold (S/H) LF198 ICs were selected for their performance and 

availability. Some of the characteristics are;  

- Low gain error (0.0002%)  

- Low output noise  

To increase the performance of the feedback system, polypropylene capacitors were 

used to reduce the error during sampling along with reset MOSFETS to reduce 

dialectic absorption errors.  

Microcontroller: 

The microcontroller used is the PIC32MX460L. The choice was mainly guided by 

practicability as a development board with the PIC32MX460L was already available 

in the laboratory. More information about the development board can be found in 

Appendix D.  Any microcontroller with the following characteristics could be used 

instead of the PIC32MX460L to implement the proposed Measurement System 

(MS): 

- At least 4 digital outputs for the feedback and switching control  

- An internal low resolution ADC  
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- Internal RAM to store signal signatures 

Additionally the microcontroller could have a user interface and external data 

storage if required. 

 

 

     


