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ABSTRACT 

 

Limited examples of the successful ring expansion of aziridines with sulfonium ylides to generate 

azetidines are known, but typically result in functional groups on azetidine that are not broadly useful for 

downstream chemistry. Described here is an investigation into the scope of this reaction including the 

discovery that N-activated 2-methoxy ester functionalised aziridines are not compatible with this protocol. 

Advances have also been made in understanding the reactivity of azirines with rhodium carbenoids to 

generate azetines from successful ring expansion, or N-vinylimine from ring opening. 

 

An alternative route to azetidines from the 1,3-cleavage of azabicyclo[1.1.0]butanes is described, along 

with a proposed route to highly functionalised azetidines with control over the absolute configuration at 

each step. Early success reacting a range of reagents with an azabicyclo[1.1.0]butane of moderate steric 

bulk has been shown, as well as early steps towards a novel azetidine 3-sulfonamide synthesis. 

 

Difluorocyclopropanation of alkenes using fluorinated acetate salts is often a slow, inefficient and energy-

intensive process. Reported here is a modified protocol enabling the preparation of                                        

1,1-difluorocyclopropanes in less than five minutes, using microwave irradiation. The new procedure is 

considerably faster than previously reported methods, employs easily removed, low-boiling point solvents 

and avoids the use of highly toxic or ozone-depleting substances. The method has been exemplified in a 

high-yielding synthesis of a difluoro analogue of a clinically used drug substance, and has also shown 

some utility in preparing 1,1-difluorocyclopropenes and as a novel procedure for the synthesis of 

halogenated alkyl ether esters from cyclic ethers.  

 

Other investigations into the generation and reactivity of difluorocarbene reported here include successful 

proof of concept experiments showing the sensitivity of allyl functionalised difluoromethylene containing 

compounds to palladium species to generate difluorocarbene, as well as exploratory reactions to build on 

methods to generate 2,2-difluoroaziridines by addition of difluorocarbene to imines. 

 

 

 

 

 

 



3 

 

TABLE OF CONTENTS 

 

ABSTRACT .................................................................................................................................................. 2 

TABLE OF CONTENTS ............................................................................................................................... 3 

ACKNOWLEDGEMENTS ............................................................................................................................. 4 

ABBREVIATIONS ......................................................................................................................................... 5 

CHAPTER 1: IMPROVING THE MAP OF AZETIDINE CHEMICAL SPACE ............................................... 7 

1.1 Introduction ......................................................................................................................................... 7 

1.1.1 Azetidines ..................................................................................................................................... 8 

1.1.2 Azetidines from aziridines .......................................................................................................... 11 

1.1.3 Azetidines from azabicyclo[1.1.0]butanes .................................................................................. 17 

1.2 Results and discussion ..................................................................................................................... 20 

1.2.1 Aziridine ring expansion ............................................................................................................. 20 

1.2.2 Direct -arylation of azetidine-3-one .......................................................................................... 31 

1.2.3 Azabicyclo[1.1.0]butane ring-opening ........................................................................................ 33 

1.2.4 Ring expansion of azirines. ........................................................................................................ 41 

1.2.5 Transition-metal induced azide decomposition .......................................................................... 45 

1.3 Conclusions ...................................................................................................................................... 46 

CHAPTER 2: GENERATION AND REACTIONS OF DIFLUOROCARBENE ........................................... 48 

2.1 Introduction ....................................................................................................................................... 48 

2.1.1 Fluorine and its use in medicinal chemistry ............................................................................... 48 

2.1.2 Fluorinated aziridines and difluorocarbene. ............................................................................... 51 

2.2 Results and discussion ..................................................................................................................... 60 

2.2.1 Addition of difluorocarbene to imines ......................................................................................... 60 

2.2.2 Development of new difluorocarbene precursors ...................................................................... 62 

2.2.3 Microwave assisted synthesis of difluorocarbene adducts. ....................................................... 68 

2.3 Conclusions ...................................................................................................................................... 85 

CHAPTER 3: EXPERIMENTAL ................................................................................................................. 87 

CHAPTER 4: REFERENCES ................................................................................................................... 123 

 

 

 

 

 

 

 

 

 

 

Word count: 44 419 



4 

 

ACKNOWLEDGEMENTS  

 

Thanks are extended to Prof. Joe Sweeney for the opportunity to work with him on the investigations 

detailed in this thesis. His guidance, support and motivation during the time spent conducting research for 

my PhD, as well as feedback on reports, posters and presentations over the last few years have been 

invaluable. The valued discussions about projects with Dr. Duncan Gill (University of Huddersfield) and 

Dr. Mike Waring (Astra Zeneca) have also been much appreciated, as well as NMR technical support in 

particular from Mr Peter Heath (University of Reading) and Dr. Neil McLay (University of Huddersfield). 

 

Thanks are also given to the other members and good friends in the Sweeney group who have made 

working with them a pleasure, and who made life easier during the more turbulent periods of our shared 

time together at Reading and Huddersfield: you know who you are.  

 

Funding from the EPSRC in the form of an Industrial Case Studentship from Astra Zeneca, as well as 

supplementary funding from the University of Huddersfield were most gratefully accepted.  

 

Finally, I would like to thank my family for their support and encouragement throughout my studies that 

have brought me to this culmination of my life as a chemistry student thus far. 



5 

 

ABBREVIATIONS  

Abbreviation Meaning 

4 2-nAChR nicotinic acetylcholine receptor antagonist 

ABB azabicyclo[1.1.0]butane 
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s singlet 

SEGPHOS 5,5′-bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole 
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t triplet 

TCCA trichloroisocyanuric acid 

Tf trifluoromethanesulfonyl 

TFDA trimethylsilyl 2,2-difluoro-2-(fluorosulfonyl)acetate 

THF tetrahydrofuran 

TLC thin layer chromatography 

Ts 4-toluenesulfonyl 
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CHAPTER 1: IMPROVING THE MAP OF AZETIDINE CHEMICAL SPACE 

  

1.1 Introduction 

The number of products available in the modern pharmaceutical market place is continually increasing, 

and although the importance and application of biomolecules for the treatment of medical conditions is 

starting to be realised more and more,
1
 small-molecule drug products still dominate all aspects of disease 

prevention and cure. The number of products containing these small-molecule treatments is vast, and 

although the range and structural complexity of these compounds is broad, the volume of ‘chemical 

space’ mapped and exploited by them is relatively limited.  

 

Chemical space can be described as the theoretical 3-dimensional space occupied by the total atomic 

coordinate set for any given design of organic molecule. An analogy to the complexity of chemical space 

can be drawn with the locations occupied in the universe by planets, stars and galaxies.
2
 It is estimated

3
 

that the number of chemically feasible molecules (up to approximately 500 Daltons)
4
 could be in the order 

of 10
60

 – 10
100

. Currently, the synthetic toolbox only allows chemists to create molecules that fill a small 

percentage of the total available chemical space. The areas that are currently difficult or impossible to 

access are typically filled by structural motifs of increasing complexity and contain asymmetric centres.  

 

As an area of chemical space is populated more densely, it will be occupied by structurally analagous 

compounds (benzene rings and derivatives thereof, amino acids and derivatives thereof etc.). The 

arrangement of functional groups in any given isomer of a compound can be further described as the 

chemical environment of that molecule. This can describe simple variations of the chemical environment 

(ortho-, meta- or para- substituents on an aromatic ring) through to highly complex molecules with many 

asymmetric centres and diastereomers. Different molecules with comparable chemical environments will 

have different physical and reactive properties. In the examples shown, one might expect the preferred 

site of aromatic electrophilic substitution in methyl substituted phenols to occur where indicated by the 

arrows based on the combined ring activating effects of the two substituents (Figure 1). 

 

 

Figure 1: Different chemical environments around methyl-functionalised phenols. 

 

The fundamental theory underpinning drug design is that a drug molecule and target in the body interact 

in a ‘ligand-receptor’ fashion. This concept was pioneered by Clark at the start of the 20
th
 century with 

early research also demonstrating that the binding of a drug to a target receptor was an equilibrium 

process.
5
 The strongest response to a drug is achieved when the greatest number of receptor sites are 

occupied by drug molecules.
6
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When designing a new drug, the chemical environment (including conformation and functionalisation) of 

the molecule is engineered to facilitate the strongest possible interaction with the target receptor. Many 

computational methods exist to predict the strength of an interaction between a drug ‘ligand’ and 

biological ‘receptor’. This can be done using knowledge of the shape (obtained by x-ray crystal structure 

analysis of the target protein), molecular surface characteristics (calculated through computational 

simulation)
7
 or by comparison of a drug candidate to other related biologically active ligands. 

 

It is not sufficient for a drug molecule to simply match the receptor site in conformation and 

stereoelectronic shape to trigger a strong physiological response; it must also survive transit through the 

various tissues to reach its target. For an orally administered drug, the active ingredient must be 

sufficiently stable to highly acidic conditions, be of the correct lipophilicity to move across phospholipid 

bilayers and through cells, and be sufficiently metabolically resistant to survive in the body to reach the 

target receptor. 

 

As a guideline, ‘Lipinski’s rule of 5’ is followed when designing a new drug molecule. These guidelines 

state that for a molecule to be an attractive drug candidate with desirable physciochemical properties, it 

should contain no more than 5 H-bond donors, no more than 10 H-bond acceptors, have a molecular 

weight of no more than 500 Daltons and a LogP value no higher than 5.
8
  

 

A modern approach of designing drugs that are more natural product-like has the potential to create more 

bioactive compounds. Such molecules are typically complex, containing more asymmetric centres, gem-

coupled groups and a greater degree of saturation. This approach has been coined as the “escape from 

Flatland”
9
 and refers to the recognition that candidates that contain more sp

3
 centres are more likely to 

make it through clinical trials to become marketed drug products. 

 

New molecules will always be required to satisfy unmet medical needs. When the volume of chemical 

space that is unmapped is considered alongside the currently inaccessible yet potentially efficacious 

range of drug-like molecules, it is clear to see the importance of gaining access to this ‘hard to make’ 

chemical space. 

 

1.1.1 Azetidines 

Incorporation of small rings into molecules is a strategy that can be used to increase the molecular rigidity 

of a compound by ensuring any group on the cycle is held in a specific area of the chemical environment 

(Figure 2).
10

 One such ring is azetidine: a saturated four-membered heterocycle containing one nitrogen 

and three carbon atoms.
11

 It, like other small heterocycles, is a versatile building block in organic 

chemistry.  

 

Figure 2: Possible diversity in the chemical environment of azetidines. 
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The scope of azetidine containing drugs and their target biological receptors is broad (Figure 3),
12

 yet in 

many examples the chemical environment around the heterocycle typically contains minimal 

functionalisation.  

 

Figure 3: (left): N-ribosyl hydrolase inhibitor; 
12h

 (centre): nicotinic acetylcholine receptor ( -nAChR) antagonist;
12f 

(right): potassium-competitive acid blocker.
12j

 

 

A variety of procedures have been reported for the synthesis of azetidines (Figure 4). All facilitate varying 

degrees of substitution around the heterocyclic backbone, but there is no omnipotent method for the 

generation of complex azetidines.
13

 The three procedures most widely employed are the cyclisation of 

1,3-aminoalcohols or 1,3-aminohalides, the cyclisation of 1,3-dihalides or 1,3-diamines and the reduction 

of azetidin-2-ones (themselves an important motif in penicillin derived antibiotics).
14

 

 

 

Figure 4: Retrosynthetic analysis of azetidine. 

 

The first of these methods demonstrated the synthesis of azetidines via the cyclisation of                               

1,3-aminohalides when, as a minor product of the reaction between 3-bromopropylamine and base, 

azetidine was isolated (Scheme 1).
15

 Generally, this type of procedure suffers from low yields when 

substitution around the alkane backbone increases from the simplest hydrocarbon template. Most 

methods also favour secondary over primary amines to improve the rate of cyclisation.
16

 Nonetheless, 

this method is still popular and used by many investigators.
17
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Scheme 1: Cyclisation of 1,3-aminohalide under alkali conditions.
15

 

 

The cyclisation of diamines and dihalides was also discovered around the same time (Scheme 2).
18

 

Again, the main drawback of these two procedures is the low yields as the substitution within the starting 

material increases. 

 

 

Scheme 2: The cyclisation of diamines
18a

 and dihalides
18b

. 

 

The third method, the reduction of azetidin-2-ones, can theoretically be applied to any substituted 

heterocycle that does not contain other functional groups that would be sensitive to reducing conditions 

(LiAlH4, NaBH4 etc.) (Scheme 3).
19

 With azetidine-2-ones the heterocyclic nitrogen must exist in its N-H 

form if C-N bond fission to furnish amino-3-alcohols is to be avoided. 

 

 

Scheme 3: Reduction of azetidine-2-ones.
19

 

 

The first two examples mentioned above proceed via intramolecular SN2 reactions. Suitable leaving 

groups must therefore be present to make ring closure facile. The lowest Baeyer (ring/angle) and Pitzer 

(eclipsing/torsional) strain energies within a saturated cyclic system are associated with six-membered 

rings. As ring size is reduced the two forms of ring strain increase. Examination of the strain energies of 

azacycles as ring number reduces from six to three indicates that for the four-membered azetidine 

heterocycle, the ring strain is higher than would be expected (Table 1).
20

 

 

Table 1: Ring strain for carbocycles and heterocycles.
20

 

Size Ring Strain
a
 Ring Strain

a
 Ring Strain

a
 

3 cyclopropane 27.5 aziridine 26.7 cyclopropene 55.5 

4 cyclobutane 26.5 azetidine 24.7 cyclobutene 28.7 

5 cyclopentane 6.2 pyrrolidine 5.8 cyclopentene 4.4 

6 cyclohexane 0 piperidine 0 cyclohexene 0 

a: kcal mol
-1

. 

 

Compared to aziridine and pyrrolidine, the Baeyer strain is higher than expected in azetidine and not 

simply half way between that of its neighbouring homologues. This is the result of the increased Pitzer 

strain caused by the substituents around the ring. Although azetidine (and cyclobutane) typically adopts a 

slightly puckered shape to reduce the energy of the ring by a small amount, it cannot distort from a planar 

arrangement sufficiently to minimise the energy any further. Cyclobutene, by definition, has a fully planar 
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arrangement of carbon atoms due to the presence of the double bond. The comparable ring strain 

energies between the unsaturated and saturated four-membered cycles further demonstrates azetidine is 

unable to sufficiently distort from a planar arrangement to significantly minimise the inherent ring strain. 

 

Whereas aziridine has an entropic aid to ring closure as all three ring atoms lie in the plane, azetidine ring 

closure has no such aid. This presents a larger energy barrier to overcome. The increased entropic 

penalty to form the new bond ultimately alters the kinetics of the reaction by slowing the rate of ring 

closure. Due to the increased effect of Pitzer strain on four-membered saturated heterocycles, as the 

chemical environment occupied by groups in the open-chain azetidine precursor expands, it becomes 

increasingly difficult to force bulky substituents to occupy adjacent areas of chemical space to facilitate 

ring closure. Furthermore, to relieve ring strain, azetidine will undergo ring opening reactions.
21

  

 

Much research has been carried out into the three previously mentioned protocols, as well as multiple 

lesser used procedures, all of which are covered in detail in several review publications.
13, 14, 22 

Access to 

the starting materials required to form complex azetidines can also be non-trivial, complicated further 

when stereogenic centres are introduced. New and improved asymmetric syntheses of azetidines are 

therefore desirable to enhance the map of the chemical space occupied by these potent 

pharmacophores. 

 

1.1.2 Azetidines from aziridines 

In the 1970s, a method for the synthesis of azetidines from aziridines was reported by Carrié et al.
23

 This 

was the first reported example of the ring expansion of aziridines with achiral sulfonium and oxosulfonium 

ylides. In the 1980s, Nadir et al. also conducted research into the use of sulfonium and oxosulfonium 

ylides to expand the aziridine heterocycle.
24

 There are three fundamental differences in the work reported 

by the two groups: the choice of aziridines, the choice of sulfonium ylides and the proposed reaction 

mechanisms based on the experimental outcomes. 

 

Carrié et al. employed N-phenyl aziridines (1) that were further functionalised with phenyl or ester groups 

at the C2 and C3 positions. These were each combined with sulfonium (2) and oxosulfonium (3) ylides, 

usually in THF: DMSO at room temperature (Table 2).
25

 3 is more stable to spontaneous decomposition, 

but also an altogether less reactive species.
26

 Reliable ring expansion to generate azetidines (4) was 

observed only with dimethyl 1,3-diphenylaziridine 2,2-dicarboxylate (1a) (Scheme 4). 4 was usually 

obtained as a mixture of diastereoisomers (4 and 4’) with the additional carbon centre at the 3- position of 

the new heterocycle. In one isolated example ring expansion with trimethyl 1-phenylaziridine                      

2,2,3-tricarboxylate (1b) and dimethylsulfonium phenacylide (2b) was also successful. Methyl                               

1,3-diphenylaziridine 2-carboxylate (1c) was not reactive to the conditions investigated. 
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Scheme 4: The first reported aziridine ring expansion reaction.
23

 

 

It was suggested that these reactions proceed via a [3+1] cycloaddition between an intermediate 

azomethine ylide and the sulfonium ylide. When attempting to promote this equilibrium between 1c and 

the corresponding azomethine ylide in boiling benzene (this type of thermal equilibrium has been reported 

by Huber et al.),
27

 only decomposition and isomerisation products were observed. 

 

Table 2: Scope of the investigations reported by Carrié et al.
23, 25

  

 

Aziridine R R
1
 R

2
 R

3
 Ylide R

4
 R

5
 Ratio 

4:4’ 

Yield 

(NMR %) 

1a Ph Ph CO2Me CO2Me 2a H H - - 

     3a H H - 100 

     2b H C(O)Ph 79:21 100 

     3b H C(O)Ph - - 

     2 H CO2Me 95:5 100 

     2 H CO2Et 95:5 100 

     2
a
 C13H15 C13H15 - 100 

     2 Cl CO2Et 87:13 100 

     2 Br CO2Et 100:0 85 

1b Ph CO2Me CO2Me CO2Me 2b H C(O)Ph 48:52 100 

1c Ph Ph CO2Me H 2a H H - - 

a: C13H15 = fluorenylidene. 

 

Although Carrié et al. proposed the existence of an azomethine ylide intermediate in each reaction, the 

experiments synthesising 4 and 4’ were all performed at room temperature or below. Since azomethine 

ylides usually require elevated temperatures for generation, the involvement of a thermally generated 

azomethine ylide may not be correct.  

 

An alternative mechanism would see an SN2 attack by the ylide at aziridine C3 followed by a                     

1,4-elimination pathway involving an enolate intermediate (Scheme 5). With the lack of an N-activating 
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group and the presence of methyl esters at C2, the aziridine C-C bond was most facile bond to cleavage 

to give the azetidines described. This idea is discussed further below. 

 

 

Scheme 5: Proposed SN2 then 1,4-elimination mechanism in the reaction between 1a and 3a.
23

 

 

In contrast to the work of Carrié et al., Nadir et al. reacted a larger selection of aziridines with only 

dimethylsulfonium methylide (2a) or dimethyloxosulfonium methylide (3a). The aziridines they employed 

shared the common functionalities of an N-SO2Ar group and alkyl or aryl groups at the aziridine C2 and 

C3 positions. The solvents, temperatures and reaction times used by the two groups remained similar.  

 

The results obtained by Nadir et al. can be categorized by sulfonium ylide choice. The use of ylide 2a 

resulted in ring-opened 3-aminoalk-1-enes (5) (Scheme 6). It was proposed that the aziridine is first ring 

opened by the ylide in an SN2 reaction at carbon, followed by proton transfer and expulsion of 

dimethylsulfide. Ylide 3a converted aziridines to azetidines, with the new carbon centre present at the 

azetidine C4 position (Scheme 7, Table 3). The reaction is said to proceed via an SN2 mechanism at 

carbon then 1,4-elimination of dimethylsulfoxide by nitrogen. When a single isomer of aziridine was 

charged to the reaction vessel, a single isomer of azetidine was isolated. For these reasons, they also 

discredited the intermediary of an azomethine ylide (cf. Carrié et al.). 

 

Scheme 6: Olefin formation via proposed proton transfer within the sulfonium ylide ring opened intermediate.
24a 

 

 

Scheme 7: Proposed SN2 then 1,4-elimination mechanism.
24a
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Table 3: Scope of aziridine ring opening according to Nadir et al.
24a

 

 

Entry  Ar R
1
 R

2
 R

3
 R

4
 Azetidine (yield %) 

1 Ph Ph H H H 51 

2 4-MePh Ph H H H 52 

3 4-ClPh Ph H H H 72 

4 4-MePh Me H H H 50 

5 Ph 4-MePh H H H 20 

6 Ph 3-MePh H H H 29 

7 Ph 4-ClPh H H H 18 

8 Ph 3-ClPh H H H 30 

9 Ph 3-NO2Ph H H H 5 

10 Ph Bn H H H 34 

11 Ph Ph H H Me 77 

12 Ph Et H Me H 65 

 

Although the two investigators utilized similar procedures, the results from each group were quite 

different. In the results published by Carrié et al., most conversions of 1 to 4 were attained with sulfonium 

ylides 2. By contrast, Nadir et al. found only oxosulfonium ylide 3a was able to convert 1 to 4. It seems 

that it is the choice of C- or N- activation that primarily dictates the pathway of the reaction (Scheme 8). 

The concept of C- or N- activation is discussed in more detail below. 

 

 

Scheme 8: Summary representation of the Carrié et al. (left) and Nadir et al. (right) aziridine ring expansion 

investigations. 

 

Based on this research, a novel procedure for the asymmetric synthesis of azetidines from aziridines 

exploiting the in situ generation of chiral sulfonium ylides was proposed. The postulated ring expansion 

reaction demands a stoichiometric loading of a diazo functionalised precursor (6) in the presence of a 

substoichiometric loading of transition-metal catalyst and sulfide. After generating the carbenoid species 

(7) from the diazo and metal catalyst, this would react with the chiral sulfide (8) to generate the chiral 
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sulfonium ylide (9) and return the metal catalyst to the catalytic cyle. Following a successful reaction with 

the aziridine, 8 would then also be returned to the catalytic cycle. This strategy for the generation of chiral 

sulfonium ylides is a well-documented process reported by Aggarwal et al. (Scheme 9), and the linked 

cycles in the proposed mechanism are discussed below.
28

  

 

Scheme 9: The catalytic generation of sulfonium ylides and their applicability to the azetidination of aziridines. 

  

Reaction A: Certain transition-metal complexes will react with diazo compounds to generate metal-

carbene complexes.
29

 These ‘Fischer-type’ carbene complexes (between carbon and a low oxidation 

state late transition-metal centre) are considered to react as electrophiles at the carbon centre.
30

 Rhodium 

acetate dimer is a popular choice for forming such metal-carbenoid species and the driving force for the 

reaction is the generation of dinitrogen gas.
31

 

 

Reaction B: The neutral nucleophilic chiral sulfide reacts with the electrophilic carbon of the metal-

carbene complex. This reaction releases the metal complex back into solution, returning it to the catalytic 

cycle. The chiral sulfide now exists as part of a chiral sulfonium ylide; the reactive species for the 

postulated ring expansion of 1 to 4. Many chiral sulfides are known and their uses have been developed 

over the years by various groups (Figure 5).
32

 These procedures are dominated by asymmetric 

epoxidation procedures but chiral sulfides have also seen use as chiral ligands for transition-metal 

catalysed reactions.
33

 The sulfides used as the precursors to the relevant sulfonium ylides are often easily 

recovered, making them ideal candidates for catalytic processes. 

 

 

Figure 5: Examples of chiral sulfides.
32

 

 

Reaction C: In the final reaction of the proposed catalytic process, the chiral sulfonium ylide 9 reacts with 

the aziridine. A successful reaction would proceed via one of the two pathways discussed previously, 

thereby returning the chiral sulfide to the catalytic cycle following 1,4-elimination to form azetidine. One 
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important mechanistic detail to consider here will be the nature of the chiral sulfonium ylide addition to the 

aziridine. The matched or mismatched interaction between chiral ylide and chiral aziridine would be 

expected to guide the reaction along a single pathway to yield a high diasterioisomeric excess of product. 

The outcome of the reaction would imply which effects are controlling the ring opening process, as well as 

any stereoselectivity arising from substrate or reagent control of the mechanism. 

 

The precedent has already been set for the use of achiral sulfonium ylides in the synthesis of aziridines 

from imines, and azetidines from aziridines.
34

 The asymmetric synthesis of aziridines from imines using 

chiral sulfonium ylides has also been reported.
35

 There is therefore scope for finding suitable chiral 

sulfonium ylides to use in studies for the proposed asymmetric reaction to form azetidines from aziridines. 

 

In the discussed mechanisms, the 1,4-elimination step to displace sulfide would mechanistically resemble 

the established 1,4-elimination routes to azetidine. It may therefore suffer from slow rates of ring closure 

for reasons mentioned previously. The displacement of the chiral sulfide as a neutral leaving group is 

anticipated to be a strong driving force for this reaction. In addition to providing a new route to the 

desirable azetidine motif, it should also help to further understand the scope and mechanism of the 

reaction between aziridines and sulfonium ylides and improve access to the hard to make chemical 

environment around azetidine. 

 

To allow a complete understanding of the results from any successful reaction between an aziridine and 

chiral sulfonium ylide, it will be necessary to charge the reaction vessel with a single 

enantiomer/diastereoisomer of aziridine. This should allow simple conclusions to be drawn about the 

diastereoselectivity and regioselectivity of the reaction. Aziridine synthesis has received much attention in 

recent decades; several strategies for aziridine syntheses exist and have been extensively reviewed 

elsewhere.
36

 Popular racemic aziridine synthesis usually takes the form of carbene addition to imine, or 

nitrene addition to alkene. Routes to single enantiomers of aziridines include the use of amino-acid 

precursors or the stereospecific ring opening of epoxides prior by amines prior to 1,3-elimination from the 

resulting 1,2-amino alcohol (Figure 6). Judicious choice of procedure would be required when 

synthesising starting materials for this investigation; this is discussed below.  

 

 

Figure 6: Retrosynthetic analysis of asymmetric aziridines.
36
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1.1.3 Azetidines from azabicyclo[1.1.0]butanes 

An alternative route to azetidine lies in the ring opening of strained but stable azabicyclo[1.1.0]butane 

(ABB) molecules (Scheme 10).
37

 Both the synthesis of the unfunctionalised parent compound 

azabicyclo[1.1.0]butane (10a) and the subsequent 1,3-bond cleavage reactions were pioneered in the 

1960s by Funke.
37a 

This was followed by further investigations by others (vide infra) into higher yielding 

methods to produce 10a. These procedures have similarities with early and popular aziridine and 

azetidine synthesis methods. The rates and scope of ABB ring opening reactions also received further 

attention. 

 

 

Scheme 10: General reaction scheme for the 1,3-bond cleavage of 10a. 

 

In the report by Funke, a method for the synthesis of 10a in two steps from 2-amino-1,3-propanediol (11) 

but suffered from low yield (7 %) (Scheme 11).
37b 

In an improved method to generate 10a, the yield of the 

ABB from its precursor was reported to be 50 %, as determined by the product analysis of the reaction of 

10a with ethyl chloroformate.
37c

 The number of steps to 10a from the tert-butylamine starting material
38

 

(12) via N-tert-butyl-3-chloroazetidine
39

 (4b) had, however, increased to five with an overall yield of 8 % 

from 12 (Scheme 12). In this synthesis, 4b required conversion to the N-acyl azetidine with acetic 

anhydride and BF3•Et2O. This allowed the selective 1,3-elimination to occur to give 10a. Azetidine 4b is 

reported to undergo isomerisation to give aziridine products via an azabicyclo[1.1.0]butane intermediate, 

and so was not suitable for synthesising 10a. The most recent procedure
37g

 for the synthesis of 10a 

offered optimized conditions based on those reported by other investigators.
40

 This resulted in the highest 

yielding route to 10a in the fewest steps from commercially available starting materials (allylamine 13) 

(Scheme 13). Due to the similar boiling points of 10a (52 °C) and the tetrahydrofuran (THF) solvent             

(66 °C) used in the reaction, 10a synthesised using this method is obtained and used as a THF solution.  

 

 

Scheme 11: Synthesis of 10a according to Funke.
37b

 

 

 

Scheme 12: Synthesis of 10a according to Paritosh.
37c
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Scheme 13: Synthesis of 10a according to Nagao.
37g

 

 

Early experiments to probe the reactivity of 10a and its 3-methyl (10b) and 3-ethyl (10c) analogues 

focused on the ring opening reaction by 1,3-bond cleavage of the heterocycle with a limited selection of 

thiols, chlorides and amines to yield the corresponding azetidines (4) (Table 4).
37a 

Studies into the rate of 

hydrolysis of 3-phenylazabicyclo[1.1.0]butane (10d) in dilute aqueous buffers at a range of pHs                     

(6.93 -9.18) were also performed.
41

  

 

Table 4: Scope of ABB 1,3-bond cleavage according to Funke.
37a 

 

ABB R X Y Azetidine yield (%) 

10a H Ts Cl 72 

10a H H SPh 64 

10b Me Ts Cl 62 

10b Me H SPh 79 

10b Me H NC5H10 36 

10b Me MeC(O) Cl 70 

10c Et Ts Cl 85 

 

Funke proposed a mechanism involving initial formation of an intermediate quaternary nitrogen species, 

followed by nucleophilic attack at C3 to yield the corresponding azetidine (Scheme 14).
37a

 Kurz et al., 

when discussing the solvolytic cleavage of 10d and the observed reverse reaction also proposed that an 

equilibrium ammonium intermediate might be forming.
37e

 They also proposed in the same report that a 

transient species containing a C3 carbonium centre cannot be precluded. This was justified by the                

C3-phenyl aiding stabilisation of a positive charge on the benzylic carbon. A report by Touhami et al. also 

proposed the formation of an intermediate species containing a C3 carbonium centre (Scheme 15).
42

  

 

 

Scheme 14: Intermediate ammonium species proposed by Funke.
37a

 

 

 

Scheme 15: Transient carbocation formation during 1,3-bond cleavage of ABB proposed by Kurz et al. and Touhami 

et al.
37e,

 
42
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A more recent report about the reactivity of trans-2-aryl-3-chloroazetidines (4c) has also described a 

quaternary nitrogen centre within an intermediate ABB molecule (Scheme 16).
43

 In order for ring opening 

to occur, these studies would infer that the nitrogen centre must first be quaternised such that cleavage of 

the N1-C3 bond becomes facile. 

 

 

Scheme 16: Transient ammonium species according to De Kimpe et al.
43

 

 

Investigators also observed in the reaction of 2,3-diphenylazabicyclo[1.1.0]butane (10e) with Py•HF that 

the cis- product (2R,3S)-3-fluoro-2,3-diphenylazetidine (cis-4d) would form preferentially (66 % d.e). 

Furthermore, when the cis-4d was stirred with HF, the compound would slowly isomerise to trans-4d via 

a proposed benzylic cation intermediate (Scheme 17).  

 

 

Scheme 17: Isomerisation in azetidines from ABBs.
42

 

 

The routes to ABBs discussed above all exploit intramolecular cyclisation reactions involving 1,3- or             

1,4-elimination of suitable leaving groups by nitrogen. An intermolecular process that can be employed is 

the addition of sulfonium ylides to the C=N bond of 2H-azirines. It is by this route that the first ABB 

compound 2,2-dimethyl-3-phenyl-1-azabicyclo[1.1.0]butane (10f) was synthesised.
44

 Most studies into the 

reactivity of ABBs used the unfunctionalised parent compound 10a. Where functionalisation was present, 

it was minimal and usually at C3. When the scope of possible reactions between azirines and sulfonium 

ylides is considered, there appears to be an underexploited route to ABB derived compounds with 

substituents also at C2 and C4. No such protocols have been reported to date.  

 

Several routes to 2H-azirines (14) exist that would provide starting materials for the synthesis of 

substituted ABBs; several reviews describe this area of chemistry in detail (Figure 7).
45,46

 The first 

synthesis was reported by Neber and involved the treatment of -unsaturated ketoxime tosylates with 

base to form the 2H-azirine.
47

 Since its discovery, variations of the Neber reaction have been developed. 

These include the use of ketoxime mesylates
48

 and ketone trimethylhydrazone halides.
49

 Asymmetric 

examples are also known.
50

 Another attractive, albeit more hazardous, route to azirines is via the thermal 

decomposition of vinyl azides.
51

 The obvious hazards of azide toxicity and the potential for explosions, 

coupled with the high reactivity of the nitrene intermediate makes this protocol less common. 
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Figure 7: Azirine retrosynthetic analysis.
45

 

 

Two lesser reported methods also exist: the first is the [2+1] cycloaddition of nitrile and 

phosphinocarbene; only one example of this reaction is known (Scheme 18).
52

 The second is the addition 

of nitrene to alkyne, followed by tautomerisation from the 1H-azirine to the more stable 2H-azirine. In the 

few examples of this intermolecular reaction, azide is typically decomposed to give the reactive nitrene 

intermediate and so has the same inherent risks mentioned for working with vinyl azides.
53

 

 

 

Scheme 18: Addition of phosphinocarbene to nitrile.
52

 Conditions a: toluene, rt, 18 h. 

 

1.2 Results and discussion 

 

1.2.1 Aziridine ring expansion 

As mentioned above, successful aziridine ring expansion to azetidine with sulfonium ylides appears to 

rely on the functionalisation around the aziridine ring. The research conducted by Carrié et al. employed 

aziridine functionalized with an N-phenyl group, C3-phenyl group and two C2 methoxycarbonyl groups. 

Nadir et al. employed aziridines functionalized with N-arylsulfonyl groups combined with alkyl, phenyl or 

no functionality at C2 and C3. The Carrié aziridines could be said to be C-activated and the Nadir 

aziridines N-activated. To incorporate scope for downstream chemistry and further the understanding of 

this ring expansion, the inclusion of substituents that would install a pattern of functionalisation on 

azetidine that didn’t match previously reported research was important: N-activated aziridines with C2 

ester functionalities were desirable. 
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While aziridines are known electrophilic building blocks, suitable ring-activating groups are necessary to 

enable the heterocycle to be sufficiently reactive towards sulfonium ylides. Nucleophilic attack is 

facilitated by an electron withdrawing group at either carbon or nitrogen. Electron withdrawing groups 

include –SO2R, -CO2R and –P(O)R2. An N-activated aziridine (cf. Nadir) will display these functionalities 

on the nitrogen; a C-activated aziridine (cf. Carrié) will display these functionalities on the carbon. The 

unactivated aziridine positions will be functionalised with groups that do not exhibit significant electronic 

effects, such as -H, -alkyl or –aryl. 

 

The nature of the activating group will facilitate nucleophilic attack by inductive (in the case of sulfonyl or 

phosphinyl) or resonance (in the case of carbonyl) electron withdrawing effects, enabling the aziridine to 

react with suitable nucleophiles in a ring opening fashion. Delocalising electron density away from the 

nitrogen should facilitate aziridine C-N bond cleavage. Where no N-activating group is present and 

instead a C2 ester functionality is present, delocalisation of electron density away from the aziridine into 

the carbonyl bond should favour C-C bond fission (Scheme 19). 

 

 

Scheme 19: Resonance effects (left) or inductive effects (right) driving bond fission. 

 

With both an N-activating group and a C2 ester, the more labile of the C-C or C-N bonds should dictate 

whether a newly installed carbocentre exists in the azetidine C3 or C4 position. This should become clear 

through successful experimentation. In the case of a ring-opening ring-closing mechanism in which the  

C-N bond is cleaved, an electron withdrawing N-activating group could slow the rate of ring closure. 

Different N-activating groups may also tune the electronics of the aziridine to such an extent that C-N or 

C-C bond fission can be favoured in the presence of a neighbouring ester functionality (Figure 8). 

 

 

Figure 8 : The combination of C- and N- activation in the same aziridine (centre) may highlight the more labile bond 

in an activated aziridine. 

 

From methyl 2,3-dibromopropionate (15) and ammonia, racemic methyl aziridine-2-carboxylate (rac-1d) 

was synthesised to provide a suitably substituted aziridine to start investigations with.
54

 Functionalisation 
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of nitrogen with 4-toluenesulfonyl chloride was attempted (Scheme 20). This protecting group would 

ensure the aziridine was activated with a pattern of functionalisation novel to this protocol. Although 

several methods exist to synthesize methyl 1-tosylaziridine-2-carboxylate (rac-1e) in a single step, this 

route had the advantage of providing access to rac-1e via an isolated unfunctionalised N-H aziridine. This 

would allow a range of N-activating groups to be appended as investigations progressed. 

 

 

Scheme 20:. Conditions
54

 a: NH3, MeCN, -20 °C. b: TsCl, NEt3, DCM, rt, 16 h. 

 

The aziridination of 15 with ammonia displayed a lack of robustness with a broad range of crude yields 

recorded, from 0 to 81 %. This reaction was also unselective: multiple additional products were detected 

by TLC analysis of the crude product. IR analysis suggested there was potentially a mixture of rac-1d and 

an amide derivative, with two carbonyl stretches observed in the IR spectrum at 1729 and 1669 cm
-1

. 

Indeed, the ammonolysis of esters to yield such amide products has been reported.
55

 Scale or equipment 

choice did not appear to offer any improvement in the performance of the reaction. The expected volatility 

and chemical instability of isolated rac-1d also proved to be responsible for the wide range of yields.  

 

The reaction to install the N-tosyl group on rac-1d was unsuccessful; rac-1e could not be detected in the 

complex crude reaction mixture by 
1
H NMR even after total consumption of the starting material. The      

two-step method was abandoned in favour of the pioneering aziridination procedure of Evans et al.
56

 

Methyl acrylate (16) and (N-(4-tolylsulfonyl)imino)phenyliodinane
57

 (17) were combined in a copper 

catalysed nitrene olefin insertion reaction (Scheme 21).
 
The mechanism of this reaction has been 

discussed in the literature and it is believed that these copper catalysed aziridinations using iodinane 

reagents proceed via a copper-nitrene complex rather than an ylide type mechanism.
58

 Although this 

method did not provide access to an unfunctionalised N-H aziridine, it did provide a single operationally 

straightforward step to the target aziridine rac-1e. 

 

 

Scheme 21: Synthesis of rac-1e.
56

 Optimised conditions a: 10 mol. % Cu(OTf)2, MeCN, 25 °C. 

 

The stable hypervalent iodine compound 17 serving as the nitrene source was easily synthesised on 

multi-gram scale from equimolar quantities of 4-toluenesulfonamide (18) and diacetoxyiodobenzene 

(DAIB, 19) under basic conditions (Scheme 22).
59

 The catalyst selected for the reaction was copper
(II)
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triflate, although
 
catalysts based on other transition-metals (iron, rhodium, cobalt and manganese) have 

also been reported to work with varying degrees of success.
60

 Generally, copper
(II)

 catalysts have the 

advantage of being cheap, commercially available and air stable. Cu(OTf)2 provided one of the best 

reported yields of rac-1e in this procedure as well as being easy to handle when the reaction is performed 

in acetonitrile.  

 

 

Scheme 22: Synthesis of a hypervalent iodinane reagent.
59

 Conditions a: KOH, MeOH, rt, 3 h. 

 

During method development, Evans et al. described the observation that 17 was not soluble in the 

reaction medium. As the reaction proceeded, the solid iodinane was slowly taken into solution. The 

reaction was therefore easy to follow; the total disappearance of 17 as it was drawn into solution was 

indicative of a suitable time to halt the experiment. The duration of the experiment could be reduced by 

grinding the iodinane to a powder before charging to the flask.  

 

The isolated yield of rac-1e was poor at only 25 % even when adhering to anhydrous reaction conditions. 

After scrupulous drying of solvent and glassware, use of fresh samples of all reagents and careful 

thermostatting of the reaction, poor catalyst quality was suspected to be the cause of the low yield in early 

reactions. Cu(OTf)2, while being air stable, is also hygroscopic. Any decomposition of the catalyst over 

time through reaction with atmospheric moisture will have had the effect of reducing the effective catalyst 

loading in the reaction as well as introducing a source of H2O to the system. Use of different batches of 

catalyst at different reactions scales did not increase this yield however.  

 

Throughout their report, Evans et al. discussed using 5 – 10 mol. % of catalyst, however in the reported 

methods only 5 mol. % catalyst loading was used. Modification of the procedure to increase the catalyst 

loading to 10 mol. % caused an immediate increace in the yield of rac-1e to 49 %. Useful quantities of a 

suitable aziridine to expose to sulfonium ylide ring expansion conditions were now available.  

 

Taking conditions from the work of Carrié et al., rac-1e was combined with sulfonium ylide 2a. The ylide 

employed in these studies is not stable for extended periods of time, with an estimated lifetime in solution 

of a few minutes once warmed above 0 °C.
26

 Ylide 2a was generated in situ by deprotonation of 

trimethylsulfonium iodide (20) with n-butyllithium
61

 followed by its immediate addition to a solution of     

rac-1e (Scheme 23). Analysis of all mother liquors and separated solids did not show the presence of any 

new material having been formed in the reaction. The target azetidine methyl 1-tosylazetidine-2-

carboxylate (rac-4e) could not be detected by 
1
H NMR and only the aziridine starting material was 

recovered.  
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Scheme 23: Reaction based on the conditions of Carrié et al.
23

 Conditions a: THF:DMSO, 0 °C – rt, 8 h. 

 

The reason for the lack of reaction was not immediately clear. As only rac-1e was recovered, it was 

suspected that the relatively high reaction temperature range (0 °C – rt) and small excess of 20 (and 

therefore ylide 2a) may have allowed the reactive species to be consumed before it had to time react with 

rac-1e. This observation was in contrast to the comments by Carrié et al. that aziridine 1a was not stable 

in the presence of ylide 2a. To validate the procedure being employed, replication of the method reported 

by Carrié et al. was attempted.
23

 

 

Carrié et al. reported the synthesis of 1a from dimethyl 2-benzylidenemalonate (21), via thermolysis of the 

corresponding triazoline compound (22) (Scheme 24). Although this process was reported to take longer 

than one month to yield the aziridine, with the longest step being the Click reaction between 21 and 

azidobenzene, no alternative methods to synthesise 1a have been published. Two alternative protocols to 

synthesise 1a were also selected for evaluation, based on the addition of hydroxylamine derivatives to 21, 

and the aza-Darzens reaction between dimethyl 2-bromomalonate and N-benzylideneaniline. These three 

approaches are discussed in detail below. 

 

 

Scheme 24: The procedure reported by Carrié et al. towards the synthesis of 1a. 

 

The Knoevenagel condensation between benzaldehyde and dimethylmalonate provided 21 in acceptable 

yield (Scheme 25).
62

 21 was then taken neat with an equimolar quantity of azidobenzene. The reported 

procedure stirred the two together for one month, followed by heating at 160 °C for 15 minutes to 

decompose the triazoline. This procedure was not successful. Weekly TLC analysis did not show any 
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reaction between 21 and azidobenzene, and 1a was not detected in the reaction mixture following final 

heating and thermolysis. Two alternative routes to 1a were now investigated. 

 

 

Scheme 25: Knoevenagel condensation between benzaldehyde and dimethylmalonate.
62  

Conditions a: 10 mol. % piperidine, benzene, reflux (Dean Stark), 18 h. 

 

It was postulated that the unreported reaction of 21 with arylsulfonyl hydroxylamines (23) could allow 

access to 1a via a conjugate addition process (Scheme 26). Examples of hydroxylamine addition to     

α,β-unsaturated carbonyls in an aza-Michael reaction are well-known.
63

                                                           

O-(4-Nitrophenylsulfonyl)hydroxylamine (23a) belongs to a group of O-sulfonyl hydroxylamines, including 

O-(4-tosylsulfonyl)hydroxylamine (23b) and O-(mesitylenesulfonyl)hydroxylamine (23c). The                          

O-4-nitrophenylsulfonyl leaving group is the most reactive in the series on account of the stabilizing 

electron withdrawing nature of the p-NO2 functionality. The sulfonyl groups in each were expected to be 

increasingly better leaving groups in the order Mes<Ts<Ns. Hydroxylamines 23a and 23c are reported to 

be stable, whereas 23b is reported to spontaneously decompose after only a few minutes when      

dried.
64, 65

  

 

 

Scheme 26: Postulated aziridination of 21 with hydroxylamines. 

 

To obtain 1a in a single step using this protocol an N-phenyl hydroxylamine reagent would be required. It 

was expected, however, that N-phenyl-O-(4-nitrophenylsulfonyl)hydroxylamine may not be sufficiently 

reactive towards 21. Conjugation of the nitrogen lone pair into the phenyl ring and the increased steric 

bulk around the nitrogen centre could reduce the nucleophilicity of the hydroxylamine. The procedure 

would therefore be attempted with an N-unfunctionalised hydroxylamine first, with N-functionalisation in a 

subsequent step.  

 

Hydroxylamines 23a-c are not commercially available and few procedures exist for their synthesis. The 

reaction between hydroxylamine hydrochloride and 4-nitrobenzenesulfonyl chloride to give 23a was not 

successful in our hands, returning only the unreacted starting materials (Scheme 27).
65
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Scheme 27: Attempted synthesis of 22a according to Fioravanti et al.
65

  

Conditions a: 10 M NaHCO3, THF, -10 °C,2 h. 

 

A second procedure describing the Boc-deprotection of O-acylhydroxylamine N-carbamates to access        

O-acylhydroxylamines was attempted:
64

 In the reported two step method from commercially available 

materials, N-tert-butoxycarbonyl hydroxylamine was combined with 4-toluenesulfonyl chloride
66

 or 

mesitylenesulfonyl chloride
64

 to give the N-Boc O-acylhydroxylamines (Ts- 24a, Ms- 24b); the carbamate 

group was then removed with strong acid. The procedure was not able to provide us with 24a or 24b as 

the material could not be successfully isolated by recrystallisation from the crude products. Subsequent 

deprotection to expose the hydroxylamine was therefore not possible (Scheme 28). 

 

 

Scheme 28: Attempted synthesis of 23b and 23c, via carbamate 24a and 24b, according to Carpino.
64, 66

  

Conditions a: NEt3, DMF, 0°C, 30 min; b: 48 % HF, 0 °C, 8 min. 

 

The final procedure referred to exploited the rearrangement of N,O-bis(trimethylsilyl)hydroxylamine (25)  

followed by reaction with 4-toluenesulfonyl chloride and finally desilylation to yield 23b.
67

 Hydroxylamine 

25 first had to be synthesised by addition of trimethylsilyl chloride to hydroxylamine. On exposure to 

nBuLi, 25 should rearrange to give the O-lithiated intermediate 26 which can react with 4-toluenesulfonyl 

chloride to give trimethylsilyl protected hydroxylamine 27. Cleavage of the silyl groups with chloride would 

finally yield 23b (Scheme 29). Although the reaction proceeded in agreement with literature observations, 

it was not possible to isolate 25 by distillation; instead only complex mixtures of unidentified compounds 

were observed. 

 

Scheme 29: Attempted synthesis of 23b, via trimethylsilylhydroxylamine 27, according to King and Walton.
67 

Conditions a: NEt3, ClSiMe3, THF:petroleum ether 40 – 60 fraction, reflux, 2 h; b: nBuLi, Et2O, rt, 30 min; c: TsCl,             

-50 °C – rt, 2 h; d: 2M HCl, MeOH, 0 °C, 5 min. 
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With 23a-c unavailable for the investigation, the commercially available                                                             

O-diphenylphosphinylhydroxylamine (23d) was selected. A procedure based on the reported conditions 

for the successful reaction of 23d with diethyl-2-cyanofumerate to give the corresponding                                

N-methoxycarbonyl aziridine was not successful: only starting materials 21 and 23d were recovered 

(Scheme 30).
68

 

 

 

Scheme 30: Attempted aziridination of 21 with 23d. Conditions a (Fioravanti et al.): 2 mol. eq. CaO, DCM, rt, 2 h. 

 b (this study): 2 mol. eq. NEt3, DCM, rt, 3 h. 

 

The second alternative approach to synthesize 1a was an aza-Darzens reaction. An analogous procedure 

to the Darzens reaction, the aza-Darzens reaction exploits nucleophilic attack upon an imine by an anion 

bearing a suitable -leaving group,
69 

of which the procedure of Davis et al. is representative (Scheme 

31).
70

 Aziridine 1a could potentially be accessed in a single step from N-benzylideneaniline (28) and 

dimethyl 2-bromomalonate (29) (Scheme 32). 

 

 

Scheme 31: The aza-Darzens reaction towards aziridine synthesis according to Davis et al.
70

  

Conditions a: LiHMDS, THF, rt, 2.5 h. 

 

Scheme 32: Proposed aza-Darzens aziridine synthesis. 
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In contrast to the work of Davis et al. this investigation would attempt to synthesise 1a in an aza-Darzens 

reaction using N-phenylimine rather than N-sulfinimine. The reaction was anticipated to proceed in a 

similar fashion to the Davis procedure none the less. Following deprotonation of 29, the enolate would 

react with 28 at the N=C carbon, followed by 1,3-elimination to displace bromide. 

 

In a first-pass reaction, 28, 29 and NEt3 were taken in a 1:2:2 stoichiometry. No reaction was observed by 

TLC at -78 °C, and at room temperature a colourless precipitate was seen to rapidly form. The crude 

material contained unreacted 28 and the HBr elimination product from the coupling of two equivalents of 

29 (Scheme 33). Although this product was not isolated, tetramethyl ethene-1,1,2,2-tetracarboxylate (30) 

was tentatively identified by the 12 H singlet in the 
1
H NMR  ( = 3.85 ppm).

71
 One proposed mechanism 

to explain this side reaction is the reaction of the enolate form of 29 with an un-enolised second 

equivalent of the material. It is not obvious that NEt3 would fully deprotonate 29 as proposed in Scheme 

33 as the two are expected to have similar pKa values.
87

 It is also possible that a bromonium derived 

intermediate could be involved in this side reaction. 

 

 

Scheme 33: The base induced coupling of dimethyl 2-bromomalonate. 

 

The sterically hindered non-nucleophilic base 1,2-diazabicyclo[5.4.0]undec-7-ene (DBU) was substituted 

for NEt3. At -78 °C precipitate formation was instantaneous and the crude product was seen to contain 

only unreacted 28 and 30. NaOMe was substituted for DBU in a third set of reactions. No reaction was 

observed by TLC at -78 °C; at room temperature the crude product again only contained unreacted 28 

and 30. 

 

The final modifications of this aza-Darzens reaction were performed with an equimolar stoichiometry of 

28, 29 and NaOMe charged to a flask at -78 °C: no reaction was observed by TLC and no precipitate 

formed. At room temperature no reaction was observed. After refluxing in THF for 16 hours only starting 

material 28 and side product 30 were observed. 

 

Tentative conclusions can be drawn to explain the lack of reactivity between the N-phenylimine and 29 

and the successful reaction reported between N-sulfinimine and methyl 2-bromopropionate. Of the two 

reactive enolate species, the more stabilised malonate could be expected to be less reactive than the less 

stabilised propionate enolate. The electronic nature of the imine N-substituent would also be expected to 

have an effect on the electrophilicity of the C=N carbon. Whether resonance of the nitrogen lone pair into 

the N-phenyl aromatic ring or the inductive effects of the N-sulfoxide group has a stronger electron 

withdrawing effect on the C=N bond would have to be determined through experimentation. 



29 

 

Under all conditions investigated, generation of 30 was favoured exclusively over reaction at the imine. 

The failure of the aza-Darzens reaction between 27 and 28 may be indicative of the reduced 

nucleophilicity of the enolate rather than poor imine electrophilicity. Without experimental data from all the 

four possible experiments between methyl 2-bromopropionate or 29 and the N-sulfinimine or                            

N-phenylimine, no single conclusion can be made about the outcome of this reaction, only the logical 

reasoning given above. 

 

It had not been possible to replicate the procedure reported by Carrié et al. as it had not been possible to 

synthesise aziridine 1a by the originally reported procedure, or alternative proposed routes. Moving 

forward, the application of the more forcing conditions reported by Nadir et al. to a broader range of                         

N,C-activated aziridines was investigated. Aziridine 1e was now synthesised in a stereocontrolled manner 

from an amino acid precursor. The route to (S)-1e proceeds via the isolated intermediate N-H aziridine 

(S)-1d, and therefore allowed functionalisation of the aziridine with other N-activating groups as required. 

 
There are many routes that can be followed to access (S)-1d from (S)-serine (31).

72
 (S)-Serine was 

chosen as a cheap enantiopure starting material with the necessary methyl alcohol side chain. The 

methyl ester functionality was first installed to give (S)-methyl 2-amino-3-hydroxypropanoate 

hydrochloride (32).
73

 The nitrogen was then protected with a trityl group giving (S)-methyl 3-hydroxy-2-

(tritylamino)propionate (33). In a two-step one-pot reaction, the alcohol was activated with 

methanesulfonyl chloride then displaced through intramolecular SN2 reaction to yield (S)-methyl                        

1-tritylaziridine-2-carboxylate (34). The final step deprotected the nitrogen to produce (S)-1d in 

acceptable yields over 5 steps (Scheme 34). 

 

 

Scheme 34: Synthesis of aziridine (S)-1d from (S)-serine. Conditions a: 2.7 mol. eq. AcCl, MeOH, reflux 3.5 h. 

b: 1 mol. eq. Ph3CCl,  2 mol. eq. NEt3, DCM, 0 °C, 12 h. c: 1.01 mol. eq. CH3SO2Cl, 2.2 mol .eq. NEt3, THF, reflux, 

46 h. d: MeOH, CF3CO2H, CHCl3, 5 °C, 2 h. 

 

Two methods were assessed for attachment of the trityl group to nitrogen. The first procedure was 

performed at room temperature for 1 hour with the liquid crude product being purified by column 

chromatography, providing 33 in 70 % yield.
74

 The alternative procedure was performed at 0 °C overnight 

with the solid crude product purified by recrystallisation, providing 33 in 60 % yield.
72

  By virtue of ease of 

purification the latter procedure was selected. 

 

Conditions for the detritylation of 34 required extensive optimisation, with the final method based on those 

reported by many previous investigators.
72,75,76,77 

The reaction was successful and consistently generated 
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(S)-1d in yields greater than 90 %. The route to (S)-1d provided a final yield of 35 % over 4 steps from      

(S)-serine. The volatile nature of (S)-1d was again apparent, but losses were minimised by removing 

residual solvent from the product at 0 °C. 

 

Aziridine (S)-1d was functionalized with a selection of N-functional groups: N-Ts ((S)-1e),
54

 N-Boc ((S)-1-

tert-butoxycarbonyl 2-methoxycarbonyl aziridine, (S)-1f),
78

 N-Cbz ((S)-1-benzyloxycarbonyl-2-

methoxycarbonyl aziridine, (S)-1g)
76

 and N-Dpp ((S)-methyl 1-(diphenylphosphoryl)aziridine-2-

carboxylate, (S)-1h)
79

 aziridines were all obtained (Scheme 35). As expected, the yields of aziridines   

(S)-1e – h were sensitive to the age of the batch of (S)-1d. Reducing the rate of decomposition of (S)-1d 

was not possible even when stored under nitrogen in the freezer; after 17 days (S)-1d was no longer 

detectable by 
1
H NMR in the bulk material. (S)-1d was therefore generated from 34 as required and used 

immediately. This strategy allowed the four aziridines derived from (S)-1d to be obtained in useful 

amounts. Furthermore, the yield of (S)-1e was increased to 68 % (literature cf. 22 %) by allowing the 

reaction to proceed for longer.  

 

 

Scheme 35: Functionalisation of (S)-1e. Conditions a:
54

 2.5 mol .eq. NEt3, 1 mol. eq. TsCl, CHCl3, -10 °C, 16 h 

b:
78

 5 mol. eq. NEt3, 1.1 mol. eq. Boc2O, MeCN, 0 °C, 6 h c:
76

 2.5 mol. eq. NEt3, 1.25 mol. eq. CbzCl, DCM, overnight 

d:
79

 2 mol. eq. NEt3, 1.1 mol. eq. DppCl, DCM, 0 °C, overnight. 

 

Aziridines (S)-1e-h were combined with sulfonium ylide 2a using the conditions of Nadir et al. (Scheme 

36).
24 

The corresponding azetidines or unreacted starting materials were not detected in the crude 

products. Only crude reaction mixtures that were intractable by column chromatography resulted, giving 

rise to complex 
1
H NMR spectra. Aziridines (S)-1e-h were also combined with oxosulfonium ylide 3a 

(Scheme 37). The same outcome was observed for these reactions. The method of Nadir et al. clearly 

provided sufficiently reactive conditions compared to those of Carrié et al., but the pathway taken in each 

reaction was not immediately obvious. The reactions between (S)-1e and (S)-1f and ylide 3a were 

repeated in deuterated solvent with monitoring by 
1
H NMR at regular intervals via extraction and dilution 

of an aliquot of reaction mixture.   

 

 

Scheme 36: Reaction of aziridine (S)-1e-h with sulfonium ylide 2a.
24 Conditions a: THF:DMSO, 0 °C – rt, 8 h. 
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Scheme 37: Reaction of aziridine (S)-1e-h with oxosulfonium ylide 3a.
24

 Conditions a: THF:DMSO, 0 °C – rt, 20 h. 

 

Monitoring showed an apparent reduction in the 
1
H NMR peak of the ester -CH3 after less than 30 

minutes, followed by the decomposition of the starting material. With this tentative indication of 

preferential reaction at the ester functionality, (S)-1,2-di-tert-butoxycarbonyl aziridine ((S)-1i) was 

prepared from (S)-1f (Scheme 38).
78 

The increased steric bulk of the tert-butoxy ester did not prevent the 

same indiscriminate decomposition of the azetidine by the oxosulfonium ylide. It was clear that                         

N-activated 2-alkoxycarbonyl aziridines were not compatible with the sulfonium ylide mediated ring 

expansion to azetidines and this aspect of the investigation was halted. 

 

 

Scheme 38: Trans-esterification of aziridine (S)-1f.
78

 Conditions a: 1.5 mol. eq. LiO
t
Bu, THF, -20 °C, 2 h. 

 

1.2.2 Direct -arylation of azetidine-3-one 

As an alternative route to functionalised azetidines, the direct arylation of the heterocycle was attempted.  

Many procedures have been reported for the -arylation of carbonyl compounds; attempts to apply a 

selection of these to the commercially available compound N-tert-butoxycarbonyl 3-oxoazetidine (35) are 

described below.  

 

Experiments to couple 35 with bromobenzene or phenyl trifluoromethanesulfonate in the presence of 

tris(dibenzylideneacetone)dipalladium
(0)

 (Pd(dba)2) and (R)-(+)-5,5′-bis(diphenylphosphino)-4,4′-bi-1,3-

benzodioxole ((R)-SEGPHOS) to furnish tert-butyl 3-oxo-2-phenylazetidine-1-carboxylate (4f) based on 

the work of Hartwig et al. were unsuccessful (Scheme 39).
80

 
1
H NMR analysis of the crude product and of 

the fraction that could be isolated by column chromatography showed the complete consumption of 35, 

the persistence of the tert-butyl group and new aromatic signals. The lack of azetidinyl methylene proton 

signals led us to believe that the heterocycle had been opened in the course of the reaction. The crude 

reaction mixture was not able to be purified sufficiently to confirm this observation however. 
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Scheme 39: -arylation of 35 (bottom) based on conditions of Hartwig et al. (top).
80 

Conditions a: 10 mol. % 

Pd(dba)2, 12 mol. % (R)-SEGPHOS, 2 mol. eq. NaO
t
Bu, toluene, 80 °C. b: 10 mol. % Pd(dba)2,  

12 mol. % (R)-SEGPHOS, 2 mol. eq. NaO
t
Bu, toluene, 80 °C, 48 h. 

 

The same outcome was observed when (R)-SEGPHOS was omitted from the reaction mixture and when 

reaction time and temperature were altered. The attempted synthesis of 4f following the alternative 

procedure of Muratake and Nakai was also not successful; a similar outcome was observed again by 
1
H 

NMR (Scheme 40).
81

 

 

 

Scheme 40: -arylation of 35 (bottom) based on conditions of Muratake and Nakai (top).
81

 Conditions a: 10 mol. % 

Pd(PPh3)2Cl2, 3 mol. eq. Cs2CO3, THF, 100 °C, 3 h. b: 1 mol. eq. BrPh, 

10 mol. % Pd(PPh3)Cl2, 3 mol. eq. Cs2CO3, THF, 66 °C, 16 h. 

 

With heterocycle cleavage suspected during the metal catalysed reactions, a transition-metal free 

procedure was sought. The use of diphenyliodonium chloride as the arylating agent in the presence of a 

strong base was assessed (Scheme 41).
82

 The pKa of cyclobutanone has been estimated to be 20.
83

 The 

pKa of 35 was anticipated to be similar, making its deprotonation by NaO
t
Bu in this procedure logical. 
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Using metal-catalyst free conditions to synthesise 4f, 
1
H NMR analysis of the reaction showed once again 

that the heterocycle appeared to have been opened. Reducing the reaction time or substitution of 

diphenyliodonium triflate for diphenyliodonium chloride did not change outcome of the reaction. 

 

 

Scheme 41: -arylation of 35 (bottom) based on conditions of Yudis et al. (top).
82

 Conditions a: 

1 mol. eq. NaO
t
Bu, 

t
BuOH, reflux, 4 h. b: 1 mol. eq. Ph2ICl, 1 mol. eq. NaO

t
Bu, 

t
BuOH, reflux, 3 h. 

 

1.2.3 Azabicyclo[1.1.0]butane ring-opening 

The second route to highly functionalised azetidines investigated was via 1,3-bond cleavage of 

azabicyclo[1.1.0]butanes. As discussed above, research in this area has already been carried out using 

the unfunctionalised parent compound 10a. There are few accounts of the reaction using more 

substituted analogues, even though routes to more complex ABBs are reported.
44

 Ring opening of 10a 

would not give us access to highly functionalised azetidines. A synthetic route with the potential to 

produce highly functionalised azetidines, with asymmetric centres stereoselectively installed at C2, C3 

and C4 was envisaged.  

 

A new synthetic route was proposed (Scheme 42): from ketone starting materials, an asymmetric Neber 

reaction would install chirality at the product azirine C2; reaction of a chiral sulfonium ylide with an 

enantiomerically pure azirine should stereoselectively install the second asymmetric centre at the product 

ABB C3 and C4, influenced by matched or mismatched reagent control effects. The ABB 1,3-bond 

cleavage is expected to proceed via an SN2 mechanism. The steric bulk of the complex ABB should 

provide a sufficiently high energy barrier to rotameric inversion between conformations, therefore the 

conformation that minimises 1,3-diaxial interactions is expected to dominate. In the final step, SN2 bond 

cleavage will give a single stereoisomer at the product azetidine C3 (Scheme 43). The stepwise 

introduction of each new asymmetric centre to a pre-formed small ring should overcome the energy 

barrier associated with ring closing a complex hindered 1,3-aminoalcohol (or analogous) based 

intermediate. Choice of ABB C3 group will also be important if a C3 carbocationic centre is to be avoided. 

If this happens, an SN1 type bond cleavage could occur, giving rise to two azetidine regioisomers that are 

epimeric at C3. 
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Scheme 42: Proposed route to highly functionalised azetidines. 

 

 

Scheme 43: Rationalisation for a stereoselective ABB ring opening reaction. 

 

Extensive studies have already been carried out into the ring opening of 10a and related analogues with 

simple substitution at C3 (10b-d) (page 18 – 19). To begin assessing the feasibility of this route as well as 

supplement existing data and methods for ABB ring opening, the hydrazone route to the substituted ABB 

10f, via its azirine intermediate was followed. From isobutyrophenone, 1,1,1-trimethyl-2-(2-methyl-1-

phenylpropylidene)hydrazin-1-ium iodide (36a) was synthesised in gram quantities over two steps. Iodide 

36a was then cleanly converted into 2,2-dimethyl-3-phenyl-2H-azirine (14a) with sodium tert-butoxide.
84

 

Following the pioneering work of Hortmann and Robertson, sulfonium ylide 2a was combined with 14a 

providing 10f in good yield (Scheme 44).
44 

Evidence from nOe experiments also showed that the 

substitution around the ABB core of 10f was sufficient to prevent rotameric inversion about the 1,3-bond 

on the NMR timescale, causing the methylene and gem-dimethyl groups to occupy pseudo-axial and 

equatorial positions. 

 

 

Scheme 44: The synthesis of ABB 10f from isobutyrophenone.
84,

 
44

 Conditions a: 2 mol. eq. (Me2N)NH2, reflux, 72 h. 

b: 3.5 mol. eq. ICH3, EtOH, 45 °C, 5.5 h. c: 1.5 mol. eq. NaO
t
Bu, 

t
BuOH, 40 °C, 5 h.  

d: 5 mol. eq. ylide 2a, THF, -10 °C, 1 h. 
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Access to 10d, the less functionalised analogue of 10f was also desirable. By performing parallel 

reactions, it should have been straightforward to assess if the modest increase in steric bulk from the 

gem-dimethyl group in 10f had any effect on the reactivity of this molecule. Acetophenone can be 

envisaged to be converted to azirine 14b, which can be taken on to generate 10d. Synthesis of 10d via 

acetophenone oxime 37
85

 or 1,1,1-trimethyl-2-(1-phenylethylidene)hydrazin-1-ium iodide 36b
86

 were both 

unsuccessful (Scheme 45).
 
 

 

 

Scheme 45: The attempted synthesis of ABB 10d from acetophenone via oxime
85

 and hydrazinium iodide
86

 routes. 

Conditions a: 1.2 mol. eq. (Me2N)NH2, reflux, 24 h. b: 3.5 mol. eq. ICH3, EtOH, 43 °C, 4 h. c: 1.5 mol. eq. NaOMe, 

MeOH, 40 °C, 5 h. d: 1.5 mol. eq. HONH2·HCl, KOH, MeCN:H2O, rt, 18 h.  

e: 1.3 mol. eq. TsCl, 1.3 mol. eq. py, DCM, rt, 3 h. 

 

The tosylated oxime could not be isolated from the crude reaction mixture. Attempts at displacing 

trimethylamine from 36b all resulted in intractable mixtures of complex unidentified products. Although 

10d was unavailable at this time, not being able to perform parallel experiments with the two ABBs was 

not critical to or prohibitive to the progression of investigations.  

 

With a suitably populated chemical environment around the ABB core of 10f, the reactivity of this 

reasonably sterically crowded molecule with a range of reagents was assessed. The reactions performed 

were analogous to those reported by Funke
37a

: Azabicyclo[1.1.0]butane 10f underwent 1,3-bond cleavage 

to give isolated azetidines.The yields of azetidines were universally lower than those generally observed 

when 10a underwent similar 1,3-bond cleavage reactions. 

 

The reaction with 4-toluenesulfonyl chloride (Table 5, entry 1) gave us a direct comparison of the relative 

reactivities of 10a and 10f. The lower yield of 4g (40 %) when compared to the azetidine generated in the  

reaction between TsCl and 10a (72 %) was rationalised by the increased steric bulk around the ABB, 

specifically the C3 aromatic ring, hindering nucleophilic attack. As optimisation of this reaction was not a 

priority at the time, it was expected that the yield could be improved as the investigation progressed. The 

use of thiobenzoic acid (Table 5, entry 2) allowed us to assess the reactivity of an organic acid with 10f, 

as well as provide an azetidine with an important functional group for use in later studies (discussed 

below). 
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Table 5: 1,3-bond cleavage of 10f. 

 

Entry E Nu Solvent Azetidine Yield (%) 

1 Ts Cl Acetone 4g 40 

2 H SC(O)Ph THF 4h 45 

3 H Imidazole Acetone 4i 3 

4 H pyrazole Acetone - 0 

5 H Cl Acetone 4j 10 

  

The reactions with imidazole and pyrazole (Table 5, entry 3 and 4) were intended to probe the reactivity 

of 10f with an aromatic amine. The low yields observed in these two reactions were suspected to be 

symptomatic of the weakly basic nitrogen of the ABB (pKa ≈8) being incompatible with the only 

moderately acidic N-H environments of the heterocyclic bases (pKa ≈14).
87

 Approach of the large 

electron-rich aromatic heterocycle to the benzylic ABB carbon may also have been hindered.  

 

The ring opening of 10f with HCl (Table 5, entry 5) was observed as an unexpected side product during a 

three component experiment involving the ABB, imidazole and 4-toluenesulfonyl chloride (Scheme 46). 

The reaction to synthesise 4g was experimentally observed to be rapid, with an isolated yield of 26 % 

obtained in one reaction where workup was performed immediately after addition of 4-toluenesulfonyl 

chloride to 10f was complete. The reaction between 10f and imidazole is comparatively slow. The 

purpose of this experiment was to discover if it was possible to have one reagent activate the ABB and 

another effect the 1,3-bond cleavage (thus generating 1-(2,2-dimethyl-3-phenyl-1-tosylazetidin-3-yl)-1H-

imidazole 4k), or if a mixture of 4g and 4i would result from two competing reaction processes. The 

reaction between imidazole and 4-tolunenesulfonyl chloride under Schotten-Baumann conditions is also 

known to form the commercially available N-4-toluenesulfonylimidazole.
88, 89

  

 

 

Scheme 46: Competition reaction between 10f, imidazole and 4-toluenesulfonyl chloride. 

 

In this experiment, generation of N-4-toluenesulfonylimidazole was the favoured reaction: 10f reacted as 

a base with the HCl generated in situ to give 3-chloro-2,2-dimethyl-3-phenylazetidine (4j). The order of 

charging reagents to the reaction vessel (10f, imidazole and 4-toluenesulfonyl chloride in 1:1:1 

stoichiometry) as well as reaction times and temperatures were all altered, but the same outcome was 
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observed in each experiment; each time a colourless precipitate (N-4-toluenesulfonylimidazole)
90

 formed 

upon mixing of imidazole and 4-toluenesulfonyl chloride, with 4j identified in the crude reaction products. 

 

Confident that 10f would react in the expected manner, it was also of interest to expand on the types of 

reactions that can be performed to ring open ABB, and to synthesise azetidines with interesting functional 

groups that would be useful to downstream reactions. There are currently no reports of carbon 

nucleophiles being used to effect the ring opening of ABBs. As well as using 10f, it was desirable to 

perform any experiments with carbon nucleophiles with the unfunctionalised compound 10a to highlight 

any effects the methyl or phenyl substituents may have on the reaction. It was possible to obtain a THF 

solution of 10a from 2,3-dibromopropan-1-amine hydrobromide (38) (Scheme 47), but the unacceptable 

impurity profile observed in the 
1
H NMR of the 10a solution made it unsuitable for use in the investigation 

at the time.  

 

 

Scheme 47: Synthesis of 10a.
37g 

Conditions a: 2 mol. eq. Br2, EtOH, rt, 16 h. b: 3 mol. eq. nBuLi, THF, -78 °C, 1 h. 

 

Addition of chloroacetone to 10f (targeting the 1-(3-chloroazetidin-1-yl)-propanone) returned only starting 

material (Scheme 48). When repeated with the addition of 1 mol. eq. of NaO
t
Bu, an azetidine was 

tentatively identified in the crude 
1
H NMR from the diagnostic methylene hydrogen signals at = 4.46 and 

3.83 ppm. Such a compound could not be isolated from this mixture however, preventing any conclusions 

of the reactivity of 10f under basic conditions to be drawn. Similar reactions with dimethyl                                 

2-bromomalonate returned only starting material in both experiments. Reaction of 10f with the rhodium 

carbenoid derived from dimethyl 2-diazomalonate (39) was predicted to lead to an 

azabicyclo[1.1.1]pentane (40) (Scheme 49); only starting materials were recovered however.  

 

Scheme 48: Attempted reaction between 10f and α-halo carbonyl compounds. 
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Scheme 49: Attempted reaction between 10f and rhodium carbenoid of 39. 

 

Owing to similar bond cleavage patterns between the two heterocycles, procedures for the ring opening 

of aziridines by carbon nucleophiles were predicted to be applicable to azabicyclo[1.1.0]butanes (Scheme 

50). 10f was combined with butylzinc bromide (reported to ring open aziridines in the presence of NiCl2),
91

 

di-n-butylcopper lithium (for the nucleophilic ring opening of aziridines)
92

 and ethylmagnesium bromide.
93

 

No reaction was observed in all three experiments and only starting materials were recovered. In two 

deviations from literature methodologies, dimethylcopper lithium
94

 was substituted for di-n-butylcopper 

lithium but again no reaction was observed. When methylmagnesium bromide was substituted for 

ethylmagnesium bromide analysis of the crude product did show approximately 25 % conversion to what 

appeared to be the expected compound 2,2,3-trimethyl-3-phenylazetidine (4l). 

Scheme 50: Reported ring opening of aziridines by nucleophilic carbon. Conditions a:
91

 3 mol. eq. nBuZnBr, 

10 mol. % dimethyl fumarate, 5 mol. % NiCl2·glyme, dioxane, rt, 6 h. b:
92

 2 mol. eq. nBu2CuLi, THF, rt, 4 h. 

c:
93

 3 mol. eq. EtMgBr, 5 mol. % CuI, THF, 0 °C, 2 h. 

 

In all successful reactions discussed here in which 10f was converted to the corresponding azetidine, 

conversion was easy to detect and quantify owing to the diagnostic peaks in the 
1
H NMR relating to the 

C4 methylene group (Figure 9). Substitution of methylmagnesium chloride (41) for bromide gave a slight 

increase in conversion. All other method optimisation steps (concentration, stoichiometry, temperature 

and time) failed to improve the conversion of 10f to 4l. The reaction appeared to proceed cleanly each 

time, yet purification was challenging. Using optimised conditions, the compound that was originally 

identified as 4l was isolated in 8 % yield from a crude reaction mixture containing 26 % yield of azetidine 

by 
1
H NMR integration. 
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Figure 9: NMR shift of methylene hydrogens in 10f and 4l as typically observed during ABB ring opening 

experiments. 

 

Based on proposals in the literature for the mechanism of azabicyclo[1.1.0]butane ring opening,
37a,37e,42,43

 

addition of a Lewis acidic component to the reaction mixture was predicted to promote the reaction 

between 41 and 10f by complexation with nitrogen.
95

 Addition of one equivalent of magnesium bromide 

dietherate (42) moderately increased the conversion of 10f to 4l. Improved conversion was most 

noticeable when 10f and 42 were premixed at room temperature for 30 minutes before addition of 41. The 

effect of Lewis acid on the reactivity of 10f was further demonstrated: when repeating the reaction 

between 10f and dimethylcopper lithium in the presence of 42 a reaction was observed by 
1
H NMR, 

although no azetidine was identified or isolated. After further method optimisation, a conversion of 10f to 

4l of 50 % was possible. The use of alternative Lewis acids (ZnI2, BF3·Et2O, CuCl) did not improve the 

yield, and the procedure was seen to lack robustness.  

 

Early experiments from this investigation were repeated to try and identify the reason for the lack of 

reproducibility of the method. It was found during repeat experiments that 4l was still present in crude 

products. The conversion rates were generally reduced by comparison with first pass reactions however, 

with a broad range observed (10 – 50 % across all experiments with Lewis acid 42), and it was becoming 

increasingly difficult to isolate the azetidine from each reaction mixture.  

 

The cause of the lack of repeatability of these results remained elusive even after multiple experiments 

with different batches of 10f, 41, 42 and solvent, although ring opening of the ABB to give the azetidine 

did appear to be occurring in every experiment. A high purity sample of 4l was never able to be obtained 

due to isolation difficulties but 
1
H NMR data was consistent with what would be expected for compound 

4l. Chemical shifts, integrals, and comparison with other azetidines made using this ring opening protocol 

(4g – j) were in good agreement. IR spectra contained the expected absorption peaks (N-H at 3471 cm
-1

, 

methylene at 2924 cm
-1

) and MS identified a dimerised product peak (m/z for 2M+H
+
 = 349.2). 

 

When reviewing ABB ring opening with sulfur nucleophiles, the possibility of developing a novel and 

potentially straightforward azetidine sulfonamide synthesis was addressed. Cyclic amine (including 

azetidine) sulfonamides are known where the azacycle nitrogen provides the ‘amide’ component of the 

sulfonamide.
96

 There are no reports where the sulfonamide motif is bound to one of the azetidine 

carbons. Sulfonamides are privileged structures in drug design and are prevalent in such physiologically 



40 

 

active compounds as antibiotics (Mafenide,
97

 Succinylsulfathiazole
98

), COX-2 inhibitors (Celecoxib
99

) and 

diuretics (Metolazone
100

) (Figure 10). 

 

 

Figure 10: Sulfonamide containing drug molecules. 

  

Early in the investigation using ABBs, (2,2-dimethyl-3-phenylazetidin-3-yl) benzothioate (4h) was 

synthesised (Table 5, entry 2) but was observed to be unstable, decomposing entirely within hours of 

synthesis. The N-Boc derivative (4m) was synthesised from crude 4h immediately following work-up, and 

is a stable crystalline solid. With 4m in hand, the procedure of Ho et al. for the two step, one pot 

conversion of aryl thioesters first into sulfonyl chlorides and then to sulfonamides was applied.
101

 Using 

trichloroisocyanuric acid (TCCA) as the chlorine source in an oxidative chlorination of thioester 4m, the 

sulfonyl chloride (43) could then be isolated (if stable) or the reagents for the second step added to the 

reaction vessel to generate the sulfonamide (44) (Scheme 51). 

 

 

Scheme 51: Attempted sulfonamide synthesis via the oxidative chlorination of thioester 4m.
101

 Conditions a: 

1.2 mol. eq. TCCA, 3.4 mol. eq. BnBu3NCl, 1 mol. eq. NaHCO3, MeCN, 0 °C, 20 min. b: 1.2 mol. eq. Morpholine, 

5 mol. eq. NEt3, MeCN, rt, 6 h. 

 

Sulfonyl chloride 43 or sulfonamide 44 could not be synthesised with this procedure. No peaks were 

observed in the 
1
H NMR spectrum of the isolated crude 43 indicating the presence of the tert-

butoxycarbonyl group. The same observation was made of the isolated crude product of 44. The reported 

conditions employed in this study were proposed to be sufficiently mild to accommodate acid sensitive 

groups.
101 

The absence of peaks in the 
1
H NMR spectra associated with the N-Boc group would indicate 

that the conditions were sufficiently acidic enough (approximately pH 6-5)
101

 to cleave the carbamate 

group, allowing the consequential decomposition of the azetidine. 
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Attempts to synthesise analogues of 4h with acid-stable N- protecting groups were unsuccessful. The N-

Ts compound (2,2-dimethyl-3-phenyl-1-tosylazetidin-3-yl) benzothioate (4n) was found to decompose as 

rapidly as 4h. The N-Fmoc (4o) and N-Acyl
54

 (4p) analogues were only tentatively identified in the 

respective crude products and were unable to be isolated by column chromatography (Scheme 52). This 

investigation was therefore halted. 

 

 

Scheme 52: Attempted synthesis of acid stable N-protected derivatives of 4h. Conditions a:
78

 1.1 mol. eq. Boc2O, 5 

mol. eq. NEt3, MeCN, 0 °C, 6 h. b:
54

 1.1 mol. eq. TsCl, 1.6 mol. eq. NEt3, CHCl3, rt, 16 h. c:
102

 1 mol. eq. FMocCl, 1 

mol. eq. LiHMDS, THF, rt, 1 h. d:
54 

1.1 mol. eq. AcCl, 1 mol. eq. NEt3, CHCl3, 0 °C, 2 h. 

  

1.2.4 Ring expansion of azirines. 

During investigations into the ring opening of 10f with metal-carbenoids, publications from Khlebnikov et 

al. describing the reaction between an azirine and rhodium carbenoid that resulted in the formation of an 

azetine came to our attention.
103

 The azetine was then reduced to give an azetidine (Scheme 53).
104

 

Were this protocol to prove general and reliable, it would provide an interesting and underexploited route 

to complex azetidines. Both azirine ring expansion and ABB ring opening routes to azetidine could 

facilitate different procedures being applied to a common (asymmetric) azirine starting material, thus 

increasing the potential number of routes to complex azetidines.  

 

 

Scheme 53: Aziridine synthesis from azirine according to Khlebnikov et al.
104 

 

When reacting azirines with single equivalents of the rhodium carbenoids of 39 or methyl 2-diazo-2-

phenylacetate (45), the general trend towards N-vinylimine generation was observed, irrespective of the 

functionality present in the azirine. It was reported that when 2,3-diphenyl-2H-azirine (14c) and the 

rhodium carbenoid of 39 were combined, the uncommon product dimethyl 3,4-diphenylazete-2,2(3H)-

dicarboxylate (46a) was isolated in good yield. Isolation of small quantities of azetines from the major             

N-vinylimine products when methyl 2-bromo-3-phenyl-2H-azirine-2-carboxylate (14d) or 2-chloro-3-

phenyl-2H-azirine-2-carboxylate (14e) were employed was also reported (Scheme 54). 
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Scheme 54: Reactions of azirines with diazo derived metal-carbenoids to form enamines or azetines according to 

Khlebnikov et al.
103

 

 

It was apparent that small advances in the understanding of this ring expansion had been made, but 

further work should be done to improve the scope and understanding of the reaction. Validation of the 

results was the primary goal as there appeared to be inconsistencies in some of the reports across 

different publications. One concise mechanism by which these ring expansion reactions proceed also did 

not appear to be immediately apparent. 

 

From the reaction of ICl and NaN3 with trans-stilbene to give (1-azido-2-iodoethane-1,2-diyl)dibenzene 

(47), this intermediate was converted to the required azide intermediate (1-azidoethene-1,2-

diyl)dibenzene (48)  with KO
t
Bu and thence thermolysed to generate 14c.

51
 The rhodium carbenoid 

procedure with 39 was applied to 14c and 46a was isolated in good yield (Scheme 55).  

 

Following the reported LiAlH4 reduction procedure for 46a resulted in total decomposition of the azetine. 

Substitution of sodium triacetoxyborohydride (STAB) for LiAlH4 under a range of mild to forcing conditions 

caused either no reaction or the total decomposition of 46a. Further experimentation to effect this 

reduction is required. When using LiAlH4, this reaction is reported occur selectively at one diastereotopic 

face to give a diastereomerically enriched azetidine product (Scheme 56).  
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Scheme 55: Synthesis of azirine 14c
51

 and its ring expansion to azetine 46a
104

. Conditions a: 2.5 mol. eq. NaN3,           

1.1 mol. eq. ICl, MeCN, rt, 19.5 h. b: 1.2 mol. eq. KO
t
Bu, Et2O, 0 °C, 16 h. c: hexane, reflux, 2.75 h.  

d: 1.2 mol. eq. 39, 4 mol. % Rh2(OAc)4, CHCl3, reflux, 16 h. 

 

 

 

Scheme 56: Face-selective reduction of azetine. 

 

3-Phenyl-2H-azirine (14b) was obtained by thermolysis of (1-azidovinyl)benzene 49)
105

 and converted in 

the presence of Rh2(OAc4) with one equivalent of 39 to dimethyl 2-((1-phenylvinyl)imino)malonate (50a), 

and with two equivalents of 39 to tetramethyl 5-phenyl-2H-pyrrole-2,2,3,3(4H)tetracarboxylate (51) in 

agreement with literature results (Scheme 57). 

 

Scheme 57: Synthesis of azirine 14b
105

 and its reactions with the rhodium carbenoid of 39.Conditions a.1 mol. eq. 

Br2, CHCl3, 0 °C, 2.5 h. b: 1 mol. eq. NaN3, DMF, rt, 17 h then 1.5 mol. eq. KO
t
Bu, benzene, rt, 5 h. c: PhMe, reflux, 

7 h. d: 1.2 mol. eq. 39, 10 mol. % Rh2(OAc)4, CHCl3, reflux, 17 h. e: 2.1 mol. eq. 39, 10 mol. % Rh2(OAc)4, CHCl3, 

reflux, 18 h. 
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Having demonstrated the reproducibility of the reported results, the scope of this procedure was now 

investigated. There was one arrangement of functional groups around the azirine starting material that 

had not been discussed extensively by previous researchers. The two examples that yielded azetine from 

azirine had C2 substituents that could stabilise a proposed carbocation intermediate. It was reported, 

however, that both 14b and 2-phenyl-2H-azirine (14f) both generated the identical ring opened enamine 

product 50a.
104

 Based on the proposed mechanisms, these reported outcomes are inconsistent: 14f 

would be expected to give dimethyl 3-phenylazete-2,2(3H)-dicarboxylate (46b) or (Z)-dimethyl 2-

(styrylimino)malonate (50b) (Scheme 58).  

 

 

Scheme 58: Validation of reported procedures, including reported proposals for the reaction mechanism  

(Top, middle: this investigation and literature. Bottom: literature).
104, 103

 

 

Azetine 46a and N-vinylimine 50a could be generated in agreement with the literature, but azirine 14f was 

not able to be synthesised
106

 to validate the reported outcome of its reaction with the rhodium carbenoid 

from 39. An alternative 2-aryl azirine was sought to test the hypothesis that 2-aryl azirines are required for 

successful ring expansion. Benzaldehyde was combined with methyl 2-azidoacetate (52) to generate 

methyl 2-azido-3-phenylacrylate (53).
107

 Azide 53 was thermolysed according to literature procedures but 

failed to give methyl 2-phenyl-2H-azirine-3-carboxylate 14g.
108

 Following the same synthetic route, the 

tolyl analogues methyl 2-azido-3-(4-tolyl)acrylate (54) and its thermolysis product methyl 2-(4-tolyl)-2H-

azirine-3-carboxylate (14h) were successfully synthesised. As was expected, and in agreement with 

reported results, the isomeric product methyl 6-methyl-1H-indole-2-carboxylate (55) (a result of the formal 

C-H nitrene insertion) was also generated (Scheme 59). A quantitative yield of 14h and 55 was obtained 

in a 3:1 ratio based on 
1
H NMR integration. 
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Scheme 59: Synthesis of azirines 14g and 14h.
107

,
 108

Conditions a: 2.25 mol. eq. 52, 2.25 mol. eq. NaOMe, MeOH,   

0 °C, 16 h. b: cyclohexane, reflux, 17 h. c: 3 mol. eq. 52, 1 mol. eq. NaOMe, MeOH, -10 °C, 4 h. 

 

Reaction of 14h with Rh2(OAc4) and a slight excess of 39 yielded the ring opened product dimethyl 2-((3-

methoxy-3-oxo-1-(4-tolyl)prop-1-en-2-yl)imino)malonate (50c) exclusively (Scheme 60). Although 14h 

and 55 were found to be inseparable by column chromatography, 55 was shown experimentally to be 

unreactive towards the Rh2(OAc)4 and 39 reaction mixture conditions. Indole 55 was subsequently 

separated from 50c in quantities consistent with those calculated based on a 3:1 ratio of 14h:55 charged 

to the reaction flask at the start of the reaction. Due to time constraints, this investigation was not 

pursued.  

 

 

Scheme 60: Ring opening of 14h with the rhodium carbenoid of 39. Conditions a: 1.2 mol. eq. 39,  

10 mol. % Rh2(OAc)4, CHCl3, reflux, 16 h. 

 

1.2.5 Transition-metal induced azide decomposition 

In the thermal decomposition reactions of azides, the reactive intermediate is thought to be a nitrene 

species, generated by the loss of diatomic nitrogen gas from the -N3 moiety.
105 

Such reactive nitrene 

species are also known to be generated by formation of metal-nitrene complexes, as in the Evans 

aziridination method.
56

 Copper is known to catalyse the decomposition of benzene sulfonyl azide via a 

proposed nitrene intermediate.
109

 A small set of screening reactions were performed with previously 

synthesised azides to see if azirines could be generated via an alternative route using lower temperatures 

and shorter reaction times by exposure to transition-metal complexes (Scheme 61).  
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Scheme 61: Top: nitrene generation by azide thermolysis.
105

 Middle: copper-nitrene complex formation from 

iodinane.
56

 Bottom: copper-nitrene complex formation from azide.
109

 

 

Azidoalkene 49 was selected for the study: styrenyl azides such as 48 or 53 have prescident for indole 

formation when exposed to metal catalysis (i.e. 54 to 55 with Rh2(OAc)4).
110

 Copper is known to form 

nitrene complexes, thus copper
(II)

 triflate was selected for this screen.
109

 A single reaction with Rh2(OAc)4 

was also performed based on other reports having used such a metal to decompose azides.
110

 All 

reactions were performed in anhydrous chloroform with a 10 mol. % catalyst loading at either room 

temperature or reflux for 6 or 24 hours. The target compound 14b has a diagnostic 
1
H NMR singlet at                    

= 1.80 ppm: all experiments returned only starting material according to 
1
H NMR analysis. The reactions 

were repeated with the addition of 1 mol. eq. of diacetoxyiodobenzene (DAIB). Azidoalkene 49 was now 

consumed in every experiment but 14b could not be identified by 
1
H NMR analysis of the crude products 

(Scheme 62).  

 

 

Scheme 62: Screening azide 49 for reactivity against copper or rhodium catalysts. 

 

1.3 Conclusions 

 

Of the investigations into the synthesis of complex azetidines by the ring expansion of aziridines with 

sulfonium ylides, the ring opening of azabicyclo[1.1.0]butanes and the ring expansion of azirines with 

metal-carbenoids, the understanding of these processes within the group has been significantly improved. 

Progress has also been made in synthesising new complex azetidines, in particular using an 

azabicyclo[1.1.0]butane 1,3-bond cleavage method. Work covered herein should pave the way for 

continued investigations into these particular protocols in the near future. 
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Attempts to expand the scope of the ring expansion of aziridines with sulfonium ylides saw the synthesis 

of a number of 2-alkoxycarbonyl aziridines with different nitrogen activating groups. Neither 

dimethylsulfonium or dimethyl(oxo)sulfonium methylide species could effect the desired ring expansion as 

reported by Carrié et al.
25 

and Nadir et al.
24

 The presence of an N-activating group and C2 ester 

functionality made the aziridines too reactive towards both sulfonium ylides, leading to the total but non-

selective consumption of the starting materials. 

 

In going forward with this investigation, there are aziridines with alternative functional groups that could 

be combined with sulfonium ylides to explore this reaction further. This includes more or less electron 

withdrawing or sterically demanding groups than the ester and four N- groups used in these experiments. 

If it emerges that only aziridines such as those originally reported by Carrié et al.
25

 and Nadir et al.
24

 are 

able to undergo ring expansion with sulfonium ylides, the next step would be to attempt this ring 

expansion with chiral sulfonium ylides (Scheme 63). This would begin to address the questions of 

whether asymmetric aziridines can be ring expanded in a stereoselective manner, and therefore indicate 

if the postulated asymmetric synthesis is ultimately feasible. The ring expansion of aziridines with 

sulfonium ylides will continue to present an interesting challenge for future research in the group. 

 

 

Scheme 63: Proposed stereoselectivity in the ring expansion of aziridines to azetidines using chiral sulfonium ylides. 

 

Ongoing investigations into the 1-3 ring opening of azabicyclo[1.1.0]butane molecules with a selection of 

nucleophiles has provided some early encouraging results. We have shown that an ABB with increased 

steric bulk incorporated into the heterocyclic core will still undergo 1,3-bond cleavage to generate 

azetidine. It has also been shown that such azetidines can be synthesised with the required thioester 

motif to take forward towards a novel azetidine sulfonamide synthesis.  

 

In continuing this study, it would be desirable to pursue the synthesis of azetidine-3-sulfonamides by 

protecting 3-thioester azetidines with N-groups that allow the heterocycle to tolerate the oxidative 

chlorination and sulfonamide generation mentioned above. Should this not be possible, alternative routes 

for the conversion of thioesters to sulfonyl chlorides should be considered. Secondly, now that it has been 

established that azetidines with increased complexity can be synthesised as described above, expansion 

of the investigations to control the stereochemistry at each step of the proposed route should begin. 

 

After a small number of experiments, it quickly became clear that a far more comprehensive investigation 

into the ring expansion of azirines with rhodium carbenoids would be required than time was available for 

during this course of work. Future experimentation with new examples in the future should aid in 

elucidating the mechanism, making this method a potentially powerful tool in the synthesis of complex 

azetidines. 
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CHAPTER 2: GENERATION AND REACTIONS OF DIFLUOROCARBENE  

 

2.1 Introduction 

 

2.1.1 Fluorine and its use in medicinal chemistry 

Following the uniformly unsuccessful reactions between sulfonium ylides and N-activated 2-alkoxy 

aziridines, the use of halo-substituted aziridines in the investigation to broaden the scope of aziridine ring 

expansion to azetidine was pursued (see section 1.2.1). No examples of polyhaloaziridines being applied 

to the previously discussed ring expansion procedure are known and their use was desirable for two 

reasons. First, in contrast to the reactivity of oxiranes and thiiranes, the nitrogen of aziridine must typically 

be functionalised to activate the heterocycle carbons towards reactions with nucleophiles. Fluorinating the 

carbon positions of aziridine is an alternative way to activate the ring. The computationally calculated 

reactivity of aziridine (1j), 2-fluoroaziridine (1k) and 2,2-difluoroaziridine (1l) towards ring opening by 

ammonia illustrates this.
111

 Aziridine 1k was as reactive as non-fluorinated N-Ac aziridine; 1l was more 

reactive than 1j and 1k. The increased Baeyer strain caused by the inclusion of fluorine(s) into aziridine 

was stated to be the cause of this trend (Figure 11). 

 

 

Figure 11: Calculated ring opening rates and ring strain energies of some aziridines. 

 

Second, fluorine is not typically found in natural products but is frequently used by medicinal chemists 

when designing drug molecules.
112

 Fluorinated species are interesting due to the ability of fluorine to alter 

the molecule’s properties. Substituting a single fluorine group for another in a key site in a drug molecule 

can have a significant effect on the bioactivity and pharmacokinetic properties. 

 

Fluorine incorporation can increase the acidity of an acid,
113

 reduce the basicity of amines
114

 or reverse 

the polarity of a double bond.
115

 In turn, this can enhance diffusion characteristics across a membrane, 

enhance the metabolic stability of a molecule,
112

 and alter the binding affinity of a molecule to its target 

receptor.
116

 Modified receptor binding characteristics can be caused by non-specific lipophillic effects, 
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fluorophillic residues in receptor sites and effects on molecular conformation.
116

 Since the first fluorine 

containing drug product was synthesised in 1957,
117

 it is now estimated that almost 25 % of 

pharmaceutical pipeline drugs contain fluorine.
118

 Prozac is one famous example of a trifluoromethyl 

substituted drug molecule that has achieved massive world-wide sales since its first approval for use by 

the FDA.
119

 

 

Fluorine is a small atom, not much larger than hydrogen when covalently bound (1.47 and 1.20 Å van der 

Waals radii respectively)
120

 and is smaller than a methyl group (2.0 Å).
121

 It is the most electronegative of 

the elements (3.98 on the Pauling scale),
122

 making it an excellent electron withdrawing group. In the 

vicinity of an acidic or basic group, electron density is significantly perturbed in the molecule; this can 

have a marked effect on the pKa: trifluoroacetic acid (pKa= - 0.25) is more than five orders of magnitude 

more acidic than acetic acid (pKa= 4.76).
87

 The change in pKa can alter the membrane permeation of the 

molecule, thus altering its bioavailability. 

 

Fluorine can affect the lipophilicity of a drug molecule, and is considered to be more lipophilic than 

hydrogen. A highly lipophilic molecule will often have excellent affinity for the binding site on the target 

receptor but will also have low aqueous solubility, reducing the bioavailability of the drug. The effect on 

lipophilicity when a single hydrogen was replaced with fluorine in nearly 300 molecules has been 

reported: the Gaussian distributions of log D for the non-fluorinated molecules had increased by +0.25 for 

the fluorinated examples.
112 

The log D, or distribution coefficient, describes the ratio of molecules in each 

layer when partitioned between a pH 7 buffered aqueous and octanol system. The higher the value, the 

more lipophilic a molecule is. 

 

P450 cytochromes in the liver are efficient at oxidising lipophilic molecules. If changing the polarity of a 

molecule is not an option to reduce its lipophilicity, another common strategy is to substitute fluorine for a 

metabolically active site. The small size of the fluorine atom does not usually alter the molecular 

conformation, and is therefore broadly considered to be a good hydrogen mimic in this respect. The 

enhanced stability of the C-F bond (116 kcal mol
-1

) over the C-H bond (99 kcal mol
-1

) is accepted as the 

reason for preventing metabolism at a given site in a molecule.
116

 The drug Ezetimibe (56) is an excellent 

example of this stabilising effect, where inclusion of para-fluoro groups caused a reduction in ED50 from 

2.2 mg/Kg/day to 0.04 mg/Kg/day (Figure 12).
123, 124

 Conversely, if a molecule in development has a very 

long half-life in the body, removal of a fluorine group can transform a previously metabolically inert site 

into a labile one: as seen with the COX II inhibitor Celecoxib (57) where the para-fluoro group was 

replaced with a methyl group.
99
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Figure 12: Prozac (left), Ezetimibe (centre) and Celecoxib (right). 

 

Once the drug molecule arrives at a receptor site, the enhanced lipophilicity of fluorine causes it to have a 

slightly enhanced non-specific affinity for the binding site. As mentioned above, fluorine usually has a 

minimal effect on the shape of a molecule, but a small number of examples of fluorine effecting a 

conformational change in a molecule are known. Based on analysis of entries in the Cambridge Structural 

Database, a study comparing anisole moieties without ortho- substituents showed the -OCH3 (58) group 

is found in the same plane as the phenyl ring. When perfluorinated, the -OCF3 (59) group lies in an 

orthogonal conformation (Figure 13).
112

  

 

 

 

Figure 13: Conformations of fluorinated and non-fluorinated anisole.
112

 

 

Other investigators observed that tetrafluoroethoxyphenyl (60) had very similar structural and electronic 

properties to the metabolically unstable 2-phenylfuran (61) and was therefore an interesting substitution 

option for cholesterol ester transfer protein inhibitors (Figure 14).
125

 This fluorination strategy has been 

exploited to replace metabolically labile oxygen atoms in phosphonate esters. In this example the 

difluoromethylene group was considered to be analogous both electronically and sterically to the C-O-P 

motif it replaced, giving C-CF2-P in its place.
126
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Figure 14: Comparison of tetrafluoroethoxyphenyl and 2-phenylfuran. Image taken from reference 125 showing the 

negative electrostatic potential of 60 and 61 in cholesteryl ester transferase protein. 

 

Numerous examples exist where a fluorinated species displays stronger binding to the target receptor 

than the non-fluorinated parent compound. The case of 6-fluorophenylephrine (62) showed that the 

fluorinated molecule displays an enhanced potency towards 1 and 2 adrenoreceptors but reduced 

interaction with -adrenoreceptors, making it a specific -adrenergic agonist when compared to 

phenylephrine (63).
127

 This activity was attributed to conformational changes induced in the molecule by 

repulsion of the benzylic hydroxyl group by the ring fluorine substituents (Figure 15). The non-fluorinated 

compound displayed no such selectivity. Studies have also shown that certain asparagine (Asn) 

environments display ‘fluorophilic’ characteristics, owing to the increased activity of selected fluorinated 

drugs when the fluorine site is in proximity to such Asn sites.
128

 In the extreme, examples exist where the 

fluorine group is specifically susceptible to elimination. Loss of fluoride leaves a cationic species: this can 

cause irreversible inhibition of the enzyme through covalent bonding to the active site.
129

 

 

 

Figure 15: Fluorinated and non-fluorinated phenylephrine, with the preferred conformation shown for 62. 

 

2.1.2 Fluorinated aziridines and difluorocarbene. 

Addition of nitrenes to olefins is a popular route to aziridines.
36

 Reactions at imine centres can also be 

used in the synthesis of aziridines as discussed previously (1.1.2 Azetidines from aziridines), including 

the addition of carbene equivalents to imines.
130

 Such carbene equivalents often take the form of an       

-halo carbanion. These nucleophilic species react with the electrophilic imine carbon, forming an 
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intermediate with an anionic nitrogen that can then undergo 1,3-elimination to displace halide and form 

aziridine. This is analogous to the Darzens glycidic ester condensation, and is therefore referred to as an 

aza-Darzens reaction (Scheme 64).
69

 Mono-fluorinated 2-alkoxycarbonyl aziridines (1m) have been 

synthesised by the Reformatsky type aza-Darzens reaction between ethyldibromofluoroacetate in the 

presence of zinc metal and aromatic imines (Scheme 65).
131

 

 

 

Scheme 64: Aza-Darzens aziridine synthesis according to Davis et al.
70

 Conditions a: LiHMDS, THF, rt, 2.5 h. 

 

 

Scheme 65: Reformatsky type aza-Darzens reaction between ethyldibromofluoroacetate and aromatic imines.
131 

Conditions a: 1 mol. eq. Zn, MeCN, -10 °C, 6 h. 

 

Carbene addition to imines is less prevalent in the literature. Hegedus reported the reaction of chromium 

carbene complexes (derived from chromium hexacarbonyl and -lithio species) in the presence of 

imines.
132

 They suggested that one possible outcome from this reaction could be aziridine. Instead, they 

found that cinnamates (64) or β-lactams (65) resulted from reactions performed under thermal or 

photolytic conditions respectively (Scheme 66). Later reports showed imine metathesis type reactions 

with tungsten di-arylcarbene complexes were possible.
133

 With the development of persistent                             

N-heterocyclic carbene species, examples of their reaction with imines are also known. In an 

intramolecular process, a pendant NHC reacted at an imine centre to yield a piperazine (66), not an 

aziridine however.
134
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Scheme 66: Examples of carbene addition to imine. Conditions a:
132

 50 °C, 2 h; or sunlight, Et2O. b:
133

 THF, 40 °C, 2 

h. c:
134

 NaH, THF, 25 °C, 16 h then HBF4·OEt2, Et2O, 0 °C, 35 min. 

 

Successful generation of aziridines from imine and carbene [2+1] cycloadditions are uncommon. One 

example of this reaction was reported for the copper catalysed addition of diazo esters to imines.
135

 In 

comparison to the previously mentioned addition of carbene equivalents to imines, the addition of the 

copper carbenoid species is proposed to react first at the nitrogen of the imine, forming an iminium salt 

(67). This then undergoes cyclisation to generate aziridine (Scheme 67). A recent example of these rare 

reactions was reported whereby methylene is added to N-benzylidine toluenesulfonamide by exposing 

the imine to a single equivalent of diazomethane with no additional catalyst.
136

 

 

 

Scheme 67: Aziridines from imines. Top: addition of carbene equivalent.
130

 Bottom: addition of copper carbenoid
135 

or diazomethane to imines.
136

 

 



54 

 

Few examples of difluorocarbene addition to an imine to generate aziridine exist; only one that yields a 

gem-difluoroaziridine where the new CF2 group forms part of the aziridine ring has been reported. In this 

isolated example, the thermal generation of difluorocarbene from hexafluoropropene oxide (67) in the 

presence of N-alkyl or N-aryl bis-trifluoromethylimines to generate aziridines was shown (Scheme 68).
137

 

This provides an alternative route to 2,2-gem-difluoroaziridines; the usual route being via the                         

1,3-elimination of chloride from 2-chloro-2,2-difluoroethylamine derived compounds.
138

 

Monofluorocarbene has also been shown to react with aromatic imines, albeit in generally poor yields, to 

synthesise 2-fluoroaziridines. In this instance, the carbene is derived from the reduction of 

dibromofluoromethane in the presence of lead and tetrabutylammonium bromide in an ultrasonic bath.
139

 

 

 

Scheme 68: Synthesis of gem-difluoroaziridine by the addition of difluorocarbene to imine. 

 

In another example of difluorocarbene reaction with imine, instead of occupying a position in the newly 

formed aziridine ring, a difluoromethyl moiety was appended to the resulting aziridine nitrogen.
140

 This 

was proposed to have happened by attack of nitrogen on difluorocarbene, followed by a proton transfer 

and ring closing process within the rest of the Schiff base ester (Scheme 69). In all reports of aziridine 

synthesis by these protocols, carbenes and carbenoids are proposed to favour reaction at the nitrogen 

centre of imines to form azomethine ylides, while carbene equivalents will first react at the carbon centre 

of imines to form nitrogen anions, prior to cyclisation to generate the heterocycle. 

 

 

Scheme 69: Aziridine with N-difluoromethyl functionality from difluorocarbene addition to imine.
140

 

 

Carbenes are divalent carbon species with two unbonded electrons and an overall neutral charge. This 

valency electron count of six makes carbenes inherently electron-poor. They can exist in the singlet or 

triplet state. The two states differ by the distribution of the two unbonded electrons in the two vacant 

orbitals on carbon. As well as the two filled bonding -orbitals, singlet carbenes have one wholly occupied 

s-orbital and one vacant p-orbital, and behave with both nucleophilic characteristics (cf. electron lone pair) 

and electrophilic characteristics (cf. vacant p-orbital). Triplet carbenes have a single electron in both 

unbonded orbitals and tend to react as diradicals. Whether the singlet or triplet state is considered the 

‘ground’ state for a given carbene is influenced by the substituents on the carbene centre.
141

 

 

Carbene substituents that are electron withdrawing stabilise the filled s-orbital. This increases the energy 

gap between the unbonded s- and p-orbitals, favouring the singlet state. In the case of dihalocarbenes, 
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the electrons from the halogens also stabilise the carbene through -electron back-donation to the 

carbene centre. These stabilising effects mean difluorocarbene is believed to have a long lifetime in 

solution in comparison to other non-stabilised carbenes, coupled with reduced nucleophilicity and 

increased electrophilicity. 

 

Carbenes can exist in metal-carbene complexes as carbenoids or as the free carbene in solution.
31

 

Carbene complexes are normally referred to as Fischer or Schrock carbene complexes: both have 

contrasting properties (Table 6). Excluding persistent N-heterocyclic carbenes,
142

 most uncomplexed 

carbenes have lifetimes of several nanoseconds to microseconds in solution, but due to their highly 

reactive nature will readily react with other components of the reaction mixture, themselves or even the 

solvent.
143, 144  

 

Table 6: Comparison of Fischer and Schrock carbenoids 

 Fischer Schrock 

Metal late transition-element early transition-element 

Oxidation state low high 

Metal ligands p-acceptors not p-acceptors 

Carbene groups p-donors not p-donors 

Carbene ground state single triplet 

Example (CO)5Cr=C(OMe)(Me) (C5H5)2MeTa=CH2 

 

The generation and use of difluorocarbene has been known since the 1960s. The first reported 

experiment exploited the thermal decomposition of sodium chlorodifluoroacetate (68) in refluxing                 

1,2-dimethyoxyethane with cyclohexene to generate difluoronorcarane in 11 % yield (Scheme 70).
145

 This 

work was the natural progression of investigations into dichlorocarbene generation from analagous 

halogenated acetate salts.
146

 Although dibromo- and diiodocarbene are also known, there has been no 

report of their synthesis from the corresponding dibromo- or-diiodo chloroacetate salts. Dibromo- and 

diiodocarbene are synthesised by exposing the relevant haloform to strong base, causing deprotonating 

and subsequent loss of chloride to give the reactive dihalocarbene species.
147

  

 

 

Scheme 70: Generation and trapping of dihalocarbene.
145

 

 

Subsequent to this, other methods have been introduced that can be broadly categorised by the era and 

mechanism by which they generate difluorocarbene. Most early difluorocarbene precursors are based on 

gaseous fluorinated hydrocarbons and ozone depleting substances (ODSs) such as tetrafluoroethene, 

hexafluorocyclopropane, chlorodifluoromethane. Other halogenated small molecules including 

hexafluoropropyleneoxide 67 and tetrachlorodifluoroacetone could be used, as well as highly reactive 
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species such as diazomethanes or difluorodiazirines. The next emergent class of precursors was based 

on heavy-metal containing complexes. These were superseded by less toxic compounds, but still relied 

on the use of ODSs. Modern difluorocarbene sources are environmentally benign and usually of low 

toxicity (Figure 16). As would be expected, the reaction conditions required when following older methods 

are considerably harsher than those used by modern difluorocarbene precursors. Common uses for 

difluorocarbene are the [2+1] cycloaddition with olefins to synthesise gem-difluorocyclopropanes or 

insertion into O-H, S-H or N–H bonds. The chemical behaviour of fluorocyclopropanated steroids is an 

early example of such experimentation.
148

  

 

Figure 16: Evolution of difluorocarbene precursors. 

 

The first reported compounds, such as (CF3)3PF2,
149

 difluorodiazirine
150

 and 67
151

, can all be used to 

synthesise cyclopropanes by thermolyis of the precursor to generate difluorocarbene in the presence of 

an olefin. These reactions all require high temperatures (between 100 – 200 °C), long reaction times and 

synthesise the cyclopropanes in the gas phase. Some precursors are gases at room temperature, and 

the volatile or gaseous products can be hard to isolate. 

 

The observation that suitable heavy-metal compounds can liberate difluorocarbene upon thermolysis at 

150 °C was reported as a side reaction during the elimination of trimethyltin fluoride from trifluoromethyl 

trimethyltin.
152

 Perfluorocyclopropane generation was evidence of difluorocarbene evolution and 

trimerisation. Thermolysis of trifluoromethyl trimethyltin was also used to add difluorocarbene to a 

selection of heavy-metal alkyne complexes of the type (CH3)nM(C≡CCF3)y where M =  As, Ge or Si, giving 

gem-difluorocyclopropene containing complexes (Scheme 71).
153

  

 

 

Scheme 71: Thermolysis of tin compounds to generate difluorocarbene.
153
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In an evolution of this methodology, Seyferth et al. first demonstrated that trifluoromethyl trimethyltin could 

undergo iodide induced difluorocarbene transfer in refluxing toluene.
154

 This was the first reported method 

for difluorocarbene generation that employed mild toluene reflux conditions compared to high temperature 

gas-phase thermolysis, as well as providing generally good yields of gem-difluorocyclopropanes from 

olefins.  

 

Modification of another method for generating dichlorocarbene from phenyl(trichloromethyl)mercury 

allowed them to develop a straightforward synthesis of phenyl(trifluoromethyl)mercury (69) from                  

non-gaseous reagents that did not involve the manipulation of metallic mercury.
155

 Mercury compound 69 

was easily obtained as a stable crystalline solid, and ‘Seyferth reagent’ is commercially available.
156

 They 

speculated on the mechanism of its synthesis from phenyl(tribromomethyl)mercury, phenylmercuric 

fluoride and HF, but no conclusive proof was presented (Scheme 72). In the same way sodium iodide 

was employed to liberate difluorocarbene from trifluoromethyl trimethyltin, it was shown that iodide could 

aid decomposition of 69. The synthesis of 69 has been improved upon, in which benzene, TFA and HgO 

can be combined in a single step reaction.
157

 

 

 

Scheme 72: Synthesis of phenyl(trifluoromethyl)mercury according to Seyferth et al (top) and Knunyants et al. 

(bottom).
155

 

 

The carbene precursor 69 is an easily synthesised and manipulated material that can be used in reflux 

systems to efficiently deliver gem-difluorocyclopropanes. It was one of the last heavy-metal based 

difluorocarbene sources to be reported as the toxic nature of these elements saw newer carbene 

precursors developed that posed fewer health risks for users. Although new chemical entities continued 

to be developed for the generation of difluorocarbene under mild conditions, none appeared to match the 

performance of Seyferth’s reagent for several years, and ODSs were still commonly used when 

developing such compounds. 

 

Examples of heavy-metal free, ODS derived precursors include 

triphenyl(bromodifluoromethyl)phosphonium bromide (70).
158

 When combined with NaOMe, 70 will 

decompose to give difluorocarbene, which can be trapped with an olefin. The reported yields of 

cyclopropane were low. To overcome potential competition reactions between the carbene and alkoxide 

base, the phosphonium salt was instead synthesised in situ from PPh3 and dibromodifluoromethane at  
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85 °C, with decomposition triggered by KF. The cyclopropane adduct was now obtained in good yield 

(Scheme 73).  

 

 

Scheme 73: In situ generation and decomposition of phosphonium difluorocarbene precursor.
158

 

 

Another heavy-metal free ODS was used as a difluoro modification of an existing dihalocarbene 

precursor. Chlorofluorocarbene can be generated from trichlorofluoromethane when exposed to reduced 

titanium, and the carbene trapped with olefins.
159

 When CF2X2 (X= Cl, Br, I) was substituted for CCl3F the 

yields of the corresponding difluorocyclopropanes were low.
160

 When CBr2F2 was exposed to zinc metal 

in the presence of substoichiometric iodine, near quantitative yields of difluorocyclopropanes were 

obtained. It was proposed that the mechanism of difluorocarbene delivery from CBr2F2 was analogous to 

a Simmons-Smith reaction (Scheme 74).
161

 

 

 

Scheme 74: Simmons-Smith like addition of difluorocarbene to olefin from dibromodifluoromethane and zinc 

metal.
160

 

 

Modern sources of difluorocarbene have overcome the use of gases, heavy-metals and ODSs and are 

considered to be more environmentally friendly. Such precursors are designed to generate 

difluorocarbene with mild reagents and conditions. Exposure of fluorosulfonyl(difluoro)acetic acid to alkali 

metal alkanoates causes the acid to decompose to carbon dioxide, sulfur dioxide, difluorocarbene and 

metal fluoride. The isolation of difluoromethyl alkanoates from these experiments was proposed as the 

evidence of the generation of difluorocarbene (Scheme 75).
162

 

 

 

Scheme 75: Decomposition of fluorosulfonyl(difluoro)acetic acid by alkyl metal alkanoates.
162

 

 

Using trimethylsilyl or triethylsilyl esters of fluorosulfonyl(difluoro)acetic acid (popularly abbreviated to 

TFDA and TEFDA respectively), it was shown that a sub-stoichiometric amount of fluoride could trigger 

the decomposition of the precursor and regenerate the fluoride ion.
163,164

 Hu et al. reported 

trimethyl(chlorodifluoromethyl)silane will decompose to generate difluorocarbene when exposed to a  
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sub-stoichiometric source of chloride.
165

 They proposed that through an SN2 attack of chloride at silicon, a 

chlorodifluoro carbanion is liberated, which subsequently loses chloride to give difluorocarbene and 

regenerate the chloride ion (Scheme 76). 

 

 

Scheme 76: Generation of difluorocarbene from halide sensitive precursors.
163, 165

 

 

They also report the use of 2-chloro-2,2-difluoroacetophenone,
166

 chlorodifluoromethyl phenyl sulfone
167

 

and N-tosyl-(S)-difluoromethyl-(S)-phenylsulfoximine
168

 to difluoromethylate heteroatomic nucleophiles 

under basic conditions (Scheme 77). A unique example of an efficient and non-toxic carbene source, 

diethyl(bromodifluoromethyl)phosphonate (71), is another reagent that undergoes decomposition under 

basic conditions to add difluorocarbene into O-H or S-H bonds in 20 minutes at temperatures as low as -

78 °C.
169

 It does, however, require an ODS for its synthesis. 

 

 

Scheme 77: Novel difluorocarbene sources reported by Hu et al. 

 

By reviewing the difluorocarbene sources reported, it is clear that some have utility in adding 

difluorocarbene to unsaturated aliphatic systems, or to nucleophilic or anionic centres. For the addition of 

difluorocarbene to an olefin, research has shown that the carbene adds in a cis- manner across the 

double bond.
170

 This outcome is indicative of a concerted [2+1] cycloaddition with the singlet carbene. A 

study of the kinetics of difluorocarbene addition to olefins has been reported where the results support the 

claims that difluorocarbene is electrophilic, less reactive than other dihalocarbenes and adds to olefinic 

double bonds in a concerted manner.
171
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2.2 Results and discussion 

 

2.2.1 Addition of difluorocarbene to imines 

Few reports of difluoromethylene incorporation into an aziridine are known. The priority of the 

investigation into the addition of difluorocarbene to imines was to synthesise novel aziridines to expose to 

the sulfonium methylide aziridine ring expansion reaction. It would also elaborate on the existing 

knowledge of this carbene’s reaction with imines. Dichlorocarbene, generated from hexachloroacetone 

and NaOMe, will react with N-benzylidene aniline (28) at 0 °C in petroleum ether to generate                          

1,3-diphenyl-3,3-dichloroaziridine.
172

 The reactivities of dichloro- and difluorocarbene are similar, with 

both being considered ambiphilic according to the Moss philicity scale (Figure 17).
144

 If difluorocarbene 

can add to 28 in an analogous reaction, it would provide the C-activated aziridine 1,3-diphenyl-3,3-

difluoroaziridine (1n) (cf. Carrié aziridines) for use in the sulfonium ylide aziridine ring expansion 

investigation. It was also of interest to discover if phosphonate 71 could facilitate the addition of 

difluorocarbene to imines: this would increase the number of applications 71 can be used for and allow 

aziridine synthesis under relatively benign conditions.
169  

 

 

Figure 17: Moss carbene philicity scale.
144 

 

In a first pass reaction, conditions were taken directly from the work of Zafrani et al. substituting 28 for the 

phenol derivatives (Scheme 78). The absence of signals in the 
19

F NMR spectrum of the crude product 

indicated that no new fluorinated molecules were synthesised in this reaction. 
1
H NMR analysis confirmed 

that only starting material 28 was recovered. The reaction was repeated for progressively longer times at 

room temperature. After 17 hours a reaction had occurred but column chromatography only isolated a 

single fraction that contained a complex mix of new fluorine environments as observed by 
19

F NMR.  
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Scheme 78: Attempted synthesis of 1n. Conditions a (Kadaba and Edwards):
172

 2 mol. eq. NaOMe, pet.ether, 0 °C,  

5 h. b (Zafrani et al., this study):
169

 20 mol. eq. KOH, MeCN:H2O, -78 °C – rt, 20 min. 

 

For every crude product, 
19

F NMR spectra indicated no unreacted 71 remained. As the carbene source 

was water soluble however and therefore removed in the work-up, this was not a good indicator of 

precursor consumption or difluorocarbene generation. After validating the reaction conditions using                  

4-methoxy phenol, the result was consistent with that reported in the literature; the reproducibility of the 

method in our hands was confirmed. 

 

Two more imines were substituted for 28 and the experiments were repeated. After 4 hours at room 

temperature the activated imine N-benzylidene-4-toluenesulfonamide (72) was totally consumed. No 

single product was obvious in the complex 
1
H NMR spectra of the crude product. The only clearly 

identified change observed was the loss of the benzylic hydrogen signal and emergence of a broad 

singlet. The lack of any signals in the 
19

F NMR spectra indicated no new fluorinated species had been 

synthesised and as such the outcome of the reaction was not investigated any further. No reaction was 

observed when the electron-rich diphenylmethyleneaniline (73) was used, only starting material was 

recovered after 15 hours at room temperature. Difluorocarbene generated from 71 under aqueous basic 

conditions was not compatible with imine 28, 72 or 73 when trying to synthesise gem-difluorinated 

aziridines (Scheme 79).  
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Scheme 79: Attempted aziridination of imines with difluorocarbene derived from 71.Conditions a: 20 mol. eq. KOH, 

MeCN:H2O, -78 °C – rt, 20 min. 

 

Due to the electron-deficient property of difluorocarbene, it was expected that 28 and 73, with their 

electron-rich phenyl substituents, would have been most reactive under these conditions. Imine 72 was 

expected to be the least reactive due the electron withdrawing N-tosyl group. These predictions were 

incorrect: only 28 and 72 were sensitive to the reaction conditions, and only the crude product from 

experiments with 28 showed any new fluorinated species having been synthesised. The reasons for this 

trend in reactivity were not immediately obvious. Three reasons for the failure of the experiment can be 

suggested nonetheless.  

 

First, the addition of difluorocarbene to imine is not compatible with the aqueous conditions described for 

the use of 71. In the proposed mechanism for the reaction between phenols and difluorocarbene, an 

anionic difluoromethyl ether intermediate is described and said to deprotonate a water molecule to give a 

difluoromethyl ether. Second, the conditions under which difluorocarbene is liberated from 71 are too mild 

to allow its reaction with anything other than moderately to highly-nucleophilic centres. In the reported 

procedure, the phenol substituents would have existed as potassium phenolate salts. Finally, the 

electronic nature of the carbene and imine may have been incompatible. Dichlorocarbene is more 

electrophilic than difluorocarbene. While dichlorocarbene added to 28 in the required way to generate 

aziridine, the only example of the analogous reaction of difluorocarbene used an imine with electron 

withdrawing trifluoromethyl groups. Imines 28, 72 and 73 may have been too electron-rich at imine carbon 

to allow the required reaction path to be followed (Scheme 80). 

 

 

Scheme 80: Proposed mechanism for successful addition of carbene to imine. 

 

2.2.2 Development of new difluorocarbene precursors 

Attention now turned to the development of a new class of carbene precursor. Many examples of 

difluorocarbene generation rely on the spontaneous thermal decomposition of the precursor to generate 

the reactive carbene species. The ability of the carbene to react with olefin traps in these examples is 

aided by the high temperatures used to trigger the initial decomposition. As difluorocarbene generation 
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protocols evolved the temperature of the reactions was able to be reduced. Some modern procedures 

exploit the action of catalytic halide on the carbene source to initiate decomposition and carbene 

liberation. In general, [2+1] cycloaddition of difluorocarbene to olefin requires reaction temperatures 

around 80 – 100 °C.
165

 Difluorocarbene addition to phenolate or thoiphenolate has been shown to be 

possible at temperatures as low as -78 °C.
169

 

 

There are no examples in the literature of the transition-metal catalysed decomposition of a carbene 

source to generate difluorocarbene, though many existing precursors have the potential to be modified to 

be used in such a way. Allyl groups display an affinity towards palladium coordination to give stable 

allylpalladium intermediates.
173

 The Tsuji-Trost reaction is an excellent example with a broad scope for 

this process.
174

 The catalytic Pd
0
 species first coordinates to the olefin of the allyl group forming an             

2
-species. Upon loss of a suitable leaving group an 

3
-allylpalladium species then forms.

175
 This 

intermediate complex is susceptible to nucleophilic attack, after which the newly formed allyl-nucleophile 

species is lost and the catalytic Pd
0 
species is regenerated (Scheme 81). 

 

 

Scheme 81: Representative catalytic cycle in a Tsuji-Trost reaction.
174

 

 

In an analogous fashion to the decomposition of a trialkylsilyl ester functionalised precursor by 

substoichiometric halide to generate difluorocarbene (cf. TFDA),
164

 this investigation aims to discover if 

the coordination of Pd
0
 to an allyl functionalised precursor

 
will trigger decomposition to liberate 

difluorocarbene. It is proposed that by modification of certain existing carbene precursors with allyl 

groups, following coordination of a Pd
0 
species to the allyl group, the rest of the precursor will be lost as a 

leaving group from the allylpalladium intermediate. After this elimination, the leaving group would 

decompose in the usual way (cf. TFDA decomposing to CO2, SO2, CF2 and F
-
), liberating difluorocarbene 

in the process. A nucleophilic component will subsequently be released into solution; this will react with 

the allylpalladium complex to release the allyl group and return the Pd
0 
to solution (Scheme 82). 

 

Three existing difluorocarbene precursors were identified as candidates for this investigation. The allyl 

ester analogues of 68 (allyl chlorodifluoroacetate 74), TFDA (allyl 2,2-difluoro-2-(fluorosulfonyl)acetate 

75) and 71 (diallyl(bromodifluoromethyl)phosphonate 76) were all expected to be suitable compounds. As 
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all are analogues of known difluorocarbene precursors, the allyl derivatives should surrender 

difluorocarbene in a similar fashion to the parent compounds if decomposition can be triggered. 

 

 

Scheme 82: Proposed catalytic cycle for the palladium triggered decomposition of 74. 

 

When planning this reaction, it was possible to identify potential side reactions. Difluorocarbene could 

react with the olefin of the allyl group on an uncomplexed precursor molecule. This would block the 

reactive allyl site and render the molecule inert to the catalytic process. Difluorocarbene reacts faster with 

electron-rich olefins: use of an electron-rich olefin as a trap should reduce carbene addition to the allyl 

group therefore. 

 

Just as addition of halide to allylpalladium complexes is known to yield allylhalides,
176

 the same 

allylhalides would compete for the catalytic species.
177

 This process would not prevent the desired 

reaction from proceeding, but the wrong position of the equilibrium in this step would reduce the rate of 

difluorocarbene generation. This concern was greatest for the proposed allyl chlorodifluoroacetate 

example 74, where the stable allylpalladium
(II)

 chloride dimer could form. This dimer can be employed as 

a source of palladium
(0)

, however if it is sufficiently stable under these reaction conditions it will sequester 

most of the palladium from the reaction, causing it to reside off cycle. Formation of the stable 

allylpalladium chloride dimer in situ may therefore reduce the rate of turnover of the catalytic cycle. These 

processes are described below for the example of 74 (Scheme 83). 
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Scheme 83: Postulated catalytic cycle for 74 with anticipated detrimental side reactions highlighted. 

 

Allyl ester 74 can be used as an intermediate towards gem-difluoropyrolidines,
178

 as a fluorinated 

mechanistic probe into valproic acid hepatotoxicity
179

 and as an intermediate in trifluoroethyl compound 

synthesis.
180

 Allyl ester 75 has previously been used by others as a novel fluorosulfonyl containing 

monomer/polymer.
181

 Reports of the synthesis of 76 could not be found. For the three proposed 

precursors, literature precedent exists for the catalytic removal of allyl functionalities from carboxylates
182

 

and phosphonates.
183

 

 

Allyl ester 74 was synthesised from chlorodifluoroacetic acid and allyl alcohol.
178

 Allyl ester 75 was 

synthesised by reaction of allyl bromide with the silver salt of 2-(fluorosulfonyl)-2,2-difluoroacetic acid.
184

 

Both procedures yielded synthetically useful quantities of each compound. 

 

 

Scheme 84: Synthesis of allyl esters 74 and 75.Conditions a:
178

 n-hexane, 70 °C, 9 h. b:
184 

rt, 24 h. 
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The synthesis of 76 was less trivial. The commercially available difluorocarbene precursor 71 can be 

synthesised via the Michaelis-Arbuzov reaction between triethyl phosphite and dibromodifluoromethane 

(77) (Scheme 85), and this is how the compound is typically synthesised according to literature 

precedent.
185

 For safety reasons we opted to follow the more modern procedure of Savignac et al.; 

previous reports had described earlier procedures as being potentially explosive. Triallylphosphite was 

substituted for triethylphosphite in the reaction with 77 but phosphonate 76 was not detected in the crude 

reaction product. When validating the original method with triethylphosphite, 71 was recovered in less 

than 5 % yield. The reported procedure was performed on a 1 L scale; the attempted synthesis of 71 and 

76 were performed on less than 100
th
 of this scale. Halomethane 77 has a boiling point of approximately 

22 °C: in a small scale reaction system at 60 °C, very little of this volatile reagent would remain in 

solution, even if used in excess with an efficient reflux condenser. 

 

 

Scheme 85: Synthesis of 71 via Michaelis-Arbuzov reaction. Conditions a:
185c

 THF, 60 °C, 1.5 h. 

 

The method was modified; higher concentrations of the reagents were charged to screw-top reaction 

vials. With this set-up, the THF solution was heated to 100 °C for 6.5 hours to combine triallylphosphite 

and 77, giving what was believed to be the target compound 76. Purification of the phosphonate was 

done by column chromatography, but the reaction gave a wide range of isolated yields from 4 to 43 %. 

The phosphonate is not volatile, and samples kept in vials in a fridge for more than one year have shown 

no signs of decomposition. The cause for this wide range of yields was suspected to be due to the slow 

loss of 77 from the screw top reaction vials over the course of the experiment. With no other suitable 

vessels available at the time, and with useful quantities of phosphonate now synthesised, this procedure 

was not optimised any further. 

 

After extensive two dimensional NMR and high resolution mass spectrometry analysis, what was initially 

thought to be the expected target compound 76 was in fact the debrominated analogue 

diallyl(difluoromethyl)phosphonate (78) (Scheme 86). If the Michaelis-Arbuzov reaction between 

triallylphosphite and 77 had proceeded as expected, 76 should have been obtained just as 71 was 

following method validation. While it is known that bromine is not present in the isolated product of this 

reaction, it was not clear at which point in the reaction it is lost. A compelling reason for the outcome of 

this reaction is not able to be made based on the evidence available. 
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Scheme 86: Generation of debromo- product 78. Conditions a: THF, sealed tube, 100 °C, 6 h. 

 

The anion of 78 is a known species and can be formed by the reaction of LDA with the protonated parent 

compound to give the lithiated methanion as a reactive intermediate in situ.
186

 No reports of this species 

being quenched with electrophilic bromine exist in the literature. A procedure for the bromination of 78 

can be proposed, for example employing N-bromosuccinimide (NBS) as a nucleophilic bromine source, 

but the literature precedent to use extremely toxic hexamethylphosphoramide made attempting any such 

procedure at this point in the investigation unappealing (Scheme 87).  

 

 

Scheme 87: Proposed bromination of 78.
186

 Conditions a: 1 mol. eq. LDA, 1 mol. eq. HMPA, 0.5 mol. eq. NBS, THF, 

-78 °C, 15 min. 

 

Basing conditions on reports of deallylation of allyl esters, in first-pass reactions 74 and 75 were taken 

with substoichiometric tetrakis(triphenylphosphine)palladium
(0)

 and triphenylphosphine in refluxing THF 

(Scheme 88).
182, 183

 2-Phenylpropene (79a) was selected as the carbene trap based on reports indicating 

this particular olefin couples well with difluorocarbene to give very good yields of the corresponding                 

(2,2-difluoro-1-methylcyclopropyl)benzene (80a). 

 

 

Scheme 88: Exposure of 74 and 75 to Pd(PPh3)4. Conditions a: 0.5 mol. eq. 79a, 2 mol. % Pd(PPh3)4,  

8 mol. % PPh3, THF, reflux, 6 h. 
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No reaction was observed for 75 and only the unreacted started materials were recovered. When 

exposed to Pd(PPh3)4, 74 had reacted in the desired manner. Analysis of the crude reaction product 

showed mostly starting material and reagent recovery, but crucially peaks in the 
1
H and 

19
F NMR spectra 

corresponding to 80a could clearly be identified. Conversion was low, estimated to be less than 5 % by 

comparison of 
1
H NMR integrations. 

 

Repetition of the experiment with omission of the palladium species returned only unreacted starting 

materials. It was clear that the transition-metal complex had caused the expected decomposition of 74 to 

release difluorocarbene into the reaction mixture. Attempts to monitor reaction progress by conducting it 

in refluxing deuterated chloroform and extracting aliquots for analysis showed no reaction in this solvent. 

Performing the experiments with and without Pd(PPh3)4 at a higher temperature in refluxing 2-methyl THF 

gave the same results as in refluxing THF. 

 

The close agreement of the estimated conversion of 79a to 80a and the catalyst loading implied this 

reaction may have a stoichiometric demand on the palladium species using these conditions. Repeating 

the experiment with a 20 mol. % Pd(PPh3)4 loading caused no conversion of 79a to 80a as evidenced by 

the lack of product peaks in the 
19

F NMR. The reason for the loss of reactivity on increacing the metal 

complex loading was not obvious. The time to continue this investigation was not available and method 

optimisation was not able to be performed. 

 

2.2.3 Microwave assisted synthesis of difluorocarbene adducts. 

As an expansion of the investigation to develop new methods for the generation and reaction of 

difluorocarbene, time was taken to look at improving existing procedures for the use of known precursors. 

Many established carbene precursors can be categorised as being thermal sources of carbene; the 

systems in which they are used require relatively high temperatures to release the carbene species into 

the reaction mixture and to provide sufficient energy to allow it to react. 

 

The development of a novel and potentially powerful methodology based on microwave heating of 

reactions was proposed for the next investigation. The use of microwave energy to rapidly and evenly 

heat reaction mixtures is a relatively new technique, and reports in recent decades have tried to define or 

discredit the existence of a non-thermal microwave effect on reactions.
187

 

 

Microwave technology first saw use in inorganic chemistry labs around the 1970s and later in organic 

chemistry labs in the 1980s.
188

  Since then, there have been many comprehensive and informative 

reviews of the technology. Early applications employed modified domestic appliances due to the lack of 

purpose built equipment. As such, these early systems made temperature and power a challenge to 

control. Obtaining consistent or predictable outcomes to reactions was difficult: modern equipment 

addresses this problem and the technology is discussed briefly below. 
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The key difference between microwave heating and conductive heating is the ability to rapidly and 

remotely provide energy to a reaction mixture. In conventional conductive heating systems, eg. a flask in 

an oil bath on a hot plate, the transfer of energy is slow and can result in significant temperature gradients 

within a reaction vessel. These temperature gradients can cause premature decomposition of compounds 

or incomplete reaction of starting materials. By comparison, microwave heating in an efficiently designed 

reactor provides instant, rapid and even heating of a reaction mixture remote from the heat source ie. the 

microwave generating magnetron. This provides a uniform temperature profile throughout a reaction 

mixture, resulting in a predictable and repeatable rate and outcome of reaction. 

 

Microwave radiation occupies the part of the electromagnetic spectrum between infrared and radio 

waves. To avoid interference with commercial communication technologies that also rely on microwave 

radiation, most microwave heating appliances operate at a frequency of 2.45 GHz. As with all forms of 

electromagnetic radiation, the wave consists of an electronic and a magnetic component, both with equal 

frequency and amplitude oscillating in an orthogonal fashion. These two components cause the 

microwave heating mechanisms. 

 

Just as IR and NMR spectroscopy exploit dipoles within a molecule to probe the types of chemical bond 

present, the magnetic field of the microwave radiation interacts with the overall molecular dipole to cause 

heating: this phenomenon is called ‘dielectric heating’.
189

 The larger the molecular dipole, the more a 

molecule will experience this heating effect. Consequently, non-polar molecules are said to be microwave 

transparent and bulk samples do not tend to heat when exposed to microwave radiation. A classic 

example to illustrate this is to compare the rise in temperature of the liquid when heating a sample of 

water (polar) and a sample of hexane (non-polar) in the same microwave field. The water sample will be 

at a higher temperature than the hexane sample after exposure to the microwave radiation for the same 

time. 

 

As the magnetic field of the radiation oscillates, the molecules attempt to rotate to align with this field. If 

the frequency of oscillation is too low, each molecule has sufficient time to fully align with the magnetic 

field. If the frequency is too fast, the molecules do not have time to begin to move and will have no net 

rotation or energy gain. Microwave radiation is of the right frequency to allow molecules time to begin to 

rotate, but not to rotate sufficiently to become in phase with the radiation. As a molecule begins to align 

with the field of the microwave radiation, the field will have changed before it can become in phase with 

the radiation. As the molecule tries to change direction to move back into phase with the wave, energy is 

transferred to the system as molecular friction and collisions between rotating molecules. For this reason, 

gas samples with their widely spaced molecules cannot be heated using microwaves (Figure 18). 

 

The dielectric constant, ’, of a polar (solvent) molecule will affect its ability to couple with the microwave 

radiation, and is equal to the relative permittivity of the molecule at room temperature. The rate the 

solvent molecules lose energy to the medium is also important. This factor is called the loss tangent tan . 

For two microwave active solvents with a similar dielectric constant, the one with the larger loss tangent 
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will transfer heat to the bulk faster. The loss tangent and dielectric constant can be used to calculate and 

compare the loss factor of a solvent ’’. ’’ can be used to compare which solvents will most efficiently 

convert stored microwave energy into thermal energy of the system. The equation relating them is 

 

 

The second heating effect associated with microwave energy is referred to as ‘conductive heating’ and is 

induced by the electric field of the radiation. Unlike in the traditional context, this conductive heating is not 

provided by the thermal energy of a heating mantle in contact with a reaction flask, but rather from 

solvated ions in the reaction mixture. As the electric field of the radiation oscillates, ions will move through 

solution to try and follow the phase of the wave. As they do this, they collide with other molecules and 

thus the kinetic energy of the migrating ions is converted into thermal energy within the system. 

Conductive heating is a stronger energy transfer mechanism than dielectric heating. 

 

             

Figure 18: Schematic of microwave dielectric (left) and conductive (right) heating. 

 

The two modes of microwave heating mean that a solution can be heated in a rapid and homogeneous 

fashion; however these phenomena cannot be relied upon unless the radiation is applied to a system in a 

controlled way. Another property of oscillating waves is their ability to experience interference. In a 

domestic microwave oven, the microwave radiation field density is not uniform; after a short period of 

operation, a complex environment of standing waves with nodes and modes will develop within the 

microwave cavity. While this is sufficient for heating foodstuffs in a domestic setting, were two or more 

reaction vessels to be placed in this type of microwave environment, none of them would experience the 

same microwave heating effect. This is why no early scientific microwave methods could ever be classed 

as reliable.  

 

There are two templates for microwave reactor design. In a single-mode reactor, microwave radiation is 

focussed onto a single point at the centre of the reactor cavity precisely where the reaction vessel is 

located (eg. CEM Discover
®
 range).

190
 The other type of reactor is closer in design to a domestic 

microwave appliance, but uses magnetrons equipped with radiation diffusers to ensure that a 

homogeneous microwave field free from standing waves is established (eg. Milestone MicroSYNTH
®
 

range).
191

 These reactors have the advantage of being able to accommodate multiple reaction vessels of 

different sizes anywhere within the cavity, and will expose every vessel to the same radiation field every 

time.  

 

Open (reflux) or sealed (high-pressure) vessels can usually be used in both reactor types. In both 

vessels, microwaves can superheat a solvent. Superheating can be described as raising the temperature 

of a liquid above its normal boiling point without the liquid changing phase to become a gas. This can 
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sometimes be achieved in conventionally heated systems, but microwave heating is able to consistently 

superheat a solvent as a side effect of the ways in which the radiation transfers energy to the system. For 

a pure solvent, the molecules are heated by the radiation faster than the bulk loses thermal energy but 

without the formation of boiling nuclei. As no boiling nuclei form, the solvent can be made to boil at         

10 – 20 °C higher than expected. As ions and reagents are introduced to form a solution, boiling nuclei 

will be able to form and the super heating effect will become less pronounced. 

 

In a sealed reaction vessel, this effect is more pronounced as the superheating caused by lack of boiling 

nuclei is greatly enhanced by the simple mathematical relationship described by the ideal gas law               

PV = nRT: as the temperature of the system increases, so too does the vapour pressure in the head 

space of the sealed vessel. The increase in vapour pressure prevents the liquid from boiling as there is 

no extra volume for the liquid to expand into as a gas. Modern vessels are able to withstand very high 

pressures (>100 atm),
191 

allowing many solvents to be heated far in excess of their normal boiling point 

with any excess pressure being safely vented in a controlled manner. A reflux system is inherently safer 

as the risk of explosion is mitigated by running the reaction at atmospheric pressure. 

 

The unique way in which microwaves transfer energy to a system was thought to be the reason why 

reactions can be seen to be influenced by a non-thermal microwave effect. In its simplest form, the rapid 

and uniform heating of a reaction in a microwave to temperatures in excess of those that can be achieved 

in traditional systems will have an effect on the kinetics of a reaction, increasing the rate of that reaction. 

This gives a simple explanation for why microwave reactions can be significantly faster than their 

conductively heated analogues. Alternatively, the unique microwave heating profile can give rise to 

unexpected results. Reports exist of reactions performed under microwave heating having a different 

outcome to when traditional conductive heating is employed, even when the final temperature of the two 

reactions is the same.
192

  

 

For the monosulfonation of naphthalene (a classic demonstration of kinetic vs thermodynamic control of a 

reaction), the specific heating profiles obtained using microwave heating of a reaction in a sealed vessel 

allowed selective synthesis of the 1- or 2-naphthalenesulfonic acid. For a reaction time of only a few 

minutes, rapid heating using high microwave power gave predominantly the thermodynamic                              

2-naphthalenesulfonic acid product; slow heating using low microwave power gave predominantly the 

kinetic 1-naphthalenesulfonic acid. Very fast reactions are required to observe this effect. The slow 

heating rate gave results in agreement with conventional heating of the reaction using a hot plate. The 

close relationship between heating rate to a given temperature and relative rates of 

sulfonation/desulfonation at the 1- or 2- position of naphthalene is what gives rise to this observed 

difference in product ratio after reduced reaction times (Figure 19). 
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Figure 19: Ratios of 1- and 2-naphthalenesulfonic acid at different microwave powers.
192

 

 

For reaction mixtures that do not couple to microwave radiation and therefore will not heat rapidly, silicon 

carbide can be used as an energy transfer medium. Silicon carbide is a chemically inert ceramic material 

that couples strongly to microwave radiation. It can be added to a reaction mixture as a powder or doped 

into a Teflon disk or stirring bar to facilitate the transfer of microwave energy to a reaction mixture. 

Vessels made from sintered silicon carbide, or inserts for glass or polymer vessels are available. Such 

SiC vessels have been used to investigate the claims of non-thermal microwave effects:
193

 microwave 

radiation will not penetrate a SiC vessel, but will be totally absorbed by it. The contents of the vessel will 

therefore be heated by traditional conductive methods. The use of SiC vessels allows the highly 

controlled delivery of microwave energy, but ensures only conductive heating of the contents occurs. In 

the report, identical reactions were performed in Pyrex and SiC vessels heated by microwave radiation. It 

was found that reactions heated directly by the microwave radiation gave exactly the same results as 

those heated by microwave energy delivered conductively via the SiC vessel. The identical results from 

both sets of reactions showed it was the rapid heating rate to high temperatures inside a microwave 

reactor that causes truncation in reaction times, not the microwave radiation specifically. 

 

Another modern technology that has received much interest in recent years is continuous flow reactors. In 

its simplest form, a flow reactor allows a reaction mixture to be continually drawn from attached reservoirs 

and the solution pumped through a narrow bore tube to allow rapid heating, cooling or irradiation of the 

reaction mixture when it transits through the reactor cavity. The products will be contained in the solution 

as it exits the reactor and can be collected for processing (Figure 20). 

 

 

Figure 20: Flow reactor schematic. 
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The use of high-pressure, small-bore reaction tubes allows a similar rapid heating profile and 

superheating of a solution to be achieved, like is possible with a microwave reactor, but in a purely 

conductive heating environment. In batch reactions, product output quantity is limited by the size of the 

reaction vessel. Reactions do not always perform on a large scale as they do in a small bench top 

experiment. This is due to establishment of thermal and concentration gradients in larger vessels. 

Inefficient stirring can cause areas of the reaction mixture to have different concentrations of reactants or 

products. Large externally heated vessels may be significantly cooler in the centre than the periphery.  

 

In flow reactors, premixing of the chemicals and the small bore of the channel through the reactor means 

there is insufficient cross section for such gradients to be established. As long as chemicals continue to 

be fed into the flow reactor, product will continue to be generated and collected from the outlet, removing 

limitations imposed by absolute reactor volume. There is no requirement to halt the reaction to empty 

product from a vessel, recharge it with new material and start the reaction again. 

 

In a batch context, the use of a large microwave cavity can allow several individual experiments to be run 

in parallel, often with reaction times approaching minutes or seconds compared to hours or days in 

conventionally heated systems, allowing the rapid screening of reactions. As demonstrated with the 

sulfonation of naphthalene, the use of microwaves can also give access to certain reaction pathways that 

would not normally occur with conventional heating methods.  

 

The advantages of rapid microwave heating and high-yielding flow applications are of particular 

importance and interest to the pharmaceutical industry where efficiency and productivity are critical to a 

company’s success.
194

 Microwave and flow reactor technology can be combined. Using this set up it is 

possible to exploit the highly controllable heating profile and power settings of a microwave and apply it to 

the continuous synthesis of large volumes of product.
195

 This is considered by some to be the best 

available technology to allow highly controlled, high output chemistry to be conducted. 

 

Several publications now exist that describe the application of microwave energy to heat a reaction, and 

as more is learned about the technology, the non-thermal microwave effect does appear to be a purely 

thermal phenomenon that is significantly more efficient than traditional heating methods. Although past 

claims of an unexplained, non-thermal microwave effect still have subscribers,
 
it is generally believed that 

early unexplained results were caused by erroneous temperature monitoring of reactions or use of 

primitive microwave technology.
187

   

 

With the enhancements in reaction performance that may be possible with microwave heating, the 

development of a new method for the generation of difluorocarbene from existing carbene sources was 

instigated. An easily handled precursor that is known to decompose to give difluorocarbene upon heating 

was chosen. Sodium chlorodifluoroacetate (68) and sodium bromodifluoroacetate both meet this 

requirement: 68 was chosen as it is relatively cheap and commercially available.  
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The common drawbacks associated with existing difluoromethylation procedures using halogenated 

acetate salts are that they are often slow, energy intensive processes requiring a large excess of the 

carbene precursor to obtain products in high yields. By exploiting the superior heating characteristics of 

microwave energy, a significant reduction in reaction time was sought, using fewer equivalents of the 

carbene source and low boiling-point solvents that will facilitate easier product processing. The use of 

high-pressure vessels and the superheating effect should facilitate the high temperatures required for 

these types of reactions. The choice of 68 as the carbene precursor would preclude toxic heavy-metals 

and ODSs from the method and produce only CO2 and NaCl as benign side products. 

 

In a test experiment based on the first reported reaction of difluorocarbene, 68 was heated in a THF 

solution using microwave irradiation with cyclohexene (79b) as the carbene trap.
145

 THF was selected 

over the 1,2-dimethoxyethane used in the reported method as a solvent that would couple to the 

microwave radiation was required. Using moderate conditions of 500 W of power heating the system to 

150 °C for 15 minutes, the expected product 7,7-difluorobicyclo[4.1.0]heptane (80b) was identified in the 

crude product by 
1
H and 

19
F NMR. The yield was estimated at 8 % based on NMR integration. This was 

in agreement with that reported for the synthesis of 80b using conventional heating methods of 11 %. A 

second test reaction was performed with benzaldehyde as the carbene trap.
196

 Using the same 

microwave conditions as before, (difluoromethyl)benzene (81) was identified in the crude reaction product 

by 
19

F NMR. The yield was not estimated due to the complex nature 
1
H NMR spectra. Satisfied by the 

qualitative evidence that difluorocarbene can be generated from 68 and effectively trapped when heated 

using microwave radiation, the method was now optimised (Scheme 89). 

 

 

Scheme 89: Test reactions for the generation and trapping of difluorocarbene under microwave heating conditions. 

Conditions a: 0.16 mol. eq. 68, THF, 500 W, 150 °C, 15 min. 

 

Both olefin and aldehyde were seen to be effective carbene traps. The clean conversion of 79b to 80b 

and the large number of examples of gem-difluorocyclopropane synthesis from difluorocarbene and olefin 

prompted their use during the early phase of this investigation. Results from these cyclopropanation 

reactions would allow the performance of this new method to be directly compared to those previously 

reported. 
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A new olefin was chosen to trap difluorocarbene generated using this emerging method. Yields of              

gem-difluorocyclopropane from the electron-rich compound 1,1,2,2-tetramethylethene (79c) using other 

procedures are all consistently high. Cyclohexene, by comparison, is only moderately electron-rich so is 

not the best alkene to use to trap an electron-deficient carbene.  

 

Solvents were screened that solvated sodium chlorodifluoroacetate but not the sodium chloride by-

product. By precipitating out the sodium chloride from the reaction mixture, the options of removing it by 

filtration or washing of the reaction mixture with water would be assessed. THF, MeCN, EtOAc, acetone 

and DMSO were identified as suitable solvents with respect to these criteria. With the exception of EtOAc, 

all can be removed by water during work up to leave the extracted product of the carbene [2+1] 

cycloaddition. 

 

Using the microwave conditions detailed for the test reactions and a 3:1 stoichiometry of 68:79c all but 

one of the selected solvents facilitated the carbene reaction to yield the target molecule (80c). DMSO 

should be avoided due to an explosive reaction occurring as soon as the microwave power was applied to 

the vessel. The highest conversion of 79c to 80c was qualitatively observed in THF by comparison of 

integrals in the 
1
H NMR spectra. 

 

Two significant problems were identified with the procedure at this early stage. Although an efficient 

carbene trap, the volatility of 79c and 80c would make development of a work up procedure and accurate 

quantitation of the reaction challenging. The pressure limit on the CEM Discover microwave reactor in use 

at the time was also problematic. As a safety feature, if the pressure within the reaction vessel exceeds 

300 psi the microwave will abort the experiment. Most experiments had to be repeated several times for 

this reason: sufficient quantities of CO2 are generated in this procedure to just exceed this 300 psi limit.  

 

To aid accurate quantitation, 79a (Scheme 89, page 67) was substituted for 79c as the carbene trap. This 

aromatic olefin is also reported to give high yields of cyclopropane when combined with difluorocarbene. 

Importantly, 79a and 80a have considerably higher boiling points than 79c and 80c making isolation and 

quantitation easier. A modern Milestone MicroSYNTH reactor was chosen to continue method 

development with. With an upper pressure limit of 1450 psi and an automatic pressure release 

mechanism that would not abort the run, CO2 generation was no longer a problem. Optimised conditions 

were rapidly identified that were a compromise between the shortest possible reaction time and 

consideration to the longevity of the reactor parts.  

 

Three equivalents of 68 were dissolved in the appropriate volume of a 0.5 mmol mL
-1

 solution of olefin in 

THF. Fewer than 2.5 equivalents of 68 caused small but significant reduction in conversion of 79a to 80a; 

three equivalents ensured quantitative conversion of the olefin to cyclopropane. The reaction did not 

require the use of anhydrous reagents, an inert atmosphere or pre-drying of any of the reaction vessel 

parts, making execution of each experiment operationally straightforward.   
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A temperature of 170 °C provided a sufficient margin at which quantitative olefin conversion occurred in 

every experiment. It was established that 150 °C was the minimum temperature that could be tolerated by 

this reaction without any appreciable reduction in yield of the cyclopropane. At 130 °C cyclopropane was 

still generated but conversion was low at 33 % after 15 minutes. 

 

The use of 300 W maximum energy was sufficient to rapidly heat the reaction mixture to the target 

temperature. As expected, higher power settings heated the reaction mixture to the target temperature 

faster, but in one example where a small volume of reaction mixture was being used, damage to the 

reactor vessel shield was observed at 700 W. Surplus microwave energy that could not be absorbed by 

the reaction mixture was absorbed by the reactor parts themselves; 300 W would not cause this damage 

irrespective of reaction volume but would still allow rapid heating to be achieved. Experiments using              

200 W and 100 W showed that lower power settings were unable to heat the reaction mixture above the 

critical temperature of 150 °C that was previously identified. 

 

Finally, five minutes reaction time was sufficient to allow the target temperature to be reached and held 

there for a short time (just over one minute in a typical reaction heating profile, Figure 21). This allowed 

quantitative conversion of 79a to 80.  Shorter reaction times were acceptable, but five minutes ensured 

that the reaction should always go to completion. This still represents a significant truncation in time over 

previously reported procedures. During method development experiments and analysis of aborted runs, it 

was casually observed that, in most cases, once the vessel contents reached 150°C the reaction 

appeared to have finished with quantitative conversion of olefin to cyclopropane. 

 

 

Figure 21: Typical heating and power profile.  

 

The optimised conditions for this method are 170 °C, 300 W, 5:00 minutes using a 0.5 mmol mL
-1

 THF 

solution of olefin to solvate three molar equivalents of 68. Under these conditions, quantitative conversion 

of 79a to 80a was always observed by 
1
H NMR. Conditions in excess of those stated did not offer any 

real benefit or improvement to this reaction. Importantly, these conditions also provided sufficient margin 

of error, providing a robust method to take forward for further investigations. Method optimisation 

experiments are summarised below (Table 7). 

 

 

Temperature 

(°C) 

Power (W) 
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Table 7: Microwave mediated difluorocyclopropanation: reaction conditions screen. 

 

Entry Power (W) Temperature 
(°C) 

Time 
(minutes) 

Conversion 
(%)

a
 

1 300 170 15 100 
2 300 150 15 99 
3 300 130 15 33 
4 300 170 10 100 
5 300 170 5 100  
6 200 157

b
 15 100 

7 100 153
c
 15 84 

8 300 170 5 9
d 

9 300 170 5 61
e 

a: Conversion calculated by direct comparison of diagnostic starting material and product signals in 
1
H NMR of 

reaction mixture immediately after removal from microwave reactor. b: maximum temperature possible with 200 W.  

c: Maximum temperature possible with 100 W. d: Conversion with 1 mol. eq. of 68. Maximum temperature possible 

was 140 °C e: Conversion with 2 mol. eq. of 68. Maximum temperature possible was 161 °C. 

 

Dilution of the cooled reaction mixture and extraction of the cyclopropane into diethyl ether is the 

preferred work-up for this method. Filtration-concentration or distillation of the cyclopropane was not as 

effective or straightforward. Concerns existed about the potentially volatile nature of some of the target 

cyclopropanes which caused problems during early method optimisation. High boiling-point aromatic 

olefins were chosen to facilitate efficient recovery of the cyclopropanes and to provide representative 

yields for this new method. In most instances the crude product was easily purified by column 

chromatography on silica gel with hexane. The scope of this method with aromatic alkenes is shown 

below (Table 8). 

 

Table 8: Microwave mediated difluorocyclopropanation: scope. 

Entry Conditions Olefin 79 Cyclopropane 80 Conversion
†
 Isolated 

yield (%) 

1 a 

 

 

99 75 

2 a 

 

 

100 87 

3 a 

 
 

99 87 

4 a 
 

 

100 78 

5 a 

 

 

97 76 



78 

 

6 a 

 

 

99 75 

7 a 

 
 

100 75 

8 a 

 

 

99 72 

9 a 

 

 

99 71 

10 a 

 

 

95 67 

11 a 
 

 

99 42 

12
‡ 

a 

 

 

100 70 

Conditions a: 6 mmol 68, 0.5 mmol mL
-1

 79 in THF 4 mL, 300 W, 170 °C, 5 min.  †: Conversion calculated using 
1
H 

NMR. ‡: Bpin = tetramethyldioxaborolane. 

 

The only observed example of an aromatic olefin that was not compatible to the reaction conditions was 

4-vinylaniline. This particularly electron-rich and reactive olefin reacted indiscriminately to give a charred 

black solid. As a means of quantifying any reactions that generated volatile gem-difluorocyclopropanes, 

reaction mixtures were routinely sampled immediately on opening the vessel for quantitative 
19

F NMR 

analysis. This should have facilitated assessment of the reaction success should the products be lost by a 

significant amount during workup and purification. The difluorocyclopropanation method was applied to a 

small number of aliphatic olefins, however complications during isolation and purification prevented 

accurate determination of yields (Table 9).  

 

Table 9: Microwave mediated difluorocyclopropanation: aliphatic olefins 

Entry Conditions Olefin 79 Cyclopropane 80 
1
H NMR 

Conversion (%) 

19
F NMR 

yield (%) 

1 a 

 

 

-
†
 48 

2 a 

 

 

87 92 

3 a 

 

 

57 49 

Conditions a: 6 mmol 68, 0.5 mmol mL
-1

 79 in THF 4 mL, 300 W, 170 °C, 5 min.  †: Solvent peak prevents accurate 

calculation of conversion. 
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Quantitative 
19

F NMR studies were performed using the eretic calculation function in Topspin in 

comparison to an external 1,4-difluorobenzene standard. This fluorinated species was chosen specifically 

as its chemical shift did not fall on the characteristic bulge in the spectra base line associated with the 

fluorine signal inherent due to the NMR glassware. By comparison to the percentage conversion and 

isolated percentage yield results, it was apparent that the quantitative 
19

F experiments were not 

consistent, even when every care had been taken to work with accurately prepared solutions. The figures 

given in Table 9 are therefore only able to be viewed as an illustration of the technique rather than as a 

reliable quantitation method, especially when synthesising volatile cyclopropanes that would not be 

possible to efficiently recover and quantify by conventional means. 

 

The utility of this improved process was demonstrated with the delivery of a pharmacologically-relevant 

product; thus, an efficient synthesis of the difluoroanalogue
197

 of the hyperlipidemia agent Ciprofibrate 

has been delivered. Difluorocylopropanation of 4-vinyl anisole (79p) under the established microwave 

conditions yields cyclopropane 80p, which was directly converted to 4-(2,2-difluorocyclopropyl)phenol 

80q in an overall yield of 89%, and then to the gem-difluoro Ciprofibrate analogue (82) (Scheme 90). 

 

 

Scheme 90: Synthesis of Ciprofibrate analogue 82. Conditions a: 3 mol. eq. ClCF2CO2Na, THF, 300 W, 170 °C,            

5 minutes. b: BBr3 DCM 89 %. c: NaOH, CHCl3, acetone. 

 

Methods for the conversion of olefins to gem-difluorocyclopropanes can also convert alkynes to                   

gem-difluorocyclopropenes.
198

 The aromatic alkynes 4-ethynyltoluene, 1,2-diphenylacetylene and phenyl 

acetylene were screened against the established microwave conditions. The reactions with these alkynes 

did not proceed cleanly. The expected cyclopropenes were confirmed to be present by 
19

F NMR analysis 

of the crude products but none were able to be isolated. It was not immediately obvious why the 

microwave-mediated difluorocyclopropenation did not proceed as efficiently, however at this time a 

second method optimisation process was not a priority. 
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An unexpected side reaction was identified that would not have been observed if a different solvent had 

be used for the microwave-mediated difluorocyclopropanation method. In every reaction mixture sample 

and isolated crude product a set of unidentified peaks were always seen to be present by 
1
H and 

19
F 

NMR. Initially, only a correlation between the 
1
H triplet δ= 6.21 ppm (J 74.5 Hz) and the 

19
F doublet       

δ= -84.36 ppm (J 74.5 Hz) could be made. During attempts to purify the product of the reaction between 

difluorocarbene and 79p, the product that accounted for all of the unexpected peaks was isolated. After 

full characterisation of this compound it was apparent that the excess difluorocarbene and carbene 

precursor 68 present in the reaction mixture were reacting with THF. This competing reaction was 

opening the THF ring to yield 4-(difluoromethoxy)butyl 2-chloro-2,2-difluoroacetate (83) in 22 % after 

isolation.  

 

The isolation of the novel compound 83 highlighted a new process that would not be expected to happen 

with 68 under conventional atmospheric pressure heating conditions. The only other comparable 

synthesis of fluorinated compounds from THF used a selenoxide reagent and acetic anhydride to effect 

the ring opening (Scheme 91).
199

 It also gave an insight into the mechanism of difluorocarbene generation 

and reaction in this microwave heated system. 

 

 

Scheme 91: Fluorinated compounds from reactions with THF. Top: this investigation. 

 

Examples of concerted difluorocarbene release from a precursor molecule or via dechlorination of 

chloro(difluoro)methyl anion have both been proposed as the mechanism for the generation or delivery of 

the carbene species. For example, difluorocarbene generated from chlorodifluoromethane under strongly 

basic conditions is proposed to liberate difluorocarbene in a concerted manner.
200

 Methyl 

chlorodifluoroacetate has been shown to liberate a chloro(difluoro)methyl anion into solution upon 

exposure to LiCl.
201

 Trapping experiments have shown this to be the case. Sodium salt 68 has been 

shown to decompose by both pathways depending on the solvent. Kinetic studies in hydroxylic media 

implied a concerted decomposition to liberate difluorocarbene;
202

 studies in non-hydroxylic media 

suggested that chloro(difluoro)methyl anion is first formed. The chloro(difluoro)methyl anion has also 

been shown to have a finite lifetime in solution.  
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Attempts to identify any transient chloro(difluoro)methyl anion with a known trap for this species did not 

produce any evidence to support its presence:
201

 no 1,3-dichloro-1,1,3,3-tetrafluoro-2-phenylpropan-2-ol 

was detected when 68 was decomposed under microwave heating conditions in the presence of 

chlorodifluoroacetophenone (Scheme 92).
203

 

 

 

Scheme 92: Chloro(difluoro)methyl anion trapping experiment. 

 

The ring opening reaction to generate 83 would not be expected to take place in a conductively heated 

atmospheric pressure system as the temperature of the reaction would be limited to 66 °C. It may be 

possible to achieve the same reactivity using a sealed reaction tube or steel bomb, but the rapid heating 

that can be achieved with microwaves would not be possible for such a system, so would not give a direct 

comparison of the reaction conditions.  

 

The structure of 83 implies that in the microwave induced decomposition of 68 in THF, difluorocarbene is 

generated in a concerted manner and the chloro(difluoro)methyl anion is not present in solution. The 

existence of difluorocarbene in solution is known as the expected gem-difluorocyclopropanes from a [2+1] 

cycloaddition process have been isolated. This proposal, a mechanism for the formation of 86, and the 

reasons for chloro(difluoro)methyl anion not being involved are described below (Scheme 93).  

 

 

Scheme 93: Possible mechanistic routes for the ring opening of THF by sodium chlorodifluoroacetate with 

microwave heating. Proposed mechanism is emphasised in bold in the blue box. 
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Irrespective of the path to 83, two molecules of 68 are required to ring open THF in this way. As 

described in bold in the blue box (Scheme 93), the first equivalent of 68 decomposes in a concerted 

manner to liberate carbon dioxide, difluorocarbene and chloride ion. The chloride ion is removed from the 

solution as a precipitate with sodium. The electron-poor difluorocarbene reacts with a lone pair of 

electrons on the oxygen of THF resulting in the formation of an oxonium yilde.  

 

Reaction of the second equivalent of 68 through the carboxylate oxygen at the THF carbon adjacent to 

the oxonium ylide oxygen causes C-O bond cleavage, generating the difluoromethyl anion of 83. The 

solvated sodium ion from the second equivalent of 68 provides the counterion for this species until it 

undergoes protonation to surrender the product 83. If the chloro(difluoro)methyl anion was present in 

solution, it could also act as a nucleophile, attacking the THF carbon adjacent to the oxonium ylide. No 

evidence for the existence of 1-chloro-2,2-difluoro-5-(difluoromethoxy)pentane (84) in the reaction product 

was found (Scheme 94).  

 

 

Scheme 94: Proposed mechanism towards 84. 

 

If this pathway is correct, further proposals about the relative reaction rates of each step can be made; 

these are based on the observed quantitative conversion of olefin to cyclopropane, and the fact that 83 is 

the only detected side product. First, the rate of difluorocarbene liberation from the decomposition of 68 is 

slow enough that there is a concentration of carbene and 68 present in the reaction mixture at any given 

time during the reaction. If all 68 decomposed rapidly, no carboxylate would be present to provide the 

corresponding motif in 83. 

 

Second, the presence of carbene and carboxylate in solution would imply that oxonium formation is 

slower than carboxylate attack. If carboxylate attack was slow, it would be present in solution for long 

enough to decompose to give more carbene, and not react with the oxonium species, thus removing itself 

from the reaction medium as part of the stable product 83. This also further implies the oxonium ylide is 

activated enough to allow the weakly nucleophilic carboxylate anion to be a good nucleophile. 

 

Finally, the low yield of 83 compared to the quantitative conversion of olefin to cyclopropane would imply 

the reaction of carbene with olefin is faster than with THF, even though THF is in massive excess 

compared to all other reaction components. 

 

The alternative routes shown in Scheme 93 are believed to be less probable. It is doubtful that 

difluorocarbene is delivered in the form of a carbene equivalent via chloro(difluoro)methyl anion (red box). 
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This would first require the decarboxylation of 68 to release chloro(difluoro)methyl anion into solution. The 

electronegative oxygen of THF would then have to react with this anionic species to displace chloride 

giving the oxonium intermediate. 

 

Alternatively, and as could be observed if 68 was heated in THF under conventional reflux conditions, 

where the lack of sufficient thermal energy should not cause decomposition, the carboxylate would first 

have to react with THF to ring open the cyclic ether giving a sodium alkoxide-type intermediate. Two 

possible steps are now possible. The first, related to the chloro(difluoro)methyl anion pathway mentioned 

above, would require this anion to react with the alkoxide oxygen, displacing chloride from the 

chloro(difluoro)methyl anion to yield the 83 anion. The alternative is that the alkoxide reacts as a 

nucleophile, displacing chloride from the second equivalent of 68. This di-acetate species with a terminal 

carboxyl group now undergoes decarboxylation to yield the 83 anion. This hypothesis could be tested by 

heating 68 in THF under atmospheric reflux conditions, once using conventional conductive heating and 

once using microwave heating to ensure that any differences due to the heating method are accounted 

for. 

 

It is of course possible that upon formation, difluorocarbene could be dimerising or trimerising to give inert 

by-products. As tetrafluoroethene and perfluorocyclopropane are both gaseous species, they are 

unsurprisingly not observed in these reactions, and thus these side reactions cannot be proven with the 

results available to this investigation. Experiments to quench the postulated anion of 83 with an 

electrophile (allyl bromide) did not give rise to the allyl analogue of 83, implying that the product anion is 

quenched rapidly in situ by adventitious protium. 

 

Other cyclic ethers were also shown to undergo ring opening under conditions similar to those used when 

generating gem-difluorocyclopropanes. Similar 1.5 mmol mL
-1

 solutions of 68 in THF, 2-methyl THF and 

tetrahydropyran were prepared. As 68 is not soluble in isochroman, a 0.5 mmol L
-1

 of isochroman in 

EtOAc was used to solvate three equivalents of the precursor. EtOAc has been shown to be unreactive 

towards 68 under such microwave conditions. All four solutions were exposed to microwave radiation of 

up to 300 W at 160 °C for 5 minutes. The reduction in temperature from 170 to 160 °C was necessary so 

that all four reaction mixtures could be rapidly heated to a temperature that they could all be maintained 

at for the remainder of the experiment. 

 

The ring-opened products were tentatively identified in the crude reaction products by 
1
H and 

19
F NMR 

(Table 10). For THF, tetrahydropyran and 2-methyl THF the products of ring opening (83, 85 and 86 

respectively) were all isolated in low yield. 2-Methyl THF was seen to undergo ring-opening exclusively at 

the less hindered C5 carbon. None of the C2 ring opened isomer was detected or isolated. The ring-

opened isochroman derivative 87 was not able to be isolated by column chromatography and was 

suspected to have decomposed soon after workup and purification attempts. 83, 85 and 86 were also 

seen to be unstable, but decomposed over days when stored in the fridge as opposed to over minutes in 

the case of 87. From analysis of the crude reaction product, it was not clear if isochroman had been ring-
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opened at C2 or C6. It was expected the slightly less hindered C6 position would be the site of ring-

opening, although a mixture of isomers would not be surprising should they be isolated in future studies. 

 

Table 10: Microwave mediated ring opening of cyclic ethers. 

Entry Conditions Cyclic ether Product Yield % 

1 a 

 

 

22 

2 a 

 

 

22 

3 a 

 

 

20 

4 b 

 

 

- 

Conditions: a: 6 mmol 68, 4 mL reagent, 300 W, 160 °C, 5 min. b: 6 mmol 68, 2 mmol reagent, 4 mL EtOAc, 300 W, 

160 °C, 5 min. 

 

Drawing on aspects of two previously mentioned investigations, and based on the reported reaction 

between Schiff base 28, difluorocarbene and dimethyl acetylenedicarboxylate (Scheme 95),
204

 a one-pot 

three-component reaction between imine, olefin and difluorocarbene to generate a functionalised 

pyrollidine ring using a microwave mediated protocol was proposed (Scheme 96). The reactivity of 

difluorocarbene with olefins under microwave heating conditions has been clearly demonstrated. The 

reactivity of 28 was only tentatively shown with difluorocarbene generated from phosphonate precursor 

71 under cold basic aqueous conditions (Scheme 79, page 62). In the proposed reaction, difluorocarbene 

was to be generated under comparatively forcing conditions from 68, facilitating its reaction with 28.  

 

 

Scheme 95: Three-component reaction between imine, carbene and olefin, including proposed transition states.
139

 

 

Difluorocarbene is expected to react with the imine nitrogen lone pair first, forming an iminium ylide. In the 

presence of an olefin with an electron withdrawing group, such as methyl acrylate, this ylide would react 

at the + end of the olefinic bond. The final step will require the enolate to cyclise onto the iminium C=N, 

closing the ring and neutralising the charge on nitrogen to generate a substituted pyrollidine (Scheme 96). 

Following a successful reaction, the gem-difluoro group may hydrolyse, leaving a carbonyl motif in its 

place. 
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Scheme 96: Proposed reaction between difluorocarbene, imine and olefin. 

 

The potential for a competing reaction pathway forming cyclopropane exclusively is a possibility with the 

reaction. More than one isomer of product may be generated depending on the electronic nature of the 

imine and olefin. Although doubtful based on observations from previous investigations, it would be 

unwise to exclude the possibility that difluorocarbene could be delivered via the chloro(difluoro)methyl 

anion. This species would be expected to attack at imine C, which gives rise to further isomers of product 

(Scheme 97). 

 

 

Scheme 97: Proposed three component reaction between imine, difluorocarbene and olefin.a: competing reaction to 

generate cyclopropane exclusively b: potential isomers of product. 

 

N-benzylideneaniline was taken in THF solution with an equivalent of olefin and three equivalents of 68. 

Reactions with methyl acrylate, butyl acrylate, styrene and 2-phenylpropene were heated to 160 °C for 5 

minutes with 300 W. In every reaction only imine and the associated gem-difluorocyclopropane were 

detected in the crude products. Increasing the loading of imine did not change this outcome. 

 

2.3 Conclusions 

 

The investigation to increase the number of methods to synthesise gem-difluoroaziridines in one step by 

the reaction of difluorocarbene with imines was not successful. Difluorocarbene generated from 

diethyl(bromodifluoromethyl)phosphonate under basic aqueous conditions did not react with imines to 

give azetidines. Later investigations into three component reactions involving imine, olefin and 

difluorocarbene using the thermal decomposition reaction of sodium chlorodfluoroacetate to generate 

difluorocarbene in an organic solvent did not show any reaction occurring between carbene and imine. To 

progress this investigation, alternative imines could be used that have electron withdrawing groups at the 

imine carbon. This pattern of functionalisation on imine is what was used in the only reported example of 

difluorocarbene [2+1] cycloaddition to such systems.  
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In the investigation to develop a new class of transition-metal sensitive difluorocarbene precursor, two 

candidate molecules based on existing difluorocarbene precursors were synthesised. Allyl-2-

(fluorosulfonyl)-2,2-difluoroacetate was not sensitive to substoichiometric Pd(PPh3)4. Allyl 

chlorodifluoroacetate was sensitive to substoichiometric Pd(PPh3)4, decomposing in the expected manner 

to generate difluorocarbene; this was trapped with an olefin giving the corresponding                                    

gem-difluorocyclopropane. No reaction was observed when the experiments were performed in the 

absence of the metal species. The next step in this investigation would require extensive method 

optimisation from the first pass reaction reported herein. The suspected dependency of the precursor on 

a stoichiometric loading of metal complex must be addressed also. If this is found to be the case, addition 

of a suitable compound that will convert the allylpalladium complex back into the catalytic species will be 

required. 

 

Finally, the investigation with the goal of developing a new difluorocarbene-generating method using 

existing precursors has delivered an easily performed microwave-mediated procedure for the addition of 

difluorocarbene to olefins. This method offers greatly reduced reaction times, employs easily removed, 

low boiling-point solvents and uses a source of difluorocarbene that has comparatively low toxicity and is 

not an ozone depleting substance. The method was able to convert a broad range of aromatic and 

aliphatic olefins to the corresponding gem-difluorocyclopropanes, most of which were also able to be 

isolated and quantified. The synthetic use of this method was also exemplified by the successful 

synthesis of the fluorinated analogue of the hyperlipidemia agent Ciprofibrate.  

 

The microwave assisted synthesis method was tentatively shown to add difluorocarbene to alkynes, 

yielding the expected gem-difluorocyclopropenes. Although the expected products were identified in the 

crude products, the conversions were not clean and the method will require further optimisation if it is to 

be used for this reaction. Furthermore, the discovery of the side reaction between difluorocarbene and 

carbene precursor 68 with the THF solvent of microwave mediated cyclopropanation procedure showed 

the novel ring-opening of cyclic ethers to generate unique polyhalogenated compounds. Although yields 

were low, the compounds were easily isolated. This reaction is believed to be unique to the microwave 

procedure described here. The ring-opening of cyclic ethers provides evidence to support the existence of 

free difluorocarbene in solution also. It would be of interest to perform these ring opening reactions in the 

presence of other nucleophiles to see if the corresponding fluorinated ethers can be generated (Scheme 

98). The microwave method will again require optimisation if the scope and limitations of this reaction are 

to be fully explored. 

 

Scheme 98: Proposed ring opening of cyclic oxonium by nucleophiles.
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CHAPTER 3: EXPERIMENTAL 

 

All chemicals were supplied by Sigma Aldrich, Alfa Aesar and Fisher Scientific and were used as 

received. Hexane, dimethylformamide (DMF), toluene, benzene and cyclohexane were purchased 

anhydrous. THF and Et2O were distilled from sodium benzophenone ketyl radical. MeCN and MeOH 

were distilled from calcium hydride. Dichloromethane (DCM), tert-butanol and chloroform were 

distilled from calcium sulfate.
205

 All experiments were performed in oven-dry glassware under a 

protective atmosphere of nitrogen (dried by passage through anhydrous phosphorus pentoxide) as 

required. 

 

All column chromatography was performed using Fisher silica gel, 60 Å pore size, 230-400 mesh,                   

40-63 µm. All thin layer chromatography (TLC) analysis was performed using silica gel on Merck 

aluminium TLC silica gel plates, 60 with 254 nm fluorescent indicator, with visualisation by 

fluorescence quenching using 254 nm light or staining with potassium permanganate solution. 

 

All melting points (Mp) were obtained using a Stuart SMP10 melting point instrument and are 

uncorrected.  

 

Nuclear magnetic resonance (NMR) data were acquired using a Bruker Avance 400 or 500 MHz 

spectrometer with samples dissolved in an appropriate deuterated solvent. Chemical shifts ( H) for 

hydrogen are expressed in parts per million (ppm) relative to tetramethylsilane (0.0 ppm). Chemical 

shifts for carbon ( C) are reported in parts per million relative to the carbon resonances of the residual 

solvent peak. Chemical shifts for fluorine ( F) are reported in parts per million relative to an external 

1,1,1-trifluorotoluene reference.  Chemical shifts for phosphorus ( P) are reported in parts per million 

relative to an external H3PO4 reference.  NMR results are reported as singlet (s), doublet (d), triplet (t), 

quartet (q) or combinations thereof, or multiplet (m). Coupling constants (J) are expressed in Hz and 

rounded to the nearest 0.1 Hz. 

 

All Fourier transform infra-red (FTIR) data acquired as thin films using a Thermo Electron Corporation 

Nicolet 380 FTIR with Smart Orbit diamond window instrument with wavenumbers (νmax) being 

reported in cm
-1

.  

 

Mass spectrum (MS) data exploiting electron impact ionization in the positive mode (EI
+
) was acquired 

using an Agilent Technologies 7890A GC System (Agilent Technologies 30 m × 0.250 mm, 0.25 µm 

film) with on-line Agilent Technologies 5975B inert XL EI/CI MSD. MS data exploiting electrospray 

ionisation in the positive mode (ESI
+
) was acquired using a Bruker MicrOTOF-Q spectrometer or 

Thermo Scientific LTQ Orbitrap XL spectrometer with direct injection. 
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Methyl aziridine-2-carboxylate rac-1d:
54

  

 

 

 

Ammonia gas was bubbled through a solution of methyl 2,3-dibromopropionate (1.18 g, 4.8 mmol) in 

MeCN (20 mL) at -20 °C with stirring for 6.5 hours. Excess ammonia was removed from the mixture 

via a stream of N2 at room temperature for 1.25 hours. The mixture was filtered and the filtrate 

evaporated in vacuo to give a yellow oil (504 mg) which was purified by column chromatography    

(4:1 v/v DCM: Et2O) to yield methyl aziridine-2-carboxylate as an unstable clear yellow volatile oil   

(158 mg, 32 %): Rf= 0.47 (4:1 v/v DCM:Et2O); 
1
H NMR (400 MHz, CDCl3) H 3.70 (s, 3H, C-H3), 2.46 

(dd, J 2.0, 4.0 Hz, 1H, 2-H), 1.93 (apparent s, 1H, 3-H), 1.80 (d, J 4.0 Hz, 1H, 3-H); 
13

C NMR                   

(100 MHz, CDCl3) C 172.4 (C=O), 51.5 (O-CH3), 27.7 (2-CH), 26.1 (3-CH2); νmax (thin film, cm
-1

) 3171, 

2952, 2249, 1729 (C=O), 1669 (N-H), 1436, 1203, 1034 (CO2Me), 732; m/z (EI
+
) calculated for 

C4H7NO2 [M
+
]; 101.1, found 101.1. 

 

 

Methyl 1-tosylaziridine-2-carboxylate rac-1e:
54

 

 

 

 

(N-(4-tolylsulfonyl)imino)phenyliodinane (410 mg, 1.10 mmol) was added to a stirred solution of 

Cu(OTf)2 (39.0 mg, 0.10 mmol) and methyl acrylate (463 mg, 5.40 mmol) in MeCN (5 mL) at 25 °C 

and stirred until all solid was dissolved (ca. 1.5 h dependant on particle size). The mixture was eluted 

through a plug of silica gel with EtOAc (50 mL) and the solvent removed in vacuo to give a dark 

yellow solid (297 mg) which was purified by column chromatography (3:1 v/v hexane:EtOAc) to yield 

methyl 1-tosylaziridine-2-carboxylate as a clear yellow oil (133 mg, 49 %): Rf= 0.22 (3:1 v/v 

hexane:EtOAc); 
1
H NMR (400 MHz, CDCl3) H 7.84 (d, J 8.0 Hz, 2H, Ar-H), 7.36 (d, J 8.0 Hz, 2H,              

Ar-H), 3.73 (s, 3H, OCH3), 3.34 (dd, J 4.0, 8.0 Hz, 1H, 2-H), 2.76 (d, J 8.0 Hz, 1H, 3-H2), 2.56 (d,        

J 4.0 Hz, 1H, 3-H2), 2.45 (s, 3H, Ar-CH3); 
13

C NMR (100 MHz, CDCl3) C 167.3 (C=O), 145.3 (4’-C), 

133.9 (1’-C), 129.9 (Ar CH), 128.2 (Ar CH), 52.9 (OCH3), 35.7 (2-CH), 32.0 (3-CH2), 21.7 (4’C-CH3);                 

νmax (thin film, cm
-1

) 1742 (C=O), 1596, 1536, 1494, 1439, 1393, 1328, 1291 (-SO2N=), 1227,                     

(-SO2N=), 1091, 1034, 1018 (CO2Me), 982, 949, 902 (Ar CH); m/z (ESI
+
) calculated for C11H14NO4S 

[M+H
+
]; 256.0638, found 256.0639 (error = 0.2662 ppm). 
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(N-(4-tolylsulfonyl)imino)phenyliodinane 17:
57

 

 

 

 

Diacetoxyiodobenzene (10.6 g, 33.0 mmol) was added via solid addition tube to an ice cold solution of 

4-toluenesulfonamide (5.66 g, 33.0 mmol) and potassium hydroxide (4.67 g, 83.2 mmol) in MeOH 

(115 mL) at 0 °C with stirring at 0 °C for 0.5 hours then 3 hours at room temperature. Ice cold water 

(115 mL) was added and the mixture left to stand overnight. The precipitated crude yellow crystalline 

solid was collected by suction filtration, recrystallised from MeOH and left to stand at 8 °C for 24 

hours. The solid was collected by suction filtration and washed thoroughly with the mother liquor to 

yield (N-(4-tolylsulfonyl)imino)phenyliodinane as a pale yellow crystalline solid (4.46 g, 36 %):                          

Mp: 98 – 100 °C (lit. 102 – 104 °C); 
1
H NMR (400 MHz, CD3OD) H 8.03 (d, J 8.0 Hz, 2H, 2/6-H), 7.79 

(d, J 8.0 Hz, 2H, Ts CH), 7.54 (t, J 8.0 Hz, 2H, 3/5-H), 7.35 (d, J 8.0 Hz, 2H, Ts CH), 7.14 (t, J 8.0 Hz, 

1H, 4-H), 2.42 (s, 3H, Ts CH3); 
13

C NMR (100 MHz, CD3OD) C 144.2 (1’-C), 144.1 (4’-C), 132.0                

(1-C), 130.5 (2/6-CH), 129.9 (4-CH), 129.0 (Ts CH), 127.2 (3/5-CH), 125.7 (Ts CH), 21.4 (CH3);            

νmax (solid, cm
-1

) 1592, 1493, 1468, 1444, 1265 (-SO2N=), 1130 (-SO2N=), 1078 (S=O), 988, 859              

(Ar CH); m/z (ESI
+
) calculated for C13H13NO2IS [M+H

+
]; 373.9706, found 373.9703 (error = -0.8356 

ppm).  

 

  

Dimethyl 2-benzylidenemalonate 21:
62

 

 

 

 

Benzaldehyde (6.32 g, 60.0 mmol), dimethyl malonate (6.59 g, 50.0 mmol) and piperidine (0.42 g, 

5.00 mmol) were stirred at reflux in benzene (250 mL) with a Dean-Stark apparatus for 18 hours, then 

cooled to room temperature and added to well-stirred cold aqueous hydrochloric acid (5 % w/v,            

50 mL) covered in Et2O (100 mL). The organic layer was removed and washed with water (100 mL), 

brine (100 mL), dried over anhydrous magnesium sulfate and concentrated in vacuo to give a yellow 

oil (11.3 g) which was purified by column chromatography (4:1 v/v petroleum ether 60-80:EtOAc) to 

yield dimethyl 2-benzylidenemalonate as a white crystalline solid (5.70 g, 52 %): Rf= 0.44 (4:1 v/v 

petroleum ether 60-80:EtOAc); Mp: 42-43 °C; 
1
H NMR (400 MHz, CDCl3) H 7.78 (s, 1H, 3-H),               

7.44-7.38 (m, 5H, Ar CH), 3.85 (s, 6H, OCH3); 
13

C NMR (100 MHz, CDCl3) C 167.1 (C=O), 164.5 

(C=O), 143.0 (3-CH), 132.8 (2-C), 130.7 (Ar CH), 129.4 (Ar CH), 128.9 (Ar CH), 125.5 (Ar C), 52.7 

(OCH3); νmax (thin film, cm
-1

) 1722 (C=O), 1625, 1576, 1497, 1434, 1374, 1322, 1293 (C=C), 1257, 
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1214, 1198, 1105, 1081, 1060 (CO2Me), 1001, 982, 938, 865, 830 (Ar CH); m/z (ESI
+
) calculated for 

C12H12O4 [M+H
+
]; 221.08133, found 221.0808 (error = -0.0434 ppm).  

 

 

(S)-methyl 2-amino-3-hydroxypropanoate hydrochloride 32:
73

  

 

 

 

Acetyl chloride (50.0 g, 635 mmol) was added gradually to MeOH (350 mL) at 0 °C with stirring, 

followed 10 minutes later by L-serine (24.5 g, 235 mmol) and the mixture heated at reflux for                    

3.5 hours. The solvent was removed in vacuo to give the crude product as a white solid (75.5 g) which 

was recrystallised from MeOH to yield (S)-methyl 2-amino-3-hydroxypropanoate hydrochloride as a 

white crystalline solid (30.7 g, 84 %): Mp: 176 – 177 °C (lit. 163 – 165 °C); 
1
H NMR                        

(400 MHz, CD3OD) H 4.18 (t, J 4.0 Hz, 1H 2-H), 4.10-3.95 (m, 2H, 3-H), 3.87 (s, 3H, OCH3);                  

13
C NMR (100 MHz, CD3OD) C 168.0 (C=O), 59.3 (3-CH2), 54.7 (2-CH), 52.3 (OCH3); νmax                            

(solid, cm
-1

) 3340.2 (N-H), 2919.4 (O-H), 2662.3, 2636.0, 2549.3, 2357.8, 1746.0 (C=O), 1590.6 (N-

H), 1505.8, 1471.7, 1441.9, 1431.4, 1381.8, 1344.2, 1296.0, 1248.7, 1209.2 (OMe), 1156.9, 1124.9 

(C-N), 1093.2 (CO2Me), 1037.4, 899.8, 889.1, 843.9, 793.7, 740.6, 561.4, 516.6; m/z (EI
+
) calculated 

for C4H10NO3 [M+H
+
]; 120.07, found 120.07. 

 

 

(S)-methyl 3-hydroxy-2-(tritylamino)propionate 33:
72

 

 

 

 

NEt3 (40.5 g, 400 mmol) and a solution of trityl chloride (55.3 g, 200 mmol) in DCM (120 mL) were 

sequentially added dropwise to a suspension of (S)-methyl 2-amino-3-hydroxypropanoate 

hydrochloride (30.7 g, 198 mmol) in DCM (400 mL) at 0 °C stirred for 11 hours. The reaction mixture 

was filtered and the solvent removed in vacuo to yield an off-white powder which was dissolved in 

EtOAc (1.0 L). The solution was washed with sodium hydrogen carbonate (1.0 M aqueous solution, 

200 mL), citric acid (10 % w/v aqueous solution, 200 mL) and water (200 mL), dried over anhydrous 

sodium sulfate and concentrated in vacuo to give a white powder (75.3 g) which was recrystallised 

from EtOAc:hexane (1:1 v/v) to yield (S)-methyl 3-hydroxy-2-(tritylamino)propionate as a white 

crystalline solid (43.3 g, 60 %): Mp: 155 – 156 °C (lit. 152 – 154 °C); 
1
H NMR (400 MHz, CDCl3) H 

7.50-7.24 (m, 12H, 2’/3’/5’/6’-H), 7.19 (tt, J 1.0, 6.5 Hz, 3H, 4’-H), 3.73-3.68 (m, 1H, 2-H), 3.59-3.51 
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(m, 2H, 3-H2), 3.30 (s, 3H, OCH3); 
13

C NMR (100 MHz, CDCl3) C 173.9 (C=O), 145.6 (1’-C), 128.8 

(Ar CH), 128.0 (Ar CH), 126.6 (4’-CH), 71.0 (CPh3), 65.0 (3-CH2), 57.8 (2-CH), 52.0 (OCH3);                    

νmax (solid, cm
-1

) 3453.6 (N-H), 3353.7 (O-H), 1701.1 (C=O), 1594.7, 1479.7, 1443.9, 1423.5, 1367.9, 

1331.9, 1225.6, 1207.2, 1171.1, 1126.1, 1068.4 (CO2Me), 1054.9 (C-OH), 1027.7, 1010.6, 963.8, 

937.5, 916.8, 893.2, 859.8, 770.0, 753.4, 715.1, 697.1, 635.6, 610.8, 547.1, 497.6, 482.3, 462.2               

(Ar CH); m/z (ESI
+
) calculated for C23H23NO3Na [M+Na

+
]; 384.1576, found 384.1570 (error = -0.0746 

ppm). 

 

 

(S)-methyl 1-tritylaziridine-2-carboxylate 34:
77

 

 

 

 

NEt3 (2.23 g, 22.0 mmol) and methane sulfonyl chloride (1.15 g, 10.1 mmol) were added dropwise to a 

solution of (S)-methyl 3-hydroxy-2-(tritylamino)propionate (3.61 g, 10.0 mmol) in THF (50 mL) and the 

mixture stirred at room temperature for 0.5 hours then at reflux for 42 hours. The mixture was cooled 

to room temperature and the solvent removed in vacuo to yield a pale brown slurry which was 

dissolved in EtOAc (50 mL). The solution was washed with citric acid (10 % w/v aqueous solution, 3 x 

10 mL), NaHCO3 (saturated aqueous solution, 3 x 10 mL), dried over anhydrous magnesium sufate 

and concentrated in vacuo to give a pale yellow solid (2.98 g) which was recrystallised from MeOH 

(50 mL: 15 drops MeOH: NEt3) to yield (S)-methyl 1-tritylaziridine-2-carboxylate as a white crystalline 

solid (2.41 g, 70 %): Mp: 135 – 136 °C (lit. 122 – 124 °C); 
1
H NMR (400 MHz, CDCl3) H 7.51-7.19         

(m, 15H,  Ar CH), 3.76 (s, 3H, OCH3), 2.25 (dd, J 2.0, 3.0 Hz, 1H, 3C-H2), 1.89 (dd, J 3.0, 6.0 Hz, 1H, 

2-H), 1.41 (dd, J 2.0, 6.0 Hz, 1H, 3-H2); 
13

C NMR (100 MHz, CDCl3) C 172.0 (C=O), 143.6 (1’-C), 

129.4 (Ar CH), 127.7 (Ar CH), 127.0 (Ar CH), 74.4 (CPh3), 52.2 (OCH3), 31.7 (2-CH), 28.7 (3-CH2); 

νmax (solid, cm
-1

) 1745 (C=O), 1595, 1489, 1440, 1393, 1289, 1265, 1242, 1199, 1178 (CO2Me), 1080 

(C-N), 1034, 1014, 972, 926, 903, 840, 779, 733, 705, 630 (Ar CH); m/z (ESI
+
) calculated for 

C23H21NO2Na [M+Na
+
]; 366.1470, found 366.1465 (error = -0.0935 ppm). 

 

 

(S)-methyl aziridine-2-carboxylate (S)-1d:
77
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MeOH (25mL) and trifluoroacetic acid (74.5 g, 650 mmol) were added sequentially to (S)-methyl         

1-tritylaziridine-2-carboxylate (10.3 g, 30.0 mmol) in chloroform (25 mL) at 5 °C and the mixture stirred 

for 2 hours, the solvent removed in vacuo and the residue partitioned between H2O (200 mL) and 

Et2O (200 mL). The ether layer was removed and the aqueous layer made basic by addition of solid 

NaHCO3 (ca. pH 9). The aqueous layer was extracted with Et2O (10 x 100 mL), the combined organic 

extracts dried over anhydrous sodium sulfate and the solvent removed in vacuo at 0 °C to yield               

(S)-methyl aziridine-2-carboxylate as a volatile clear yellow oil (3.47 mg, 100 %) that did not require 

further purification: 
1
H NMR (400 MHz, CDCl3) H 3.76 (s, 3H, OCH3), 3.31 (quin, J 2.0 Hz, 1H, 2-H), 

2.59 (dd, J 3.0, 6.0 Hz, 1H, 3-H2), 1.95 (dd, J 2.0, 3.0 Hz, 1H, 3-H2); 
13

C NMR (100 MHz, CDCl3) C 

172.4 (C=O), 51.5 (OCH3), 27.7 (2-CH), 26.1 (3-CH2); νmax (thin film, cm
-1

) 3291, 1725 (C=O), 1640      

(N-H), 1446, 1395, 1232, 1018 (CO2Me); m/z (ESI
+
) calculated for C4H8O3 [M+H

+
]; 102.0550, found 

102.0548 (error= -1.4254 ppm).  

 

 

(S)-methyl 1-tosylaziridine-2-carboxylate (S)-1e:
54

 

 

 

 

NEt3 (2.98 g, 29.5 mmol) and 4-toluenesulfonyl chloride (2.25 g, 12.0 mmol) were added sequentially 

to (S)-methyl aziridine-2-carboxylate (1.19 g, 11.8 mmol) in chloroform (30 mL) and stirred at -10 °C 

for 16 hours. The mixture was washed with saturated aqueous NaHCO3 (50 mL), H2O (50 mL), dried 

over anhydrous sodium sulfate and concentrated in vacuo to give a yellow oil (1.90 g) which was 

purified by column chromatography (7:3 v/v hexane:EtOAc) to yield (S)-methyl 1-tosylaziridine-2-

carboxylate as a clear colourless oil (807 mg, 68 %): Rf= 0.42 (7:3 v/v hexane:EtOAc); 
1
H NMR              

(400 MHz, CDCl3) H 7.84 (d, J 8.0 Hz, 2H, Ar CH), 7.36 (d, J 8.0 Hz, 2H, Ar CH), 3.73 (s, 3H, OCH3), 

3.34 (dd,  J 4.0, 8.0 Hz, 1H, 2-H), 2.76 (d, J 8.0 Hz, 1H, 3-H2), 2.56 (d, J 4.0 Hz, 1H, 3-H2), 2.45                

(s, 3H, Ts CH3); 
13

C NMR (100 MHz, CDCl3) C 167.3 (C=O), 145.3 (4’-C), 133.9 (1’-C), 129.9 (Ar 

CH), 128.2 (Ar CH), 52.9 (OCH3), 35.7 (2-CH), 32.0 (3-CH2), 21.7 (Ts CH3); νmax (thin film, cm
-1

) 1743 

(C=O), 1596, 1494, 1439, 1393, 1328, 1291 (-SO2N=), 1228, 1158, 1091, 1035, 1018 (CO2Me), 981, 

903 (Ar CH); m/z (ESI
+
) calculated for C11H13O4NSNa [M+Na

+
]; 278.0457, found 278.0459 (error = 

0.4257 ppm).  

 

 

 (S)-1-tert-butoxycarbonyl 2-methoxycarbonyl aziridine 1f:
78 
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NEt3 (1.02 g, 10.0 mmol) and a solution of di-tert-butyldicarbonate (490 mg, 2.30 mmol) in MeCN             

(1 mL) were added to (S)-methyl aziridine-2-carboxylate (206 mg, 2.0 mmol) in MeCN (6 mL) and the 

mixture stirred at room temperature for 6.5 hours. The solvent was removed in vacuo and the residue 

partitioned between EtOAc (20 mL) and H2O (10 mL). The aqueous layer was separated and 

extracted with EtOAc (3 x 20 mL), the combined organic layers washed with brine, dried over 

anhydrous sodium sulfate and the solvent removed in vacuo to give a yellow oil (269 mg) which was 

purified by column chromatography (7:3 v/v heptane:EtOAc) to yield (S)-1-tert-butoxycarbonyl                      

2-methoxycarbonyl aziridine as a clear yellow oil (83.0 mg, 41 %): Rf= 0.41 (7:3 v/v heptane:EtOAc); 

1
H NMR (400 MHz, CDCl3) H 3.78 (s, 3H, OCH3), 3.04 (dd, J 2.5, 5.0 Hz, 1H, 2-H), 2.53 (d, J 2.5 Hz, 

1H, 3-H2), 2.41 (d, J 5.0 Hz, 1H, 3-H2), 1.46 (s, 9H, 
t
Bu CH3); 

13
C NMR (100 MHz, CDCl3) C 169.1 

(C=O(OCH3)), 159.3 (C=O(O
t
Bu)), 81.4 (C(CH3)3), 52.6 (OCH3), 34.8 (2-CH), 31.3 (3-CH2), 27.9             

(
t
Bu CH3); νmax (thin film, cm

-1
) 1724 (C=O), 1440, 1393 (CMe3), 1369 (CMe3), 1328, 1234, 1204, 1153, 

1021 (CO2Me), 852, 800; m/z (ESI
+
) calculated for C9H15NO4Na [M+Na

+
]; 224.09, found 224.09.  

 

 

(S)-1-benzyloxycarbonyl-2-methoxycarbonyl aziridine 1g:
76

  

 

 

 

A solution of benzyloxychloroformate (852.0 mg, 5.0 mmol) in DCM (2 mL) was added dropwise with 

stirring to (S)-methyl aziridine-2-carboxylate (252 mg, 2.50 mmol) and NEt3 (1.02 g, 10.1 mmol) in 

DCM (12 mL) at 0 °C and the resulting mixture left to stand at room temperature for 24 hours. The 

mixture was washed with NaHSO4 (10 % w/v aqueous solution, 16 mL), NaHCO3 (saturated aqueous 

solution, 16 mL), brine, dried over anhydrous magnesium sulfate and the solvent removed in vacuo  

to give a solid dispersion in a yellow oil (558 mg) which was purified by column chromatography              

(2:1 v/v hexane:EtOAc) to yield (S)-1-benzyl 2-methyl aziridine-1,2-dicarboxylate as a clear pale 

yellow oil (284 mg, 48 %): Rf= 0.39 (2:1 v/v hexane:EtOAc); 
1
H NMR (400 MHz, CDCl3) H 7.36-7.25 

(m, 5H, Ar CH), 5.14 (s, 2H, 1’-H2), 3.70 (s, 3H, OCH3), 3.09 (dd, J 3.0, 5.5 Hz, 1H, 3-H2), 2.59               

(dd, J 1.0, 3.0 Hz, 1H, 3-H2), 2.47 (dd, J 1.0, 5.5 Hz, 1H, 2-H); 
13

C NMR (100 MHz, CDCl3) C 168.7 

(C=O(OCH3), 160.8 (N-C=O), 140.9 (2’-C), 128.5 (4’/6’-CH), 127.7 (5’-CH), 127.0 (3’/7’-CH), 68.7             

(1’-CH2), 52.7 (OCH3), 34.9  (2-CH), 31.4 (3-CH2); νmax (thin film, cm
-1

) 3356, 1773 (C=O), 1496, 1453, 

1396, 1323, 1192, 1080, 1020 (CO2Me), 906 (Ar CH); m/z (ESI
+
) calculated for C12H13NO4Na 

[M+Na
+
]; 258.0737, found 258.0737 (error = 0.1991 ppm).  
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(S)-methyl 1-(diphenylphosphoryl)aziridine-2-carboxylate 1h:
79

 

 

 

 

K2CO3 (2.79 g, 20.0 mmol) was added to (S)-methyl aziridine-2-carboxylate (405 mg, 4.0 mmol) in 

DCM (30 mL) via solid addition tube and the mixture stirred for 15 minutes. Diphenylphosphinic 

chloride (1.04 g, 4.40 mmol) and NEt3 (800 mg g, 8.0 mmol) were added and the mixture stirred at     

0 °C for 16 hours. The mixture was filtered and solvent removed in vacuo to give an orange gum       

(1.39 g) which was purified by column chromatography (100 % EtOAc) to yield (S)-methyl                                    

1-(diphenylphosphoryl)aziridine-2-carboxylate as a yellow gum (271 mg, 23 %): Rf= 0.56 (100 % 

EtOAc); 
1
H NMR (400 MHz, CDCl3) H 7.96-7.91 (m, 4H, 2’/6’-H), 7.55-7.43 (m, 6H, 3’/4’/5’-H), 3.74 

(s, 3H, OCH3), 2.26 (dd, J 1.5, 3.0 Hz, 1H, 2-H), 1.88 (dd, J 3.0, 6.0 Hz, 1H, 3-H2), 1.41 (dd, J 1.5, 6.0 

Hz, 1H, 3-H2); 
13

C NMR (100 MHz, CDCl3) C 169.7 (C=O), 132.2 (4’-CH), 131.6 (2’/6’-CH), 128.7 

(3’/5’-CH), 52.6 (OCH3), 32.3 (2-CH), 28.8 (3-CH2); νmax (thin film, cm
-1

) 3448, 3059, 2954, 1745 

(C=O), 1438 (P-Ph2), 1395, 1290 (P=O), 1241, 1196, 1126, 1108, 1017 (CO2Me), 1028, 986 (Ar CH); 

m/z (ESI
+
) calculated for C16H16NO3PNa [M+Na

+
]; 324.0765, found 324.0762 (error = -0.6212 ppm).  

 

 

 (S)-1,2-di-tert-butoxycarbonyl aziridine 1i:
78

 

 

 

 

LiO
t
Bu (1.0 M solution in THF, 3.30 mL, 3.30 mmol) was added dropwise to (S)-1-tert-butyl 2-methyl 

aziridine-1,2-dicarboxylate (397 mg, 2.20 mmol) in THF (4 mL) at -78 
o
C and the mixture stirred for a 

further 2 hours at -20 °C. The reaction was quenched with saturated aqueous NaHCO3 (30 mL), 

extracted with EtOAc (3 x 30 mL), the combined organic extracts washed with brine (10 mL), dried 

over anhydrous sodium sulfate and the solvent removed in vacuo to give a yellow oil (362 mg) which 

was purified by column chromatography (100 % DCM) to yield (S)-di-tert-butyl aziridine-1,2-

dicarboxylate as a clear pale yellow oil (173 mg, 32 %): Rf= 0.63 (100 % DCM); 
1
H NMR                            

(400 MHz, CDCl3) H 2.92 (dd, J 3.0, 5.0 Hz, 1H, 2-H), 2.47 (dd, J 1.5, 3.0 Hz, 1H, 3-H2), 2.31 (dd,              

J 1.5, 5.0 Hz, 1H, 3-H2), 1.50 (s, 9H, 
t
Bu CH3), 1.46 (s, 9H, 

t
Bu CH3); 

13
C NMR (100 MHz, CDCl3) C 

167.5 (C=O), 159.8 (C=O), 82.5 (C(CH3)3), 81.85 (C(CH3)3), 35.8 (2-CH), 31.0 (3-CH2), 28.0                    

(
t
Bu CH3), 27.9 (

t
Bu CH3); νmax (thin film, cm

-1
) 1722 (C=O), 1479, 1458, 1391 (CMe3), 1367 (CMe3), 

1328, 1140, 1136 (CO2Me); m/z (ESI
+
) calculated for C12H21NO4Na [M+Na

+
]; 266.1363, found 

266.1364 (error = 0.6191 ppm).  
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1,1,1-trimethyl-2-(2-methyl-1-phenylpropylidene)hydrazin-1-ium iodide 36a:
84

 

 

 

 

Isobutyrophenone (14.8 g, 100 mmol) and N,N-dimethylhydrazine (12.0 g, 200 mmol) were taken neat 

and stirred at reflux for 72 hours. The resulting aqueous layer was separated and extracted with Et2O 

(3 x 25 mL), the combined organic layers dried over anhydrous magnesium sulfate and the solvent 

removed in vacuo to furnish a yellow oil. The oil was taken in EtOH (5 mL), iodomethane (49.7 g, 350 

mmol) was added and the solution stirred at a gentle reflux (45 °C) for 5.5 hours. The reaction mixture 

was poured slowly into vigorously stirred Et2O (300 mL) to give a yellow solid which was filtered and 

recrystallised from EtOH:EtOAc (1:1 v/v) to yield 1,1,1-trimethyl-2-(2-methyl-1-

phenylpropylidene)hydrazin-1-ium iodide as a orange crystalline solid (25.7 g, 77 % ): Mp: 120-122 °C 

(lit. 138 – 140 °C); 
1
H NMR (500 MHz, CDCl3) H 7.57-7.54 (m, 3H, 3’/4’/5’-H), 7.27-7.25 (m, 2H, 2’/6’-

H), 3.58 (s, 9H, N-CH3), 2.88 (heptet, J 4.0 Hz, 1H, 2-H), 1.16 (d, J 4.0 Hz, 6H, 3-CH3); 
13

C NMR             

(125 MHz, CDCl3) C 182.4 (C=N), 131.7 (1’-C), 130.6 (Ar CH), 129.3 (Ar CH), 126.6 (2’/6’-CH), 58.1 

(NCH3), 41.1 (2-CH), 19.6 (3-CH3); νmax (solid, cm
-1

) 2969.6 (NCH3), 1627.3 (C=N), 1483.6, 1464.4, 

1442.7, 943.9, 823.7, 776.1, 711.0 (Ar CH); m/z (ESI
+
) calculated for C13H21N2

+
 [M

+
-

-
]; 205.1705, 

found 205.1699 (error = -0.24 ppm). 

 

 

2,2-dimethyl-3-phenyl-2H-azirine 14a:
84

 

 

 

 

Sodium tert-butoxide (720 mg, 7.5 mmol) in tert-butyl alcohol (25 mL) at 40 °C was added dropwise 

(ca. 40 minutes) to 1,1,1-trimethyl-2-(2-methyl-1-phenylpropylidene)hydrazin-1-ium iodide (1.67 g,    

5.0 mmol) in tert-butyl alcohol (9 mL) at 40 °C with stirring for a further 1.5 hours. The solvent was 

removed in vacuo, the residue taken in water (20 mL) and extracted with Et2O (3 x 20 mL). The 

combined organic extracts were dried over anhydrous sodium sulfate and concentrated in vacuo to 

yield 2,2-dimethyl-3-phenyl-2H-azirine as a clear yellow oil that did not require any further purification 

(633 mg, 87 %): 
1
H NMR (400 MHz, CDCl3) H 7.81 (d, J 8.0 Hz, 2H, 2’/6’-H), 7.54 (t, J 8.0 Hz, 3H, 

3’/4’/5’-H), 1.42 (s, 6H, CH3); 
13

C NMR (100 MHz, CDCl3) C 177.8 (C=N), 132.5 (Ar CH), 129.1                

(Ar CH), 129.0 (2’/5’-CH), 125.9 (1’-C), 33.9 (2-C), 24.6 (CH3); νmax (thin film, cm
-1

) 2971.0, 2923.4, 

1728.0, 1683.0 (C=N), 1615.9, 1489.7, 1458.2, 1447.6 (CMe2), 1372.3, 1256.9, 1198.3, 1169.8, 

1133.0, 1070.7, 1085.5, 1020.0, 979.3, 954.5, 924.8, 873.9, 763.7 (Ar CH); m/z (ESI
+
) calculated for 

C10H12N [M+H
+
]; 146.0964, found 146.0968 (error = 2.79 ppm). 
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2,2-dimethyl-3-phenyl-1-azabicyclo[1.1.0]butane 10f:
44

  

 

 

 

nBuLi (2.5 M in hexane, 0.76 mL, 1.99 mmol) was added dropwise to trimethylsulfonium iodide              

(444 mg, 2.00 mmol) in THF (8 mL) at 0
 
°C, with stirring for a further 5 minutes. The temperature was 

reduced to -10 °C and 2,2-dimethyl-3-phenyl-2H-azirine (62.7 mg, 0.40 mmol) was added dropwise 

and the solution stirred at -10 
o
C to 0 

o
C for 1 hour. Ice cold water (9 mL) was added, the organic 

layer separated and washed with water (10 mL). The combined aqueous layers were extracted with 

DCM (3 x 30 mL), the combined organic layers dried over anhydrous calcium sulfate and the solvent 

removed in vacuo to yield 2,2-dimethyl-3-phenyl-1-azabicyclo[1.1.0]butane as a clear yellow oil that 

did not require any further purification (56.5 mg, 87 %): 
1
H NMR (400 MHz, CDCl3) H 7.42-7.30               

(m, 5H, Ar CH), 2.69 (d, J 1.5 Hz, 1H, ‘eq’ CH2), 2.52 (d, J 1.5 Hz, 1H, ‘ax’ CH2), 1.19 (s, 3H,                    

‘ax’ CH3), 1.17 (s, 3H, ‘eq’ CH3); 
13

C NMR (100 MHz, CDCl3) C 134.8 (Ar C), 128.5 (Ar CH), 128.3             

(Ar CH), 127.8  (Ar CH), 68.2 (C-Ph), 54.1 (4-CH2), 41.9 (2-C), 22.9 (‘eq’ CH3), 12.8 (‘ax’ CH3);              

νmax (thin film, cm
-1

) 1446.1 (CMe2), 1373.5, 1301.2 1235.9, 1161.2, 1024.1, 874.5, 754.3 (Ar CH); m/z 

(ESI
+
) calculated for (C11H13N)2H [2M+H

+
]; 319.2169, found 319.2168 (error = -0.30 ppm). 

 

 

Acetophenone oxime 37:
85

 

 

 

 

Acetophenone (3.60 g, 30.0 mmol) and potassium hydroxide (5.64 g, 50.0 mmol) in water (11 mL) 

were added sequentially to a solution of hydroxylamine hydrochloride (3.11 g, 45.0 mmol) in MeOH               

(50 mL). The mixture was stirred at room temperature for 18 hours then diluted with ice cold water             

(40 mL) and extracted with Et2O (3 x 30 mL). The combined organic extracts were dried over 

anhydrous sodium sulfate and the solvent removed in vacuo to yield acetophenone oxime as a white 

crystalline solid that did not require further purification (3.53 g, 87 %): Mp: 64 – 66 °C (lit. 60 – 62 °C); 

1
H NMR (500 MHz, CDCl3) H 9.75 (s, 1H, OH), 7.63-7.61 (m, 2H, 2’/6’-H), 7.39-7.23 (m, 3H,              

3’/4’/5’-H), 2.31 (s, 3H, 2-H3); 
13

C NMR (125 MHz, CDCl3) C 156.0 (C=N), 136.5 (Ar C), 129.2                  

(2’-CH), 128.5 (Ar CH), 126.0 (Ar CH), 12.2 (2-CH3); νmax (solid, cm
-1

) 3208.6 (OH), 2917.1, 1496.1 
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(C=N), 1444.8, 1365.1, 1301.5, 1079.5, 1001.2, 924.1, 758.9, 691.5 (Ar CH); m/z (EI
+
) calculated for 

C8H9NO [M
+
]; 135.1, found 134.9. 

 

 

1,1,1-trimethyl-2-(1-phenylethylidene)hydrazin-1-ium iodide 36b:
84

 

 

 

 

Acetophenone (1.20 g, 10.0 mmol) and N,N-dimethylhydrazine (0.79 g, 13.0 mmol) were taken neat 

and stirred at reflux for 24 hours. The resulting aqueous layer was separated and extracted in Et2O             

(3 x 5 mL), the combined organic layers dried over anhydrous potassium carbonate and the solvent 

removed in vacuo to furnish a yellow oil (1.28 g). The crude hydrazone was taken up immediately in 

EtOH (1 mL), iodomethane (5.00 g, 35.0 mmol) was added and the solution stirred at gentle reflux  

(45 °C) for 4 hours. The mixture was filtered and the solid washed with Et2O. Further solid was 

obtained by dilution of the filtrate with copious quantities of Et2O followed by further filtration and 

washing of the solid. The solid was dried to constant mass to yield 1,1,1-trimethyl-2-(1-

phenylethylidene)hydrazin-1-ium iodide as a pale yellow solid without the need for further purification 

(1.58 g, 52 % from acetophenone): Mp: 135-137 °C (lit. 147 °C); 
1
H NMR (500 MHz, CDCl3) H 7.75 

(d, J 8.0 Hz, 2H, 2’/6’-H), 7.56 (t, J 8.0 Hz, 1H, 4’-H), 7.46 (t, J 8.0 Hz, 2H, 3’/5’-H), 3.99 (s, 9H,                 

N-CH3), 2.99 (s, 3H, CH3); 
13

C NMR (125 MHz, CDCl3) C 173.1 (C=N), 136.1 (Ar C), 132.6 (4’-CH), 

129.0 (3’/5’-CH), 127.5 (2’/6’-CH), 58.0 (N-CH3), 21.0 (CH3); νmax (solid, cm
-1

) 3003.5, 2947.3 (NCH3), 

1741.8, 1614.5 (C=N), 1593.8, 1573.4, 1467.2, 1447.9, 1411.5, 1366.1, 1295.9, 1239.2, 1186.4, 

1169.1, 1134.4, 1087.0, 1024.5, 957.3, 945.9, 832.6, 780.8, 741.4, 701.8 (Ar CH); m/z (ESI
+
) 

calculated for C11H17N2
+
 [M

+
-

-
]; 177.1386, found: 177.1391. 

 

 

3-chloro-2,2-dimethyl-3-phenyl-1-tosylazetidine 4g:
37a 

 

 

 

A solution of 2,2-dimethyl-3-phenyl-1-azabicyclo[1.1.0]butane (215 mg, 1.38 mmol) in acetone                

(1.6 mL) was added to a solution of 4-toluenesulfonyl chloride (229 mg, 1.20 mmol) in acetone (1.2 

mL) at 0 °C with stirring at room temperature for a further 18 hours. The solvent was removed in 

vacuo to give an orange oil (437 mg) which was purified by column chromatography (9:1 v/v 
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hexane:EtOAc) to yield 3-chloro-2,2-dimethyl-3-phenyl-1-tosylazetidine as a pale yellow solid (173 

mg, 36 %): Mp: 114-116 °C; Rf= 0.22 (9:1 v/v hexane:EtOAc); 
1
H NMR (400 MHz, CDCl3) H 7.77 (d, 

J 6.5 Hz, 2H, Ts CH), 7.38-7.27 (m, 7H, Ph/Ts CH), 4.69 (d, J 6.5 Hz, 1H, 4-H2), 4.00 (d, J 6.5 Hz, 1H 

4-H2), 2.44 (s, 3H, 4’C-CH3), 1.79 (s, 3H, CH3), 1.18 (s, 3H, CH3); 
13

C NMR (100 MHz, CDCl3) C 

143.8 (S-C), 138.8 (1’’-C), 136.6 (4’-C), 129.7 (Ar CH), 128.5 (Ar CH), 128.5 (Ar CH), 127.7 (Ar CH), 

126.7 (Ar CH), 79.3 (2-C), 72.1 (3-C), 59.4 (4-CH2), 25.5 (2C-CH3), 24.7 (2C-CH3), 21.6 (4’C-CH3); 

νmax (solid, cm
-1

) 2980.4, 1597.6 1494.5 1447.7 (CMe2), 1340.9, 1322.3, 1304.0, 1262.4 (-SO2N=), 

1233.6, 1153.9, 1090.0, 1035.7, 1010.8, 815.2, 737.3 (C-Cl), 709.9, 691.2 (Ar CH); m/z (ESI
+
) 

calculated for C18H20NO2SCINa [M+Na
+
]; 372.0801, found 372.0795 (error = -0.45 ppm).  

 

 

(2,2-dimethyl-3-phenylazetidin-3-yl)benzothioate 4h:
37a 

 

 

 

A solution of 2,2-dimethyl-3-phenyl-1-azabicyclo[1.1.0]butane (80.3 mg, 0.50 mmol) in THF (0.5 mL) 

was added dropwise to a solution of thiobenzoic acid (69.1 mg, 0.50 mmol) in THF (0.5 mL) at 0 °C 

with stirring at room temperature for a further 16 hours. The solvent was removed in vacuo to give an 

orange foam (103 mg) which was purified by column chromatography (1:1 v/v hexane:EtOAc  – 100 

% EtOAc,) to yield (2,2-dimethyl-3-phenylazetidin-3-yl)benzothioate as an unstable clear pale yellow 

oil (66.9 g, 45 %): 
1
H NMR (400 MHz, CDCl3) H 7.85 (dd, J 1.0, 8.0 Hz, 2H, Ar CH), 7.52 (dd, J 1.0, 

8.0 Hz, 1H, Ar CH), 7.43-7.30 (m, 7H, Ar CH), 4.79 (d, J 12.0 Hz, 1H, 4’-H2), 3.94 (d, J 12.0 Hz, 1H, 

4’-H2), 1.67 (s, 3H, CH3), 1.67 (s, 3H, CH3); νmax (thin film, cm
-1

) 2975.6, 2931.2, 1663.5 (ArCOS), 

1627.7, 1598.6, 1577.2, 1494.3, 1447.2 (CMe2), 1417.5, 1205.6, 1175.2, 1162.3, 931.8, 907.0, 775.3, 

648.2 (Ar CH). 

 

1-(2,2-dimethyl-3-phenylazetidin-3-yl)-1H-imidazole 4i:
37a 

 

 

 

A solution of imidazole (32.1 mg, 0.47 mmol) in acetone (0.5 mL) was added to a solution of 2,2-

dimethyl-3-phenyl-1-azabicyclo[1.1.0]butane (82.5 mg, 0.52 mmol) in acetone (0.5 mL) at 0
 
°C with 

stirring at room temperature for a further 16.5 hours. The solvent was removed in vacuo to give a 

yellow oil (107 mg). The oil was loaded onto a silica gel plug, eluted first with 9:1 v/v DCM:MeOH              
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(20 mL) then the azetidine eluted with MeOH (20 mL) and the solvent removed in vacuo to yield                  

1-(2,2-dimethyl-3-phenylazetidin-3-yl)-1H-imidazole as a clear yellow oil (3.3 mg, 3 %): 
1
H NMR              

(400 MHz, CDCl3) H 7.54 (apparent s, 1H, 2-H), 7.40-7.32 (m, 3H, 3’’/4’’/5’’-H), 7.21-7.18 (m, 2H, 

2’’/6’’-H), 7.16 (t, J 1.0 Hz, 1H, imidazole CH), 7.05 (apparent s, J 1.0 Hz, 1H, imidazole CH), 4.31 (d, 

J 7.0 Hz, 1H, 4’-H2), 4.12 (d, J 7.0 Hz, 1H, 4-H2), 1.27 (s, 3H, CH3), 1.18 (s, 3H, CH3); 
13

C NMR              

(100 MHz, CDCl3) C 139.0 (1’’-C), 137.0 (2-CH), 128.6 (3’’/4’’/5’’-CH), 128.4 (2’’/6’’-CH), 128.2 

(imidazole CH [7.05 ppm]), 127.2 (Ar CH [7.21-7.18 ppm]), 119.4 (imidazole CH [7.16 ppm]), 68.8            

(3’-C), 68.2 (2’-C), 54.5 (4’-CH2), 28.1 (CH3), 25.9 (CH3); νmax (thin film, cm
-1

) 1493.9 (NH), 1460.6, 

1447.6 (CMe2), 1326.1, 1233.3, 1084.4, 1063.5, 912.3, 817.9, 726.9, 703.1, 660.5 (Ar CH); m/z (ESI
+
) 

calculated for C14H18N3
 
[M+H

+
]; 228.1501, found 228.1495 (error = -3.64 ppm). 

 

 

3-chloro-2,2-dimethyl-3-phenylazetidine 4j:
37a 

 

 

 

A solution of 4-toluenesulfonyl chloride (68.8 mg, 0.36 mmol) in acetone (0.5 mL) was added to a 

solution of 2,2-dimethyl-3-phenyl-1-azabicyclo[1.1.0]butane (56.2 mg, 0.35 mmol) and imidazole  

(24.5 mg, 0.36 mmol) in acetone (0.5 mL) at 0 °C with stirring at room temperature for a further             

16 hours. The mixture was diluted with saturated aqueous sodium hydrogen carbonate (5 mL) and the 

aqueous solution extracted with Et2O (3 x 10 mL). The aqueous phase was made basic (pH 11) by 

addition of 2 M sodium hydroxide and extracted with Et2O (3 x 10 mL), the combined organic extracts 

dried over anhydrous sodium sulfate and the solvent removed in vacuo to yield 3-chloro-2,2-dimethyl-

3-phenylazetidine as a clear pale yellow oil without the need for further purification (6.7 mg, 10 %): 
1
H 

NMR (400 MHz, CDCl3) H 7.43 (d, J 7.0 Hz, 2H, 2’/6’-H), 7.38 (t, J 7.0 Hz, 3H, 3’/4’/5’-H), 4.20 (d,               

J 9.0 Hz, 1H 4-H2), 3.59 (d, J 9.0 Hz, 1H 4-H2), 1.49 (s, 3H, CH3), 0.88 (s, 3H, CH3); 
13

C NMR             

(100 MHz, CDCl3) C 141.7 (1’-C), 128.9 (3’/5’-CH), 127.2 (4’-CH), 125.9 (2’/6'-CH), 79.8 (3-C), 68.2 

(2-C), 54.3 (4-CH2), 27.0 (CH3), 24.0 (CH3); νmax (thin film, cm
-1

) 2961.4, 2925.7, 1447.7 (CMe2), 

1374.2, 1260.3, 1232.9, 1152.0, 1071.0, 1022.2, 907.8, 802.4, 760.9, 729.7 (CCl), 699.3 (Ar CH); m/z 

(ESI
+
) calculated for C11H14NCl [M

+
]; 160.1, found 160.1. 

 

 

2,3-dibromopropan-1-amine hydrobromide 38:
37g 
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Bromine (16.9 g, 106 mmol) was added cautiously to EtOH (15 mL) at 0 °C with stirring. To this was 

added cautiously allylamine (2.85 g 49.9 mmol) and the mixture stirred at room temperature for             

16 hours. The resulting precipitate was collected by filtration, washed with Et2O until no orange colour 

remained and allowed to dry to yield 2,3-dibromopropan-1-amine hydrobromide as a white crystalline 

solid without the need for further purification (14.0 g, 94 %): Mp: 170 – 172 °C (lit. 176 – 180 °C); 
1
H 

NMR (400 MHz, CDCl3) H 4.59-4.52 (m, 1H, 2-H), 4.03 (dd, J 11.0, 4.5 Hz, 1H, 1-H2), 3.89 (dd,                

J 11.0, 8.5 Hz, 1H, 1-H2), 3.73 (dd, J 14.0, 3.0 Hz, 1H, 3-H2), 3.37 (dd, J 14.0, 9.5 Hz, 1H, 3-H2); 
13

C 

NMR (100 MHz, CDCl3) C 46.6 (2-CH), 44.2 (3-CH2), 32.7 (1-CH2); νmax (solid, cm
-1

) 2998.8, 2943.9, 

2859.4, 2786.6, 1588.4 (NH2), 1470.9, 1441.1, 1427.0, 1393.4, 1324.3, 1223.4, 1168.2, 1091.3 (C-N), 

1052.0, 1017.9, 960.5, 881.5, 823.7, 649.1, 570.2 (C-Br), 467.9; m/z (ESI
+
) calculated for C3H8Br2N 

[M+H
+
]; 217.8998, found 217.8998 (error = -0.22 ppm). 

 

 

Dimethyl 2-diazomalonate 39:
207

 

 

 

 

A solution of sodium nitrite (523 mg, 7.58 mmol) and sulfuric acid (5 % aqueous, 1 mL) in water                

(4 mL) was added to a vigorously stirred solution of dimethyl 2-aminomalonate hydrochloride (1.10 g, 

6.1 mmol) in DCM (30 mL) and water (35 mL) at room temperature and stirred for for 7 hours. The 

organic layer was separated, washed sequentially with saturated aqueous NaHCO3 (100 mL), water 

(50 mL) and brine (30 mL), dried over anhydrous magnesium sulfate and the solvent removed in 

vacuo to give a bright yellow oil (302 mg) which was purified by column chromatography (1:1 v/v 

hexane:EtOAc) to yield dimethyl 2-diazomalonate as a clear yellow oil (98.5 mg, 10 %): Rf= 0.25 (1:1 

v/v EtOAc:Hexane); 
1
H NMR (400 MHz, CDCl3) H 3.85 (s, 6H, CH3); 

13
C NMR (100 MHz, CDCl3) C 

161.5 (C=O), 52.6 (CH3); νmax (thin film, cm
-1

) 2957.8, 2132.7 (CNN), 1758.2, 1734.1 (CO2Me), 1686.4, 

1435.1 (OMe), 1352.9, 1326.8, 1270.9, 1189.1(CO2Me), 1082.8, 970.9, 933.2, 819.3, 756.6, 668.9; 

m/z (ESI
+
) calculated for C5H6N2O4Na [M+Na

+
]; 181.0226, found 181.0223 (error = -1.67 ppm).  

 

 

2,2,3-trimethyl-3-phenylazetidine 4l:
37a 

 

 

 

Methylmagnesium chloride (3 M in THF, 0.33 mL, 1.00 mmol) was added dropwise to a solution of    

2,2-dimethyl-3-phenyl-1-azabicyclo[1.1.0]butane (78.1 mg, 0.50 mmol) in THF (1 mL) at -78 °C and 
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the mixture stirred for 1 hour, then at room temperature for a further 4 hours. The reaction mixture 

was poured on to vigorously stirred ice-cold saturated aqueous NH4Cl, the aqueous solution extracted 

with Et2O (3 x 10 mL), the combined organic extracts dried over anhydrous magnesium sulfate and 

the solvent removed in vacuo to give a yellow oil (67.9 mg) which was purified by column 

chromatography (19:1 v/v DCM:MeOH) to yield 2,2,3-trimethyl-3-phenylazetidine as a clear yellow oil          

(6.8 mg g, 8 %): Rf= 0.13 (19:1 v/v DCM:MeOH); 
1
H NMR (400 MHz, CDCl3) H 7.46-7.38 (m, 3H,          

3’/4’/5’-H), 7.32 (d, J 7.0 Hz, 2H, 2’/6’-H), 4.56 (d, J 11.0, 1H, 4-H2), 4.08 (d, J 11.0 Hz, 1H, 4-H2), 3.05 

(s, 3H,  3C-CH3), 1.76 (s, 3H, 2C-CH3), 1.20 (s, 3H, 2C-CH3); 
13

C NMR (100 MHz, CDCl3) C 135.0 

(1’-C), 129.0 (3’/5’-CH), 129.0 (4’-CH), 126.9 (2’/6’-CH), 83.8 (3-C), 74.0 (2-C); 51.8 (3C CH3), 46.4 

(CH2), 24.4 (2C CH3), 21.1 (2C CH3); νmax (thin film, cm
-1

) 2924.7, 1459.1, 1448.3 (CMe2), 1378.6, 

1151.9, 1090.9, 1003.8, 965.3, 764.0, 701.7 (Ar CH); m/z (ESI
+
) calculated for C12H18N [M+H

+
]; 349.2, 

found 349.1. 

 

 

Magnesium bromide dietherate 42:
206

 

 

 

 

Magnesium turnings (2.84 g, 117 mmol) in Et2O (50 mL) were taken in a 2 neck round bottom flask 

fitted with reflux condenser and pressure equalising dropping funnel. To this was added a solution of 

1,2-dibromoethane (9.37 g, 49.9 mmol) in Et2O (50 mL) via dropping funnel over 7.5 hours and the 

solution stirred vigourously for a further 16 hours. The mixture was filtered and the biphasic filtrate 

cooled to below 0 °C. The resulting precipitate was collected and dried in a vacuum dessicator to yield 

magnesium bromide dietherate as a white crystalline solid (8.08 g, 25 %). The solid was used without 

further purification. 

 

 

 

tert-butoxycarbonyl 3-(benzoylthio)-2,2-dimethyl-3-phenylazetidine 4m:
78

 

 

 

 

A solution of 2,2-dimethyl-3-phenyl-1-azabicyclo[1.1.0]butane (89.5 mg, 0.50 mmol) in THF (0.5 mL) 

was added dropwise to a solution of thiobenzoic acid (69.1 mg, 0.50 mmol) in THF (0.5 mL) at 0 °C 

with stirring at room temperature for a further 16 hours. The solvent was removed in vacuo to give an 

orange oil (174 mg). The oil was taken immediately in MeCN (3 mL) and cooled to 0 °C. Di-tert-butyl 

dicarbonate (120 mg, 0.55 mmol) and NEt3 (250 mg, 2.50 mmol) were added sequentially and stirring 



102 

 

continued at room temperature for 6 hours. The solvent was removed in vacuo and the residue 

partitioned between EtOAc (30 mL) and water (30 mL). The aqueous layer was extracted with EtOAc 

(3 x 15 mL), the combined organic extracts dried over anhydrous sodium sulfate and the solvent 

removed in vacuo to give an orange oil (190 mg) which was purified by column chromatography (19:1 

v/v hexane: EtOAc to 100 % EtOAc) to yield tert-butyl 3-(benzoylthio)-2,2-dimethyl-3-phenylazetidine-

1-carboxylate as a white crystalline solid on standing (55.8 mg, 30 %): Rf= 0.28 (9:1 v/v 

hexane:EtOAc); Mp: 117 – 119 °C; 
1
H NMR (70 °C, 500 MHz, d6-DMSO) H 7.79 (dd, J 1.0, 7.5 Hz, 

2H, Ar CH), 7.63 (dt, J 1.0, 7.5 Hz, 1H, Ar CH), 7.51-7.47 (m, 4H, Ar CH), 7.33 (dt, J 1.0, 7.5 Hz, 2H, 

Ar CH), 7.23 (t, J 7.5 Hz, 1H, Ar CH), 4.93 (d, J 10.0 Hz, 1H, 4-H2), 4.02 (d, J 10.0 Hz, 1H, 4-H2), 1.73 

(s, 3H, 2C-CH3), 1.40 (s, 9H, 
t
Bu CH3), 0.95 (s, 3H, 2C-CH3); 

13
C NMR (70 °C,

 
125 MHz, d6-DMSO) C 

191.7 (S-C=O), 142.5 (1’’-C), 139.2 (1’-C), 136.5 (Ar CH), 131.7 (Ar CH), 130.7 (Ar CH), 130.3                

(Ar CH), 129.7 (Ar CH), 129.3 (Ar CH), 81.7 (C(CH3)3), 74.3 (2-C), 61.3 (3-C), 58.2 (4-CH2), 30.8             

(
t
Bu CH3), 27.1 (C2-CH3), 26.3 (C2-CH3); νmax (solid, cm

-1
) 2975.9, 2929.9, 1696.4 (C=O), 1664.0 

(ArCOS), 1446.8 (CMe2), 1388.8 (CMe3), 1364.3 (CMe3), 1254.6 1205.1 1163.7 (CO2Me), 1084.0, 

907.0, 772.0, 731.4 (Ar CH), 688.1, 647.4; m/z (ESI
+
) calculated for C23H27NO3SNa [M+Na

+
]; 

420.1610, found 420.1604 (error = -0.93 ppm). 

 

 

(2,2-dimethyl-3-phenyl-1-tosylazetidin-3-yl) benzothioate 4n:
54

 

 

 

 

A solution of 2,2-dimethyl-3-phenyl-1-azabicyclo[1.1.0]butane (89.4 mg, 0.50 mmol) in THF (0.5 mL) 

was added dropwise to a solution of thiobenzoic acid (69.1 mg, 0.50 mmol) in THF (0.5 mL) at 0 °C 

with stirring at room temperature for a further 16 hours. The solvent was removed in vacuo to give an 

orange oil (151 mg). The oil was taken immediately in chloroform (1 mL) and cooled to 0 °C. A 

solution of 4-toluenesulfonyl chloride (104 mg, 0.55 mmol) in chloroform (1 mL) and NEt3 (81.0 mg, 

0.80 mmol) was added and the solution stirred at room temperature for a further 6 hours. The reaction 

was diluted to 10 mL with chloroform, washed with saturated aqueous sodium hydrogen carbonate 

(10 mL), water (10 mL), dried over anhydrous sodium sulfate and the solvent removed in vacuo to 

give an orange oil (188 mg) which was purified by column chromatography (85:15 v/v hexane:EtOAc) 

to yield (2,2-dimethyl-3-phenyl-1-tosylazetidin-3-yl) benzothioate as an unstable pale orange solid 

(52.4 mg, 23 %): Rf= 0.08 (85:15 v/v hexane:EtOAc); 
1
H NMR (400 MHz, CDCl3) H 7.86 (d, J 8.0 Hz, 

2H, Ar CH), 7.62 (d, J 7.0 Hz, 2H, Ar CH), 7.54 (t, J 8.0 Hz, 1H, Ar CH), 7.48-7.39 (m, 8H, Ar CH), 

7.34 (t, J 8.0 Hz, 1H, Ar CH), 5.37 (d, J 10.5 Hz, 1H, 4’-H2),  4.57 (d, J 10.5 Hz, 1H, 4’-H2), 2.06 (s, 

3H, 2’C-CH3), 1.55 (s, 3H, 4’’C-CH3), 1.27 (s, 3H, 2’C-CH3); 
13

C NMR (100 MHz, CDCl3) C 188.8 

(C=O), 168.5 (1’’-C), 138.6 (1-C), 135.8 (4’’-C), 133.7 (1’’’-C), 132.7 (Ar CH), 129.6 (Ar CH), 127.6  
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(Ar CH), 127.4 (Ar CH), 127.0 (Ar CH), 126.8 (Ar CH), 126.4 (Ar CH), 126.2 (Ar CH), 126.1 (Ar CH), 

65.2 (3’-C), 59.1 (4’-CH2), 58.1 (2’-C), 23.5 (2’C-CH3), 22.9 (2’C-CH3); νmax (thin film, cm
-1

) 1662.4 

(ArCOS), 1633.6, 1577.1, 1447.2 (CMe2), 1403.9, 1346.4, 1206.7 (-SO2N=), 1143.4, 907.0, 729.8 (Ar 

CH), 689.0, 648.5, 533.7. 

 

 

Methyl 2-diazo-2-phenylacetate 45:
207

 

 

 

 

A solution of sodium nitrite (428 mg, 6.2 mmol) and sulfuric acid (5 % aqueous, 1 mL) in water (4 mL) 

was added to a solution of phenylglycine methyl ester hydrochloride (1.00 g, 5.0 mmol) in DCM          

(30 mL) and water (35 mL) at room temperature and stirred for 7 hours. The organic layer was 

separated, washed with saturated aqueous sodium hydrogen carbonate (100 mL), water (50 mL), 

brine (30 mL), dried over anhydrous magnesium sulfate and the solvent removed in vacuo to give a 

bright yellow oil (652 mg) which was purified by column chromatography (9:1 v/v hexane:EtOAc) to 

yield methyl 2-diazo-2-phenylacetate as a clear bright yellow oil (88.3 mg, 7 %): Rf= 0.45 (9:1 v/v 

hexane:EtOAc); 
1
H NMR (400 MHz, CDCl3) H 7.48 (d, J 8.0 Hz, 2H, 2’/6’-CH), 7.39 (t, J 8.0 Hz, 2H, 

3’/5’-CH), 7.18 (t, J 8.0 Hz, 1H, 4’-CH), 3.87 (s, 3H, OCH3); 
13

C NMR (100 MHz, CDCl3) C 198.9 

(CN2), 165.7 (C=O), 129.0 (3’/5’-CH), 125.9 (4’-CH), 125.5 (1’-C), 124.0 (2’/6’-CH), 52.0 (OCH3); νmax 

(thin film, cm
-1

) 2953.0, 2080.8 (CNN), 1698.7 (C=O), 1598.2, 1575.7, 1498.3, 1434.4 (OMe), 1351.6, 

1286.3, 1246.7, 1191.6, 1152.5 (CO2Me), 1050.9, 1025.3, 908.8, 754.1, 690.9, 668.6 (Ar CH); m/z 

(ESI
+
) calculated for C9H8N2O2Na [M+Na

+
]; 199.0484, found 199.0478 (error = -4.39 ppm). 

 

 

(1-azido-2-iodoethane-1,2-diyl)dibenzene 47:
51

 

 

 

 

Iodine monochloride (1.83 g, 11.3 mmol) was added gradually to a suspension of sodium azide             

(1.63 g, 25.0 mmol) in MeCN (10 mL) at -20 °C and the solution stirred for 20 minutes. Trans-stilbene 

(1.80 g, 10.0 mmol) was added in one portion via solid addition tube and the mixture stirred at room 

temperature for a further 19.5 hours. The reaction mixture was poured into 5 % aqueous Na2S2O3            

(20 mL) and the resulting colourless precipitate collected and dried in air. The crude product  (3.35 g) 
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was recrystallised from MeOH to yield (1-azido-2-iodoethane-1,2-diyl)dibenzene as a pale yellow 

crystalline solid (1.87 g, 54 %): Mp: 119 – 121 °C (lit. 110 – 115 °C); 
1
H NMR (400 MHz, CD3OD) H 

7.45 (dd, J 8.0, 1.5 Hz, 2H, ortho CH), 7.39 (dt, J 4.5, 1.5 Hz, 3H, meta/ para CH), 7.36-7.29 (m, 5H, 

Ar CH), 5.22 (d, J 9.5 Hz, 1H, 2-H), 5.10 (d, J 9.5 Hz, 1H, 1-H); 
13

C NMR (100 MHz, CD3OD) C 140.1 

(1C Ar C), 137.7 (2C Ar C), 129.1 (Ar CH), 128.7 (Ar CH), 128.7 (Ar CH), 128.6 (Ar CH), 128.5              

(Ar CH), 127.7 (Ar CH), 71.9 (1-C), 34.4 (2-C); νmax (solid, cm
-1

): 2092.3 (C-N3), 1491.5, 1452.3, 

1234.0, 1196.5, 1130.2, 1072.8, 833.2, 816.7, 755.6 (Ar CH), 644.5, 630.1, 609.1, 561.2, 506.3, 

484.7; m/z (ESI
+
) calculated for C14H12IN3Na [M+Na

+
]; 371.9974, found 371.9968 (error = -0.76 ppm).  

 

 

(1-azidoethene-1,2-diyl)dibenzene 48:
51

  

 

 

 

Potassium tert-butoxide (336.7 mg, 3.0 mmol) was added to (1-azido-2-iodoethane-1,2-diyl)dibenzene 

(905 mg, 2.5 mmol) in Et2O (7.5 mL) at 0 °C and stirred for 16 hours. The reaction was washed with 

water (2 x 15 mL), the combined aqueous washings extracted with Et2O (3 x 15 mL), the combined 

organic layers dried over anhydrous magnesium sulfate and the solvent removed in vacuo to give an 

orange oil (572 mg). The crude product was passed through an alumina plug with hexane (25 mL) 

and the solvent removed in vacuo to give a yellow oil that crystallised on standing (417 mg) which 

was recrystallised from hexane to yield (Z)-(1-azidoethene-1,2-diyl)dibenzene as a pale yellow 

crystalline solid (179 mg, 40 %): Mp: 65 – 67 °C (lit. 44 – 46 °C); 
1
H NMR (400 MHz, CDCl3) H 7.91 

(dt, J 1.2, 6.6 Hz, 2H, Ar CH), 7.63-7.53 (m, 3H, Ar CH), 7.31-7.23 (m, 3H, Ar CH), 7.14 (dt, J 1.2, 6.6 

Hz, 2H, Ar CH), 3.33 (s, 1H, 2-H); 
13

C NMR (100 MHz, CDCl3) C 163.5 (1-C), 140.9 (1’-C), 133.2            

(Ar CH), 129.9 (Ar CH), 129.3 (Ar CH), 128.3 (Ar CH), 127.1 (Ar CH), 126.1 (Ar CH), 124.1 (1’’-C), 

34.5 (2-C); νmax (solid, cm
-1

) 3030.5 (CH), 2109.3 (C-N3), 1740.9, 1596.8, 1494.1, 1488.6, 1450.0, 

1325.0, 1308.3, 1272.1, 1075.6, 1023.7, 997.9, 981.8, 932.7, 910.7, 784.9, 768.3, 758.5 (Ar CH), 

690.9, 662.3, 627.2, 572.8, 514.4, 427.3; m/z (ESI
+
) calculated for C14H12N [M+H

+
]; 184.1, found 

184.1. 

 

 

2,3-diphenyl-2H-azirine 14c:
51
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Potassium tert-butoxide (725.4 mg, 6.46 mmol) was added to (1-azido-2-iodoethane-1,2-

diyl)dibenzene (1.87 g, 5.34 mmol) in Et2O (15 mL) at 0 °C and stirred for 17 hours. The reaction 

mixture was washed with water (2 x 30 mL), the combined aqueous washings extracted with Et2O              

(3 x 30 mL), the combined organic layers dried over anhydrous magnesium sulfate and the solvent 

removed in vacuo to give an orange oil (996 mg). The crude product was loaded onto an aluminium 

oxide column (3.4 g) and eluted with anhydrous hexane (40 mL). The resulting yellow solution was 

heated at reflux for 2.75 hours then the solvent was removed in vacuo to give a viscous yellow oil. 

The oil solidified on standing to yield 2,3-diphenyl-2H-azirine as a pale yellow crystalline solid that did 

not require further purification (680.0 mg, 66 %): Mp: 56 – 58 °C (lit. 60 – 62 °C); 
1
H NMR (400 MHz, 

CDCl3) H 7.91 (dd, J 1.5, 8.0 Hz, 2H, 2’/6’-H), 7.61-7.54 (m, 3H, 3’/4’/5’-H), 7.31-7.23 (m, 3H, 

3’’/4’’/5’’-H), 7.15 (dd, J 1.5, 8.0 Hz, 2H, 2’’/6’’-H), 3.33 (s, 1H, 2-H); 
13

C NMR (100 MHz, CDCl3) C 

163.5 (1’-C), 140.8 (1’’-C), 133.2 (3’-CH), 129.9 (2’-CH), 129.3 (4’-CH), 128.3 (3’’/5’’-CH), 127.1              

(4’’-CH), 126.1 (2’’/6’’-CH), 124.1 (3-C), 34.5 (2-C); νmax (solid, cm
-1

) 1741.2, 1596.9 (C=N), 1494.4, 

1488.7, 1450.2, 1324.8, 1307.9, 1260.0, 1075.6, 1022.5, 998.4, 932.7, 910.4, 862.4, 799.4, 785.6 

,691.6, 758.4 (Ar CH), 691.6, 662.9, 627.6, 573.3, 515.2; m/z (ESI
+
) calculated for C14H11NNa 

[M+Na
+
]; 216.0789, found 216.0783 (error = 0.19 ppm). 

 

 

Dimethyl 3,4-diphenylazete-2,2(3H)-dicarboxylate 46a:
104

 

 

 

 

A solution of dimethyl 2-diazomalonate (95.0 mg, 0.60 mmol) in chloroform (1 mL) was added to             

2,3-diphenyl-2H-azirine (94.5 mg, 0.49 mmol) and rhodium(II) acetate dimer (8.60 mg, 0.02 mmol) in 

chloroform (1 mL) and the solution heated at reflux for 17 hours. The reaction mixture was loaded 

onto a silica gel plug, eluted with EtOAc (10 mL) and the solvent was removed in vacuo to give a 

brown oil (223 mg) which was purified by column chromatography (6:1 v/v hexane:EtOAc) to yield 

dimethyl 3,4-diphenylazete-2,2(3H)-dicarboxylate as a clear brown oil (139 mg, 88 %): Rf= 0.05 (6:1 

v/v hexane:EtOAc); 
1
H NMR (400 MHz, CDCl3) H 7.74 (d, J 7.5 Hz, 2H, 2’’/6’’-H), 7.52 (t, J 7.5 Hz, 

1H, 4’’-H), 7.41 (t, J 7.5 Hz, 2H, 3’’/5’’-H), 7.30-7.28 (m, 3H, 3’/4’/5’-H), 7.19 (dd, J 4.0, 7.5 Hz, 2H,                

2’/6’-H), 5.43 (s, 1H, 3-H), 3.88 (s, 3H, OCH3), 3.32 (s, 3H, OCH3); 
13

C NMR (100 MHz, CDCl3) C 

190.9 (C=N), 167.7 (C=O), 166.4 (C=O), 133.1 (1’-C), 132.8 (3’’/5’’-CH), 130.7 (1’’-C), 128.7 (4’’-CH), 

128.6 (3C Ar CH), 126.6 (3C Ar CH), 128.2 (2’-CH), 126.9 (2’’-CH), 77.0 (2-C), 55.4 (3-CH), 53.5 

(OCH3), 52.2 (OCH3); νmax (thin film, cm
-1

) 2953.1, 1735.5 (C=O), 1603.5 (C=N), 1564.4, 1493.9, 

1448.0, 1434.1 (OMe), 1360.4, 1256.9, 1196.4, 1151.0 (CO2Me), 1102.8, 1061.3, 1022.5, 911.5, 
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818.0, 792.5, 775.0, 761.7, 728.1 (Ar CH), 668.9, 647.3, 618.1, 536.0; m/z (ESI
+
) calculated for 

C19H17NO4Na [M+Na
+
]; 346.1056, found 346.1049 (error = -0.14 ppm).  

 

 

(1,2-dibromoethyl)benzene:
208

 

 

 

 

Bromine (6.40 g, 40.0 mmol) in chloroform (10.0 mL) was added drop-wise to a solution of styrene 

(4.18 g, 40.2 mmol) in chloroform (16 mL) at 0 °C and stirred for 2.5 hours. The solvent was removed 

in vacuo to give a brown crystalline solid which was recrystallised from EtOH to yield                               

(1,2-dibromoethyl)benzene as an off-white crystalline solid (10.6 g, 99 %): Mp: 68-70 °C (lit. 73 – 75 

°C); 
1
H NMR (400 MHz, CDCl3) H 7.42-7.35 (m, 5H, Ar CH), 5.15 (dd, J 5.0, 10.0 Hz, 1H, 1-H),            

4.10-4.00 (m, 2H, 2-H2); 
13

C NMR (100 MHz, CDCl3) C 138.6 (Ar C), 129.2 (Ar CH), 128.9 (Ar CH), 

127.7 (Ar CH), 50.8 (1-CH), 35.0 (2-CH2); νmax (solid, cm
-1

) 3064.8, 3031.4, 1495.7, 1455.2, 1431.6, 

1361.6, 1310.7, 1291.6, 1230.7, 1198.2, 1155.1, 1133.3, 1077.0, 1051.2, 1023.4, 999.7, 907.1, 768.0 

(Ar CH), 689.8, 661.8, 587.1 (C-Br), 553.3, 501.5, 482.5, 441.1, 425.0; m/z (ESI
+
) calculated for 

C8H8Br2 [M
+
]; 261.9, found: 261.8: 263.9: 265.8 in a 1:2:1 ratio. 

 

 

(1-azidovinyl)benzene 49:
105

 

 

 

 

A mixture of (1,2-Dibromoethyl)benzene (2.67 g, 10.1 mmol) and sodium azide (654 mg, 10.1 mmol) 

in DMF (15 mL) was stirred at room temperature for 17 hours. The reaction mixture was diluted with 

water (100 mL), extracted with hexane (3 x 100 mL), the combined organic extracts washed with 

water (2 x 100 mL), dried over anhydrous potassium carbonate and the solvent removed in vacuo to 

yield crude (1-azido-2-bromoethyl)benzene as a yellow oil (2.02 g). The oil was taken in benzene            

(10 mL) and added dropwise to a slurry of potassium tert-butoxide (1.68 g, 15.0 mmol) in benzene           

(15 mL) at 0 °C and the mixture stirred at room temperature for 5 hours. The reaction mixture was 

diluted with hexane (50 mL), washed with water (2 x 50 mL), dried over anhydrous potassium 

carbonate and the solvent removed in vacuo to yield (1-azidovinyl)benzene as a clear orange oil 

without the need for further purification (1.22 g, 84 %): 
1
H NMR (400 MHz, CDCl3) H 7.57-7.55 (m, 

2H, 2’/6’-H), 7.36-7.35 (m, 3H, 3’/4’/5’-H), 5.43 (d, J 2.5 Hz, 1H, 2-H2), 4.96 (d, J 2.5 Hz, 1H, 2-H2); 
13

C 

NMR (100 MHz, CDCl3) C 145.02 (1-C), 134.3 (1’-C), 129.1 (Ar CH), 128.5 (Ar CH), 125.6 (2’/6’-CH), 
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98.0 (2-CH2); νmax (thin film, cm
-1

) 3058.8 (CH2), 2134.7 (C-N3), 2100.3, 1610.0, 1276.5, 1493.7, 

1445.4, 1406.8, 1289.0, 1220.7, 1183.9, 1070.5, 1027.2, 905.0, 837.5, 788.7, 766.2, 696.1 (Ar CH), 

655.5, 538.5; m/z (ESI
+
) calculated for C8H7N3 [M

+
]; 145.1, found 145.1. 

 

 

3-phenyl-2H-azirine 14b:
105

 

 

 

 

(1-Azidovinyl)benzene (1.22 g, 7.5 mmol) was loaded onto an aluminium oxide plug (6.0 g), eluted 

with hexane (30 mL) and the organic solution concentrated in vacuo to give a yellow oil                

(1.09 g). The oil was dissolved in toluene (25 mL) and heated at reflux for 7 hours, then concentrated 

in vacuo to yield 3-phenyl-2H-azirine as a clear orange oil without the need for further purification (584 

mg, 67 %): 
1
H NMR (400 MHz, CDCl3) H 7.91 (dd, J 6.5, 7.5 Hz, 2H, 2’/6’-H), 7.61-7.57 (m, 3H, 

3’/4’/5’-H), 1.80 (s, 2H, 2-H2); 
13

C NMR (100 MHz, CDCl3) C 165.8 (3-C), 133.0 (3’/4’-CH), 129.6 

(2’/6’-CH), 129.1 (3’/4’/5’-CH), 127.3 (1’-C), 19.2 (2-CH2); νmax (thin film, cm
-1

) 3060.3, 2094.2, 1667.4, 

1606.1 (C=N), 1576.3, 1488.9, 1445.7 (CH2), 1214.7, 1180.0, 1156.5, 1072.9, 1025.7, 1001.0, 888.2, 

752.8 (Ar CH), 690.2, 628.0, 613.7, 547.1; m/z (ESI
+
) calculated for C8H8N [M+H

+
]; 118.0657, found 

118.0651 (error = -0.49 ppm). 

 

 

Methyl 2-azidoacetate 52:
 107

 

 

 

 

A solution of methyl bromoacetate (8.05 g, 52.6 mmol) in MeOH (4 mL) was combined in a single 

portion with a slurry of sodium azide (4.34 g, 66.8 mmol) in water (3 mL) and the mixture stirred at 

room temperature for 20 minutes then 80 °C for 2 hours. The mixture was cooled, the MeOH removed 

in vacuo and the residue dispersed in water (50 mL). The aqueous mixture was extracted with Et2O        

(3 x 80 mL), the combined organic extracts dried over anhydrous magnesium sulfate and the solvent 

removed in vacuo to yield methyl 2-azidoacetate as a clear pale yellow oil without the need for further 

purification (5.02 g, 82 %): 
1
H NMR (400 MHz, CDCl3) H 3.90 (s, 2H, 2-H2), 3.81 (s, 3H, OCH3); 

13
C 

NMR (100 MHz, CDCl3) C 168.8 (C=O), 52.6 (2-CH2), 50.3 (OCH3); νmax (thin film, cm
-1

): 2101.0              

(C-N3), 1742.4 (C=O), 1438.2 (OMe), 1356.8, 1284.4, 1202.2, 1179.7 (CO2Me), 997.8, 918.4, 842.7, 

721.5, 648.7, 574.4, 554.1; m/z (ESI
+
) calculated for C3H5N3O2 [M

+
]; 115.0, found 115.0.  
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Methyl 2-azido-3-phenylacrylate 53:
107

 

 

 

 

Sodium methoxide (540 mg, 10.0 mmol) in MeOH (5 mL) was added to methyl 2-azidoacetate             

(1.15 g, 10.0 mmol) and benzaldehyde (424 mg, 4.0 mmol) in MeOH (6 mL) at -20 °C and stirred for 

1.5 hours. The reaction was warmed to 0 °C with stirring for a further 16 hours then poured into 

saturated aqueous NH4Cl (8 mL). The aqueous mixture was extracted with Et2O (3 x 15 mL), the 

combined organic extracts dried over anhydrous magnesium sulfate and the solvent removed in 

vacuo to yield (Z)-methyl 2-azido-3-phenylacrylate as an orange paste without the need for further 

purification (810 mg, 99 %): 
1
H NMR (400 MHz, CDCl3) H 7.82 (d, J 7.5 Hz, 2H, 2’/6’-CH), 7.41-7.34 

(m, 3H, 3’/4’/5’-H), 6.92 (s, 1H, 3-H), 3.92 (s, 3H, OCH3); 
13

C NMR (100 MHz, CDCl3) C 164.0 (C=O), 

133.1 (1’-C), 130.6 (2’/6’-CH), 129.5 (Ar CH), 128.5 (Ar CH), 125.6 (3-CH), 125.3 (2-CN3), 53.0 

(OCH3); νmax (thin film, cm
-1

) 2119.3 (C-N3), 1715.8 (C=O), 1615.9, 1436.2 (OMe), 1448.0, 1378.5, 

1260.0 (CO2Me), 1087.0, 768.9, 669.0, 656.8; m/z (ESI
+
) calculated for (C10H9NO2)2 [(M-N2)2+H

+
]; 

351.1345, found 351.1339 (error= -1.62 ppm). 

 

 

Dimethyl 2-((1-phenylvinyl)imino)malonate 50a:
104

 

 

 

 

3-Phenyl-2H-azirine (106 mg, 0.55 mmol), rhodium acetate dimer (23.0 mg, 0.06 mmol) and dimethyl 

2-diazomalonate (107 mg, 0.67 mmol) were dissolved in chloroform (2.5 mL) and stirred at reflux for 

17 hours. The reaction mixture was loaded onto a silica gel plug, eluted with EtOAc (10.0 mL) and the 

solvent removed in vacuo to give a red-brown oil (200.9 mg) which was purified by column 

chromatography (40 g silica gel, 9:1 v/v petroleum ether 40 – 60 °C fraction:EtOAc) to yield dimethyl             

2-((1-phenylvinyl)imino)malonate as a clear yellow oil (74.6 mg, 55 %): Rf= 0.13 (9:1 v/v petroleum 

ether 40 – 60 °C fraction:EtOAc); 
1
H NMR (400 MHz, CDCl3) H 7.47-7.45 (m, 2H, 2’’/6’’-CH),              

7.37-7.35 (m, 3H, 3’’/4’’/5’’-CH), 4.99 (s, 1H, 2’-CH2), 4.61 (s, 1H, 2’-CH2), 3.98 (s, 3H, OCH3), 3.78 (s, 

3H, OCH3); 
13

C NMR (100 MHz, CDCl3) C 162.3 (C=O), 161.3 (C=O), 154.0 (C=N), 151.2 (C-N), 

134.6 (1’’-C), 129.0 (Ar CH), 128.5 (Ar CH), 125.8 (2’’/6’’-CH), 97.3 (2’-CH2), 53.6 (OCH3), 52.6 

(OCH3); νmax (thin film, cm
-1

) 2955.0 (CH2), 1745.5 (C=O), 1653.1, 1608.5 (C=N), 1575.3, 1494.2, 

1437.1 (OMe), 1325.5, 1248.7 (CO2Me), 1191.7, 1075.3, 871.1, 774.9 (Ar CH), 693.6; m/z (ESI
+
)
 

calculated for C13H13NO4Na [M+Na
+
]; 270.0743, found 270.0739 (error = -0.92 ppm). 
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Tetramethyl 5-phenyl-2H-pyrrole-2,2,3,3(4H) tetracarboxylate 51:
104

 

 

 

 

3-Phenyl-2H-azirine (59.1 mg, 0.31 mmol), rhodium acetate dimer (9.9 mg, 0.02 mmol) and dimethyl 

2-diazomalonate (104 mg, 0.65 mmol) were dissolved in chloroform (2 mL) and stirred at reflux for           

18 hours. The reaction mixture loaded onto a silica gel plug, eluted with EtOAc (10 mL) and the 

solvent removed in vacuo to give a brown oil (140 mg) which was purified by column chromatography 

(6:1 v/v to 1:1 v/v petroleum ether 40 – 60 °C fraction:EtOAc) to yield tetramethyl 5-phenyl-2H-pyrrole-

2,2,3,3(4H) tetracarboxylate as an orange gum (80.6 mg, 67 %): Rf= 0.22 (6:1 v/v petroleum ether          

40 – 60 °C fraction:EtOAc); 
1
H NMR (400 MHz, CDCl3) H 7.92 (d, J 8.0 Hz, 2H, 2’/6’-H), 7.51 (t, J 8.0 

Hz, 1H, 4’-H), 7.44 (t, J 8.0 Hz, 2H, 3’/5’-H), 3.87 (s, 2H, 4-H2), 3.83 (s, 6H, OCH3), 3.76 (s, 6H, 

OCH3); 
13

C NMR (100 MHz, CDCl3) C 175.1 (C=N), 169.8 (C=O), 168.2 (C=O), 168.1 (C=O) 166.0 

(C=O), 132.5 (1’-C), 132.0 (4’-CH), 128.6 (3’-CH), 128.4 (2’-CH), 65.9 (2-C), 53.5-53.2 (OCH3), 46.4 

(4-CH2), 40.8 (3-C); νmax (thin film, cm
-1

) 2955.7, 2925.3, 1736.1 (C=O), 1624.4 (C=N), 1434.7 (OMe), 

1355.1, 1234.2 (CO2Me), 1166.8, 1123.8, 1072.0, 1039.2, 962.8, 911.1, 871.8, 798.9, 782.6, 762.8, 

729.5 (Ar CH), 648.2; m/z (ESI
+
) calculated for C18H19NO8Na

 
[M+Na

+
]; 400.1009, found 400.1003 

(error = -2.88 ppm). 

 

 

Methyl 2-azido-3-(4-tolyl)acrylate 54:
108

 

 

 

 

4-Tolualdehyde (396 mg, 3.3 mmol) and methyl 2-azidoacetate (1.15 g, 10.0 mmol) were added 

dropwise to a solution of sodium methoxide (195 mg, 3.6 mmol) in MeOH (1.10 mL) at -20 °C with 

stirring at -10 °C for a further 4 hours. The reaction mixture was partitioned between water (20 mL) 

and Et2O (20 mL), the aqueous layer separated and extracted with Et2O (2 x 20 mL), the combined 

organic extracts washed with water (2 x 20 mL), brine (20 mL), dried over anhydrous magnesium 

sulfate and the solvent removed in vacuo to give a yellow crystalline solid (862 mg) which was purified 

by column chromatography (19:1 v/v petroleum ether 40 – 60 °C fraction:EtOAc) to yield (Z)-methyl        

2-azido-3-(4-tolyl)acrylate as a yellow crystalline solid (452 mg, 63 %): Rf= 0.27 (19:1 v/v petroleum 

ether 40 – 60 °C fraction:EtOAc); Mp: 57 – 59 °C (lit. 64 – 65 °C);  
1
H NMR (400 MHz, CDCl3) H 7.72 

(d, J 8.0 Hz, 2H, Ar CH), 7.20 (d, J 8.0 Hz, 2H, Ar CH), 6.91 (s, 1H, 3-H), 3.91 (s, 3H, OCH3), 2.38 (s, 

3H, Ts CH3); 
13

C NMR (100 MHz, CDCl3) C 164.2 (C=O), 139.9 (C-N3), 130.6 (Ar CH), 130.4 (4’-C), 
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129.3 (Ar CH), 125.8 (3-CH), 124.4 (1’-C), 52.9 (OCH3), 21.5 (4’C-CH3); νmax (solid, cm
-1

) 2957.5, 

2917.0, 2114.9 (C-N3), 1708.0 (C=O), 1666.7, 1616.8, 1604.0, 1504.6, 1435.9 (OMe), 1414.2, 1378.5, 

1321.8, 1295.0, 1247.6 (CO2Me), 1208.4, 1180., 1126.9, 1114.0, 1077.3, 1016.3, 954.2, 887.5, 865.9, 

844.6, 818.2, 755.0, 740.9 (Ar CH), 711.9, 650.2, 631.8, 553.2, 531.8, 465.0; m/z (ESI
+
) calculated for

 

C11H11N3O2Na [M+Na
+
]; 240.0749, found 240.0743 (error = -6.19 ppm). 

 

 

Dimethyl 2-((3-methoxy-3-oxo-1-(4-tolyl)prop-1-en-2-yl)imino)malonate 50c:
104

 

 

 

 

A solution of methyl 2-azido-3-(4-tolyl)acrylate (643 mg, 3.00 mmol) in cyclohexane (60 mL) was 

heated at reflux for 17 hours. The solvent was removed in vacuo to give an orange residue which 

solidified on standing (572 mg). The orange solid contained an inseperable mixture of methyl                

2-(4-tolyl)-2H-azirine-3-carboxylate (14h) and methyl 6-methyl-1H-indole-2-carboxylate (55) in the 

ratio of 3:1. 

 

A solution of dimethyl 2-diazomalonate (96.8 mg, 0.61 mmol, 1.3 mol. eq. based on azirine loading) in 

chloroform (1 mL) was added to a solution of the crude methyl 2-(4-tolyl)-2H-azirine-3-carboxylate 

(14h, 114.6 mg, 0.60 mmol = 89.8 mg, 0.47 mmol azirine loading) and rhodium acetate dimer (9.1 

mg, 0.02 mmol) in chloroform (1 mL) and the resulting mixture stirred at reflux for 16.5 hours. The 

reaction mixture was loaded onto a silica gel plug, eluted with EtOAc (15 mL) and the solvent 

removed in vacuo to give a dark yellow oil (211 mg) which was purified by column chromatography 

(9:1 v/v petroleum ether 40 – 60 °C fraction:EtOAc) to yield (E)-dimethyl 2-((3-methoxy-3-oxo-1-(4-

tolyl)prop-1-en-2-yl)imino)malonate as a clear bright orange oil (87.7 mg, 77 %): Rf= 0.09 (9:1 v/v 

petroleum ether 40 – 60 °C fraction:EtOAc); 
1
H NMR (400 MHz, CDCl3) H 7.41 (d, J 8.0 Hz, 2H, 

2’’/6’’-H), 7.28 (s, 1H, 1’-H), 7.18 (d, J 8.0 Hz, 2H, 3’’/5’’-H), 4.00 (s, 3H, 1C-OCH3), 3.81 (s, 3H,                

3’-OCH3), 3.80 (s, 3H, 1C-CH3), 2.36 (s, 3H, 4’’C-CH3); 
13

C NMR (100 MHz, CDCl3) C 162.9 

(propenyl C=O), 162.5 (1C=O), 159.8 (2-C=O), 152.6 (C=N), 140.1 (1’’-C), 133.3 (2’-C), 131.7            

(2’’/6’’-CH), 130.8 (4’’-C), 129.4 (3’’/5’’-CH), 128.3 (1’-CH); 53.5 (1C-OCH3), 52.8 (1C-OCH3), 52.6 

(3’C-OCH3), 21.5 (4’’C-CH3); νmax (thin film, cm
-1

) 2955.4, 1715.4 (C=O), 1604.2 (C=N), 1558.6, 

1509.0, 1435.0 (OMe), 1317.8, 1242.2 (CO2Me), 1202.0, 1183.6, 1099.6, 1072.8, 966.0, 814.7, 788.3, 

757.1 (Ar CH), 649.9, 508.9; m/z (ESI
+
) calculated for

 
C16H17NO6Na [M+Na

+
]; 342.0954, found: 

342.0919. 
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The methyl 6-methyl-1H-indole-2-carboxylate (55)
108

 impurity from the crude azirine product was 

isolated from crude dimethyl 2-((3-methoxy-3-oxo-1-(4-tolyl)prop-1-en-2-yl)imino)malonate (50c) as a 

colourless solid: 

 

 

 

Rf= 0.26 (9:1 v/v petroleum ether 40 – 60 °C fraction:EtOAc); Mp: 120 – 122 °C (lit. 97 – 98 °C); 
1
H 

NMR (400 MHz, CDCl3) H 8.73 (br-s, 1H, N-H), 7.57 (d, J 8.0 Hz, 1H, 4-H), 7.20 (s, 1H, 7-H), 7.17 (d, 

J 1.5 Hz, 1H, 3-H), 6.99 (d, J 8.0 Hz, 1H, 5-H), 3.93 (s, 3H, OCH3), 2.47 (s, 3H, 6-CH3); 
13

C NMR                 

(100 MHz, CDCl3) C 162.4 (C=O), 137.3 (9-C), 135.7 (8-C), 126.5 (6-C), 125.4 (2-C); 123.0 (5-CH); 

122.2 (4-CH); 111.5 (7-CH); 108.8 (3-CH); 51.9 (OCH3); 22.0 (6C-CH3); νmax (solid, cm
-1

) 3326.8             

(N-H), 2169.9, 1700.7 (C=O), 1527.1, 1438.6 (OMe), 1334.3, 1266.2 (CO2Me), 1216.7, 832.0, 794.1, 

743.2 (Ar CH), 669.0; m/z (EI
+
) calculated for

 
C11H11NO2 [M

+
]; 189.1, found: 189.1. 

 

Subtraction of the peaks associated with methyl 6-methyl-1H-indole-2-carboxylate (55) from the crude 

spectra of methyl 2-(4-tolyl)-2H-azirine-3-carboxylate (14h)
108

 allowed the 
1
H and 

13
C NMR 

characterisation to be assigned: 

 

 

 

1
H NMR (400 MHz, CDCl3) H 7.14 (d, J 6.5 Hz, 2H, 2’/6’-H), 7.04 (d, J 6.5 Hz, 2H, 3’/5’-H), 4.02 (s, 

3H, OCH3), 3.46 (s, 1H, 2-H), 2.34 (s, 3H, 4’C-CH3); 
13

C NMR (100 MHz, CDCl3) C 163.3 (C=O), 

159.1 (C=N), 138.0 (4’-C), 135.2 (1’-C), 129.2 (2’/6’-CH), 126.4 (3’/5’-CH), 53.6 (OCH3), 38.8 (2-CH), 

21.2 (4’-CH3).  

 

 

Diallyl (difluoromethyl) phosphonate 78:
185c 

 

 

 

A solution of dibromodifluoromethane (681 mg, 3.25 mmol) and triallyl phosphite (606 mg, 3.0 mmol) 

in THF (0.9 mL) under an argon atmosphere in a screw-cap vial was stirred at 100 °C for 6.5 hours. 

The mixture was concentrated in vacuo to give a clear yellow oil (965 mg) which was purified by 

column chromatography (100 % DCM) to yield diallyl (difluoromethyl) phosphonate as a clear pale 

yellow oil (279 mg, 43 %): Rf= 0.08 (100 % CH2Cl2); 
1
H NMR (400 MHz, CDCl3) H 5.94 (dt, JHP 27.7 
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Hz, JHF 50.4 Hz, 1H, CF2-H), 6.03-5.91 (m, 2H, 2-H), 5.44-5.31 (m, 4H, 3-H2), 4.70 (d, J 6.0 Hz, 4H,  

1-H2); 
13

C NMR (100 MHz, CDCl3) C 131.8 (C-F2H), 119.4 (3-CH2), 111.3 (2-CH), 68.5 (d, JPC 7.4 Hz, 

1-CH2); 
19

F NMR (400 MHz, CDCl3) F -134.86 (dd, JFH 50.4 Hz, JFP 93.0 Hz, 1F); 
31

P NMR (160 MHz, 

CDCl3) P 5.53 (dtt, JPC 7.4 Hz, JPH 27.7 Hz, JPF 93.0 Hz, 1P); νmax (thin film, cm
-1

) 1458.3, 1425.9, 

1265.2 (P=O), 1162.1, 1090.5, 1055.4 (C-F), 1009.5 (P-O-R), 986.1, 931.7, 863.9, 748.3, 648.4. 

585.1. 520.9; m/z (ESI
+
) calculated for C7H12F2O3P [M+H

+
]; 213.0487, found 213.0487 (error = -0.13 

ppm). 

 

 

Silver(I) 2,2-difluoro-2-(fluorosulfonyl)acetate:
184

 

 

 

 

2,2-Difluoro-2-(fluorosulfonyl)actetic acid (6.55 g, 36.8 mmol) was added over 30 minutes to a 

suspension of silver(I) oxide (4.50 g, 19.4 mmol) in Et2O (25 mL) protected from light and stirred at 

room temperature for 16 hours. The mixture was filtered and the solvent removed in vacuo. The 

resulting off-white solid was dried under reduced pressure protected from light for 48 hours to yield 

silver(I) 2,2-difluoro-2-(fluorosulfonyl)acetate as an off-white solid (10.4 g, 99 %): Mp: 151 – 152 °C 

(lit. 158 – 160 °C);  
13

C NMR (100 MHz, D2O) C 159.8 (C=O), 114.3 (C-F2); 
19

F NMR (400 MHz, D2O) 

F -37.2 (s, 1F, F-SO2), -101.3 (2F, d, J 4.0 Hz, C-F2); νmax (solid, cm
-1

) 3607, 3386, 1671 (C=O), 1427 

(C=O), 1382 (SO2), 1230, 1170 (C-F), 995, 831, 799 (S-F), 715, 647.  

 

 

 

 

Allyl 2,2-difluoro-2-(fluorosulfonyl)acetate 75:
184

 

 

 

 

Allyl bromide (4.30 g, 35.5 mmol) was added to silver 2,2-difluoro-2-(fluorosulfonyl)acetate (9.17 g, 

32.3 mmol) at -196 °C. The mixture was warmed to room temperature with stirring for a further                 

24 hours. The crude oil was distilled to give allyl 2,2-difluoro-2-(fluorosulfonyl)acetate as a clear 

colourless oil (6.10 g, 87 %): Bp: 45 – 47 °C at 25 mmHg (lit. 141 – 142 °C at 760 mmHg); 
1
H NMR 

(400 MHz, CDCl3) H 6.00-5.91 (m, 1H, 2’-H), 5.50-5.41 (m, 2H, 3’-H2), 4.93 (d, J 6.0 Hz, 2H, 1’-H2); 

13
C NMR (100 MHz, CDCl3) C 155.9 (C=O), 129.8 (2’-CH), 121.6 (3’-CH2), 112.0 (C-F2), 69.6                 

(1’-CH2); 
19

F NMR (400 MHz, CDCl3) F 41.1 (t, J 4.0 Hz, 1F, F-SO2), -103.5 (d, J 4.0 Hz, 2F, C-F2); 
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νmax (thin film, cm
-1

) 1780.0 (C=O), 1444.9 (C-O), 1370.9 (SO2), 1309.9, 1232.3, 1193.6, 1145.2 (C-F), 

991.0, 938.3, 893.9, 824.0, 795.0 (C-F), 726.5, 638.7, 562.2, 485.8, 459.2; m/z (EI
+
) calculated for 

C5H5F3O4S [M
+
]; 218.0, found 218.0. 

 

 

Allyl 2-chloro-2,2-difluoroacetate 74:
178

 

 

 

 

In a 2-neck flask fitted with a Dean-Stark apparatus and thermometer for monitoring the internal 

temperature of the reaction, chlorodifluoroacetic acid (9.79 g, 75.0 mmol) and allyl alcohol (5.98 g, 

103 mmol) in n-hexane (10 mL) were stirred with heating 9 hours, maintaining the internal 

temperature of the reaction mixture between 70 – 75 °C. The reaction mixture was cooled to room 

temperature, washed with water (2 x 10 mL), dried over anhydrous magnesium sulfate and the 

solvent removed in vacuo to yield allyl 2-chloro-2,2-difluoroacetate as a clear pale yellow oil without 

the need for further purification (2.85 g, 22 %): 
1
H NMR (400 MHz, CDCl3) H 6.01-5.91 (m, 1H, 2’-H), 

5.48-5.37 (m, 2H, 3’-H2), 4.83 (d, J 5.5 Hz, 2H, 1’-H2); 
13

C NMR (100 MHz, CDCl3) C 159.0 (C=O), 

129.7 (2’-CH), 120.8 (3’-CH2), 116.8 (C-F2Cl); 68.5 (1’-CH2); 
19

F NMR (400 MHz, CDCl3) F -63.85 (s, 

2F, CCl-F2); νmax (thin film, cm
-1

) 1777.7 (C=O), 1651.1, 1455.2, 1426.1, 1370.4, 1304.7 (C-O), 1166.5, 

1119.4 (C-F), 981.6, 940.2, 809.6, 729.6 (C-Cl), 624.2, 551.4; m/z (EI
+
) calculated for C5H5F2O2Cl 

[M
+
]; 170.0, found 170.5. 

 

 

General microwave procedure for the addition of difluorocarbene to aryl alkenes:  

 

All chemicals and solvents were supplied by Sigma Aldrich and Fisher Scientific and were used as 

received. No prior drying of the reaction vessel was performed and all experiments were run under an 

air atmosphere. All microwave reactions were performed using a Milestone MicroSYNTH reactor and 

Q20 vessel with Weflon™ button and magnetic stirring bead. Twist control, rotor control, start 

parameters and continuous power were all selected. T2 control was used with 80-90 % stirring.  

 

Sodium chlorodifluoroacetate (914 mg, 6.0 mmol) was completely dissolved in 4.0 mL of a 0.5 mmol 

mL
-1

 THF solution of alkene and exposed to microwave irradiation (300 W, 170 °C, 5 min). After 

cooling, the reaction mixture was diluted with water (20 mL), extracted with Et2O (3 x 20 mL), the 

combined organic extracts dried over anhydrous magnesium sulfate and the solvent removed in 

vacuo to yield the crude products as brown oils. For compounds 80a, 80d-m the crude products were 

purified by column chromatography with 100 % hexane as eluent. For compound 80n the crude 

product was purified by column chromatography with 50:1 v/v hexane:EtOAc as eluent.  
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(2,2-difluoro-1-methylcyclopropyl)benzene 80a:
198

 

 

 

 

From 2-phenylpropene (236 mg, 2.0 mmol) following the general microwave procedure to yield                 

(2,2-difluoro-1-methylcyclopropyl)benzene as a clear colourless oil (270 mg, 78 %): Rf= 0.30 (100 % 

hexane);
 1

H NMR (400 MHz, CDCl3) H 7.37-7.25 (m, 5H, Ar CH), 1.71-1.66 (m, 1H, 3-H2), 1.52 (dd,         

J 3.0, 2.0 Hz, 3H, CH3), 1.43-1.40 (m, 1H, 3-H2); 
13

C NMR (100 MHz, CDCl3) C 139.1 (1’-C), 128.5            

(Ar CH), 128.3 (Ar CH), 127.2 (Ar CH), 114.5 (2-CF2), 31.2 (1-C), 22.5 (3-CH2), 21.4 (CH3); 
19

F NMR 

(400 MHz, CDCl3) F -132.3-132.7 (m, 1F, CF2), -137.3-137.7 (m, 1F, CF2); νmax (thin film, cm
-1

) 2980.7 

(CH2), 1499.5, 1468.9 (CH2), 1444.7, 1369.4, 1300.2, 1208.9, 1172.1, 1096.9, 1065.0, 1006.1 (C-F), 

932.4, 902.3, 869.0, 764.8, 715.7, 609.9, 544.5, 479.9; m/z (EI
+
) calculated for C10H10F2 [M

+
]; 168.1, 

found 168.9; calculated for C9H7F2 (M
+
-CH3); 153.1, found 153.1.  

 

 

(2,2-difluorocyclopropane-1,1-diyl)dibenzene 80d:
198

 

 

 

 

From 1,1-diphenylethene (360 mg, 2.0 mmol) following the general microwave procedure to yield                    

(2,2-difluorocyclopropane-1,1-diyl)dibenzene as a white crystalline solid (412 mg, 87 %): Rf= 0.17 

(100 % hexane); Mp 73 – 74 °C (lit. 50 – 51 °C); 
1
H NMR (400 MHz, CDCl3) H 7.41 (dd, J 1.5, 7.0 Hz, 

4H, 2’/6’-H), 7.31 (td, J 1.5, 7.0 Hz, 4H, 3’/5’-H), 7.23 (tt, J 1.5, 7.0 Hz, 2H, 4’-H), 2.08 (t, J 8.5 Hz, 2H, 

3-H2); 
13

C NMR (100 MHz, CDCl3) C 138.6 (1’-C), 128.8 (2’/6’-CH), 128.6 (3’/5’-CH), 127.3 (4’-CH), 

112.9 (2-CF2), 40.0 (1-C), 23.7 (3-CH2); 
19

F NMR (400 MHz, CDCl3) F -129.88 (t, J 8.5 Hz, 2F); νmax 

(solid, cm
-1

) 3025.9, 2919.5 (CH2), 1599.6, 1494.2 (CH2), 1447.7, 1438.4, 1367.2, 1301.8, 1280.6, 

1207.2, 1070.9, 1027.3 (C-F), 1008.6, 987.9, 912.0, 902.7, 851.0, 831.9, 759.9, 746.4 (Ar CH), 636.2, 

609.9, 539.2, 494.2, 475.0; m/z (EI
+
) calculated for C15H12F2 [M

+
]; 230.1, found 230.0. 

 

 

1-chloro-4-(2,2-difluoro-1-methylcyclopropyl)benzene 80e:
209
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From (4-chlorophenyl)-alpha-methylstyrene (305 mg, 2.0 mmol) following the general microwave 

procedure to yield 1-chloro-4-(2,2-difluoro-1-methylcyclopropyl)benzene as a clear colourless oil             

(361 mg, 87 %): Rf= 0.37 (100 % hexane);
 1
H NMR (400 MHz, CDCl3) H 7.31 (d, J 8.5 Hz, 2H, 3/5-H), 

7.24 (d, J 8.5 Hz, 2H, 2/6-H), 1.64 (ddd, J 3.5, 7.5, 12.7 Hz, 1H, 3’-H2), 1.49 (dd, J 1.8, 3.5 Hz, 3H,            

C-H3), 1.43 (ddd, J 3.5, 7.5, 12.7 Hz, 1H, 3’-H2); 
13

C NMR (100 MHz, CDCl3) C 137.6 (1-C), 133.1            

(4-C), 129.8 (2/6-CH), 128.7 (3/5-CH), 114.2 (2’-CF2), 30.6 (1’-C), 22.6 (3’-CH2), 21.2 (CH3); 
19

F NMR 

(400 MHz, CDCl3) F -132.49 (dd-hex, J 1.8, 12.7, 150.5 Hz, 1F), -137.62 (ddhex, J 1.8, 12.7, 150.5 

Hz, 1F); νmax (thin film, cm
-1

) 2980.0 (CH2), 1493.9, 1469.5 (CH2), 1448.4, 1400.9, 1370.5, 1301.5, 

1269.0, 1213.2 (C-F), 1171.9, 1098.3, 1001.9, 932.4, 902.3, 870.0, 827.7, 747.7 (C-Cl), 729.3                 

(Ar CH), 642.8, 559.9, 518.1, 486.1, 445.6; m/z (EI
+
) calculated for C10H9F2 [M

+
-Cl]; 167.1, found: 

167.1. 

 

 

Trans-(2,2-difluoro-3-methylcyclopropyl)benzene 80f:
164

 

 

 

 

From trans-beta-methylstyrene (236 mg, 2.0 mmol) following the general microwave procedure to 

yield trans-(2,2-difluoro-3-methylcyclopropyl)benzene as a clear pale yellow oil (271 mg, 78 %):                

Rf= 0.33 (100 % hexane);
 1

H NMR (400 MHz, CDCl3) H 7.32 (t, J 7.0 Hz, 2H, 3’/5’-H), 7.25 (t,                

J 7.0 Hz, 1H, 4’-H), 7.19 (d, J 7.0 Hz, 2H, 2’/6’-H), 2.28 (dq, J 6.7, 13.0 Hz, 1H, 1-H), 1.84 (d septet, J 

1.0, 6.7 Hz, 1H, 3-H), 1.34 (dd, J 1.0, 6.7 Hz, 3H, CH3); 
13

C NMR (100 MHz, CDCl3) C 134.3 (1’-C), 

128.4 (3’/5’-CH), 127.8 (2’/6’-CH), 126.9 (4’-CH), 114.7 (2-CF2), 34.0 (1-C), 24.3 (3-C), 11.5 (CH3); 
19

F 

NMR (400 MHz, CDCl3) F -137.86 (dq, J 13.0, 164.0 Hz, 2F); νmax (thin film, cm
-1

) 3029.7 (C-H), 

2974.3, 1600.8, 1502.3, 1475.0, 1439.2, 1387.4, 1326.2, 1265.3, 1218.6, 1183.7, 1134.6, 1097.3, 

1056.3, 1033.5, 1020.8 (C-F), 1002.4, 984.7, 954.7, 909.2, 861.3, 764.4, 745.3 (Ar CH), 695.1, 652.3, 

600.2, 507.6, 474.7; m/z (EI
+
) calculated for C10H10F2 [M

+
]; 168.1, found 167.8; C9H7F2 [M-CH3

+
]; 

153.1, found 153.0; C4H5F2 [M-C6H5
+
];  91.0,  found 90.9. 

 

 

(1-bromo-2,2-difluorocyclopropyl)benzene 80g:
198

 

 

 

 

From alpha-bromostyrene (366 mg, 2.0 mmol) following the general microwave procedure to yield             

(1-bromo-2,2-difluorocyclopropyl)benzene as a clear colourless oil (363 mg, 76 %): Rf= 0.31 (100 % 

hexane);
 1

H NMR (400 MHz, CDCl3) H 7.48 (dd, J 1.6, 8.2 Hz, 2H, 2’/6’-H), 7.41-7.33 (m, 3H,             
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3’/4’/5’-H), 2.25 (ddd, J 4.8, 9.5, 18.0 Hz, 1H, 3-H2), 2.08 (ddd, J 4.8, 9.6, 14.8 Hz, 1H, 3-H2); 
13

C 

NMR (100 MHz, CDCl3) C 136.2 (1’-C), 129.3 (2’/6’-CH), 129.2 (Ar CH), 128.9 (Ar CH), 109.5                

(2-CF2), 34.1 (1-CBr), 26.9 (3-CH2); 
19

F NMR (400 MHz, CDCl3) F 127.17 (ddd, J 4.8, 10.7, 150.0 Hz, 

1F), 132.10 (ddd J 4.8, 13.6, 150.0 Hz, 1F); νmax (thin film, cm
-1

) 1498.2, 1443.4 (CH2), 1366.3, 1264.4, 

1224.2 (C-F), 1059.2, 1025.2, 1011.2, 982.1, 917.1, 896.4, 748.6 (Ar CH), 693.4, 654.2 (C-Br), 607.3; 

m/z (EI
+
) calculated for C9H7BrF2 [M

+
]; 231.9699, found 232.0; C9H7F2 [M

+
-Br]; 153.1, found 153.0. 

 

 

1-(tert-butyl)-4-(2,2-difluorocyclopropyl)benzene 80h:
209

 

 

 

 

From 4-tert-butylstyrene (320 mg, 2.0 mmol) following the general microwave procedure to yield                 

1-(tert-butyl)-4-(2,2-difluorocyclopropyl)benzene as a clear colourless oil (325 mg, 75 %): Rf= 0.26 

(100 % hexane);
 1

H NMR (400 MHz, CDCl3) H 7.35 (d, J 8.5 Hz, 2H, 3/5-H), 7.16 (d, J 8.5 Hz, 2H, 

2/6-H), 2.72 (dt, J 8.0, 12.0 Hz, 1H, 1’-H), 1.85-1.74 (m, 1H, 3’-H2), 1.64-1.55 (m, 1H, 3’-H2), 1.31 (s, 

9H, 
t
Bu CH3); 

13
C NMR (100 MHz, CDCl3) C 150.1 (4-C), 130.6 (1-C), 127.7 (2/6-CH), 125.4 (3/5-

CH), 112.7 (2’-CF2), 34.5 (C(CH3)3), 31.3 (
t
Bu CH3), 26.8 (1’-C), 17.0 (3’-C); 

19
F NMR (400 MHz, 

CDCl3) F -125.86 (ddt, J 4.3, 12.8, 153.5 Hz, 1F), -142.37 (ddd, J 4.3, 12.8, 153.5 Hz, 1F); νmax (thin 

film, cm
-1

) 2962.8 (CH2), 2868.7, 1519.5, 1467.9, 1409.2, 1378.0, 1364.1, 1324.1, 1303.8 (CMe3), 

1269.2, 1230.9, 1188.0, 1112.6, 1086.6, 1043.3 (C-F), 1018.0, 956.0, 932.1, 897.8, 832.9 (Ar CH), 

773.8, 719.9, 698.6, 610.6, 549.8, 527.8, 486.4, 464.9, 439.7; m/z (EI
+
) calculated for C13H16F2 [M

+
]; 

210.1, found 210.1; C9H7F2 [M
+
-C(CH3)3];  153.1, found 153.0. 

 

 

7,7-difluoro-1-phenylbicyclo[4.1.0]heptane 80i:
165

 

 

 

 

From 1-phenyl-1-cyclohexene (316 mg, 2.0 mmol) following the general microwave procedure to yield 

7,7-difluoro-1-phenylbicyclo[4.1.0]heptane as a clear pale yellow oil (318 mg, 75 %): Rf= 0.26 (100 % 

hexane);
 1

H NMR (400 MHz, CDCl3) H 7.34-7.22 (m, 5H, Ar CH), 2.20-2.15 (m, 1H, 5-H), 2.03-1.96 

(m, 1H, 2-H2), 1.86-1.73 (m, 3H, 2/5/6-H2), 1.49-1.31 (m, 4H, 3/4-H2); 
13

C NMR (100 MHz, CDCl3) C 

141.8 (1’-C), 128.5 (Ar CH), 128.3 (Ar CH), 126.8 (Ar CH), 115.7 (7-CF2), 31.0 (1-C), 27.3 (5-CH2), 

23.3 (6-CH), 21.1 (4-CH2), 20.7 (3-CH2), 16.9 (2-CH2); 
19

F NMR (400 MHz, CDCl3) F 127.75 (dd,              

J 16.0, 160.0 Hz, 1F), 143.00 (d, J 160.0 Hz, 1F); νmax (thin film, cm
-1

) 2944.1 (C-H), 2857.1 (CH2), 



117 

 

1602.1, 1495.8, 1469.9, 1459.6, 1446.7, 1429.0 (CH2), 1333.0, 1298.5, 1251.3, 1193.9 (C-F), 1094.2, 

1073.1, 1046.0, 1014.3, 990.7, 929.8, 896.9, 869.7, 838.4, 817.6, 757.6, 738.9 (Ar CH), 631.5, 615.6, 

550.6, 530.3, 503.7, 486.8, 457.1; m/z (EI
+
) calculated for C13H14F2 [M

+
]; 208.1, found 208.1. 

 

 

1-chloro-4-(2,2-difluorocyclopropyl)benzene 80j: 

 

 

 

From 4-chlorostyrene (277 mg, 2.0 mmol) following the general microwave procedure to yield                     

1-chloro-4-(2,2-difluorocyclopropyl)benzene as a clear pale yellow oil (279 mg, 72 %): Rf= 0.33              

(100 % hexane);
 1

H NMR (400 MHz, CDCl3) H 7.28 (d, J 8.5 Hz, 2H, 3/5-H), 7.13 (d, J 8.5 Hz, 2H, 

2/6-H), 2.70 (dt, J 8.0, 12.5 Hz, 1H, 1’-H), 1.86-1.77 (m, 1H, 3’-H2), 1.61-1.59 (m, 1H, 3’-H2); 
13

C NMR 

(100 MHz, CDCl3) C 133.1 (1-C), 132.2 (4-C), 129.4 (2/6-CH), 128.7 (3/5-CH), 112.3 (2’-CF2), 26.6                 

(1’-CH), 17.2 (3’-CH2); 
19

F NMR (400 MHz, CDCl3) F -126.02 (ddt, J 4.5, 12.5, 154.5 Hz, 1F), -142.22 

(ddd, J 4.5, 12.5, 154.5 Hz, 1F); νmax (thin film, cm
-1

): 1495.8, 1465.9 (CH2), 1405.2, 1380.5, 1298.7, 

1230.2, 1188.6, 1095.1, 1040.1, 1016.1 (C-F), 958.0, 930.8, 897.7, 828.4 (Ar CH), 773.1 (C-Cl), 

725.4, 640.5, 602.7, 506.5; m/z (EI
+
) calculated for C9H7ClF2 [M

+
]; 188.0, found 188.0; C9H7F2 [M

+
-Cl]; 

153.1, found 153.1. 

  

 

1-bromo-4-(2,2-difluorocyclopropyl)benzene 80k:
198

 

 

 

 

From 4-bromostyrene (366 mg, 2.0 mmol) following the general microwave procedure to yield                       

1-bromo-4-(2,2-difluorocyclopropyl)benzene as a clear colourless oil (339 mg, 71 %): Rf= 0.31 (100 % 

hexane);
 1

H NMR (400 MHz, CDCl3) H 7.45 (d, J 8.5 Hz, 2H, 3/5-H), 7.09 (d, J 8.5 Hz, 2H, 2/6-H), 

2.70 (dt, J 8.0, 12.5 Hz, 1H, 1’-H), 1.88-1.79 (m, 1H, 3’-H2), 1.63-1.60 (m, 1H, 3’-H2); 
13

C NMR                

(100 MHz, CDCl3) C 132.7 (1-C), 131.6 (3/5-CH), 129.7 (2/6-CH), 121.1 (4-C), 112.2 (2’-CF2), 26.6 

(1’-C), 17.2 (3’-C); 
19

F NMR (400 MHz, CDCl3) F -126.04 (ddt, J 4.4, 12.5, 154.0 Hz, 1F), -142.21 

(ddd, J 4.4, 12.5, 154.0 Hz, 1F); νmax (thin film, cm
-1

) 2979.9 (CH2), 1492.9, 1463.9 (CH2), 1398.1, 

1377.2, 1317.8, 1298.8, 1228.4, 1187.3, 1115.3, 1074.1, 1039.3, 1011.5 (C-F), 956.5, 929.9, 897.0, 

825.0 (Ar CH), 766.3, 719.4 (CH2), 621.8, 593.8, 503.6 (C-Br); m/z (EI
+
) calculated for C9H7BrF2 [M

+
]; 

232.0, found 231.9; C9H7F2 [M
+
-Br]; 153.1, found 153.0. 
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1-(2,2-difluorocyclopropyl)-4-(trifluoromethyl)benzene 80l:  

 

 

 

From 4-(trifluoromethyl)styrene (344 mg, 2.0 mmol) following the general microwave procedure to 

yield 1-(2,2-difluorocyclopropyl)-4-(trifluoromethyl)benzene as a clear colourless oil (306 mg, 67 %): 

Rf= 0.28 (100 % hexane);
 1

H NMR (400 MHz, CDCl3) H 7.59 (d, J 8.0 Hz, 2H, 3/5-H), 7.34 (d,               

J 8.0 Hz, 2H, 2/6-H), 2.80 (dt, J 8.0, 12.4 Hz, 1H, 1’-H), 1.95-1.86 (m, 1H, 3’-H2), 1.71-1.68 (m, 1H,       

3’-H2); 
13

C NMR (100 MHz, CDCl3) C 137.8 (4-C), 129.5 (CF3), 128.4 (3/5-CH), 125.4 (2/6-CH), 122.7 

(1-C), 112.1 (2’-CF2), 27.0 (1’-CH), 17.4 (3’-CH2); 
19

F NMR (400 MHz, CDCl3) F -62.5 (s, 3F, CF3),                     

-125.82 (ddt, J 4.6, 12.4, 155.0 Hz, 1F, CF2), -142.18 (ddd, J 4.6, 12.4, 155.0 Hz, 1F, CF2); νmax (thin 

film, cm
-1

): 1680.8, 1623.1, 1524.2, 1468.1 (CH2), 1413.6, 1381.3, 1322.1 (C-F), 1234.8, 1190.2, 

1165.0, 1114.6 (C-F), 1069.2, 1038.4, 1018.4, 961.1, 933.7, 898.7, 841.3 (Ar CH), 791.3, 755.4, 

728.9 (CH2), 697.6, 629.2, 597.0, 507.0, 479.4; m/z (EI
+
) calculated for C10H7F5 [M

+
]; 222.0, found 

222.0; C9H7F2 [M
+
-CF3]; 153.1, found 153.0. 

 

 

(2,2-difluorocyclopropyl)benzene 80m:
165

 

 

 

 

From styrene (208 mg, 2.0 mmol) following the general microwave procedure to yield                                

(2,2-difluorocyclopropyl)benzene as a clear colourless oil (123 mg, 42 %): Rf= 0.28 (100 % hexane);
 

1
H NMR (400 MHz, CDCl3) H 7.35-7.22 (m, 5H, Ar CH), 2.80-2.73 (m, 1H, 1-H), 1.86-1.77 (m, 1H,             

3-H2), 1.67-1.58 (m, 1H, 3-H2); 
13

C NMR (100 MHz, CDCl3) C 133.7 (1’-C), 128.5 (Ar CH), 128.0             

(Ar CH), 127.2 (Ar CH), 112.6 (2-CF2), 27.2 (1-CH), 17.0 (3-CH2); 
19

F NMR (400 MHz, CDCl3) F         

-125.86 (ddt, J 4.0, 12.0, 164.0 Hz, 1F), -142.38 (ddd, J 4.0, 12.0, 164.0 Hz, 1F); νmax (thin film, cm
-1

) 

2926.2 (CH2), 1606.2, 1504.3, 1467.7 (CH2), 1443.4, 1377.4, 1301.0, 1228.6, 1189.9, 1092.7, 1045.5, 

1018.7 (C-F), 1001.3, 855.4, 932.4, 910.9, 864.6, 816.7, 778.0, 742.0 (Ar CH), 742.0 (CH2), 615.5, 

562.6, 544.1, 504.7; m/z (EI
+
) calculated for C9H8F2 [M

+
]; 154.1, found 154.0. 
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2-(2,2-Difluoro-1-phenylcyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 80n:
209

 

 

 

 

From 1-phenylvinylboronic acid pinacol ester (460 mg, 2.0 mmol) following the general microwave 

procedure to yield 2-(2,2-Difluoro-1-phenylcyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane as a 

white crystalline solid (392 mg, 70 %): Rf= 0.07 (50:1 v/v hexane:EtOAc); Mp: 93 – 95 °C (lit. 97 – 99 

°C); 
1
H NMR (400 MHz, CDCl3) H 7.32-7.21 (m, 5H, Ar CH), 2.06 (quin, J 5.2 Hz, 1H, 3’-H2), 1.70 

(dddd, J 2.5, 5.2, 11.2, 18.6 Hz, 1H, 3’-H2), 1.23 (s, 6H, CH3), 1.19 (s, 6H, CH3); 
13

C NMR (100 MHz, 

CDCl3) C 136.2 (1’’-C), 129.2 (Ar CH), 128.2 (Ar CH), 126.6 (Ar CH), 114.2 (2’’-CF2), 84.5 (4/5-C), 

24.7 (CH3), 24.5 (1’-C) 24.4 (CH3), 20.5 (3’-CH2); 
19

F NMR (400 MHz, CDCl3) F -125.16 (ddd, J 2.5, 

11.2, 145.0 Hz, 1F), -132.08 (ddd, J 5.2, 11.2, 145.0 Hz, 1F); νmax (solid, cm
-1

) 2974.0 (CH2), 1730.9, 

1601.8, 1494.1, 1446.8 (CH2), 1403.1, 1392.0, 1370.7 (B-O), 1353.7, 1328.9, 1274.6, 1253.2, 1212.3 

(B-C), 1167.7, 1144.1, 1111.9 (C=O), 1076.4, 1040.4 (C-F), 1030.2, 1016.1, 1000.5, 955.7, 911.8, 

874.7, 847.1, 826.2, 767.3, 744.8 (Ar CH), 698.2, 675.3, 669.1, 645.9, 577.6, 527.5, 491.7, 454.4, 

433.1; m/z (EI
+
) calculated for C15H19BF2O2 [M

+
]; 280.1, found 280.8.  

 

 

1-(2,2-difluorocyclopropyl)-4-methoxybenzene 80p:
198

 

 

 

 

4-Methoxystyrene (268 mg, 2.0 mmol) was converted to 1-(2,2-difluorocyclopropyl)-4-

methoxybenzene following the general microwave procedure. An analytically pure sample of 1-(2,2-

difluorocyclopropyl)-4-methoxybenzene was obtained as a pale yellow oil by kügelrohr distillation of 

the crude brown oil: Bp: 93 – 120 °C at 15 mbar (lit. 92 – 95 °C at 15 mbar); 
1
H NMR (400 MHz, 

CDCl3) H 7.15 (d, J 8.7 Hz, 2H, 2/6-H), 6.87 (d, J 8.7 Hz, 2H, 3/5-H), 3.80 (s, 3H, OCH3), 2.73-2.65 

(m, 1H, 1’-H), 1.82-1.73 (m, 1H, 3’-H2), 1.58-1.55 (m, 1H, 3’-H2); 
13

C NMR (100 MHz, CDCl3) C 158.7 

(4-C), 129.2 (2/6-CH), 125.6 (1-C), 113.9 (3/5-CH), 112.7 (2’-CF2), 55.3 (OCH3), 26.4 (3’-CH2), 16.9 

(1’-CH); 
19

F NMR (400 MHz, CDCl3) F -126.2 (dtd, J 3.9, 13.0, 153.5 Hz, 1F), -142.3 (ddd, J 4.8, 

13.0, 153.5 Hz, 1F); νmax (thin film, cm
-1

) 2960.4 (CH2), 1838.3, 1746.3, 1613.6, 1583.5, 1515.4 (C-O), 

1466.8 (CH2), 1416.8, 1379.0, 1322.1, 1299.0, 1247.8, 1229.7, 1179.1, 1115.3, 1087.7, 1046.1, 

1020.1 (CF2), 953.1, 930.1, 896.6, 830.1, 805.5, 742.4 (CH2), 704.7, 609.7, 518.4, 485.7; m/z (EI
+
) 

calculated for C10H10F2O [M
+
]; 184.1, found 184.1; C9H7F2O [M

+
-CH3] 169.0, found 169.1; C9H7F2      

[M
+
-CH3O];  153.1, found 153.1; C3H3F2 [M

+
-C7H8O]; 77.1, found 77.0. 
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4-(2,2-difluorocyclopropyl)phenol 80q: 

 

 

 

4-Methoxystyrene (268 mg, 2.0 mmol) was converted to 4-(2,2-difluorocyclopropyl)phenol following 

the general microwave procedure in quantitative yield as observed by 
1
H and 

19
F NMR. The crude 

brown oil containing 1-(2,2-difluorocyclopropyl)-4-methoxybenzene was dissolved in DCM (2 mL) and 

cooled to 0 °C. To this was added a solution of BBr3 (501 mg, 2.00 mmol) in DCM (2 mL) dropwise 

and the mixture stirred at 0 °C for 1 hour then room temperature for 1 hour. The reaction was diluted 

with water (10 mL), the aqueous layer extracted with DCM (2 x 10 mL), the combined organic extracts 

washed with water (10 mL) and 1N aqueous sodium hydroxide (10 mL) and the combined aqueous 

layers acidified (HCl). The acidic aqueous solution was extracted with Et2O (3 x 20 mL), the combined 

organic extracts dried over anhydrous sodium sulfate and concentrated in vacuo to yield 1,1-difluoro-

2-(4-phenoxy)cyclopropane as a brown oil without the need for further purification (304 mg, 89 % from 

4-methoxystyrene): 
1
H NMR (400 MHz, CDCl3) H 7.11 (d, J 8.5 Hz, 2H, 2/6-H), 6.80 (d, J 8.5 Hz, 2H, 

3/5-H), 4.55 (br-s, 1H, OH), 2.69 (dt, J 8.1, 12.6 Hz, 1H, 1’-H), 1.82-1.73 (m, 1H, 3’-H2), 1.59-1.58 (m, 

1H, 3’-H2); 
13

C NMR (100 MHz, CDCl3) C 154.6 (1-C), 129.4 (2/6-CH), 125.9 (4-C), 115.4 (3/5-CH), 

112.7 (2’-CF2), 26.4 (1’-CH), 16.9 (3’-CH2); 
19

F NMR (400 MHz, CDCl3) F 126.2 (ddt, J 3.8, 12.6, 

153.5 Hz, 1F), 142.3 (ddd, J 4.8, 12.6, 153.5 Hz, 1F), νmax (thin film, cm
-1

) 3314.5 (O-H), 1615.2, 

1518.3, 1472.0 (CH2), 1439.5, 1378.4, 1314.0, 1229.7, 1190.4, 1113.0, 1045.6 (C-F), 1021.9, 957.8, 

932.0, 891.2, 833.0 (Ar CH), 746.3 (CH2), 709.9, 610.1, 518.6, 486.9, 437.9; m/z (EI
+
) calculated for 

C9H8F2O [M
+
]; 170.1, found: 170.0;  C3H3F2 [M

+
-C6H5O]; 77.1, found 77.1. 

 

 

2-(4-(2,2-difluorocyclopropyl)phenoxy)-2-methylpropanoic acid 82: 

 

 

 

Chloroform (226 mg, 1.89 mmol) was added dropwise to a mixture of                                                              

4-(2,2-difluorocyclopropyl)phenol (304 mg, 1.78 mmol) and sodium hydroxide (314 mg, 7.85 mmol) in 

acetone (9 mL) at gentle reflux with stirring for a further 3 hours. The reaction mixture was cooled to  

0 °C and filtered and the solid washed with ice-cold acetone. The acetone washings were made basic 

with aqueous sodium hydroxide and the organic solvent removed in vacuo. The aqueous mixture was 

acidified (HCl) and extracted with Et2O (3 x 25 mL), the combined organic extracts dried over 

anhydrous sodium sulfate and the solvent removed in vacuo to yield a brown oil (516 mg) which 

crystallised on standing at -20 °C over night. The crude solid was recrystallised from minimal hot 

benzene:hexane at 65 °C to yield 2-(4-(2,2-difluorocyclopropyl)phenoxy)-2-methylpropanoic acid as a 
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pale brown crystalline solid (209 mg, 41 %): Mp: 94 – 96 °C (lit. 97 – 99 °C); 
1
H NMR (400 MHz, 

CDCl3) H 9.72 (br-s, 1H, CO2-H), 7.14 (d, J 8.4 Hz, 2H, 3’/5’-H), 6.90 (d, J 8.4 Hz, 2H, 2’/6’-H), 2.70 

(dt, J 8.4, 12.5 Hz, 1H, 1’’-H), 1.85-1.76 (m, 1H, 3’’-H2), 1.60 (s, 6H, CH3), 1.60-1.56 (m, 1H, 3’’H2); 

13
C NMR (100 MHz, CDCl3) C 177.6 (C=O), 153.3 (1’-C), 129.0 (3’/5’-CH), 128.7 (4’-C); 120.6              

(2’/6’-CH), 112.5 (2’’-CF2), 79.8 (2-C), 26.5 (1’’-CH), (25.0 (CH3), 17.2 (3’’-CH2); 
19

F NMR (400 MHz, 

CDCl3) F -126.05 (ddt, J 4.0, 12.5, 163.4 Hz, 1F), -142.32 (ddd, J 4.8, 12.5, 163.4 Hz, 1F); νmax (solid, 

cm
-1

) 2997.0 (O-H), 2910.1 (CH2), 2686.7, 1701.2 (C=O), 1614.0, 1514.6, 1463.0 (CH2), 1418.1, 

1382.1, 1369.3, 1324.7, 1287.4, 1234.7, 1180.9, 1153.0 (C-O), 1123.1, 1087.4, 1038.8, 1025.2 (CF2), 

938.8, 904.3, 831.8 (Ar CH), 776.6, 748.4 (CH2), 101.0, 645.8, 619.4, 595.4, 582.3, 559.7, 518.2, 

480.6; m/z (ESI
+
) calculated for C13H13F2O3Na [M+Na

+
]; 278.0731, found 278.0751 (error = 7.32 

ppm). 

 

 

4-(difluoromethoxy)butyl 2-chloro-2,2-difluoroacetate 83: 

 

 

 

Sodium chlorodifluoroacetate (932 mg, 6.1 mmol) was dissolved in tetrahydrofuran (4 mL) and 

exposed to microwave radiation (300 W, 160 °C, 5 minutes). The reaction mixture was diluted with 

water (20 mL) and extracted with Et2O (3 x 20 mL). The combined organic extracts were dried over 

anhydrous magnesium sulfate and the solvent removed in vacuo give a brown oil (347 mg) which was 

purified by column chromatography (9:1 v/v hexane:EtOAc) to yield 4-(difluoromethoxy)butyl 2-chloro-

2,2-difluoroacetate as an unstable light brown oil (169 mg, 22 %): Rf= 0.42 (9:1 v/v hexane:EtOAc); 
1
H 

NMR (400 MHz, CDCl3) H 6.21 (t, J 74.5 Hz, 1H, CF2-H), 4.40 (t, J 6.1 Hz, 2H, 1’-H2), 3.91 (t,                     

J 6.1 Hz, 2H, 4’-H2), 1.92-1.86 (m, 2H, CH2), 1.80-1.73 (m, 2H, CH2); 
13

C NMR (100 MHz, CDCl3) C 

159.3 (C=O), 116.8 (2-CF2Cl), 115.9 (C-F2H), 67.8 (1’-C), 62.4 (4’-C), 25.3 (CH2), 24.8 (CH2); 
19

F 

NMR (400 MHz, CDCl3) F -63.94 (s, 2F, 2CF2Cl), -84.36 (d, J 74.5 Hz, 2F, CF2H); νmax (thin film, cm
-1

) 

2970.3 (CH2), 1777.1 (C=O), 1469.3 (CH2), 1308.3, 1167.5 (C-O), 1125.0 (C-F), 1070.7, 973.5, 829.9, 

729.0,(C-Cl) 627.5, 534.6; m/z (EI
+
) calculated for C6H8ClF2O2 [M

+
-CF2HO]; 185.0, found 185.0; 

C5H9F2O [M
+
-C2ClF2O2]; 123.1, found 123.0; CClF2 [M

+
-C6F2H9O3]; 85.0, found 85.0. 

 

 

4-(difluoromethoxy)pentyl 2-chloro-2,2-difluoroacetate 85: 
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Sodium chlorodifluoroacetate (931 mg, 6.1 mmol) was dissolved in 2-methyl tetrahydrofuran (4 mL) 

and exposed to microwave radiation (300 W, 160 °C, 5 minutes). The reaction mixture was diluted 

with water (20 mL) and extracted with Et2O (3 x 20 mL). The combined organic extracts were dried 

over anhydrous magnesium sulfate and the solvent removed in vacuo to give a brown oil (332 mg) 

which was purified by column chromatography (9:1 v/v hexane:EtOAc) to yield                                             

4-(difluoromethoxy)pentyl 2-chloro-2,2-difluoroacetate as an unstable brown oil (166 mg, 20 %): Rf= 

0.38 (9:1 v/v hexane:EtOAc); 
1
H NMR (400 MHz, CDCl3) H 6.20 (t, J 74.7 Hz, 1H, CF2H), 5.14-5.08 

(m, 1H, 4’-H), 3.89-3.87 (m, 2H, 1’-H2), 1.83-1.68 (m, 4H, 2’/3’-H2), 1.40 (d, J 6.3 Hz, 3H, 5’-H3); 
13

C 

NMR (100 MHz, CDCl3) C 158.9 (C=O), 116.9 (2-CF2Cl), 115.9 (CF2H), 76.0 (4’-CH), 62.6 (1’-CH2), 

31.9 (2’-CH2), 24.8 (3’-CH2), 19.5 (5’-CH3); 
19

F NMR (400 MHz, CDCl3) F -64.2 (s, 2F, CF2Cl), -84.3 

(d, J 74.7 Hz, 2F, CF2H); νmax (thin film, cm
-1

) 2969.4 (CH2), 1773.1 (C=O), 1452.3 (CH2), 1385.1, 

1363.6, 1308.5, 1168.9 (C-O), 1134.1 (C-F), 1071.2, 1008.7, 970.8, 864.7, 832.9, 728.0 (C-Cl), 626.9; 

m/z (EI
+
) calculated for C8H11ClF4O3 [M

+
]; 266.0, found 266.0 

 

 

5-(difluoromethoxy)pentyl 2-chloro-2,2-difluoroacetate 86: 

 

 

 

Sodium chlorodifluoroacetate (936 mg, 6.1 mmol) was dissolved in tetrahydropyran (4 mL) and 

exposed to microwave radiation (300 W, 160 °C, 10 minutes). The reaction mixture was diluted with 

water (20 mL) and extracted with Et2O (3 x 20 mL). The combined organic extracts were dried over 

anhydrous magnesium sulfate and the solvent removed in vacuo to give a brown oil (388 mg) which 

was purified by column chromatography (95:5 v/v hexane:EtOAc) to yield 5-(difluoromethoxy)pentyl   

2-chloro-2,2-difluoroacetate as an unstable pale yellow oil (181 mg, 22 %): Rf= 0.24 (95:5 v/v 

hexane:EtOAc); 
1
H NMR (400 MHz, CDCl3) H 6.19 (t, J 75.1 Hz, 1H, CF2H), 4.67 (t, J 6.5 Hz, 2H,          

1’-H2), 3.86 (t, J 6.5 Hz, 2H, 5’-H2), 1.80 (quin, J 6.5 Hz, 2H, 2’-H2), 1.70 (quin, J 6.5 Hz, 2H, 4’-H2), 

1.53 (quin, J 6.5 Hz, 2H, 3’-H2); 
13

C NMR (100 MHz, CDCl3) C 159.3 (C=O), 116.9 (2-CF2Cl), 116.0 

(CF2H), 68.1 (1’-CH2), 63.0 (5’-CH2), 28.5 (4’-CH2), 27.7 (2’-CH2), 21.9 (3’-CH2); 
19

F NMR (400 MHz, 

CDCl3) F -63.99 (s, 2F, CF2Cl), -84.16 (d, J 75.1 Hz, 2F, CF2H); νmax (thin film, cm
-1

) 2964.1 (CH2), 

1776.7 (C=O), 1461.3 (CH2), 1363.4, 1307.5, 1168.6 (C-O), 1124.7 (C-F), 1070.9, 1006.6, 973.1, 

870.9, 820.1, 728.6 (C-Cl), 627.5; m/z (EI
+
) calculated for C8H11ClF4O3 [M

+
]; 266.0, found 266.8. 
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