
University of Huddersfield Repository

Shah, Mohammad Munshi Shahin

Knowledge engineering techniques for automated planning

Original Citation

Shah, Mohammad Munshi Shahin (2014) Knowledge engineering techniques for automated
planning. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/23481/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Knowledge Engineering Techniques

for Automated Planning

Mohammad Munshi Shahin Shah

Department of Informatics

University of Huddersfield

A thesis submitted to the University of Huddersfield in partial

fulfilment of the requirements for the degree of

Doctor of Philosophy

March 2014

mailto:s.shah@hud.ac.uk
http://www.hud.ac.uk
http://www.hud.ac.uk

Abstract

Formulating knowledge for use in AI Planning engines is currently some-
thing of an ad-hoc process, where the skills of knowledge engineers and
the tools they use may significantly influence the quality of the resulting
planning application. There is little in the way of guidelines or standard
procedures, however, for knowledge engineers to use when formulating
knowledge into planning domain languages such as PDDL. Also, there is
little published research to inform engineers on which method and tools to
use in order to effectively engineer a new planning domain model. This is
of growing importance, as domain independent planning engines are now
being used in a wide range of applications, with the consequence that op-
erational problem encodings and domain models have to be developed in a
standard language. In particular, at the difficult stage of domain knowledge
formulation, changing a statement of the requirements into something for-
mal - a PDDL domain model - is still somewhat of an ad hoc process,
usually conducted by a team of AI experts using text editors. On the other
hand, the use of tools such as itSIMPLE or GIPO, with which experts gen-
erate a high level diagrammatic description and automatically generate the
domain model, have not yet been proven to be more effective than hand
coding.

The major contribution of this thesis is the evaluation of knowledge en-
gineering tools and techniques involved in the formulation of knowledge.
To support this, we introduce and encode a new planning domain called
Road Traffic Accidents (RTA), and discuss a set of requirements that we
have derived, in consultation with stakeholders and analysis of accident
management manuals, for the planning part of the management task. We
then use and evaluate three separate strategies for knowledge formulation,
encoding domain models from a textual, structural description of require-
ments using (i) the traditional method of a PDDL expert and text editor (ii)
a leading planning GUI with built in UML modelling tools (iii) an object-
based notation inspired by formal methods. We evaluate these three ap-
proaches using process and product metrics. The results give insights into
the strengths and weaknesses of the approaches, highlight lessons learned
regarding knowledge encoding, and point to important lines of research
for knowledge engineering for planning.

In addition, we discuss a range of state-of-the-art modelling tools to find
the types of features that the knowledge engineering tools possess. These
features have also been used for evaluating the methods used. We bench-
mark our evaluation approach by comparing it with the method used in the
previous International Competition for Knowledge Engineering for Plan-
ning & Scheduling (ICKEPS). We conclude by providing a set of guide-
lines for building future knowledge engineering tools.

Declaration

(i) The author of this thesis (including any appendices and/or schedules
to this thesis) owns any copyright in it (the ”Copyright”) and s/he has
given The University of Huddersfield the right to use such copyright
for any administrative, promotional, educational and/or teaching pur-
poses.

(ii) Copies of this thesis, either in full or in extracts, may be made only
in accordance with the regulations of the University Library. Details
of these regulations may be obtained from the Librarian. This page
must form part of any such copies made.

(iii) The ownership of any patents, designs, trademarks and any and all
other intellectual property rights except for the Copyright (the ”Intel-
lectual Property Rights”) and any reproductions of copyright works,
for example graphs and tables (”Reproductions”), which may be de-
scribed in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property Rights and Repro-
ductions cannot and must not be made available for use without the
prior written permission of the owner(s) of the relevant Intellectual
Property Rights and/or Reproductions

To my loving parents Billal Hossain and Rezia Khaton.

It is because of you that I am ME!

Acknowledgements

Above all, I praise almighty Allah for his generosity, compassion and mer-
cifulness, for giving me all the opportunities and abilities to finalize this
PhD thesis.

I am truly grateful to my supervisor Lee McCluskey, whose helpful guid-
ance, insightful vision, and continuing support have lead me to grow greatly
over the years of my PhD. Lee’s ability to identify motivating problems,
his principles, and hard work are contagious, allowing his students to
achieve their full potential. I am very happy to be one of these students,
and I am thankful for the opportunity to learn from him. Thank you Lee!

One of the most interesting and informative elements of my PhD career
has been the interaction with the members of PARK (former KEII) re-
search group. I have extremely enjoyed being part of one of the most
collaborative and productive groups. I am proud to get the opportunity to
share this experience with Salihin Shoeeb, Ali Fanan, Aisha Jilani, Munir
Naveed, Rabia Jilani, Falilath Jimoh, Asma Kilani, Margaret West, Diane
Kitchin, Ilias Tachmazidis, Simon Parkinson, Maro Vallati, Lukas Chrpa,
Grigoris Antoniou and Lee McCluskey.

I am thankful to every one of my co-authors Peter Gregory, Lukas Chrpa,
Mauro Vallati, Falilat Jimoh, Simon Parkinson, Margaret West, Diane
Kitchin and Lee McCluskey over the last years, from whom I learned about
new research directions, open problems, solution techniques, high stan-
dards, writing style, and the fun of pursuing challenging and ambitious re-
search goals. Their efforts in researching new directions and applications,
and creating an efficient implementation of our methods have fundamen-
tally improved the work in this thesis. I also like to thank the reviewers of

my research papers for their insightful comments and suggestion, which
results distinctive outcome.

This research was carried out with the scholarship provided by the Uni-
versity of Huddersfield. I would like express my appreciation to the Uni-
versity and all the staff related to this project directly or indirectly. I like
to thank the University authority for giving me this scholarship, opportu-
nity to take professional development courses and approval for conference
travel grants.

I would not be at Huddersfield if Alamgir Hossain, who believed in me and
invited me to the MSc by Research at the University of Bradford in 2005.
I am grateful to Alamgir for this opportunity, which had such and a greater
positive impact on my life. I am also grateful to my friend Pranab Tusher
for pushing me to go to Bradford and being there for me all the time. It
would have been difficult to pursue my PhD without the moral support
of my friends specially Mehedi Siddiqui, Abdul Baten, Farhana Moshira,
Samsun Nahar, Shanu Chaudhury and Ruhul Amin over the years of my
education career. I am really thankful to you all. I am also thankful to
all my friends, who I have forgotten to mention here. My best wishes for
them.

I would like to thank my family for their endless love, support and en-
couragement. I am particularly grateful to my parents (Billal Hossain and
Rezia Khatoon), sister (Mahamuda Parveen), brother Mizanur Rahman,
and brother-in-law (Mosharraf Hossain). I will never forget your care and
love that have been immutable over my life. Thank you all from the bot-
tom of my heart!

Finally, I am deeply thankful to my wife Shahida Sams for her love, care,
and patience over the years of my PhD. Thank you both for being there
for me all the time. Also, my appreciation goes to my son Shayan Shah
for allowing Abbi to spend time studying when Shayan wanted me most.
I love you for this.

Contents

Contents vi

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution of the thesis . 6

1.3 Structure of the Thesis . 7

1.4 Publications . 9

2 Background 11

2.1 History of Automated Planning . 12

2.2 Planning Techniques . 15

2.2.1 STRIPS Planning . 15

2.2.1.1 LPG . 16

2.2.1.2 SGPlan . 17

2.2.2 HTN Planning . 17

vi

CONTENTS

2.2.2.1 HyHTN . 18

2.3 Knowledge Engineering . 19

2.3.1 Domain Modelling . 19

2.3.1.1 Domain Analysis 20

2.3.1.2 Planning Domain Design Process 21

2.4 Domain Modelling Languages . 23

2.4.1 STRIPS Based Language . 25

2.4.1.1 PDDL . 25

2.4.2 HTN Based Language . 27

2.4.2.1 Object Centred Language (OCL) 27

2.5 Tool Supported Knowledge Engineering 29

2.6 Current State of Knowledge Engineering 30

2.6.1 ICKEPS Competition . 31

2.7 Summary . 35

3 Knowledge Engineering Tools and Techniques 36

3.1 Knowledge Engineering: Tools and Techniques 37

3.1.1 Hand Coding: a traditional technique for KE 38

3.1.2 TF Method: HTN modelling tool 39

3.1.3 itSIMPLE: a leading GUI tool for KE 40

3.1.4 GIPO: an object-based GUI tool 46

3.1.5 EUROPA: integrated platform for AI planning 51

3.1.6 JABBAH: a domain specific GUI tool 52

3.1.7 VIZ: a Lightweight GUI Tool 53

3.1.8 MARIO: a Goal-Driven application composition tool 53

vii

CONTENTS

3.1.9 PDDL Studio: simple PDDL editor 54

3.1.10 KEEN: KE environment . 54

3.2 Features of KE Tools and Techniques 55

3.2.1 General . 56

3.2.2 Knowledge Representation 57

3.2.3 Debugging and Validation 58

3.2.4 Design Efficiency . 59

3.2.5 Maintenance . 60

3.2.6 Operationality . 61

3.2.7 Support: . 62

3.3 Summary . 62

4 The Road Traffic Accident Domain 64

4.1 Road Traffic Accident . 65

4.1.1 Necessity for Accident Management Problem 66

4.2 Requirement Analysis for the RTA Domain 68

4.3 Conceptualisation of the RTA . 71

4.3.1 Defining Operator Families 72

4.3.2 Defining Assets and Artefacts for RTA Domain 74

4.3.2.1 Static Assets: . 74

4.3.2.2 Mobile Assets: 75

4.3.2.3 Artefacts: . 75

4.3.2.4 Attaching and detaching artefacts: 75

4.3.2.5 Interact: Neither attach nor detach 76

4.3.3 Operator Description . 76

viii

CONTENTS

4.3.4 Function Definition . 79

4.4 Summary . 80

5 Developing Domain Model 82

5.1 Representation Language . 83

5.2 Method A: The Traditional Hand-coding Method 84

5.2.1 Overview of the Method A 84

5.2.2 Execution of the Method A 84

5.2.2.1 Method A: Basic Acceptability Test 87

5.3 Method B: itSIMPLE - a leading planning GUI 89

5.3.1 Overview of the Method B 89

5.3.2 Execution of the Method B 90

5.3.2.1 Method B: Basic Acceptability Test 98

5.4 Method C: GIPO - an object-based GUI 100

5.4.1 Overview of the Method C 100

5.4.2 Execution of the Method C 100

5.4.2.1 Method C: Basic Acceptability Test 109

5.5 Summary . 110

6 Evaluation of Knowledge Engineering Tools and Techniques 111

6.1 Observation of the methods . 112

6.1.1 Actors Involved in Domain Development 112

6.1.2 Experimental Scenario . 113

6.1.3 Observations of Method A 115

6.1.3.1 Process . 115

6.1.3.2 Product . 116

ix

CONTENTS

6.1.4 Observations of Method B 117

6.1.4.1 Process . 117

6.1.4.2 Product . 118

6.1.5 Observations of Method C 118

6.1.5.1 Process . 118

6.1.5.2 Product . 120

6.2 Evaluation of the methods from Observation 121

6.2.1 Process Comparison . 121

6.2.2 Product Comparison . 123

6.3 Criteria for evaluating approaches 126

6.4 Evaluation of the approaches with respect to stated criteria 127

6.4.1 Method A . 128

6.4.2 Method B . 131

6.4.3 Method C . 135

6.4.4 Observation of the Evaluation 139

6.5 Evaluation of KE Methods with ICKEPS Criteria 140

6.5.1 Portability . 141

6.5.2 Robustness . 141

6.5.3 Usability . 141

6.5.4 Spread of use of the tool . 142

6.5.5 Perceived added value . 142

6.5.6 Flexibility . 142

6.6 Insights into the Evaluation Processes 143

6.6.1 Observation . 143

6.6.2 Set Criteria . 145

x

CONTENTS

6.7 Requirements for Designing Future KE Tools 145

6.7.1 Expertise . 145

6.7.2 Team Work . 146

6.7.3 Maintenance . 147

6.7.4 Debug . 147

6.7.5 Language support . 147

6.8 Summary . 148

7 Conclusion and Future Work 149

7.1 Summary . 149

7.2 Limitations of this Research . 152

7.3 Future Work . 153

Appendix A: Hand-coded PDDL Domain Model 155

Appendix B: Hand-coded PDDL2.1 Domain Model 163

Appendix C: PDDL Domain Model using itSIMPLE4.0 172

Appendix D: PDDL2.1 Domain Model using itSIMPLE4.0 182

Appendix E: OCLh Domain Model using GIPO-III 191

Bibliography 205

xi

List of Figures

2.1 An Ideal Knowledge Engineering Environment (Extracted from (Bi-

undo et al., 2003)) . 32

3.1 itSIMPLE4.0 Domain Modelling Environment 41

3.2 GIPO-III: Sort Hierarchy and OCLh code for RTA Domain Model . . 47

3.3 Knowledge Engineering Process of GIPO (extracted form (McCluskey

and Simpson, 2004)) . 50

4.1 Common Accident Management Life-Cycle 69

5.1 The durative action confirm accident for RTA domain coded in PDDL2.1 87

5.2 Use-case Diagram for Ambulance and Tow Truck 91

5.3 Class Diagram of RTA . 92

5.4 Vehicle Class Diagram for Move Operator 92

5.5 State Machine Diagram designed in itSIMPLE for modelling the ac-

tions on Accident Victims . 93

5.6 State Machine Diagram designed in itSIMPLE for modelling the be-

haviour of the Move Operator . 94

5.7 Encoding Precondition for move Operator 95

xii

LIST OF FIGURES

5.8 Encoding Postcondition for move Operator 95

5.9 An action (move) for RTA in itSIMPLE 96

5.10 Object repository for RTA in itSIPMLE 97

5.11 GIPO-III Sort (Class) Hierarchy . 101

5.12 GIPO-III Produced PDDL and OCL domain model 102

5.13 GIPO-III: Predicate Construction . 103

5.14 GIPO-III: Transition Editor to Create Operator 106

5.15 GIPO-III: Creating Compound Operator (Method) using Compound

transition Window . 107

5.16 GIPO-III: Domain Consistency Check Report 108

6.1 The Road Traffic Domain Model used for empirical analysis. It con-

sists of a portion of the county of Yorkshire. H, P and G respectively

stand for Hospital, Police station and Garage locations. 114

6.2 An overview, showing only LOAD and UNLOAD actions, of the LPG

Planner solution to the basic acceptability test instance. The three

columns represent the time at which the action occurs, the action per-

formed and the duration of the action. Brighouse H and Halifax H

stand respectively for the Hospital in Brighouse and the Hospital in

Halifax. 116

6.3 Part of output from GIPO: here the transparency of HTN methods is

checked and found to fail, with the likely faulty components identified. 119

6.4 Part of the HTN solution plan for the basic acceptability instance. The

sequence allows to deliver an accident victim to the hospital in Hud-

dersfield. 120

xiii

List of Tables

3.1 Types of Features that are identified in the state-of-the-art KE tools . 63

4.1 List of Operators that have been Derived from the Initial Requirement

Analysis. In this table ’Y’ represents used for the domain model and

’N’ represents the operator has not been used for that domain model . 77

6.1 The values of the metrics selected for comparing the domain models

generated by methods A and B. 123

6.2 For every instance, the CPU time (seconds), the number of actions

and the duration of plans generated by LPG and SGPlan on domains

encoded using methods A and B. The upper table refers to PDDL en-

codings, the lower to PDDL2.1. Instances are described by the number

of victims (P), the number of vehicles involved (V), the number of vic-

tims trapped (T) and the number of cars on fire (F); * indicates that the

number of available emergency vehicles is doubled. 125

6.3 Evaluating of KE Tools with set criteria 138

xiv

Chapter 1

Introduction

1.1 Motivation

Automated Planning research is one of the major research disciplines in the area of

Artificial Intelligence (AI) for more than thirty years. It has a wide range of applica-

tions in areas such as rover mission to Mars (Bresina et al., 2005), business processes

modelling (González-Ferrer et al., 2009), logistic support (Tate et al., 1996), multiple

battery usages (Fox et al., 2011), machine tool calibration (Parkinson et al., 2011) and

computer games (Naveed et al., 2012). These applications are rapidly growing in size

and complexity beyond the capabilities of the people responsible for planning. Also,

there are challenges in the automation of real-world application: such as reducing the

cost of planning techniques, and improving the quality of resulting plans and prefer-

ences.

Traditionally, planning systems have fallen into two major classes: domain inde-

pendent and domain-dependent. Planning system designed for solving the problem

of a specific application is called a domain-dependent. Reliable planning systems are

1

Introduction

very important in the real-world applications. AI planning research shares many com-

mon aspects although diverse in nature. Therefore, it is possible to build general ap-

proach for planning systems to process and specify the application domain model and

produce solution for any given problem of that domain (Erol, 1995). Building domain-

independent planning systems is very challenging (Ghallab et al., 2004).

The popular planning system is stemmed from STRIPS (Fikes and Nilsson, 1971a)

planning system, which uses primitive action descriptions to encode and solve propo-

sitional representations of planning problems. The Graphplan system was developed

by Blum and Furst (Blum and Furst, 1997a) and SATPlan developed by Kautz and

Selman (Kautz, 2006; Kautz and Selman, 1996, 1999) had greatly improved the effi-

ciency of this form of planners. However, these planners do not incorporate domain

specific control knowledge, but instead rely on efficient graph-based or propositional

representations and advanced search techniques, whilst they could only solve simple,

small toy problems from the standard testing STRIPS-style domains used for AIPS

planning competition (Bacchus, 2001).

Real-world planning problems require expressive knowledge representations than

the traditional benchmark problems. To apply planning techniques to the real-world, it

is necessary develop techniques with the capability of capturing rich knowledge model

(Wilkins and desJardins, 2000). Domain knowledge capturing and modelling has been

an issue in planning research as early as the work on the NONLIN (Tate, 1977) plan-

ner, which was later developed as a Hierarchical Task Network(HTN) Planning. HTN

planning enables multiple layers of abstraction in the domain definition. Generally,

an HTN planner attempts the top level abstract layer of the problem and decompose

until the lower level (often called primitive operators). It differs from the normal pre-

condition planner in that it eventually splits disjunction into the search space with the

2

Introduction

help of pre-reduction refinements, considering each way of reducing the non-primitive

task in a different search branch (Kambhampati, 1997). Encoding knowledge for HTN

reduces the search space significantly.

To solve practical planning problems HTN has been proved as the most successful

in compare to other planning techniques (Drummond, 1994; Erol et al., 1994; Nau,

2007). Generally, various types of domain knowledge can be encoded in HTN tech-

niques. For example, SIPE-2 (Wilkins, 1999), one of the best-known knowledge inten-

sive applications of HTN that includes multiple levels of abstraction in the knowledge

representation according to user requirements (Wilkes and Myers, 1995) which assists

the planner to control the search space during the plan generation and execution.

On the other hand, the standard domain modelling language such as PDDL (Plan-

ning Domain Definition Language) (Ghallab et al., 1998; McDermott, 1998) is an

action-based language. It is an expressive language that allows temporal constraints

and numeric fluents in the version PDDL2.1 (Fox and Long, 2001). Advantages of us-

ing PDDL2.1 (Fox and Long, 2001) is that it accepts numerical constraints to perform

arithmetic operations, such as evaluating distances and time required for movements,

and use durative actions in order to facilitate temporal constraints in planning. The

PDDL domain modeling language has been extended to level five for capturing do-

main knowledge from continuous domain, so called PDDL+ (Howey et al., 2004).

Formulating domain model for real-world application is a laborious process that

requires the knowledge engineer to be the domain expert as well as planning lan-

guage. The current trend is to use the hand-encoding technique for knowledge en-

gineering but there is strong support and reasons to use tools to embed software life-

cycle (Chien et al., 1996). A compositional and model-based domain modelling lan-

guage has been introduced by NASA which supports the concurrent transition systems

3

Introduction

models (Muscettola et al., 1998) in order to widen the applicability of AI techniques to

real-world applications. This kind of formalism usually builds individual model com-

ponents and uses a set of mode for transition from one model to another. The goal

of this approach to allow the non-AI expert to inspect the model and understand the

knowledge in the system as this approach draws a clear line between the models and

heuristics.

The idea of Knowledge engineering (KE)1 for automated planning is to formu-

late, acquire, validate and maintain the domain knowledge, where a key product is

the domain model containing the declarative description of domain dynamics (Biundo

et al., 2002). The field has advanced steadily in recent years, helped by a series

of international competitions, the experience from planning applications, along with

well developed support environments (for example, Europa (Barreiro et al., 2012), it-

SIMPLE (Vaquero et al., 2007, 2010, 2009, 2012), GIPO (McCluskey et al., 2003;

Simpson et al., 2007, 2001)). It is generally accepted that effective tool support is re-

quired to build domain models and bind them with planning engines into applications.

There have been reviews of such Knowledge Engineering tools and techniques for AI

Planning (Vaquero et al., 2011b). While these surveys are illuminating, they are not

founded on practice-based evaluation, in part, no doubt, because of the difficulty in

setting up evaluations of methods themselves. On the other hand, for a new planning

domain (not been modelled for planning application), there is little published research

to inform engineers on which method and tools to use in order to effectively engi-

neer a planning domain model. This is of growing importance, as domain independent

planning engines are now being used in a wide range of applications, with the conse-

quence that operational problem encodings and domain models have to be developed

1KE will be used throughout the thesis

4

Introduction

in a standard language such as PDDL. In particular, at the difficult stage of domain

knowledge formulation, changing a statement of the requirements into something for-

mal - a PDDL domain model - is still somewhat of a “black art”, usually conducted

by a team of AI experts using text editors, i.e., the encoder must know the planning

language in expert level and must be an AI planning expert. This process likely to be

inefficient since it has to rely on dynamic testing for debugging. On the other hand,

the use of tools such as itSIMPLE (Vaquero et al., 2012) or GIPO (Simpson et al.,

2007), with which experts generate a high level diagrammatic description and automat-

ically generate the domain model, have not yet been proven to be more effective than

hand coding. itSIMPLE integrates post design framework (Vaquero et al., 2011a,c) to

identify hidden knowledge that directly impacts on the planning systems. Post-Design

framework also aims to understand the plan quality (good or bad) and the reason of

such quality (Vaquero et al., 2011a).

Although, Knowledge Engineering (KE) issues: evaluation of knowledge engi-

neering methods, improved representation languages, standard language and ontology,

have been identified by McCluskey (McCluskey, 2002) but there is a little or no work

on Knowledge Engineering for Artificial Intelligence Planning & Scheduling (KEPS)

tools and techniques have been done to identify the best way to design and develop a

knowledge model (domain model). This thesis is motivated by the need for the Knowl-

edge Engineering (KE) tools and techniques for automated planning application to

cover the issues and challenges that are not currently addressed. There is also a need to

understand the capabilities of current KE tools and techniques to design and develop

a real-world domain model. In this work, we focus on two important research chal-

lenges encountered in KE: i) analyse the process of encoding domain models using

KE tools and hand-encoding methods in order to find the efficient method and ii) the

5

Introduction

performance of the product (domain model) that have been developed using different

methods during the plan generation.

1.2 Contribution of the thesis

This work contributes to the area of research into knowledge engineering for real-world

planning domains in the following ways.

• an evaluation of the relative merits of hand coding planning domain models vs

those produced by tools.

• an overview of existing KE tools and techniques have been provided to evalu-

ate the types of features used in modelling tools, the support that they provide,

efficiency of using, and the kind of bugs they discover.

• a set of requirements and insights for future tools which can be used to create

PDDL domain models,

• the planning requirements, and domain model, of a new real-world planning do-

main, the Road Traffic Accident (RTA) domain, used as a Case Study to inform

the evaluations

6

Introduction

1.3 Structure of the Thesis

This thesis is structured in seven chapters including the current one. The current chap-

ter (Chapter 1) briefly introduces the problem research objectives. The rest of this

thesis is organised as below -

Chapter 2: This chapter provides background of knowledge engineering in the con-

text of automated planning and scheduling. We first discuss the history of plan-

ning and the associated domain modelling languages. We also emphasis on the

knowledge engineering tools and techniques and how these could be helpful for

overcoming the knowledge engineering problems.

Chapter 3: This chapter reviews and analysis the existing knowledge engineering

tools and techniques that support designing of AI planning applications. This

gives deep insights of the design process of the knowledge model and how the

introduction of Knowledge Engineering techniques could address the problems

related to the knowledge modelling of planning application. This discussion also

finds a number features of Knowledge Engineering tools and techniques which

may play significant role in designing future tools.

Chapter 4: This chapter introduces a new real-world planning domain, the Road Traf-

fic Accident(RTA). After a careful investigation, a set of requirements has been

derived, and using domain analysis to make precise and unambiguous relevant

features of the planning problem.

Chapter 5: In this chapter we present three different models of Road Traffic Acci-

dent (RTA) domain derived from the requirements that have been described in

Chapter 4.

7

Introduction

The first model is developed using traditional method of modelling PDDL (Mc-

Dermott, 1997) domain using a text editor which relies on dynamic testing for

debugging.

The second model is developed using itSIMPLE, a state-of-the-art PDDL do-

main modelling tool that uses GUI with built-in UML (Booch et al., 1997) mod-

elling leads a domain modeller through the formulation of requirements by de-

signing several UML diagrams, and automatically generates the corresponding

PDDL.

The third model is developed using GIPO, a rigorous method utilising a hierar-

chical, object-based notation OCLh. This tool gives the modeller the facility to

encapsulate the syntax of the language by some graphical interface.

Chapter 6: This chapter evaluates the knowledge engineering techniques by using the

domain construction experience form three distinct methods.

We discuss some criteria to evaluate the knowledge engineering tools and tech-

niques to derive a guideline of future tool.

Chapter 7: This chapter summarises the contribution of this thesis. also we discuss

the limitation of this research and provide future work in the knowledge engi-

neering for automated planning.

8

Introduction

1.4 Publications

This section presents the list of publications that were achieved during my PhD re-

search in order to support and validate the scientific quality of this thesis.

1. M. M. S. Shah, D. Kitchen, T. L. McCluskey, L. Chrpa and M. Vallati, (2013),

Exploring Knowledge Engineering Strategies in Designing and Modelling a Road

Traffic Accident Management Domain, In the Proceedings of International Joint

Conference on Artificial Intelligence (IJCAI-13), August 3-9. Beijing, China.

2. M. M. S. Shah, L. Chrpa, F. Jimoh, D. Kitchin, T. L. McCluskey, S. Parkinson

and M. Vallati (2013), Knowledge Engineering Tools in Planning: State-of-the-

art and Future Challenges, In the Proceedings of ICAPS Workshop on Knowl-

edge Engineering for Planning and Scheduling (KEPS), June 10-14, Rome, Italy.

3. F. O. Jimoh, L. Chrpa, T. L. McCluskey and M. M. S. Shah (2013), Towards

Application of Automated Planning in Urban Traffic Control, In the Proceed-

ings of 16th International IEEE Annual Conference on Intelligent Transportation

Systems, October 6-9, The Hague, The Netherlands.

4. M. M. S. Shah, TL McCluskey, L. Chrpa (2012), Symbolic Representation of

Road Traffic Domain for Automated Planning to Manage Incidents. In the pro-

ceedings of 30th Workshop of the UK Planning And Scheduling Special Interest

Group (PlanSig12), University of Teesside, Middlesbrough, UK.

5. M. M. S. Shah, T. McCluskey, P. Gregory and F. Jimoh (2012), Modelling Road

Traffic Incident Management Problem for Automated Planning, 13th IFAC Sym-

posium on Control in Transportation System (CTS12), September, 12-14. Sofia,

Bulgaria.

9

Introduction

6. M. M. S. Shah, L. Chrpa, P. Gregory, T. L. McCluskey and F. Jimoh (2012),

OCLplus: Processes and Events in Object-Centred Planning, the 6th Starting Ar-

tificial Intelligence Research Symposium, August, 27-28. Montpellier, France.

7. M. M. S. Shah, T. L. McCluskey and M. M. West,(2009), A Study of Synthesizing

Artificial Intelligence (AI) Domain Models by using Object Constraints. In the

Proceeding of the Computing and Engineering Annual Researchers Conference

(CEARC ’09), December, University of Huddersfield, UK, ISBN: 978-1-86218-

085-7.

8. M. M. S. Shah, T. L. McCluskey and M. M. West, (2009), An investigation

into using Object Constraints to Synthesize Planning Domain Model, In Doc-

toral Consortium of 19th International Conference on Automated Planning and

Scheduling (Refereed paper), September, Thessaloniki, Greece.

10

Chapter 2

Background

In this chapter we present a historical overview of Knowledge Engineering (KE) for

AI planning literature in order to provide a context within which the contributions of

this thesis can be evaluated. It is not intended as a comprehensive review of the AI

planning, but to provide a closer look on the AI planning application.

We first discuss the development history of automated planning, and a brief overview

of the planning techniques and languages. The aim of this chapter is to discuss the

Knowledge Engineering (KE) for automated planning. We overview general under-

standing of KE for planning including the KE process and language. The core of this

chapter examines the design process, issues and advanced in the KE research. The dis-

cussion mainly focuses on the knowledge engineering techniques for planning, where

the work described in this thesis fits in, and how it relates to the recent and current

research efforts.

11

Background

2.1 History of Automated Planning

The beginnings of AI planning can be traced back to the GPS system, a General

Problem Solver system developed by Allen Newell, J.C.Shaw and Herbert A.Simon

(Newell and Simon, 1963). It developed a ”means-end” search strategy, solved a prob-

lem by setting up (Pearson and Laird, 1996) subgoals which reduced the differences

between the current state and the goal state, and achieving those in order to achieve the

original goal. McCarthy and Hayes developed the situation calculus (McCarthy and

Hayes, 1969) using first-order predicate logic to reason about the actions. The advan-

tage of the situation calculus is that it provides a theoretical framework to represent

actions on a clear semantics.

An important landmark in the development of the planning system was the STRIPS

system (the Stanford Research Institute Problem Solver), which was developed by

Fikes and Nilsson in the late nineteen sixties (Fikes and Nilsson, 1971a) to control

the movement of a robot called Shakey, which pushes various boxes through several

interconnecting rooms. In the STRIPS style planning, actions are represented as pre-

conditions and effects, as add-list and a delete-list. The STRIPS representation avoids

the frame problem by making closed world assumption of default persistence to sim-

plify the planning process. The STRIPS representation formalism is still used today

and has influenced the design of more expressive planning languages.

The efficiency of the search process can be significantly affected by the order in

which simultaneous goals are attempted. Sacerdoti (Sacerdoti, 1974) introduced a

hierarchical abstraction planning system ABSTRIPS on the base of STRIPS. A Hier-

archical planner works at different levels of abstraction. It solves a higher, abstracted

problem first, then plans at increasing levels of detail, moves from the abstract to the

12

Background

concrete. NOAH (Sacerdoti, 1975) was the first hierarchical planner that allowed to

develop plans to represent the partial order of actions considering time. Before this, the

operators in the partially - constructed plan were always given a total ordering. The

advantage of a partial order representation is that a planner may be able to consider

fewer plans, and thus be able to generate a solution to a problem more quickly.

A notable successor of NOAH was Tate’s NONLIN (Tate, 1977) which used the

so called Hierarchical Task Network(HTN) planning technique. HTN performs search

for plans that accomplish task networks (Erol, 1995; Kambhampati, 1994). Current

HTN planners are different from previous versions as they allow the user to describe

and limit the type of the search space.

Later, the Graphplan system developed by Blum and Furst (Blum and Furst, 1997a)

and SAT-plan developed by Kautz and Selman (Kautz and Selman, 1996) provided

insight into improving planning efficiency. However, these planners rely on efficient

graph-based or propositional representations and advanced search techniques instead

of incorporating domain specific control knowledge. They could only solve simple and

small toy problems from the standard testing STRIPS-style domains used for the IPC

planning competition(Bacchus, 2001).

International Conference on Planning and Scheduling (ICAPS)1 has begun to or-

ganise International Planning Competition (IPC)2 since 1998 in order to improve the

track record of automated planning algorithms. The IPC is a biannual competition

where planners challenge each other to win based on a number of given criteria. FF

(Hoffmann and Nebel, 2001), the fast-forward planner, is one of the most success-

ful planning algorithms won the 2nd IPC. FF is a state space planner using forward

1http://www.icaps-conference.org/
2http://ipc.icaps-conference.org/

13

Background

chaining heuristics to estimate the goal. FF is considered as an advanced successor

of HSP system (Bonet et al., 1997) with significant differences. FF was extended to

Metric-FF (Hoffmann et al., 2003) to deal with numeric constraints. In the same com-

petition SHOP2 (Nau et al., 2003), a hierarchical domain independent planner won

top four awards for outstanding performance. Using local search and planning graph,

LPG (Gerevini et al., 2003) won the the competition on 3rd and 4th IPCs which also

can handle the numeric constraints and durative actions. In the 5th IPC, the sat-based

planner SATPlan (Kautz, 2006) and MAXPLAN (Xing et al., 2006) won award for

the best performance in optimal planning track. In the same competition the SGPlan

(Chen et al., 2006) which decomposes the goal into subgoals to solve using FF-like

techniques. In the IPC-6 LAMA (Richter and Westphal, 2008), which is based on

FF-based heuristic, outperformed in the sub-optimal track. In the IPC-7, LAMA-11

(Richter et al., 2011) won the award on the satisfying track but could perform well in

the multi-core track where ARVANDHERD (Nakhost et al., 2011) won the award.

Automated planning research has been moving away from its restricted classical

domain by directing many new techniques for handling real-world application. The

last decade of Planning focuses on many new areas like time and resources, numeric

computations involving resources, probabilities, geometric and spatial relationships,

which opened new research areas to deal with real application (Nau, 2007). There was

a special track of continuous planning in the ICAPS12 Conference. Continuous plan-

ning emphasises a number of different planning tasks online, planning with continuous

change, management of continuous resources, real-time behavior and mixed discrete-

continuous dynamics. This is intended as a multi-disciplinary track that focuses on

all elements of online systems that perform real-time planning, execution, monitoring

14

Background

and adaptation. In the ICAPS131 there is a special track for ’Novel Applications’ to

promote scientific research in applied planning.

2.2 Planning Techniques

2.2.1 STRIPS Planning

STRIPS (Fikes and Nilsson, 1971a), the Precondition achievement planning system is

the most general classical planning technology. The precondition-effect representation

places no assumptions upon the structure of the domains to which it is applicable,

leaving the complexity of planning to the domain-independent planning algorithm.

STRIPS-Style planning is considered to be straightforward search problem for an agent

which identifies all possible orders for an action can possibly perform depending on the

given constraints for particular world. The main features of STRIPS planning systems

are -

• Supports Planning Domain Definition Language (PDDL) family languages

• Problem solves by search

• Forward State-Space search

• Backward State-Space search

• Supports STRIPS planners

In the following two subsections we discuss two STRIPS style planners called LPG

and SGPlan in order to use them for evaluation. LPG and SGPlan planners were used

1http://icaps13.icaps-conference.org/

15

Background

because of their ability of handling durative actions and negative precondition. Also,

they are readily available and performed well at International Planning Competition

(IPC). There are a number of better performed domain independent planners, such as

FF (Hoffmann and Nebel, 2001), FF-Metric (Hoffmann et al., 2003) or Fast Downward

(Helmert, 2006), available in the planning community for evaluating RTA domain. In

our evaluation we need planners which can handle both classical and temporal domain

models. FF and Fast Downward Planners can only handle classical PDDL domain

model. On the other hand, FF-Metric is capable of handling both classical and tempo-

ral PDDL domain model, which is also the winner of 2nd IPC. Both LPG and SGPlan

execute FF-style search and use more advanced techniques for finding plan. For exam-

ple, LPG is capable of switch best-first search and restarts automatically, and SGPlan

uses subgoals for bigger problems. LPG and SGPlan won 3rd and 5th IPC respectively.

2.2.1.1 LPG

Local search for Planning Graph (LPG) is a domain independent planner that based on

local search and planning graph. LPG can handle PDDL2.1, which involves durative

actions and numerical values. It is a multipurpose planning system that allows gen-

erating and repairing plans, and incremental planning (Fox et al., 2006) in PDDL2.2

domains (Hoffman and Edelkamp, 2005). This planner uses stochastic local search

procedure to explore a search space of partial plans represented as linear action graphs,

the variants of famous planning graph (Blum and Furst, 1997b). LPG is a domain-

independent planner that has the advantages of estimating heuristic by exploiting plan-

ning graph. This planning system can produce quality plans using one or more criteria

that can be accomplished by an anytime process to produce a sequence of action. This

system comes with a FF style best-first algorithm. LPG is capable of switching to

16

Background

best-first search after a certain number of search steps and restarts automatically.

2.2.1.2 SGPlan

SGPlan (Chen et al., 2006; Hsu and Wah, 2008) is a ’Subgoal Partition’ planner to solve

larger problems efficiently. The main goal of SGPlan is to reduce the search space of

the original problem significantly. This planner fully supports many versions of PDDL,

such as, PDDL2.1, PDDL2.2 and PDDL3.0. There are advantages of using subgoal

partition as it involves a significantly smaller number of constraints than the original

problem. Also, planning landmarks analysis is used to decompose the hierarchy of

subproblems. Planning landmarks are facts that must be true at some point in every

solution plan, which are effective for solving larger problems. In the implementation,

SGPlan uses modified Metric-FF planning strategy for basic planning.

2.2.2 HTN Planning

Actions and states definition in HTN planning are similar to the STRIPS represen-

tations. The main difference between HTN planners and Precondition Achievement

Planning is in what they plan for, and how they plan for it. HTN planners generate

plans by searching over the task networks which is a collection of tasks. All the collec-

tion of tasks could be primitive in the sense that they cause a simple state transition to

the world, or they may contain compound tasks that could be decomposed during the

planning of primitive tasks (Ghallab et al., 2004). Essentially, an HTN may represent

a plan ranging from a partial plan to a fully instantiated plan.

In HTN, a task can be a primitive task, a compound task, or a goal. A primitive task

corresponds to some operations that can be readily done and can change the state of

17

Background

the world. A compound task is decomposable to another compound task or primitive

tasks. A goal is something that needs to be achieved by assigning a compound task or

a primitive task. The decomposition of compound tasks is accomplished by a method

(Tate, 1977). A method is a construct associating a compound task to a task network

consisting of sub-tasks of the compound task. Conceivably, one can have multiple

methods for each compound task. Finally, an operator is a construct that consists of a

primitive task, pre-conditions, and post-conditions (Tate et al., 1994).

In this following subsection we discuss HyHT N, a hybrid planner which is also the

planner integrated with GIPO.

2.2.2.1 HyHTN

HTN planning process starts from high level actions then decomposes them into sub-

tasks at different levels of abstraction. HyHT N (McCluskey et al., 2003) expands the

task networks with the combination of HTN planner and preconditions achievement

planning. It starts planning from the initial world states, expands the problem task net-

works by the orders given by user or domain specification, and then further expands

the action until it is executable. HyHT N is a planner which has achieved a high level

of performance. The representation language of HyHT N planner is OCL which is an

expressive language that allows to build an HTN and/or a pre-condition planner in-

put (McCluskey et al., 2003). The HyHT N as hybrid planner that has two significant

features:

• the main search procedure of HyHT N are fast-forward for precondition planning

and an HTN reduction for hierarchical reduction

• the domain model fed to the HyHT N planner can be encoded using a Knowledge

18

Background

Engineering tool called GIPO (McCluskey et al., 2003; Simpson et al., 2007).

2.3 Knowledge Engineering

Knowledge Engineering for Planning & Scheduling (KEPS) is concerned with the de-

sign process of a domain model using a Domain Definition Language by using appro-

priate methods for knowledge model development and their respective integration with

the Artificial Intelligence Planning algorithms. KEPS was defined by McCluskey in

the 2003 PLANET Roadmap (Biundo et al., 2002; McCluskey, 2000a) as the processes

to acquire, validate and verify, and maintain of planning domain models by the selec-

tion and optimisation of appropriate planning machinery to make up a planning and

scheduling application. Although KEPS is considered as a special case of Knowledge-

based Systems (KBS), where the need for methodologies for acquiring, modeling and

managing knowledge at the conceptual level has long been accepted. The distinct na-

ture of planning applications clearly distinguishs KEPS from general knowledge-based

systems chiefly in the area of acquisition and representation of knowledge about ac-

tions (McCluskey and Simpson, 2004).

2.3.1 Domain Modelling

A planning domain model is assumed to be the declarative description of the domain

functionalities. The most important part of the domain model is a set of action de-

scription. One of the main advantages of the domain model is that a planning agent

can make rational decisions to solve problems. The acquisition of a domain model

is performed by knowledge engineer which may involve the analysis of the domain,

background of the domain from existing documentation, manuals, interviewing to the

19

Background

stakeholders etc. During the analysis the knowledge engineer seeks answer of some

questions such as: Is this a planning problem? How the actions can be modelled?

Can the domain be modelled for real-world problems? Any requirement for expected

plans? How to optimise the generated plans? Etc. (McCluskey, 2000a).

2.3.1.1 Domain Analysis

The idea of the domain analysis plays a fundamental role to assist the domain mod-

elling language for designing domain models and to find required planning algorithms.

The acquired knowledge usually categorised as follows -

• Domain Structure - The domain structure mainly concerns with the acquired

relevant objects and classes, predicates, relationships and constraints (if any).

• Domain Dynamics - The dynamics of a domain model are to define the ’truth

value’ of an object during the execution of an action.

• Domain Heuristics - To define general approximation rules to help desired plan

generation.

Once the domain is modelled by using an appropriate modelling language, domain

analysis is used to check the consistency of domain model and identify bugs. The

analysis can be done by the planning system or can be added through the problem

specification or by using an automated knowledge discovery tool like, TIM (Cresswell

et al., 2002). TIM domain analysis tool infers the types and invariants form input

domain definition and initial states. TIM also analyses domain models by constructing

a set of Finite State Machine (FSM) from operators and describes all the possible

transitions for any single objects in the domain.

20

Background

Generally, the output of domain analysis is the domain knowledge which can be

found from the domain specification. Domain analysis can help the planning system

and knowledge engineering in the following ways (McCluskey, 2000a)-

• Speed-up Planning

• Improve Plan Quality

• Model Validation

• Match Planning Technology with Domain

2.3.1.2 Planning Domain Design Process

The design process is one of the important elements to the success of developing and

maintaining real-world planning applications. To the best of our knowledge there is

no standard Planning Domain Design Process to follow by knowledge engineers. In

this section we discuss a semi-standard planning domain design process which was

derived by (Vaquero et al., 2011b) from existing research on knowledge engineering

for planning and design process from software engineering discipline (Sommerville,

2004). This process is a partial ordered sequence of steps that can be discussed as

below -

1. Knowledge Acquisition - The knowledge acquisition phase mainly identifies

the requirements specification of the domain. Knowledge can be acquired by

using expert knowledge, documentation, analysing the system as a whole or by

using viewpoint analysis

2. Knowledge Modelling - The Knowledge model describes the overall require-

ments for the planning and scheduling application. This is one of the central

21

Background

parts of the KE process that ensures the quality of the domain model. It defines

a set of problems that a planner needs to solve. It also covers the formal descrip-

tions of actions and their pre- and post conditions, and their nature that can be

performed including the types of objects and their relationship.

A knowledge model is needed to be validated by using some metrics such as -

Accurate, Adequate, and Complete.

3. Knowledge Formulation - Knowledge Model must be formulated in an ade-

quate planning domain definition language, such as PDDL, NDDL, OCL etc. to

generate plan using appropriate planner.

4. Knowledge Validation - Formulated knowledge must be tested. The test can

performed by static testing to identify bugs earlier and dynamic testing by using

a planner.

(a) Static testing - Does not require any planner or problem definition. This

will check the syntax, semantics, objects relationship and consistency.

(b) Dynamic testing - Dynamic testing requires the a complete domain model

and a problem definition.

(c) Plan Generation - By using an iterative process of knowledge validation,

one or more planner can generate a plan (if there is any).

5. Plan Analysis and Post Design - To ensure that the generated plan is valid

according to the knowledge requirement using some metrics. This can be per-

formed by using VAL (Howey et al., 2004) which validates actions execution as

well as recognise whether the plan reached to the goal.

22

Background

2.4 Domain Modelling Languages

The control mechanism of Automated Planning needs to be able to represent and rea-

son with rich, expressive and detailed knowledge of such phenomena as movement

and resource consumption in the context of uncertain and continuously changing en-

vironmental conditions (Bresina et al., 2002). Traditionally, domain definition is a

physical system with discrete and continuously-varying aspects have been represented

using the mathematical notion of a hybrid dynamical system. This is a system that

has state made up of a set of real and discrete-valued variables that change over time

according to some fixed set of constraints. Hybrid systems are used for modelling of

applications such as embedded control systems (Carloni et al., 2006). In general, the

more expressive representation languages used to model the problem world, the harder

to find a planning algorithm to solve problem expressed in the input language, and the

speed of the resulting algorithm decreases as well (Wilkins, 1988). Therefore, practical

planning systems must make enough restricting assumptions so that a viable, efficient

implementation can still be realised.

In order to represent the domain knowledge in some representation language the

language should have the following attributes (McCluskey, 2000a) -

Structured: The representation language should be well-structured to acquire com-

plex actions, states and broken down complex objects into manageable and mean-

ingful units.

Associated Workflow: The language should follow a set of steps to acquire a domain

model to help knowledge engineering processes.

Support in Operation: The language should provide some metrics to evaluate the

23

Background

developed model.

Support with tools: It should be tool supported to provide static testing and check the

operationallity.

Expressive: The language should be expressive to capture complex aspect of real-

world problems.

Syntax and Semantics: The language should have clear syntactic structure and mean-

ingful semantics to evaluate with some well-known formal languages.

There are a great number of languages used by the planning community such as

PDDL, OCL, HPDL, ANML, NDDL, RDDL etc. Also, each of the languages has

many versions available according to the expressivity. The HPDL (Hierarchical Plan-

ning Domain Language)(Castillo et al., 2006) is the extension of PDDL2.1 (Fox and

Long, 2001) to adapt HTN planning. It is structurally different from the PDDL because

of its task hierarchy. HPDL manages the temporal constraints by multi task ordering,

time annotations, durative inference task, time initial literals and temporal landmarks.

HPDL allows multiple task ordering schemas in sequential order, parallel order or un-

defined order. In the sequential order the tasks are carried in the same order according

to the initial declaration. Tasks or actions are executed simultaneously, i.e., two tasks

start at the same time and continuous. Also, tasks can be carried out in any order to

achieve the goal.

Model based languages such as ANML and NDDL are used by NASA for Mars

Rover Application Using KE tool called EUROPA (Barreiro et al., 2012). The New

Domain Definition Language (NDDL), introduced by NASA, is a model-based domain

definition language that supports the specification of the concurrent transition system

24

Background

models (Muscettola et al., 1998). Both ANML and NDDL are based on the AML and

PDDL to represents action and state, supports temporal constraints, and provides clear

expression for pre- and post-condition for action representation (Smith et al., 2008).

In this section we discus two domain modelling languages called PDDL and OCL

to evaluate knowledge engineering methods.

2.4.1 STRIPS Based Language

STRIPS formulations (Fikes and Nilsson, 1971a) are the most widely used planning

representation languages in the planning community. In a STRIPS system, actions are

described in terms of preconditions and effects, as add and delete lists. Currently, the

STRIPS based representation languages are dominating the planning research. In the

following subsection, we discuss the standard STRIPS based planning language and

its variations.

2.4.1.1 PDDL

AI planning research evolved a standard domain definition language in planning is

PDDL (planning domain description language), which is based around a world view

of parameterised actions and states, where it is assumed that a planner generates a col-

lection of instantiated actions to solve some goal posed as state conditions. PDDL was

introduced by Drew McDermott in the AIPS-98 competition to have a single common

representation language for defining domain models. The competitors used different

planners to solve the same problems written in PDDL domain (AIPS-98 Planning

Competition Committee, 1998). The first version of PDDL is 1.2 is the base of all the

PDDL variants as it uses the basic representation of literals, a set of operator schemas

25

Background

to represent domain actions as classical planning (Fikes and Nilsson, 1971a). The op-

erator definition in PDDL is same as the STRIPS-style uses pre-condition and effect.

Since the inception of PDDL, it has been developed and extended by many re-

searchers. The significant extension for the expressiveness is the PDDL2.1 (Fox and

Long, 2001), the official language of IPC-3, that supports numeric fluents and durative

actions. Following that extension the language has progressed to PDDL2.2 (Edelkamp

and Hoffmann, 2004) to introduce derived predicates, PDDL3.0 (Gerevini and Long,

2005) to introduce durative predicates and PDDL3.1 is the standard language for IPC

6 and 7 in the deterministic track to introduce object-fluents. It has been extended

to cope with real applications such as crisis management (Fernández-Olivares et al.,

2006) and workflow generation (Riabov and Liu, 2006), and has versions which can

represent time and resources. More expressive modelling languages such as PDDL+

(Howey et al., 2004) have been developed for applications where reasoning about pro-

cesses and events in a hybrid discrete or continuous world is necessary (Fox and Long,

2006). PDDL+ was recently used in an application for developing multiple battery

usage policies (Fox et al., 2011). Although PDDL is designed for logical precondition

achievement, specialist forms of planning can be incorporated into the language using

procedural attachment (Eyerich et al., 2010).

A typical planning problem for PDDL domain includes domain model and problem

definition. The domain model defines the overall structure of the world, for example,

types of objects in the domain, kinds of actions and precondition and effects of those

actions. The problem definition defines the task that a planner need to perform to

achieve some goals with respect to the initial and goal state defined for the considered

domain.

26

Background

2.4.2 HTN Based Language

HTN uses the hierarchical abstract schemas to represent actions and states similar to

the STRIPS style planning. HTN represents the level of abstraction of the planning

problem and defines the solutions in the application. The solution of an HTN planning

system is the decomposition of the abstract task to achieve the primitive tasks as the

steps of the plan. In HTN based languages, it is common to order the variables to

satisfy given condition of actions.

2.4.2.1 Object Centred Language (OCL)

The object-centred planning approaches by McCluskey and Porteous (McCluskey and

Porteous, 1997) is a tool supported planning domain definition language for acquir-

ing the knowledge of the world as domain model in order to implement with suitable

planning algorithm. This is a structured language that allows knowledge engineers to

develop the segment of the world and validate with the supporting tool. This approach

has been supported by different planning methods like partial or total order planning

(Kitchin, 2000), graphplan (Simpson et al., 2000), HTN plan (McCluskey, 2000b), and

continuous planning with OCLPlus (Shah et al., 2012). In the project PLANFORM, a

Graphical Interface for Planning with Objects (GIPO) (Simpson et al., 2001) was de-

veloped to help the application users to construct, analyse and test the planning domain,

which makes OCLh (McCluskey and Kitchin, 1998) suitable for real applications.

OCLh is a family language of OCL which is based on the idea of engineering a

planning domain so that the universe of potential states of objects can be defined first,

before operator definition (McCluskey and Porteous, 1997). Developing a domain

model in OCL uses the following steps -

27

Background

• Sorts - Identify class and hierarchy,

• Objects - Identify objects of the classes identified,

• Atomic invariants - Static properties of domain model which will not be changed

during execution,

• Substate class expression - define object behaviour,

• Operators - precondition and effect,

• Methods - compound task are used for HTN type planning,

• Problem instance - define goal and initial states of objects.

An action in an OCLh domain model is represented by either a primitive operator

or a method. Primitive operators specify under what condition objects may go through

single transitions; compound actions specify under what condition objects go through

a sequence of ordered actions. The action is primitive or compound depending on

whether the name is primitive or compound.

Compound actions need further expansion and cannot be executed directly. In

OCLh, compound actions including methods and achieve(Goal) actions. Methods are

compound actions that can be expanded further down under certain restrictions. By

eliminating the lower level tasks and orderings and variable binding that may lead to

dead ends, the search space of a method expansion is greatly reduced.

28

Background

2.5 Tool Supported Knowledge Engineering

Traditionally knowledge engineering for automated planning is carried out by using

the hand coding method (using a text editor) but to create a non-trivial domain model

requires tool support. The tool support depends on the size of the application. Gener-

ally, hand-coded domain models are debugged by simple syntax checkers or dynamic

testing. The dynamic testing shows the domain errors, does not generate any plan or

executes any plan which is inefficient for large real-world applications (McCluskey,

2000a). In the practical point of view tool supported knowledge engineering helps

user to acquire knowledge and validate them without any planner involvement. In

most cases the static validation is performed to check consistency and remove bugs of

domain model. From the user perspective an ideal knowledge engineering tool (see

Figure 2.1) integrates all these facilities in one platform by using some interactive

graphical metaphors. Hence, the user will be able to design, develop, test and maintain

domain models in a single environment.

The tool support for knowledge engineering for automated planning is a longstand-

ing research area. Some of the most successful planning projects like O-Plan (Tate

et al., 1994) and SIPE (Wilkins and Myers, 1994) projects used tool support to assist

the knowledge engineering process. The need for the tool support in the KE research

leads a number of domain independent and domain-dependent tool such as, GIPO

(Simpson et al., 2007), itSIMPLE (Vaquero et al., 2012), JABBAH (González-Ferrer

et al., 2009), EUROPA (Barreiro et al., n.d.) etc. A detailed overview of the knowledge

engineering tools will be given in the following chapter (Chapter 3).

29

Background

2.6 Current State of Knowledge Engineering

The area of knowledge engineering is an important area within the automated plan-

ning research; especially to formulate real-world domain knowledge. The field has ad-

vanced steadily in recent years, helped by a series of ICAPS Competitions on Knowl-

edge Engineering for Planning and Scheduling ICKEPS’05, ICKEPS’07, ICKEPS’09

and ICKEPS’121, the build up of experience from planning applications, along with

well developed support environments (for example, NASA’s EUROPA (Barreiro et al.,

2012)). This area has also been supported by a series of ICAPS workshops on Knowl-

edge Engineering for Planning and Scheduling (KEPS): KEPS’08, KEPS’10, KEPS’11

and KEPS’132.

On the other hand, the PLANET Roadmap (Biundo et al., 2003; McCluskey, 2000a),

a technical report on the European Network of Excellence in AI Planning, discussed

the issues and challenges of knowledge engineering. The aim of the document was to

find an established platform for building rich planning system. Knowledge Engineer-

ing (KE) part of the document is also directed to the future knowledge engineering

issues. It also suggests an ideal environment for knowledge engineering for planning

(see figure 2.1). This idealised KE Environment is inspired by PLANFORM Project

(Biundo et al., 2003) which could be modified in different model. The main concern

of this conceptual KE environment is to consider aspects about the domain knowl-

edge. In this ideal KE Environment, a Knowledge Engineer acquires domain model

by analysing many different sources. A Knowledge Engineer plays multiple role as

the software analyst. The domain knowledge can be acquired by reading the system

1see http://icaps12.poli.usp.br/icaps12/ickeps
2http://icaps13.icaps-conference.org/technical-program/workshop-program/knowledge-

engineering-for-planning-and-scheduling-keps/

30

Background

requirement specification, interviewing to the users and managers, observing the exist-

ing model. It is the Knowledge Engineer’s job to capture the correct knowledge so that

those can be encoded using modelling language. It may also require to do the dynamic

validation by a using suitable planning algorithm. The plan that has been generated as

a result of dynamic validation can be evaluated by comparing with the existing plan.

2.6.1 ICKEPS Competition

The aim of the ICKEPS competition is to promote the development of Knowledge

Engineering tools and environments in order to get accessible, acceptable and effec-

tive way of developing reliable planning and scheduling systems (Bartak et al., 2010).

ICKEPS aims to improve the whole knowledge engineering process through competi-

tion. The ICKEPS competition has set some rules for evaluating the KE tools to find

the winner in the competition. The first ICKEPS1 considered KE tools that fall into

any of the following categories -

• Knowledge formulation: The goal is to find the KE tool have the capability of

knowledge capturing and control heuristics.

• Planner configuration: The goal is to find if the tool can integrate third-party

planners for plan generation.

• Validation of the domain model: The tool must be capable of using visualiza-

tion to validation.

• Knowledge refinement and maintenance: The tool should be capable of re-

fine and maintain knowledge through automated learning/training, or a mixed

1http://helios.hud.ac.uk/scomtlm/competition/rules.html

31

Background

Figure 2.1: An Ideal Knowledge Engineering Environment (Extracted from (Biundo
et al., 2003))

32

Background

initiative P & S process.

The evaluation Criteria used in the first ICKEPS Competition are described below:

• Support potential: Does the tool obeys the criteria of the competition? Will the

tool be effective to save time than using other method?

• Scope: How the tool fits with the scope of the competition?

• Usability: Is the tool user oriented? Is this suitable for non-expert user?

• Interoperability: Can the tool add third-party planners? Does the user interface

of the tool helps the user to design the domain model and test with suitable

planning software?

• Innovation: Is there any scientific value achieved by the tool?

• Wider comparison: Is the tool comparable to other existing KE tools? Can it

be compared with other knowledge based system?

• Build quality: Is this an well-designed and tested software?

• Relevance: Is this tool related to the KE research? Is the tool suitable for de-

signing real-world domain models?

It can be noted that the first two competitions aimed to find tools based on general

categories such as ’planner configuration’ which is now common to most of the state-

of-the-art KE tools. If we see two recent competitions on ICKEPS (3rd and 4th),

the evaluation criteria have been narrowed down, focus on particular aspects on the

KE tools and techniques. Both (3rd and 4th) competitions were focused on the tools,

methods, translation to a particular planning language (if required). The consideration

33

Background

also given on the application areas, for example, Web Services, Work-flow, Business

Process Modelling, E-Learning, Games and Narrative Generation. The KE tools have

also been considered if they can use domain-independent planning algorithm to solve

basic problems (Bartak et al., 2010).

Due to the nature of competition and a variety of tools and techniques, it is diffi-

cult to set any objective measures on 3rd ICKEPS (Bartak et al., 2010). Given these

constraints, the judges considered four important issues:

1. User Related Issues

2. Planning and Scheduling Related Issues

3. Software Engineering Issues

4. General Scientific Issues

By considering the above issues a set of detail criteria were used to find the best tool

in the competition -

• Portability: This is identified as the software engineering issue to find the porta-

bility of the software ”difficulty of using the tool out of the laptop of the com-

petitor” (Design Process track).

• Robustness: This is also the software engineering issue to find the measurement

of how much is the tool sensible to the domain in use (general tools) or how much

is the tool sensible to the specific problem in the applicative are (specific tools).

• Usability: This is user related issue to find the satisfaction of either by AI experts

or target domain experts.

34

Background

• Spread of use of the tool: Mainly to find the usability by finding the number of

user used the tool.

• Perceived added value: It is important to have some added value int he P&S

community as general tools or to the application area as specific tools. The goal

is to find the impact of the tool in that particular area of research.

• Flexibility Is the tool flexible to use? How easy the user can learn? Can the tool

capture complex aspect of the domain?

2.7 Summary

The research challenge arisen in the area of knowledge engineering for planning and

scheduling (KE for P & S) from the earlier discussion, is closely related to this thesis.

It is clear that knowledge engineering is an important area of research for automated

planning and scheduling area. We have discussed the history of automated planning

to understand the respective progress of knowledge engineering research. We also

discussed the current state of the KE research by the support of ICKEPS competition

to promote the research on building KE tool. The evaluation criteria of the competition

are illuminating as we can see the progress in this field. Although, state-of-the-art KE

tools are quite capable of designing complex domain models but there are still many

issues remain unattended. Moreover, we still do not know what is the best way to

encode a domain model for real-world applications. The following chapter discusses a

range of KE tools for automated planning to find the types of features.

35

Chapter 3

Knowledge Engineering Tools and

Techniques

Knowledge Engineering for Planning and Scheduling (KEPS) is an important research

area that deals with the engineering planning domain models. KEPS is defined in the

PLANET RoadMap (McCluskey, 2000a) as the process of acquisition, validation and

maintenance of planning domain knowledge, and the selection and optimization of

appropriate planning machinery to work on them. The main goal of knowledge engi-

neering process is to support the planning system to solve various types of planning

problems. A real-world planning application requires suitable tools and techniques

depending on the size, nature and complexity of the domain. Naturally, an automated

planning system is knowledge-based. Therefore, to develop a planning system, gen-

erally it is required to model the knowledge associated with the domain under consid-

eration. These models are called Planning domain models. This knowledge can be

encoded by knowledge engineers (usually the planning researchers) by using different

techniques. The most common knowledge encoding process is the traditional hand-

36

3. Knowledge Engineering Tools and Techniques

coding by using a simple text editor. In the knowledge design process, researchers

mainly use basic syntax checker and dynamic testing which is inefficient for the large

real-world application. The research in knowledge engineering for automated plan-

ning is not mature enough in compare to the other areas to define a standard design

process. On the other hand, the planning domain definition languages seem to be very

expressive and flexible (e.g. PDDL) to design real-world problems. It is impracti-

cal to direct formulation of planning domain models for large real-world application.

The lack of user-friendly graphical interfaces for the domain formulation, any standard

design process or the gap between the knowledge engineering and planning research

limits the knowledge engineering process for designing, developing and maintaining a

real planning application.

In this chapter we evaluate types of features used in modelling tools by analysing

current knowledge engineering tools and techniques to acquire real-world domain

knowledge in order to create a planning application. Also, a general overview will be

provided on the traditional hand-coding method for domain modelling for automated

planning.

3.1 Knowledge Engineering: Tools and Techniques

This section is dedicated to the discussion of leading knowledge engineering (KE)

tools and techniques for automated planning. The discussion emphasis on two general

planner-independent tools (GIPO and itSIMPLE) and a traditional technique to model

planning domain in order to evaluate in the later chapters.

37

3. Knowledge Engineering Tools and Techniques

3.1.1 Hand Coding: a traditional technique for KE

PDDL (Ghallab et al., 1998; McDermott, 1998) is an action-based domain definition

language which is inspired by STRIPS (Fikes and Nilsson, 1971b) style planning. The

core of the PDDL formalism is for expressing the semantics of domain actions, using

pre- and post-conditions to represent actions and effects. This is an ad-hoc process

of generating and testing domain model where the knowledge engineers iterate the

following steps several times:

• encode requirements,

• analyse the model,

• run a set of planners on several easy problems,

• evaluate the resulting plans (if any), and in the case of strange plans (in relation

to the RTA domain requirements) find a way to fix the issue. Usually an expert

has to iterate several times through the steps above before plans are produced

that match the requirements.

Requirements for Domain encoding are generally acquired by knowledge engineer

using system engineering methods. Mainly the domain modeller goes through the do-

main documentation; interview the domain expert or goes through the manual. The

domain modeller mainly focuses on how to extract objects, predicates, functions, ac-

tions and planning problem. Encoding all these requirements in a text editor requires

knowledge engineer to be expert on the language. PDDL is a very expressive language

and most planner support only a subset of it. Domain declaration uses requirement

such as -

38

3. Knowledge Engineering Tools and Techniques

• :requirements - this is to define basic requirements for any PDDL domain model.

A domain model may support STRIPS to support all STRIPS functionalities,

equality to use predicate ’=’, typing which consists only STRIPS or durative-

action to support numeric values,

• :types - defines objects,

• :predicates - defines relations of objects,

• :functions - to handle the numeric and temporal elements,

• :actions - the operators that contain pre- and post-condition.

Generally, a hand coded domain model has to go through dynamic testing for de-

bugging and plan generation. Such testing is performed by any suitable planner to find

plan(if any). Generally planners do not produce any plan if there is any error in the

domain model or in the problem file but produce error message for debugging. Also,

during the dynamic testing it is hard and time consuming to find bugs. This process

has to rely on the knowledge engineer’s expertise on the encoding language.

3.1.2 TF Method: HTN modelling tool

This is one of the early approaches of Knowledge engineering with tool support. Task

Formalism (TF) method (Tate et al., 1998) includes domain requirement analysis with

CORE (COntrolled Requirements Expression) for modelling planning domain for NO-

LIN (Tate, 1977) and O-Plan (Tate et al., 1994) systems. Modelling domain in the

TF Method follows level oriented approach that requires completing a check-list of

sequential activities. These activities include identifying actions, developing actions,

identifying conditions effects of those actions, temporal constraints, variable types and

39

3. Knowledge Engineering Tools and Techniques

model reusability. The design process of TF is accomplished by using TF Workstation

(Tate et al., 1996), a GUI for O-Plan for accommodating domain knowledge descrip-

tion. Domain testing is performed in this system by using O-Plan TF compiler to be

used by the core O-Plan planning engine. This is an incremental process to run, debug

and modify the domain model. The design process that the TF method follows as -

(i) planning the Development of a Domain Description: to identify all the require-

ments for the domain with domain expert.

(ii) selecting between Action Expansion and Goal Achievement: to find the definition

of either action decomposition or goal achievement i.e. the hierarchical structure

of action expansion.

(iii) developing the TF Schemata: to construct details of each level of the hierarchy

that defined in the previous section.

3.1.3 itSIMPLE: a leading GUI tool for KE

itSIMPLE (Vaquero et al., 2007, 2012), the winner of International Competition on

Knowledge Engineering for Planning & Scheduling (IKEPS)1, is a method and tools

environment that enables knowledge engineers to model a planning domain using the

Unified Modelling Language (UML) standards. It is a domain independent GUI tool

that allows knowledge engineers to acquire knowledge of the domain during the pre-

liminary design. It also supports a set of languages, tools and techniques to execute the

design process. The main function of itSIMPLE is to take the UML’s Object Constraint

Language (Booch et al., 1997) as input through state machine diagrams, and translate

1http://kti.mff.cuni.cz/ bartak/ICKEPS2009/results.html

40

3. Knowledge Engineering Tools and Techniques

Figure 3.1: itSIMPLE4.0 Domain Modelling Environment

into PDDL. The process is conducted by an intermediate language called eXtensible

Markup Language(XML). The user-friendly GUI (see Figure 3.1) of itSIMPLE also

helps knowledge engineers to model a domain as object oriented fashion.

This section is dedicated to the analysis of itSIMPLE as a knowledge engineering

tool that provides user a flexible GUI support to design a real-world application domain

model.

itSIMPLE follows software engineering design processes including UML proper-

ties and translating into PDDL model. The general process of designing a domain in

itSIMPLE follows steps as -

41

3. Knowledge Engineering Tools and Techniques

(i) Use case diagram - This is the preliminary stage of itSIMPLE design process that

identifies actors and use-cases for the domain model.

(ii) Design of class diagrams - This is the heart of the whole design process where

a number of classes are defined. Classes contain predicates as attributes and

operators as methods. Classes are interconnected to each other depending on

their relationships.

(iii) Definition of state machines - state machine diagrams are defined for objects and

their operators to express pre- and post- conditions. The pre- and post- condi-

tions in the itSIMPLE are expressed in Object Constraint Language expressions

(Booch et al., 1997). Also, states are expressed for the possible values of the at-

tributes of classes using conjunctive and disjunctive Object Constraint Language

expressions (Vaquero et al., 2009).

(iv) Translation to PDDL - The static information (operator specification) of a domain

file are encoded in the UML/XML file during the definition of class and state-

machine diagrams. Also this information can be found in the timing diagrams

for temporal domain models.

(v) Creating objects - This allows to create as many objects as we want for each of

the classes. The itSIMPLE GUI helps to create all the objects by using object di-

agrams. Objects are stored in the object repository for using in creating problem

files.

(vi) Generation of problem files - Problem files in PDDL contains initial and goal

states.

42

3. Knowledge Engineering Tools and Techniques

(vii) Plan generation - itSIMPLE tool allows the integration of STRIPS style planers

for domain model testing.

The itSIMPLE knowledge engineering tool emphasises on the overall life-cycle

of a planning application design. It provides the user an integrated design and devel-

opment environment to accommodate knowledge acquisition in the early stage. Like

software engineering itSIMPLE use-case identifies the actors of the systems. With its

interactive graphical interface, itSIMPLE allows requirement gathering and analysis

for functional and non-functional requirements of a domain. These requirements are

acquired by using a most commonly used software modelling language called Unified

Modelling Language (UML) (Rumbaugh et al., 2004). The graphical and visual com-

ponents that provided by the UML make the planning domain definition process more

comfortable and facilitate communication and analysis of requirements belonging to

different viewpoints.

The UML class diagram in the itSIMPLE represents the static properties of a do-

main by defining the class, properties, relations and constraints. In a class diagram,

operators and their parameters and durative operators are defined as static characteris-

tics of the domain model. The dynamic properties of the domain model such as, the

pre- and post-condition of an operator is designed by using a formal language sup-

ported by UML called Object Constraint Language.

A state machine diagram in the itSIMPLE tool allows the representation of the

possible states of an object. An object can change its state during the execution of

a planning action. A state machine diagram is built for each class that has dynamic

features that is represented in order to specify pre- and post-conditions of actions. To

implement such behaviour, itSIMPLE uses a formal constraint language derived from

UML, called Object Constraint Language (Rumbaugh et al., 2004). It is a pure spec-

43

3. Knowledge Engineering Tools and Techniques

ification language commonly used for invariants on classes and types to describe pre-

and post- conditions on operations and methods, to specify constraints on operations,

and to specify derivation rules for attributes for expressing over a UML model.

Action duration is an important feature of PDDL to address real-world problems.

itSIMPLE represents time-based planning domains using timing diagrams (Rumbaugh

et al., 2004). Such diagrams cover dependencies that could be expressed by parameters

such as, time-lines that denote the time spent to perform an action. Currently, time

slices are allowed in timing diagrams to define durative-actions (Fox and Long, 2001).

Planning problem instances are modelled by using object diagrams representing

relationship of each of the objects in the domain for the particular problem. Initial and

goal states are defined by using object diagram. It is possible in itSIMPLE to define

initial state of a chosen object so that the planner can operate in order to reach the

goal state (Vaquero et al., 2007). itSIMPLE only allow any valid relation of objects

that is defined earlier in the class definition by using an object diagram checker. It

checks the object relations during the problem definition whether a particular object

can be associated with another, given the set of multiplicity and other constraints. The

object diagram checker helps the designer to create valid states according to the classes

definition.

PDDL2.1 introduces the temporal and numerical constraints which allow knowl-

edge engineers to add duration on the action representation. This feature can also be

modelled by itSIMPLE and translated into PDDL by using timing diagram. Timing di-

agram is used to capture temporal information of a domain by using a time-line. This

diagram is connected to the itSIMPLE’s state machine diagram to get all the attributes

of the object. There are some other temporal features of PDDL such as, at start, over-

all and at end defines conditions and effects of a variable operation, can be modelled

44

3. Knowledge Engineering Tools and Techniques

in itSIMPLE environment.

A domain model requires validation during its design phase to reduce errors, make

the model consistent and to achieve correct plan. The domain validation is a processes

that verifies, validates, refines and enhances knowledge (Berners-Lee et al., 2001).

The validation processes can be static or dynamic.

A static domain validation is mainly focus on the syntax check, debugging, rela-

tion between objects, predicate definition, function definition. This test can also find

the legal pre- and postcondition of an action from the object and predicate defini-

tion. itSIMPLE does not provide any straight forward static validation process during

the domain modelling process but it’s rich GUI supports designer to design error free

model. For example, an object is created from any class that must comply with the

class and its association according to the defined multiplicity rule. This helps to avoid

inconsistent states during the plan generation. Dynamic validation of a domain model

involves the testing actions and their relation i.e. how actions are executed and relates

to each other. In most case, dynamic validation is carried out with the planner dur-

ing generation, although it can be done independent of planner. itSIMPLE invokes

Petri Nets (PN) (Murata, 1989), a formal representation of dynamic validation which

allows the visualisation of the whole system. Unfortunately, this approach is not fully

implemented in itSIMPLE tool.

Most of the automated planning engines require adequate domain model input in

a common standard language such as PDDL. itSIMPLE translates domain knowledge

from UML to PDDL version up to 3.1. The translated PDDL domain and problem files

can be exported as PDDL files to execute with various planning system. itSIMPLE

allows the user to integrate many planning engine in it’s environment. This facilitate

the user to run planner at any stage of domain development. Also, it is possible to

45

3. Knowledge Engineering Tools and Techniques

integrate more suitable planner and run all of them together to check performance of

planners.

One of the important steps in the domain design is the analysis of the design with

respect to the initial requirements. itSIMPLE tool provides visualisation of generated

plans and analyse the domain variable. The variable tracker analyses variables of the

domain molel and provides quality metrics. itSIMPLE comes with a number of plan-

ners (e.g. Metric-FF, FF, SGPlan, MIPS-xxl, LPG-TD, LPG, hspsp, and SATPlan)

embedded which allows the user to do the dynamic testing by generating plan. It also

uses a visualisation tool for plan analysis called ’movie maker’ which captures the

responses of planner and executes those plans.

3.1.4 GIPO: an object-based GUI tool

This method is based around the hierarchical, object centred language OCLh, which

is a structured and formal language. The foundation of OCLh is that the potential

state of an object is defined before defining operators (McCluskey and Kitchin, 1998).

The planning domain definition languages OCL and PDDL are traditionally different

from each other in many ways especially in syntax and operator definition. GIPO

encapsulates the OCL syntax and displays the class hierarchy graphically (see Figure

3.2). Graphical Interface for Planning with Objects (GIPO) is one of the first research

tools for building planning domain models that won award in the first International

Competition on Knowledge Engineering for Planning and Scheduling (IKEPS)1. The

user interface of GIPO creates abstract view by hiding the larger parts of OCL language

details and provides facility to validate, and to identify and remove bugs in the early

stage.

1http://icaps05.icaps-conference.org/

46

3. Knowledge Engineering Tools and Techniques

Figure 3.2: GIPO-III: Sort Hierarchy and OCLh code for RTA Domain Model

47

3. Knowledge Engineering Tools and Techniques

It is inspired by formal methods for software engineering, and led to the creation of

the knowledge engineering platform GIPO (McCluskey and Simpson, 2006; Simpson

et al., 2007). Central to this approach is the precise definition of a planning state as

an amalgam of object’s individual states. This gives us the concept of a world state as

one being made up of a set of states of objects, satisfying certain types of constraints.

Operator schemas are constrained to be consistent with respect to the state, giving the

opportunity for using tools to do consistency checking. GIPO uses a number of con-

sistency checks, e.g. if the object class hierarchy is consistent, object state descriptions

satisfies invariants, predicate structures and operator schema are mutually consistent

and task specifications are consistent with the domain model. Such consistency check-

ing grantees that GIPO prevents several errors over other method such as hand crafted

models.

The steps to design and develop domain model using GIPO are as follows:

(i) Identify a set of dynamic object classes, and a class hierarchy, where objects

inherit state and behaviour from classes in the hierarchy above it. Thus an object

might have superclass mobile and inherit a range of possible states (describing

positions) from the mobile class which the mobile object might occupy (hence

defining range of behaviour). The object might also be a carrier, and inherit state

and behaviour from this also.

(ii) Formally specify constraints on the state of possible objects;

(iii) Develop HTN methods in a top down manner, reflecting the main requirements

of the domain tasks, followed by development of primitive operators;

(iv) Use static analysis, implemented through tools, to help remove defects from the

model as it is developed. Examples are to check operators do not invalidate state

48

3. Knowledge Engineering Tools and Techniques

constraints, and tasks obey the transparency property (McCluskey and Kitchin,

1998).

(v) Allows the integration of planners, plan generation and visualisation.

GIPO provides a number of editors for each phase in domain construction. The

built-in editors allow users to build complete domain model without having any pre-

vious knowledge of the representation language OCL. It also allows designing and

developing flat domain alongside of the hierarchical one. The KE process of GIPO

is shown in the Figure 3.3. GIPO allows the user to draw life history diagram (ba-

sically state machines) that describe the dynamics of the objects of a chosen object

class. Thus, the user can define the states that object instances from an object class

can take and to show the possible transitions between multiple states. Furthermore,

coordination diagrams are used to show how objects of two or more concept types co-

ordinate their dynamic movements. Thus, these diagrams allow transitions and states

to be linked. While many domain constraints in GIPO are captured graphically, and

automatically translated into symbolic representations, others need to be specified tex-

tually. This can be done either using the relationships between properties or using

more complex predicate calculus expressions to capture the constraints.

Static domain analysis is one of the powerful techniques that make GIPO distinct of

its kind. Static analysis checks the syntax, class hierarchy, legal predicates and overall

consistency of the domain elements. If the designed domain model passed the check,

ready for the dynamic test. The dynamic test can be done by the integrated planners

like the HyHT N (McCluskey et al., 2003). The plan stepper and animator helps to

check plan validation in graphical interface. The steppers work as forward planners to

allow users for selecting the actions towards the solution of the problem.

49

3. Knowledge Engineering Tools and Techniques

Figure 3.3: Knowledge Engineering Process of GIPO (extracted form (McCluskey and
Simpson, 2004))

50

3. Knowledge Engineering Tools and Techniques

3.1.5 EUROPA: integrated platform for AI planning

EUROPA (Extensible Universal Remote Operations Planning Architecture) (Barreiro

et al., 2012), is an integrated platform for AI planning & Scheduling, constraint pro-

gramming and optimisation. The main goal of this platform is to deal with complex

real-world problem. This has already been used in various space missions on NASA

and winner of fourth ICKEPS as the best tool in design process track.

This is an open-source, flexible, user-centred and extensible platform that can be

integrated with ’eclipse’1 IDE. The eclipse plugin provides a number of views for

planning and scheduling

• Solver View - One of the important criteria in planning & scheduling is to pro-

duce plan. Europa PSEngine allows user to create plan solver to execute NDDL

script to perform planning task. The solver view allows starting and stopping the

EUROPA engine, configure the solver and run the solver

• Statistic View - This view provides graphical views of time, decision count, run-

time and decision plan.

• Open Decision View - To show how the decision has been taken at each step.

• Schema Browser View - This view can be used if there is an active NDDL model.

• Gantt View - The planning solution can be viewed as a Gantt chart with time

• Details View - A detail plan view is possible by clicking on the Gantt view token.

There are two representation languages, NDDL and ANML (Smith et al., 2008),

are used to represent domain knowledge. The representation is like some class libraries
1http://www.eclipse.org/

51

3. Knowledge Engineering Tools and Techniques

to express the world as object oriented fashion that allows strong data structure for

problem instances. This representation also includes the action definition, state of

objects, available resources, description of object and plan structure.

Knowledge Engineering is a part of EUROPA’s extensive architecture that pro-

vides modelling support, result visualisation and an interactive planning process. The

modelling supports by Eclipse Plugin to write NDDL code with the help of syntax

highlighting. It is parsed as traditional structured programming language compiler.

The parser indicates error (if any) as error marker. There is also a text-based editor for

supporting ANML language. EUROPA allows ANML models to translate into NDDL

and run the translated model with planner. The ANML editor highlights the syntax and

associated outline and object hierarchy view.

3.1.6 JABBAH: a domain specific GUI tool

This is the winner of 3rd International Competition on Knowledge Engineering for

Planning & Scheduling (ICKEPS) in the track of domain specific tool. JABBAH is

an integrated domain-dependent tool that aims to develop process transformation to

representing in the corresponding HTN planning domain model. The system mainly

deals with the business process and workflow. The processes are represented in terms

of Gantt chart (González-Ferrer et al., 2009) or by using open source workflow engine.

The tool provides supports for transforming Business Process Management Notation

(BPMN) (graphical notation) to HTN-PDDL (Castillo et al., 2006). Such HTN-PDDL

domain model is used in HTN planners to obtain steps of solution plan.

52

3. Knowledge Engineering Tools and Techniques

3.1.7 VIZ: a Lightweight GUI Tool

VIZ (J. Vodrka, 2010), a light weight knowledge engineering tool, is inspired by GIPO

and itSIMPLE. It shares many characteristics of those systems (GIPO and itSIMPLE)

in addition to that it provides simple user friendly GUI by allowing naive knowledge

engineers to produce PDDL domain models. This tool uses straight forward design

process that uses some simple diagrams to produce PDDL domain model. The basic

design process in VIZ is as follows -

• class definition - this is the same concept to object oriented design to find a set

of objects with similar properties.

• ob ject - defines instance of a class.

• variable - to determine an objects of a class. variables are used to define opera-

tors with the help of predicates.

• predicate - to define the relations between objects.

VIZ is a simple tool for knowledge engineering produces only simple PDDL out-

put. The tool is under construction and does not allows any third party planner integra-

tion.

3.1.8 MARIO: a Goal-Driven application composition tool

Mashup Automation with Runtime Invocation and Orchestration (MARIO) is an inte-

grated framework for composing work flow for multiple platforms such as Web Ser-

vices and Enterprise Service Bus (Bouillet et al., 2009; Feblowitz et al., 2012). This

53

3. Knowledge Engineering Tools and Techniques

tool provides a tag-based knowledge representation language for composition of plan-

ning problem and goals. It also provides a web-based GUI for AI planning system

so that user can provide software composition goals, views and generate flow with

parameter to deploy them into other platform.

3.1.9 PDDL Studio: simple PDDL editor

PDDL Studio (Tomas Plch, 2012), a new PDDL editor has been presented in the

ICAPS12 System Demonstration that allows the user to write, and edit PDDL domain

and problem files. The main goal of the tool is to provide knowledge engineers’ to edit

and inspect PDDL codes, regardless of how they were created. The main features of

the tool is to -

• Identify syntactic and semantic error

• Highlights the PDDL components

• Planner integration

Like other GUI tool, PDDL Studio does not require to draw any diagram, it is

more likely writing traditional programming language code by using Integrated De-

velopment Environment (IDE). The current version of this tool can help editing basic

PDDL1.7 with error checking.

3.1.10 KEEN: KE environment

Knowledge Engineering Environment (KEEN) (Bernardi et al., 2013) mainly concerns

with the services of automated Validation and Verification (V & V). It also supports

54

3. Knowledge Engineering Tools and Techniques

the classical knowledge engineering features such as, domain definition and refine-

ment. The KEEN system also indicates the potential of the using validation process

of domain model, planner and plan. The tool mainly designed for time-line based ap-

proach to acquire temporal behaviour of planning system. KEEN is an integrated tool

that requires plugin to the Eclipse for editing and highlighting syntax, getting a tree

view of the code blocks and getting real-time syntax checking. The main features of

KEEN are:

• integrating V & V Services

• domain Validation

• planner Validation

• plan verification and Dynamic Controllability Check

• plan Validation

• plan Controllers Synthesis

3.2 Features of KE Tools and Techniques

The main goal of GUI tools is to provide knowledge engineers a systematic way to

reduce modelling time and errors. Having discussion in the above section, it is clear

that there are a great number of effort for developing domain modelling tools to support

automated planning applications. Tools discussed above have various characteristics

including advantages, disadvantages or limitations on designing domain model. A set

of features has been identified after carefully analysing all the tools and techniques,

which are summarised as below.

55

3. Knowledge Engineering Tools and Techniques

3.2.1 General

There is a number of knowledge engineering tools have been discussed in this chapter.

The discussion gives a general idea or view of tools with different characteristics. A

tool may help to create various types of domain models or particular type. It may

support modeler by integrating third party planners to aid the dynamic testing. We

have found some interesting features that are commonly found in existing KE tools.

• Domain Independent: Domain Independent tools refer to those systems that

do not focus on the particular domain or a particular set of domains. Tools like

GIPO and itSIMPLE seems to produce different types of domain model. On

the other hand, JABBAH is designed to develop domain related to the Business

Process Modelling.

• Planner Independent: Domain model produced by using some Knowledge En-

gineering tools may be used by the designated planners; in that case we call

them planner dependent tool, otherwise planner independent. Produced domain

model by domain independent tools like GIPO, itSIMPLE, VIZ and PDDL Stu-

dio, usually accepted by range of third party AI planners.

• Planner Integration: Integrating third party planner with the knowledge en-

gineering tool gives the user to have dynamic test on board. itSIMPLE allows

integration of many planners form International Planning Competition (IPC) in

both Windows and Linux platform.

• Collaboration: Knowledge engineering tools and techniques that have been dis-

cussed in this chapter do not support collaborative work among knowledge en-

gineers.

56

3. Knowledge Engineering Tools and Techniques

• Statistics: Statistics of a domain model designed by a KE tool may give sum-

mary of number objects, predicates and actions. A statistics of output domain

model may help measuring the quality of the domain model or the tool that has

been used to create such model. This statistics may help for evaluating the plan-

ner performance.

• Open Source: Most of the tools are designed and developed for research pur-

pose and available for the community for further development.

• Independent to any Operating Systems: Planners available in itSIMPLE tool

are mostly supported by Linux environment. Thus, the tool uses in the Linux

operating system gives more support for the modeler to do the wide dynamic

testing.

3.2.2 Knowledge Representation

Current state-of-the-art knowledge engineering tools are developed around any partic-

ular language. In this subsection we explore the supported languages and features that

can be encoded by using current knowledge engineering tools.

• Language Supported: PDDL is the standard language in the planning com-

munity and a number of planners have been developed to use PDDL domain

model. itSIMPLE, PDDL Studio and VIZ are designed for developing PDDL

domain model. Main language of GIPO is Object Centred Language (OCL) as

well as it can translate to PDDL1.2. On the other hand, EUROPA representation

languages are NDDL and ANML which are different form PDDL or OCL.

57

3. Knowledge Engineering Tools and Techniques

• Classical Domain: PDDL Studio allows developing PDDL1.7 which is classical

domain and does not express numeric and temporal aspect of planning.

• Temporal and Numerical Domain: itSIMPLE tool allows the user to develop

many different versions of PDDL domain model including PDDL2.1 to express

numeric and temporal constraints in the domain model.

• Continuous Domain: Continuous time can be modelled in PDDL+ (Howey

et al., 2004) in terms of processes and events. There is no current knowledge

engineering tool to develop domain model with such properties.

3.2.3 Debugging and Validation

One of the important reasons of using knowledge engineering tool is the error handling.

A hand-coded (using text editor) domain model may contain many errors as it only

depends on the dynamic testing.

• Syntax Error: GUI tool such as GIPO and itSIMPLE produce domain models

by translating from graphical representation to the domain definition languages,

usually do not produce any syntactic error. Editing tool like EUROPA and PDDL

Studio highlights codes to avoid potential syntax error.

• Semantic Error: There could be many semantic problem occur during the do-

main modelling such as useless type, predicate, operator, irrelevant initial and

goal states, unassigned variable, inappropriate class hierarchy and incorrect def-

inition of objects.

• Static Validation: The main goal of static validation is to find and remove er-

ror in the initial stage of domain development. GIPO’s static validation process

58

3. Knowledge Engineering Tools and Techniques

checks the class hierarchy, legal predicates and overall domain consistency. it-

SIMPLE does not provide any facility of static validation but the UML diagrams

such as, class diagram defines the relationship between classes which must be

met to build operator transition of in object definition.

• Dynamic Validation: Hand-encoded domain models must rely on the dynamic

testing although there are some facilities to check syntax by using TIM. Domain

independent tool like, itSIMPLE allows a range of planners integrated to perform

dynamic validation of a domain model.

• Debugging: Most of the tools have some kind of debugging, such as GIPO’s

static testing, itSIMPLE’s UML design and PDDLStudio’s error highlighting.

To the best of our knowledge there is no complete knowledge engineering tool

that provides debugging facility to make a bug free domain model.

3.2.4 Design Efficiency

Although, the trend of domain modelling is using hand-encoding method but it is gen-

erally accepted that the tool support will give more flexibility of design experience.

• Requirement Analysis: itSIMPLE requires use-cases to find actors and actions,

class diagram to define predicates and actions and state machine diagram to cre-

ate pre- and post- condition for the defined action. Requirement analysis helps

the design process to be consistent while creating and using objects. Simple tool

like PDDLStudio does not embed the requirement in the tool but the expertise

on the domain and the language.

• Design Process: A domain model design process involves some organised steps

59

3. Knowledge Engineering Tools and Techniques

to help the modeller without being mastering the modelling language. Most

of the KE tools support software engineering design process. For example, it-

SIMPLE tool supports a semi-standard design process that is discussed in the

previous chapter.

• GUI Support: Most of the tools provide user-friendly GUI support for design-

ing and developing domain model.

• Design Speed and Acceptability: It is assumed that tool support speeds up

the process of designing complex domain model compare to the hand-encoding.

Generally the using modelling tool like itSIMPLE, forces the modeller to pro-

duce Use-case, class and state machine diagram to produce simple domain model

like blocks-world. Domain like ’Blocks World’ consists of only few operators

like take and put could be created significantly less time than the use of tool.

On the other hand, tool can help to create complex problem files with minimum

error than the hand coded.

• User Experience: Most of the knowledge engineering tools are design concen-

trating on the researcher who are already expert on the area or on the language.

There is no tool that has been designed for the inexperienced user.

3.2.5 Maintenance

Maintenance is one of the important issues in software engineering, which is expen-

sive, time-consuming and challenging.

• Reverse Engineering: Most of the GUI tools require diagrammatic represen-

tation of the domain in order to translate the diagrams to the required planning

60

3. Knowledge Engineering Tools and Techniques

language. For example, itSIMPLE requires class and state machine diagram and

GIPO requires Object Life History (OLH) diagram to get PDDL and OCL do-

main model respectively. Once the model (PDDL or OCL) has been generated, if

it is modified outside the tool environment, it is in general not possible to reverse

engineer into the environment.

• Change Handling: Designing a domain model is a complex process that re-

quires many iterations of testing to debug. During the design process, it always

requires changes in many part of the domain. In a domain model, if there is

any change requires in any part of the model, tools cannot handle those changes

automatically. The modeller needs to change related parts of that domain model.

3.2.6 Operationality

This subsection discusses some operational features of the domain model developed

by using tool. Designed and developed domain model by using tools may perform

better than the other method like hand-encoding or vice-versa.

• Model Performance: There is no published work shows that domain model

produced by one method is better than other. It could depend on the complexity

of the domain or the experience of the modeller on the particular language.

• Model Efficiency: Although the hand-coding method is one of the most ex-

ploited method but there is no evidence that shows that domain model produced

in this method is more efficient to use than others. Efficiency of the model en-

tirely depends on the expertise of the modeller’s expertise on the language.

61

3. Knowledge Engineering Tools and Techniques

3.2.7 Support:

Most of the KE tools come with complete documentation including description of the

tool, tutorial, updates and a FAQ section. It is easy to find information and solutions

for most of the common issues.

3.3 Summary

This chapter presents a range of state-of-the-art knowledge engineering tools for en-

coding planning domain models. This discussion leads to some interesting features

that are present in the current tools. Also there are some features that have been iden-

tified that are not common in any of the current tools discussed. Features of the tools

are summarised in the Table 3.1. Also, some of the tools are designed for develop-

ing specific domain model. There are some interesting features identified that could

be added to other tool to get better performance. Although, there are a great number

of tools available for planning domain modelling, there are no set guidelines present

to evaluate the performance of these tools and techniques. It opens a new research

area of developing knowledge engineering techniques for automated planning in order

to bridge the gap. Although, there is a number of domain modelling tools available,

there is no proof or direction to find the suitable tools or techniques for knowledge

engineering.

62

3. Knowledge Engineering Tools and Techniques

Features itSIMPLE GIPO EUROPA JABBAH VIZ MARIO PDDL KEEN
Studio

General
Domain YES YES YES NO YES NO YES YES
Independent
Planner YES YES NO NO YES NO YES YES
Independent
Planner YES YES NO NO NO YES YES NO
Integration
Collaboration NO NO NO NO NO NO NO NO
Open Source YES YES NO NO YES NO YES YES
OS Independent Most of the tools are on Linux based OS. Some of them, like GIPO, itSIMPLE

runs on Windows.
Knowledge Representation

Language PDDL OCL & ANML & HTN- PDDL Cascade PDDL DDL
Supported PDDL NDDL PDDL
Classical YES YES NO YES YES NO YES YES
Domain
Temporal & YES NO YES YES NO YES NO NO
Numeric
Domain
Continuous None of them is capable.
Domain

Debugging and Validation
Static NO YES NO NO NO NO NO NO
Validation
Dynamic YES YES YES YES YES YES YES YES
Validation

Design Efficiency
Requirement YES NO NO
Analysis
Design Each of them uses different design process.
Process
GUI Support YES YES YES YES YES YES YES YES
Design Unknown
Speed and
Acceptability
User Experience Unknown

Maintenance
Reverse NO NO NO NO NO NO NO NO
Engineering

Operationality
Model Unknown
Performance
Model Unknown
Efficiency

Support
Support YES YES YES YES YES YES YES YES

Table 3.1: Types of Features that are identified in the state-of-the-art KE tools

63

Chapter 4

The Road Traffic Accident Domain

Road traffic accidents are unexpected events that increase congestion and travel time.

Traffic accidents reduce road capacity and increase travel time for the road users which

leads to more serious concerns such as drivers frustration and cause further accidents.

The key to handle such problems lies in systematic planning with the coordination of

human and technical resources in the traffic network. This process improves safety of

the victims and other road users, which allows traffic agencies to increase the accident

management activities safely and efficiently. The characteristics of this area are that

goals must be posed and plans must be output in real time. The domain is complex,

with road topology, information distribution, traffic flows, driver behaviour. Highways

Agencies have to control all these potential factors. The representation and encoding

of such domain knowledge, of possible actions and plans, and of potential tasks for the

road traffic accident scenario is thus a crucial but difficult issue.

This chapter is concerned with the representation and conceptualisation of road

traffic domain in order to assist automated planning to manage traffic accidents. The

main goal of this domain is to evaluate knowledge engineering tools and techniques

64

4. The Road Traffic Accident Domain

for building a real world domain model. The domain is interesting as it contains vari-

ous road topologies, different types of vehicles, information distribution and highways

agencies regulations. Moreover, accidents in the road vary from each other and require

special attention and planning.

4.1 Road Traffic Accident

Road traffic management operations are subject to rising costs, rising public expecta-

tions, more complex and demanding goals, and contain a great deal of legacy software.

Recent technological advances have in part confounded this by providing more man-

agement controls and more surveillance data. In particular: the amount of data avail-

able to a traffic control-center is already enormous and continues to grow, the amount

of data available to travellers is increasing in volume and accuracy. On the other hand,

the level of service in terms of factors such as safety, economy, sustainability, ecology,

is complex to monitor and optimise. The need to look to reducing costs, while main-

taining level of service is a high priority. Costs include the training and maintenance

of human expertise in traffic management, as well as the acquisition, configuration and

maintenance of software. Current leading edge software to help in traffic management

rests primarily on advances in data integration. These advances have been supported

in the UK by the common data interface delivered by the Urban Traffic Management

and Control (UTMC)1. Data integration is leading to enhanced capabilities in the cur-

rent generation of software, such as the integration of control of traffic management

and traveller information systems, but more importantly can be used as a platform for

the deployment of more intelligent software services. Accidents cause traffic conges-

1http://www.utmc.uk.com/

65

4. The Road Traffic Accident Domain

tion, injury, increase environment pollution, and cost millions of pounds every year for

delay and damage. So, highway agencies need more appropriate solution to manage

accident promptly. Accidents are a particular type of road traffic incident which is

defined as unexpected and unplanned events that impose negative impacts on the road

capacity, congestion and travel time (Owens et al., 2000).

4.1.1 Necessity for Accident Management Problem

In England the Highways Agency is responsible for managing, maintaining and imple-

menting strategic road network including all motorways and significant trunk roads.

Any incident that disrupts the normal operation of road traffic network is considered as

’National Incident’ under the Civil Contingencies Act 2004 as a Category 2 responder

(HA, 2009). The main goals of the Highways Agencies to accident management are

to:

• improve road safety;

• reduce congestion;

• improve reliability of road network;

• improve accident management and roadworks;

• improve information management on traffic incidents;

• reduce injuries and death of people for traffic accident.

To achieve these goals, the Agencies require effective and efficient standardised ’Com-

mand and Control’ system that allows the co-ordination between the emergency ser-

vices and responsible organisations.

66

4. The Road Traffic Accident Domain

Utilising automated planning capabilities in real applications are a current topic

with great potential to help with speed, accuracy, and co-ordination of tasks to be car-

ried out. Automated Planning and Scheduling techniques have exposed to perform very

efficiently in different types of crises by providing effective plans and strategies either

in military crisis (Currie et al., 1991) domains in civil domains oil spills (Bienkowski,

1995), floods (Biundo and Schattenberg, 2001) or forest fires (de la Asunción et al.,

2005; Fernández-Olivares et al., 2006). An application for automated planning could

help the transport system to generate plans and courses of action in real-time to enable

more effective control traffic incidents.

The RTA domain deals with a situation which rises immediately after a traffic ac-

cident has been reported. Police must certify and secure the accident scene. Fire

brigades must free accident victims trapped in a vehicle, and fire brigades must ex-

tinguish any fire on the accident scene. Once victims are released and free of the

wreckage, paramedics must give first aid to them, and then load them into ambulances

and deliver them to hospitals. Finally, Tow Trucks have to remove damaged cars from

the accident scene in order to restore normal traffic condition.

A typical planning task in the RTA domain is about handling accidents, delivering

accident victims to hospitals and restoring the situation to the normal order. The ini-

tial situation is defined by a road network and accident. The accident is specified by

its location, number of vehicles and victims involved. The initial assumption is that

the Ambulances are in Hospitals, Police Cars in Police Station, Fire Brigades in Fire

Service Stations and Tow Trucks in Garage. The goal is i) to deliver accident victims

to hospitals and damaged cars to garages and ii) return Ambulances to their Hospitals,

Police patrols to their Police Stations, Fire Brigades to their Fire Stations and Towing

trucks to their garages.

67

4. The Road Traffic Accident Domain

4.2 Requirement Analysis for the RTA Domain

This work has been performed in the context of the EU-funded network Autonomic

Road Transportation Management1 consisting of both academics and practising trans-

portation engineers. Using contacts through this network, contributions to transport

conferences and workshops, and a set of manuals (Benesch, 2011; HA, 2009; Owens

et al., 2000) , a set of requirements have been elicited for the RTA planning problem.

The main responsibility for managing and dealing with an incident lies with the

Highways Agency (HA) that serves that area, as well as the police, ambulance, traffic

offers and breakdown services. Part 7 of the UK’s Highway’s Agency Manual (HA,

2009) is the major source of knowledge. This identifies the service provider’s responsi-

ble for dealing with accidents at an operational level, with police leading co-ordination

in and around the scene. The phases of an incident management process are detection,

verification, response, scene management, recovery and restoration. Here we assume

that an accident has been detected, and consider the planning element for the sub-

sequent phases, with the overall requirement that the planning function is to provide

whoever is leading the incident management with an operational plan for managing

services. Incidents are centrally controlled, and there is only one leader at any point

in time (though leadership can change, e.g. from the police to the HA). Within this

context there are major and critical levels of incident. The former can be described as

disasters; the HA requires a Crisis management Team to deal with this. We will con-

centrate on incidents at critical levels, which consist of single or multiple accidents in a

region, and typically may consist of up to 10s of vehicles, requiring several emergency

vehicles, within a single region.

1www.cost-arts.org

68

4. The Road Traffic Accident Domain

Figure 4.1: Common Accident Management Life-Cycle

69

4. The Road Traffic Accident Domain

The RTA domain is concerned with emergent situations after road accident(s) occur

in order to provide accident victims first aid and transport them to hospitals, investi-

gate accident scenes by police and tow damaged cars. The main requirements from a

planning point of view are that:

• the accident site has to be secured;

• traffic has to be managed to maintain flow;

• victims have to be taken to hospital; and

• the site has to be cleared off broken cars.

The constraints are that:

• the whole site should be returned to normal (see Figure 4.1) in as short a period

as possible;

• victims have to be transported to hospital as soon as possible;

• the state of an accident is not completely known until a police unit arrives.

Contingent on information gathered by police, fire services may have to be involved, if

for example there is a fire, or victims are trapped in a car. Given there is only one major

contingent point in planning (depending on information gathered by the first agent on

the scene) rather than restricting the application to be used with contingent planners,

we assume that the contingency can be dealt with either by computing several plans

initially, or by re-planning in real time.

70

4. The Road Traffic Accident Domain

4.3 Conceptualisation of the RTA

An initial conceptualisation of the RTA domain is described in the following para-

graphs.

A Road Network is represented by undirected graph (V,E) where vertices V stand

for locations and edges E for roads. It is useful to effectively abstract the topology

of the Road Network, since the Road Network usually considers a region covering

several ‘clusters’, i.e., towns/cities or districts (e.g. see Figure 6.1), with locations of

interest (e.g. Hospitals or Police Stations). We assume that all the locations within

a ‘cluster’ are connected to each other. ‘Clusters’ are connected only if there is a

road between them. Assets X = Xs∪Xm are divided into two categories, static assets

Xs (e.g. Police Stations, Hospitals, Fire Stations) and mobile assets Xm (e.g. Police

Cars, Ambulances, Fire Brigades). Let T ⊆ R+
0 be a set of time-stamps. We define a

function loc which for an asset and time-stamp returns the location (or⊥ which stands

for a situation when the asset is on the way), formally loc : X×T →V ∪{⊥}. Clearly,

for every static asset x ∈ Xs loc(x, t) is constant (i.e. its value is not dependent on

the time-stamp). Mobile assets can be moved between locations using roads (i.e. a

mobile asset can move from one location to another if and only if these locations are

connected by road). Artefacts Y (e.g. accident victims, damaged cars etc.) cannot

move freely between locations (in contrary to mobile assets) but they need a mobile

asset (e.g. an ambulance) which can transport them to different locations. We define

a function in which for an artefact and time-stamp returns either an asset (static or

mobile) an artefact is attached to, or a location an artefact is located if the artefact is

not attached to any asset, or ⊥ if an artefact is being attached or detached from an

asset, formally in : Y ×T → X ∪V ∪{⊥}. An artefact can be attached to an asset if and

71

4. The Road Traffic Accident Domain

only if the artefact is currently not attached to any other asset and the current location

of an artefact is the same as the current location of the asset. Similarly, if an artefact

is unattached from an asset then its location will be the same as the current location of

the asset. Each asset may have a limited capacity, i.e., a maximum number of attached

artefacts in the same time. We define a function cap : X → N referring to an asset

capacity. It must hold that ∀t ∈ T,∀x ∈ X : |{y | y ∈Y ∧ in(y, t) = x}| ≤ cap(x). Assets

and artefacts can also interact with each other in order to modify their characteristic

properties. For instance, the police has to confirm an accident or a paramedic has to

give a first aid to victims before they are taken to hospital. Hence, we define properties

as sets of values characterising artefacts and/or assets (e.g. accident victims can be

waiting for first aid, being aided, aided or delivered to a hospital).

4.3.1 Defining Operator Families

All the above thus specify the environment of the RTA domain. This environment

can be modified by (planning) operators representing types of actions, specified via

preconditions (what must be met in order to apply the operator) and effects (what is

changed in the environment after applying the operator). We define the following op-

erator families which modify the environment of the RTA domain (we assume that the

operator is applied in a time-stamp t and lasts for ∆t time).

move(x, l1, l2) moves a mobile asset x ∈ Xm from a location l1 to a location l2 (l1, l2 ∈

V). As a precondition it must hold that (l1, l2)∈ E and loc(x, t) = l1. An effect of

applying the operator is that loc(x, t+∆t)= l2 and ∀t ′ ∈ (t, t+∆t) : loc(x, t ′)=⊥.

attach(y,x, l) attaches an artefact y ∈ Y to an asset x ∈ X in a location l ∈ V . As a

72

4. The Road Traffic Accident Domain

precondition it must hold that loc(x, t) = in(y, t) = l, ∀t ′ ∈ [t, t+∆t] : loc(x, t ′) = l

and |{y′ | in(y′, t) = x}| < cap(x). An effect of applying the operator is that

in(y, t +∆t) = x, ∀t ′ ∈ (t, t +∆t) : in(y, t ′) =⊥.

detach(y,x, l) detaches an artefact y ∈ Y from an asset x ∈ X in a location l ∈V . As a

precondition it must hold that ∀t ′ ∈ [t, t +∆t] : loc(x, t ′) = l and in(y, t) = x. An

effect of applying the operator is that in(y, t+∆t) = l, ∀t ′ ∈ (t, t+∆t) : in(y, t ′) =

⊥.

interact(e1,e2, l, p1, . . . p6) refers to interaction between artefacts or assets e1,e2 ∈

X ∪Y in a location l ∈ V . As a precondition it must hold that ∀t ′ ∈ [t, t +∆t] :

(loc(e1, t ′) = l ⇔ e1 ∈ X)∨ (in(e1, t ′) = l ⇔ e1 ∈ Y), (loc(e2, t ′) = l ⇔ e2 ∈

X)∨(in(e2, t ′) = l⇔ e2 ∈Y) and e1 and e2 has properties p1 and p2 in time t. An

effect of applying the operator is that properties of e1 and e2 in any t ′ ∈ (t, t+∆t)

are p3, p4 respectively and properties of e1 and e2 in t +∆t are p5, p6 respec-

tively.

There are further constraints which must be met. Operators families attach and

detach must not be executed simultaneously for a given asset (i.e., during attaching or

detaching an artefact no other artefact can be attached to or detached from the given

asset). Also artefacts must have certain properties in order to be attached or detached

from the assets (e.g. an accident victim must be stabilised before it is loaded to an

ambulance).

Despite a very general scope of the operators’ definitions it can illustrate well the

main aspects of the RTA domain. Clearly, we may have to consider a ‘cluster’-like

topology of the Road Network by introducing two ‘move’ operators, one for moving

within a ‘cluster’ and the other for moving between different ‘clusters’. ‘Attaching’

73

4. The Road Traffic Accident Domain

and ‘detaching’ artefacts to/from assets must reflect different kinds of artefacts or as-

sets . For instance, accident victims can be ‘attached’ to ambulances or hospitals, in

other words the victim is loaded into the ambulance or is delivered into the hospital.

‘Interacting’ between assets and/or artefacts captures situations such as giving a first

aid to accident victims (an ambulance must be on accident scene), certifying an ac-

cident by a police (a police car must be on accident scene), or untrapping accident

victims by a fire brigade.

4.3.2 Defining Assets and Artefacts for RTA Domain

In this section we describe all the assets (static and mobile), artefacts, attaching and

detaching artefacts, and interact in the context of RTA domain.

4.3.2.1 Static Assets:

• Police stations - Police cars are kept in the police station. A police officer attend

to the accident location to confirm accident and to secure the area.

• Hospitals - Accident victims are delivered by ambulances to hospitals for further

treatment.

• Fire service stations Fire brigade vehicle and other equipments are kept in the

fire service station.

• Routes - Routes are used to connect one location to another.

• City Locations - In the RTA domain model we consider some city location

including hospital, police station, fire service station and accident location.

• Accident locations - Locations in the city, where accidents happen.

74

4. The Road Traffic Accident Domain

• Garage - damaged vehicles are taken to the nearby garage. Tow trucks are also

kept in garages.

4.3.2.2 Mobile Assets:

• Police car - Police cars are required to confirm the accident in the accident loca-

tion.

• Ambulance - initially kept in hospitals and used to carry accident victims from

accident locations to hospitals.

• Tow truck - Tow trucks are used to carry damaged vehicles from accident loca-

tions to garages.

• Fire brigades - Initially, fire brigades are kept in the fire service stations, and

used for extinguishing fire and untrapping victims.

4.3.2.3 Artefacts:

• Accident victims - Accident victims are mainly human being who could be in-

jured, need first aid or to take to hospital by ambulance.

• Damaged cars - damaged car in the accident location could be on fire or stranded.

Fire brigade and tow truck are used to extinguishing fire.

4.3.2.4 Attaching and detaching artefacts:

• An artefact accident victim can be carried by ambulance. One ambulance carries

only one-accident victim at a time.

• Damaged cars can be carried to the garage by tow trucks.

75

4. The Road Traffic Accident Domain

• An artefact must be free to be attached.

• An artefact must be attached with a mobile asset to be detached.

• Attaching and detaching can not be performed at the same time.

• Rescue vehicles must be free to attach an artefact.

• Attaching and detaching must be performed when the rescue vehicle is on the

desired location.

4.3.2.5 Interact: Neither attach nor detach

• A precondition is applied to confirm accident as a police car is required to con-

firm accident.

• First aid are given by only in the presence of ambulance.

• Fire brigades are used to extinguish fire and untrap victims.

4.3.3 Operator Description

In this section we describe the identified operators from the families stated above.

The operators described in this section must satisfy all the pre- conditions during the

planner execution. The table 4.1 summarised PDDL and PDDL2.1 operators and their

use in four different domain models.

move: This family operators mainly deals with the movable assets.

• move - This operator mainly deals with the moving vehicle from one city

(cluster) to another city (cluster). The precondition is that the vehicle must

76

4. The Road Traffic Accident Domain

List of Operator
Operator Type Operator Name Method A Method B

PDDL PDDL2.1 PDDL PDDL2.1
move move Y Y Y Y

move in city Y Y Y Y
attach load victim Y Y Y Y

load car Y Y Y Y
detach unload victim Y Y Y Y

unload car Y Y Y Y
deliver vehicle Y Y Y Y
deliver victim Y Y Y Y

interact confirm accident Y Y Y Y
first aid Y Y Y Y
extinguish fire Y Y N Y
untrap victim Y Y N Y
start rescue victim N N Y N
finish rescue victim N N Y N
start extinguish fire N N Y N
finish extinguish fire N N Y N

Table 4.1: List of Operators that have been Derived from the Initial Requirement
Analysis. In this table ’Y’ represents used for the domain model and ’N’ represents
the operator has not been used for that domain model

be present in the location of origin and another location must be in different

city (cluster). Also, route must be connected.

• move in city - Vehicles also need to move from one location to another

within the same city (cluster). In this case, the vehicle must be available

and located in the location of origin.

attach: As we discussed in the previous section that some of the artefacts require to

attach to other artefacts to move from one location to another. This family of op-

erators, attaches all the artefacts such as, accident victims and broken vehicles to

other artefacts such as, ambulance and tow trucks using the following operators.

• load victim - This operator is executed, if any of the accident victims is

injured and required to take hospital. To execute this operator the planner

77

4. The Road Traffic Accident Domain

must check the precondition that the

– vehicle is at the accident location and available

– the victim is certified, first aided and waiting

In the effect, the victim will be loaded into the ambulance.

• load car - This operator is used for taking the broken vehicle to take away

(usually in a designated garage). The preconditions are same as the load victim

as both of them are in the same operator family. To take a broken vehicle

to garage the tow truck must be in place before the operator executes.

detach: The artefacts that are attached for the purpose of the move are required to

detach once they reach the destination. In this family we have identified four

operators named unload victim, unload car, deliver victim and deliver vehicle

as follows -

• unload victim - This operator comes to play when victims are in the ambu-

lance and the ambulance is at the destination.

• unload car - Unload car from the tow truck when the tow truck is in the

garage.

• deliver victim - The unloaded victims need to hand over to the hospital by

using this operator.

• deliver vehicle - The unloaded broken vehicle needs to deliver to the garage

by using this operator.

interact: The interact operator family plays an important role where interactions are

required between artefacts. Operators fall into this family are described below.

78

4. The Road Traffic Accident Domain

• confirm accident - This is usually the first interact to confirm the accident.

Usually, police is required to confirm accident as well as the location.

• first aid - If there is any victim is injured during the accident the emergency

medical service will provide first aid to the victim before taking to hospital

or to any safe place. To provide first aid the victim must be identified,

waiting and should not be trapped in broken vehicle.

• extinguish fire - This operator is executed if there is any fire in the acci-

dent location. The condition is that the fire brigade vehicle must be in the

location if the fire is identified.

• untrap victim - This operator is used when any victim is trapped in the bro-

ken vehicle. Usually, the fire brigade vehicle must be present and available

in the accident location.

• start rescue victim - This operator is used to start the rescuing operation

for victim.

• finish rescue victim - The rescue process for victims ends by using this

method.

• start extinguish fire - The fire brigade starts extinguishing the fire.

• finish extinguish fire - once the fire is extinguished this operator will indi-

cate the end of the process.

4.3.4 Function Definition

For temporal domain, a number of functions are used as follows. Values can be defined

by the user in the problem files according to the requirement.

79

4. The Road Traffic Accident Domain

• Distance: form location A to location B

• route-length

• confirmation-time

• firstaid-time

• speed

• loading-time

• loading-time-car

• unloading-time

• delivery-time

• untrapping-time

• extinguishing-time

4.4 Summary

This chapter presented a new planning domain model Road Traffic Accidents (RTAs).

We discussed the background of the problem, requirements of developing planning

application and a conceptual model of the domain. The main goal of this chapter is

to assist the following chapters to design, develop and analyse a real-world domain in

the context of planning application. The requirements that have been extracted from

RTA domain will be implemented in the modelling of the domain. Modelling will be

performed by using some popular knowledge engineering tools and techniques, and

80

4. The Road Traffic Accident Domain

will be tested by some suitable planning engine. In the following chapter we develop

domain models using these requirements.

81

Chapter 5

Developing Domain Model

A planning domain model is a formal representation of a planning domain, eventually

referred to a real-world application that is encoded in a planning domain definition

language. Generally, a planning domain model consists of a set of objects belong to

some classes, predicates describing the relation between the objects, a set of operators

and constraints that requires to make sense of the world being modelled. A planning

problem reflects the problem that can be solved by a suitable planning algorithm by

choosing appropriate actions from the domain model. Construction of a domain model

is an iterative process that follows a sequence of steps. Since planning domain mod-

elling is an error prone task, especially a real-world domain, requires a reliable method.

Using a reliable domain modelling tool or technique for the encoding may save plenty

of time of a knowledge engineer and results an almost error free model.

This chapter focuses on the encoding of the Road Traffic Accidents (RTA) manage-

ment domain. It will be used three well-known knowledge engineering techniques for

the comparison and better understanding of the weaknesses and/or strengths of existing

KE approaches. The tools and techniques used in this work are as below:

82

5. Developing Domain Model

(i) Method A: The Traditional Hand-coding Method,

(ii) Method B: itSIMPLE - a leading planning GUI, and

(iii) Method C: GIPO - an object-based GUI.

5.1 Representation Language

There are various ways to represent domain knowledge by using different domain def-

inition languages. There are a great number of planning domain definition languages

available in the planning community. We have used two different domain modelling

languages called PDDL and OCLh. The reasons for using these languages are de-

scribed in the following subsections.

To encode the Road Traffic Accident (RTA) domain model by using Method A and

Method B, we have used the standard domain modelling language PDDL (Ghallab

et al., 1998; McDermott, 1998) which is an action-based domain definition language.

The PDDL2.1 (Fox and Long, 2001) is more expressive than the traditional one as it

supports numeric fluents to encode non-binary resources such as time, energy, distance,

speed etc. This version also allows encoding durative actions to encode variables,

negative pre-conditions, conditions and effects, non-discrete length etc. Such repre-

sentations make the language more expressive allowing the solution for real-world

problems.

Method C is based on, object centred language OCLh, is a structured, formal lan-

guage which mainly deals with the objects of the world. The advantage of using OCL

is that it can help encoding flat version of the domain model as well as the hierarchical.

This is also the default language of GIPO and designed to encode domain knowledge

83

5. Developing Domain Model

in more natural structure.

5.2 Method A: The Traditional Hand-coding Method

5.2.1 Overview of the Method A

This is the traditional method of hand-coding a new domain by a PDDL expert, using

a text editor and relying on dynamic testing. PDDL domain models can be created by

using any text editor such as Gedit, text pad or word pad. A new PDDL (see Appendix

A) and PDDL2.1 (see Appendix B) domain is manually encoded using PDDL syntax

and tested by using planners like LPG (Gerevini et al., 2003), SGPlan (Chen et al.,

2006) and Metric-FF (Hoffmann, 2003).

In the following subsections we discuss the details of creating PDDL and PDDL2.1

domain model and the problem files by explaining this method.

5.2.2 Execution of the Method A

This method (Hand Encoding) can be executed in many different ways depending on

the choice of the knowledge engineers. The following steps have been followed for

developing RTA domain model according to the requirements acquired in the Chapter

3 -

• Identify Objects - Road Traffic Accident (RTA) is the part of a road network

that contains roads, cities, locations in the city, a number of vehicles, a number

of service vehicles such as Ambulance and Two Trucks and many other objects.

The objects in the PDDL domain model are defined in the types: as follows -

(:types

84

5. Developing Domain Model

ambulance police car tow truck fire brigade - vehicle

acc victim vehicle car - subject

city location city - location

accident location hospital police station garage fire station - city location

route

)

• Identify Predicates - Predicates of the domain model have been defined for the

RTA domain as -

(:predicates

(available ?vehicle1 - vehicle)

(busy ?vehicle1 - vehicle)

(waiting ?subject1 - subject)

(certified ?subject1 - subject)

(aided ?subject1 - acc victim)

(connects ?route1 - route ?location1 - location ?location2 - location)

(route available ?route1 - route)

(trapped ?hum - acc victim)

(on fire ?car acc - car)

.................................

)

• Identify Functions - Functions are required for PDDL2.1 to express numeric

fluents using arithmetic operators in the domain model from primitive numeric

expression. In the Hand-encoding PDDL2.1 domain model functions are defined

for the RTA domain as in the following expression -

(:functions

85

5. Developing Domain Model

(distance ?O - location ?L - location)

(route-length ?O - route)

(confirmation-time)

(firstaid-time)

(speed ?V - vehicle)

(loading-time)

(loading-time-car)

(unloading-time)

(delivery-time)

(untrapping-time)

(extinguishing-time)

)

• Identify Operators - A number of primitive operators have been identified from

the requirement analysis to encode the RTA domain model. An example of an

operator hand encoded in PDDL2.1 is the confirm accident operator, which is a

specific form of the interact operator. When an accident happens, a police car

must go to accident locations and certifies the artefacts involved. The time dura-

tion of this action is the so-called confirmation time, which is fixed as one minute

per each subject. The code shown in the following example which corresponds

to the PDDL2.1 confirm accident operator.

The knowledge requirements and informal description that acquired in Chapter 3,

translated directly into PDDL or PDDL2.1, without developing any intermediate no-

tation, using language skill and judgement to perform the encoding. The process is

monotonous that leads the model with numerous syntactic error. To model the ap-

plication a number of diagrams were produced by using pen and paper to find the

86

5. Developing Domain Model

(:durative-action confirm accident
:parameters (?V - police car ?P - artefact ?A - accident location)
:duration (= ?duration (confirmation-time))
:condition (and

(at start (at ?V ?A))
(at start (at ?P ?A))
(at start (uncertified ?P))

)
:effect (and

(at start (not (uncertified ?P)))
(at end (waiting ?P))
(at end (certified ?P))

))

Figure 5.1: The durative action confirm accident for RTA domain coded in PDDL2.1

relations of objects, pre- and post-condition of an action, instantiation of variables and

the effects of one action on another. As we know in STRIPS style PDDL planning

algorithms require two inputs one is the domain and the other one is the problem file.

Creating problem files for RTA in a text editor require the clear picture of the domain

including the mapping knowledge of the area, actions to perform for particular types of

accident according to the requirement. After approximately ten iterations of dynamic

testing with planner, simple plans were generated which matched the requirements.

5.2.2.1 Method A: Basic Acceptability Test

Once the Hand-coded domain model has been developed, we carried out a number of

test to check the domain models acceptability. The main goal of this test to check the

domain model and the problems reflect the requirement of RTA domain.

Test Case PDDL Domain Model: In this test the goal is to take ACC VICTIM 1

(Accident Victim) to hospital. There are number of hospitals, ambulance and

police cars are available to achieve the goal.

87

5. Developing Domain Model

Test Result: We did the dynamic testing using LPG planner and the solution found as

follows which indicates that the test is passed.

0: (MOVE POLICE_CAR_HUDDERSFIELD POLICE_HUDDERSFIELD HUDDERSFIELD

ACCIDENT_LOCATION_1 AINLEY_TOP A629) [1]

0: (MOVE AMBU_HUD HUDDERSFIELD_HOSPITAL HUDDERSFIELD

ACCIDENT_LOCATION_1 AINLEY_TOP A629) [1]

1: (CONFIRM_ACCIDENT POLICE_CAR_HUDDERSFIELD ACC_VICTIM_1

ACCIDENT_LOCATION_1) [1]

2: (FIRST_AID AMBU_HUD ACC_VICTIM_1 ACCIDENT_LOCATION_1) [1]

3: (LOAD_VICTIM AMBU_HUD ACCIDENT_LOCATION_1 ACC_VICTIM_1) [1]

4: (MOVE AMBU_HUD ACCIDENT_LOCATION_1 AINLEY_TOP HUDDERSFIELD_HOSPITAL

HUDDERSFIELD A629) [1]

5: (UNLOAD_VICTIM ACC_VICTIM_1 HUDDERSFIELD_HOSPITAL AMBU_HUD) [1]

6: (DELIVER_VICTIM ACC_VICTIM_1 HUDDERSFIELD_HOSPITAL) [1]

Test Case PDDL2.1 Domain Model: In the PDDL2.1 test case we use same problem

instance to carry accident victim to hospital. In this version we use functions to

use duration of an action.

Test Result: The acceptability test is passed for this domain model as shown in the

following plan produced by LPG planner.

Time: (ACTION) [action Duration; action Cost]

0.0003: (MOVE POLICE_CAR_BRADLEY POLICE_BRADLEY BRADLEY

ACCIDENT_LOCATION_1 AINLEY_TOP BRADLEY_AINLEY) [D:3.0833; C:1.0000]

3.0838: (CONFIRM_ACCIDENT POLICE_CAR_BRADLEY ACC_VICTIM_1

ACCIDENT_LOCATION_1) [D:10.0000; C:1.0000]

0.0008: (MOVE AMBU_HUD HUDDERSFIELD_HOSPITAL HUDDERSFIELD

88

5. Developing Domain Model

ACCIDENT_LOCATION_1 AINLEY_TOP A629) [D:3.3000; C:1.0000]

13.0843: (FIRST_AID AMBU_HUD ACC_VICTIM_1 ACCIDENT_LOCATION_1)

[D:5.0000; C:1.0000]

18.0846: (LOAD_VICTIM AMBU_HUD ACCIDENT_LOCATION_1 ACC_VICTIM_1)

[D:5.0000; C:1.0000]

18.0848: (MOVE AMBU_HUD ACCIDENT_LOCATION_1 AINLEY_TOP

HUDDERSFIELD_HOSPITAL HUDDERSFIELD A629) [D:3.3000; C:1.0000]

23.0851: (UNLOAD_VICTIM ACC_VICTIM_1 HUDDERSFIELD_HOSPITAL AMBU_HUD)

[D:5.0000; C:1.0000]

28.0853: (DELIVER_VICTIM ACC_VICTIM_1 HUDDERSFIELD_HOSPITAL)

[D:10.0000; C:1.0000]

5.3 Method B: itSIMPLE - a leading planning GUI

5.3.1 Overview of the Method B

The main goal of GUI tools is to provide knowledge engineers a systematic way to re-

duce modelling time and errors. There are a number of tools available to the research

community, such as JABBAH (González-Ferrer et al., 2009) and GIPO (Simpson

et al., 2007). itSIMPLE (Vaquero et al., 2007, 2012) is a method and tools environ-

ment that enables knowledge engineers to model a planning domain model using the

Unified Modelling Language (UML) standards. itSIMPLE, a domain independent GUI

tool that allows knowledge engineers to acquire knowledge of the domain in the pre-

liminary design. It also supports a set of languages, tools and techniques to support

the design process. The main function of itSIMPLE is to take the UML’s Object Con-

89

5. Developing Domain Model

straint Language (OCL) as input through state machine diagrams, and translate them

into PDDL. The process is conducted by an intermediate language called eXtensible

Markup Language(XML). Moreover, the user-friendly GUI on itSIMPLE helps knowl-

edge engineers to model a domain as object oriented (OO) fashion.

5.3.2 Execution of the Method B

The itSIMPLE tool guides the user to a develop domain model by following a semi-

standard design process (discussed in chapter 2). The steps in this method, in general

to gather the requirements, following the use of UML in software engineering:

(i) use-case diagram

(ii) design of class diagrams

(iii) definition of state machines

(iv) translation to PDDL

(v) generation of problem files

(vi) planning

The use-case diagram is the fundamental of UML design which intends to find related

actors and Use-cases related to the system. An example use-case diagram is shown in

Figure 5.2 for Ambulance and Tow Truck. The actor Ambulance has the use-cases,

such as, move, carry, load and unload victims. The use-case diagrams are the initial

design to have better understanding of the actions of any actor from any given domain

description. Although, this does not help to translate the UML model but plays a vital

role as documentation for future modification.

90

5. Developing Domain Model

Figure 5.2: Use-case Diagram for Ambulance and Tow Truck

The elements of the class diagram in itSIMPLE represent the static characteristic

of the domain. It presents the objects, classes that defines objects, relationships and

constraints. RTA domain contains a number of movable and static assets such as,

vehicles, subjects, locations and roads, which have been represented in a class diagram

5.3. The class diagram is the heart of itSIMPLE design. In class diagram, the user

mainly creates classes and their relationships. The class diagram is like the traditional

UML where the user can also create predicates as class attributes and operators as the

methods.

Figure 5.4 shows a class example designed in step (ii) for the Vehicle class. Since

the Vehicle class refers to movable assets, its properties consist of the vehicle’s mov-

ability, availability or if the vehicle is busy. In the class are also specified the available

operators; in the case of a general vehicle, only move operators (described in the do-

main analysis section) are applicable.

While the parameters of the operators and their duration are defined in step (ii), in

step (iii) the state machine diagrams help the domain modeller to encode pre- and post-

91

5. Developing Domain Model

Figure 5.3: Class Diagram of RTA

Figure 5.4: Vehicle Class Diagram for Move Operator

92

5. Developing Domain Model

Figure 5.5: State Machine Diagram designed in itSIMPLE for modelling the actions
on Accident Victims

condition of operators. The dynamics of the domain is encoded into the domain objects

through the operator. Operators and their parameters are defined in the class diagram

and the dynamics are represented in the state machine diagram. There are a number

of state machine diagrams such as, Acc victims, Vehicle, Suspect, Broken Vehicle and

Police Car have been defined to complete the operators that have been defined during

the class definition. In the event of an accident a victim requires to have attended by

using a number of actions like -

• first aid - in the presence of a paramedic, carried by ambulance

• load victim - into an ambulance if the ambulance is present in the accident loca-

tion and available

• unload victim - from ambulance into the location(the location could be a Hospi-

tal or any other designated place for the safety of the victim)

93

5. Developing Domain Model

Figure 5.6: State Machine Diagram designed in itSIMPLE for modelling the behaviour
of the Move Operator

• deliver victim - unloaded victim is delivered to Hospital if all the previous con-

ditions are met

To unload or deliver the accident victims to any hospital, ambulance requires to

move from/to the accident location where it has loaded the victims to/from the Hospi-

tal. The vehicle is a movable asset and contains move action a diagram for the move

operator that we developed is shown in Figure 5.6. Creating such operator in itSIM-

PLE requires the knowledge of Object Constraint Language (OCL) (Booch et al., 1997)

which is a declarative language can easily associate with UML models. Drawing the

state-machine diagrams only give the skeleton of the operators pre- and post- condi-

tion.

To create pre- and post- condition of the operator requires the OCL coding as

shown respectively in the Figure 5.7 and 5.8. The itSIMPLE translates the diagram

into PDDL as shown in the Figure 5.3.2. Similarly, state-machine diagram is required

for each of the classes that has defined operators. Another example of state-machine

diagram shown in Figure 5.5 has four operators: first aid, load victim, unload victim

94

5. Developing Domain Model

Figure 5.7: Encoding Precondition for move Operator

Figure 5.8: Encoding Postcondition for move Operator

and deliver victim.

Determining the completeness of the model, in terms of classes and finite state

machines, is helped through the use of the structured method. In step (iv), we used

itSIMPLE to translate the generated diagrams in both PDDL (see Appendix C) and

PDDL2.1 (see Appendix D), although it does not cover all the spectrum of timing con-

straints expressible in PDDL (Vaquero et al., 2012). The generation of PDDL problem

files was done by instantiating objects represented by the previously defined classes,

95

5. Developing Domain Model

(:action move
:parameters (?V - vehicle ?O - location
?City - city ?L - location ?City1 - city
?R - road route)
:(and

(at ?V ?O)
(moveable ?V)
(in city ?O ?City)
(in city ?L ?City1)
(connects ?R ?City ?City1)

)
:effect

(and
(not (at ?V ?O))

(at ?V ?L)
)

)

Figure 5.9: An action (move) for RTA in itSIMPLE

describing their properties in the initial state, and describing the desired properties of

objects at the goal state.

An important part of PDDL domain modelling is the definition of problem files.

In step (iv), we create problem files in itSIMPLE GUI tool environment by creating

a set of objects of each class. In Figure 5.10 an example of a set of objects is shown

in the ’Object Repository’. Objects can be used during the creation of the problem

file as required. Using itSIMPLE GUI support the user can create as many objects as

required. During the creation of objects the user can define the class that the object

belongs to. In the problem files, initial and goal states are defined by the association of

each object.

The generated domain model and the problem instances are required to be tested by

generating plan. itSIMPLE tool comes with a number of third-party planners to test the

96

5. Developing Domain Model

Figure 5.10: Object repository for RTA in itSIPMLE

97

5. Developing Domain Model

domain model produced. In step (v), we test the domain models by using compatible

planners in order for producing plans and finding errors.

5.3.2.1 Method B: Basic Acceptability Test

In this section we execute two basic acceptability tests for both PDDL and PDDL2.1

domain model. The test has been carried out using different planners randomly. There

is an accident happened in the ACCIDENT LOCATION 1 and some simple task need

to carry out to check the domain model’s acceptability.

Test Case PDDL Domain Model: The main goal of this test to check that the domain

model and problems are working without any error and achieve goals. The goal

is to take ’Accident Victim 1’ to hospital. There are a number of Ambulances

and hospitals are available so that the planner can choose any of them. The

problem was solved by Metric-FF and LPG planners.

Test Result: The following is the test result is from LPG planner’s result, which shows

that the domain does not contain any error and passed the acceptability test.

0: (MOVE POLICE_CAR_HALIFAX POLICE_HALIFAX HALIFAX

ACCIDENT_LOCATION_1 AINLEY_TOP AINLEY_HALIFAX) [1]

0: (MOVE AMBU_HUD HUDDERSFIELD_HOSPITAL HUDDERSFIELD

ACCIDENT_LOCATION_1 AINLEY_TOP A629) [1]

1: (CONFIRM_ACCIDENT POLICE_CAR_HALIFAX ACC_VICTIM_1

ACCIDENT_LOCATION_1) [1]

2: (FIRST_AID AMBU_HUD ACCIDENT_LOCATION_1 ACC_VICTIM_1) [1]

3: (LOAD_VICTIM AMBU_HUD ACCIDENT_LOCATION_1 ACC_VICTIM_1) [1]

4: (MOVE AMBU_HUD ACCIDENT_LOCATION_1 AINLEY_TOP

HUDDERSFIELD_HOSPITAL HUDDERSFIELD A629) [1]

5: (UNLOAD_VICTIM ACC_VICTIM_1 HUDDERSFIELD_HOSPITAL AMBU_HUD) [1]

98

5. Developing Domain Model

6: (DELIVER_VICTIM ACC_VICTIM_1 HUDDERSFIELD_HOSPITAL) [1]

Test Case PDDL2.1 Domain Model: An accident happened in the Accident location

1 and the goal is to take ACC VICTIM 1 (Accident victim) to hospital.

Test Result: After a number of trials, we found the solution. We check the solution

carefully to identify any unusual behaviour. The test is passed which implies that

the domain model and the problem instance are acceptable.

0.00: (MOVE POLICE_CAR_BRADLEY POLICE_BRADLEY BRADLEY

ACCIDENT_LOCATION_1 AINLEY_TOP BRADLEY_AINLEY) [3.08]

3.09: (CONFIRM_ACCIDENT POLICE_CAR_BRADLEY ACC_VICTIM_1

ACCIDENT_LOCATION_1) [10.00]

13.10: (MOVE AMBU_HAL HALIFAX_HOSPITAL HALIFAX

ACCIDENT_LOCATION_1 AINLEY_TOP AINLEY_HALIFAX) [5.90]

19.01: (FIRST_AID AMBU_HAL ACCIDENT_LOCATION_1

ACC_VICTIM_1) [5.00]

24.02: (LOAD_VICTIM AMBU_HAL ACCIDENT_LOCATION_1

ACC_VICTIM_1) [5.00]

29.03: (MOVE AMBU_HAL ACCIDENT_LOCATION_1 AINLEY_TOP

HALIFAX_HOSPITAL HALIFAX AINLEY_HALIFAX) [5.90]

34.94: (UNLOAD_VICTIM ACC_VICTIM_1 HALIFAX_HOSPITAL

AMBU_HAL) [5.00]

39.95: (DELIVER_VICTIM ACC_VICTIM_1 HALIFAX_HOSPITAL) [10.00]

99

5. Developing Domain Model

5.4 Method C: GIPO - an object-based GUI

5.4.1 Overview of the Method C

The main goal of GIPO is to abstract the syntactic details of the modelling language

and helps the user to create a domain model by using graphical metaphor (McCluskey

and Kitchin, 1998). The method provides many advantages for modeling and acquisi-

tions domain knowledge.

It is inspired by formal methods for software engineering, and led to the creation of

the knowledge engineering platform GIPO (McCluskey and Simpson, 2006; Simpson

et al., 2007). Central to this approach is the precise definition of a planning state as

an amalgam of objects individual states. This gives us the concept of a world state as

one being made up of a set of states of objects, satisfying certain types of constraints.

Operator schemas are constrained to be consistent with respect to the state, giving the

opportunity for using tools to do consistency checking.

5.4.2 Execution of the Method C

In GIPO user need to follow steps to construct domain models. The steps are discussed

in following while constructing the RTA domain model for OCLh:

1. Sorts and Objects: Identify a set of dynamic object classes, and a class hier-

archy (Figure 5.11), where objects inherit state and behaviour from classes in

the hierarchy above it; thus an object might have superclass mobile and inherit

a range of possible states (describing positions) from the mobile class which the

mobile object might occupy (hence defining the range of behaviour). The object

might also be a carrier, and inherit state and behaviour from this also.

100

5. Developing Domain Model

Figure 5.11: GIPO-III Sort (Class) Hierarchy

101

5. Developing Domain Model

Figure 5.12: GIPO-III Produced PDDL and OCL domain model

GIPO uses sort editor to create sorts rather than doing direct encoding. It is

also possible to create many objects by using the dialog boxes in the sort editor

window as shown in the figure 5.11. The editor also allows the user to verify

the objects and sorts. GIPO generates the domain code in OCL and PDDL1.2

which can be viewed by clicking the view option. Figure 5.12 shows the PDDL

and OCL (see Appendix E for full code) codes for Road Traffic Accident (RTA)

domain.

2. Predicates: In the OCL and PDDL domain model, a set of predicates are used to

express the relationship between the sorts. Predicates are defined after the sorts

102

5. Developing Domain Model

Figure 5.13: GIPO-III: Predicate Construction

have been defined to express various states of objects in the domain model. Once

the predicates are created by using GIPO they keep the same arity for further

validation. Some of the predicates have single arity, such as moveable (vehicle)

and available (vehicle) for the vehicle. Some of the predicates have more than

one arity such as connects(route,city,city) and loaded (subject,vehicle). Also, the

predicates in GIPO can be declared as static or dynamic. A static predicate like

connects(route,city,city) which does not change during the execution of planning

algorithm. Figure 5.13 shows the process of creating predicates from the sort

defined earlier.

103

5. Developing Domain Model

3. States: GIPO state definition formally specifies constraints on the state of pos-

sible objects, i.e., the state of any object in any certain phase. For example, a

vehicle ’ambulance’ should be available and movable before it can be used or

movable and busy when it is in used. It is not possible for a vehicle to be busy

and available at the same time as shown in the following -

substate classes(vehicle,T,[

[moveable(T),available(T)],

[moveable(T),busy(T)]]).

4. Invariants: Invariants are defined in the OCL language to make explicit assump-

tion about the domain model. Atomic Invariants are used in OCLh and can be

modelled in GIPO tool to set the compatibility boundary of objects. They often

contain a list of predicates to specify some instances. For example, in the RTA

domain, the routes connect cities have unique names and cannot be changed.

They are modelled in the atomic instruments. The following OCLh code shows

part of the atomic invariants created by GIPO -

% Atomic Invariants

atomic invariants([

in city(accident location 1,ainley top),

in city(police huddersfield,huddersfield),

.......

.......

route available(ainley greet),

connects(ainley greet,ainley top,greetland),

........

104

5. Developing Domain Model

........

connects(ainley halifax,halifax,ainley top)]).

5. Operators: Hand-coding operators (for both PDDL and OCLh) are the hardest

part of the domain model construction that requires careful planning and time.

To write the code of an operator a knowledge engineer must have expert knowl-

edge on the language syntax and semantics. A knowledge engineer builds a set

of operators by using GIPO’s transition constructor which does not require any

expertise on OCL language. The figure 5.15 shows the GIPO’s transition editor.

There are five windows in the transition window as shown in the figure. The

substate list of any sort can be viewed by selecting the relevant sort. The Edit-

ing/Drawing Canvas helps to create the operator by drawing some diagrams as

shown in the figure 5.15. The tool helps the modeller to identify the static pred-

icates that cannot be changed by the operation of an operator. The user will be

able to use the states of any particular object and will not be able to add anything

extra at this point if they were not defined previously. In case of any ambiguity,

GIPO warns with pop-up dialog box.

6. Methods: Develop HTN methods in a top down manner, reflecting the main re-

quirements of the domain tasks, followed by development of primitive operators.

7. Task: The HTN task in OCLh is like the planning problem that contains the

initial and goal states.

8. Use static analysis, implemented through tools, to help remove defects from the

model as it is developed. Examples are to check operators do not invalidate state

105

5. Developing Domain Model

Figure 5.14: GIPO-III: Transition Editor to Create Operator

constraints, and tasks obey the transparency property (McCluskey and Kitchin,

1998).

The main modelling language of GIPO is OCLh that influences the design process

of the domain model. The model was encoded with the help of tools in GIPO-III, using

basic consistency checkers as well as the more complex transparency property checker.

Hierarchies of classes were used to capture state: for example, in the RTA domain, in

a particular state an ambulance may have a position (as it is a physical asset), be in

service and available (as a movable asset). The set of constraints was added using

GIPO-III to encode each of the dynamic object class’s possible behaviour that is the

106

5. Developing Domain Model

Figure 5.15: GIPO-III: Creating Compound Operator (Method) using Compound tran-
sition Window

107

5. Developing Domain Model

Figure 5.16: GIPO-III: Domain Consistency Check Report

range of states that each object can occupy.

An action in an OCLh domain model is represented by either a primitive operator

or a compound task. Primitive operators specify under what condition objects may go

through single transitions; compound actions specify under what condition objects go

through a sequence of ordered actions. ‘Achieve goals’ are used to implement pre-

condition planning within the HTN framework (effectively one can encode both HTN

and goal achievement planning within OCLh).

108

5. Developing Domain Model

In the final step, the model was run repeatedly through GIPO-III’s tool set, which

checks operator consistency, and transparency properties of compound tasks. Initially

the test result shows all the errors, for example, (see figure 5.16) a place called ’ain-

ley top’ was used without declaring earlier so, the GIPO checks the operator consis-

tency and produce a report. The tool was run approximately 5 times on the model,

with debugging taking place using the information from each run. After the model

passed all the tests, the model was run with the HyHTN (McCluskey et al., 2003) plan-

ner for plan generation. Basic acceptability test for plan generation is provided in the

following subsection.

5.4.2.1 Method C: Basic Acceptability Test

Test Case OCLh Domain Model: In this test we set the goal to take ACC VICTIM 1

(Accident victim) to hospital.

Test Result: After a number of trials, we found the solution from HyHT N planner.

We check the solution carefully to identify any unusual behaviour. The test

is passed which implies that the domain model and the problem instance are

acceptable.

move(police car bradley,police bradley,bradley,acc loc 1,ainley top,

bradley ainley)

confirm-accident(police car bradley,acc victim 1,acc loc 1)

commission(ambu hud)

move(ambu hud,huddersfield hospital,huddersfield,acc loc 1,ainley top,a629)

first-aid(acc victim 1)

load-victim(ambu hud,acc loc 1,acc victim 1)

move(ambu hud,acc loc 1,ainley top,huddersfield hospital,huddersfield,a629)

unload-subject(acc victim 1,huddersfield hospital,ambu hud)

109

5. Developing Domain Model

deliver(acc victim 1,huddersfield hospital)

5.5 Summary

This chapter presented the essential parts of designing and developing process of Road

Traffic Accident (RTA) domain by using three KE methods. It is important to be aware

of that this chapter did not cover all the aspects of the modelling of the domain by using

those methods. For example, we have not covered how itSIMPLE translate the UML to

PDDL or how GIPO checks operator consistency. On the other hand, hand-coding for

any domain depends on the expertise of the modeller about the PDDL language syntax

and semantics. Nevertheless the contents of this chapter should be adequate for under-

standing for the issue raised in this thesis and the readers are encouraged to itSIMPLE

and GIPO manuals and publications. The essential point here is that the knowledge

engineering experience by using different methods. The experience of developing the

same domain model (RTA) by using different methods gives insights about the knowl-

edge engineering tools and techniques. It has been noted that developing different

models do not take much different time but the experience of using different methods

are distinct. The evaluation and comparison of the three methods will be discussed in

the following chapter.

110

Chapter 6

Evaluation of Knowledge Engineering

Tools and Techniques

Having analysed the Road Traffic Accident (RTA) application, and conceptualised the

requirements, a number of domain models have been developed using three different

knowledge engineering techniques. The domain models are developed by knowledge

engineers where their skills and methods may significantly influence the quality of the

product (domain model). The quality of domain model may influence the performance

of the planners, expertise of knowledge engineers or the quality of modelling tech-

niques. On the other hand, there are few guidelines or standard procedures available

for knowledge engineers to develop a planning domain model.

This chapter evaluates the knowledge engineering tools and techniques for formu-

lating domain models using three different approaches:

(i) observation of the process(development) and product(domain model),

(ii) using set criteria

111

6. Evaluation of Knowledge Engineering Techniques

(iii) using ICKEPS evaluation criteria

All the evaluations have been performed using the road traffic accident (RTA) do-

main model, described in Chapter 4 and developed in Chapter 5 with an experimental

scenario.

6.1 Observation of the methods

The aim of this experiment is to evaluate the three approaches to formulate a knowl-

edge model, with the novel RTA domain. The criteria for evaluation are arranged in

two broad categories, using inspiration from the software engineering area:

• the process of the formulation: this is the encoding of the conceptualised knowl-

edge taken from source documents and expertise, until it reaches a final form in

which it can be input to planner(s). Features such as defect removal and the

nature of the testing process are considered here.

• the product of the formulation: this is the domain model and problem files, with

measured features such as performance, quality of plans produced and range

of problems solved (where they are consequences of the model rather than the

planner). Other features include size and complexity.

6.1.1 Actors Involved in Domain Development

We set up an experiment to evaluate three methods of planning domain knowledge

formulation. As with any exercise on evaluating methods, there are problems to do

with the effect of human factors such as level of method expertise of the knowledge

engineers (so-called extraneous variables). Developing domain models using three

112

6. Evaluation of Knowledge Engineering Techniques

methods involved six actors in total. Each method was carried out in parallel over

a period of time. There was no time limit fixed a priori. Each team was composed

of two experts. All experts involved in the requirement phase. The background of

all participating in the teams was that all except two (the author of this thesis and

a colleague) had a PhD in AI Planning. The expertise level of the PDDL encoders

(method A) was expert where as for method B and C the team leaders were competent

rather that expert in the use of the itSIMPLE and GIPO respectably.

6.1.2 Experimental Scenario

For evaluating the methods we used a set of test instances, considering the map shown

in Figure 6.1, in which three accidents happen in Ainley Top, Greetland and Baliff

Bridge. Police are required to confirm accidents, number of victims and vehicles in-

volved. The victims are required to be taken as soon as possible to one of the hospitals,

and involved broken vehicles are required to be removed from the road and taken to

an available garage. Three ambulances, four police cars, two fire brigades and four

tow trucks are available. We created test instances involving from six to one hundred

victims, and from five to thirty cars, where some victims might be trapped inside cars.

We also considered an instance in which the number of available emergency vehicles is

doubled, to evaluate the coordination that the different methods encodings are able to

achieve. In each case, the formulation proceeded until the method produces a planning

application which solves the test instances of accident management as specified above.

113

6. Evaluation of Knowledge Engineering Techniques

Queensbury

Halifax

Ainley Top

Huddersfield

Bradley

Brighouse

Greetland

Baliff Bridge

P G

H P G

H P G

P

H G

Figure 6.1: The Road Traffic Domain Model used for empirical analysis. It consists of
a portion of the county of Yorkshire. H, P and G respectively stand for Hospital, Police
station and Garage locations.

114

6. Evaluation of Knowledge Engineering Techniques

6.1.3 Observations of Method A

6.1.3.1 Process

The model took approximately two days to complete using one expert and one com-

petent person using a text editor. It should be noted that most of the time required by

this method has been spent in dynamic testing: analyzing produced plans, identifying

bugs and removing them from the model. Usually many issues are noticed only by

carefully reading the generated plans with the hand encoding domain model. One ex-

ample of bug identification is when we noticed broken vehicles were being delivered in

hospitals, instead of garages. Removing the bug in this case amounted to added further

constraints to the operators.

The main issue related to hand coding a real world domain in PDDL is that it tends

to be ad-hoc, without the direction or static checks that a tool supported method would

impose. The encoding is left to the skill and judgment of the expert that is working

on it. This lack of structure leads to domains that, even if representing the same real

world application, are very different and usually very hard to understand if developed

by different experts. Moreover, while everything is left to the sensitivity and to the

knowledge of an expert, the process of this method is hard to replicate.

There are advantages in using hand-coding over using well developed tools sup-

ported environments: the latter tend to lag behind in the use of expressive modelling

languages. For instance, OCLh does not allow numerical constraints to perform arith-

metic operations, such as evaluating distances and the time required for movements,

nor durative actions in order to facilitate temporal constraints in planning. Even it-

SIMPLE, which is being continually developed, has some limitations in the type of

PDDL that it can generate.

115

6. Evaluation of Knowledge Engineering Techniques

30: (LOAD_VICTIM AMBU_HUD GREETLAND VICTIM_6) [5]

35: (UNLOAD_VICTIM VICTIM_6 HALIFAX_H AMBU_HUD) [5]

47: (LOAD_VICTIM AMBU_HUD BALIFF VICTIM_5) [5]

52: (UNLOAD_VICTIM VICTIM_5 BRIGHOUSE_H AMBU_HUD) [5]

57: (LOAD_VICTIM AMBU_HUD BALIFF VICTIM_4) [5]

71: (UNLOAD_VICTIM VICTIM_4 BRIGHOUSE_H AMBU_HUD) [5]

84: (LOAD_VICTIM AMBU_HUD AINLEY VICTIM_3) [5]

89: (UNLOAD_VICTIM VICTIM_3 BRIGHOUSE_H AMBU_HUD) [5]

102: (LOAD_VICTIM AMBU_HUD AINLEY VICTIM_2) [5]

107: (UNLOAD_VICTIM VICTIM_2 BRIGHOUSE_H AMBU_HUD) [5]

119: (LOAD_VICTIM AMBU_HUD AINLEY VICTIM_1) [5]

124: (UNLOAD_VICTIM VICTIM_1 BRIGHOUSE_H AMBU_HUD) [5]

Figure 6.2: An overview, showing only LOAD and UNLOAD actions, of the LPG
Planner solution to the basic acceptability test instance. The three columns represent
the time at which the action occurs, the action performed and the duration of the action.
Brighouse H and Halifax H stand respectively for the Hospital in Brighouse and the
Hospital in Halifax.

6.1.3.2 Product

We found that the iterative process of debugging described above led to a domain

encoding over-constrained, in order to avoid unwanted behaviours. Many of the con-

straints, added under the form of pre- and/or post- conditions, were built up incre-

mentally during debugging in an ad-hoc fashion. The resulting model is complex and

hard to read and understand. The length of the domain file: 225 lines for the PDDL

and 248 for the PDDL2.1 model. We are aware that the number of lines is not a very

informative indicator, but it gives intuitively a quantitative idea of the size of a model.

In plans generated exploiting method A, usually a very small number of vehicles

are employed, resulting in high plan duration. Figure 6.2 shows an overview of the

plan generated by the LPG Planner for the basic acceptability test instance; a single

ambulance (ambu hud) is used for transporting all the accident victims to different

hospitals, while other ambulances are not considered (and we found the use of tow

trucks to have the same behaviour). This behaviour arises due to the high number

of pre-condition and effect of operators in method A domain models prevented the

116

6. Evaluation of Knowledge Engineering Techniques

planner using concurrently different emergency vehicles. Mean number of positive

pre-condition and effects in this method are 4.3 and 1.7 respectively for both PDDL

and PDDL2.1 domain models.

6.1.4 Observations of Method B

6.1.4.1 Process

The model took approximately three days to build and debug using one person com-

petent and one in support in using the tool. Most of the time was spent in designing

classes of objects and defining legal interactions between them. After that, only a rel-

atively short time is required for debugging. Every step was effectively supported by

the KE tool used.

Since the itSIMPLE tool has been designed for supporting a disciplined design

cycle and for supporting the transition of requirements to formal specifications, the

process is clearly defined and easy to repeat. A user goes through the formulation

of requirements by designing several UML diagrams, and automatically generates the

corresponding PDDL (or PDDL2.1) domain encoding. The tool gives the modeller a

range of third party planners for generating plans, along with features such as ’plan

analysis’. However, we found that most debugging is initiated through dynamic test-

ing: while the structure of the model helps in its development and maintenance, it is the

failure of a planning engine to solve a goal which alerts the developer to the presence

of a bug, in most cases (in contrast to method C).

117

6. Evaluation of Knowledge Engineering Techniques

6.1.4.2 Product

We observed that the structured and principled process of encoding the requirements

led to domain encodings that are clear and easy to understand. Evidence to support

this is given by the length of domain description: 263 lines for the PDDL and 259 for

PDDL2.1.; about 10% more than the hand written models resulting from method A.

Also, mean positive pre-condition and effects in this method are 3.8 and 1.4 for PDDL,

and 4.0 and 1.6 for PDDL2.1 domain model provided in the table 6.1. On the other

hand, the UML documentation is useful in maintenance, as it helps trace the encoding

to the initial requirements. The good quality of the encoded domain models leads to

better quality of plans.

6.1.5 Observations of Method C

6.1.5.1 Process

The OCLh model was debugged using the tools within GIPO. The first run identified

syntax and typographical errors such as differences in predicate names, which were

corrected. During the second run, while doing operator/transition checks, inconsisten-

cies in the HTN methods were revealed which led to another round of bug removal.

Part of the output of the consistency checking tools, for one early run, is shown in Fig-

ure 6.3. In addition to checking the modelling of the domain, GIPO can also check that

tasks are defined correctly and in a way which is consistent with the domain model.

The second run gave only instantiation warnings for some of the tasks. In addition to

debugging with GIPO, dynamic testing via plan generation can also be carried out.

The creation of a dynamic hierarchy of object classes encoded constraints of the

domain explicitly, and this is what is used by GIPO’s tool support to check operator

118

6. Evaluation of Knowledge Engineering Techniques

...

Checking method carry direct(P,O,D)

found an unrecognised decomposition item: unload subject(P,D,V)’.

Check failed

Checking method carry direct(P,O,D)

found an unrecognised decomposition item: unload subject(P,D,V)’.

Check failed

Checking method transport(Subject,Org,Dest)

The static predicate in region(Org,Region) has no prototype

The static predicate in region(Dest,Region) has no prototype

Check failed

Doing task checks.

....

Figure 6.3: Part of output from GIPO: here the transparency of HTN methods is
checked and found to fail, with the likely faulty components identified.

schema, states, predicates etc., and identify bugs prior to dynamic testing. For example,

the range of behaviour of a movable asset possess such as an ambulance is specified

by state constraints, before operators are constructed. Hence, important constraints of

the domain, rather than being implicit as in PDDL, are explicit in the model’s speci-

fication. As observed above, initial tests with the PDDL hand crafted model allowed

ambulances and tow trucks to have strange behaviours such as carrying cars to hospi-

tals (rather than garages). This behaviour was eliminated during domain specification

in Method A. While one could argue that dynamic testing picked this up anyway, there

may be behaviours that we have not picked up in the tests up to now that result from

hidden bugs.

The model took approximately four days to build and debug using one competent

person as the lead and one person in support. The method took significantly more re-

source than the others, because of the unfamiliar notation compared to UML or PDDL,

and the encoding of complex HTN methods.

119

6. Evaluation of Knowledge Engineering Techniques

move(police car bradley,police bradley,bradley,acc loc 1,ainley top,bradley ainley)

confirm-accident(police car bradley,acc victim 1,acc loc 1)

commission(ambu hud)

move(ambu hud,huddersfield hospital,huddersfield,acc loc 1,ainley top,a629)

first-aid(acc victim 1)

load-victim(ambu hud,acc loc 1,acc victim 1)

move(ambu hud,acc loc 1,ainley top,huddersfield hospital,huddersfield,a629)

unload-subject(acc victim 1,huddersfield hospital,ambu hud)

deliver(acc victim 1,huddersfield hospital)

...

Figure 6.4: Part of the HTN solution plan for the basic acceptability instance. The
sequence allows to deliver an accident victim to the hospital in Huddersfield.

6.1.5.2 Product

The above process led to a model which when used with GIPO’s HTN planner HyHTN

found a plan which was in accordance with current standards of how planning is being

done by Rescue Services. The size of the OCLh model is larger than the size of the

PDDL models, because state constraints are encoded explicitly, and HTN methods

are specified in addition to primitive ones; the OCLh model has 496 lines of code,

it is about twice long as the PDDL models generated by other methods. Structures

of the solutions, a part of the solution generated by the HyHTN planner is shown in

Figure 6.4, are similar to solutions generated by the LPG planner on the PDDL model

developed in itSIMPLE (the method B). A possible advantage of this approach we

believe might be better scalability than the PDDL models.

120

6. Evaluation of Knowledge Engineering Techniques

6.2 Evaluation of the methods from Observation

6.2.1 Process Comparison

Regarding method A, the main issue related to hand coding a real world domain in

PDDL is that it tends to be ad-hoc, without the direction or static checks that a tool

supported method would impose. The encoding is left to the skill and judgment of

the experts that are working on it. This lack of structure leads to domains that, even

if representing the same real world application, are different and hard to understand if

developed and maintained by different experts. Moreover, the process of this method

is difficult to replicate while everything is left to the sensitivity and to the knowledge

of experts. Since the itSIMPLE tool has been designed for supporting a disciplined

design cycle and for supporting the transition of requirements to formal specifications,

the process is more clearly defined and not difficult to repeat.

With respect to bug identification and removal, in the hand-coded method, all but

syntactic bugs was dealt with by dynamic testing of the model. Most of the develop-

ment time was spent in dynamic testing: analysing produced plans, identifying bugs

and removing them from the model. Moreover a hand encoding domain model contains

many issues are noticed only by carefully reading the generated plans. One example

of bug identification is when we noticed broken vehicles were being delivered at hos-

pitals, instead of garages. Removing the bug in this case amounted to added further

constraints to the operators. On the other hand, most of the time spent with itSIM-

PLE was in designing classes of objects and defining legal interactions between them.

After that, only a relatively short time is required for debugging. However, we found

that where debugging was required, it was initiated through dynamic testing: while the

structure of the model helps in its development and maintenance, it is the failure of a

121

6. Evaluation of Knowledge Engineering Techniques

planning engine to solve a goal which alerts the developer to the presence of a bug, in

most cases. This is perhaps a failing peculiar to itSIMPLE, as the Method C tool GIPO

(Simpson et al., 2007) which is capable of identifying bugs at an earlier stage than

dynamic testing. Regarding the construction of the RTA domain model in the HTN

language (OCLh) utilising GIPO, we observed that the extensive use of static tools re-

sulted in a model that required less dynamic testing during the debugging phase. An

advantage of using an HTN encoding, however, is that methods compound ’building

blocks’ of plans and therefore allow developers to encode intuitive plan traces. The

need for static tests is reduced, however, given the structure imposed by the UML

method; additionally this helps determine the completeness of the model, in terms of

classes and finite state machines. Also, itSIMPLE’s automated generation of the PDDL

model, much like a compilation of a high level language into a low level language, has

the benefit of eliminating human errors in encoding details. The tool offers the mod-

ellers a range of third party planners for generating plans, along with features such as

plan analysis, where the plan generated can be viewed graphically.

There are advantages in using hand-coding over using tool supported environments:

the development of environments tends to lag behind in the use of expressive mod-

elling languages. itSIMPLE, being continuously developed, has some limitations in

the type of PDDL that it can generate. Also, some details such as parameter associa-

tions and metrics are only possible to encode using dialogue boxes within GUI-based

tools, which hamper their ease of use.

One final point: once a PDDL model has been generated, if it is maintained outside

of the tools environment, it is in general not possible to reverse engineer it back into

the environment. This means that the environment tends to be used only for initial

encoding, and not over a domain model’s life cycle.

122

6. Evaluation of Knowledge Engineering Techniques

Metric PDDL PDDL2.1
A B A B

types 19 22 19 22
predicates 16 18 16 16
operators 12 14 12 12
mean parameters 3.1 3.2 3.1 3.2
mean precond+ 4.3 3.8 4.3 4.0
mean precond- 0.2 0.4 0.2 0.4
mean eff+ 1.7 1.4 1.7 1.6
mean eff- 1.9 1.2 1.9 1.3
lines 225 263 248 259

Table 6.1: The values of the metrics selected for comparing the domain models gen-
erated by methods A and B.

6.2.2 Product Comparison

For comparing the domain models generated by methods A and B, we selected a sub-

set of the metrics suggested by Roberts et al. in (Roberts et al., 2007). In this work

they described some techniques for predicting the performance of domain-independent

planners by evaluating a set of metrics related to both models and the planning prob-

lem. Since we are comparing planning domain models for understanding their quality,

which depends also on the performance of the planners that will solve the problems,

such a set of metrics could give some interesting insights. We considered also the num-

ber of lines, which could give a very intuitive idea of the complexity of the domains.

The results of this comparison between Method A and B are shown in Table 6.1, met-

rics considered are the number of types, predicates and operators, the mean number

of parameters per operator, the mean number of pos/neg preconditions and the mean

number of pos/neg effects.

We found that the iterative process of modelling and testing domain model in

Method A led to an over-constrained domain encoding. Many of the constraints, added

under the form of pre- and/or post- conditions, were built up incrementally during de-

123

6. Evaluation of Knowledge Engineering Techniques

bugging in an ad-hoc fashion, in order to avoid unwanted behaviours. The resulting

model is complex and hard to read and understand compared to the model developed

using method B. Method A leads to a constrained model is confirmed by the higher

mean number of positive preconditions and effects. This is not noticeable by the num-

ber of lines of the files because the method B invites to use many different types, as

usual in KE approaches, which are not listed in a very compact way. The PDDL do-

main generated by method B has 2 more actions than method A one; these operators

are related to the untrapping people and extinguishing fire tasks and are used for avoid-

ing that the same fire brigade extinguishes several fires and untraps several people at

the same time. The method A domain model exploits a “trick”: the PDDL experts

added the same predicate as positive and negative effects of the operator, which avoids

the simultaneous execution of actions instantiated with similar parameters. Although

these kind of tricks are commonly used by experts, their impact on the performance of

the planners have not been studied, and moreover they make the domain harder to read

and understand. We observed that the structured and principled process of encoding

the requirements in Method B led to domain encodings that are clear and easy to un-

derstand. Moreover, we found that the UML documentation is useful in maintenance,

as it helps trace the encoding to the initial requirements.

The main difference between PDDL and PDDL2.1 encodings is that PDDL plans,

since actions are instantly completed, are a very compact version of the PDDL2.1 ones.

The simplest encoding is not very realistic, however, as emergency vehicles are used

without taking into account their distance from the accident location, since distance

cannot be described in the simplest encoding.

To compare the operationality of the products, we investigated the performance

achieved by planning systems on the models generated exploiting by methods A and

124

6. Evaluation of Knowledge Engineering Techniques

LPG
Instance CPU time # Actions Duration

A B A B A B
6P, 5V, 1T 0.03 0.03 97 90 28 29
30P, 10V, 2T, 1F 0.5 0.3 318 317 90 108
100P, 30V, 5T, 3F 35.6 22.8 1015 1001 350 311
100P, 30V, 5T, 3F * 62.4 37.9 1033 988 254 246

SGPLAN
Instance CPU time # Actions Duration

A B A B A B
6P, 5V, 1T 0.12 0.09 95 96 95 96
30P, 10V, 2T, 1F 0.36 0.59 324 338 324 338
100P, 30V, 5T, 3F 1.25 1.50 998 1018 998 1018
100P, 30V, 5T, 3F * 2.85 3.60 993 1068 993 1068

LPG
Instance CPU time # Actions Duration

A B A B A B
6P, 5V, 1T 0.04 0.03 94 91 82 76
30P, 10V, 2T, 1F 0.7 0.3 317 321 198 220
100P, 30V, 5T, 3F 57.8 25.2 1000 1012 530 526
100P, 30V, 5T, 3F * 86.0 42.1 1025 1029 315 330

SGPLAN
Instance CPU time # Actions Duration

A B A B A B
6P, 5V, 1T 0.11 0.13 88 97 117 141
30P, 10V, 2T, 1F 0.48 0.54 331 332 528 415
100P, 30V, 5T, 3F 1.45 1.81 1006 1048 1634 1115
100P, 30V, 5T, 3F * 3.64 4.40 1000 1062 1543 1322

Table 6.2: For every instance, the CPU time (seconds), the number of actions and the
duration of plans generated by LPG and SGPlan on domains encoded using methods
A and B. The upper table refers to PDDL encodings, the lower to PDDL2.1. Instances
are described by the number of victims (P), the number of vehicles involved (V), the
number of victims trapped (T) and the number of cars on fire (F); * indicates that the
number of available emergency vehicles is doubled.

B. We ran LPG and SGPlan on a set of test instances using the different models. We

selected them due to their ability to handle durative actions and negative preconditions,

which are both used in the generated domains. The results of the experiment are shown

in Table 6.2 in terms of CPU time, number of actions and plans duration.

125

6. Evaluation of Knowledge Engineering Techniques

These results indicate that LPG with the hand written domains needs more CPU

time, both in PDDL and PDDL2.1, than with the domains generated through method B.

In the number of actions and duration of the plans there are no significant differences.

The performance of LPG while exploiting method B domains are very interesting; for

generating good quality solutions, it requires significantly less CPU time.

On the other hand, SGPlan displays a very different performance profile compared

to LPG. In this case, the domains generated by method B slow down the plan genera-

tion process, but they lead to plans with significantly shorter makespan when generated

by LPG. While SGPlan is faster than LPG at plan generation, it was not effective at

exploiting the parallelisation of actions in solution plans, which unlike in LPG’s per-

formance, resulted in its plans having a high makespan.

6.3 Criteria for evaluating approaches

In Chapter 3, we have elicited a set of characteristics after discussing a range of knowl-

edge engineering tools and techniques. Also, we have developed a real application

domain model called Road Traffic Accident (RTA) in Chapter 5 using three different

knowledge engineering tools and techniques. We evaluate those domain models by

using an experimental setup in the previous section. The whole experience directs to

some criteria that are useful for evaluating the different approaches for encoding do-

main models. In this section; firstly we define those criteria, secondly we evaluate each

of the methods based on those criteria and finally we provide some important features

that the future knowledge engineering tools for planning should possess.

Operationality. How efficient are the models produced? Is the method able to im-

prove the performances of planners on generated models and problems?

126

6. Evaluation of Knowledge Engineering Techniques

Collaboration. Does the method/tool help in team efforts? Is the method/tool suitable

for being exploited in team or is it focused on supporting the work of a single

user?

Maintenance. How easy it is to come back and change a model? Is there any type

of documentation that is automatically generated? Does the tool induce users to

produce documentation?

Experience. Is the method/tool indicated for inexperienced planning users? Do users

need to have a good knowledge of PDDL? Is it able to support users and to hide

low level details?

Efficiency. How quickly are acceptable models produced? How easy is it to use the

tool?

Debugging. Does the method/tool support debugging? Does it cut down the time

needed to debug? Is there any mechanism for promoting the overall quality of

the model?

Support. Are there manuals available for using the method/tools? Is it easier to re-

ceive support? Is there an active community using the tool?

6.4 Evaluation of the approaches with respect to stated

criteria

This section employs and hence evaluates three separate methods for knowledge for-

mulation: (A) the traditional method of hand-coding, using a text editor and relying on

127

6. Evaluation of Knowledge Engineering Techniques

dynamic testing for debugging (B) itSIMPLE, and (C) GIPO. In the following we will

evaluate each method with respect to the criteria stated at the beginning of this Section.

6.4.1 Method A

This method involves developing planning domain in PDDL using a text editor (in this

thesis, Gedit), given the description of the real world domain in the Chapter 4.

Operationality. Operationality mainly deals with the performance and the model ef-

ficiency. Even if method A (hand-coding) is the most exploited methods for

generating new planning domain models, there are no evidences that it leads to

models that are more efficient than the ones generated by other methods. The

quality of models depends on the expertise of the person that encodes it and is

hard to predict a-priori. In fact, we have experimentally observed this method’s

operationality as follows,

• Performance - Since the quality of the product developed in this method

depends on the expertise of the knowledge engineer, in which it is difficult

for an expert to cope all the expressiveness of the language.

• Model Efficiency - The models generated by this method reduce the per-

formances of planning algorithms if the model is not developed carefully.

Collaboration. This method does not support any type of collaboration. Usually the

model is produced by a single expert, who eventually discusses issues or im-

provements with domain experts rather than with other planning experts.

Maintenance. It is usually easy, for the expert that encoded the domain, to come back

and change the produced model. On the other hand, usually models are not

128

6. Evaluation of Knowledge Engineering Techniques

documented. This means that the maintenance is potentially hard, in terms of

the complexity of the model, for people that were not involved in the encoding

process. Some of the features related to the maintenance can be summarised as

below -

• Reverse engineering - This method does not require to develop any graph-

ical metaphor, so there is no need for reverse engineering. One of the ad-

vantages of using text editors is that it can be used on any operating system

platform.

• Change handling - It is sometimes hard to adapt to change in one part with

the whole domain model. For example, if we require changing object type,

it will require changing all the respective parts of the domain model. In

the hand-coding method it is difficult, since the user has to find and change

manually. This manual change can lead to the wrong output plan as a result

of wrong encoding.

Experience. This method is indicated only for PDDL experts. Experts know the ways

for handling some common issues and are able to interpret the planners output

in order to identify bugs. From the experience of developing an RTA domain

model by hand, it is clear that encoding a new domain model from scratch is

very hard and error-prone process. Moreover, the process of dynamic testing is

time consuming which clearly indicates that this method does not provide any

positive user experience.

Efficiency. Usually a first version of the model is quickly produced. This leads users to

perceive this method as a very efficient one. On the other hand, the first version

129

6. Evaluation of Knowledge Engineering Techniques

requires a lot of dynamic tests to become acceptable. The design efficiency of

this method can be summarised as below -

• Requirement Analysis - the requirement analysis entirely depends on the

user. There is no guideline provided how to encode domain models in this

method.

• Design Process - the user may or may not follow any design process. From

the experience of designing the RTA domain model, we can say that it is

worth to follow a process to reduce development time.

• GUI Support - this method is straightforward method, which does not re-

quire to draw a diagram or model, to encode the domain model by using

any modelling language.

• Design Speed and Acceptability - since there is no diagram to draw, it

seems that the modelling process takes less time. In contrast, we can see

that designing the larger real-world domain model requires a great number

of operators, predicates and objects, which significantly slows down the

process as it is hard for a single user to keep track all the elements for a

single user.

Debugging. Debugging while hand-coding a model is a critical task. The only way

for debugging is dynamic testing. This involves the use of one or more planners

for solving some problem instances, then an analysis of the produced plans for

identifying bugs, and finally remove them from the model and start again. Re-

moving bugs are usually done by adding further constraints to the operators. In

the following we discuss the debugging during the domain development using

method A.

130

6. Evaluation of Knowledge Engineering Techniques

• Syntax Error - We have used Gedit for developing domain model. There is

no facility to check the syntax of PDDL in this text editor.

• Semantic Error - Text editors do not help knowledge engineers to identify

semantic of domain developing language like PDDL.

• Static Validation - Text editors do not support any static validation such as

validation of objects of types, valid predicate etc.

• Dynamic Validation - The hand-encoded domain model must rely on the

dynamic testing by using an appropriate planner. The process is iterative

as each of the iterations we have to remove the error and run the planner

again. The process continues until a valid plan is found for a given planning

problem.

Support. There is no guidelines available to model real-world problem using this

method. So, developing domain models left to the planning experts.

6.4.2 Method B

This method involves a user that exploits itSIMPLE for generating new planning do-

main models. The steps of the method described in the Chapter 5. In this section,

we discuss the selected criteria for KE tools and techniques using the experience of

building the RTA domain model by using itSIMPLE.

Operationality. Our experimental analysis indicates that usually domain models gen-

erated by itSIMPLE improve the performances of planners. This is probably due

to a less constrained domain description that derives from the UML diagrams.

131

6. Evaluation of Knowledge Engineering Techniques

• Performance - The quality of the product developed in method B depends

on the knowledge engineer’s ability to use the tool. Also model developed

using itSIMPLE took less CPU time during plan generation.

• Model Efficiency - Although, the numbers of lines are around 10% more

than the hand-coding domain model but the produced model is more effi-

cient as it is clearer to read and maintain.

Collaboration. itSIMPLE has been designed for a single user. However, it is pos-

sible to import models (projects) developed by different users. This helps the

exchange of ideas and comments among the users.

Maintenance. The itSIMPLE tool is designed for supporting a disciplined design cy-

cle. The UML diagrams can also be used as documentation. From this point of

view it is easy to maintain a generated domain model.

• Reverse Engineering - If a model generated by itSIMPLE is changed in

different tool or even a text editor, then it is not possible to maintain the

model in itSIMPLE environment.

• Change Handling - Changes in the domain modelling must follow the UML

rules in order to minimise error.

Experience. Typically users are not required to be PDDL expert, but he should have

some basic knowledge of the language as well as UML. There are some impor-

tant aspects of user experience when developing domain models in itSIMPLE.

• The experience of using the tool is important as an expert user of itSIMPLE

will develop better domain model than the novice one.

132

6. Evaluation of Knowledge Engineering Techniques

• Good knowledge of PDDL language will ensure better domain model.

• Using itSIMPLE for creating PDDL problem file is much easier than other

methods. Problem files are created by using the objects using UML design.

• itSIMPLE comes with a range of state-of-the-art planners, which allow user

to perform dynamic testing during the modelling phase.

Efficiency. Most of the time is spent in designing classes of objects and defining legal

interactions between them in UML. After that, only a short time is required for

debugging. The total time spent per domain was about a person week.

• Requirement Analysis - itSIMPLE is one of the tools that introduces re-

quirement modelling as software engineering. Designing the UML dia-

grams help non-AI experts to design PDDL domain models.

• Design Process - itSIMPLE uses a semi-standard design process. One of

the important features of this design process is the post design analysis to

improve the domain by analysing the plan.

• GUI Support - itSIMPLE provides GUI support for the user. User design

use-cases, class and state machine diagram in the GUI environment. The

GUI also helps to translate the model into PDDL and generate plan using

planners.

• Design Speed and Acceptability - The initial design process is slower in

itSIMPLE, i.e., requirement analysis. Once the requirement is designed,

creating problem instances and testing becomes relatively faster.

Debugging. Most debugging initiates through dynamic testing: while the UML de-

scription of the models helps in development and maintenance, it is the failure

133

6. Evaluation of Knowledge Engineering Techniques

of a planning engine to solve a goal that alerts the user to the presence of a bug,

in most cases.

• Syntax Error - itSIMPLE produces domain models by translating from the

graphical representation to the domain definition languages, which reduce

syntactic error than hand coding method.

• Semantic Error - itSIMPLE tool does not highlight the code like PDDL-

Studio but indicates any undeclared predicates and undefined objects after

translation into PDDL. It also prevents incorrect association between ob-

jects and classes to reduce error in domain models.

• Static Validation - itSIMPLE does not provide any facilities of static valida-

tion but the UML diagrams such as, class diagram defines the relationship

between classes which must be met to build operator transition in the object

definition. So, this embodies a way of static validation.

• Dynamic Validation - itSIMPLE comes with a range of planners integrated

to perform dynamic validation of a domain model. It is one of the major

advantages of itSIMPLE to allow the range of planners. It is convenient for

users to design and test for valid plan whereas the traditional hand coding

domain model has to be tested manually.

Support. itSIMPLE provides documentation which includes a description of the tool,

a tutorial and a FAQ section. It is easy to find information and solutions for most

of the common issues.

134

6. Evaluation of Knowledge Engineering Techniques

6.4.3 Method C

The domain models are encoded with the help of tools in GIPO-III, using basic consis-

tency checkers as well as the more complex transparency property checker. Hierarchies

of classes are used to capture state: for example, in the Road Traffic Accident domain,

in a particular state an ambulance may have a position, be in service and available. The

set of constraints is added using GIPO-III to encode each of the dynamic object class’s

possible behaviour that is the range of states that each object can occupy.

Operationality. Structures of the solutions are similar to solutions generated by the

LPG planner on the PDDL model developed in itSIMPLE. The operationality of

the domain model is evaluated with the following features.

• Performance - The performance of a model depends on the expertise of the

knowledge engineer for using GIPO and the associated language OCLh.

• Model Efficiency - GIPO generated domain model is efficient to test with

the planner and produce plan similar to the models produced by other meth-

ods. The software comes with only one HTN planner called HyHT N. So,

it is difficult to compare the performance of the domain model with the

PDDL one.

Collaboration. GIPO has been designed for a single user. However, it is possible to

import models (projects) developed by different users. This helps the exchange

of ideas and comments among the users.

Maintenance. Domain model generated by GIPO is generally maintained in the tool

environment. Maintenance of GIPO can be evaluated with the following features

of KE tools.

135

6. Evaluation of Knowledge Engineering Techniques

• Reverse Engineering - Like itSIMPLE, once the OCLh domain model has

been generated, if it is modified outside the tool environment, it is in gen-

eral not possible to reverse engineer into the environment.

• Change Handling - The changes in any part of the domain model within

the tool environment can be handled by the user manually. The graphical

model of GIPO helps modelers to manage change during debugging and

testing.

Experience. The typical user is not required to be an OCL expert, but he should have

some basic knowledge of the language or the tool. The experience of using the

tool can benefit the user in the following way.

• The GUI support of GIPO gives the user better experience of modelling

than the hand-coding.

• Code generated by the tool is clear and easy to read.

• GIPO design process guides modelers from the requirement design and

planning.

• GIPO allows the user to check the domain model with the integrated plan-

ner.

Efficiency. GIPO does not require creating UML diagram like itSIMPLE but requires

some transition diagram to create operators. The design efficiency of using GIPO

can be summarised as below -

• Requirement Analysis - Like itSIMPLE, GIPO requires to draw diagrams

in order to produce OCLh domain models.

136

6. Evaluation of Knowledge Engineering Techniques

• Design Process - The design process that is used by GIPO is a formal pro-

cess which associates with the structure of the language. For example,

creating a domain model in OCL using GIPO, a user must create sorts

first before creating any predicates. This ensures less bugs in the produced

model.

• GUI Support - GIPO integrates a number of GUI tools to help the user to

create OCL and OCLh type domain models. It includes Object Life History

(OLH) Simpson (2005) diagram that helps user to draw objects and their

relationship.

• Design Speed and Acceptability - Using GIPO it is usually faster to create

first steps such as sorts, predicates and states, of the domain model. The

process becomes slower during the creation of operators and tasks.

Debugging. The creation of a dynamic hierarchy of object classes encoded constraints

of the domain explicitly, and this is what is used by GIPO’s tool support to

check operator schema, states, predicates etc., and identify bugs prior to dynamic

testing. We check the debugging facility of GIPO uses the following features -

• Syntax Error - In GIPO, the initial verification identifies the syntax and

typographical error e.g., incorrect predicate names.

• Semantic Error - Each step of domain modelling in GIPO provides the

facility to verify the current update.

• Static Validation - Static Validation of GIPO is distinct from the other GUI

tool. The validation can be used to check each of the steps of modelling

phase which reduces overall error.

137

6. Evaluation of Knowledge Engineering Techniques

Criteria Hand Coding itSIMPLE GIPO Comment
Operationality Produced model

is not so clear to
read

Produced model
is clear and read-
able

Produced model
is clear and read-
able

Tool generated
domain models
are readable and
clear. Planning
depends on plan-
ning algorithm.

Collaboration NO NO NO KE methods
should be col-
laborative for
real-world appli-
cation.

Maintenance Easy for the ex-
pert who devel-
oped but difficult
for other

Easy in tool envi-
ronment

Easy in tool envi-
ronment

Domain model
should be
portable i.e.,
should be main-
tained in any
platform.

Experience PDDL experts Users do not need
to be PDDL ex-
pert

Users do not need
to be OCL expert

Tools should tar-
get to the non-AI
expert users.

Efficiency Requires more
dynamic test

Efficient to de-
sign

Efficient to de-
sign

Design efficiency
depends on the
user expertise.

Debugging Depends on dy-
namic test

No formal debug-
ging

Static validation
at each step

Every KE method
should have some
mechanism for
early debugging.

Support Only language
support available

Supporting docu-
ments available

Supporting docu-
ments available

Should be up-
dated for each
version.

Table 6.3: Evaluating of KE Tools with set criteria

• Dynamic Validation - GIPO comes with integrated planners to check do-

main models and to generate plans. It is possible to check the plan validity

by GUI tools called plan stepper and animation that comes with the tool.

Support. GIPO comes with documentation which includes a user manual, tutorial and

OCL language manual. It is easy to find information and solutions for most of

the common issues.

138

6. Evaluation of Knowledge Engineering Techniques

6.4.4 Observation of the Evaluation

It has been observed that creating different models does not take very different amounts

of time (taking into account the developers’ expertise) while exploiting method A and

B. Method C usually requires significantly more time resource than the others, because

of the unfamiliar notation compared to UML or PDDL, and the encoding of complex

HTN methods. However, in method C creation of a dynamic hierarchy of object classes

encoded constraints of the domain explicitly, and this is what is used by GIPO’s tool

support to check operator schema, states, predicates etc., and identify bugs prior to

dynamic testing. While one could argue that dynamic testing will pick bugs up anyway,

there may be behaviours that have not been picked up in the tests done in method A and

B, that result from hidden bugs. On the other hand the UML description of the domain

that is required by itSIMPLE helps to prevent many unwanted behaviours. Method A is

the most sensitive to bugs, and the quality of the produced model completely depends

on the expertise of the user.

Considering the maintenance of the generated models, method B provides the bet-

ter instruments for changing a model. The UML description provides a sort of docu-

mentation that can be exploited for a quick understanding of the domain model and for

applying changes. An issue that we noticed while working with itSIMPLE is that it

is not possible to import a model that, even if generated by using itSIMPLE, has been

slightly modified with a different tool. This forces the user to make several steps in

the framework also for very small changes. In method B, the unfamiliar notation of

GIPO does not really make it easy, for a non-expert user, to come back and change the

model.

Regarding the generated models, there are several interesting aspects to consider.

139

6. Evaluation of Knowledge Engineering Techniques

Models generated by method A are usually very compact in terms of numbers of lines,

predicates and types, but they are usually over-constrained in order to avoid unwanted

behaviours. The iterative process of analyzing produced plans, identifying bugs and

removing them from the model leads to incrementally add constraints in the form of

pre- and/or post- conditions. The structured and principled process of encoding the

requirements of Method B usually leads to domain encodings that are clear and easy

to understand, even if less compact (around 10% longer) than the ones generated by

method A. It is worth to mention that the good quality of the encoded domains leads

to better quality of generated plans. The quality of models generated by method C

is harder to understand due to the different language. The models are significantly

larger than PDDL ones (about two times longer in terms of number of lines) and need

an HTN planner to solve corresponding problems. We observed that the structures

of the solutions are similar to solutions generated by domain-independent planners on

models developed by other methods. A possible advantage of this approach we believe

might be better scalability than the PDDL models. However, current OCLh techniques

do not support durative actions, which makes it less interesting in domains where time

optimization is critical. Summary of the this evaluation has been provided in Table 6.3.

6.5 Evaluation of KE Methods with ICKEPS Criteria

The main goal of ICKEPS competition is to accelerate the progress of Knowledge

Engineering for automated planning research (Bartak and McCluskey, 2006). This

series of competition has promoted the development of KE tools and share them to the

research community in order to create reliable planning system (Bartak et al., 2010).

Although, first two competitions focused on general aspects of KE tools but the latest

140

6. Evaluation of Knowledge Engineering Techniques

ICKEPS focused on the particular aspects. The details can be found on the competition

websites1 although a brief discussion has been provided in Chapter 2. In this section

we consider the criteria that have been used in the 4th ICKEPS2 competition in order

to evaluate the evaluations that used in the previous sections of this chapter.

6.5.1 Portability

The tools (itSIMPLE and GIPO) have been downloaded from the authors designated

web sites. Moreover, both of the tools execute on common Operating Systems like

Windows and Linux. Hence, we can say the tools are portable and not considered as

evaluation criteria in this this.

6.5.2 Robustness

This is a software engineering issue to find if the tool is sensible to any domain. In our

experiment and experience we found that both of them are general tools and suitable

for developing various type domain models. It is possible to extend both of the tools to

capture different types of domain models such as continuous planning domain model.

6.5.3 Usability

The users of the tools are mainly planning expert who has expertise on the particular

domain modelling languages. Generally, it is easy for the expert to use the tool than

the novice. In our evaluation we use efficiency to find the usability of the tool from our

experiment of modelling RTA domain model. Method B (itSIMPLE) forces the user

1http://www.icaps-conference.org/index.php/Main/Competitions
2http://icaps12.poli.usp.br/icaps12/ickeps

141

6. Evaluation of Knowledge Engineering Techniques

to design UML diagrams to find the domain model, i.e., the user should have some

knowledge of UML as well as the output planning language. On the other hand, the

Method C (GIPO) also uses a graphical approach like Object Life History (OLH) and

transition diagrams.

6.5.4 Spread of use of the tool

Both of the tools that have been used in this thesis are widely used especially the itSIM-

PLE for formulating PDDL domain models. This has not been chosen in our evaluation

as this does not directly relates to the developing domain model or performance of the

tool.

6.5.5 Perceived added value

Both of the tools have great impact on the KE research area. For example, GIPO

is one of the first general purpose tools that won the first ICKEPS which inspired

the research community to build KE tools. On the other hand, itSIMPLE uses the

traditional software engineering method by using s UML design which is helpful for

the non-expert user to build domain models without knowing the modelling language.

6.5.6 Flexibility

Both GIPO and itSIMPLE provides guidelines to follow for creating domain models.

This criterion is mainly for the competition purpose but from our experience and eval-

uation we can say that any competent user can create domain models by using those

tools.

In the ICKEPS competition the criteria that have been used are mostly irrelevant

142

6. Evaluation of Knowledge Engineering Techniques

to our experiment. In this thesis we mainly consider the usefulness of the KE tool for

creating real-world domain model. We also consider the product (domain model) cre-

ated by the tool whether it is useful, better than compare to the hand-encoding domain

models, increase or decrease the plan quality, maintenance, debugging. It has been

noticed that the capability of KE tools has greater impact on the domain models during

plan generation. For instance, tools that use debugging facility in the early stage of

domain development always reduces time during the dynamic testing. Although, there

is not ideal tool available for domain modelling but some of the important capabilities

could make the domain independent tools richer.

6.6 Insights into the Evaluation Processes

To the best of our knowledge this is the first effort to evaluate the KE tools and tech-

niques for automated planning. It can be noted that the evaluation processes are rela-

tively new in this area of research. In this section, we discuss the evaluation processes

that used in this thesis in contrast to the process used in the ICKEPS competition.

Also, we highlight the advantages and disadvantages of the evaluation methods for

state-of-the art KE tools.

6.6.1 Observation

Three KE methods used in this were observed by developing a new real-world domain

model called Road Traffic Accidents (RTA) and testing the domain model using state-

of-the-art planners. In the core of the observation we use two broad categories of

software engineering metrics called process and product.

143

6. Evaluation of Knowledge Engineering Techniques

• process - The design process has been observed to understand the operationality

and efficiency of the tool or the technique. It has been noted that the design pro-

cesses are completely different from each other. On the other hand, the ICKEPS

did not take into account such criteria to evaluate hands on experience of the

user as it is not an important criterion for competition environment. However,

the process of developing domain models using different methods depends on

the user’s expertise, efficiency of the tool and knowledge on the modelling lan-

guage. The process of developing a domain model using any tool gives more

understanding as it reflects the user’s experience. The user experience is more

important for developing real-world domain model.

• product - The main goal of the domain modelling tools and techniques is to

produce error free domain models for automated planning application. As we

experienced, the method A requires more iteration to remove the entire bug from

the domain model. Moreover, an error free domain model does not guarantee

any valid plan which requires checking the semantic error. There are only a few

tools that provide such facility to identify or reduce semantic errors. In method

B, itSIMPLE UML diagrams help to keep the error level minimum. On the other

hand, method B checks for error in every step of the development and does the

consistency check.

There were five RTA domain models developed by using three methods. Prod-

ucts developed by method A & B could be compared as they share same repre-

sentation language called PDDL. The result of this evaluation is very interesting

as we use same planner for the same domain model to solve same planning

problem which gives different results. On the other hand, in the competition the

144

6. Evaluation of Knowledge Engineering Techniques

product (domain model) was not considered to evaluate KE tools.

6.6.2 Set Criteria

The criteria were distilled from the features extracted in Chapter 3 and from the expe-

rience of designing and developing the RTA domain model not influenced by ICKEPS

competitions. The goal of a competition is to find the best tool in the selected track

where our approach analyse deeper criteria. For example, debugging and maintaining

two important criteria for any software development tool. Debugging is important to

get error free domain model. The produced domain models may require improvement

within or outside tool environment. There should be a proper guideline for maintaining

the domain model by providing some kind of documentation.

6.7 Requirements for Designing Future KE Tools

The comparison of the three methods for encoding RTA domain model was fruitful. It

gave us the opportunity for understanding the strengths and weakness of current KE

tools and techniques. Moreover, evaluating KE tools with the set criteria and with the

ICKEPS requirements give the requirements for building future KE tools.

6.7.1 Expertise

A main issue of current KE approaches for encoding domain models is that they re-

quire a specific expertise. Method A (and some approaches based on existing KE tools

such as PDDL Studio) requires a PDDL expert; method B requires some expertise in

UML language, which is common knowledge mainly in software engineering. Finally,

145

6. Evaluation of Knowledge Engineering Techniques

method C requires some expertise in the OCLh language, which is not a widely known

language in the AI Planning community. This requirement might significantly reduce

the number of potential users of the KE tools. Users with different research back-

ground usually do not have required expertise, so they are not able to exploit existing

approaches for encoding domain models. They require an expert that, due to his lim-

ited knowledge of the real world domain, will introduce some noise in the encoding.

Moreover, given the hardness of generating domain models for planning, many users

are not exploiting automated planning but use easier approaches, even if they are less

efficient. It is also worth to consider that KE tools for encoding domain models are,

usually, not very well known outside the planning community. This, again, reduces the

number of users that could exploit them.

6.7.2 Team Work

Current KE tools are designed for a single user. This is usually fine; actually, the gen-

erated domain models are encoding easy domains or significantly simplified versions

of complex domains. On the other hand, the number of efficient KE tools is growing,

especially in the last few years. Hopefully, in coming years, we will be able to encode

very accurate models of complex real world domains. In this scenario, it seems rea-

sonable that many experts will have to cooperate for generating a domain model. From

this perspective it is straightforward to consider the need of tools explicitly designed

for team work as a critical requirement for future KE tools.

146

6. Evaluation of Knowledge Engineering Techniques

6.7.3 Maintenance

Users are not supported by existing KE tools for writing documentation related to the

generated model. Users are usually not writing any sort of documentation. The result

is that it is often quite hard to change an existing domain model after a few months.

Providing a support for writing documentation, would make changes easier and would

also help the users while encoding the model. The process of describing what has

been done is a first test for the model. Furthermore, some tools are not able to handle

domain models that have been changed manually, or by using a different tool. This

limits the support that such tools could give to the life cycle of domain models.

6.7.4 Debug

We noticed that the checking tools provided by GIPO are very helpful for minimis-

ing the time spent on dynamic debug. Moreover, exploiting the automatic debug is

a strategy for reducing the number of bugs that remain in the domain model, since

many problems are usually not easy to find by dynamic debug. A significant improve-

ment in the techniques for automatic debug of static/dynamic constraints will lead to

significantly better encoded domain models.

6.7.5 Language support

Existing KE tools for generating domain models for planning have a very limited sup-

port of the PDDL language. Most of them are supporting only PDDL, while a few of

them are also able to handle some structures of PDDL2.1 (Fox and Long, 2001). It is

noticeable that the latest versions of PDDL have some features (e.g. durative actions,

actions costs etc.) that are fundamental for a correct encoding of real world domains.

147

6. Evaluation of Knowledge Engineering Techniques

Furthermore, none of the existing tools support PDDL+ (Howey et al., 2004). PDDL+

provides features for capturing features of continuous planning, which are needed in

systems working in real-time and that must be able to react on unexpected events.

6.8 Summary

This chapter evaluates three knowledge engineering tools and techniques by using an

experimental setup on Road Traffic Accident (RTA) domain model. We also evaluate

those methods by using some set criteria to understand the future needs for knowl-

edge engineering tools development. This evaluation gives many insights on domain

modelling for automated planning. It has been noted that the good quality domain

model leads to the better plan generation. The experiment shows that the RTA domain

encoded in PDDL exploiting method B requires less CPU time for LPG to generate

plans. Moreover, the plans have a significantly shorter duration since LPG is able to

effectively employ all the available emergency vehicles. This is due to a less con-

strained domain description that still allows the generation of legal and sound plans.

These results also give some insights of the evaluation process that can play an impor-

tant role to find better tools or methods for modelling real-world planning applications

as well as will be helpful for developing future KE tools.

148

Chapter 7

Conclusion and Future Work

7.1 Summary

In this thesis we have developed requirements for a new planning domain, the RTA

domain, addressing the problem of managing emergency situations in road traffic ac-

cidents. We have elicited a set of requirements, and used domain analysis to make

precise and unambiguous relevant features for the planning problem. We then de-

scribed three methods: (i) Hand-Coding: the traditional method of a PDDL expert and

text editor, (ii) itSIMPLE: a leading planning GUI with built in UML modelling tools

and (iii) GIPO: an object-based notation inspired by formal methods used for formu-

lating requirements into domain models, and set up an evaluation experiment where

they were used to design and create RTA domain models. Special attention was given

to Knowledge Engineering (KE) aspects such as how long it takes to create a model,

which tools can be used to verify the model, which tool or technique uses better tech-

niques for finding errors, what kind of error can a tool identify etc. Evaluating these

three approaches with respect to qualitative and quantitative measures gives a range

of interesting insights into their strengths and weaknesses for encoding new domains.

Evaluation measures used are based on two standard categories in the software engi-

149

7. Conclusion and Future Work

neering literature - product (the domain model, and its use with a planner to produce

plans) and process (the method of encoding and debugging the domain model). An

important result of these evaluations was that itSIMPLE led to models developed that

facilitated state-of-the-art domain-independent planners in producing good quality so-

lutions, even though the developers were not experts in using the tool. This evaluation

shows that an important line of research is to investigate coupling knowledge engineer-

ing tools and planners more tightly, so that the effects of particular design decisions

influenced by the tools can be seen directly in the quality of planning solutions.

It has also been noticed that most of the existing domain-independent planners do

not support many features required for modelling real world situations: i.e., negative

preconditions and durative actions. This is, clearly, a big limitation for their applica-

tion. Given such limitations we selected, for comparing the generated domains, only

two well-known planners that can handle required features. Comparing the hand coded

method (method A) and the structured method (method B) was most fruitful, as they

both produced PDDL models.

The results of the comparison were illuminating. The KE based method achieved

great results in both process and product metrics. From the process point of view,

the method B is easy to replicate and does not require a high expertise in planning

languages. From the product point of view, method B domains are easy to read and

understand, while method A ones are complex to read and to maintain. Moreover,

method B domains have shown to improve the performance of both the selected plan-

ners, even if on different metrics; LPG is significantly faster and SGPlan generates

better quality plans.

Given the fact that different planners exploit different search techniques, they could

have very different performance on the same domain encoding, as shown in our exper-

150

7. Conclusion and Future Work

imental analysis. The strategy that we suggest, that is derived from the experience

gathered in this work, is -

(i) to define a metric to be optimized,

(ii) select a (set of) planner(s) which handle the required features,

(iii) test the planners on some easy instances, and

(iv) selecting the planners, or the set of planners, which achieves the best results with

respect to the predefined metric.

Regarding the construction of the RTA domain model in the HTN language (OCLh)

utilising GIPO, we observed that the extensive use of static tools resulted in a model

that required less dynamic testing during the debugging phase, though resulting in a

model of significantly larger size. An advantage of using an HTN encoding, however,

is that methods compound building blocks of plans and therefore allow developers to

encode intuitive plan traces.

These knowledge engineering methods have also been evaluated using a set of

criteria, i.e., operationality, collaboration, maintenance, experience, efficiency, debug-

ging and support. We highlighted the strengths and weakness of existing methods and

tools and we discussed the needed in the design of future tools support for PDDL-

inspired development. We observed that creating different models does not take very

different amounts of time while developing the methods A and B. Method C requires

significantly more time, since this method checks the consistency of the hierarchy and

invariants as well as the HTN methods and tasks. Compare to method A and C, B

provides better facilities to maintain the constructed domain model. The UML dia-

grams act as documentation that helps the user to understand and amend the domain

151

7. Conclusion and Future Work

model if required. The hand-coded method A relies on the dynamic testing for de-

bugging and removes bugs by a number of iterations. Method B, itSIMPLE does not

provide any static testing as method A but uses a structured process which keeps the

error level lower than the A. However, method C generated domain model is harder to

understand as it is a different language and produces larger size domain model than the

other methods, but reduces bugs in the early stage of domain development by providing

static checks.

7.2 Limitations of this Research

This thesis contains a number of assumptions and limitations to restrict the scope and

scale of the research which have been necessary to identify the specific project. The

limitations that have been identified are -

1. The experiment has been conducted by constructing planning domain using

PDDL, PDDL2.1 and OCLh languages to enforce two leading (STRIPS and

HTN) planning systems.

2. The experiments used three planners LPG, SGPlan and HyHT N. HyHT N is

currently the only available planner for object-centred HTN planner. LPG and

SGPlan both can use negative pre-conditions which is necessary for real-world

domain.

3. Evaluation metrics, process and project, have been used from software engineer-

ing discipline since there is no such set metrics for evaluating domain modelling

tools, techniques and the model itself.

152

7. Conclusion and Future Work

4. This thesis uses only one real-world domain, Road Traffic Accident (RTA), for

constructing and evaluating knowledge engineering tools and techniques.

7.3 Future Work

This research can be extended in many different ways in the future. The future direc-

tions of the research can be summarised as below:

• Future work will involve a simulation framework for evaluating plan execu-

tion, where we can couple model design and plan generation more tightly. This

may reveal opportunities for improving domain models in general, and the RTA

model in particular.

• We are also interested in simulating more complex road accidents, with blocked

roads or accidents occurring in locations difficult to reach (e.g. on narrow roads).

Such complex domain model can be tested by using a wide range of planners.

• It would be more appropriate to consider more expressive approaches, for in-

stance, PDDL+ (Howey et al., 2004), capturing features of continuous planning

since it might produce more robust system working in real-time and be able to

react on unexpected events.

• We are also interested in improving the KE tools comparison by considering also

other existing tools and a larger set of features to compare such as the quality of

the solutions found, and run-times of different planners on generated domain

models.

153

7. Conclusion and Future Work

• Another interesting area might be to compare our centralised approach to us-

ing a multi-agent approach which moves the problem from a centralised to a

distributed point of view.

• In the future work it would be worth to consider evaluating the automated tools

like ARMS (Wu et al., 2005), LOCM (Cresswell et al., 2013) for knowledge

engineering. The evaluation can be assisted by a number of domain features,

such as, domain types, relation fluency, inconsistent effects and reversible ac-

tions (Wickler, 2011).

154

Appendix A: Hand-coded PDDL

Domain Model

Hand-coded PDDL file for Road Traffic Accident(RTA) Domain model.

(define (domain accidentrecd)

(:requirements :adl)

(:types

ambulance police_car tow_truck fire_brigade - vehicle

acc_victim vehicle car - subject

city_location city - location

accident_location hospital police_station garage

fire_station - city_location

route

accident)

(:predicates

(at ?physical_obj1 - subject ?location1 - location)

(available ?vehicle1 - vehicle)

(busy ?vehicle1 - vehicle)

(waiting ?subject1 - subject)

(certified ?subject1 - subject)

(aided ?subject1 - acc_victim)

(uncertified ?subject1 - subject)

155

(delivered ?subject1 - subject)

(loaded ?subject1 - subject ?vehicle1 - vehicle)

(identified ?accident1 - accident)

(vehicle_involve ?vehicle1 - vehicle)

(connects ?route1 - route ?location1 - location

?location2 - location)

(in_city ?location1 - location ?city1 - city)

(route_available ?route1 - route)

(trapped ?hum - acc_victim)

(on_fire ?car_acc - car)

)

(:action confirm_accident

:parameters (?V - police_car ?P - subject ?A - accident_location)

:precondition (and

(at ?V ?A)

(at ?P ?A)

(uncertified ?P)

)

:effect (and

(not (uncertified ?P))

(waiting ?P)

(certified ?P)

)

)

(:action untrap

:parameters (?V - fire_brigade ?P - acc_victim

?A - accident_location)

:precondition (and

(at ?P ?A)

(at ?V ?A)

156

(available ?V)

(certified ?P)

(waiting ?P)

(trapped ?P)

)

:effect (and

(not (available ?V))

(not (trapped ?P))

(available ?V)

)

)

(:action extinguish_fire

:parameters (?V - fire_brigade ?P - car ?A - accident_location)

:precondition (and

(at ?P ?A)

(at ?V ?A)

(available ?V)

(certified ?P)

(waiting ?P)

(on_fire ?P)

)

:effect (and

(not (available ?V))

(not (on_fire ?P))

(available ?V)

)

)

(:action first_aid

:parameters (?V - ambulance ?P - acc_victim ?A - accident_location)

:precondition (and

157

(at ?P ?A)

(at ?V ?A)

(certified ?P)

(waiting ?P)

(not (trapped ?P))

)

:effect (and

(aided ?P)

)

)

(:action load_victim

:parameters (?V - ambulance ?L - accident_location ?P - acc_victim)

:precondition (and

(at ?V ?L)

(at ?P ?L)

(certified ?P)

(waiting ?P)

(aided ?P)

(available ?V)

)

:effect (and

(not (waiting ?P))

(not (at ?P ?L))

(not (available ?V))

(busy ?V)

(loaded ?P ?V)

)

)

(:action move

:parameters (?V - vehicle ?O - location ?City - city

158

?L - location ?City1 - city ?R - route)

:precondition (and

(at ?V ?O)

(in_city ?O ?City)

(in_city ?L ?City1)

(connects ?R ?City ?City1)

)

:effect (and

(not (at ?V ?O))

(at ?V ?L)

)

)

(:action move_in_city

:parameters (?V - vehicle ?O - location ?City - city ?L - location)

:precondition (and

(at ?V ?O)

(in_city ?O ?City)

(in_city ?L ?City)

)

:effect (and

(not (at ?V ?O))

(at ?V ?L)

)

)

(:action load_car

:parameters (?V - tow_truck ?L - accident_location ?P - car)

:precondition (and

(at ?V ?L)

(at ?P ?L)

(waiting ?P)

159

(certified ?P)

(available ?V)

(not (on_fire ?P))

)

:effect (and

(not (available ?V))

(busy ?V)

(not (waiting ?P))

(not (at ?P ?L))

(loaded ?P ?V)

)

)

(:action unload_car

:parameters (?P - car ?L - garage ?V - tow_truck)

:precondition (and

(at ?V ?L)

(loaded ?P ?V)

(busy ?V)

)

:effect (and

(not (loaded ?P ?V))

(at ?P ?L)

(not (busy ?V))

(waiting ?P)

(available ?V)

)

)

(:action unload_victim

:parameters (?P - acc_victim ?L - hospital ?V - ambulance)

:precondition (and

160

(at ?V ?L)

(busy ?V)

(loaded ?P ?V)

(certified ?P)

(aided ?P)

)

:effect (and

(available ?V)

(not (loaded ?P ?V))

(at ?P ?L)

(not (busy ?V))

(waiting ?P)

(available ?V)

)

)

(:action deliver_victim

:parameters (?P - acc_victim ?L - hospital)

:precondition (and

(at ?P ?L)

(waiting ?P)

(certified ?P)

(aided ?P)

)

:effect (and

(not (waiting ?P))

(not (certified ?P))

(not (aided ?P))

(delivered ?P)

)

)

161

(:action deliver_vehicle

:parameters (?P - car ?L - garage)

:precondition (and

(at ?P ?L)

(waiting ?P)

(certified ?P)

)

:effect (and

(not (waiting ?P))

(not (certified ?P))

(delivered ?P)

)

)

)

162

Appendix B: Hand-coded PDDL2.1

Domain Model

Hand-coded PDDL2.1 domain model for Road Traffic Accident (RTA) domain.

(define (domain accidentrecd)

(:requirements :typing :durative-actions)

(:types

ambulance police_car tow_truck fire_brigade - vehicle

acc_victim vehicle car - subject

city_location city - location

accident_location hospital police_station garage fire_station - city_location

route

accident)

(:predicates

(at ?physical_obj1 - subject ?location1 - location)

(available ?vehicle1 - vehicle)

(busy ?vehicle1 - vehicle)

(waiting ?subject1 - subject)

(certified ?subject1 - subject)

(aided ?subject1 - acc_victim)

(uncertified ?subject1 - subject)

(delivered ?subject1 - subject)

163

(loaded ?subject1 - subject ?vehicle1 - vehicle)

(identified ?accident1 - accident)

(vehicle_involve ?vehicle1 - vehicle)

(connects ?route1 - route ?location1 - location ?location2 - location)

(in_city ?location1 - location ?city1 - city)

(route_available ?route1 - route)

(trapped ?hum - acc_victim)

(on_fire ?car_acc - car)

)

(:functions

(distance ?O - location ?L - location)

(route-length ?O - route)

(confirmation-time)

(firstaid-time)

(speed ?V - vehicle)

(loading-time)

(loading-time-car)

(unloading-time)

(delivery-time)

(untrapping-time)

(extinguishing-time)

)

(:durative-action confirm_accident

:parameters (?V - police_car ?P - subject ?A - accident_location)

:duration (= ?duration (confirmation-time))

:condition (and

(at start (at ?V ?A))

(at start (at ?P ?A))

(at start (uncertified ?P))

164

)

:effect (and

(at start (not (uncertified ?P)))

(at end (waiting ?P))

(at end (certified ?P))

)

)

(:durative-action untrap

:parameters (?V - fire_brigade ?P - acc_victim ?A - accident_location)

:duration (= ?duration (untrapping-time))

:condition (and

(at start (at ?P ?A))

(at start (at ?V ?A))

(at start (certified ?P))

(at start (available ?V))

(at start (waiting ?P))

(at start (trapped ?P))

)

:effect (and

(at start (not (available ?V)))

(at end (not (trapped ?P)))

(at end (available ?V))

)

)

(:durative-action extinguish_fire

:parameters (?V - fire_brigade ?P - car ?A - accident_location)

:duration (= ?duration (extinguishing-time))

:condition (and

(at start (at ?P ?A))

(at start (at ?V ?A))

165

(at start (available ?V))

(at start (certified ?P))

(at start (waiting ?P))

(at start (on_fire ?P))

)

:effect (and

(at start (not (available ?V)))

(at end (not (on_fire ?P)))

(at end (available ?V))

)

)

(:durative-action first_aid

:parameters (?V - ambulance ?P - acc_victim ?A - accident_location)

:duration (= ?duration (firstaid-time))

:condition (and

(at start (at ?P ?A))

(at start (at ?V ?A))

(at start (certified ?P))

(at start (waiting ?P))

(at start (not (trapped ?P)))

)

:effect (and

(at start (not (waiting ?P)))

(at end (waiting ?P))

(at end (aided ?P))

)

)

(:durative-action load_victim

:parameters (?V - ambulance ?L - accident_location ?P - acc_victim)

:duration (= ?duration (loading-time))

166

:condition (and

(at start (at ?V ?L))

(at start (at ?P ?L))

(at start (certified ?P))

(at start (waiting ?P))

(at start (aided ?P))

(at start (available ?V))

)

:effect (and

(at start (not (available ?V)))

(at start (busy ?V))

(at start (not (waiting ?P)))

(at start (not (at ?P ?L)))

(at end (loaded ?P ?V))

)

)

(:durative-action move

:parameters (?V - vehicle ?O - location ?City - city

?L - location ?City1 - city ?R - route)

:duration (= ?duration (/ (route-length ?R) (speed ?V)))

:condition (and

(at start (at ?V ?O))

(at start (in_city ?O ?City))

(at start (in_city ?L ?City1))

(at start (connects ?R ?City ?City1))

)

:effect (and

(at start (not (at ?V ?O)))

(at end (at ?V ?L))

)

167

)

(:durative-action move_in_city

:parameters (?V - vehicle ?O - location ?City - city ?L - location)

:duration(=?duration(/(distance ?O ?L) (speed ?V)))

:condition (and

(at start (at ?V ?O))

(at start (in_city ?O ?City))

(at start (in_city ?L ?City))

)

:effect (and

(at start (not (at ?V ?O)))

(at end (at ?V ?L))

)

)

(:durative-action load_car

:parameters (?V - tow_truck ?L - accident_location ?P - car)

:duration (= ?duration (loading-time-car))

:condition (and

(at start (at ?V ?L))

(at start (at ?P ?L))

(at start (waiting ?P))

(at start (certified ?P))

(at start (available ?V))

(at start (not (on_fire ?P)))

)

:effect (and

(at start (not (available ?V)))

(at start (busy ?V))

(at start (not (waiting ?P)))

(at start (not (at ?P ?L)))

168

(at end (loaded ?P ?V))

)

)

(:durative-action unload_car

:parameters (?P - car ?L - garage ?V - tow_truck)

:duration (= ?duration (unloading-time))

:condition (and

(at start (at ?V ?L))

(at start (loaded ?P ?V))

(at start (busy ?V))

)

:effect (and

(at start (not (loaded ?P ?V)))

(at end (at ?P ?L))

(at start (not (busy ?V)))

(at end (waiting ?P))

(at end (available ?V))

)

)

(:durative-action unload_victim

:parameters (?P - acc_victim ?L - hospital ?V - ambulance)

:duration (= ?duration (unloading-time))

:condition (and

(at start (at ?V ?L))

(at start (loaded ?P ?V))

(at start (certified ?P))

(at start (aided ?P))

(at start (busy ?V))

)

:effect (and

169

(at start (not (loaded ?P ?V)))

(at end (at ?P ?L))

(at end (not (busy ?V)))

(at end (waiting ?P))

(at end (available ?V))

)

)

(:durative-action deliver_victim

:parameters (?P - acc_victim ?L - hospital)

:duration (= ?duration (delivery-time))

:condition (and

(at start (at ?P ?L))

(at start (waiting ?P))

(at start (certified ?P))

(at start (aided ?P))

)

:effect (and

(at start (not (waiting ?P)))

(at start (not (certified ?P)))

(at start (not (aided ?P)))

(at end (delivered ?P))

)

)

(:durative-action deliver_vehicle

:parameters (?P - car ?L - garage)

:duration (= ?duration (delivery-time))

:condition (and

(at start (at ?P ?L))

(at start (waiting ?P))

(at start (certified ?P))

170

)

:effect (and

(at start (not (waiting ?P)))

(at start (not (certified ?P)))

(at end (delivered ?P))

)

)

)

171

Appendix C: PDDL Domain Model

using itSIMPLE4.0

PDDL domain model generated by itSIMPLE4.0

(define (domain TrafficIncident)

(:requirements :typing :negative-preconditions :equality)

(:types

Physical_obj - object

Vehicle - Physical_obj

Rescue_v - Vehicle

Ambulance - Rescue_v

Tow_truck - Rescue_v

Police_car - Vehicle

FireService - Vehicle

Subject - Physical_obj

Acc_victim - Subject

Broken_vehicle - Subject

Human - object

City - object

Location - City

City_location - Location

Hospital - Location

172

Accident_location - Location

Police_station - Location

Garage - Location

Fire_Service_Station - Location

Route - object

)

(:predicates

(in_city ?loc - Location ?cit - City)

(at ?phy - Physical_obj ?loc - Location)

(moveable ?veh - Vehicle)

(available ?veh - Vehicle)

(busy ?veh - Vehicle)

(vehicle_involved ?veh - Vehicle)

(certified ?sub - Subject)

(loaded ?sub - Subject ?vehicle1 - Vehicle)

(unloaded ?sub - Subject)

(delivered ?sub - Subject)

(waiting ?sub - Subject)

(on_fire ?sub - Subject)

(aided ?acc - Acc_victim)

(working ?V - FireService ?P - Broken_vehicle)

(working_h ?V - FireService ?P - Acc_victim)

(trapped ?acc - Acc_victim)

(route_available ?rou - Route)

(connects ?rou - Route ?city1 - City ?city2 - City)

)

(:action move

:parameters (?V - Vehicle ?O - Location ?City - City

?L - Location ?City1 - City ?R - Route)

:precondition

173

(and

(at ?V ?O)

(moveable ?V)

(in_city ?O ?City)

(in_city ?L ?City1)

(not (= ?City ?City1))

(connects ?R ?City ?City1)

)

:effect

(and

(at ?V ?L)

(not (at ?V ?O))

)

)

(:action move_in_city

:parameters (?V - Vehicle ?O - Location

?City - City ?L - Location)

:precondition

(and

(at ?V ?O)

(moveable ?V)

(in_city ?O ?City)

(in_city ?L ?City)

(= ?City ?City)

)

:effect

(and

(at ?V ?L)

(not (at ?V ?O))

)

174

)

(:action first_aid

:parameters (?V - Ambulance ?L - Accident_location

?P - Acc_victim)

:precondition

(and

(at ?V ?L)

(at ?P ?L)

(certified ?P)

(not (on_fire ?P))

(not (trapped ?P))

)

:effect

(and

(aided ?P)

(waiting ?P)

)

)

(:action load_victim

:parameters (?V - Ambulance ?L - Accident_location

?P - Acc_victim)

:precondition

(and

(at ?V ?L)

(at ?P ?L)

(certified ?P)

(waiting ?P)

(aided ?P)

(available ?V)

)

175

:effect

(and

(not (waiting ?P))

(not (available ?V))

(loaded ?P ?V)

(busy ?V)

)

)

(:action unload_victim

:parameters (?P - Acc_victim ?L - Hospital ?V - Ambulance)

:precondition

(and

(at ?V ?L)

(loaded ?P ?V)

(busy ?V)

)

:effect

(and

(not (loaded ?P ?V))

(at ?P ?L)

(not (busy ?V))

(available ?V)

)

)

(:action deliver_victim

:parameters (?P - Acc_victim ?L - Hospital)

:precondition

(at ?P ?L)

:effect

(delivered ?P)

176

)

(:action confirm_accident

:parameters (?V - Police_car ?P - Subject

?A - Accident_location)

:precondition

(and

(at ?V ?A)

(at ?P ?A)

(not (certified ?P))

)

:effect

(and

(at ?V ?A)

(at ?P ?A)

(certified ?P)

)

)

(:action load_broken_vehicle

:parameters (?V - Tow_truck ?L - Accident_location

?P - Broken_vehicle)

:precondition

(and

(at ?V ?L)

(at ?P ?L)

(certified ?P)

(not (on_fire ?P))

(available ?V)

)

:effect

(and

177

(not (waiting ?P))

(not (at ?P ?L))

(loaded ?P ?V)

(not (available ?V))

)

)

(:action unload_broken_vehicle

:parameters (?P - Broken_vehicle ?L - Garage ?V - Tow_truck)

:precondition

(and

(at ?V ?L)

(loaded ?P ?V)

)

:effect

(and

(not (loaded ?P ?V))

(at ?P ?L)

(not (busy ?V))

(available ?V)

)

)

(:action deliver_broken_vehicle

:parameters (?P - Broken_vehicle ?L - Garage)

:precondition

(at ?P ?L)

:effect

(delivered ?P)

)

(:action start_rescue_victim

:parameters (?V - FireService ?P - Acc_victim

178

?A - Accident_Location)

:precondition (and

(at ?P ?A)

(at ?V ?A)

(available ?V)

(certified ?P)

(trapped ?P)

)

:effect (and

(not (available ?V))

(working_h ?V ?P)

)

)

(:action finish_rescue_victim

:parameters (?V - FireService ?P - Acc_victim

?A - Accident_Location)

:precondition (and

(at ?P ?A)

(at ?V ?A)

(certified ?P)

(trapped ?P)

(working_h ?V ?P)

)

:effect (and

(not (trapped ?P))

(available ?V)

(not (working_h ?V ?P))

)

)

(:action start_extinguish_fire

179

:parameters (?V - FireService ?P - Broken_vehicle

?A - Accident_location)

:precondition (and

(at ?P ?A)

(at ?V ?A)

(available ?V)

(certified ?P)

(on_fire ?P)

)

:effect (and

(not (available ?V))

(working ?V ?P)

)

)

(:action finish_extinguish_fire

:parameters (?V - FireService ?P - Broken_vehicle

?A - Accident_location)

:precondition (and

(at ?P ?A)

(at ?V ?A)

(certified ?P)

(on_fire ?P)

(working ?V ?P)

)

:effect (and

(not (working ?V ?P))

(not (on_fire ?P))

(available ?V)

)

)

180

)

181

Appendix D: PDDL2.1 Domain Model

using itSIMPLE4.0

Road Traffic Accident (RTA) domain model developed by itSIMPLE in PDDL2.1

(define (domain TrafficIncident)

(:requirements :typing :negative-preconditions :equality :durative-actions)

(:types

Physical_obj - object

Vehicle - Physical_obj

Rescue_v - Vehicle

Ambulance - Rescue_v

Tow_truck - Rescue_v

Police_car - Vehicle

FireService - Vehicle

Subject - Physical_obj

Acc_victim - Subject

Broken_vehicle - Subject

Human - object

City - object

Location - City

City_location - Location

Hospital - Location

182

Accident_location - Location

Police_station - Location

Garage - Location

Fire_Service_Station - Location

Route - object

)

(:predicates

(in_city ?loc - Location ?cit - City)

(at ?phy - Physical_obj ?loc - Location)

(moveable ?veh - Vehicle)

(available ?veh - Vehicle)

(busy ?veh - Vehicle)

(vehicle_involved ?veh - Vehicle)

(certified ?sub - Subject)

(loaded ?sub - Subject ?vehicle1 - Vehicle)

(unloaded ?sub - Subject)

(delivered ?sub - Subject)

(waiting ?sub - Subject)

(on_fire ?sub - Subject)

(aided ?acc - Acc_victim)

(trapped ?acc - Acc_victim)

(route_available ?rou - Route)

(connects ?rou - Route ?city1 - City ?city2 - City)

)

(:functions

(distance ?O - location ?L - location)

(route-length ?O - route)

(confirmation-time)

(firstaid-time)

(speed ?V - vehicle)

183

(loading-time)

(loading-time-car)

(unloading-time)

(delivery-time)

(untrapping-time)

(extinguishing-time)

)

(:durative-action move

:parameters (?V - Vehicle ?O - Location ?City - City

?L - Location ?City1 - City ?R - Route)

:duration (= ?duration (/ (route-length ?R) (speed ?V)))

:condition

(and

(at start (at ?V ?O))

(at start (moveable ?V))

(at start (in_city ?O ?City))

(at start (in_city ?L ?City1))

(at start (not (= ?City ?City1)))

(at start (connects ?R ?City ?City1))

)

:effect

(and

(at end (at ?V ?L))

(at start (not (at ?V ?O)))

)

)

(:durative-action move_in_city

:parameters (?V - Vehicle ?O - Location ?City - City

?L - Location)

184

:duration(=?duration(/(distance ?O ?L) (speed ?V)))

:condition

(and

(at start (at ?V ?O))

(at start (moveable ?V))

(at start (in_city ?O ?City))

(at start (in_city ?L ?City))

(at start (= ?City ?City))

)

:effect

(and

(at end (at ?V ?L))

(at start (not (at ?V ?O)))

)

)

(:durative-action first_aid

:parameters (?V - Ambulance ?L - Accident_location

?P - Acc_victim)

:duration (= ?duration (firstaid-time))

:condition

(and

(at start (at ?V ?L))

(at start (at ?P ?L))

(at start (certified ?P))

(at start (not (on_fire ?P)))

(at start (not (trapped ?P)))

)

:effect

(and

(at end (aided ?P))

185

(at end (waiting ?P))

)

)

(:durative-action load_victim

:parameters (?V - Ambulance ?L - Accident_location

?P - Acc_victim)

:duration (= ?duration (loading-time))

:condition

(and

(at start (at ?V ?L))

(at start (at ?P ?L))

(at start (certified ?P))

(at start (waiting ?P))

(at start (aided ?P))

(at start (available ?V))

)

:effect

(and

(at start (not (waiting ?P)))

(at start (not (available ?V)))

(at end (loaded ?P ?V))

(at start (not (at ?P ?L)))

)

)

(:durative-action unload_victim

:parameters (?P - Acc_victim ?L - Hospital ?V - Ambulance)

:duration (= ?duration (unloading-time))

:condition

(and

(at start (at ?V ?L))

186

(at start (loaded ?P ?V))

(at start (not (available ?V)))

)

:effect

(and

(at end (not (loaded ?P ?V)))

(at end (at ?P ?L))

(at end (available ?V))

)

)

(:durative-action deliver_victim

:parameters (?P - Acc_victim ?L - Hospital)

:duration (= ?duration (delivery-time))

:condition

(at start (at ?P ?L))

:effect

(at end (delivered ?P))

)

(:durative-action confirm_accident

:parameters (?V - Police_car ?P - Subject ?A - Accident_location)

:duration (= ?duration (confirmation-time))

:condition

(and

(at start (at ?V ?A))

(at start (at ?P ?A))

(at start (not (certified ?P)))

)

:effect

(and

(at start (at ?V ?A))

187

(at start (at ?P ?A))

(at end (certified ?P))

)

)

(:durative-action load_broken_vehicle

:parameters (?V - Tow_truck ?L - Accident_location

?P - Broken_vehicle)

:duration (= ?duration (loading-time-car))

:condition

(and

(at start (at ?V ?L))

(at start (at ?P ?L))

(at start (certified ?P))

(at start (not (on_fire ?P)))

(at start (available ?V))

)

:effect

(and

(at start (not (waiting ?P)))

(at start (not (at ?P ?L)))

(at end (loaded ?P ?V))

(at start (not (available ?V)))

)

)

(:durative-action unload_broken_vehicle

:parameters (?P - Broken_vehicle ?L - Garage ?V - Tow_truck)

:duration (= ?duration (unloading-time))

:condition

(and

(at start (at ?V ?L))

188

(at start (loaded ?P ?V))

)

:effect

(and

(at end (not (loaded ?P ?V)))

(at end (at ?P ?L))

(at end (not (busy ?V)))

(at end (available ?V))

)

)

(:durative-action deliver_broken_vehicle

:parameters (?P - Broken_vehicle ?L - Garage)

:duration (= ?duration (delivery-time))

:condition

(at start (at ?P ?L))

:effect

(at end (delivered ?P))

)

(:durative-action rescue_victim

:parameters (?V - FireService ?P - Acc_victim

?A - Accident_Location)

:duration (= ?duration (untrapping-time))

:condition (and

(at start (at ?P ?A))

(at start (at ?V ?A))

(at start (available ?V))

(at start (certified ?P))

(at start (trapped ?P))

)

:effect (and

189

(at start (not (available ?V)))

(at end (not (trapped ?P)))

(at end (available ?V))

)

)

(:durative-action extinguish_fire

:parameters (?V - FireService ?P - Broken_vehicle

?A - Accident_location)

:duration (= ?duration (extinguishing-time))

:condition (and

(at start (at ?P ?A))

(at start (at ?V ?A))

(at start (available ?V))

(at start (certified ?P))

(at start (on_fire ?P))

)

:effect (and

(at start (not (available ?V)))

(at end (not (on_fire ?P)))

(at end (available ?V))

)

)

)

190

Appendix E: OCLh Domain Model

using GIPO-III

Road Traffic Domain Model in OCLh, generated by GIPO-III.

/**

* All rights reserved. Use of this software is permitted for

*non-commercial research purposes, and it may be copied only for that use.

* All copies must include this copyright message. This software

is made available AS IS, and

* neither the GIPO team nor the University of Huddersfield make any warranty

* about the software or its performance.

*

* Automatically generated OCL Domain from GIPO Version 3.0

*

* Author: Shahin Shah

* Institution: University of Huddersfield

* Date created: August 2011

* Date last modified: 2013/01/10 at 05:26:33 PM GMT

* Description:

* The main goal of this domain is to model road traffic domain

in Ainley top roundabout

* There is an area West Yorkshire with 8 different

191

zones(Ainley top, Huddersfield, Queensbury, bradley,

Brighouse, Greetland, Bailiff Bridge and Halifax) where

* each zone has number of location where accident

can happen.

* There are a number of service vehicle available to

take accident victims to hospital,

* broken vehicle to recovery center and police station

to take the suspect.

*/

domain_name(rta).

option(hierarchical).

% Sorts

sorts(primitive_sorts,[ambulance,tow_truck,police_car,acc_victim,

broken_vehicle,accident_location,police_station,hospital,

garage,aclocation,route]).

sorts(physical_obj,[vehicle,subject]).

sorts(vehicle,[rescue_v,police_car]).

sorts(rescue_v,[ambulance,tow_truck]).

sorts(subject,[acc_victim,broken_vehicle]).

sorts(city,[location]).

sorts(location,[accident_location,police_station,hospital,garage]).

% Objects

objects(ambulance,[ambu_hud,ambu_hal,ambu_brig]).

objects(tow_truck,[tow_truck_halifax,tow_truck_huddersfield,

tow_truck_brighouse,tow_truck_queensbury]).

objects(police_car,[police_car_queen,police_car_bradley,

192

police_car_halifax,police_car_huddersfield]).

objects(accident_location,[accident_location_1,accident_location_2,

accident_location_3,accident_location_4]).

objects(police_station,[police_halifax,police_huddersfield,

police_queen,police_bradley]).

objects(hospital,[huddersfield_hospital,

halifax_hospital,brighouse_hospital]).

objects(garage,[garage_brighouse,

garage_huddersfield,garage_halifax,garage_queensbury]).

objects(route,[ainley_greet,bradley_ainley,

ainley_brigh,greet_halifax,

brigh_baliff,a629,brigh_queen,baliff_halifax,

hud_brigh,queen_halifax,

hud_bradley,ainley_halifax]).

% Predicates

predicates([

at(physical_obj,location),

moveable(vehicle),

available(vehicle),

busy(vehicle),

waiting(subject),

certified(subject),

uncertified(subject),

delivered(subject),

loaded(subject,vehicle),

identify(accident),

type_of_accident(accident,accident_type),

vehicle_involve(vehicle),

connects(route,city,city),

193

in_city(location,city),

in_area(location,city_location),

route_available(route)]).

% Object Class Definitions

substate_classes(physical_obj,P,[

[at(P,L)]]).

substate_classes(vehicle,T,[

[moveable(T),available(T)],

[moveable(T),busy(T)]]).

substate_classes(subject,P,[

[uncertified(P)],

[waiting(P),certified(P)],

[loaded(P,V),certified(P)],

[delivered(P)]]).

% Atomic Invariants

atomic_invariants([

in_city(accident_location_1,ainley_top),

in_city(accident_location_3,ainley_top),

in_city(accident_location_4,ainley_top),

in_city(police_huddersfield,huddersfield),

in_city(huddersfield_hospital,huddersfield),

in_city(garage_huddersfield,huddersfield),

in_city(huds_fire_station,huddersfield),

in_city(halifax_hospital,halifax),

in_city(garage_halifax,halifax),

in_city(police_halifax,halifax),

in_city(police_queen,queensbury),

in_city(garage_queensbury,queensbury),

194

in_city(accident_location_2,ainley_top),

in_city(accident_location_3,greetland),

in_city(police_bradley,bradley),

in_city(brighouse_hospital,brighouse),

route_available(ainley_greet),

connects(ainley_greet,ainley_top,greetland),

connects(ainley_greet,greetland,ainley_top),

route_available(bradley_ainley),

connects(bradley_ainley,bradley,ainley_top),

connects(bradley_ainley,ainley_top,bradley),

route_available(ainley_brigh),

connects(ainley_brigh,ainley_top,brighouse),

connects(ainley_brigh,brighouse,ainley_top),

route_available(greet_halifax),

connects(greet_halifax,greetland,halifax),

connects(greet_halifax,halifax,greetland),

route_available(brigh_baliff),

connects(brigh_baliff,brighouse,bailiff_bridge),

connects(brigh_baliff,bailiff_bridge,brighouse),

route_available(a629),

connects(a629,huddersfield,ainley_top),

connects(a629,ainley_top,huddersfield),

route_available(brigh_queen),

connects(brigh_queen,brighouse,queensbury),

connects(brigh_queen,queensbury,brighouse),

route_available(baliff_halifax),

connects(baliff_halifax,halifax,bailiff_bridge),

connects(baliff_halifax,bailiff_bridge,halifax),

route_available(hud_brigh),

connects(hud_brigh,huddersfield,brighouse),

195

connects(hud_brigh,brighouse,huddersfield),

route_available(queen_halifax),

connects(queen_halifax,halifax,queensbury),

connects(queen_halifax,queensbury,halifax),

route_available(hud_bradley),

connects(hud_bradley,huddersfield,bradley),

connects(hud_bradley,bradley,huddersfield),

route_available(ainley_halifax),

connects(ainley_halifax,ainley_top,halifax),

connects(ainley_halifax,halifax,ainley_top)]).

% Implied Invariants

implied_invariant([loaded(P,V)],[at(V,L),at(P,L)]).

% Inconsistent Constraints

% Operators

operator(confirm_accident(P,A),

% prevail

[],

% necessary

[sc(subject,P,[at(P,A),uncertified(P)]=>

[at(P,A),waiting(P),certified(P)])],

% conditional

[]).

operator(first_aid(P,A),

% prevail

[],

% necessary

[sc(subject,P,[at(P,A),uncertified(P)]=>[at(P,A),

196

waiting(P),certified(P)])],

% conditional

[]).

operator(move(V,O,City,L,City1,R),

% prevail

[],

% necessary

[sc(vehicle,V,[at(V,O),is_of_sort(R,route),moveable(V),

in_city(O,City),in_city(L,City1),ne(City,City1),

connects(R,City,City1)]=>[at(V,L)])],

% conditional

[sc(subject,X,[loaded(X,V),certified(X),

at(X,O)]=>[loaded(X,V),

certified(X),at(X,L)])]).

operator(move_in_city(V,O,City,L),

% prevail

[],

% necessary

[sc(rescue_v,V,[at(V,O),moveable(V),in_city(O,City),

in_city(L,City)]=>[at(V,L)])],

% conditional

[sc(subject,X,[loaded(X,V),certified(X),at(X,O)]=>

[loaded(X,V),certified(X),at(X,L)])]).

operator(commission(V),

% prevail

[],

% necessary

[sc(vehicle,V,[moveable(V),available(V)]=>

[moveable(V),busy(V)])],

% conditional

197

[]).

operator(load_subject(V,L,P),

% prevail

[se(vehicle,V,[at(V,L)])],

% necessary

[sc(subject,P,[at(P,L),waiting(P),certified(P)]=>

[at(P,L),loaded(P,V),certified(P)])],

% conditional

[]).

operator(unload_subject(P,L,V),

% prevail

[],

% necessary

[sc(subject,P,[at(P,L),loaded(P,V),certified(P)]=>

[at(P,L),waiting(P),certified(P)]),

sc(vehicle,V,[at(V,L),moveable(V),busy(V)]=>

[at(V,L),moveable(V),available(V)])],

% conditional

[]).

operator(deliver(P,L),

% prevail

[],

% necessary

[sc(subject,P,[at(P,L),waiting(P),certified(P)]=>

[at(P,L),delivered(P)])],

% conditional

[]).

% Methods

/****

198

* Carry within same city

*/

method(carry_direct(P,O,D),

% pre-condition

[

],

% Index Transitions

[

sc(subject,P,[at(P,O),waiting(P),certified(P)]=>

[at(P,D),waiting(P),certified(P)])],

% Static

[

is_of_sort(P,subject),

is_of_sort(V,rescue_v),

in_city(O,City),

in_city(D,City)],

% Temporal Constraints

[

before(1,2),

before(2,3),

before(3,4),

before(4,5)],

% Decomposition

[

commission(V),

achieve(ss(rescue_v,V,[at(V,O)])),

load_subject(V,O,P),

unload_subject(P,D,V),

move_in_city(V,O,City,D)]

).

199

/****

* Carry between zones by rescue_v

*/

method(carry_direct(P,O,D),

% pre-condition

[

],

% Index Transitions

[

sc(subject,P,[at(P,O),waiting(P),certified(P)]=>

[at(P,D),waiting(P),certified(P)])],

% Static

[

is_of_sort(P,subject),

is_of_sort(V,rescue_v),

in_city(O,CY),

in_city(D,CY1),

ne(CY,CY1),

connects(R,CY,CY1),

is_of_sort(R,route),

route_available(R)],

% Temporal Constraints

[

before(1,2),

before(2,3),

before(3,4),

before(4,5)],

% Decomposition

[

commission(V),

200

achieve(ss(rescue_v,V,[at(V,O)])),

load_subject(V,O,P),

move(V,O,CY,D,CY1,R),

unload_subject(P,D,V)]

).

/****

*

*/

method(transport(Subject,Org,Dest),

% pre-condition

[

],

% Index Transitions

[

sc(subject,Subject,[uncertified(Subject),

at(Subject,Org)]=>[delivered(Subject),at(Subject,Dest)])],

% Static

[

in_region(Org,Region),

in_region(Dest,Region)],

% Temporal Constraints

[

before(1,2),

before(2,3)],

% Decomposition

[

achieve(ss(subject,Subject,[waiting(Subject),

certified(Subject), at(Subject,Org)])),

carry_direct(Subject,Org,Dest),

deliver(Subject,Dest)]

201

).

% Domain Tasks

% HTN Domain Tasks

htn_task(1,

goal(

[

transport(acc_victim_1,accident_location_1,

huddersfield_hospital)],

% Temporal Constraints

[

],

% Static constraints

[

]),

% INIT States

[

ss(subject,acc_victim_1,[at(acc_victim_1,accident_location_1),

uncertified(acc_victim_1)]),

ss(ambulance,ambu_hud,[at(ambu_hud,accident_location_1),

moveable(ambu_hud),available(ambu_hud)])]).

htn_task(2,

goal(

[

transport(acc_victim_1,accident_location_1,

huddersfield_hospital),

transport(acc_victim_2,accident_location_1,

halifax_hospital),

transport(acc_victim_3,accident_location_1,

202

bradford_hospital)],

% Temporal Constraints

[

],

% Static constraints

[

]),

% INIT States

[

ss(subject,acc_victim_1,[at(acc_victim_1,accident_location_1),

uncertified(acc_victim_1)]),

ss(subject,acc_victim_2,[at(acc_victim_2,accident_location_1),

uncertified(acc_victim_2)]),

ss(subject,acc_victim_3,[at(acc_victim_3,accident_location_1),

uncertified(acc_victim_3)]),

ss(rescue_v,ambu_1,[at(ambu_1,huddersfield_hospital),

moveable(ambu_1),available(ambu_1)]),

ss(rescue_v,ambu_3,[at(ambu_3,halifax_hospital),moveable(ambu_3),

available(ambu_3)]),

ss(rescue_v,ambu_2,[at(ambu_2,bradford_hospital),moveable(ambu_2),

available(ambu_2)])]).

htn_task(3,

goal(

[

transport(bv_1,accident_location_1,garage_1),

transport(bv_2,accident_location_1,garage_2),

transport(bv_3,accident_location_1,garage_3)],

% Temporal Constraints

[

],

203

% Static constraints

[

]),

% INIT States

[

ss(subject,bv_1,[at(bv_1,accident_location_1),uncertified(abv_1)]),

ss(subject,bv_2,[at(bv_2,accident_location_1),uncertified(bv_2)]),

ss(subject,bv_3,[at(bv_3,accident_location_1),uncertified(bv_3)]),

ss(rescue_v,tow_truck_1,[at(tow_truck_1,accident_location_1),

moveable(tow_truck_1),available(tow_truck_1)]),

ss(rescue_v,tow_truck_2,[at(tow_truck_2,accident_location_1),

moveable(tow_truck_2),available(tow_truck_2)]),

ss(rescue_v,tow_truck_3,[at(tow_truck_3,accident_location_1),

moveable(tow_truck_3),available(tow_truck_3)])]).

204

Bibliography

AIPS-98 Planning Competition Committee (1998). PDDL - The Planning Domain

Definition Language, Technical Report CVC TR-98-003/DCS TR-1165, Yale Center

for Computational Vision and Control. 25

Bacchus, F. (2001). AIPS-00 Planning Competition, AI Magazine 22(3): 47–56. 2, 13

Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P.,

Ong, J., Remolina, E., Smith, T. et al. (2012). Europa: A platform for ai planning,

scheduling, constraint programming, and optimization, Proceedings of the 4th In-

ternational Competition on Knowledge Engineering for Planning and Scheduling

(ICKEPS) . 4, 24, 30, 51

Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P.,

Ong, J., Remolina, E., Smith, T. et al. (n.d.). Europa: A platform for ai planning,

scheduling, constraint programming, and optimization. 29

Bartak, R., Fratini, S. and McCluskey, T. (2010). The third competition on knowledge

engineering for planning and scheduling, AI Magazine 31(1): 95–98.

URL: http://eprints.hud.ac.uk/7789/ 31, 34, 140

Bartak, R. and McCluskey, T. (2006). The first competition on knowledge engineering

205

BIBLIOGRAPHY

for planning and scheduling, AI Magazine Spring: 97–98.

URL: http://eprints.hud.ac.uk/579/ 140

Benesch (2011). Traffic Incident Management Operations Guidelines, Iowa Depart-

ment of Transportation, Faderal Highway Administration, 1200 New jersey Avenue,

SE, Washington, DC 20590. 68

Bernardi, G., Cesta, A., Orlandini, A. and Finzi, A. (2013). A knowledge engineer-

ing environment for p&s with timelines, In Proceedings of Twenty-third Interna-

tional Conference on Automated Planning and Scheduling (ICAPS-13), Workshop

on Knowledge Engineering for Planning and Scheduling (KEPS-13). 54

Berners-Lee, T., Hendler, J. and Lassila, O. (2001). The Semantic Web, Scientific

American . 45

Bienkowski, M. (1995). Demonstrating the operational feasibility of new technologies:

The ARPI IFDs, IEEE Expert: Intelligent Systems and Their Applications 10: 27–

33. 67

Biundo, S., Aylett, R., Beetz, M., Borrajo, D., Cesta, A., Grant, T., McCluskey,

T., Milani, A. and Verfaillie, G. (2003). PLANET technological roadmap

on AI planning and scheduling, Electronically avaliable at http://www.planet-

noe.org/service/Resources/Roadmap/Roadmap2.pdf. xii, 30, 32

Biundo, S., Barrajo, D. and McCluskey, T. L. (2002). Planning and Scheduling: A

Technology for Improving Flexibility in e-Commerce and Electronic Work, Pro-

ceedings of e2002, The eBusiness and eWork Annual Conference, Prague The Czech

Republic. 4, 19

206

BIBLIOGRAPHY

Biundo, S. and Schattenberg, B. (2001). From abstract crisis to concrete relief: A

preliminary report on combining state abstraction and htn planning, Proceedings of

the 6th European Conference on Planning (ECP-01), Springer Verlag, pp. 157–168.

67

Blum, A. L. and Furst, M. L. (1997a). Fast planning through Planning Graph Analysis,

Artificial Intelligence 90: 281–300. 2, 13

Blum, A. L. and Furst, M. L. (1997b). Fast planning through planning graph analysis,

Artificial Intelligence 90: 281 – 300. 16

Bonet, B., Loerincs, G. and Geffner, H. (1997). A robust and fast action selection

mechanism for planning, In Proceedings of AAAI-97, MIT Press, pp. 714–719. 14

Booch, G., Rumbaugh, J. and Jacobson, I. (1997). The UML specification documents

, Rational Software Corp, Santa Clara, CA . 8, 40, 42, 94

Bouillet, E., Feblowitz, M., Feng, H., Ranganathan, A., Riabov, A., Udrea, O. and

Liu, Z. (2009). Mario: middleware for assembly and deployment of multi-platform

flow-based applications, Proceedings of the 10th ACM/IFIP/USENIX International

Conference on Middleware, Middleware ’09, Springer-Verlag New York, Inc., New

York, NY, USA, pp. 26:1–26:7.

URL: http://dl.acm.org/citation.cfm?id=1656980.1657015 53

Bresina, J. L., Jónsson, A. K., Morris, P. H. and Rajan, K. (2005). Activity planning for

the Mars Exploration Rovers, Proceedings of the Fifteenth International Conference

on Automated Planning and Scheduling, Monterey, California, USA, pp. 40 – 49. 1

Bresina, J., Meuleauy, N., Ramakrishnan, S., Smith, D. and Washingtonx, R. (2002).

207

BIBLIOGRAPHY

Planning under continuous time and resource uncertainty: A challenge for AI, Pro-

ceedings of the 18th Conference on Uncertainty in Artificial Intelligence, Morgan

Kaufmann, pp. 77–84. 23

Carloni, L., Passerore, R., Pinto, A. and Sangiovanni-Vincentelli, A. (2006). Lan-

guages and tools for hybrid systems design, Foundations and Trends in Design Au-

tomation 1: 1 – 204. 23

Castillo, L., Fdez-olivares, J., scar Garca-prez and Palao, F. (2006). Efficiently han-

dling temporal knowledge in an htn planner, In Sixteenth International Conference

on Automated Planning and Scheduling, ICAPS, AAAI, pp. 63–72. 24, 52

Chen, Y., Wah, B. W. and Hsu, C.-W. (2006). Temporal planning using subgoal

partitioning and resolution in sgplan, Journal of Artificial Intelligence Research

26(1): 323–369. 14, 17, 84

Chien, S., Hill, R., Wang, X., Estlin, T., Fayyad, K. and Mortenson, H. (1996). Why

Real-World Planning is Difficult: A Tale of Two Applications, in M. Ghallab and

A. Milani (eds), New Directions in AI Planning, IOS Press, pp. 287–298 . 3

Cresswell, S., Fox, M. and Long, D. (2002). Extending TIM domain analysis to han-

dle ADL constructs, in T. L. McCluskey (ed.), AIPS ’02 Workshop on Knowledge

Engineering Tools and Techniques for A.I. Planning. 20

Cresswell, S., McCluskey, T. and West, M. M. (2013). Acquiring planning domain

models using locm, Knowledge Engineering Review .

URL: http://eprints.hud.ac.uk/9052/ 154

208

BIBLIOGRAPHY

Currie, K., Tate, A. and Bridge, S. (1991). O-plan: the open planning architecture,

Artificial Intelligence 52: 49–86. 67

de la Asunción, M., Castillo, L. A., Fernández-Olivares, J., Garcı́a-Pérez, Ó.,

González, A. and Palao, F. (2005). SIADEX: An interactive knowledge-based plan-

ner for decision support in forest fire fighting., AI Communications 18(4): 257 – 268.

67

Drummond, M. (1994). On precondition achievement and the computational eco-

nomics of automatic planning, in C. Bäckström and E. Sandewall (ed.), Current

Trends in AI Planning, IOS Press. 3

Edelkamp, S. and Hoffmann, J. (2004). Pddl2.2: The language for the classical part of

the 4th international planning competition, 4th International Planning Competition

(IPC17), at ICAPS17 . 26

Erol, K. (1995). Hierarchical Task Network Planning: Formalization, Analysis, and

Implementation, PhD thesis, Department of Computer Science, University of Mary-

land. 2, 13

Erol, K., Hendler, J. and Nau, D. S. (1994). UMCP: A Sound and Complete Procedure

for Hierarchical Task Network Planning, Proceedings of AIPS. 3

Eyerich, P., Keller, T. and Nebel, B. (2010). Combining action and motion planning via

semantic attachments, The 20th International Conference on Automated Planning

and Scheduling – Workshop on Combining Action and Motion Planning. 26

Feblowitz, M. D., Ranganathan, A., Riabov, A. V. and Udrea, O. (2012). Planning-

based composition of stream processing applications, and Exhibits p. 5. 53

209

BIBLIOGRAPHY

Fernández-Olivares, J., Castillo, L. A., Garcı́a-Pérez, Ó. and Palao, F. (2006). Bringing

users and planning technology together: experiences in SIADEX., Proceedings of

the 16th International Conference on Automated Planning and Scheduling (ICAPS-

06), Cumbria, UK, pp. 11 – 20. 26, 67

Fikes, R. E. and Nilsson, N. J. (1971a). STRIPS: A New Approach to the Application

of Theorem Proving to Problem Solving, Artificial Intelligence 2. 2, 12, 15, 25, 26

Fikes, R. E. and Nilsson, N. J. (1971b). Strips: A new approach to the application of

theorem proving to problem solving, Artificial Intelligence 2: 189–208. 38

Fox, M., Gerevini, A., Long, D. and Serina, I. (2006). Plan stability: Replanning versus

plan repair, Proceedings of the Sixteenth International Conference on Automated

Planning and Scheduling (ICAPS 2006), pp. 212 – 221. 16

Fox, M. and Long, D. (2001). PDDL2.1: An extension to PDDL for expressing tem-

poral planning domains , Technical Report, Dept of Computer Science, University

of Durham. 3, 24, 26, 44, 83, 147

Fox, M. and Long, D. (2006). Modelling mixed discrete-continuous domains for plan-

ning., Journal of Artificial Intelligence Research 27: 235 – 297. 26

Fox, M., Long, D. and Magazzeni, D. (2011). Automatic construction of efficient

multiple battery usage policies, Proceedings of the 21st International Conference

on Automated Planning and Scheduling (ICAPS-11), pp. 74 – 81.

URL: http://www.aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2683 1, 26

Gerevini, A. and Long, D. (2005). Plan constraints and preferences in pddl3, The Lan-

210

BIBLIOGRAPHY

guage of the Fifth International Planning Competition. Tech. Rep. Technical Report,

Department of Electronics for Automation, University of Brescia, Italy . 26

Gerevini, A., Saetti, A. and Serina, I. (2003). Planning through stochastic local

search and temporal action graphs, Journal of Artificial Intelligence Research (JAIR)

20: 239 – 290. 14, 84

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.

and Wilkins, D. (1998). PDDL - the planning domain definition language, Technical

Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and

Control. 3, 38, 83

Ghallab, M., Nau, D. and Traverso, P. (2004). Automated Planning: Theory & Prac-

tice, Morgan Kaufmann Publishers Inc. 2, 17

González-Ferrer, A., Fernández-Olivares, J. and Castillo, L. (2009). JABBAH: A

java application framework for the translation between business process models and

htn, Working notes of the 19th International Conference on Automated Planning

& Scheduling (ICAPS-09) – Proceedings of the 3rd International Competition on

Knowledge Engireeng for Planning and Scheduling(ICKEPS), pp. 28–37. 1, 29, 52,

89

HA (2009). Highways Agency Network Management Manual, 5.10 edn, Highways

Agency, Network Services, Network Management Policy Team, City Tower, Pic-

cadilly Plaza, MANCHESTER M1 4BE. 66, 68

Helmert, M. (2006). The fast downward planning system, Journal of Artificial Intelli-

gence Research 26(1): 191–246. 16

211

BIBLIOGRAPHY

Hoffman, J. and Edelkamp, S. (2005). The deterministic part of IPC-4: An overview,

Journal of Artificial Intelligence Research 24: 519 – 579. 16

Hoffmann, J. (2003). The Metric-FF planning system: Translating “ignoring delete

lists” to numeric state variables, Journal of Artificial Intelligence Research (JAIR)

20: 291–341. 84

Hoffmann, J. and Nebel, B. (2001). The ff planning system: Fast plan generation

through heuristic search, J. Artif. Intell. Res. (JAIR) . 13, 16

Hoffmann, J. et al. (2003). The metric-ff planning system: Translating ”ignoring delete

lists” to numeric state variables, J. Artif. Intell. Res. (JAIR) 20: 291–341. 14, 16

Howey, R., Long, D. and Fox, M. (2004). Automatic plan validation, continuous

effects and mixed initiative planning using PDDL., Proceedings of the Sixteenth

International Conference on Tools with Artificial Intelligence, pp. 294 – 301. 3, 22,

26, 58, 148, 153

Hsu, C.-W. and Wah, B. W. (2008). The sgplan planning system in ipc-6, Sixth Inter-

national Planning Competition, Sydney, Australia (Sepember 2008) . 17

J. Vodrka, L. C. (2010). Visual design of planning domains, KEPS 2010: Workshop on

Knowledge Engineering for Planning and Scheduling. 53

Kambhampati, S. (1994). Comparing Partial Order Planning and Task Reduction Plan-

ning: A preliminary report, Technical Report TR 94-001, Arizona State University,

Dept. of Computer Science and and Engineering. 13

Kambhampati, S. (1997). Refinement planning as a unifying framework for plan syn-

thesis, Artificial Intelligence 18. 3

212

BIBLIOGRAPHY

Kautz, H. (2006). Deconstructing planning as satisfiability, PROCEEDINGS OF THE

NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, Vol. 21, Menlo

Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, p. 1524. 2,

14

Kautz, H. and Selman, B. (1996). Pushing the Envelope: Planning, Propositional

Logic, and Stochastic Search, Proceedings of the Fourteenth National Conference

on Artificial Intelligence. 2, 13

Kautz, H. and Selman, B. (1999). Unifying SAT-based and Graph-based plan, Pro-

ceedings of the Sixteenth International Joint Conference on Artificial Intelligence.

2

Kitchin, D. E. (2000). Object-Centred Generative Planning, PhD thesis, School of

Computing and Mathematics, University of Huddersfield. 27

McCarthy, J. and Hayes, P. (1969). Some philosophical problems from the standpoint

of artificial intelligence, Machine Intelligence 4. 12

McCluskey, T. (2000a). Knowledge engineering for planning roadmap.

URL: http://eprints.hud.ac.uk/8134/ 19, 20, 21, 23, 29, 30, 36

McCluskey, T. L. (2000b). Object Transition Sequences: A New Form of Abstrac-

tion for HTN Planners, The Fifth International Conference on Artificial Intelligence

Planning Systems. 27

McCluskey, T. L. (2002). Knowledge Engineering: Issues for the AI Planning Com-

munity (Keynote Talk), Proceedings of the AIPS-2002 Workshop on Knowledge En-

gineering Tools and Techniques for AI Planning, Toulouse, France. 5

213

BIBLIOGRAPHY

McCluskey, T. L. and Kitchin, D. E. (1998). A tool-supported approach to engineer-

ing htn planning models, In Proceedings of 10th IEEE International Conference on

Tools with Artificial Intelligence. 27, 46, 49, 100, 106

McCluskey, T. L., Liu, D. and Simpson, R. M. (2003). GIPO II: HTN Planning in a

Tool-supported Knowledge Engineering Environment, Proceedings of the 13th In-

ternational Conference on Automated Planning and Scheduling (ICAPS-03), AAAI

Press, pp. 92 – 101. 4, 18, 19, 49, 109

McCluskey, T. L. and Simpson, R. (2006). Combining constraint-based and classical

formulations for planning domains: GIPO IV, Proceedings of the 25th Workshop of

the UK Planning and Scheduling SIG (PLANSIG-06), pp. 55–65. 48, 100

McCluskey, T. L. and Simpson, R. M. (2004). Knowledge Formulation for AI Plan-

ning, Proceedings of 4th International Conference on Knowledge Engineering and

Knowledge Management (EKAW 2004) Whittlebury Hall, Northamptonshire, UK,

2004. Published by Springer in the LNAI series. xii, 19, 50

McCluskey, T. and Porteous, J. (1997). Engineering and compiling planning domain

models to promote validity and efficiency, Artificial Intelligence 95(1): 1–65. c©

Elsevier.

URL: http://eprints.hud.ac.uk/7859/ 27

McDermott, D. (1997). The Classical Planning Problem Specification Language - A

Manual, Technical report, Yale University. 8

McDermott, J. (1998). 1998 AIPS planning competiton,

ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html. 3, 38, 83

214

BIBLIOGRAPHY

Murata, T. (1989). Petri nets: Properties, analysis and applications, Proceedings of the

IEEE 77(4): 541 –580. 45

Muscettola, N., Nayak, P. P., Pell, B. and Williams, B. C. (1998). Remote Agent: To

Boldly Go Where No AI System Has Gone Before, Artificial Intelligence 103(1-

2): 5–48. 4, 25

Nakhost, H., Müller, M., Valenzano, R. and Xie, F. (2011). Arvand: the art of random

walks, Garcı́a-Olaya et al.(2011) pp. 15–16. 14

Nau, D. S. (2007). Current trends in automated planning, AI Magazine 28(4): 43.

URL: http://www.aaai.org/ojs/index.php/aimagazine/article/view/2067 3, 14

Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D. and Yaman, F.

(2003). Shop2: An htn planning system, J. Artif. Intell. Res. (JAIR) 20: 379–404. 14

Naveed, M., Kitchin, D. E., Crampton, A., Chrpa, L. and Gregory, P. (2012). A monte-

carlo path planner for dynamic and partially observable environments, CIG, pp. 211–

218. 1

Newell, A. and Simon, H. A. (1963). GPS: A Program that Simulates Human Thought,

in E. A. Feigenbaum and J. Feldman (ed.), Computers and Thought, R. Oldenbourg

KG. 12

Owens, N., Armstrong, A., Sullivan, P., Mitchell, C., Newton, D., Brewster, R. and

Trego, T. (2000). Traffic Incident Management Handbook, Technical Report Office

of Travel Management, Federal Highway Administration. 66, 68

Parkinson, S., Longstaff, A. P., Crampton, A. and Gregory, P. (2011). The application

215

BIBLIOGRAPHY

of automated planning to machine tool calibration, In Proceeding of 22nd Interna-

tional Conference on Automated Planning and Scheduling(ICAPS11). 1

Pearson, D. J. and Laird, J. E. (1996). Toward incremental knowledge correction for

agents in complex environments, in S. Muggleton, D. Michie and K. Furukawa (eds),

Machine Intelligence, Vol. 15, Oxford University Press. 12

Riabov, A. and Liu, Z. (2006). Scalable planning for distributed stream processing

systems, Proceedings of the 16th International Conference on Automated Planning

and Scheduling (ICAPS-06), Cumbria, UK, pp. 31 – 41. 26

Richter, S. and Westphal, M. (2008). The lama planner using landmark counting in

heuristic search, Proceedings of IPC. 14

Richter, S., Westphal, M. and Helmert, M. (2011). Lama 2008 and 2011, The 2011

International Planning Competition p. 50. 14

Roberts, M., Howe, A. and Flom, L. (2007). Learned models of performance for many

planners, ICAPS 2007 Workshop AI Planning and Learning, pp. 36–40. 123

Rumbaugh, J., Jacobson, I. and Booch, G. (2004). Unified Modeling Language Refer-

ence Manual, The, Pearson Higher Education. 43, 44

Sacerdoti, E. (1974). Planning in a Hierarchy of Abstraction Spaces, Artificial Intelli-

gence 5. 12

Sacerdoti, E. (1975). The Nonlinear Nature of Plans, Proc. IJCAI. 13

Shah, M., Chrpa, L., Gregory, P., McCluskey, T. and Jimoh, F. (2012). Ocl

plus:processes and events in object-centred planning, Frontiers in Artificial Intel-

ligence and Applications, Vol. 241 of STAIRS 2012 - Proceedings of the 6th Starting

216

BIBLIOGRAPHY

AI Researchers’ Symposium, IOS Press, pp. 282–293.

URL: http://eprints.hud.ac.uk/14667/ 27

Simpson, R., Kitchin, D. E. and McCluskey, T. (2007). Planning domain definition

using gipo, Knowledge Engineering Review 22(2): 117–134. 4, 5, 19, 29, 48, 89,

100, 122

Simpson, R. M. (2005). GIPO: graphical interface for planning with objects, Proceed-

ings of the International Competition on Knowledge Engineering in Planning and

Scheduling, Monterey, California. 137

Simpson, R. M., McCluskey, T. L. and Liu, D. (2000). OCLGraph : Exploiting Object

Structure in a Plan Graph Algorithm, Proceedings of the Workshop on New Results

in Planning, Scheduling and Design (PuK2000) at ECAI 2000. 27

Simpson, R. M., McCluskey, T. L., Zhao, W., Aylett, R. S. and Doniat, C. (2001).

GIPO: An Integrated Graphical Tool to support Knowledge Engineering in AI Plan-

ning, Proceedings of the 6th European Conference on Planning (ECP-01), Springer-

Verlag, pp. 544 – 552. 4, 27

Smith, D. E., Frank, J. and Cushing, W. (2008). The anml language, Proceedings of

ICAPS-08 . 25, 51

Sommerville, I. (2004). Software Engineering: Seventh Edition, Pearson Education.

URL: http://books.google.co.uk/books?id=PqsWaBkFh1wC 21

Tate, A. (1977). Generating Project Networks, Proceedings of the Fifth International

Joint Conference on Artificial Intelligence. 2, 13, 18, 39

217

BIBLIOGRAPHY

Tate, A., Drabble, B. and Dalton, J. (1996). O-Plan: a Knowledged-Based Planner and

its Application to Logistics, AIAI, University of Edinburgh. 1, 40

Tate, A., Drabble, B. and Kirby, R. (1994). O-Plan2: an Open Architecture for Com-

mand, Planning and Control, in M. Fox and M. Zweben (eds), Intelligent Scheduling,

Morgan Kaufmann. 18, 29, 39

Tate, A., Polyak, S. T. and Jarvis, P. (1998). TF Method: An Initial Framework for

Modelling and Analysing Planning Domains, Technical report, University of Edin-

burgh. 39

Tomas Plch, Miroslav Chomut, C. B. R. B. (2012). Inspect, edit and debug pddl doc-

uments: Simply and efficiently with pddl studio, ICAPS12 System Demonstration

p. 4. 54

Vaquero, T. S., Romero, V., Tonidandel, F. and Silva, J. R. (2007). itSIMPLE2.0: An

integrated tool for designing planning domains, Proceedings of the 17th Interna-

tional Conference on Automated Planning & Scheduling (ICAPS-07), AAAI Press,

pp. 336–343. 4, 40, 44, 89

Vaquero, T. S., Silva, J. R. and Beck, J. C. (2010). Analyzing plans and plan-

ners in itSIMPLE3.1, Proceedings of the Knowledge Engineering for Planning and

Scheduling workshop – The 20th International Conference on Automated Planning

& Scheduling (ICAPS-10). 4

Vaquero, T. S., Silva, J. R. and Beck, J. C. (2011a). Acquisition and re-use of plan

evaluation rationales on post-design, KEPS 2011 p. 15. 5

Vaquero, T. S., Silva, J. R. and Beck, J. C. (2011b). A brief review of tools and methods

218

BIBLIOGRAPHY

for knowledge engineering for planning & scheduling, Proceedings of the Knowl-

edge Engineering for Planning and Scheduling workshop – The 21th International

Conference on Automated Planning & Scheduling (ICAPS-11). 4, 21

Vaquero, T. S., Silva, J. R. and Beck, J. C. (2011c). A conceptual framework for

post-design analysis in ai planning applications, KEPS 2011 p. 109. 5

Vaquero, T. S., Silva, J. R., Tonidandel, F., Ferreira, M. and Beck, J. C. (2009). From

requirements and analysis to PDDL in itSIMPLE3.0, Working notes of the 19th

International Conference on Automated Planning & Scheduling (ICAPS 2009) –

The 3rd International Competition on on Knowledge Engineering for Planning and

Scheduling (ICKEPS). 4, 42

Vaquero, T. S., Tonaco, R., Costa, G., Tonidandel, F., Silva, J. R. and Beck, J. C.

(2012). itSIMPLE4.0: Enhancing the modeling experience of planning problems,

System Demonstration – Proceedings of the 22nd International Conference on Au-

tomated Planning & Scheduling (ICAPS-12). 4, 5, 29, 40, 89, 95

Wickler, G. (2011). Using planning domain features to facilitate knowledge engineer-

ing, KEPS 2011 p. 39. 154

Wilkes, D. E. and Myers, K. L. (1995). A common knowledge representation for plan

generation and reactive execution, Journal of Logic and Computation 5(6): 731–761.

3

Wilkins, D. (1988). Practical Planning: Extending the Classical AI Paradigm,

Addison-Wesley. 23

219

BIBLIOGRAPHY

Wilkins, D. (1999). Using the SIPE-2 Planning System: A Manual for SIPE-2, Ver-

sion5.0, SRI International, Artificial Intelligence Center. 3

Wilkins, D. and desJardins, M. (2000). A Call for Knowledge-based Planning, Pro-

ceedings of the 2nd NASA International Workshop on Planning and Scheduling for

Space, p. 187. 2

Wilkins, D. and Myers, K. (1994). A Common Knowledge Representation for Plan

Generation and Reactive Execution, Journal of Logic and Computation . 29

Wu, K., Yang, Q. and Jiang, Y. (2005). Arms: Action-relation modelling system for

learning acquisition models, Proceedings of the First International Competition on

Knowledge Engineering for AI Planning, Monterey, California, USA. 154

Xing, Z., Chen, Y. and Zhang, W. (2006). Maxplan: Optimal planning by decom-

posed satisfiability and backward reduction, Proceedings of the Fifteenth Interna-

tional Planning Competition, International Conference on Automated Planning and

Scheduling, pp. 53–56. 14

220

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contribution of the thesis
	1.3 Structure of the Thesis
	1.4 Publications

	2 Background
	2.1 History of Automated Planning
	2.2 Planning Techniques
	2.2.1 STRIPS Planning
	2.2.1.1 LPG
	2.2.1.2 SGPlan

	2.2.2 HTN Planning
	2.2.2.1 HyHTN

	2.3 Knowledge Engineering
	2.3.1 Domain Modelling
	2.3.1.1 Domain Analysis
	2.3.1.2 Planning Domain Design Process

	2.4 Domain Modelling Languages
	2.4.1 STRIPS Based Language
	2.4.1.1 PDDL

	2.4.2 HTN Based Language
	2.4.2.1 Object Centred Language (OCL)

	2.5 Tool Supported Knowledge Engineering
	2.6 Current State of Knowledge Engineering
	2.6.1 ICKEPS Competition

	2.7 Summary

	3 Knowledge Engineering Tools and Techniques
	3.1 Knowledge Engineering: Tools and Techniques
	3.1.1 Hand Coding: a traditional technique for KE
	3.1.2 TF Method: HTN modelling tool
	3.1.3 itSIMPLE: a leading GUI tool for KE
	3.1.4 GIPO: an object-based GUI tool
	3.1.5 EUROPA: integrated platform for AI planning
	3.1.6 JABBAH: a domain specific GUI tool
	3.1.7 VIZ: a Lightweight GUI Tool
	3.1.8 MARIO: a Goal-Driven application composition tool
	3.1.9 PDDL Studio: simple PDDL editor
	3.1.10 KEEN: KE environment

	3.2 Features of KE Tools and Techniques
	3.2.1 General
	3.2.2 Knowledge Representation
	3.2.3 Debugging and Validation
	3.2.4 Design Efficiency
	3.2.5 Maintenance
	3.2.6 Operationality
	3.2.7 Support:

	3.3 Summary

	4 The Road Traffic Accident Domain
	4.1 Road Traffic Accident
	4.1.1 Necessity for Accident Management Problem

	4.2 Requirement Analysis for the RTA Domain
	4.3 Conceptualisation of the RTA
	4.3.1 Defining Operator Families
	4.3.2 Defining Assets and Artefacts for RTA Domain
	4.3.2.1 Static Assets:
	4.3.2.2 Mobile Assets:
	4.3.2.3 Artefacts:
	4.3.2.4 Attaching and detaching artefacts:
	4.3.2.5 Interact: Neither attach nor detach

	4.3.3 Operator Description
	4.3.4 Function Definition

	4.4 Summary

	5 Developing Domain Model
	5.1 Representation Language
	5.2 Method A: The Traditional Hand-coding Method
	5.2.1 Overview of the Method A
	5.2.2 Execution of the Method A
	5.2.2.1 Method A: Basic Acceptability Test

	5.3 Method B: itSIMPLE - a leading planning GUI
	5.3.1 Overview of the Method B
	5.3.2 Execution of the Method B
	5.3.2.1 Method B: Basic Acceptability Test

	5.4 Method C: GIPO - an object-based GUI
	5.4.1 Overview of the Method C
	5.4.2 Execution of the Method C
	5.4.2.1 Method C: Basic Acceptability Test

	5.5 Summary

	6 Evaluation of Knowledge Engineering Tools and Techniques
	6.1 Observation of the methods
	6.1.1 Actors Involved in Domain Development
	6.1.2 Experimental Scenario
	6.1.3 Observations of Method A
	6.1.3.1 Process
	6.1.3.2 Product

	6.1.4 Observations of Method B
	6.1.4.1 Process
	6.1.4.2 Product

	6.1.5 Observations of Method C
	6.1.5.1 Process
	6.1.5.2 Product

	6.2 Evaluation of the methods from Observation
	6.2.1 Process Comparison
	6.2.2 Product Comparison

	6.3 Criteria for evaluating approaches
	6.4 Evaluation of the approaches with respect to stated criteria
	6.4.1 Method A
	6.4.2 Method B
	6.4.3 Method C
	6.4.4 Observation of the Evaluation

	6.5 Evaluation of KE Methods with ICKEPS Criteria
	6.5.1 Portability
	6.5.2 Robustness
	6.5.3 Usability
	6.5.4 Spread of use of the tool
	6.5.5 Perceived added value
	6.5.6 Flexibility

	6.6 Insights into the Evaluation Processes
	6.6.1 Observation
	6.6.2 Set Criteria

	6.7 Requirements for Designing Future KE Tools
	6.7.1 Expertise
	6.7.2 Team Work
	6.7.3 Maintenance
	6.7.4 Debug
	6.7.5 Language support

	6.8 Summary

	7 Conclusion and Future Work
	7.1 Summary
	7.2 Limitations of this Research
	7.3 Future Work

	Appendix A: Hand-coded PDDL Domain Model
	Appendix B: Hand-coded PDDL2.1 Domain Model
	Appendix C: PDDL Domain Model using itSIMPLE4.0
	Appendix D: PDDL2.1 Domain Model using itSIMPLE4.0
	Appendix E: OCLh Domain Model using GIPO-III
	Bibliography

