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Abstract

The biosynthesis of magnetite is the earliest known example of biomineralisation; how-
ever, much of the detailed atomistic mechanisms by which the process occurs are unknown.
Within the bacterial strain Magnetospirillum magneticum AMB-1, the formation of mag-
netite nanoparticles is thought to occur under the influence of the Mms6 protein. The
C–terminal of this protein is highly acidic, containing dense carboxyl and hydroxyl groups,
and exhibits direct interaction with the magnetite surface. In this thesis, a novel atomistic
model of Mms6-driven magnetite formation was developed and the interactions of amino
acids, dipeptide, tetrapeptide and pentapeptide sequences, related to the C-terminus of
Mms6, with the {100} and {111} magnetite surfaces (both in vacu and solvated) have been
investigated. Each study was split into two systems; a classic molecular dynamics system
and a constrained molecular dynamics system utilising the Potential of Mean Force.

Initially, the attachment of the individual amino acids to magnetite surfaces was consid-
ered. From these results, it was established that the {111} surface was the favoured for
surface for amino acid attachment and bonding occurred through octahedral iron ions,
rather than tetrahedral iron ions. Furthermore, the charged amino acids demonstrated a
higher affinity for iron binding and solvation of unconstrained systems diminished the iron
binding abilities of all the amino acids.

Secondly, based on a glutamate repeat motif, the attachment of a series of di- and tetrapep-
tides to the {100} and {111} magnetite surfaces was explored. It was hypothesised that
if the negatively charged glutamate was substituted for a charge neutral alanine, the iron
binding potential of the sequence would reduce. The results suggested that the substitu-
tion of glutamate for alanine significantly reduces the iron binding affinity of the system
on the {100} surface, irrespective of sequence length and composition. However, on the
{111} surface, the introduction of alanine differentially modulates the iron binding activity
of the sequences investigated. Sequential substitution in a two amino acid chain confers
inhibition of iron binding, conversely, in a four amino acid chain, iron binding affinity is
enhanced.

The final chapter utilised pentapeptides taken from the Cterminal region, thus ensuring
the full sequence was explored. The binding behaviour of these pentapeptides and their
related mutants, were investigated. It was found that the different sections behaved differ-
ently from each other, suggesting that the binding activity of the C-terminal sequence is
partly dependent on how the amino acids interact with each other. It was theorised that
sequence mutation would decrease iron binding; however, the data suggested that this
was not always the case and was sequence dependent. Based on the constrained system
data, mutation of the original sequences confirmed the hypothesis for DIESA, LRDAL
and EVELR on the {100} surface, and for SRDIE and SDEEV on the {111} surface,
whereas, the theory was contradicted for the counterparts surfaces and for both surfaces
of ELRDA. This data also suggests that the {111} surface was the preferred surface of at-
tachment, with the exception of LRDAL. For the unconstrained systems, the observations
differed dependent on the data analysis technique utilised, as well as on the pentapeptide
original sequence, with none of the sequences explored fully confirming the hypothesis.
Furthermore, the presence of water in the unconstrained systems was detrimental to the
iron binding potential of the pentapeptides. The data from both the unconstrained and
constrained systems propose that, there are many factors affecting the iron binding ability
other than sequence mutation, such as, surface type, iron type and sequence dependence.
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6.13 R (Å) values from RDF data for pentapeptides in the region of 190-195. . . . . . . . . 210
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Chapter 1

Introduction

1.1 Biomineralisation

“Biomineralisation: the study of the formation, structure and properties of inorganic solids

deposited in biological system”[1].

Biomineralisation occurs throughout the natural world, from unicellular prokaryotes to

the skeletal tissue of higher mammals, and refers to the processes whereby organisms

deposit minerals in order to form structures such as shells, teeth and bones[2, 3]. These

processes are distinguished from abiotic mineralisation by the control exerted over mineral

formation by the organisms. Biominerals are complex organic–inorganic composites, where

an organic matrix component plays a significant role in the mineral formation. It has been

suggested that biominerals habitually have properties quite dissimilar to their inorganically

produced counterparts such as shape, size, and trace elemental compositions, due to their

formation under controlled conditions.

Biomineralisation processes are divided into two fundamentally different groups, which are

classified according to the degree of biological control[4, 5]. Biologically induced miner-

alisation (BIM) is a passive process whereby microbes sorb solutes onto their cell surface

and/or release reactive metabolites. This subsequently alters the saturation state of the

solution surrounding the cell surface, changing the chemical equilibrium of the surrounding

environment causing BIM mineral formation. These changes can be triggered by events

such as the introduction of biologically produced metabolic end–products, the release of

particular cations by the cell, or as a by–product of cell surface charge[6]. The biological

system has minimal control over the type of minerals precipitated, the composition and

properties of the minerals formed are greatly dependent on environmental conditions[7].

The biominerals formed are generally characterized by broad particle–size distribution,
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poor crystallinity, lack of specific crystal morphologies and chemical heterogeneousity[8],

also appearing to have no specific recognized functions. In contrast, biologically controlled

mineralisation (BCM) is an active process. The organisms involved exert an enormous

degree of control, both chemical and genetic, over all aspects of nucleation and crystal

growth stages[9]. It is presumed this is due to the biominerals produced serving some

physiological function. Within BCM geochemical conditions independent from the bulk

solution are created by sealing off specific sites within the cytoplasm or on the cell wall

from the external environment[6]. Specific ions sequestering by the cell occurs, these ions

are subsequently transferred into these intracellular compartments, where the concentra-

tion is increased until supersaturation (this refers to a solution that contains more of the

dissolved material than could be dissolved by the solvent under normal circumstances).

Biomineral nucleation site, crystal growth and morphology are actively controlled by the

organism. The biominerals that are formed are characterized by well–ordered crystals with

a relatively narrow size distribution, specific consistent morphologies and of high chemical

purity[9, 10].

The ability to form minerals within first prokaryotes and then eukaryotes has established

over the last 3.5 billion years. Many of the different minerals known to date appeared

about 540 million years ago when living systems first began to exert control over biomin-

eral formation[11]. There have been over sixty different minerals, from many different

phyla, identified so far. Whilst Table 1.1 represents the names and corresponding chemi-

cal formulae of some of these organism produced minerals, this is by no means a complete

list as new biogenic minerals continue to be discovered.
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Name Formula

Calcite, Aragonite & Vaterite CaCO3

Dolomite & Protodolomite (MgxCa1−x)CO3 & CaMg(CO3)2

Hydrocerussite Pb3(CO3)2(OH)2

Amorphous calcium carbonate CaCO3·H2O or CaCO3

Octacalcium phosphate Ca8H2(PO4)6

Brushite CaHPO4 · 2H2O

Hydroxyapatite & Francolite Ca10(PO4)6(OH)2 & Ca10(PO4)6F2

Whitlockite Ca18H2(Mg,Fe)+2
2 (PO4)14

Struvite Mg(NH4)(PO4)·6H2O

Vivianite Fe+2
3 (PO4)2 · 8H2O

Gypsum, Barite & Celestite CaSO4 · 2H2O, BaSO4 & SrSO4

Jarosite KFe+3
3 (SO4)2(OH)6

Pyrite FeS2

Hydrotroilite FeS·nH2O

Sphalerite & Wurtzite ZnS

Galena PbS

Greigite Fe3S4

Mackinawite (Fe,Ni)9S8

Acanthite Ag2S

Amorphous silica SiO2·nH2O

Atacamite Cu2Cl(OH)3

Fluorite CaF2

Hieratite K2SiF6

Magnetite Fe3O4

Goethite α-FeOOH

Lepidocrocite γ-FeOOH

Ferrihydrite 5Fe2O3 · 9H2O

Todorokite (Mn+2CaMg)Mn+4
3 O7·H2O

Birnessite Na4Mn14O27 · 9H2O

Table 1.1: Names and chemical compositions of biominerals produced by BCM and BIM processes.

Adapted from Weiner and Dove 2003[11].
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It has been identified that approximately 50% of known biominerals are calcium–bearing

minerals[5], with the calcium carbonate biogenic minerals being the most abundant. They

are widespread among many different taxa[5], with eight known polymorphs, three of which

are pure calcium carbonate; calcite, aragonite and vaterite. Within molluscs, calcite has

been found to form the outer layer of its shell. Calcite has also been identified as an

inner–ear gravity receptor in mammals, whereas, aragonite has been found to be a gravity

receptor in fish. Protective spicules of sea squirts are formed from vaterite. Of the known

biogenic mineral types phosphates comprise around 25%. The majority of phosphate

minerals are produced by the BCM method, with the exception of struvite and brushite.

Hydroxyapatite is the most abundantly produced of these[5], being the mineral present

in the bones and teeth of vertebrates. 25% of the known biominerals are amorphous.

Amorphous silica is a commonly formed example, being present in the teeth of limpets

and the tips of the stinging hairs on nettles to name but a few functions.

Iron biominerals comprise approximately 40% of all minerals formed by organisms[12, 10].

They are not readily evaluated by mineral class because they have significant occurrences

as oxides, hydroxides and sulphides[13, 14]. Some sulphates and phosphates have also

been reported[15].

1.1.1 Iron Oxide and Oxyhydroxide Biomineralisation

Iron is one of the most abundant elements on the Earth and many organisms are known

to contain minerals of iron. It has two valence states: ferric iron (Fe3+), and ferrous iron

(Fe2+). This profusion of iron minerals could perhaps be on account of, the significant role

of iron in numerous metabolic processes. The production of iron biominerals allows for

the accumulation of iron, for future metabolic needs, within the organisms, at the same

time as avoiding high concentrations of intracellular ferrous iron[16].

A key group of iron minerals are the iron oxides and oxyhydroxides, occurring as several

phases. This have been reported in geological deposits, environmental water sediments,

industrial processes, and as biological system components in the case of some phases[17,

18, 19, 20]. The ferric oxide and oxyhydroxide biominerals are an important class of iron

biomineral, with examples exhibited in Table 1.2. These biominerals occur as amorphous,

colloidal precipitates, as quasi–crystalline minerals, or as crystalline minerals[16].

Iron oxide and oxyhydroxide biominerals are formed by a wide variety of organisms, in

which they serve various functions (see Table 1.3), such as, usage in the strengthening and
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Oxides Oxyhydroxides

Formula Mineral Formula Mineral

5Fe2O3 · 9H2O ferrihydrite ** α-FeOOH goethite **

α-Fe2O3 hematite β-FeOOH akaganeite

γ-Fe2O3 maghemite ** γ-FeOOH lepidocrocite **

Fe3O4 magnetite ** δ-FeOOH feroxyhte

Table 1.2: The major iron oxides and oxyhydroxides[21]. ** Found in biological systems.

hardening of tissues[16, 22]. They are also associated with iron overload diseases and are

involved in intracellular iron storage and detoxification. A linkage has also been found

between the biominerals of iron oxide and oxyhydroxide and the sensing of magnetic fields

for magnetic navigation[23, 24, 25, 26]. Studies have even found crystals of magnetic iron

minerals in the human brain[27, 28]. Konhauser[14] discussed at length the subject of

bacterial iron biomineralisation.

Mineral Formula Organism Location Function

magnetite Fe3O4 bacteria intracellular magnetotaxis

chitons teeth teeth hardening

salmon/honeybees head magnetic navigation

geothite α-FeOOH limpets teeth teeth hardening

lepidocrocite γ-FeOOH sponges filaments unknown

chitons teeth teeth hardening

ferrihydrite 5Fe2O3 · 9H2O plants phytoferritin Fe storage

animals/humans ferritin Fe storage

bacteria intracellular metabolic byproduct

chitons teeth precursor phase

beaver/rat/fish tooth surface mechanical strength

+ phosphate bacteria ferritin Fe storage

sea cucumber dermis mechanical strength

Table 1.3: Iron oxide biominerals and their functions[1, 19, 16].

Much of the research on biomineralisation to date is aimed at BCM in an attempt to

elucidate the structure of the organic macromolecules involved in the processes and also

discovering the nature of the related organic–inorganic interactions. It has been deduced

that iron biomineral formation in eukaryotic organisms is almost exclusively BCM. An

5



important iron biomineral that can be formed by the BCM method is the iron oxide,

magnetite (Fe3O4).

1.1.2 Magnetite, Magnetotactic Bacteria and Magnetosomes

Of all known naturally occurring minerals on Earth, magnetite is the most magnetic and

is also one of the two most common iron oxides[29]. Magnetite can be thought of as having

an inverse spinel crystal structure, which has the general formula AB2O4. However, most

recent studies of magnetite have suggested that this is an ideal case and instead the

structure is based on a face–centred cubic array of oxide ions with A ions, in the case of

magnetite Fe2+, occupying octahedral holes and the B ions, Fe3+, are equally distributed

between octahedral and tetrahedral holes. This crystal structure is represented in Figure

1.1.

Figure 1.1: The inverse spinel crystal structure of magnetite.

In magnetite, the Fe2+ and Fe3+ ions have unpaired spins, leading to interesting magnetic

properties. Fe3+ has a d5 electronic configuration and five unpaired electrons. The spins

of the Fe3+ ions are cancelled out as half of the ions are on octahedral sites and half on

tetrahedral sites. Thus the spins of the Fe3+ ions in octahedral and tetrahedral holes

are antiparallel (due to the spins of the ions on the octahedral sites interact with those

on the tetrahedral sites via the oxide ions) and no net magnetisation results from these

ions. The Fe2+ ions have a d6 electronic configuration with four unpaired electrons and

are responsible for the net magnetisation. These divalent ions tend to align their spins

parallel to those of the trivalent ions in adjacent octahedral holes. This alignment confers

a net magnetic moment on the crystal. This all leads to magnetite being ferrimagnetic
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(see Figure 1.2), whereby the magnetic moments of the atoms on different sublattices are

opposed, however, at the same time the opposing moments are unequal and a spontaneous

magnetisation remains[30]. Magnetite is known to interact over 106 times more strongly

with an external magnetic field than any other naturally occurring mineral[27]. Hence,

magnetite interacts very strongly with the Earth’s magnetic fields.

Figure 1.2: Ferrimagnetism; the magnetic moments of the atoms on different sublattices are opposed

and unequal conferring a net magnetic moment.

In this work, the {100} and {111} magnetite surfaces were used. The {111} surface can be

either iron terminated or oxygen terminated. In this instance, the iron terminated version

was utilised as shown in Figure 1.3.

Figure 1.3: Magnetite surface types modelled in this work. a) {100} and b) {111} Fe terminated surface.

Inorganic magnetite is usually found in igneous and metamorphic rock, having an octahe-

dral crystal habit, as shown in Figure 1.4. These crystals often have lattice dislocations

and other crystal defects, broad size distributions, and the inclusion of impurities such as;
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Mg, Zn, Mn, Ni, Cr, Ti, V and Al. However, as mentioned earlier magnetite can also be

mineralised biologically.

Figure 1.4: An example of inorganic magnetite. Note the octahedral crystal habit[31].

The earliest known example of biomineralisation is that of the biosynthesis of magnetite.

Microfossils of magnetite were discovered in the Gunflint Chert, a sequence of banded iron

formation rocks that are exposed in the Gunflint Range of northern Minnesota and north

western Ontario along the north shore of Lake Superior[32, 33]. These can be traced back

approximately two billion years[33], occurring long before biominerals became common

within the Cambrian.

Magnetite is produced by both BIM and BCM in the same sedimentary environment;

nevertheless, the most extensively researched method of magnetite mineralisation is BCM.

Biogenic magnetite was first identified in the Molluscan class Polyplacophora as a capping

material in the radula teeth of chitons[34, 35]. Prior to this discovery it was thought that

magnetite only formed in igneous or metamorphic rock under high temperature and pres-

sure. However, the major step forward in understanding the BCM formation of magnetite

occurred due to the report of Blakemore in 1975, detailing the discovery of magnetotactic

bacteria (MTB) in Cape Cod Marsh, Massachusetts[36]. When looking at Coccoid bacte-

ria, Blakemore discovered that a large population were migrating in one direction however

when an external magnetic field was applied it was noted that this direction could be

reversed.

Blakemore[36, 37] discovered that MTB are a diverse group of Gram–negative bacteria (so

called because they do not retain crystal violet dye used in the Gram staining protocol)

that use a process known as magnetotaxis[38], in which they align and swim along Earth’s

geomagnetic field lines, using their flagellum, in order to migrate to their ideal habitat. By
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taking up iron ions from the surrounding environment; intracellular, membrane–bound,

nano–sized crystals of magnetite of high chemical purity[10], referred to as magnetosomes,

are biomineralised by MTBs. These magnetosomes are usually aligned in chains, en-

abling magnetotaxis. Bazylinski[39] suggested that MTB produce these magnetic nano–

particles (MNPs) under precise biochemical, chemical and genetic control. Blakemore[40]

and Matsunaga[41] discovered that MTB take up approximately 100 times more iron than

non–magnetic bacteria to synthesize intracellular MNPs. The molecular mechanism of

MTB magnetite formation is hypothesized to be a distinct stepwise method; however the

processes by which this occurs are still not clear.

MTB are ubiquitous to freshwater and marine habitats[42, 43, 44, 45, 46], preferring envi-

ronments that contain low oxygen concentrations due to their microaerophilic or anaerobic

tendencies[36, 39]. It has been found that MTB are most abundant at the oxic–anoxic

transition zone (OATZ)[39, 47, 48], which, in most sediments, occur at or just below the

sediment–water interface. The OATZ is an interface where oxygenated water or sediment,

meets oxygen–deficient water or sediment. Bacteria located in environments with higher

or lower than optimal oxygen concentration migrate to the ideal living conditions of the

OATZ by rotating their flagella in a specific direction to move either forwards (counter

clockwise) or backwards (clockwise). Figure 1.5 gives a basic illustration of this system of

migration. The MTB have been found to migrate to the magnetic north in the Northern

hemisphere[36], to the magnetic south in the Southern hemisphere[49, 50], and on the

geomagnetic equator there is migration in both directions[51] (although at the equator

there are much lower populations of MTB[32]).

MTBs are a heterogeneous group of prokaryotes known as α-proteobacteria. The morpho-

logical types are diverse, with many cocci, rods, vibrios, spirilla and multicellular forms

having been derived[37, 53, 54, 55]. Within MTBs, MNPs of uniform size and morphology

are formed; however, it has been observed that compositions and morphologies are species-

or strain–dependant, thus suggesting an element of high biological control [56, 57]. Three

of the most commonly occurring morphologies for MNPs are; elongated prismatic, roughly

cuboidal and tooth/bullet shaped[36, 39, 58]. The idealised magnetosome morphologies

are based on a combination of;

• {100} faces = cube

• {110} faces = dodecahedron

• {111} faces = octahedron
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Figure 1.5: Illustration of MTB use of magnetotaxis to facilitate dwelling in the OATZ. Dashed arrows

show the bacterium swimming directionality. Solid arrows show the MNP’s (hexagons) alignment with

the Earths geomagnetic field. The circular arrows show the rotation of the flagellum allows the bacterium

to swim backward or forward within a water column (rotating clockwise to swim backward or rotating

counter clockwise to swim forward)[52].

And all possible distortions and elongations of these[59].

The magnetosome is a distinct subcellular compartment exhibiting a unique biochemical

composition. The structure of the magnetosome membrane (MM) is similar to that of

eukaryotic organelles, being composed of a lipid bilayer. The MM represents a third

membranous compartment alongside the outer membrane and cytoplasmic membrane[38,

60]. It is believed to originate from the cytoplasmic membrane by invagination. The

optimal method of MM visualisation is transition-electron microscopy (TEM).

The MNPs have a crystal size of approximately 35-120 nm[61], a narrow size distribution

with an average diameter of 50-100 nm[58], and are permanent single–magnetic domains

(SD) at ambient temperature[62]. The crystals are uniformly magnetised within this size

range, meaning that their magnetic dipole moment is at its maximum (equal to that of

the saturation moment). The crystals smaller than SD at ambient temperature are su-

perparamagnetic, with a remnant magnetisation coming close to zero. Whereas, larger

crystals are metastable SD or support formation of domain walls making their magnetic

moments smaller than that of SD crystals. Therefore, the SD crystals have the largest

possible remnant magnetisation[8]. The individual grain moments align parallel to each

other along the magnetosome chain direction, this process is caused by the magnetotactic
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interactions between the SD magnetosomes. In doing so, a permanent magnetic dipole is

created, roughly equal to the sum of the individual magnetosome magnetic moments[63].

Frankel[64] suggested that the orientation of the dipole results in the orientation of the cell

as the dipole is in a fixed cell. The magnetosomes of magnetite are aligned along the {111}
direction, parallel to the magnetosome chain, this is believed to be a biological mecha-

nism for maximising the magnetic moment per particle, as this particular direction yields

approximately 3% higher saturation magnetisation than the other directions[9, 65, 27].

Due to their unique characteristics, the identification of bacterially precipitated mag-

netite in the fossil record is possible. Fossilised MTB have even been found in deep sea

sediment[66, 67] and Precambrian stromatolites[32].

Interest and research into MTBs since their discovery has been wide–ranging and sci-

entifically interdisciplinary. Various commercial applications for bacterial MNPs have

been proposed and fall into two categories: those involving the whole living cells and

their magnetotactic behaviour; and those utilising isolated magnetosome particles, al-

lowing for modification with organic molecules. Examples of the former are limited,

but include the removal of radionuclides and heavy metals from waste water[68, 69],

whilst usages of the latter are more widespread, with potential for use as contrast agents

for MRI[70, 71, 72, 73, 74, 75], magnetic antibodies[76, 77], hyperthermia therapeutic

agents[78, 79, 80], drug[75, 81, 82, 83, 84, 85] and gene delivery systems[86, 87, 88]. While

the biotechnological potentials have been established, thus far such applications are not

commercially viable at present. The main problems for commercial scale utilisation being;

the expense of Magnetotactic bacteria mass cultivation, and the lack of essential under-

standing of the genetic and biochemical principles involved in the process of magnetite

biomineralisation. In order to produce MNPs more economically the biomineralisation

process needs to be further explored.

It has been hypothesised by many, including Arakaki et al[89]and Devouard[59], that MNP

biomineralisation has three major stages. The first stage is the formation of intracellular

vesicles resulting from the invagination of the cytoplasmic membrane. This process is

believed to be primed by a membrane specific GTPase[90]. Secondly, ferric iron is trans-

ported into the vesicles and is reduced to ferrous iron on the cell surface before being

taken into the cytoplasm. These are then transported into the vesicle, via transmembrane

iron transporters, and subsequently oxidized to produce magnetite. Finally, the crystalli-

sation of magnetite occurs in the vesicle. This process still remains unclear, however, it is

suggested that tightly bound MNP proteins trigger magnetite crystal nucleation and/or
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regulate the resulting morphology. It is believed that various MM proteins play func-

tional roles in magnetite synthesis, including, the accumulation of the iron concentrations

required for supersaturation, the maintenance of intracellular reductive conditions, the in-

duction of mineralisation via the oxidation of iron, and the transformation of ferrihydrite

to magnetite through its partial reduction and dehydration[89].

Cultivation of MTB in a laboratory has proven difficult to achieve, despite their high

abundance. These difficulties arise from attempting to reconstruct their natural envi-

ronment under laboratory conditions. The Magnetospirilla family was the first to be

cultivated in a laboratory[40], with the first MTB isolated in pure culture being the Mag-

netospirillum magnetotacticum strain MS-1[40]. However, its usefulness in magnetosome

formation molecular studies was limited; due to its fastidious nature and incapability for

robust laboratory based growth. With the isolation of two other closely related species

of Magnetospirilla; Magnetospirillum grysphiswaldense strain MSR-1 and Magnetospiril-

lum magneticum strain AMB-1, this issue was bypassed, with these species subsequently

taking centre stage as models for understanding magnetosome formation[91, 92, 60]. To

date at least twenty species of magnetite producing MTB have been cultivated in pure

culture. Over recent years, the genomes of several MTB have been sequenced; the first of

which was produced for Magnetospirillum magneticum strain AMB-1[93]. This was un-

dertaken to elucidate the mechanism of magnetosome formation and to provide a template

for determining how MTB maintain a species–specific, nano–sized, magnetic SD morphol-

ogy. Figure 1.6 shows TEM images of an example of Magnetospirillum magneticum strain

AMB-1 and it MNPs.

Figure 1.6: TEM images of Magnetospirillum magneticum strain AMB-1. A) Full bacterial specimen.

B) MNPs. Adapted from Arakaki et al 2008[89]

Magnetospirillum magneticum strain AMB-1, a facultative anaerobic magnetotactic spir-

illa, is a Gram–negative, spiral shaped, aquatic, mesophillic bacterium, preferring tem-

peratures between 25− 40 ◦C. They synthesize MNPs that are cubo–octahedral in shape
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consisting of both {100} and {111} crystal faces, elongated in the {111} direction (see

Figure 1.7). The {111} axis corresponds to the magnetic easy axis, hence, having the low-

est energy. This arises from anisotropy in the magnetocrystalline energy, the interaction

of spin magnetic moments within the crystalline matrix, in magnetite this is above 120

K[94]. The {100} direction is the magnetic hard axis, thus, being higher energy. Mat-

sunaga et al[41] found that these nitrate–reducing bacteria were capable of growing under

both micro–aerobic and aerobic conditions in liquid or solid media, making this strain an

ideal candidate for genetic manipulation[91].

Figure 1.7: An illustrations of the {100} and {111} Miller indices.

As mentioned before elucidating the magnetosome formation mechanism is of great im-

portance. Much attention has been focused on the magnetosome membrane proteins of

Magnetospirillum magneticum strain AMB-1, in order to analyse this precisely regulated

molecular mechanism[43, 38]. Tanaka et al[95] postulated that the magnetosome mem-

brane was derived from the cytoplasmic membrane of the cell, this was backed up by the

identification of 78 magnetosome membrane proteins also being found in the cytoplasmic

membrane, several of which are believed to be related to magnetosome biosynthesis. Most

magnetosome–specific proteins are shared by different Magnetospirilla[95] and are sug-

gested to function in protein–protein interactions, vesicle formation, magnetosomal iron

transport, magnetite crystallisation, intracellular arrangement of magnetite particles and

activation of magnetosomes. Proteome analysis of the magnetosome membrane identified

several novel proteins with potentially crucial roles in MNP biomineralisation elucidated

by a number of molecular studies[90, 95, 96, 97, 98, 99, 100].

13



1.1.3 Magnetosome Membrane Protein Mms6

From the analysis of the magnetite crystal surface of the MNPs, Arakaki et al[100]

identified four proteins, within Magnetospirillum magneticum strain AMB-1, which were

tightly associated with the bacterial magnetite crystal surface; Mms5, Mms6, Mms7 and

Mms13. These Mms- (Magnetosome particle Membrane–Specific) proteins have common

amphiphilic features; with a hydrophobic N–terminal and a hydrophilic C–terminal but

had no sequence similarities to known functional proteins, with the only observed similarity

being to the MM proteins MamC and MamD fromMagnetospirillum grysphiswaldense[101].

The N–terminal in Mms5, 6 and 7, exhibit a common leucine (L) and glycine (G) repetitive

amino acid motif, which is reminiscent of self–aggregating proteins of other biomineral-

isation systems[100, 102], it is believed to do this via hydrophobic interactions. Within

Mms6, the C–terminal is a highly acidic region, containing dense carboxyl and hydroxyl

groups that show direct interaction with the magnetite surface. The carboxyl groups have

a strong affinity for metal ions and bridging ligands, whilst the hydroxyl groups also have

metal binding capabilities. Both groups are able to bind iron ions[100, 103].

Much of the studies into these novel proteins have been focused on the Mms6 protein.

During in vitro magnetite synthesis via partial oxidation of ferrous hydroxide, Amemiya

et al [104] found that in the presence of the recombinant Mms6 protein, uniform sized

magnetite crystals were formed. These crystals had a cubo–octahedral morphology, con-

sisting of {100} and {111} crystal faces. It was found that the crystals produced by

Mms6–mediated synthesis were similar to the magnetite crystals isolated from Magne-

tospirillum magneticum strain AMB-1. The formation of {100} faces was considered to be

due to Mms6 face–specific interaction, this being said, they did not achieve identification

of the functional site of the molecule. In the absence of the protein, octahedral crystals

with {111} faces were detected. Amemiya et al[104] postulated that the Mms6 protein

could serve many key roles in magnetite biosynthesis such as; promoting the growth of a

lower surface energy crystal lattice with the self–assembled aggregate acting as a scaffold,

regulating crystal size, controlling the shape of the crystal via the face–specific interaction.

Arakaki et al[105] also focused their attention on the magnetosome membrane protein,

Mms6, wanting to understand its role in magnetite biosynthesis. They investigated mag-

netite formation using synthetic peptides (shown in Table 1.4) that mimic the Mms6 pro-

tein, again utilising a partial oxidation method as represented in Equation 1.1. Arakaki

et al focused primarily on the C–terminal acidic region and the hydrophobic GL repeat
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region of the N–terminal.

2Fe2+ + 4OH− −→ 2Fe(OH)2

2Fe(OH)2 +NO−
3 +H2O −→ 2Fe(OH)3 +NO−

2

Fe(OH)2 + 2Fe(OH)3 −→ Fe3O4 +H2O

(1.1)

Synthetic Peptide Amino Acid Sequence kDa pI

M6A DIESAQSDEEVE 1.4 3.6

GLM6A GLGLGLGLGLDIESAQSDEEVE 2.3 3.6

M6B KIKSAQSKKKVK 1.4 10.7

GLM6B GLGLGLGLGLKIKSAQSKKKVK 2.3 10.7

Table 1.4: Amino acid sequences of the synthetic peptides mimicking Mms6. kDa = Molecular weight

and pI = Isoelectric point

Their findings showed that the crystals synthesized in the presence of peptides contain-

ing the C–terminal acidic region (M6A and GLM6A) were uniform–sized cubo–octahedral

crystals with a narrow size distribution, similar to biogenic magnetite, conversely, crystals

synthesized in the absence of peptides containing the C–terminal acidic region (M6B and

GLM6B) were octahedral with sharp corners. Statistical evaluation of the size distribu-

tion and circularity was used to confirm the morphological characteristics. Despite these

findings, the specific localisation of proteins or peptides on particular crystal faces was

again not determined. Arakaki et al suggested that the results of this study indicated that

the negatively charged C–terminal region is crucial for the formation of cubo–octahedral

crystals. However, the observed size and morphology of the crystals synthesized in the

presence of Mms6 and the other mimic peptides cannot be attributed to only the isoelec-

tric points or the net negative charge of these molecules, thus, the conformation of the

C–terminal region may contribute to controlling the morphology of the magnetite crystals.

Various magnetite synthesis methods have been explored ranging from dry hematite

reduction[106, 107] to wet precipitate methods[108] including; simple co–precipitate[109],

partial oxidation[110, 111], ferric hydrolysis of urea[112] and controlled colloidal methods[113].

However, the crystals formed are very much method–dependent. With the exception of

the biogenic synthesis of magnetite and Mms6–mediated syntheses, the available literature
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suggests that, the only other methods to produce cubo–octahedral magnetite involve very

high temperatures and organic solvents[114, 115].

Many studies over recent years have attempted to demonstrate the in vitro roles of the

Mms6 protein in the control of morphology and/or crystal size, via chemical synthesis using

purified proteins or synthetic peptides. However, the morphological regulatory molecu-

lar mechanisms remained unclear due to a lack of direct evidence of protein–mediated in

vivo control, until Tanaka et al in 2011[3]. By constructing and analysing an Mms6 gene

deletion mutant strain of Magnetospirillum magneticum strain AMB-1, Tanaka et al en-

deavoured to understand this role. The gene deletion strain proved to synthesise magnetite

crystals with lower aspect ratios, smaller size and indefinite morphologies with uncommon

crystal faces, very unlike the uniform cubo–octahedral crystals displaying {100} and {111}
crystal faces produced with the wild type. The faces present in the Mms6 gene deletion

strain included the high index crystal faces {210}, {211} and {311}. Also, the higher

energy, unstable {110} face, along with the {100} and {111} surfaces present in the wild

type. The difference between the results in the absence of the Mms6 protein, for the in

vivo work of Tanaka et al and in vitro work of Arakaki et al, was postulated to be due to

the very different reaction conditions used in each study.

Tanaka et al[3] also found that gene deletion and complementation had no effect on bac-

terial growth. The magnetite crystals aligned in a chain, and the average number of

magnetite crystals per cell was similar to that of wild type, suggesting that the struc-

ture of the vesicles were unaffected by the gene deletion, furthermore, that Mms6 doesn’t

function in the nucleation step of magnetite biomineralisation. Surprisingly, they discov-

ered that the crystals found in the middle of the chain were elongated toward the {111}
direction, as was seen with the wild type, proposing that the crystallographic direction re-

mained unaffected by the deletion of Mms6. This finding suggests that the Mms6 protein

regulates the orientation of the crystal growth, however, another protein is responsible for

the induction of growth towards the {111} direction. In addition to the role Mms6 plays

in the in vivo regulation of the crystal structure during biomineralisation, the results of

Tanaka et al also suggest that the protein serves alternative functions, these include the

surface stabilisation of the magnetite crystal growth, and acting as a scaffold to stabilise

the protein complexes, in order to accurately localise them onto the magnetite crystal

surfaces. Additionally, the homeostasis of other proteins (Mms5, 7 and 13) on the crys-

tal surface was significantly reduced by the deletion of Mms6, proposing an association

between these proteins and the potential of co-localisation on the magnetite crystal sur-
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face in the form of protein complexes. These proteins, which are tightly associated with

the magnetite crystal surface, are considered to have similar functions, and due to this

cooperate in the formation of magnetite with a consistent crystal surface.

Despite the results produced from the work in this area, further work needs to be under-

taken in order to elucidate the molecular mechanisms behind magnetite crystal formation

and what role exactly Mms6 has in these. A technique that works successfully alongside

experiment, that enables individual components of mechanisms to be considered in isola-

tion, is computer modelling at the atomistic level. Atomistic simulations, which have not

previously been utilised to establish the role of the Mms6 protein in the biomineralisa-

tion of magnetite, offer the advantage of direct observation of the atomic and molecular

processes involved, this being the topic of this thesis.

1.2 Computational Studies

Despite the progress made experimentally in the field of biomineralisation, allowing for

greater understanding of the roles that biomolecules, such as peptides and proteins, play

in biomineralisation mechanisms, understanding of the biomolecule–mineral interactions

during biomineralisation is at present far from complete. Computer simulations can be an

effective tool to further this understanding, allowing for the attainment of atomistic details

at the biomolecule–mineral surface interface. Increasingly, theoretical models are being

used, with some success, for processes such as biomineralisation involving the interface

between biomolecules and mineral surfaces. A range of computational techniques have

been used to study the mechanisms of biomineralisation over the years, utilising theories

ranging from quantum mechanics and atomistic simulations at the nanoscale to continuum

mechanics and composite theories at the macroscale. Despite the great challenges of

simulating the structure and properties of biomaterials, many attempts have been made

to do so at atomic and meso length and timescales, which incorporate the range of physical

effects important in the formation of biomaterials. These simulation studies generally fall

into three groups of techniques;

Electronic Structure Calculations[116] This technique provides a description of the

system–specific electron–electron interactions by numerical solutions of Schrödinger’s

equation. One of the most popular theories utilised in electronic structure calcula-

tions is the Density Functional Theory (DFT) which utilises code such as CASTEP[117],
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VASP[118] and CRYSTAL[119]. To reduce the amount of numerical analysis involved

in the calculation, approximations, such as Local Density Approximation (LDA) and

Generalised Gradient Approximation (GGA), are introduced.

Atomistic Simulations[120] This technique involves the use of potential based pa-

rameterised functions to describe the short- and long–range interatomic interac-

tions. This technique is generally applied in two ways, molecular dynamics simula-

tions and Monte Carlo simulations. Molecular dynamics simulations[121] calculate

atomic and molecular physical movements in the context of N–body simulation,

whereby, Newton’s equations of motion are numerically solved, in order to deter-

mine the trajectories of atoms and molecules for a system of interacting particles.

A large number of general purpose codes are available for this technique, such as

DL POLY[122] and LAMMPS[123]. There are also more specific biomolecular codes

such as AMBER[124] and NAMD[125]. Monte Carlo[126] is a broad class of computa-

tional algorithms, for simulating the behaviour of various physical and mathematical

systems, that rely on repeated random sampling. This method is stochastic, using

algorithms that are non–deterministic in some manner and using random number

or pseudo–random number generators. Monte Carlo codes are written by individual

groups for specific applications.

Mesoscale Simulations Mesoscale refers to the scale between atomistic and macro-

scopic. These methods apply molecular dynamics or Monte Carlo techniques in

domains too large for individual molecules and atoms to be included explicitly, in-

stead using ”pseudo–atoms” to represent groups of atoms. These methods can tackle

the problems of large system size and long timescales by using reduced representa-

tions, which coarse–grained techniques are examples of. Coarse–graining[127, 128]

consists of replacing an atomistic description of biological molecules, such as pro-

teins, with a lower–resolution coarse–grained model that averages away fine details,

for example degrees of freedom.

There are problems with all theoretical approaches to biomineralisation processes, for ex-

ample, the restriction of system sizes to mesoscale and below necessitate consideration of

a wide range of techniques, from ab initio methods to coarse–grained simulation methods.

However, the main challenge posed for biomineral system simulation is that of the inter-

faces between soft and hard matter of the biominerals, as they are often the boundaries

between different model types. These components of the biomineralisation system have

been, up until recently, considered as two very separate theoretical fields, organic and
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inorganic simulation. Much has been published on the individual elements, with both

fields having reliable potential models which have been utilised to tackle a wide range

of problems. However, very rarely are the fields approached together as combining the

two poses immense challenges. Reviews have been published giving excellent discussions

of computational techniques for modelling organic–inorganic interfaces; however, much of

the information provided favours either hard matter simulation or soft matter simulation

dependent on the author[129, 130]. One possible method for combining the two compo-

nents is by defining cross–term potentials, for example, by using the Lorentz–Berthelot

mixing rules. However, from previous studies[131, 132], this method has been found to

seriously overestimate interfacial binding energies. This issue could be resolved by system-

atically refitting the potential sets, however, this approach is extremely computationally

expensive. An alternative approach, which has been used by de Leeuw et al[133] and

Freeman et al[134], is the Schröder method[135], which recasts the interatomic cross–term

potentials to fit the different charges between the systems.

1.2.1 Mineral-Water Interface

Another problem facing biomaterial simulators is that the systems studied are, by nature,

aqueous, which means that the chemistry of the mineral–water interface must also be

considered alongside the detailed structural effects the presence of water will have on the

biomolecule–mineral surface interactions, making biomineralisation systems highly com-

plex. The behaviour of water within a system is a crucial factor to consider as it may be

an important component of biomolecule adsorption at mineral surfaces in aqueous con-

ditions. Many studies[132] have confirmed this importance, suggesting that water may

mediate the biomolecule–mineral surface interactions, due to the reports that a solvent

monolayer persists between the biomolecule and surface. There are, however, major chal-

lenges to face when simulating water[136] and this in itself has resulted in an exhaustive

literature leading to the existence of many force fields and models to describe it[137].

Calcium based biominerals have been the predominant focus for biomineral–water inter-

face studies. Calcite surfaces in aqueous conditions have been studied extensively and the

results from computer simulations[138, 139] and experiments[140] agree well, with both

showing clear evidence of an ordered layering structure to the water near the surface and

that the details of the water structure vary with the different surface structures of the

calcite[141]. It was also found that the free energy of adsorption was greatly influenced

by the layering of the water at the interface. In one study, density functional theory
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calculations were employed to explore the interaction between associated and dissociated

water molecules and the {10.4} surface of calcite. It was revealed, through static relax-

ations, that the dissociated water molecules were energetically unfavourable[142]. Again,

with this study, the presence of well–defined water layers was highlighted, with the water

molecules forming three distinct layers, whereby, the molecules nearest to the surface lay

flat on the surface, and the water molecules slightly further out split between interacting

with the surface and interacting with the other water molecules present.

In 2003, Kerisit et al focused their research on the dissociative adsorption of water on the

{10.4} calcite surface. It was found, by the use of atomistic simulation methods, that when

water adsorbs onto the surface it loses its hydrogen–bond network, leading to an oscillation

of water density in close proximity to the surface. The simulation results also suggested

that, the carbonate groups present at some step edges and low–index surfaces form OH

groups on the surface by dissociating water and subsequently release carbon dioxide[138].

Most recently, studies into the calcite–water interface are interested in direct comparison

between simulation and experimental data in an attempt to ensure the accuracy of the

simulated models. Fenter et al[143] compared four different modern force fields models(two

non–polarizable, one polarizable, and one reactive force field) utilising classical molecular

dynamics simulations with high–resolution specular X-ray reflectivity (XR) data in order

to give further understanding of the interfacial structure. The comparative results pro-

duced suggested that the interfacial structures created through simulation, when taken as

a whole, were not in agreement with the precision and accuracy of the XR data, however,

there was a higher level of consistency with the XR data for the simulated interfacial water

profiles, with the rigid–ion model results showing semi–quantitative agreement.

Hydroxyapatite is another biomineral of importance in mineralwater interface research.

Pan et al[144], using molecular dynamics simulations, studied the behaviour of water on

the {001} and {100} hydroxyapatite surfaces. The results again highlight the presence of

an ordered layering structure to the water and that this layered structure varies dependent

on surface, with the {001} direction resulting in more structured water layers than the

{100} direction. It was also found, when observing the interaction of the water molecules

with the calcium and phosphate sites at the interface between the hydroxyapatite surfaces

and water, that there are multiple pathways of water adsorption onto the surfaces, with

the first layer of water exhibiting specific adsorption sites. The group postulated that the

water layers could block ion migration, which could significantly impact hydroxyapatite

crystal growth and dissolution. Prior to this, it was largely assumed that biomolecule
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adsorption onto the surfaces of hydroxyapatite was related to calcium ion and phosphate

ion site distribution on the surface, whilst ignoring the water layer functions[145, 146].

In 2009, Corno et al[147] investigated water adsorption on the {001} and {010} hydrox-

yapatite surfaces using the quantum mechanical code CRYSTAL at the B3LYP level of

theory, finding that there was a great affinity for water for both surfaces. Water adsorbed

molecularly on the {001} surface, while it dissociated on the {010} surface, which lead to

new surface terminations. A reasonable agreement in results was shown on comparison

with experimental water adsorption enthalpies. Among the most recent studies into the

hydroxyapatite–water interface, the surface stability of the {001} hydroxyapatite surface

and the phosphate–exposed, calcium–exposed, and hydroxyl–exposed terminations of the

{010} hydroxyapatite surface were investigated, with particular interest into surface resis-

tance to hydrolytic remodelling[148]. It was established that dissociative water adsorption

was beneficial for the {001} surface and the phosphate–exposed {010} surface, whilst, only

molecular adsorption of water was feasible for the hydroxyl–terminated {010} surface. The
study also showed that the hydroxyl–terminated (010) surface was the most stable surface

and hence, in experiments, should be the predominant surface exposed.

Kerisit in 2011[149] exhibited, through molecular dynamics simulations utilising four differ-

ent models (based on interatomic potentials), the atomic–level structure of three hematite-

water interfaces({001},{012} and {110}). It was found, with the exception of one termi-

nation with one model, that all of the models tested predicted the correct interfacial water

molecule arrangement, and that there was good to excellent experimental agreement for

water positions, distances, and layer occupancies. The study also showed that, at all sur-

faces, each of the three surface functional groups present (triply–coordinated oxo, doubly–

coordinated hydroxo, and singly–coordinated aquo groups) formed similar hydrogen bond

configurations with the adsorbed water molecules. Kerisit postulated that the structure

of water at the interface with the mineral surface plays a role in the thermodynamic and

kinetics of adsorption[150].

Great progress had been made, working up to this study, in the field of hematite–water

interfaces, moving from modelling a simple monolayer of water molecules, to discovering

that the major mineral–water interactions are through water oxygen ions with surface

iron ions, followed by hydrogen–bonding to surface oxygen ions[151, 152, 153, 154], to

more advanced potential model simulations of hydrated hematite surfaces in contact with

water layers tens of angstroms thick[155, 156, 157, 158], with much focus on the {001} and

{012} surfaces. The earlier work of Kerisit and colleagues[159] showed that, for the {001}
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hematite surface, there were water layers at two distinct distances above the surface, and

that in the first layer water molecules bonded to the surface hydroxyl groups, whereas,

for the second layer the water molecules interact with the surface hydroxyls and the iron

ions.

Recent research into goethite[160], another iron oxide biomineral, investigates the proton

affinity implications of water structure and hydrogen bonding at goethite–water interfaces.

Boily[160] utilised molecular dynamics simulation to explore the {010}, {100}, {110}, and
{021} surfaces of goethite in an aqueous environment, in order to determine the structures

of interfacial water in close proximity to the (hydr)oxo groups on the goethite surface. The

calculations showed that water adopted highly surface–specific configurations, and that,

under normal environmental conditions, singly coordinated surface groups are predomi-

nantly linked to charge uptake. Yet, revised proton affinity constants showed that, in the

presence of strongly binding negatively charged ligands, protonation of doubly–coordinated

hydroxo groups and one type of triply–coordinated oxo group may be preferred.

1.2.2 Mineral-Organic Molecule Interface

Research into mineral–organic molecule interfaces is of great interest for furthering under-

standing of the mechanisms and processes of biomineralisation. It is also of great impor-

tance to consider and understand the critical role of structured water layers on mineral–

organic molecule interface behaviour. Yu et al[161] highlighted how organic molecules

react at a mineral surface differed significantly dependent on a presence or absence of

water. Their study published in 2003 showed that when the system was in vacu, the

molecule maximised its contact area with the mineral surface. Whereas, when the sys-

tem was solvated, molecular binding to the surface often occurred through only a single

functional group, with the remainder of the organic molecules structure being immersed

in the water, and, in some instances, direct binding between the organic molecule and the

mineral surface was not observed at all, due to a lack of ability for the molecule to displace

the strongly bound innermost water layer. In this case, the organic molecule either binds

to the mineral through this water layer, disrupting only the second and subsequent layers

(as shown experimentally by Magdans et al[162]), or it just fails to bind. Several other

studies since have also noted these behaviours.

Most recently, Zhu et al[163] demonstrated that the particular surface of attachment effects

the organic–inorganic interactions along with the significant contribution that water layers
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have to interfacial interactions, through a study comparing adsorption of an acrylic acid

dimer on the {10.4} calcite surface to its adsorption on the {11.0} calcite surface. The

results, which are consistent with experimental observations, showed that on the {10.4}
surface two carboxyl groups interact with the crystal but the molecule has to compete

with water due to the well–structured hydration layer, whereas, on the {11.0} surface only

one carboxyl group interacts, however, the water layer was relatively loose so that the

molecule can easily replace water, leading to a stronger interaction with {11.0} surface

than with {10.4} surface.

There has been a large body of work on the calcite–organic molecule interfaces, with studies

into many different interfacial behaviours including: polysaccharide adsorption behaviours

with stepped calcite surfaces, demonstrating that adsorption onto acute–stepped surfaces

was more favourable than onto obtusestepped, and the potential usage of monosaccharides

to inhibit crystal growth through selective surface coverage[164]. These studies illustrated

how biomolecule adsorption can be greatly affected by peptide configuration, with studies

such as that of Yang et al[165], whereby peptide chain interactions with the calcite {10.4}
surface were investigated, revealing that a β-turn peptide configuration has the strongest

interaction with calcite surface, while the α-helix configuration exhibits the weakest inter-

action.

For Freeman et al, the question of what role the chicken eggshell protein Ovocleidin-

17 (OC-17) (a protein found only in hen ovaries) had in eggshell formation led to the

first molecular simulation of spontaneous crystallisation of amorphous calcium carbon-

ate (ACC) in the presence of OC-17[166]. Using metadynamic simulations, Freeman

et al explored how the onset of mineral crystallisation can be controlled and what role

this native protein had in the process, through the simulation of OC-17 adsorption onto

ACC in an aqueous environment. It was found that OC-17 bound most readily to the

nanoparticles through two clusters of arginine (ARG) residues, and that OC-17 acts as

a catalyst in eggshell formation by aiding the transformation of ACC particles into cal-

cite crystals. Freeman et al then progressed onto exploring the adsorption of OC-17, in

several different configurations, onto the calcite {10.4} surface, using classical molecular

dynamics simulations[167]. This study again demonstrates competitive binding between

biomolecules and strongly bound surface water, and that arginine residues are the major

binding sites of OC-17. The simulation data produced shows that, firstly, the protein

configuration most energetically favourable for binding in fact has the fewest residues–

surface contact points, as this causes the least disruption of the strongly bound water
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layer through water molecule displacement. Secondly they exhibited that ARG residues

achieve strong interactions with the surface carbonate–oxygen and calcium ions due to the

ability of its long side chain group, to penetrate the water layer with relative ease.

In a paper published in 2012, Freeman et al, went on to study OC-17 binding on stepped

calcite surfaces (the vicinal {31.16} and {31.8} surfaces), again utilising classical molecular

dynamics simulations[168]. The simulations demonstrate that binding was facilitated by

the surface water organisation on stepped surfaces, with binding occurring in areas of least

water density, and that binding was greater at the obtuse step. The data also suggests

that it was unlikely that OC-17 was important in controlling crystal morphology, due to

the vicinal surfaces exhibited weaker binding than the planar {10.4} surface, suggesting

that OC-17 may not prevent crystal growth in particular directions by binding to steps,

which was a finding that agreed with previous crystallisation simulations[166]. Freeman

et al also found that the structure of OC-17 remains unchanged when it was in contact

with the calcite surface and that binding to the surface was usually through basic amino

acid residues, in particular ARG.

It is known that hydroxyapatite is grown as nano–sized mineral platelets at nucleation

sites on a collagen protein template, however, the exact role of the collagen matrix dur-

ing biomineralisation remains unknown, although it is postulated that collagen functions

to actively control mineralization through growth direction effects. Knowledge of the

collagen–hydroxyapatite interface is required to understand the nucleation and directed

growth of hydroxyapatite at the collagen matrix. This problem is the focus of much re-

search into hydroxyapatite biomineralisation and the interface between hydroxyapatite and

biomolecules. The {00.1} and {01.0} hydroxyapatite surfaces have predominantly been the

crystallographic faces considered in relation to simulation studies of the hydroxyapatite–

collagen interface, as the {00.1} surface is the most thermodynamically stable hydroxya-

patite surface[169]. The {00.1} surface is also the direction in which the apatite mineral

is aligned along the collagen fibril. The {01.0} surface, however, has been found to be the

dominant surface in biological material morphology[170]. Hydroxyapatite–collagen studies

have moved from constituent collagen matrix amino acid attachment[171] to collagen pep-

tide attachment[172, 173], leading through to the simulation of early stage hydroxyapatite

nucleation at a collagen template[174], utilising density functional theory techniques and

atomistic simulations. In a collagen molecule, approximately one third of the amino acid

residue sequence is made up of glycine (GLY) (one GLY residue in every third position),

whilst a further quarter consists of proline (PRO) and hydroxyproline (HYP)[175]. Lysine
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(LYS)and hydroxylysine (HYL) residues are also present, hence these residues have been

the focus of constituent amino acid and peptide studies.

The constituent amino acid density functional theory study by Almora-Barrios and de

Leeuw[171] in 2009, showed that GLY, PRO and HYP are able to form multiple sur-

face interactions with the hydroxyapatite, and the strongest amino acid–surface bind-

ing was through HYP onto the {01.0} hydroxyapatite surface. When collagen pep-

tides(amphiphilic - PRO-HYP-GLY and HYP-PRO-GLY, hydrophobic - PRO-LYS-GLY

and PRO-HYL-GLY) were investigated[172, 173] the results were in agreement with that

of experiment and previous simulation studies[171, 176, 177, 178, 179, 180, 181], in that,

multiple surface interactions were formed between the peptides and the hydroxyapatite

surface species, and as with the collagen amino acid study[171], the peptides more strongly

bound to the less stable {01.0} surface than to the thermodynamically stable {00.1} sur-

face. Thus surface stability and surface geometry (e.g. bridging between two or more

calcium ions) have a significant effect on the interaction strength of the peptides. Of the

collagen peptides, the positively charged NH3+ side groups (LYS and HYL) and the OH

side groups (HYL and HYP) principally were found to bind strongly to the surface, lead-

ing to Almora-Barrios and de Leeuw[172] to propose that the presence of these residues

in the collagen protein should promote hydroxyapatite growth in biomineralisation and

synthetic mineralisation. When water was present in the system there was competition

for adsorption sites, in some cases water molecules can block peptide adsorption at the

preferred surface site, however, the presence of water does not change the surface that the

peptide most strongly binds to, as only the {01.0} surface interacts strongly with peptides,

further helping to elucidate the reason behind the biological hydroxyapatite morphology

where, as a result of the collagen matrix growth–directing effect, this surface was expressed

preferentially.

In 2012, Almora-Barrios and de Leeuw attempted to simulate early stage hydroxyapatite

nucleation[174] by using molecular dynamic simulations in which a collagen template was

immersed in a stoichiometric solution of Ca2+, PO3−
4 and OH− ions. Calcium phosphate

clusters were found to form at the collagen template due to electrostatic attraction between

the calcium ions and the phosphate ions. The calcium ions also reacted electrostatically

predominantly with the oxygen atoms of the GLY and HYP residues of the collagen tem-

plate and some of the phosphate ions interacted with the hydroxy groups of the HYP

residues through hydrogen bonding, although the interaction of the phosphate ions with

the collagen template was weaker than that of the interaction of the calcium ions with
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the collagen template. Due to the short timescale possible with this type of simulation it

was too early in the clustering and nucleation process to be able to differentiate between

distinct surfaces of hydroxyapatite. In another hydroxyapatite study, Rimola et al[182],

showed that although adsorption is explained by electrostatic interactions, the main in-

teraction species are dependent on peptide configuration, exhibiting that if the GLU/LYS

mutated 12-gly-polypeptide was in a α-helix folded state then the acidic and basic residues

interact mostly with the Ca2+ surface ion, however, if the peptide was in a coiled state

then the interactions with the Ca2+ surface ions were mainly through the backbone COO.

It was also shown that this trend was not modified when water molecules were added at

the adsorption points.

In other examples of calcium based biomineral interfacial interactions, the importance of

phosphorylation in mediating interactions between calcium oxalate monohydrate (COM)

surfaces and the extracellular structural bone protein osteopontin (OPN) was investi-

gated. The study, by Hug et al[183], compared the interaction of aspartic acid (ASP),

also a dipeptide formed of ASP and phosphoserine (pSER) with COM, establishing that

although ASP formed close contacts with the COM surface, through the α-carboxyl and

amine groups, they were only temporary contacts unlike the contacts that the dipeptide

made through the carboxyl groups which were permanent, showing that for OPN–COM

interactions, carboxyl groups are crucial. The results confirmed the work of earlier OPN–

related studies (both experimental and simulation)[184, 185, 186], that the presence of a

phosphate group in a peptide or protein sequence has a strong effect on the attachment of

carboxyl groups with the COM surface. The behaviour of octacalcium phosphate (OCP),

the precursor to hydroxyapatite, at an interface with proteins has also been studied. One

such study[187], investigated the adsorption of lysozyme (LSZ) and human serum albumin

(HSA) onto different OCP surfaces, finding that the adsorption energy of LSZ was higher

than that of HSA, which suggested that LSZ attachment to OCP surfaces would be most

favourable, agreeing with experimental work carried out by Zhu et al[188]. It was also

observed from this investigation that interaction energies of the proteins differed with a

change in OCP surface ({001} {111} {110} {100}); however, the trend in changes was sim-

ilar for both LSZ and HSA. The surface energy trend also matched that of the interaction

energy. The adsorption differences of the two proteins that were observed were proposed

to be due acidic/basic residue ratio differences on the protein backbone.
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1.2.3 Magnetite Computational Studies

Despite the fact that, of the iron oxides, magnetite has been one of the most studied ex-

perimentally, with an increasingly large collection of research data being compiled, com-

putational publications remain limited in comparison to other biominerals. Mazo-Zuluaga

et al[189, 190] focused their research into magnetite on magnetism, in particular, on elu-

cidating the critical magnetic behaviour of both bulk magnetite and associated with the

transition from ferrimagnetism to paramagnetism, and the effect that having different

exchange integrals has upon this behaviour. Whilst, Rustad et al[191] used molecular

dynamics to investigate magnetite {001} surface reconstruction, as this particular surface

has a half–occupied tetrahedral layer termination. They proposed a novel mode of re-

construction, whereby, the Fe2+ ions in the top monolayer move downward to occupy a

vacant half–octahedral site in the plane of the second–layer iron ions, whilst, half of the

tetrahedral iron ions in the third iron layer are move upward to occupy an adjacent oc-

tahedral vacancy at the level of the second–layer iron ions. The proposed reconstruction

was found to be in agreement with experimental data. Soontrapa and Chen[192] used

molecular dynamics to model magnetite formation via the oxidation of iron. In doing so

they utilised appropriate pair potentials based on energy minimization charge distribu-

tions. The publication introduced a novel model for studying magnetite formation with

results in satisfactory agreement with experiment, particularly with regard to oxide layer

thickness.

To date, very little research has explored magnetite interfaces. The earliest work to be

published specifically on the magnetite–water interface was produced by Rustad et al[193]

in 2003, concentrating on the {001} magnetite surface in the presence of pure water and

in a 2.3 M NaClO4 solution. The investigation established that the electrolyte presence

in the simulation system had negligible effect on surface functional group protonation

states, and that they were preferentially arranged within the defined water molecule lay-

ers. The results also showed that extensive hydrolysis of the interfacial water molecules

had a significant effect on the protonation states of the surface species. Subsequently,

Kundu et al[194] performed static energy minimisation techniques to establish the be-

haviour of five different magnetite surfaces ({001}, {011}, {101}, {110} and {111}) in the

presence of molecular and dissociated water and formic acid, focusing on surface structure

and adsorption behaviours of water and carboxylic groups on pure surfaces. Kundu et al

postulated that the magnetite surfaces would be hydroxylated in nature due to the very

highly negative reaction energy produced. It was also observed that, with the exception
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of the {011} surface, water adsorption is preferred over formic acid adsorption on hy-

droxylated magnetite surfaces. Research into magnetite–water interfaces has also looked

into not only liquid water but water vapour. Tombacz et al[195] revealed that several

well–defined layers are formed by water physisorbed onto the magnetite surface; and these

layers are occur simultaneously, resulting in the adsorption layer’s external surface being

somewhat irregular.

In 2008 Grillo et al[196] produced a DFT+U study investigating the adsorption of water

onto the tetrahedral iron–terminated {111} surface of magnetite, establishing that ini-

tial water adsorption was dissociative with the iron sites being occupied by OH groups,

while the hydrogen atoms bind to surface oxygen, and subsequent water adsorption was

molecular, leading to water bridging the OH and H groups forming a hydronium–ion–like

structure. Most recently in magnetite–water interface research, the magnetite {110} sur-

face was explored[197], looking at two different surface terminations that were close in

surface energy, A and B, where the A termination contained two surface octahedral iron

cations and four surface oxygen anions, whilst the B termination contained two surface

octahedral iron cations, two surface tetrahedral iron cations and four surface oxygen an-

ions. It was found that for both terminations, adsorption energies were as a result of not

only the adsorption of water to the iron ions but also the hydrogen bonding between the

water molecules and to the surface oxygen atoms. It was also established that, for the

A termination {110} surface, with just one and two water molecules, molecular adsorp-

tion of water is favoured, whereas, for three and four water molecules, a combination of

molecular and dissociative adsorption is ideal, however, on the B termination, dissociative

adsorption of water is favoured for one and two H2O molecules, whilst, again a combina-

tion adsorption modes, also, full dissociative adsorption were possible, for three and four

molecules of water. This suggests that water will adsorb in different modes dependent on

termination type as well as on surface type.

Very few publications exist that focus on simulation of the magnetite–biomolecule inter-

face, and only one in the context of biomineralisation. The first study was from 2011,

concentrating gold/magnetite nanocomposites[198], in particular, the role of an interme-

diate layer during gold nanoparticle deposition onto the {111} magnetite surface, finding

that gold–magnetite interactions could be enhanced by the use of a suitable surfactant,

polymer or SiOH terminated amorphous polymer to modify the magnetite surface. The

magnetite–intermediate layer interaction strength was found to be dependent on the func-

tional groups present in the intermediate layer, with amine functionalised molecules (e.g.
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polyethyleneimines) being preferable. When the interactions of these composites with

amino acids were examined it was established that there was a reasonably strong absorp-

tion of cysteine, which was believed to be due to the strong sulphur–gold bond formed,

reducing molecular diffusivity.

To the best of the author’s knowledge, the only publication that explores magnetite–

biomolecule interfacial interactions with regard to biomineralisation was produced by

Bürger et al[199] in 2013. This report focuses on amino acids linked to the magnetotac-

tic bacteria Magnetospirillum gryphiswaldense magnetosome membrane proteins, MamJ

and MamG, which are dominated by aspartic acid(ASP) and glutamic acid (GLU) in

MamJ[200], and leucine (LEU) and glycine (GLY) in MamG[102]. Bürger et al utilised

force field simulations to dock ASP, GLU, LEU and GLY onto the {111} magnetite sur-

face, finding that electrostatic interactions dominate amino acid physisorption, with the

involved species being the Fe3+ surface ions and the oxygen atoms of the amino acid car-

boxyl and carboxylate groups. GLY and LEU interacted with the magnetite through a

bridging binding mode to the carboxylate oxygen atom, ASP did so through a bidentate

binding mode to the carboxyl oxygen atom, whilst GLU exhibited both binding modes.

1.3 Conclusion

There have obviously been many advances in studying the mechanisms and processes of

biomineralisation of magnetite and certainly of the biomineralisation of other biominerals,

however, there is a long way to go before we fully understand what is occurring at the

magnetite–biomolecule interface, particularly in the field of computational simulation. Key

questions remain unanswered such as: how does the magnetite surface structure influence

which biomolecule will attach; how does the presence of water influence whether or not a

biomolecule will attach to the magnetite surface; what is the mechanism of biomolecule

adsorption onto the magnetite surface; can reliable potentials be derived to describe the

interactions between biomolecules, magnetite surfaces and water, and ultimately, how

does the attachment of the biomolecule influence the growth of the crystal? This thesis

attempts to explore these issues, however, before presenting the findings of this work on

magnetite–biomolecule interfaces, the potential model and theoretical methods utilised to

simulate the systems explored are first described.
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Chapter 2

The Potential Model

In order to gain reliable simulation results, knowledge of the interatomic interactions

within a system is required. Ideally this could be achieved using ab initio techniques, with

the potential for giving an exceptionally accurate description of numerous essential pro-

cesses within the system. However, this is very computationally expensive, and even with

the use of modern petascale computers this type of technique is not feasible to simulate

systems containing more than a few hundred atoms, making the technique inappropriate

for the time and length scales of most real systems. This is particularly true when studying

an interface between two phases, as in this work.

The use of parameterised potentials, to evaluate interatomic forces, provides a faster,

molecular mechanics, alternative method, known as atomistic simulation, which enables

the modelling of larger systems; however, the simulations require careful parameterisa-

tion, in order to ensure that the interatomic interactions remain accurate with changing

geometry. Such a model was used for the work described in this thesis.

The basic requirement of a potential model is to describe the total energy of the system

as a sum over intermolecular and intramolecular interactions, i.e.

Usystem = Uinter + Uintra (2.1)

The intramolecular interactions can be further divided into the sum of the energy required

to stretch, bend or twist a number of adjacent atoms or bonds;

Uintra = Ubonds + Uangles + Utorsions (2.2)

Each of which is defined by a series of parameterised equations. Similarly, the intermolec-

ular interactions can be subdivided into coulombic and van der Waals interactions.
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Uinter = Ucoul + Uvdw (2.3)

In an ionic solid such as magnetite the intermolecular interactions dominate to the point

where the intramolecular terms can be neglected. This is sometimes described as the Born

Model of Solids and as the theory equally applies to the intermolecular interactions in the

amino acid residues and peptides it is the starting point for our discussions.

2.1 Intermolecular Interactions

Ionic or polar solid interactions are described using the Born Model of Solids[201], and a

similar model is used to describe intermolecular interactions in molecular systems. In both

models point charge particles are used to represent the atoms of a system that interact by

means of short range interactions and long range electrostatic interactions. The interaction

energy between two ions or atoms is obtained by

Uinter =
1

2

N
∑

i

N
∑

j
j 6=i

1

4πε0

qiqj
rij

+
1

2

N
∑

i

N
∑

j
j 6=i

Φij(rij) (2.4)

Long-range Coulombic interactions are expressed in the first term, ε0 is the permitivity

of vacuum, qi and qj are the ionic or atomic charges and rij is the distance between i

and j (or interatomic distance). The short-range interactions between the particles are

described in the second term (Φ(rij)). Such short-range interactions include van der Waals

attractive forces and the repulsion between the electron charge clouds.

It is not possible to obtain the Coulombic energy of the system by simply summing over

all pairwise electrostatic interactions, as shown in Equation 2.4. The reason for this is

that the contribution of the point-charges to the electrostatic potential decays as 1/r,

this causes very poor convergence of the Coulombic term. To counteract this, summation

methods, are used to calculate the electrostatic interactions. The other terms of Equation

2.4, the short-range interactions, can usually be calculated by a simple summation as they

converge much faster.
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2.1.1 Long-range Intermolecular Interactions

As mentioned previously, the long-range electrostatic interactions are Coulombic. A par-

ticle i will interact with all other particles j in the simulation box. It will also, interact

with these particle’s periodic images, including those of i. This leads to the Coulombic

contribution, UCOUL, to the interaction energy being represented by

UCOUL =
1

2

(

1

4πε0

) ′
∑

n

N
∑

i=1

N
∑

j=1

qiqj
|rij + nL| (2.5)

where qi and qj represent the charges on particles i and j, rij is the interatomic distance,

ε0 is the permitivity of free space, and L is the set of simulation cell vectors reflecting the

periodicity of the simulation box. The sum of all the periodic images is expressed as the

sum over n, where n is the ordered triple of integers that define the periodic images of

the simulation cell. The prime on the first summation indicates that i = j is ignored for

n = 0.

However, as mentioned previously, due to the fact that the sum in Equation 2.5 is very slow

to converge as a result of the 1/r term, a quicker and more reliable summation scheme,

such as the Ewald method[202], is required.

Ewald Summation

Within the Ewald method[202] every particle i, of charge qi, is assumed to be surrounded

by a diffuse charge distribution of opposite sign. The total charge of the cloud is such

that it exactly cancels qi, meaning that the electrostatic potential, due to particle i, is

due exclusively to the fraction of qi not screened. This is usually taken to be a Gaussian

distribution such as

ρi(r) = −qi
(

α

π

)3/2

exp(−αr2) (2.6)

α, the arbitrary parameter, determines the distribution width, and r is the position rela-

tive to the centre of the distribution. Because of this, only the fraction of qi not screened

contributes to the electrostatic potential due to the particle i. This fraction rapidly con-

verges to zero at long distances, making the screened interactions short-ranged. Hence,

direct summation in real space can now be used to calculate the electrostatic interactions
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between these screened charges.

The total contribution to the interaction energy of the screened Coulombic interactions,

UREAL, is then expressed as

UREAL =
1

2

(

1

4πε0

) ′
∑

n

N
∑

i=1

N
∑

j=1

qiqj
|rij + nL|erfc(

√
α|rij + nL|) (2.7)

where erfc(x) is the complementary error function, shown as

erfc(x) = 1− 2√
π

∫ x

0
exp(−t2)dt (2.8)

This tends to zero with increasing x. Hence, the only term that contributes to the sum in

real space is that with n = 0, if α is large enough.

However, a new charge distribution must be added to each particle i in order to cancel

the effect of the first charge distribution, as the electrostatic potential due to interacting

screened charges is not the quantity of interest. This new compensating charge distribution

has the same sign as the original charge qi and the same shape as the distribution ρi(r). By

summing their Fourier transforms in reciprocal space, the contribution of this set of charge

distributions to the electrostatic potential can be calculated, as the Gaussian distributions

are a set of smoothly changing periodic functions.

Poisson’s equation denotes the electrostatic potential at a point ri, due to a charge distri-

bution ρ1(r), that consists of a periodic sum of Gaussians. This is represented by

−∇2φ1(r) =
1

ε0
ρ1(r) (2.9)

where
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exp
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]

(2.10)

In Fourier form, Poisson’s equation becomes

k2φ1(k) =
1

ε0
ρ1(k) (2.11)

Fourier transforming the charge density ρ1 gives
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ρ1(k) =
1

V

∫

V
ρ1(r) exp(−ik · r)dr (2.12)

If ρ1(r) is replaced by its expression as defined in Equation 2.10, then Equation 2.12

becomes (see reference [203] for derivation)
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1
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Combining Equations 2.11 and 2.13 yields
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The electrostatic potential in real space is
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Hence the contribution to the interaction energy due to φ1 is
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where
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However, the contribution to the interaction energy given in Equation 2.16 includes the

interaction between the continuous Gaussian charge cloud, of charge qi, with itself. This
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term, called the self-interaction term, needs to be corrected for. The contribution of this

charge distribution to the interaction energy is given by[203]

USELF =
1

4πε0

√

α

π

N
∑

i=1

q2i (2.18)

The USELF term is independent of the particle’s positions and thus is constant throughout

the simulation. Therefore, the total contribution to the potential energy is

UCOUL = UREAL + URECIP. − USELF (2.19)

or
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As α is present in both the real space and reciprocal space sums it can be chosen to

optimise the speed of the simulation.

Figures 2.1 and 2.2 represent the charge distributions for reciprocal and real space respec-

tively.

Figure 2.1: Charge distribution for Fourier reciprocal space.

Smooth Particle Mesh Ewald Summation

The smooth particle mesh Ewald (SPME) method is a modification of the Ewald sum-

mation. This technique is generally faster than conventional Ewald summation, leading
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Figure 2.2: Charge distribution for real space.

to it being used throughout this work, in molecular dynamics simulations. Within this

method the reciprocal space term is converted into a form suitable for Fast Fourier Trans-

form (FFT). To accomplish this, the Gaussian charge distribution is approximated by a

gridded charge distribution and 3D FFT is applied to the grid. The SPME method scales

as N log(N), whereas the Ewald sum usually scales as N3/2.

Parry Summation

The Parry summation[204, 205] is a variation of the Ewald summation. It is used for

surface simulations where crystals are periodic in two-dimensions. This method suggests

that the crystal consists of a series of charged planes of infinite size as opposed to an

infinite lattice. When the electrostatic interactions are summed up, the vectors are now

separated into in-plane vectors and vectors perpendicular to the plane. Hence meaning

the sum of plane charges can now not be presumed to be zero. Evaluation of the reciprocal

space term is needed. Heyes et al[206] provide a detailed derivation of the reciprocal space

term.

2.1.2 Short-range Intermolecular Interactions

The contribution to the lattice energy made by short-range interactions consists of a com-

bination of different contributions. Repulsive interactions occur at small separations due

to neighbouring ion electron charge clouds and core-core interactions. At the same time,

dipole-dipole interactions occur at these distances, due to fluctuating dipoles on each ion,

resulting in attractive van der Waals forces. Other terms can also be included in the

model, such as short-range interactions between three ions or more when considering co-

valent systems, in order to represent directionality in the bonding. Throughout this work,
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the short-range attractive and repulsive contributions are described by simple parame-

terized potential functions. As a result, in order to obtain reliable quantitative results,

careful consideration of the parameters used to accurately describe the properties of the

lattice is needed. Potential parameter derivation occurs from either using empirical fitting

to experimental data, or, fitting to more accurate simulations. The most commonly used

short-range potentials, hence those being used in this work, are described below.

Lennard-Jones Potential

The Lennard-Jones potential is a mathematical approximation that describes the com-

plicated nuclear and electronic repulsions which dominate the attractive intermolecular

interactions at short separations. The potential takes the form:

U(rij) =
Aij

rnij
− Bij

rmij
=

E0

n−m

[

m

(

r0
rij

)n

−m

(

r0
rij

)m]

(2.21)

Where r is the interatomic distance and E0 is the interaction energy at the equilibrium

separation (or bond length) r0.

However, the form used in this work was

U(rij) =
A

r12ij
− B

r6ij
= E0

[

(

r0
rij

)12

− 2

(

r0
rij

)6
]

(2.22)

The first term, denotes the repulsion between electron clouds, which dominate at very short

distances. At larger distances the second term dominates, making up the attractive part

of the potential, modelling the van der Waals forces. It must be mentioned that Equation

2.22 is known as the Lennard-Jones (12-6) potential (see Figure 2.3 for a diagram of its

potential function), the numbers referring to the powers that rij are raised to. The most

common values used for the repulsive and attractive terms are 12 and 6, respectively and

are used exclusively in this work. However, values such as 9-3, 9-6 and 12-10 could also be

used, dependant on the system being modelled, for example, 12-10 is often used to describe

hydrogen bonding, and 9-3 often used to model the interaction between a continuous solid

wall and the atoms/molecules of a liquid. The A and B parameters are chosen to fit the

materials physical properties.
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Figure 2.3: 12-6 Lennard-Jones potential diagram.

Buckingham Potential

The Buckingham potential is similar to the Lennard-Jones potential in that as with the

Lennard-Jones potential, the first term represents the repulsive forces and the second term

represents the attractive forces. The difference being that the repulsive term is replaced

by an exponential as shown in Equation 2.23

U(rij) = Aije
−rij/ρij − Cij

r6ij
(2.23)

Aij , ρij and Cij are parameters which differ for each pair of interacting ions. Aij and ρij

represent ion size and hardness respectively. The exponential within the repulsive term

of the equation, enables it to be more flexible than the Lennard-Jones potential. It is

also a better mathematical match for the underlying physics. Due to this property the

Buckingham potential is widely used in the successful modelling of polar solids, where the

repulsive terms are more significant. However, this thesis has made use of Lennard-Jones

potentials to ease mixing organic and inorganic parameters.

2.2 Intramolecular Interactions

When building a model to describe a pure ionic solid e.g. MgO, the intermolecular terms

described in the previous section are sufficient to reproduce the fundamental properties of

the system. However, as the system gains a more covalent nature, e.g. calcium carbonate,
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then additional terms must be included to describe the bonding within the covalent parts of

the system. In the case of the organic molecules studied in this thesis, the covalent nature

dominates and the intramolecular potentials describing bond vibrations, bond bending

and bond twisting must be derived such that this model can be written as

Uintra = Ubonds + Uangles + Utorsions (2.24)

2.2.1 Bonding Interactions

By far the simplest way to describe the oscillations of a bond is to assume the vibrations

are purely harmonic and can therefore be described as a simple harmonic oscillator of the

form of Equation 2.25:

U(rij) =
1

2
k (rij − r0)

2 (2.25)

In Figure 2.4 the energy is plotted in relation to Equation 2.25, where the energy curve is

parabolic. The zero of the curve and subsequently the equation is found at r = r0, where

r0 is the equilibrium distance (or bond length). Any energy in excess of this, for example

E1, arises because of extension or compression of the bond, which may be likened to the

behaviour of a spring.

Figure 2.4: Parabolic harmonic oscillator curve of energy against interatomic distance.

The energy of the whole system is at a minimum when the two atoms stay at a mean

interatomic distance, so that the attractive and repulsive forces are balanced. Any attempt
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to pull the atoms further apart is met by resistance from the attractive forces. Repulsive

forces arise quickly as a result of any attempt to squeeze the atoms closer together. In order

to distort bonds an input of energy is required, whether it be for extension or compression

of bonds. Figure 2.4 shows that if one atom (A) at r=0 is believed to be static, the

other atom oscillates between B′ and B′′. If the energy is increased to E3 for example,

there are more vigorous oscillations present, leading to a greater degree of compression or

extension. However, as noted in the observed differences between the infra-red spectrum

of HCl based on a pure simple harmonic model and experimental data, real molecules do

not completely obey the laws of harmonic motion. Every bond will inevitably reach its

breaking point, leading to the dissociation of the molecule into atoms. For smaller bond

length distortions the bond can be said to be perfectly elastic, making the simple harmonic

parabola an acceptable method. However, when the bond distortions get larger (>10 %

of bond length), a more complicated behaviour must be assumed.

A simple deviation from the simple harmonic oscillator, often used in molecular modelling,

is the Morse potential. It takes the form of

U(rij) = Aij(1− e(−Bij(rij−r0)))2 −Aij (2.26)

where Aij is the bond dissociation energy, r0 is the equilibrium bond distance, and Bij is

a function of the slope of the potential energy well.

Figure 2.5 exhibits a comparison of the energy against interatomic distance curves for

both the harmonic oscillator and Morse potentials.

In many well tested models for describing organic molecules (AMBER, DREIDING, etc.)

it has been shown that the speed up seen from using a simple harmonic motion is more

significant than the loss in accuracy compared to the Morse potential and thus is the

model of choice for describing the bonding in this work. One advantage of using the

simple harmonic model is that atoms initially far from their equilibrium position will

quickly equilibrate without the risk of bond breaking.

2.2.2 Three-Body Potentials

This potential describes the directionality of the bonds involved in a system. Hence, it is

a further component of the interactions of covalent species is the bond-bending term. It is

added to take into account the energy penalty for deviations from the equilibrium value.
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Figure 2.5: A comparison of the harmonic oscillator curve and the Morse curve.

Again in its most basic form a simple harmonic model is used.

U(θijk) =
1

2
kijk(θijk − θ0)

2 (2.27)

where kijk is the three-body force constant and θ0 the equilibrium angle.

The same weaknesses as discussed in the previous section apply here, and more complex

anharmonic models, based on trigometric functions could be used. However, for the pur-

pose of this work, the simple harmonic model three-body potentials, as integrated into

AMBER force fields, were utilised.

2.2.3 Four-Body Potentials

A four-body potential is incorporated to denote the effect of deviations of torsion angles

from their equilibrium values on the energy, taking the form

U(φijk) = kijkl(1− cos(nφijkl)) (2.28)

where kijkl is the four-body force constant, n is equal to 2 and φijkl is the torsion angle.

41



2.3 Polarisability

As noted in the discussion of short range intermolecular interactions, one important in-

teraction that occurs at short separations is the polarisation of the atoms in the system.

The induction of a dipole in an ion’s electron charge cloud when it is brought close to an

asymmetric field is known as ionic polarisability. The short-range interactions between

ions can be affected by this dipole induction. Simple rigid ion models, such as in Equation

2.4, ignore this polarisability, considering each ion as a formal point charge. A way of

including ionic polarisability into the model is to use the shell model, whereas in the

organic systems polarisability can be incorporated by means of multipole models.

2.3.1 The Shell Model

Figure 2.6: Schematic of the shell model.

The shell model was originally developed in 1958 by Dick and Overhauser[207]. It is a

simple mechanical model, in which an ion is represented by two components; a core and

a shell, which are connected by a harmonic spring. The harmonic core-shell potential

models the interactions between the negatively charged electron cloud and the positively

charged nucleus, as shown in Equation 2.29.

U(rc−s) =
1

2
kr2c−s (2.29)

Ion polarisability (α) is related to the shell charge (Y ) and the spring constant (k)

α =
Y 2

k
(2.30)

Several studies have been involved in the comparison between the rigid ion model and
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the shell model[208, 209, 210]. The rigid ion model has been used to produce some very

successful investigations for a wide range of systems, despite it being a very simplistic

model[211, 212, 213]. However, in the comparison work, the shell model was shown to

be superior. Although, the major disadvantage of the shell model is that it significantly

increases the particle number, resulting in longer computational times and subsequently

higher computational costs. Therefore, molecular dynamics techniques often use the simple

rigid ion model, as is the case in this work.

2.4 Amino Acid Interactions

Amino acids can interact with other molecules, including other amino acids, in a variety

of ways. The four major non-covalent bonds or forces responsible for intermolecular inter-

actions can be categorised as either electrostatic or hydrophobic in nature. Electrostatic

interactions can then be further sub-divided down into hydrogen bonding, charge-charge

interactions and van der Waals forces[214].

Hydrogen bonds are amongst the strongest non-covalent forces, being strong enough to

confer structural stability but weak enough to be readily broken. They form between

hydrogen atoms and more electronegative elements, such as oxygen and nitrogen. The

usual length of a hydrogen bond is approximately 2 Å, with the total distance between

the two electronegative atoms typically being 2.7 to 3 Å. The hydrogen bond has many of

the characteristics of a covalent bond but much weaker. The strength of the hydrogen bond

is dependent on the alignment between the hydrogen atom and the two electronegative

atoms, with small deviations from a linear alignment being allowed, however, the strength

of the resultant hydrogen bond is weakened. Figure 2.7 exhibits some common examples

of hydrogen bonds. All of the displayed functional groups can also form hydrogen bonds

with water, in fact, when exposed to water they are far more likely to interact with water

due to the concentration of water available to them. In order for hydrogen bonds to

form within biochemical macromolecules the donor and acceptor groups must be shielded

from water, hence, hydrogen bonds most often occur within the hydrophobic interior of a

polypeptide where water cannot penetrate[214].

Charge-charge interactions are the strongest non-covalent forces and extend greater dis-

tances than other intermolecular forces. The strength of these interactions in an aqueous

environment is greatly dependent on the nature of solvent; water significantly weakens
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Figure 2.7: Common examples of hydrogen bonds.

these forces. These interactions play a role in the recognition of one molecule by another.

As well as being in charge of the attractions between oppositely charged functional groups

in a protein, charge-charge interactions are also responsible for the mutual repulsion of

like charged groups[214].

The interactions between two permanent dipoles, or the interactions between a permanent

dipole and an induced dipole in a neighbouring molecule, are known as van der Waals

forces. Although they operate over similar distances to hydrogen bonds van der Waals

forces are much weaker. These forces are produced between all neutral atoms by transient

electrostatic interactions, occurring when the atoms are very close together, involving both

attraction and repulsion. At short internuclear distances van der Waals forces are strongly

repulsive and are very weak at long intermolecular distances. The separation of two atoms

by the sum of their van der Waals radii is said to be the distance at which attractive forces

are maximal. Table 2.1 presents the van der Waals radii of several atoms of importance in

biochemical macromolecules. Despite their individual weakness, the clustering of atoms

within a protein allows for the establishment of a large number of van der Waals forces,

thus, playing a key role in maintaining molecular structures[214].

Atom Radius (nm)

Hydrogen 0.12

Oxygen 0.14

Nitrogen 0.15

Carbon 0.17

Sulfur 0.18

Table 2.1: Van der Waals radii of some biochemically important atoms[214].
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2.5 Potential Parameters Utilised

This thesis focuses on the following four key systems:

1. The organic molecules.

2. The magnetite crystal.

3. The water.

4. The interaction of the above three with each other (cross terms).

In order to study these systems, a model that describes the whole system could, potentially,

be defined from first principles; however, this would be a laborious process. Alternatively,

to gain an insight into the real systems, rather than just fit the parameters, well-defined

literature values were utilised, thus leaving the challenge of fitting to derive reliable cross

terms as practiced by Freeman et al[134].

2.5.1 Amino Acid and Peptide Potential Parameters

The organic molecules are described using parameters originally derived as part of the

AMBER (or Assisted Model Building with Energy Refinement) project, which was origi-

nally developed by P. Kollman’s group, as a collection of force fields for use in molecular

dynamics of biomolecules. AMBER is also the name for the related software package, used

to simulate the aforementioned force fields.

The AMBER force field function takes the form[215] below, as described in the previous

sections:

Etotal =
∑

bonds

Kr(r − r0)
2

+
∑

angles

Kθ(θ − θ0)
2

+
∑

dihedrals

Vn
2

[1 + cos(nφ− γ)]

+
∑

i<j

[

Aij

R12ij
− Bij

R6
ij

+
qiqj
εRij

]

(2.31)
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Equation 2.31 defines the potential energy of a system. Note that despite the term force

field, this equation defines the potential energy of the system; the force is the derivative

of this potential with respect of position.

The first term represents the energy between covalently bonded atoms. The second term

relates to the bond bending energy and can be thought of as being due to electron orbital

geometry involved in covalent bonding. The third term expresses the energy of the bond

torsions due to bond order and neighbouring bonds or lone pairs of electrons. It must be

noted that a single bond can possess more than one of these terms, leading to the total

torsional energy being expressed as a sum. The fourth term is linked to the non-bonded

energy present between all atom pairs. This can be split into two components: the first

being for van der Waals forces and the second being for electrostatic energies.

In order to use the AMBER force field, parameter values of the force field are needed (e.g.

force constants, equilibrium bond length and angles, charges). There are a large number

of parameter sets in existence, all of which are described in detail in the AMBER software

user manual. Each parameter set was derived for a certain type of molecule. GAFF

(General AMBER Force Field)[216] provides parameters for small organic molecules for

use with, for example, small molecule ligands in conjunction with biomolecules. Peptide,

protein and nucleic acid parameters are provided by parameter sets with the prefix ff and

containing a two digit year number, e.g. ff99[215]. In 1995 Rob Woods[217] developed the

GLYCAM force fields for simulating carbohydrates. Within this work the parameter set

ff99SB was used.

The focus of this thesis was the relationship between amino acids and peptides with

the {100} and {111} magnetite surfaces. The biological molecules range in size from

a monomer (individual amino acids) to sequences of up to 6 monomers. In order to

produce the required amino acids and peptides the AMBER software package was used,

as mentioned previously. The initial structures of the amino acid sequences were generated

using the AMBERTOOLS package TLEAP[218]. The sequences were capped, using the

ACE and NME method[218], thus neutralising the C- and N-terminal charges and more

accurately replicating conditions within the Mms6 protein, as discussed in Chapter 1. This

system was then relaxed in vacu, using a combination of Energy Minimisation and NVT

(an ensemble with constant particle number, constant volume and constant temperature,

which will be discussed further in Chapter 3) molecular dynamics for 1 ns at 300 K in

a simulation cell of dimensions 40 Å x 40 Å x 40 Å. Water was then added using the

utility distributed with DL POLY classic and run for a further 1 ns of NVT MD. This

46



was done to prepare the system before attachment to the magnetite surfaces. All of the

intermolecular forces between the different biological molecules were modelled with 12-6

Lennard-Jones potentials, as produced by AMBER, these are shown in Table 2.3.

Ion AMBER definition

N sp2 N in amides

H H attached to N

CT any sp3 C

H1 H attached to aliphatic C with 1 electron-withdrawing substituent

HC H attached to aliphatic C with no electron-withdrawing substituents

C any carbonyl sp2 C

O sp2 O in amides

OH sp3 O in alcohols, & protonated carboxylic acids

HP H attached to C directly bonded to formally +ve atoms

S S in methionine

Table 2.2: Definitions of the different ions used in AMBER[215].

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

N-N 40972.883380 34.769428

H-H 0.006074 0.004068

CT-CT 45259.251180 29.314815

H1-H1 141.438220 0.620809

HC-HC 326.122582 0.942682

C-C 35578.570414 23.044553

O-O 16482.836953 24.510403

OH-OH 25244.442106 30.362014

HP-HP 8.757123 0.154474

S-S 181990.850560 88.862720

Table 2.3: Amino acid and peptide potential parameters[215].

2.5.2 Magnetite Potential Parameters

There are several methods for describing the magnetite potential parameters. Lewis and

Catlow[219] provide potentials that incorporate a shell model built with full ionic charges,
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however, this presents a problem of how to describe the charge distribution on the tetrahe-

dral sites, where half are Fe+2 and half are Fe+3. Also, whilst a full charge model gives an

excellent reproduction of the material properties, the large difference in charges between

those of the organic molecules and those of the magnetite makes fitting cross terms more

complicated[134].

More recently, Rustad et al[193] proposed a partial charge model for magnetite, whereby,

in the bulk magnetite structure above the Verwey transition, each O2− was thought of

as being coordinated to three octahedral Fe2.5+ ions and one tetrahedral Fe3+. When

Rustad et al[220] worked with a magnetite-water system, all oxygens, protons, and iron

ions were treated on an equivalent basis, in that, the oxygens in the crystal are the same

as the oxygens in the water, and the only difference between the Fe3+ and Fe2.5+ ions

was the charge.

Cygan et al[221] developed a potential set, designed to be compatible with the organic force

fields, which was aimed at being a transferrable potential set for modelling silicates. The

data set also included terms for tetrahedral and octahedral Al and octahedral Fe. Its com-

patibility with the AMBER force fields makes it an attractive option but for the absence

of a tetrahedral Fe term, this issue was later rectified by Kerisit[149] through modification

of the original CLAYFF parameters. Hence, the interatomic potentials for magnetite used

for this investigation were developed by Kerisit[149] using modified CLAYFF parameters.

This modification was due to the results produced from an energy minimisation of a bulk

hematite structure using the original CLAYFF parameters[221]. The lattice parameters

yielded proved to be much larger than that of the experimental data. In order to combat

this, the r0 parameter of the octahedral species was reduced. This principle was adapted

for use with magnetite, yielding results in excellent agreement with experimental data as

shown in Table 2.4. This agreement was also proven to be conclusive for a series of other

iron (hydr)oxide minerals.

Lattice Parameter Experimental Å Calculated Å Difference %

Fe3O4 8.394 8.412 0.2

Table 2.4: Experimental[222] and calculated[149] lattice parameters obtained with the modified CLAYFF

model.

As mentioned previously, in this work a rigid iron model is utilised. Within this model,

the two cation types (Fe2+ and Fe3+) have the same short range potentials as this proved

to be the method with the most stable system and the lowest surface energies. A partial
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charge model was also decided upon, as the system was more stable and better results

were yielded than when a fully charged model was used. Lennard-Jones potentials were

used to describe all interactions considered. The potential parameters used within this

work are presented in Table 2.5. The {100} and {111} surfaces were chosen for this work,

as these particular surfaces are linked with bacterial magnetite production, as mentioned

before.

Ion Charges (e)

FET 1.5750

FEO 1.3130

Oxygen (OM) -1.0500

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

FET-FET 32.5633 0.0071

FEO-FEO 32.5633 0.0071

OM-OM 27290.9548 27.1226

Table 2.5: Magnetite potential parameters[149]. Iron in Tetrahedral Sites = FET. Iron in Octahedral

Sites = FEO.

2.5.3 Water Potential Parameters

Discussion of the force fields available for modelling water could be the topic of a thesis

in its own right. London South Bank University has created a database, documenting

over 100 different water models[137]. Here, the water potential used is a simple flexible

three-point transferable interaction potential model, known as TIP3P/Fs, as presented in

the paper of Wu et al[223]. The TIP3P potential represents a non-polarisable model for

water. The intramolecular interaction of TIP3P/Fs includes harmonic bond-stretching and

bond-bending potentials as shown in Table 2.6. This particular water model was chosen

as it is incorporated into both AMBER and CLAYFF, reducing the need to explicitly fit

cross terms. The oxygen(OW)-oxygen intermolecular forces were modelled with a 12-6

Lennard-Jones potential. The TIP3P model does not have potential parameters for any

hydrogen(HW) intermolecular forces (neither indeed do most of the simple water models).

The reason being essentially that all of the hydrogen bonding can be accounted for in the

Coulombic interactions.

2.5.4 Deriving Cross Terms

The interactions between organic and inorganic systems create issues when producing force

fields for them. These challenges arise predominantly due to the different types of force

field used to model the two systems. Thus, because different charge models are used, there
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Ion Charges (e)

OW -0.8340

HW 0.4170

Bonds (k(r − r0)
2

Ions k (eV Å)−2 r0 (Å)

OW-HW 23.9907 0.9572

Angles (k(θ − θ0)
2

Ions k (eV rad2) θ (◦)

HW-OW-HW 4.3383 104.5200

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

OW-OW 25246.0590 25.8052

HW-HW 0.0 0.0

Table 2.6: Water potential parameters. Water Oxygen = OW. Water Hydrogen = HW.

is no unique way for deriving the cross-terms. In this work the Lorentz-Berthelot mixing

rules were used in order to generate the required potentials, as these are already employed

in the AMBER force field. The rule states that the AB parameters for a Lennard-Jones

representation are suitable averages of the Lennard-Jones parameters for AA and BB

interactions, as shown in the work of Allen and Tildesley 1989[224], and Leach 2001[225].

The basic principles of the rule relates back to the Lennard-Jones equation in Chapter 2

(Equations 2.21).

The cross terms for R (Rij) and E (Eij) are created by

Rij =
1

2
(Rii +Rjj) (2.32)

And

Eij =
√

EiiEjj (2.33)

All of the intermolecular forces were modelled with 12-6 Lennard-Jones potentials, as

shown in Tables 2.7, 2.8, 2.9 and 2.10.

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

FET-OW 1001.2367 0.4498

FEO-OW 1001.2367 0.4498

OM-OW 26249.4643 26.4562

Table 2.7: Magnetite-water potential parameters.
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Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

FET/FEO-N 1247.262137 0.516298166

FET/FEO-H 5.457577171 0.018826465

FET/FEO-CT 1275.380255 0.467609854

FET/FEO-H1 98.41898679 0.079950986

FET/FEO-HC 135.8338467 0.09392657

FET/FEO-C 1130.78556 0.414595152

FET/FEO-O 853.6819681 0.450310798

FET/FEO-OH 1023.386429 0.493276859

FET/FEO-HP 37.09092915 0.049081549

FET/FEO-S 2501.164948 0.805129336

Table 2.8: Magnetite(FET/FEO)-amino acid/peptide potential parameters.

Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

OM-N 33474.12726 30.72488384

OM-H 69.56586966 0.772112995

OM-CT 35414.33752 28.3052683

OM-H1 2153.351019 4.295915188

OM-HC 3128.233445 5.177831863

OM-C 31399.27979 25.09619275

OM-O 21353.21078 25.87079686

OM-OH 26287.5924 28.71839912

OM-HP 687.8435741 2.427969087

OM-S 71972.76209 49.61265566

Table 2.9: Magnetite(OM)-amino acid/peptide potential parameters.
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Ion pair (ij) Aij (eV Å12) Bij (eV Å6)

OW-N 32208.5821 29.9755

OW-H 65.9863 0.7479

OW-CT 34096.9833 27.6236

OW-H1 2064.0189 4.1831

OW-HC 3001.3595 5.0443

OW-C 30231.2790 24.4918

OW-O 20518.9579 25.2232

OW-OH 25273.1025 28.0065

OW-HP 657.2350 2.3605

OW-S 69341.2416 48.4338

Table 2.10: Water-amino acid/peptide potential parameters.
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Chapter 3

Theoretical Methods & Computational
Techniques

The potential model used to describe the calculation of the interatomic interactions within

a system was detailed in the previous chapter. This chapter moves onto describe the use of

the model, within atomistic simulation techniques, to attain important information about

the systems in question. Two of such techniques that can be used are discussed in detail.

The first technique is that of Energy Minimisation. This method is used to minimise the

total interaction energy of a system in order to obtain its equilibrium configuration. This

method as with all methods has its advantages and disadvantages. Energy minimisation

is a fast technique that has been used successfully over the years in the study of mineral

and molecular structures and energies[226, 219, 227], however, it completely disregards

the effects of temperature, due to the technique not taking into account the vibrational

properties of the crystal. This essentially means that the system is in effect being run at

0 K, with the zeropoint energy ignored. However, if the potential parameters used in the

calculation are fitted to room temperature experimental data, the effect of temperature will

appear implicitly in the model, though such effects will be small. Depending on the choice

of minimisation regime, energy minimisation can be the least computationally demanding

technique, meaning that it can be readily applied to systems with large numbers of atoms.

Although when the systems are larger the simulations are expensive in terms of memory

and CPU.

The second technique is Molecular Dynamics. This differs from energy minimization

because the particles considered are effectively involved in time dependent motion. The

kinetic energy of the system is included within this method and, as such, the effects

of temperature are considered. Molecular dynamics allows for the kinetic energy of a

system to evolve with time, in order for the low energy configurations to be sampled. The

major drawback of this technique is that, whilst each iteration is cheap, the number of
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iterations is so large that the number of steps required means the simulation is expensive in

terms of time. Hence this technique is computationally a lot more expensive than energy

minimisation. This is however a vital technique in the modelling of liquids and mineral

surfaces that come into contact with liquid[228, 159, 229]

This chapter also details the different approaches available for describing mineral surfaces

based on both two-dimensional periodicity and three-dimensional periodicity. Initially

though, periodic boundary conditions must be discussed, as they have great importance

in atomistic modelling.

3.1 Periodic Boundary Conditions

As the size of a system being studied has great implications on the amount of computer

resources a calculation requires, it is important to take advantage of any properties of the

system that reduce the work required. In the case of a solid system the unit cell defines a

repeat unit, that if expanded will reproduce the system at a macro-level. If it is assumed

that any effects on the system are local it is possible to describe the bulk solid simply by

studying the unit cell or a supercell containing a small number of unit cells.

This approach works on the principle that a simulation cell is surrounded by an infinite

number of images, so that when a particle leaves the simulation box, an image re-enters

from the opposite side; meaning that the system becomes periodic, with a periodicity

equal to the dimension of the simulation cell. Figure 3.1 gives a basic demonstration of

this concept. The highlighted cell represents the simulation cell, whereas the surrounding

cells are the images.

Figure 3.1: Schematic of the concept of periodic boundary conditions, the simulation cell is highlighted.

This method is very effective for crystalline solid simulations provided there is no effect
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that exists on a length scale greater than the periodicity. It is also adequate for the

modelling of liquids or amorphous solids, provided the simulation cell is large enough,

otherwise pseudo periodic effects may appear, which lead to liquid systems appearing

glossy or like disordered solids. This method can also be extended to non-bulk systems

not periodic in three dimensions.

Two possible strategies can be employed when simulating surfaces and grain boundaries;

the first being the use of two-dimensional periodic boundary conditions, where the pe-

riodicity of the cell is kept in only two dimensions, so there is no periodicity present

perpendicular to the surface or the interface. The second strategy is to employ three-

dimensional periodicity, but have the simulation cell of a size such that the interactions

between the interface and its images are negligible. Also, making sure that the slab is

sufficiently thick in order to ensure no interaction between the two surfaces, and that the

centre of the slab behaves as a bulk would. These two strategies require different methods

for the summation of Coulombic interactions.

Having developed a potential model and a method for defining the coordinates of the

system, we now consider how the energy and related properties can be calculated.

3.2 Energy Minimisation

At equilibrium the energy of a system is at a minimum, therefore, the calculated interaction

energy within a system should be the minimum interaction energy of the system, though

this is very often not the case when setting up a simulation cell. Thus, energy minimisation

is needed in order to remove the residual stresses. When considering a periodic system,

there are two ways to achieve this mechanical equilibrium; the first is to perform a constant

volume minimisation, where the dimensions of the cell are kept fixed but the atomic

positions can change. The second method is to perform a constant pressure minimisation,

where both the cell dimensions and the ions are relaxed, so that the forces on the atoms

and the cell dimensions are removed. This can be expressed as the atoms being at their

minimised positions when all the forces are at zero.

∂U

∂r
= 0 (3.1)

where ∂U is the change in the energy and ∂r is the change in position of the ion.
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There are various methods by which Equation 3.1 can be achieved; all are iterative but

differ in their accuracy and computational expense. Two methods are discussed here.

3.2.1 Conjugate Gradients

The conjugate gradient technique[230] is an extension of the steepest descent method,

whereby successive steps use the information on the forces from previous steps to direct

the minimisation. The new positions in the steepest descent method, are calculated using

Equation 3.2.

rn+1 = rn − αnSn (3.2)

where rn is the coordinate at time n, αn is a numerical constant chosen for each iteration

to optimise the efficiency of the minimisation, and sn is the displacement vector, which is

given as

Sn = −gn (3.3)

With

gn =
∂U

∂rn
(3.4)

Within this method, the displacement vector, also known as the search direction, is gained

from information on the previous gradient values.

Sn = −gn + γnSn−1 (3.5)

Where

γn =
gT
n · gn

gT
n−1 · gn−1

(3.6)

and S1 = g1. The superscript T refers to the transpose of the vector. When Sn is zero or

close enough to zero to satisfy an accuracy criteria, the minimisation is complete. Each

iteration is very rapid due to the fact that only the first derivative of the energy with
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respect to the positions is required. However, the algorithm is much less effective than

that of matrix methods such as the Newton-Raphson technique and therefore requires

many more steps to reach the energy minimum.

Traditionally the gain in speed meant that conjugate gradients were still much faster even

though more steps were required. As computers have got faster this is less the case for

molecular mechanics but is still true for quantum mechanics.

3.2.2 Newton-Raphson

In the Newton-Raphson technique[231], a Taylor expansion is used to expand U(r) to

second order.

U(rn+1) = U(rn) + gn · δrT +
1

2
δrT ·Wn · δr (3.7)

Where the displacement of a given ion is δr

δr = rn+1 − rn (3.8)

And the second derivative matrix is represented by Wn

Wn = −∂
2U

∂r2n
(3.9)

Consequently, when the system is at equilibrium (assuming that the energy change with

the strain is zero)

∂U

∂r
= 0 = gn +Wn · δr (3.10)

Giving

δr = −W−1
n · gn (3.11)

Hence

rn+1 = rn − gnHn (3.12)
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Where Hn is the Hessian matrix and is equivalent to W−1
n .

If the system energy was perfectly harmonic in r the minimum system energy would be

obtained in one step. However, if it is not harmonic but the displacement gives rise to

a lower energy configuration, then the minimum energy is found by iteratively repeating

this step. As the Newton-Raphson technique requires the calculation of both derivatives

of displacement energy, as well as the inversion of the second derivative matrix, it is po-

tentially very expensive computationally for large systems, although this overhead has

reduced with faster processors and more RAM being available. This method is however

incredibly reliable when compared to other methods, including the conjugate-gradients

technique. The problem of computational expense can be reduced by using an approxima-

tion of the inverted second derivative matrix and recalculation of the matrix only occurs

after a fixed iteration number[232]. This is the so called DFP method METADISE[233]

uses, whilst more modern codes use the related BFGS method.

The updated Hessian approximation is given as

Hn+1 = Hn +
δr · δrT
δrT · δg − Hn · δg · δgT ·Hn

δgT ·Hn · δg (3.13)

The approaches towards minimising to constant pressure are similar[234]. In this work,

energy minimisation has been used for two main purposes; firstly as a way of comparing

the quality of the magnetite potentials, and secondly, in the relaxation of the geometry of

the organic molecules created in drawing packages to ensure the system is in a stable con-

figuration before molecular dynamics are applied. However, as mentioned before, energy

minimisation techniques neglect the temperature effects on a system. For this reasoning,

molecular dynamics methodologies were used throughout this work in order to incorporate

temperature effects into the investigation of the systems of interest.

3.3 Molecular Dynamics

Molecular dynamics utilises Newton’s laws of motion to calculate the energy of a system

over a finite period of time for all of the particles within the system. This method, as

mentioned earlier, encompasses kinetic energy, doing so explicitly by assigning all particles

of the system a position and a velocity, enabling the system to reach a target temperature,

allowing the system to evolve with time. This allows atoms and molecules to potentially
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jump over energy barriers, to reach a global energy minimum. The problem with this

method is that it can only apply to small energy barriers (e.g. in the order of a few

kBT ), due to the very short real time accessible to molecular dynamics simulations. The

molecular dynamics simulations produced throughout this work were performed using the

computer code DL POLY[235] developed by W. Smith, T.R. Forester and I. Todorov in

Daresbury, UK.

All particles of a system within a molecular dynamics simulation are initially given random

velocities, enabling the system to start with the required temperature and making sure

the simulation cell has no translational momentum.

N
∑

i=1

mi · v2i = 3NkBT (3.14)

And

N
∑

i=1

mi · vi = 0 (3.15)

Where the number of particles is shown as N , kB is the Boltzmann constant, temperature

is T , mi is the mass of particle i, and velocity of particle i is vi.

Calculating the force acting on each particle is the second step of a molecular dynamics

simulation. These calculations use the same method as energy minimisation. Once the

forces, Fi, are established, calculation of the accelerations, ai, can occur, and the ion

positions, ri, and velocities, vi, can be updated, for an infinitely small time step, as

follows

ai(t) =
Fi(t)

mi
(3.16)

vi(t+ δt) = vi(t) + ai(t)δt (3.17)

ri(t+ δt) = ri(t) + vi(t)δt (3.18)

Equations 3.16, 3.17 and 3.18 are Newton’s equations of motion and can only be applied

strictly for an infinitesimal time step. In practice, integration algorithms, such as the Verlet
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algorithm[224], are used within computer codes to solve Newton’s equations, by combating

the errors due to time step, δt, size. The time step choice is incredibly important in these

equations. If the time step is too large, the molecular vibrations will occur within the time

step, producing large errors. On the other hand, if δt is too small, it will require too many

iterations for the particles to move a significant distance, hence making the simulation

time too long. Run time properties (eg. potential energy, temperature or pressure) of a

system can be calculated after each step. Then the process is repeated for the required

amount of time for the simulation, which could be several thousand or million steps. The

velocities of the particles are scaled for the first few tens of thousands of steps to meet

the required temperature. This is known as the equilibration period, where the system

reaches equilibrium at a given pressure and temperature, before the collection of data.

The particle’s velocities are from then on not scaled and the simulation is run for as long

as possible, in order to obtain converged averages of the run time properties of interest.

Throughout the majority of this work a simulation time of 1 ns was used, however where

indicated, the simulation time went up to 5 ns.

3.3.1 Integration Algorithms

Integration algorithms are used for updating particle coordinates by a finite time step.

A Taylor expansion in the time can be applied to attain an estimate of the positions,

velocities and accelerations.

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 +

1

6
b(t)δt3 + ...

v(t+ δt) = v(t) + a(t)δt+
1

2
b(t)δt2 + ...

a(t+ δt) = a(t) + b(t)δt+ ...

b(t+ δt) = b(t) + ...

(3.19)

Where the position of the particle is r, v is its velocity, a is its acceleration and b is the

third time derivative of r. Using Equation 3.19 it is possible to calculate particle position

about a position r(t), before and after a time step δt

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 +

1

6
b(t)δt3 + ϑ(δt4) (3.20)
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r(t− δt) = r(t)− v(t)δt+
1

2
a(t)δt2 − 1

6
b(t)δt3 + ϑ(δt4) (3.21)

Where ϑ(x) is the order of accuracy. Adding Equation 3.20 and 3.21 gives

r(t+ δt) + r(t− δt) = 2r(t) + a(t)δt2 + ϑ(δt4) (3.22)

Or

r(t+ δt) = 2r(t)− r(t− δt) +
δt2

m
f(t) + ϑ(δt4) (3.23)

This is the basis of the Verlet algorithm[236]. This method is used to calculate the new

position of a particle from the previous and current positions, in addition to the current

force on the particle. Hence, the velocities are not required to compute trajectories, but

are used to estimate the kinetic energy. To calculate the velocities in the system Equation

3.21 can be subtracted from Equation 3.20.

r(t+ δt)− r(t− δt) = 2v(t)δt+ ϑ(δt3) (3.24)

Or

v(t) =
r(t+ δt)− r(t− δt)

2δt
+ ϑ(δt2) (3.25)

This means that the calculation of velocities can only occur once r(t + δt) is known and

they are subject to a δt2 order of errors. Unfortunately with this algorithm numerical

imprecision can be introduced, due to the addition of a small term (ϑ(δt2)) to a difference

of large terms (ϑ(δt)) in Equation 3.23. The algorithm used throughout this work is a

modified version of the Verlet algorithm known as the Verlet leapfrog scheme[237], defined

as

v(t+
1

2
δt) =

r(t+ δt)− r(t)

δt
(3.26)

And

v(t− 1

2
δt) =

r(t)− r(t− δt)

δt
(3.27)

Thus, Equation 3.23 can be defined as
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r(t+ δt)− r(t)

δt
=

r(t)− r(t− δt)

δt
+
δt

m
f(t) + ϑ(δt3) (3.28)

Then from Equations 3.26 and 3.27

v(t+
1

2
δt) = v(t− 1

2
δt) +

δt

m
f(t) + ϑ(δt3) (3.29)

And

r(t+ δt) = r(t) + v(t+
1

2
δt)δt+ ϑ(δt4) (3.30)

The values of the positions and forces at time t and the velocities half a time step behind

are required for the algorithm. The initial step is to use Equation 3.29 to calculate the

new velocities, whereby the velocities leap over the coordinates to produce the subsequent

half step values v(t+ 1
2δt). Current velocities can be calculated during this step as follows

v(t) =
1

2

[

v(t+
1

2
δt) + v(t− 1

2
δt)

]

(3.31)

When the velocities have advanced, the positions can be updated using Equation 3.30.

Fortunately, due to the fact that at no point in the calculations is the difference of two

large quantities taken to obtain a small one, the numerical precision of the algorithm is

improved.

3.3.2 Ensembles

Within molecular dynamic simulations the conditions are known as ensembles. Three of

such ensembles are the NVE, NVT and NPT ensembles.

The microcanonical ensemble (NVE) is where the number of particles, the volume and the

total energy of the system are kept constant.

HNV E = U +K.E. (3.32)

Where U is the potential energy and K.E. the kinetic energy.

The canonical ensemble (NVT) is where the number of particles, the volume and the

temperature of the system are kept constant. The temperature of the system is kept

constant by using a Nosé-Hoover thermostat[238] as a heat bath. Newton’s equations of

62



motion are modified due to the Nosé-Hoover algorithm by including a friction coefficient,

χ

dv(t)

dt
=

f(t)

m
− χ(t)v(t) (3.33)

Where the friction coefficient is controlled by the first order differential equation

dχ(t)

dt
=

1

τ2T

[

T

Text
− 1

]

(3.34)

Where τT is an arbitrary time constant for temperature fluctuations, Text is the tempera-

ture of the heat bath, and T is the instantaneous temperature. Thus, modification of the

Verlet leapfrog algorithm occurs as follows

χ(t+
1

2
δt) = χ(t− 1

2
δt) +

δt

τ2T

[

T

Text
− 1

]

χ(t) =
1

2

[

χ(t− 1

2
δt) + χ(t+

1

2
δt)

]

v(t+
1

2
δt) = v(t− 1

2
δt) +

[

f(t)

m
− χ(t)v(t)

]

δt

v(t) =
1

2

[

v(t− 1

2
δt) + v(t+

1

2
δt)

]

r(t+ δt) = r(t) + v(t+
1

2
δt)δt (3.35)

However, as v(t) is needed to calculate T and therefore itself, in order to acquire self-

consistency several iteration are required. Within the DL POLY code, the iteration num-

ber is set to 3 and the standard Verlet leapfrog algorithm is utilized to obtain the first

prediction of v(t) and T . In NVT, the conserved quantity, which is derived from the

extended Hamiltonian for the system is

HNV T = HNV E + fkBText

(

τ2Tχ
2(t)

2
+

∫ t

0
χ(s)d(s)

)

(3.36)

The isobaric-isothermal ensemble (NPT) is where the number of particles, the pres-

sure and temperature of the system are kept constant. These conditions can either be

isotropic or anisotropic. Isotropic; meaning that only the dimensions of the cell could

vary. Anisotropic; meaning that both the dimensions and shape of the cell may change.

A modification of the Hoover algorithm, known as the Melchionna modification can be
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used[239], which entails the use of a Nosé-Hoover thermostat and a barostat that follows

a similar algorithm, where the velocities are calculated as follows

dv(t)

dt
=

f(t)

m
−
[

χ(t) + η(t)
]

v(t) (3.37)

Where η is the friction coefficient of the barostat

dη(t)

dt
=

1

NkBTextτ2p
V(t)[P − Pext] (3.38)

Where Pext is the pressure of the barostat, P is the instantaneous pressure, τp is an

arbitrary time constant for pressure fluctuations and V(t) is the volume of the system at

time t, with

dV(t)

dt
= [3η(t)]V(t) (3.39)

Thus modification of the Verlet leapfrog algorithm occurs as follows

η(t+
1

2
δt) = η(t− 1

2
δt) +

V(t)δt

NkBTextτ2p
[P − Pext]

η(t) =
1

2

[

η(t+
1

2
δt) + η(t− 1

2
δt)

]

v(t+
1

2
δt) = v(t− 1

2
δt) +

(

f(t)

m
−

[

χ(t) + η(t)
]

v(t)

]

δt

v(t) =
1

2

[

v(t+
1

2
δt) + v(t− 1

2
δt)

]

As

dr(t)

dt
= v(t) + η(t)[r(t)−R−)]

Where R0 is the centre of mass of the system, then

r(t+ δt) = r(t) +

(

v(t+
1

2
δt) + η(t+

1

2
δt)

[

r(t+
1

2
δt)−R0

]

)

δt

With

r(t+
1

2
δt) =

1

2

[

r(t) + r(t+ δt)

]

(3.40)
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Again, in order to obtain self-consistency several iterations are required. Within the

DL POLY code, the iteration number is set at 4 and the standard Verlet leapfrog algorithm

is used to predict initial estimates for T , P , v(t) and r(t+ 1
2δt). The new volume can be

derived using

V(t+ δt) = V(t) exp
[

3δtη(t+
1

2
δt)

]

(3.41)

And the new cell vectors from

H(t+ δt) = H(t) exp
[

η(t+
1

2
δt)δt

]

(3.42)

Where H is the cell matrix whose columns are the three vectors. Conserved quantity in

the isotropic conditions is

HNPT = HNV T + PextV(t) +
3NkBText

2
η(t)2τ2p (3.43)

In the anisotropic conditions, adjustments of the isotropic algorithm occur, allowing for

the cell shape to change by defining η as tensor η. Anisotropic conditions were, however,

not used in this work.

3.3.3 Molecular Dynamics Properties

A number of properties can be calculated using molecular dynamics simulations. There are

two classes these properties can be separated into; static system properties and dynamical

system properties.

Static system properties

Within this class further separations can be applied, these are; structural properties and

thermodynamic properties. Thermodynamic properties include:

• Kinetic Energy

〈

K.E.
〉

=

〈

1

2

N
∑

i

miv
2
i

〉

(3.44)
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• Configuration Energy

U =

〈 N
∑

i

N
∑

j=1

j 6=i

U(rij)

〉

(3.45)

• Temperature

T =
2

3NkB

〈

K.E.
〉

(3.46)

• Pressure

P =
NkBT

V
− 1

3V

〈 N
∑

i

ri · fi
〉

(3.47)

Structural properties include:

• Radial Distribution Function (RDF) (or pair correlation)

GA−B(r) =

〈

nB(r, δr)
〉

4π
NB

V
r2δr

(3.48)

Where V is the volume of the system, r is the diameter of the shell, nB(r, δr) is the

number of particles between shells at r − δr/2 and r + δr/2, and NB is the total

number of particle B.

Dynamical system properties

This class consists mainly of correlation functions, including

• Mean Square Displacement (MSD)(Einstein relation)

2Dt =
1

3

〈

|ri(t)− ri(0)|2
〉

(3.49)

Therefore, if
〈

|ri(t) − ri(0)|2
〉

is plotted as a function of time, the curve gradient

produced is equal to six times the coefficient of self-diffusion of particle i. There is

no diffusion in a solid, hence the MSD is flat. However, particles diffuse randomly in

a liquid, and so the gradient of the curve is proportional to the diffusion coefficient.

Often, the initial curve takes a parabolic form; this is due to the short amount of

time for an atom to feel the effect of the presence of other atoms.

• Velocity Correlation Function (VACF)(Green-Kubo relation)

D =
1

3

∫ ∞

0

〈

vi(t) · vi(0)
〉

dt (3.50)
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This is another method of establishing diffusion coefficients. Numerous other trans-

port coefficients have had their Green-Kudo relations derived, such as the shear

viscosity and the thermal conductivity[240]. In a solid, the Fourier transform of the

normalised VACF gives the frequency distribution of phonon states, i.e. the density

of states[234, 241].

3.3.4 Free Energy

The main properties that can be derived directly from molecular dynamics simulations

were discussed in the previous section. However, certain properties of a system cannot be

derived directly, such as the entropy and free energy (Helmholtz and Gibbs). This is due

to these properties not being explicit functions of the phase space coordinates of a system.

These properties are instead related to the phase space volume available to the system and

are known as thermal quantities. Properties such as the pressure and the temperature,

which can be expressed as a function of the velocities and coordinates of all of the system

particles, are known as mechanical properties.

The thermodynamic integration method is one possible technique that can be used to

obtain thermal quantities from molecular dynamics simulations. The method is based

on the fact that deriving thermal quantities often generate mechanical properties. For

example, assuming we have two states A and B, of which the free energy of state A is

known and state B is unknown, at constant volume and temperature. A reversible path

links the two states, consequently, by the integration of the energy along said path, the

free energy of state B can be found. This path does not have to be a physical path and

any parameter can be used as a thermodynamic variable, φ, providing that the potential

energy, U , depends linearly on φ, so that for φ = 0, U corresponds to the potential energy

of the reference system and, for φ = 1, U is the potential energy of the system of interest.

The partition function of a system with a U that corresponds to a value of φ between 0

and 1 is[240]

Q(N,V, T, φ) =
1

Λ3NN !

∫

exp

[

− 1

kBT
U(φ)

]

drN (3.51)

Where Λ is the thermal de Broglie wavelength

Λ−
(

h2

2πmkBT

)1/2

(3.52)
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Where h is Planck’s constant and m is the mass of a particle. The derivative of the

Helmholtz free energy A(φ) with respect to φ is displayed as

(

∂A(φ)

∂φ

)

NV T

= −kBT
∂lnQ(N,V, T, φ)

∂φ

= −kBT
1

Q(N,V, T, φ)

∂Q(N,V, T, φ)

∂φ

=

∫

drN (∂U(φ)/∂φ) exp[−U(φ)
kBT ]

∫

drN exp[−U(φ)
kBT ]

=

〈

∂U(φ)

∂φ

〉

φ

(3.53)

Where

〈

∂U(φ)

∂φ

〉

φ

is the ensemble average of the derivative of the potential energy of the

system with respect to the thermodynamic variable. Therefore, by integrating Equation

3.53, the free energy difference between states A and B can be established.

A(B)−A(A) =

∫ φ=1

φ=0

〈

∂U(φ)

∂φ

〉

φ

dφ (3.54)

Molecular dynamic simulations are a way of deriving the free energy difference, as it only

depends on the ensemble average of the mechanical quantities. The disadvantage of this

is that for large systems, a large amount of simulation time is lost simulating parts of

the system that are unimportant or change little as the system moves along the reaction

coordinate.

3.3.5 Potential of Mean Force

An alternative approach is to define super atoms by creating one interaction unit by joining

together several atoms. Potential of Mean Force (PMF) is used to define the interaction

between the atoms on the super atom. The PMF is the system free energy as a function

of a reaction coordinate. The reaction coordinate R is dependent on the coordinates of

the atoms in the system

R(r) = R(r1, r2, · · ·, rN ) (3.55)

A system confined in physical terms to such a reaction coordinate R(r) is also restricted

to a hyperspace R(r) in phase space, and would be characterized by the partition function
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Q(R) and a free energy of A(R). The probability of a given system configuration being

on the hyperspace R(r) is

π(pN , rN ;R′) =
exp[−βH(pN , rN )]δ(R′ −R(rN ))
∫

dpNdrN exp[−βH(pN , rN )]
(3.56)

Where the system is characterized by the sum of the kinetic and potential energy at posi-

tion r and momenta p, also known as Hamiltonian H(r, p). The probability of the system

being at the specified reaction coordinate can be found by the integration of equation 3.56

over phase space

P (R′) =

∫

dpNdrNπ(pN , rN ;R′)

=

∫

dpNdrNexp[−βH(pN , rN )]δ(R′ −R(rN ))
∫

dpNdrN exp[−βH(pN , rN )]

=
Q(R′)

Q

(3.57)

Which in terms of free energy A(R′) reduces to

A(R) = −kβT lnP (R′)− kβT lnQ

= kβT lnP (R′) + constant

(3.58)

The determination of P (R′) is dependent on the application but in general there are three

approaches; Boltzmann sampling, Umbrella sampling and the use of constraints. In this

work constraints were used to calculate the probability of the system being at a specified

reaction coordinate. The system in question is constrained at a particular value of reaction

coordinate Rc

σ(r;Rc) = R(r)−Rc (3.59)

The constraints allow the atoms Cartesian coordinates to become dependent on each other,

consequently, it is necessary to transform to a set of generalized coordinates (q, r), which

equate one of the coordinates to the reaction coordinate R. In order to obtain the free
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energy, A(R), associated with a particular reaction coordinate, Rc, the force is integrated

to keep it at the reaction coordinate

A(Rc) =

∫ Rc

∞

A(R(r))dR (3.60)

A(Rc) =

〈

(∂r/∂R) · [−∂U/∂r + kβT∂ ln(|J |)/∂r]δ(R′ −R(rN ))

〉

〈

δ(R′ −R(rN ))

〉 (3.61)

Where |J | = |∂r/∂q|. If R(r) is linearly dependent on the Cartesian coordinates the

Jacobian J is zero. This term may be neglected when the range of R is limited and this

term is essentially constant. This approach was used throughout this to calculate the

change in free energy of system involving magnetite surfaces and the attachment of amino

acids and peptides at different ranges from the surface.

3.4 Mineral Surface Simulation

The main focus of this thesis is the magnetite mineral surface and its interactions. For

the simulation of mineral surfaces there are two common approaches; a two-dimensional

approach and a three-dimensional approach. Both methods will be discussed in detail,

but first different surface types need to be examined.

3.4.1 Surface Type

Crystal surfaces can be considered as a stack of planes periodic in two-dimensions. The

cleaving of mineral crystals in a particular direction, as specified by the Miller index,

produced the surfaces used in this work. Within a simulation, not only the direction of

the surface cut is important, but also describing the location of the surface is key. The

different surface types that can be generated by different cut locations have been described

by Tasker[242] (as shown in Figure 3.2). A type I surface is where each plane is charge

neutral as they consist of both anions and cations in a stoichiometric ratio. There is

no dipole moment perpendicular to the surface. Type II surfaces consist of a stacking

sequence of charged planes but the repeat unit consists of several planes in a symmetrical

configuration. This means there is no dipole moment perpendicular to the surface with
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this type of surface either. Type III surfaces are made up of an alternately charged stack

of planes, hence a dipole moment perpendicular to the surface is produced.

The simulation cells containing surfaces must be charge neutral and must not have a dipole

moment perpendicular to the surface for the electrostatic energy to converge. Bertaut[243]

showed that if within a unit cell, a dipole moment is present perpendicular to the surface;

the surface energy diverges and is infinite, making Type III surfaces naturally unstable.

Therefore, in order to simulate Type III surfaces, the removal of the dipole is required.

Oliver et al[244] suggested a method by which this could be achieved. It entailed the

removal of half of the ions on the top layer and transferring them to the bottom of the

unit cell, as depicted in Figure 3.3. This process is known in nature as the faceting of polar

surfaces into neutral surfaces. This method reconstructs the surface so that an unstable

surface is built from very stable surfaces. Figure 3.4 depicts an example of faceting in

MgO.

Figure 3.2: The three types of stacking surface[242].
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Figure 3.3: The reconstructed type III stacking sequence[242].

Figure 3.4: Example of faceting in MgO.

3.4.2 Two-dimensional Approach

As mentioned before, surface simulations regard a crystal as being made up of a series of

charged planes parallel to the surface and periodic in two dimensions. The METADISE[233]

(Minimum Energy Techniques Applied to Dislocation, Interface & Surface Energies) com-

puter code uses the two-region method developed by Tasker[242], to model the bulk and

surfaces of minerals in this work, alongside the potential model. Tasker’s method suggests

that a simulated crystal consists of two blocks, each of which is separated into two regions,

periodic in two-dimensions. First region atoms are those near the surface and are able to

relax mechanically. Those atoms in region II, however, are held fixed at their bulk equilib-

rium positions, representing the remainder of the surface. A surface is formed when two

blocks separate. Figure 3.5 shows a schematic of Tasker’s approach.

The energy of a block consists of two parts; E1, the energy of region I and E2, the energy

of region II. Region I energy can be further separated into two components; interaction

energy between region I ions and interaction energy between region I and region II ions.

This further separation can also apply to region II, although due to the fact that region
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Figure 3.5: Schematic of the two region approach put forward by Tasker [242].

II ions are kept fixed throughout the simulation, the interaction energy between region II

ions does not change and so is taken to be zero. Hence total crystal energy is

ETOT =
N
∑

iǫI
jǫI

U(rij) +
1

2

N
∑

iǫI
jǫII

U(rij) +
1

2

N
∑

iǫII
jǫI

U(rij)

(3.62)

Electrostatic forces are calculated using the Parry technique, while short-range interactions

are described by parameterised analytical functions.

3.4.3 Three-dimensional Approach

One of the main advantages that the three-dimensional Ewald method has over the two-

dimensional Parry method is that it is exceptionally fast and efficient. Therefore, a special

application of periodic three-dimensional boundary conditions is used when carrying out

surface molecular dynamics calculations using DL POLY. First the system is relaxed to

the bulk structure and oriented so that two out of three lattice vectors are parallel to the

surface. The third vector, which is perpendicular to the surface, is then increased in order

to introduce a void into the crystal, creating repeating slabs of crystal, having the chosen
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surface on opposite sides. This created void must be of a size that ensures no interactions

between atoms on opposite sides. At the same time, the crystal slab must be of a thickness

that will eliminate surface interactions between the two surfaces on opposite sides.

The Coulombic energy summation approach was chosen, due to the high efficiency, for a

three-dimensional simulation cell. Once the void has been produced, minimisation is run

on the system again to relax the newly formed surfaces. The simulations run throughout

this work were almost exclusively run at 300K, with the ensembles available limited to

NVT, due to the problem that if the volume was not kept fixed, the slabs would reform bulk

structures, as this configuration will continually be more thermodynamically favourable.

3.4.4 Interfacial Energy

In this work we are interested in the interfacial or adsorption energy of a biomolecule

being adsorbed on to the magnetite surfaces. The interfacial energy Eint of these systems

is defined as

Eint = (Es/aa/w − Es/w)(Eaa/w − Ew) (3.63)

Where Eint is the magnetite crystal/amino acid residue/water interfacial energy, Es/aa/w

is the average potential energy of the magnetite slab/amino acid residue/water MD sim-

ulation, Es/w is the average potential energy of the magnetite slab/water MD simulation,

Eaa/w is the average potential energy of a solvated amino acid residue MD simulation,

and Ew is the average potential energy of a box of water MD simulation. This method

has been successfully applied to calculating the interfacial energies of polysaccharides on

calcite in the study of the biological control polysaccharides have on the crystallization of

calcite[164].
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Chapter 4

The Interaction of Amino Acids with Magnetite

4.1 Introduction

The focus of this investigation is the C–terminal region of the Mms6 protein, native to the

magnetotactic bacteria Magnetospirillum magneticum strain AMB-1, and its involvement

in the control of nucleation and growth of magnetite nanocrystals. Moreover, particular

emphasis is given to the regions within the C–terminal which are responsible for magnetite

binding. This chapter explores the interfacial relationship between the magnetite {100}
and {111} crystal surfaces and the amino acids present in the C–terminal sequence (Figure)

4.1.

Figure 4.1: Amino acid sequence of the C–terminal region of the Mms6 protein.

Amino acids consist of a central α-carbon atom surrounded by an amino group, a car-

boxylic acid group, a hydrogen atom and a unique side chain group, known as the R group

(see Figure 4.2). In nature, there are 20 amino acids known to be involved in protein syn-

thesis, however, the C–terminal of Mms6 consists of just 11 of these. Amino acids can be

divided into subgroups based on their side chain properties: non–polar (or hydrophobic)

and uncharged; polar (or hydrophilic) and uncharged; acidic (polar and charged) and ba-

sic (polar and charged). Figure 4.3 shows the structures of the 11 different amino acids

present in the C–terminal of the Mms6 protein. The properties of the side chain groups are
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significant as they not only affect the amino acids individually, but also greatly influence

the overall three dimensional (tertiary) conformation of the resultant protein [214].

Figure 4.2: Basic structure of an amino acid. Note that it appears in zwitterion form, as it would under

most biological conditions. A zwitterion is created by the transfer of a hydrogen ion from the acid portion

to the base portion forming a carboxylate group (COO−) and an ammonium group (-NH+

3 ).
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Figure 4.3: Structures of the C–terminal Mms6 protein amino acids.
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Under normal physiological conditions, in the pH range of 6.8 to 7.4, the amino group exists

in a protonated state (-NH+
3 as opposed to -NH2) due to the amino group possessing a pKa

value (also known as its isoelectric point)close to 9. Conversely, the carboxylic acid group

subsists in an ionized state (COO− as opposed to COOH), as this group possesses a pKa

value below 3. Thus, under most biological conditions, amino acids exist as zwitterions.

the typical pKa values for the amino acids involved in the C–terminal of the Mms6 protein

are shown below (Table 4.1).

Amino Acid pKa COO− pKa NH+
3 pKa R

Alanine 2.4 9.9

Arginine 1.8 9.0 12.5

Aspartic Acid 2.0 9.9 3.9

Glutamine 2.2 9.1

Glutamic Acid 2.1 9.5 4.1

Isoleucine 2.3 9.6

Leucine 2.3 9.7

Lysine 2.2 9.1 10.5

Methionine 2.1 9.3

Serine 2.2 9.2

Valine 2.3 9.7

Table 4.1: pKa values for the Mms6 amino acids at 25 ◦C[214].

Non–polar amino acids are hydrophobic, with the hydrophobicity increasing with increas-

ing number of carbons in the hydrocarbon chains. Saturated aliphatic side chains play

an important role in establishing and maintaining the tertiary structure of proteins be-

cause of their tendency to aggregate away from water. This phenomenon results from

the inclination of non–polar compounds to associate with each other rather than with

water molecules. Isoleucine, leucine and valine are all particularly hydrophobic due to the

branching of the hydrocarbons on their side chains. Additionally, methionine contains a

non–polar methyl thioether group, making it one of the most hydrophobic amino acids

and resulting in its inclusion as the first amino acid in a polypeptide chain. On the other

hand, alanine is an ambivalent amino acid, meaning that it can be inside or outside of the

protein molecule[214].

Polar amino acids are not ionisable and, as a consequence, are charge neutral. Serine

has a β-hydroxyl group in is side chain, giving a hydrophilic nature to the aliphatic side
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chain. This hydroxymethyl group possesses the weak ionization properties of a primary

alcohol and, consequently, does not significantly ionize in aqueous solution. Glutamine

is the amide derivative of glutamic acid. Despite the neutral nature of its side chain

group, glutamine is highly polar and can often be found on protein surfaces, allowing for

interaction with water molecules. Glutamine can also form hydrogen bonds from its polar

amide group to atoms in the side chains of other polar amino acids[214].

Aspartic acid and glutamic acid, also known as aspartate and glutamate respectively,

are dicarboxylic amino acids and maintain negatively charged hydrophilic side chains at

physiological pH (approximately pH7). The secondary carboxylic acid groups (β- and γ-

carboxyl groups for aspartate and glutamate respectively) present in their side chain, is a

weaker acid than the primary group, hence, having a higher pKa. Both acidic amino acids

confer negative charges on proteins because their side chains are ionized at physiological

pH. This extra carboxylate group plays an important role in many protein–metal ion

interactions and in ionic interactions[214].

Basic amino acids are polar and positively charged at pH values below their pKa, and are

very hydrophilic. Both lysine and arginine have hydrophilic side chains that are nitroge-

nous, allowing for the acceptance of a hydrogen ion. Lysine is a diamino acid, having both

α- and ǫ-amino groups. At neutral pH the ǫ- amino group exists as an alkylammonium

ion. The guanidinium ion on the side chain of arginine is protonated under all biological

conditions, making it the most basic of the 20 protein based amino acids. The side chains

of the basic amino acids impart a positive charge on proteins[214].

Amino acids are joined together by peptide bonds. This is achieved, when the amino group

of one amino acid and the carboxylate group of another undergo a condensation reaction,

during protein synthesis forming an amide linkage. Unlike the carboxyl and amino groups

of free amino acids in solution, the groups involved in the peptide bond carry no ionic

charges. The end to end joining of many amino acids forms a linear polypeptide. These

linked amino acid moieties are known as amino acid residues[214]. The effect of peptide

bonds is incorporated into this body of work by capping the amino acids to remove the

effects of their α-amino and α-carboxyl groups.

The peptide bond is a partial double bond; hence, rotation about this bond is restricted.

This rotational restriction of the peptide bond has major significance in determining the

polypeptide chain conformation. The partial double bond character is a consequence of

the electronic configuration of the nitrogen atom and of the π bonding in the carbonyl
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group. The side–side merging of the p–orbitals of the nitrogen atom, and the carbon and

oxygen atoms of the carbonyl group, forms π covalent bonds, causing the delocalisation

of electrons. There is a variable amount (about 40 %) of π bonding between the N and

C, sufficient to restrict bond rotation. Hence, each of the peptide bonds exhibits no free

rotation about the carbon–nitrogen bond because of resonance form contribution, leading

to a planar structure (see Figure 4.4). Many important properties of the peptide bond are

utilised during protein synthesis. For instance, during polypeptide folding, the peptide

bond rigidity reduces the degrees of freedom of the polypeptide. Also, due to the double

bond character, the six atoms involved in the peptide bond group are always planar, as

can be seen in Figure 4.5. This leads to the, rotation about the C-N and C-C bonds, by

angles of φ and ψ respectively, defining the shape of the polypeptide (see Figure 4.5[214].

Figure 4.4: The resonance structure of the peptide bond. Adapted from Horton et al[214].

Figure 4.5: The planar conformation of a peptide bond. Note the phi and psi angles of rotation are

indicated. Adapted from Horton et al[214].

Previously, there has been several experimental studies involving amino acids and magnetite[245,

246, 247, 248, 249, 250]. The work of these groups focused on the synthesis of magnetite

nanoparticles in the presence of amino acids in solution or magnetite nanoparticles coated

in, and functionalised with, amino acids for use in biomedical applications (see Chapter 1).

These studies have mostly utilised the charged polar amino acids, but do not consider the

use of biogenic magnetite and its formation through biomineralisation. However, Arakaki

et al and Amemiya et al focused their work on the biosynthesis of magnetite using the

tightly bound magnetosome membrane protein, Mms6, as it was shown to mediate the

formation of cubo–octahedral magnetite nanocrystals consisting of {100} and {111} crys-
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tal faces [105, 104]. Arakaki et al synthesised peptides that mimicked partial sequences of

the Mms6 protein, with results suggesting that the C–terminal acidic region of the protein

having significant control over the morphology of magnetite crystals[105].

This chapter explores the attachment of the individual C–terminal sequence amino acids,

both in vacu and solvated, to the {100} and {111} crystal surfaces. This study was split

into two sections; the first focused on a classic molecular dynamics system and the second

experimented with a constrained molecular dynamic system using the Potential of Mean

Force (PMF).

4.2 Unconstrained system

4.2.1 Computational Methods

As mentioned in Chapter 2, TLEAP was utilised to create the capped amino acid residues.

The structures were relaxed with AMBER and subsequently using DL POLY. TIP3P/fs

water was added and the simulation was run for 1 ns. The relaxed in vacu amino acids were

then placed in the vacuum gap above the magnetite slab surface and run for an additional

5 ns. Water was then re-added to the system and another 1 ns of molecular dynamics was

run. All systems were run at 300 K. The ensembles, potentials and parameters used are

described in Chapters 2 and 3.

The evolution of potential energy of all amino acid residues as a function of time were

plotted, an example of which is shown for solvated alanine in Figure 4.6. A full set of

potential energy vs time plots can be found in the Appendix. The equilibration period

for all simulations was 20 ps, after which point the potential energy of all the amino acid

residue systems converge.

4.2.2 Results and Discussion

Non–polar Amino Acid Attachment

The magnetite crystal consists of both tetrahedral and octahedral iron ions which have

positive charges leading to an attraction to the negatively charged oxygen ions in the

amino acid residues. It is difficult to gauge the distance between an oxygen atom within

the amino acid residues, and it’s next nearest neighbour tetrahedral or octahedral iron.
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Figure 4.6: Evolution of potential energy as a function of time plots for the alanine residue. a) {100}

solvated surface. b) {111} solvated surface.

This is, however, possible to measure by studying the radial distribution function (RDF) of

a tetrahedral (FET) or octahedral (FEO) iron and the oxygen of the amino acid residues,

providing a graphical representation of how the density of residue oxygen ions varies as a

function of distance from a reference particle (FET or FEO), averaged over all Fe ions. A

distance of 1.5 Å to 2.5 Å from an amino acid oxygen to the next nearest neighbouring

tetrahedral or octahedral iron of magnetite is classified as a bond. Amino acid oxygen-iron

distances or r values for all non–polar amino acids can be found in Tables 4.2 and 4.3.

Figure 4.7 exhibits the RDF profiles for alanine. The RDF profiles of the remaining non–

polar amino acids can be found in the Appendix. The non–polar amino acid RDF data

shows that for the {100} surface, only tetrahedral iron bonding was present for alanine and

valine, whereas, with the {111} surface only octahedral iron bonding was exhibited. For

isoleucine, octahedral iron bonding was exhibited for both systems on the {100} surface,

whilst tetrahedral iron bonding is only present for the in vacu system. In contrast, only

octahedral iron bonding is existent on the {111} surface. When the bonding behaviours of

leucine and methionine were investigated, both octahedral and tetrahedral iron bonding

was exhibited for the {100} surface. However, again only octahedral iron bonding was

available on the {111} surface. These results suggest that when the non–polar amino

acids are attached to the magnetite surfaces, different iron attachment sites are favoured,

with octahedral iron attachment being the preferred for the {111} surface.

Additionally, it was shown that the RDF first peak intensity was greater in the in vacu sys-
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Figure 4.7: RDF plots for alanine. FET is tetrahedral iron, FEO is octahedral iron. Blue is {100} in

vacu. Red is {100} solvated. Green is {111} in vacu. Purple is {111} solvated.

tem than in the equivalent solvated system, with the exception of methionine–tetrahedral

iron bonding on the {100} surface, which shows similar values for both system types. This

data suggests upon system solvation it is more difficult for amino acid oxygen to have an

iron as a next nearest neighbour and for this to remain for the simulation duration. For

the solvated systems, the most intense peak was shown for valine on the {111} surface

having octahedral iron as its next nearest neighbour, suggests that the oxygen present in

this amino acid is more freely accessible to the next nearest neighbouring irons within the

bond distance of 1.5 Å to 2.5 Å throughout the simulation duration.

The RDF data can be examined alongside the FE − Oaminoacid bond distance data ex-

tracted from the final simulation coordinates (Table 4.4).

Only N–terminal peptide bond oxygen bonding was possible due the lack of oxygen in

the non–polar amino acid residue side chains. The non–polar amino acid bond distance

data shows that, there was no bonding present for alanine, methionine and valine in the

in vacu {100} surface system, however, in the equivalent isoleucine and leucine systems,
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N–terminal peptide bond oxygen bonding was exhibited. For both surfaces, no bonding

between magnetite iron and amino acid oxygen occurred when the systems were solvated,

suggesting more favourable bonding between magnetite iron and the oxygen in water

bonds, than the oxygen in isoleucine and leucine, leading to the amino acids being pushed

away from the magnetite surface, allowing for the movement of water closer to the surface

and binding (Figure 4.8). The RDF data reflects this finding, with the solvated systems

having less intense g(r) peaks than the corresponding in vacu systems, with the slight

exception of methionine–tetrahedral iron bonding on the {100} surface. A greater amount

of bonding was present for the {111} surfaces suggesting preferable attachment, however,

the presence of water in the system is detrimental to iron bonding.

Figure 4.8: Bond distance images for the in vacu and solvated systems of the alanine residue. a){100}

in vacu, b){100} solvated, c){111} in vacu and d){111} solvated.

In order to get a more accurate representation of bonding behaviour, throughout the

simulation, residence times and coordination numbers where considered. Residence time

is the average amount of time that a particle spends in a particular system, in this case,

how long (ps) a bond between an FET or FEO ion and an oxygen ion from the amino acid
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residues remains between 0 and 2.5 Å. The coordination number is the total number of

points of attachment to a central atom or ion. Table 4.5, represents the average residence

times and coordination numbers for all oxygen ions present in the non–polar amino acids

residues, attached to either/both FET and FEO ions, on the {100} and {111} magnetite

surfaces.

The non–polar amino acid residence time data shows that, for alanine there was no bonding

lasting over 15% of the simulation length. With isoleucine attached to the {100} surface,

there was no bonding lasting over 36% of the simulation length. Conversely, for the {111}
surface in vacu system, no tetrahedral iron bonding was present, although, octahedral

iron bonding to the N–terminal peptide bond oxygen was displayed lasting over 99% of

the simulation length. With the addition of water, the residence time of this bond drops

to 215.78 ps, suggesting that attachment at this site is no longer favourable.

A very similar trend was exhibited for leucine as for isoleucine, whereby, there was no

bonding lasting over 21% of the simulation length for the {100} surface, and no tetrahedral

iron bonding present for the {111} surface. There was again octahedral iron bonding to

the N–terminal peptide bond oxygen lasting over 99% of the simulation length for the

in vacu system. However, unlike with isoleucine, when this system is solvated this bond

continues to last over 99% of the simulation length, suggesting that the presence of water

has little to no effect. With methionine there was no bonding lasting over 2% of the

simulation length.

Valine exhibits the same type of bonding as isoleucine. When attached to the {100}
surface, there was no bonding lasting over 0.2% of the simulation length. Whilst, for the

{111} surface in vacu system, there was no tetrahedral iron bonding exhibited, however,

octahedral iron bonding to the N–terminal peptide bond oxygen was shown lasting over

96% of the simulation length. Upon solvation, the residence time of this bond drops to

306.52 ps, suggesting that attachment at this site is no longer favourable.

These results show that there is very minimal bonding present between magnetite and

the non–polar amino acid residues, with methionine exhibiting almost no bonding to

magnetite; this could be due to presence of sulphur. Leucine exhibits the most bonding,

a possible reason being the effect of its branched aliphatic side chain; it is also a major

component in ferritin sub-units, suggesting a link with iron.
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Amino Acid Fe type Surface System r (Å)

ALA FET 100 in vacu 1.98

solvated 1.98

111 in vacu -

solvated -

FEO 100 in vacu -

solvated -

111 in vacu 2.03

solvated 2.08

ILE FET 100 in vacu 2.08

solvated -

111 in vacu -

solvated -

FEO 100 in vacu 2.08

solvated 2.23

111 in vacu 2.03

solvated 2.03

LEU FET 100 in vacu 2.13

solvated 2.18

111 in vacu -

solvated -

FEO 100 in vacu 2.13

solvated 2.18

111 in vacu 2.08

solvated 2.03

Table 4.2: Non–polar amino acid r (Å) values from RDF data.
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Amino Acid Fe type Surface System r (Å)

MET FET 100 in vacu 2.08

solvated 2.28

111 in vacu -

solvated -

FEO 100 in vacu 2.13

solvated 2.28

111 in vacu 1.98

solvated 2.33

VAL FET 100 in vacu 1.98

solvated 1.98

111 in vacu -

solvated -

FEO 100 in vacu -

solvated -

111 in vacu 2.03

solvated 2.03

Table 4.3: Continued. Non–polar amino acid r (Å) values from RDF data.
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{100} surface attachment

Amino Acid Oxygen type BL In Vacu (Å) BL Solvated (Å)

ALA NBO NB NB

ILE NBO 2.00 NB

LEU NBO 2.27 NB

MET NBO NB NB

VAL NBO NB NB

{111} surface attachment

Amino Acid Oxygen type BL In Vacu (Å) BL Solvated (Å)

ALA NBO 2.21 NB

ILE NBO 2.05 NB

LEU NBO 2.18 2.04

MET NBO NB NB

VAL NBO 1.98 2.13

Table 4.4: Non–polar amino acid FE − Oaminoacid bond distance data. BL is bond length, NBO is

N–terminal peptide bond oxygen, and NB is no bonding.
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

ALA {100} surface NBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ALA {111} surface NBO 0.00 0.00 518.39 1.09 0.00 0.00 145.83 0.29

ILE {100} surface NBO 1765.08 0.66 1104.97 0.33 0.00 0.00 14.07 0.07

ILE {111} surface NBO 0.00 0.00 4977.00 1.00 0.00 0.00 215.78 0.55

LEU {100} surface NBO 7.83 0.00 1033.73 0.95 0.00 0.00 11.27 0.17

LEU {111} surface NBO 0.00 0.00 4993.00 1.00 0.00 0.00 999.00 1.00

MET {100} surface NBO 0.00 0.00 5.86 0.00 0.00 0.00 4.89 0.01

MET {111} surface NBO 0.00 0.00 0.00 0.00 0.00 0.00 16.37 0.03

VAL {100} surface NBO 0.00 0.00 8.07 0.00 0.00 0.00 0.00 0.00

VAL {111} surface NBO 0.00 0.00 4832.84 1.00 0.00 0.00 306.52 1.00

Table 4.5: Residence times (RT) and average coordination numbers (av. CN) of the non–polar amino acid residues. (NBO = N–terminal peptide bond oxygen).
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The magnetite-amino acid interfacial energy is another property that can be estimated

from these simulations, giving an indication of how easily the amino acid residue can be

adsorbed. The interfacial energies were calculated using Equation 4.1.

Eint = (Es/aa/w − Es/w)(Eaa/w − Ew) (4.1)

Where Eint is the magnetite crystal/amino acid residue/water interfacial energy, Es/aa/w

is the average potential energy of the magnetite slab/amino acid residue/water MD sim-

ulation, Es/w is the average potential energy of the magnetite slab/water MD simulation,

Eaa/w is the average potential energy of a solvated amino acid residue MD simulation, and

Ew is the average potential energy of a box of water MD simulation. A schematic repre-

sentation is shown in Figure 4.9. This method has been successfully applied to calculating

the interfacial energies of polysaccharides on calcite in the study of the biological control

polysaccharides have on the crystallization of calcite[164].

Figure 4.9: Schematic representation of the interfacial energy of the magnetite crystal–amino acid

residue–water system. The checked box represents the magnetite crystal, the dotted box represents the

water and the black line indicates the amino acid residue in solution.

All related energy data from the interfacial energy calculations can be found in Table 4.6.

The solvated system interfacial energy data shows that the {100} surface produces lower

interfacial energy values (between 4.98 eV and 6.21 eV) than the {111} surface (between

11.03 eV and 14.45 eV). On the {100} surface, methionine has the highest interfacial

energy value and valine has the lowest, whilst on the {111} surface, again methionine

has the highest interfacial energy however alanine now exhibited the lowest value. As

methionine consistently present with the highest energy, it suggests that the presence

of the side chain sulphur in the system was detrimental to iron binding. Additionally,

this data shows that the addition of water to the system has a detrimental effect on

the interfacial energy, as the in vacu system energies are much lower (in most cases of

a negative value). The solvation of the system also affects the way that the amino acid

residues react at the interface, as the interfacial energy trends for the in vacu systems are
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{100} surface attachment

Eint of s-a (eV) Ediff of s-a (eV) Eint of s-a-w (eV) Ediff of s-a-w (eV)

ALA -2.25 2.73 5.70 0.50

ILE -1.90 2.38 5.63 0.58

LEU -3.61 4.09 5.86 0.34

MET 0.48 0.00 6.21 0.00

VAL -3.66 4.13 4.98 1.22

{111} surface attachment

Eint of s-a (eV) Ediff of s-a (eV) Eint of s-a-w (eV) Ediff of s-a-w (eV)

ALA -3.65 6.31 11.03 3.42

ILE 2.66 0.00 13.54 0.91

LEU -4.54 7.20 13.05 1.40

MET -1.48 4.15 14.45 0.00

VAL -9.64 12.31 13.77 0.68

Table 4.6: Interfacial energies for all non–polar amino acid residues, using the Yang et al method[164].

Eint of s-a is the interfacial energy of the slab–amino acid residue system. Ediff of s-a is the difference in

interfacial energy from the highest interfacial energy of the slab–amino acid residue system. Eint of s-a-w

is the interfacial energy of the slab–amino acid residue–water system. Ediff of s-a-w is the difference in

interfacial energy from the highest interfacial energy of the slab–amino acid residue–water system.

very different to the solvated systems. For the in vacu systems, the lowest energies were

exhibited for valine, however, the highest solvated interfacial energies were presented for

methionine and isoleucine, on the {100} and {111} surfaces, respectively. This suggests

that valine is the preferred amino acid residue for attachment in the in vacu systems. The

increase in interfacial energy with the addition of water could be the result of a preferential

attachment of the magnetite surface to the water, leading to energy needing to be put into

the system to allow for the amino acid residue to get close to the magnetite surface.

Whilst the absolute values for the adsorption energy are clearly an order of magnitude

larger than expected, the relative energies within a sequence may be more reliable for

amino acid binding potential comparison. The trends shown when water is present in the

system are counter-intuitive and contradictive of experimental studies; however, it is clear

that this is an artefact of the energy calculation method utilised, as the expected trend

is revealed in the relative residence times of various surface interactions. As it can be

demonstrated that:
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RT × ln(τ1/τ2) = (∆H2
ads −∆H1

ads) = (E1
des − E2

des) (4.2)

then this method is perhaps more reliable for determining the change in adsorption

energy between the various amino acids. This interfacial energy method also requires the

measurement of small differences between large energies, which leads to large uncertainties

in the results. Another possible error incorporated into the calculation of the interfacial

energies for the hydrated systems, is the assumption that all the water molecules within

the systems containing the slab and water are perfectly hydrated throughout the slab, i.e.

the bulk density is that of the bulk water simulation. However, as the simulations are

run within an NVT ensemble, this is not necessarily the case. Therefore, if insufficient

water is present at the start of the simulation, some of the water molecules will eventually

become under coordinated, thus increasing the energy of the simulation cells. Furthermore,

rather than directly calculating the adsorption energy, via this interfacial energy method,

a further alternative is to use an indirect method, such as those based on the Potential of

Mean Force, and instead, which has been considered in Section 3.3.5.

Polar Amino Acid Attachment

R values for the polar amino acids can be found in Table 4.7.

Figure 4.10 exhibits the RDF profiles for glutamine. The RDF profiles of the remaining

polar amino acids can be found in the Appendix. The RDF data for the polar amino

acids shows that glutamine exhibits both tetrahedral and octahedral iron bonding on the

{100} surface. While, for the {111} surface only octahedral iron bonding is present. A

similar trend is shown for serine, however, there is also no octahedral iron bonding present

for the {100} solvated system. This data suggests that different iron attachment sites are

favoured dependent on which surface is used. The lack of octahedral iron bonding for the

{100} solvated system of serine, suggests that the addition of water is detrimental to the

iron binding potential.

The polar amino acid RDF data also demonstrates that, the solvated systems produce

a first peak with weaker intensity than their corresponding in vacu systems, proposing

that with the introduction of water into the system, it is more difficult for iron to be the

next nearest neighbour of an amino acid oxygen and for this to remain for the simulation

duration. For the solvated systems, serine on the {111} surface having octahedral iron as

its next nearest neighbour, was shown to exhibit the most intense g(r) , although this is
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Amino Acid Fe type Surface System r (Å)

GLN FET 100 in vacu 1.98

solvated 1.98

111 in vacu -

solvated -

FEO 100 in vacu -

solvated -

111 in vacu 2.03

solvated 2.08

SER FET 100 in vacu 2.08

solvated -

111 in vacu -

solvated -

FEO 100 in vacu 2.08

solvated 2.23

111 in vacu 2.03

solvated 2.03

Table 4.7: Polar amino acid r (Å) values from RDF data.

very close in intensity to that of glutamine on the {111} surface having octahedral iron

as its next nearest neighbour. These results suggest that in the {111} surface systems

the oxygen present in the polar amino acids is more freely accessible to the next nearest

neighbouring irons.

On comparison of the polar amino acid RDF data with that of the non–polar it was shown

that the same type of bonding was seen for glutamine as was exhibited for leucine and

methionine suggesting that the presence of the two charged groups in glutamine has no

effect on iron binding type, which may be due to the oppositely charged regions of the side

chain cancelling each other out through ionic bonding. A similar trend is shown between

serine and alanine and valine, with the additional octahedral iron bonding present for the

{100} in vacu serine system, suggesting that the side chain oxygen presence in serine does

to some extent increase its iron binding potential.

The FE−Oaminoacid bond distance data for the polar amino acids is represented in Table

4.8.
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Figure 4.10: RDF plots for glutamine. FET is tetrahedral iron, FEO is octahedral iron. Blue is {100}

in vacu. Red is {100} solvated. Green is {111} in vacu. Purple is {111} solvated.

The polar amino acid bond distance data shows that for the {100} in vacu system, ser-

ine displayed no bonding present and glutamine exhibited only N–terminal peptide bond

oxygen bonding. Upon solvation, neither amino acid exhibited any form of bonding, sug-

gesting more favourable bonding between magnetite iron and water oxygen (Figure 4.11).

For the {111} in vacu system, much more bonding was present signifying that this is

the preferred attachment surface. When water was added to the system all of the bonds

present in the in vacu system were again present, suggesting that the addition of water

has no effect on iron binding.

On comparison of the polar amino acid bond distance data with that of the non–polar

it was shown that oxygen being present in the side chains has minimal effect on {100}
surface iron binding, as no bonding was exhibited for serine, as with alanine, methionine

and valine. Glutamine exhibited a similar bonding to isoleucine and leucine, however

the bond was to the side chain oxygen not the N–terminal peptide bond oxygen, as with

isoleucine and leucine. With the {111} surface, no increased iron binding effect was seen
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{100} surface attachment

Amino Acid Oxygen type BL In Vacu (Å) BL Solvated (Å)

GLN NBO NB NB

Q O 2.05 NB

SER NBO NB NB

S O NB NB

{111} surface attachment

Amino Acid Oxygen type BL In Vacu (Å) BL Solvated (Å)

GLN NBO 1.95 2.19

Q O 1.88 2.11

SER NBO 2.20 1.97

S O NB NB

Table 4.8: Polar amino acid FE−Oaminoacid bond distance data. BL is bond length, NBO is N–terminal

peptide bond oxygen, Q O is glutamine side chain oxygen, S O is serine side chain oxygen is and NB is no

bonding.

by the presence of oxygen in serine as the same amount of bonding was demonstrated as

with leucine and valine. However the presence of the charged oxygen in glutamine has a

positive effect on iron binding as it exhibits more bonding than the non–polar amino acids

systems.

Table 4.9 represents the residence times and related average coordination numbers for

bonding between all oxygen present in the polar amino acid residues and tetrahedral

and/or octahedral iron on both the {100} and {111} magnetite surfaces.

The polar amino acid residence time data shows that, for glutamine there was no side chain

oxygen bonding lasting over 42% and 26% of the simulation length for the {100} and the

{111} surface, respectively. However, with the N–terminal peptide bond oxygen, there

was no bonding seen for the {100} surface, but the {111} surface exhibited octahedral

iron bonding lasting over 99% of the simulation length for both the in vacu and solvated

systems, suggesting favourable attachment.

With serine attached to the {100} surface, there was no N–terminal peptide bond oxygen

bonding present and no side chain oxygen bonding lasting over 1% of the simulation length.

For the {111} surface, there was no tetrahedral iron bonding existent, nevertheless, side

chain oxygen–octahedral iron bonding was seen lasting over 99% of the simulation length
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Figure 4.11: Bond distance images for the in vacu and solvated systems of the glutamine residue. a){100}

in vacu, b){100} solvated, c){111} in vacu and d){111} solvated.

for the in vacu system. Upon solvation, the residence time of this bond drops to 407.28

ps, suggesting that this attachment is no longer beneficial. Octahedral iron bonding was

also present to the N–terminal peptide bond oxygen lasting only 1100.01 ps in the in vacu

system, but increasing in residence time to lasting over 99% of the simulation length for

the solvated system. This data suggests that the addition of water effects how the amino

acid oxygen bonds to magnetite, with side chain oxygen bonding being less favourable

than water binding but N–terminal peptide bond oxygen bonding being more favourable.

The polar residence time data suggests that the amino acids favour binding to the {111}
surface as small or no residence times are exhibited on the {100} surface, with the exception

glutamine side chain oxygen–octahedral iron bonding in the in vacu system. Glutamine

consistently shows a preference for N–terminal peptide bond oxygen bonding, whilst serine

shows no preference.

On comparison of the polar amino acid residence time data with that of the non–polar it

was shown that, the addition of oxygen to the residue side chains has minimal effect on the
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iron binding, as the bonding lasting over 99% of the simulation length was through the N–

terminal peptide bond oxygen as opposed to side chain oxygen, with the exception of the

serine {111} in vacu system. For both amino acid groups, the {111} surface is the preferred
for attachment. Additionally, little or no tetrahedral iron bonding was present, with the

exception of the isoleucine {100} in vacu system, showing a preference for octahedral iron

bonding.
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

GLN {100} surface Q O 0.00 0.00 2087.49 0.99 0.00 0.00 21.99 0.10

NBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GLN {111} surface Q O 0.00 0.00 1155.17 1.16 0.00 0.00 252.16 0.96

NBO 0.00 0.00 4995.00 1.00 0.00 0.00 999.00 1.00

SER {100} surface S O 0.00 0.00 7.10 0.10 0.00 0.00 8.62 0.07

NBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SER {111} surface S O 0.00 0.00 4994.00 1.00 0.00 0.00 407.28 0.98

NBO 0.00 0.00 1100.01 1.07 0.00 0.00 994.67 1.01

Table 4.9: Residence times (RT) and average coordination numbers (av. CN) of the polar amino acid residues. NBO is N–terminal peptide bond oxygen, Q O is glutamine

side chain oxygen and S O is serine side chain oxygen.
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The interfacial energies of the polar amino acid residues on the magnetite surfaces can be

found in Table 4.10.

{100} surface attachment

Eint of s-a (eV) Ediff of s-a (eV) Eint of s-a-w (eV) Ediff of s-a-w (eV)

GLN -7.40 4.44 5.40 1.06

SER -2.97 0.00 6.46 0.00

{111} surface attachment

Eint of s-a (eV) Ediff of s-a (eV) Eint of s-a-w (eV) Ediff of s-a-w (eV)

GLN -7.63 4.89 12.72 0.00

SER -2.75 0.00 11.01 1.71

Table 4.10: Interfacial energies for all polar amino acid residues, using the Yang et al method[164]. Eint

of s-a is the interfacial energy of the slab–amino acid residue system. Ediff of s-a is the difference in

interfacial energy from the highest interfacial energy of the slab–amino acid residue system. Eint of s-a-w

is the interfacial energy of the slab–amino acid residue–water system. Ediff of s-a-w is the difference in

interfacial energy from the highest interfacial energy of the slab–amino acid residue–water system.

From the solvated polar interfacial energy data, it can be observed that the {100} surface

produces the lowest interfacial energies (5.40 eV and 6.46 eV as opposed to 12.72 eV

and 11.01 eV). On the {100} surface glutamine has the lowest interfacial energy value,

whereas, on the {111} surface serine has the lowest, suggesting that the preferred residue

of attachment is surface dependent. The addition of water to the system has a detrimental

effect on the interfacial energy, as the in vacu system produces much lower energies. Before

solvation very similar interfacial energy values were exhibited for the different surfaces (-

7.40 eV and -2.97 eV for the {100}, and -7.63 eV and -2.75 eV for the {111}), however,
very differing energy values were seen in the presence of water. This data suggests that the

magnetite–water interactions are surface dependent and the presence of water in the {111}
surface system is much more detrimental than for the {100}. Preferential water attachment

could explain the increase in interfacial energy witnessed. Furthermore, system solvation

affects the amino acid interfacial behaviours, as the solvated interfacial energy trend differs

from the in vacu trend. Glutamine exhibits lower interfacial energy values than serine for

the in vacu system, yet when water is present, glutamine continues to exhibit the lowest

interfacial energy on the {100} surface, but the opposite is seen for the {111} surface.

On comparison of the polar amino acid interfacial energy data with that of the non–polar

it was shown that, for the {100} surface solvated systems, serine produces the highest

interfacial energy value, whereas glutamine produces the second lowest value (after valine),
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suggesting that the presence of a hydroxyl oxygen is more detrimental to iron binding than

having no oxygen, although its reaction with water may play a part in this. Conversely,

the opposite is seen for serine in the solvated {111} system, as it exhibited the lowest

interfacial energy value, suggesting that the hydroxyl oxygen presence is beneficial to iron

binding.

Again, there were issues with this method of directly calculating the adsorption energy,

with larger than expected energy values produced and expected trends not exhibited. Po-

tential reasons for the problems displayed were discussed previously for the non–polar

amino acids. Indirect Potential of Mean Force based methods of adsorption energy calcu-

lation are an alternative, and are considered in Section 3.3.5.

Acidic Amino Acid Attachment

R values for the acidic amino acids can be found in Table 4.11.

Amino Acid Fe type Surface System r (Å)

ASP FET 100 in vacu 1.98

solvated 1.98

111 in vacu -

solvated -

FEO 100 in vacu -

solvated -

111 in vacu 2.03

solvated 2.08

GLU FET 100 in vacu 2.08

solvated -

111 in vacu -

solvated -

FEO 100 in vacu 2.08

solvated 2.23

111 in vacu 2.03

solvated 2.03

Table 4.11: Acidic amino acid r (Å) values from RDF data.

Figure 4.12 exhibits the RDF profiles for aspartate. The RDF profiles of the remaining
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Figure 4.12: RDF plots for aspartate. FET is tetrahedral iron, FEO is octahedral iron. Blue is {100}

in vacu. Red is {100} solvated. Green is {111} in vacu. Purple is {111} solvated.

acidic amino acids can be found in the Appendix. The acidic amino acid RDF data

shows that for aspartate, all bonding is through octahedral iron, suggesting a definitive

preference for octahedral iron binding. Whilst, for glutamate, the {111} surface exhibits

only octahedral iron bonding, whereas, the {100} surface exhibits both tetrahedral and

octahedral iron bonding suggesting no binding preference.

As with the non–polar and polar amino acids, the RDF data also shows that, the in

vacu system produced a more intense g(r) peak than the equivalent solvated system, sug-

gesting that the presence of water was unfavourable for iron binding. Glutamate on the

{111} solvated surface, having octahedral iron as its next nearest neighbour, demonstrates

the greatest first peak intensity, indicating that the oxygen in glutamate are more freely

accessible to the next nearest neighbouring octahedral iron, than in aspartate. This phe-

nomenon is also true of the {100} versus the {111} surface, as the solvated {111} surfaces,

bonding through octahedral iron, produced more intense g(r) peaks than the correspond-

ing {100} surfaces.
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When the RDF data of the acidic amino acids was compared to that of the non–polar and

polar amino acids it was shown that, the same bonding types were seen for glutamate as

was exhibited for glutamine, leucine and methionine, indicating that the presence of the

two oxygens in the side chain have no effect on the type of iron being bound. No other

amino acid compared exhibited the same bonding type trend as aspartate.

The FE−Oaminoacid bond distance data for the acidic amino acids is represented in Table

4.12.

{100} surface attachment

Amino Acid Oxygen type BL In Vacu (Å) BL Solvated (Å)

ASP NBO NB NB

D O 1.93 NB

D O 1.99 NB

GLU NBO NB NB

E O 2.05 2.51

E O 2.07 2.01

{111} surface attachment

Amino Acid Oxygen type BL In Vacu (Å) BL Solvated (Å)

ASP NBO 1.97 NB

D O 2.22 2.12

2.03 2.13

D O 1.94 1.93

2.09 NB

GLU NBO 1.99 NB

E O 2.06 2.04

NB 2.03

E O 2.09 NB

2.10 NB

Table 4.12: Acidic amino acid FE − Oaminoacid bond distance data. BL is bond length, NBO is N–

terminal peptide bond oxygen, D O is aspartate side chain oxygen, E O is glutamate side chain oxygen

and NB is no bonding.

The acidic amino acid bond distance data shows more bonding present on the {111} in

vacu surface than the {100}, as each amino acid exhibited two side chain oxygen bonds

in the {100} systems, whereas, in the {111} systems, aspartate exhibited four side chain
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oxygen bonds and glutamate exhibited three side chain oxygen bonds. N–terminal peptide

bond oxygen bonding was only present for the {111} systems. Reduced bonding was seen

for the solvated systems than the in vacu, as for aspartate, the {111} surface showed three

bonds and the {100} showed no bonding, whilst glutamate exhibited the same amount of

bonding on both surfaces (two bonds).

Figure 4.13: Bond distance images for the in vacu and solvated systems of the aspartate residue. a){100}

in vacu, b){100} solvated, c){111} in vacu and d){111} solvated.

When the acidic amino acid bond distance data was compared to that of the non–polar

and polar amino acids it was shown that, the presence of two side chain oxygen increases

the amount of iron bonding, as for the {100} surface, the non–polar and polar amino

acids exhibited either no bonding present or only one bond, and for the {111} surface,

the non–polar and polar amino acids show no more than two bonds present. Additionally,

this data shows that acidic amino acid bonding is predominantly through the side chain

oxygen, whilst for the non–polar and polar it is primarily through the N–terminal peptide

bond oxygen, with the exception of glutamine which appears to behave in a similar way
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to the acidic amino acid residues, although this could be expected due it being the amide

form of glutamate.

Table 4.13 represents the residence times and related average coordination numbers for

bonding between all oxygen present in the acidic amino acid residues and tetrahedral

and/or octahedral iron on both the {100} and {111} magnetite surfaces.

The acidic amino acid residence time data shows that, for aspartate, there was no tetrahe-

dral iron bonding present. There was also no bonding lasting over 0.05% of the simulation

length to the N–terminal peptide bond oxygen from the {100} surface. Aspartate in the

{100} in vacu system, presented with octahedral iron bonding to both side chain oxygen

lasting over 99% of the simulation length. On addition of water, the residence times of

these bonds drop (74.22 ps and 66.06 ps) suggesting that attachment at this site is no

longer favourable and water bonding is preferential. In the {111} surface in vacu system,

octahedral iron bonding to one of the side chain oxygen of aspartate, and the N–terminal

peptide bond oxygen was exhibited lasting over 98% of the simulation length. The other

side chain oxygen of aspartate also showed octahedral iron bonding lasting 3455.92 ps.

Upon solvation, the residence times of these bonds drop (766.44 ps, 29.34 ps and 870.81

ps, respectively) suggesting that water addition is detrimental to iron binding but to dif-

ferent extents dependent on which oxygen type is bonded.

For glutamate in the {100} in vacu system, bonding lasting over 99% of the simulation

length was exhibited for both side chain oxygen (one to tetrahedral iron and one to oc-

tahedral iron). Upon solvation, the residence times of these bonds drop (181.56 ps and

143.98 ps). No N–terminal peptide bond oxygen bonding lasting over 2% of the simulation

length was displayed. For the {111} surface in vacu system, no bonding lasting over 47%

of the simulation length was revealed, however, with the addition of water into the system,

again no bonding lasting nearly the full length of the simulation was exhibited, however,

bonding between octahedral iron and one of the side chain oxygen lasting over 69% of

the simulation length was seen, suggesting that water addition somewhat improves iron

binding for glutamate on the {111} surface.

On comparison of the acidic amino acids, aspartate appears to be the preferred residue

of attachment, particularly on the {111} surface. {111} surface attachment is also the

preferred for attachment in the solvated systems. Aspartate exhibited only octahedral

iron bonding, whereas glutamate, the {100} surface displayed both iron bonding types for

the {100} surface, and only octahedral iron bonding for the {111} surface.
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When the acidic amino acid residence time data was compared to that of the non–polar and

polar amino acids it was shown that, the presence of two side chain oxygens improves iron

binding, in that the bonding lasting over 99% of the simulation length was predominantly

through the side chain oxygen. For the solvated systems, the {111} surface is the preferred

surface of attachment. Also, there is little or no bonding through tetrahedral iron, showing

a preference for octahedral iron bonding.
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

ASP {100} surface 1st D O 0.00 0.00 4989.00 1.00 0.00 0.00 74.22 0.48

2nd D O 0.00 0.00 4984.15 1.00 0.00 0.00 66.06 0.53

NBO 0.00 0.00 2.20 0.00 0.00 0.00 0.00 0.00

ASP {111} surface 1st D O 0.00 0.00 3455.92 1.91 0.00 0.00 870.81 1.85

2nd D O 0.00 0.00 4905.18 1.94 0.00 0.00 766.44 1.22

NBO 0.00 0.00 4998.00 1.00 0.00 0.00 29.34 0.18

GLU {100} surface 1st E O 4995.00 1.00 0.00 0.00 181.56 0.94 0.00 0.00

2nd E O 0.00 0.00 4996.00 1.00 0.00 0.00 143.98 0.92

NBO 0.00 0.00 60.88 0.04 0.00 0.00 0.00 0.00

GLU {111} surface 1st E O 0.00 0.00 891.48 1.40 0.00 0.00 298.41 1.77

2nd E O 0.00 0.00 881.56 1.55 0.00 0.00 694.73 1.28

NBO 0.00 0.00 2312.48 0.46 0.00 0.00 77.93 0.23

Table 4.13: Residence times (RT) and average coordination numbers (av. CN) of the acidic amino acid residues. (NBO = N–terminal peptide bond oxygen, D O = aspartate

side chain oxygen and E O = glutamate side chain oxygen).
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The interfacial energies of the acidic amino acid residues on the magnetite surfaces can be

found in Table 4.14.

{100} surface attachment

Eint of s-a (eV) Ediff of s-a (eV) Eint of s-a-w (eV) Ediff of s-a-w (eV)

ASP -8.94 3.16 6.05 0.07

GLU -5.78 0.00 6.12 0.00

{111} surface attachment

Eint of s-a (eV) Ediff of s-a (eV) Eint of s-a-w (eV) Ediff of s-a-w (eV)

ASP -6.00 0.06 21.19 0.00

GLU -5.94 0.00 11.22 9.97

Table 4.14: Interfacial energies for all acidic amino acid residues, using the Yang et al method[164].

Eint of s-a is the interfacial energy of the slab–amino acid residue system. Ediff of s-a is the difference in

interfacial energy from the highest interfacial energy of the slab–amino acid residue system. Eint of s-a-w

is the interfacial energy of the slab–amino acid residue–water system. Ediff of s-a-w is the difference in

interfacial energy from the highest interfacial energy of the slab–amino acid residue–water system.

From the solvated interfacial energy data it can be observed that, the {100} surface pro-

duces the lowest interfacial energies (6.05 eV and 6.12 eV as opposed to 21.19 eV and

11.22 eV). On the {100} surface, the acidic residues have similar interfacial energy values,

although aspartate was marginally lower, whereas, on the {111} surface glutamate has

the lowest. Again, the presence of water has a disadvantageous effect on the interfacial

energy, as the energies are much lower for the in vacu system. Before solvation the in-

terfacial energy values of glutamate are similar on the different surfaces, however, when

the water is added, the different surfaces exhibit very different energy values, with the

presence of water having a greater detrimental on the {111} surface (-5.94 eV in vacu

to 11.22 eV solvated). This phenomenon is also apparent for aspartate, although there

is an even greater difference in energy values between the solvated surfaces (15.14 eV),

and preferential water attachment may be to blame. The solvation of the system also

affects the way that the amino acid residues react at the interface, as the solvated systems

interfacial energy trends are different to the in vacu trends. For the {100} surface in vacu

system, there was a difference of over 3 eV between the acidic residue values, however

when solvated the difference became only 0.7 eV, with aspartate displaying the lowest

values. Whereas, with the {111} surface in vacu system, there was a difference of only

0.6 eV between the acidic residue values, with aspartate showing the lowest, then upon

solvation, the difference between the values was significantly greater with a variance of
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9.97 eV with glutamate now presenting the lowest energy value. Thus, from this data,

aspartate appears to be the preferred acidic amino acid residue of attachment.

On comparison of the acidic amino acid interfacial energy data with that of the non–polar

and polar amino acids it can be seen that, for the {100} solvated systems, the acidic

residues produce midrange interfacial energy values, this suggesting that the presence of

the two oxygen on each of their side chains does not improve iron binding, and in some

instances, is more detrimental to iron binding than having a purely hydrocarbon side chain,

although the reaction of water with the residues or the magnetite surfaces may play a part

in this. For the {111} solvated systems, the acidic amino acids show very different trends

in the interfacial energy value, as glutamate exhibits the third lowest energy value whilst

aspartate exhibits the highest energy value with a gap of 6.74 eV to the next energy value.

Thus, for glutamate the presence of the two side chain oxygen is beneficial to iron binding,

however, for aspartate it is extremely detrimental, although this effect could be due to a

combination of factors involving the interactions of the individual system components.

There are, as with the non–polar and polar amino acids, concerns with this direct method

of calculating the adsorption energy, possible reasons for these were discussed previously

for the non–polar amino acids. An alternative indirect Potential of Mean Force based

method of adsorption energy calculation is considered in Section 3.3.5.

Basic Amino Acid Attachment

R values for the basic amino acids can be found in Table 4.15.

Figure 4.14 exhibits the RDF profiles for lysine. The RDF profiles of the remaining basic

amino acids can be found in the Appendix. From the basic amino acid RDF data it

can be seen that, for arginine, only tetrahedral iron bonding is displayed on the {100}
surface and only octahedral iron bonding is displayed on the {111} surface. With lysine,

the {111} surface, again, exhibits only octahedral iron bonding, conversely, the {100}
surface exhibits both tetrahedral and octahedral iron bonding. These data suggest that

for arginine and the lysine {100} surface there is a definite iron binding type preference,

whereas, the lysine {111} surface shows no such preference.

Additionally, from the basic amino acid RDF data it can be derived that, as with the

other amino acid groups, the in vacu system produces a stronger g(r) peak than the

complementary solvated system, and that the largest g(r) peak is displayed for lysine on
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Amino Acid Fe type Surface System r (Å)

ARG FET 100 in vacu 1.98

solvated 1.98

111 in vacu -

solvated -

FEO 100 in vacu -

solvated -

111 in vacu 2.03

solvated 2.08

LYS FET 100 in vacu 2.08

solvated -

111 in vacu -

solvated -

FEO 100 in vacu 2.08

solvated 2.23

111 in vacu 2.03

solvated 2.03

Table 4.15: Basic amino acid r (Å) values from RDF data.

the {111} surface having octahedral iron as its next nearest neighbour. This reason for

this may be that the water is being attracted to the positively charged group of the side

chain rather than the magnetite surface, freeing up the interaction between the magnetite

surface and the amino acid oxygen.

When the basic amino acid RDF data was compared to that of the non–polar, polar

and acidic amino acids it was shown that, the same type of bonding was seen for lysine

as was exhibited for glutamate, glutamine, leucine and methionine. This suggests that

the presence of the ǫ-amino group in the side chain has no effect on the type of iron

being bound. No other amino acid compared exhibited the same bonding type trend as

aspartate.

The FE−Oaminoacid bond distance data for the basic amino acids is represented in Table

4.16.

When the basic amino acid bond distance data was examined it was shown that, more

bonding was present in the {111} systems than the {100}. No bonding was exhibited on
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Figure 4.14: RDF plots for lysine. FET is tetrahedral iron, FEO is octahedral iron. Blue is {100} in

vacu. Red is {100} solvated. Green is {111} in vacu. Purple is {111} solvated.

the {100} surface. Bonding was displayed to the N–terminal peptide bond oxygens in the

{111} surface in vacu systems, however upon solvation, no bonding was present for lysine,

thus the addition of water is detrimental for iron binding in lysine {111} system.

When the basic amino acid bond distance data was compared to that of the non–polar,

polar and acidic amino acids it was shown that, the presence of the positively charged

groups in the side chains has minimal effect on {100} surface iron binding, as there was

no bonding present, also displayed for alanine, methionine, valine and serine. With the

{111} surface, no increased iron binding effect was seen by the presence of the guanidinium

group in arginine as, like with leucine, valine and serine, there is one bond present. {111}
surface lysine, however, exhibits one bond for the in vacu system and no bonding for the

solvated system, as see for alanine and isoleucine.

Table 4.17 represents the residence times and related average coordination numbers for

bonding between all oxygen present in the basic amino acid residues and tetrahedral and/or

octahedral iron on both the {100} and {111} magnetite surfaces.
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{100} surface attachment

Amino Acid Oxygen type BL In Vacu (Å) BL Solvated (Å)

ARG NBO NB NB

LYS NBO NB NB

{111} surface attachment

Amino Acid Oxygen type BL In Vacu (Å) BL Solvated (Å)

ARG NBO 2.02 2.06

LYS NBO 2.01 NB

Table 4.16: Basic amino acid FE−Oaminoacid bond distance data. BL is bond length, NBO is N–terminal

peptide bond oxygen, and NB is no bonding.

The basic amino acid residence time data shows that, for the {100} surface, arginine

exhibits no bonding lasting over 0.03% of the simulation length and lysine exhibits no

bonding lasting over 4% of the simulation length. With the {111} surface, there was no

tetrahedral bonding present, however, arginine showed octahedral iron bonding lasting

over 86% of the in vacu simulation length, and over 99% of the solvated simulation length.

Whilst, with lysine in the {111} in vacu system, octahedral iron bonding lasting over 99%

of the solvated simulation length was demonstrated, however, upon solvation, the residence

times of this bond drops 333.43 ps, suggesting that water addition is detrimental to iron

binding.

On comparison of the basic amino acid residues, the same amount of bonding lasting over

86% of the simulation length was present for the in vacu systems, however, when solvated,

arginine shows the same amount of this length of bonding as the in vacu system, whilst

lysine shows none, suggesting that arginine {111} surface attachment is not effected by

the addition of water, whilst it has an unfavourable effect on lysine binding.

When the basic amino acid residence time data was compared to that of the non–polar,

polar and acidic amino acids it was shown that, the {111} surface is the preferred surface of

attachment for all amino acid groups, particularly for the solvated systems. Also, there is

little or no tetrahedral iron bonding for any of the amino acid groups, showing a preference

for octahedral iron bonding. Arginine exhibits the same amount and type of long term

bonding as leucine and glutamine, whilst lysine exhibits the same amount and type of long

term bonding as isoleucine and valine.
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Figure 4.15: Bond distance images for the in vacu and solvated systems of the arginine residue. a){100}

in vacu, b){100} solvated, c){111} in vacu and d){111} solvated.
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

ARG {100} surface NBO 0.00 0.00 1.16 0.01 0.00 0.00 0.00 0.00

ARG {111} surface NBO 0.00 0.00 4330.20 0.98 0.00 0.00 999.00 1.00

LYS {100} surface NBO 22.54 0.43 0.00 0.00 35.27 0.32 9.88 0.05

LYS {111} surface NBO 0.00 0.00 4995.00 1.00 0.00 0.00 333.43 0.64

Table 4.17: Residence times (RT) and average coordination numbers (av. CN) of the basic amino acid residues. (NBO = N–terminal peptide bond oxygen).
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The interfacial energies of the acidic amino acid residues on the magnetite surfaces can be

found in Table 4.18.

{100} surface attachment

Eint of s-a (eV) Ediff of s-a (eV) Eint of s-a-w (eV) Ediff of s-a-w (eV)

ARG -16.20 14.81 6.23 0.00

LYS -1.39 0.00 4.18 2.05

{111} surface attachment

Eint of s-a (eV) Ediff of s-a (eV) Eint of s-a-w (eV) Ediff of s-a-w (eV)

ARG -14.11 11.62 9.81 0.00

LYS -2.49 0.00 8.59 1.22

Table 4.18: Interfacial energies for all basic amino acid residues, using the Yang et al method[164]. Eint

of s-a is the interfacial energy of the slab–amino acid residue system. Ediff of s-a is the difference in

interfacial energy from the highest interfacial energy of the slab–amino acid residue system. Eint of s-a-w

is the interfacial energy of the slab–amino acid residue–water system. Ediff of s-a-w is the difference in

interfacial energy from the highest interfacial energy of the slab–amino acid residue–water system.

From the solvated basic amino acid interfacial energy data, it can be seen that, as with

the amino acid groups, the {100} surface produces the lowest interfacial energy values,

with the {100} surface showing values of 6.23 eV and 4.18 eV for arginine and lysine

respectively, whilst the {111} surface showed values of 9.81 eV and 8.59 eV for arginine

and lysine respectively. Lysine exhibits the lowest interfacial energy values, suggesting

this is the preferred amino acid of attachment. This data also shows that, the addition

of water to the system has a detrimental effect on the interfacial energy, as the energies

calculated are much lower for the in vacu system. The solvation of the system also affects

the interfacial behaviour of the amino acids, as the interfacial energy trends for the in vacu

systems are very different to the solvated systems. For the in vacu systems, the lowest

energy was exhibited for arginine; however, with the addition of water the opposite is true.

On comparison of the basic amino acid interfacial energy data with the non–polar, polar

and acidic amino acid residue data it can be seen that, for the {100} surface solvated

systems, the basic residues produce the two extremes of interfacial energy values, with

arginine producing one of the highest interfacial energy values and lysine producing the

lowest interfacial energy value; this suggests that the presence of a primary amine group in

the side chain of lysine is beneficial to iron binding whilst the presence of the guanidinium

group in arginine is greatly detrimental to iron binding for this surface. For the {111}
surface solvated system, a very different basic amino acid trend was shown, as arginine
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and lysine exhibit the second lowest and lowest interfacial energy values, respectively; this

suggests that the presence positively charged groups in the side chains is beneficial to iron

binding.

As with the other amino acid groups, there are concerns with this direct method of calcu-

lating the adsorption energy, possible reasons for these were discussed previously for the

non–polar amino acids. An alternative indirect method of adsorption energy calculation is

explored in the following section. This method utilises a constrained molecular dynamics

version of the systems, focusing on the Potential of Mean Force and free energy evaluation.

4.3 Constrained system

4.3.1 Computational Methods

As with the unconstrained system, the initial amino acid structures, including terminal end

capping, were produced with AMBERTOOLS TLEAP. The DL POLY code was used for

all calculations, and the TIP3P/fs potential model for water was utilised. The ensembles,

potentials and parameters used are described in Chapters 2 and 3.

The iron binding affinity of the peptide chains was determined by running a series of Po-

tential of Mean Force (PMF)[251] simulations, with the distance between the amino acids

centre of mass (CoM) and the magnetite surface constrained in the direction perpendicular

to the surface to distances between 0 Å and 10 Å, but free to move parallel to the surface.

The amino acid chiral carbon is, for the purposes of this study, the centre of mass. The

additional force exerted on the simulation due to this constraint was monitored. Each

PMF calculation was run for 1 ns NVT at 300 K and the average force was integrated

with respect to the constraint distance to produce the free energy of binding[139].

4.3.2 Results and Discussion

Free energy profiles were created for the aforementioned systems as shown in Figures 4.16,

4.20, 4.22 and 4.24. Within the free energy profiles, 0 Å on the x–axis is an approximate

representation of where the magnetite surface lies based on the first strongest peak for

an FEO iron ion in the related density profile. The free energy of the simulation systems

as a function of the centre of mass distance from the magnetite surface are shown in the

free energy profiles. Peaks in the water density profiles indicate areas within the system
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containing high water molecule concentrations.

Non–polar Amino Acid Attachment

Figure 4.16: A comparison of the free energy profiles of the non–polar amino acid residues. Distance

refers to distance between the peptide CoM and the magnetite surface. The dashed line represents the

water density profile for the system.

From the non–polar amino acid {100} surface free energy profile results (Figure 4.16) it is

evident that, alanine has the lowest free energy value of 2.15 eV when the centre of mass

was at the surface, suggesting preferential iron binding over the other longer hydrocarbon

chain and branched hydrocarbon chain amino acid side groups. Methionine exhibited the

highest free energy value of 4.92 eV when the centre of mass was at the surface, with a
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difference of 0.7 eV to the next amino acid (leucine) in energy, suggesting that the presence

of sulphur in the side chain is detrimental to iron binding. When the amino acid residues

centre of mass is between 10 Å and 5.5 Å the amino acid energies are comparable,

however, as the amino acid centre of masses get closer to the surface the free energies

increase, with the increases in free energy corresponding with the distance at which strong

water adsorption layers occur. The free energy trend is similar for the non–polar amino

acids, with the exception of alanine, which produced slightly lower free energy values,

thus indicating a greater iron binding affinity. Optimum iron binding was seen between

10 Å and 6 Å. We propose that the successive increase in free energy is attributable to a

requirement for more energy within the system, for the amino acids to pass through the

strong water barriers, and to enable amino acid attachment as they move closer towards

the surface.

From the non–polar amino acid {111} surface data, it was found that the centre of mass

could not be put any closer than 2 Å and 1.5 Å for isoleucine and methionine respectively,

when they were moved closer amino acid and magnetite surface bond breaking occurred

(Figures 4.18 and 4.19). As can be seen from the isoleucine images, the amino acid entered

the magnetite surface causing large scale surface dislocation, amino acid disintegration and

water vacuum creation. This behaviour could be due to a combination of factors including:

the configuration of the side chain; the reaction of the hydrophobic hydrocarbon side chain

with the water; or the reaction of the water with the magnetite (competitive binding). The

same was true of methionine, as seen in the images, although an additional factor that

may cause this behaviour could be the reaction of sulphur within the system.

A comparison of the non–polar amino acid {111} surface free energy profiles show that,

alanine, leucine and valine have very similar energies when their CoM reached the surface

(1.17 eV, 1.31 eV and 1.19 eV respectively). Between 10 Å and 5.5 Å, the same trend is

exhibited as for the {100} surface, and as the distance gets closer to the surface a gradual

increase in free energies, with the exception of alanine. For alanine, when the centre of

mass reaches 5.5 Å away from the surface its free energy begins to decrease, with its lowest

energy reaching -0.06 eV, after which the free energy increases again. The increase in free

energy corresponds with the distance at which the weaker water absorption layer occurs,

with the stronger layer appearing to exert minimal influence on the free energy profiles.

Again, the highest free energies were found to be at the distance closest to the {100}
surface, and equally, the lowest energies were exhibited when the constrained coordinate

is moved away from the magnetite surface, further suggesting that amino acid sequence
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attachment is more favourable at greater distances, particularly for alanine which had the

lowest non–polar amino acid free energy (CoM at 4.6 Å).

Upon examination of the energy minima for the non-polar amino acids (Figure 4.17) it

can be observed that, on the {100} surface, all of the non-polar amino acid residues except

for alanine exhibited a negative value for their energy minima, with valine producing the

lowest value at -0.0312 eV. The energy minima for these residues fall between 8.7 Å and

9.6 Å, suggesting that attachment of the residue centre of mass at this distance would be

preferable. On the {111} surface, fewer of the non polar amino acid residues exhibited a

negative value for their energy minima, with alanine showing the lowest value at -0.0614

eV. The trend of favourable attachment distance is also different from the {100} surface,

with alanine, isoleucine and valine exhibiting centre of mass distances of 4.6 Å , 7.5 Å and

10 Å respectively.
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Figure 4.17: A close-up comparison of the free energy profiles of the non–polar amino acid residues

between -0.25 eV and 0.25 eV, exhibiting the free energy minima.
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Figure 4.18: A comparison of the final simulation coordinates for ILE CoM at (a) 2 Å from the magnetite

surface and then (b) 1.75 Å and (c) 1.5 Å exhibiting bond breaking.

120



Figure 4.19: A comparison of the final simulation coordinates for MET CoM at (a) 1.5 Å from the

magnetite surface and then (b) 1.25 Å and (c) 1 Å exhibiting bond breaking.
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Polar Amino Acid Attachment

Figure 4.20: A comparison of the free energy profiles of the polar amino acid residues. Distance refers

to distance between the peptide CoM and the magnetite surface. The dashed line represents the water

density profile for the system.

The polar amino acid {100} surface free energy profile results (Figure 4.20) show that,

glutamine and serine exhibit comparable iron binding affinity, between 10 Å and 3 Å, with

optimal binding seen between 10 Å and 6.5 Å. An initial increase in free energy is observed

at 6 Å, which corresponds with the distance at which the weaker water absorption layer

occurs. A further increase in energy is observed at 3 Å, which corresponds with the stronger

water absorption layer occurs. However, at distances less than 3 Å, serine exhibits slightly

lower free energy values, thus indicating a higher iron binding activity. The increase in
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free energies identified could be due to either the need for more energy to allow the amino

acid sequences to pass through the water barrier or for them to overcome the unfavourable

attachment as they approach the magnetite surface, or a combination of the two.

Conversely, on the {111} surface, a large difference in free energy at the surface is observed.

Serine has the lowest free energy value of 0.70 eV, whilst glutamine has an energy value of

3.69 eV. Comparable iron binding affinity is exhibited between 10 Å and 6 Å, however,

as the distance to the surface decreases, the amino acid behaviours differ. Serine has a

slight decrease in free energy until 3.5 Å reaching a minimum of -0.22 eV, subsequently,

the free energy increases steadily until it reaches the surface. This initial decrease in free

energy indicates a distance for preferable attachment. As the glutamine centre of mass

moves in towards the surface from 6 Å, its free energy increases.

Upon examination of the energy minima for the polar amino acids (Figure 4.21) it can

be observed that, on the {100} surface, only glutamine exhibited a negative value for its

energy minima, producing a value of -0.0078 eV at 9.4 Å, suggesting that attachment of

the residue centre of mass at this distance would be preferable. On the {111} surface, only

serine exhibited a negative value for its energy minima, producing a value of -0.2227 eV

at 3.5 Å, suggesting that attachment of the residue centre of mass at this distance would

be preferable.
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Figure 4.21: A close-up comparison of the free energy profiles of the polar amino acid residues between

-0.5 eV and 0.5 eV, exhibiting the free energy minima.
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Acidic Amino Acid Attachment

Figure 4.22: A comparison of the free energy profiles of the acidic amino acid residues. Distance refers

to distance between the peptide CoM and the magnetite surface. The dashed line represents the water

density profile for the system.

On comparison of the acidic amino acid free energy profile data for the {100} surface

(Figure 4.22) it was evident that, the profiles were similar throughout, with aspartate

having a slightly lower free energy values. The free energy profile of aspartate remained

at approximately 0 eV from 10 Å to 4.5 Å, whereupon, it showed an initial increase in

free energy, peaking at the distance corresponding with the stronger of the water barriers.

Subsequently, a slight decrease in energy was seen until 1.5 Å, after which, the energy

increases again. This data suggests that energy was needed in the system for aspartate
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to pass through the stronger water barrier, after which point it became slightly easier

for attachment until the magnetite slab began to have an influence on the profile. For

glutamate, the free energy remains consistently at approximately 0 eV from 10 Å to 7.5

Å, at which point, an initial increase in free energy is shown. A further, greater increase

in energy is observed at 1.85 Å, which corresponds with the stronger water absorption

layer, suggesting that the presence of water layering has a great influence on amino acid

iron binding.

When the acidic amino acids {111} surface free energy profiles were examined, a large

difference in the free energy profiles was witnessed. As with the {100} surface, aspartate

exhibited the lowest free energy profile. When the amino acid residues centre of mass was

between 10 Å and 6 Å the energies stayed at around 0 eV, however, as the CoM got

closer to the surface, glutamate presented with a gradual increase in free energy as its

centre of mass moved towards the surface. Whilst, aspartate exhibited a decrease in free

energy until 2.7 Å , reaching its energy minimum of -0.44 eV, whereupon, the free energy

again increased steadily.

Upon examination of the energy minima for the acidic amino acids (Figure 4.23) it can be

observed that, on the {100} surface, both acidic amino acid residues exhibited a negative

value for their energy minima, with aspartate producing the lowest value at -0.0312 eV.

The energy minima for these residues fall 2.5 Å apart, suggesting that preferable attach-

ment of the residue centre of mass is amino acid dependent. On the {111} surface, again,

both acidic amino acid residues exhibited a negative value for their energy minima, with

aspartate producing the lowest value at -0.4361 eV. The energy minima for these residues

fall 7 Å apart, suggesting that preferable attachment of the residue centre of mass is

again amino acid dependent. This data suggests that independent of surface type, aspar-

tate consistently exhibited the lowest energy minima value, however, the {111} surface

produced a considerable lower value.
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Figure 4.23: A close-up comparison of the free energy profiles of the acidic amino acid residues between

-0.5 eV and 0.5 eV, exhibiting the free energy minima.
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Basic Amino Acid Attachment

Figure 4.24: A comparison of the free energy profiles of the basic amino acid residues. Distance refers

to distance between the peptide CoM and the magnetite surface. The dashed line represents the water

density profile for the system.

When the {100} surface basic amino acid free energy profiles (Figures 4.24) were studied it

was shown that, the profiles were similar, with arginine having a slightly lower free energy.

Between 10 Å and 6.5 Å is optimal for attachment, after which point, a gradual increase

in free energy was detected, corresponding with the presence of the intense water layers.

Whereas, with the {111} surface energy profile, a different free energy trend is seen, with

lysine exhibiting the lowest free energy values. When the amino acid CoM is between 10

128



Å and 6 Å the energies stay at approximately 0 eV, however, as the CoM gets closer to the

surface the amino acid residue behaviours differ. Arginine presents a gradual rate of free

energy increase, whilst, lysine also presents an increase, however this is only small, with its

maxima at 0.23 eV at a distance of 2.23 Å. From this distance the free energy decreases

to -0.12 eV at its minima, suggesting an area of preferential attachment, subsequently

increasing again up to the surface.

Upon examination of the energy minima for the basic amino acids (Figure 4.25) it can be

observed that, on the {100} surface, only lysine exhibited a negative value for its energy

minima, producing a value of -0.0746 eV at 8.8 Å, suggesting that attachment of the

residue centre of mass at this distance would be preferable. On the {111} surface, again,

only lysine exhibited negative values for its energy minima, producing a value of -0.1224

eV at 0.2 Åand -0.1226 eV at 6.5 Å, suggesting that attachment of the residue centre of

mass at either of these distances would be preferable.
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Figure 4.25: A close-up comparison of the free energy profiles of the basic amino acid residues between

-0.5 eV and 0.5 eV, exhibiting the free energy minima.
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Surface Free Energy

Figure 4.26: A comparison of the free energy values for all Mms6 C–terminal amino acid residue CoM

at the magnetite surface for both the {100} and {111} surfaces.

The free energy values for all of the amino acid residue centre of masses at the magnetite

surface were examined for both the {100} and {111} surfaces (Figure 4.26).

The non–polar amino acids demonstrated a higher free energy value on the {100} surface,

with isoleucine and methionine exhibiting the largest differences. However, it is worth

noting that these data are not representative of the true centre of mass at surface values.

Nonetheless, there were still large differences between the non–polar amino acid surface

values, particularly for leucine and valine. When comparing the polar amino acid residues

differing behaviours were seen. For glutamine the {111} surface has the largest free energy

value but for serine the {100} surface has the larger free energy value, with serine having

the greatest energy difference between the surfaces. With the acidic amino acid residues,

aspartate and glutamate both show that the {100} surface produces the larger free energy

values, although glutamate showed minimal between the two surface. When comparing

the basic amino acid residues, again both show that the {100} surface produces the larger

free energy values.

These data show that the {111} surface has significantly lower free energy values than

the {100} surface for the Mms6 C–terminal amino acid residues, representing greater

iron binding, with the exception of glutamine, suggesting that for the majority the {111}
surface is the preferential surface of attachment. It also showed that the amino acid residue
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with the lowest free energy value was lysine with a free energy of 0.10 eV, suggesting that

the presence of a ammonium group in the side chain as opposed to any form of oxygen in

the residue side chain may be more beneficial to iron binding.

4.4 Summary

4.4.1 Unconstrained

From the RDF data, octahedral iron attachment is preferred for the {111} surface, whilst

the {100} surface exhibits no particular preference, with the exception of alanine, valine

and aspartate which exhibits only octahedral iron binding. For the solvated systems,

glutamate on the {100} surface produces the most intense g(r) peak for the tetrahedral iron

attachment, whereas, valine on the {111} surface produces the highest intensity g(r) value

for the octahedral iron attachment, leading to the idea that attachment of the amino acid

residues to the magnetite surface is dependent on many things such as surface type and iron

type. For the bond distance data, more bonding was present in the {111} surface system,

suggesting that this is the preferred surface of attachment. The acidic amino acid residues

exhibit the most bonding, suggesting that the presence of carboxyl oxygen in the residue is

beneficial to iron binding. The residence time data indicates that for the in vacu systems,

on the {100} surface, the acidic amino acid residues exhibit the most bonding lasting over

99% of the simulation length. On the {111} surface, aspartate exhibits the most bonding

lasting over 99% of the simulation length, with all bonding being through octahedral iron.

For the solvated systems, no {100} surface bonding was exhibited lasting over 20% of the

simulation length. On the {111} surface, only leucine, glutamine, serine and arginine,

exhibit bonding lasting over 99% of the simulation length. The interfacial energy data

suggests that the lowest solvated energies were found on the {100} surface, however,

this data looks at average energy values of the full magnetite/amino acid residue/water

interface over a simulation, whereas, other forms of data analysis focus on bonding present

within the systems throughout the simulations. The {100} surface may exhibit lower

interfacial energy due to the surfaces behaviour with water. The in vacu interfacial energies

are considerably lower, further enforcing the detrimental effect of system solvation. Lysine

has the lowest interfacial energy value on both surfaces, whilst, serine and aspartate have

the highest on the {100} and {111} surfaces respectively.
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4.4.2 Constrained

The Potential of Mean Force data indicates that the {111} surface is the preferred sur-

face of attachment, as this surface produces the lowest free energy values throughout the

simulations. Also, the presence of charged groups within the residue side chains does not

always lead to improved iron binding ability, as surface type and water influence also have

an effect.

4.4.3 General

This chapter demonstrates, for the first time, the interaction of the individual C–terminal

Mms6 amino acid residues with in vacu and solvated magnetite crystal {100} and {111}
surfaces, in both unconstrained and constrained systems. The results from the uncon-

strained system suggest that acidic amino acids exhibit a higher affinity for iron binding,

particularly through octahedral iron, on the {111} surface. The PMF data obtained from

the constrained system further supported this, with the majority of amino acid inves-

tigated demonstrating significantly lower free energy values in simulations of the {111}
surface. Furthermore, the iron binding abilities of all the amino acids, in both systems,

were shown to be diminished by the addition of water molecules.
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Chapter 5

The Interaction of Di- and Tetrapeptides with
Magnetite

5.1 Introduction

Within magnetotactic bacteria, magnetite nanoparticles of uniform size and morphology

are formed. In Magnetospirillum magneticum strain AMB-1, cubo–octahedral crystals,

based on combinations of the {100} and {111} crystallographic faces, are produced, thus

suggesting an element of high biological control [56, 57]. In order to replicate this phe-

nomenon for commercial production of magnetic nanoparticles, the biological processes

need to be understood. Several proteins have been identified as being involved in mag-

netite biocrystal nucleation. Such proteins commonly possess acidic amino acid repeat

motifs which have a strong affinity for metal ions. The residue sequence of the magneto-

some membrane protein, Mms6, is amphiphilic, possessing a hydrophobic N–terminus, and

a highly acidic hydrophilic C–terminal region which contains dense carboxyl and hydroxyl

groups that are able to bind iron ions[100, 103, 105].

Figure 5.1: Sequence of the C–terminal region of the Mms6 protein, exhibiting residue number. The

dipeptide and tetrapeptide regions have been highlighted.

Preliminary experimental investigation[252] identified a glutamate repeat motif within the

C–terminal Mms6 sequence, as shown in Figure 5.1, that could potentially contribute to

iron binding. It was hypothesised that if the negatively charged carboxylate side chain of

glutamate (E) was substituted for a charge neutral side chain, such as alanine (A), the
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iron binding potential of the C–terminal sequence would reduce. Based on this repeat

motif, the original sequence (EE) and the substitution of one or both of the glutamate

with alanine (AE, AA) and its effect on iron binding to the {100} and {111} magnetite

surfaces were investigated. Subsequently, the model was extended to include the adjacent

aspartic acid (D) and valine (V) moieties in order to more closely replicate the wild–type

C–terminal sequence. The effects of the additional amino acids on the iron binding of the

original repeat motif (DEEV) were explored, along with the alanine substitutions DEAV,

DAEV and DAAV. The hypothesis that carboxylate substitution causes a reduction in

iron binding would be supported by an increase in free energy.

In this chapter, molecular dynamics (based on classical atomistic potentials) are used

to study the attachment of dipeptides and tetrapeptides created from the C–terminal

sequence residues 186-189 (as shown in Figures 5.2 and 5.3), both in vacu and solvated, to

the {100} and {111} crystal surfaces, and how this effects iron binding. This investigation

also examines the interfacial relationships and how these can vary dependent on the size

of the peptide chain, the surface utilised and which amino acid residues are involved in

the peptide chain. It is also worth noting that this study was divided into two systems; a

classic molecular dynamics system and a constrained molecular dynamics system utilising

the Potential of Mean Force (see Chapter 3.3.5).

Figure 5.2: Structures of the dipeptides investigated. a)EE, b)AE and c)AA.
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Figure 5.3: Structures of the tetrapeptides investigated. a)DEEV, b)DAEV, c)DEAV and d)DAAV.

5.2 Unconstrained system

5.2.1 Computational Methods

As with the systems in Chapter 4, the starting structures of the peptide chains were

generated and capped using TLEAP, then relaxed using SANDER and PMEMD. The

systems were then relaxed in vacu using DL POLY, with TIP3P/fs water subsequently

added and the system was simulated for a further 1 ns. The water was then removed and

the peptides were then placed in the vacuum gap above the magnetite slab surface and

run further in vacu and solvated for 5 ns and 1ns, respectively. All systems were simulated

at 300 K. The ensembles, potentials and parameters used are described in Chapters 2 and

3.

The evolution of potential energy of the di- and tetrapeptides as a function of time were

plotted, an example of which is shown for the original dipeptide, EE, in Figure 5.4. A

full set of potential energy plots can be found in the Appendix. The equilibration period

for all simulations was 20 ps, after which point all of the di- and tetrapeptide energies

converge.
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Figure 5.4: Evolution of potential energy as a function of time plots for the original dipeptide, EE. a)

{100} solvated surface. b) {111} solvated surface.

5.2.2 Results and Discussion

Dipeptide Attachment

Radial distribution function (RDF) data was examined for the dipeptide attachment to

the {100} and {111} magnetite surfaces. As with the approach used for the amino acids

attachments of Chapter 4, a distance of 1.5 Åto 2.5 Åfrom dipeptide oxygen to the next

nearest neighbouring tetrahedral or octahedral iron of the magnetite is classified as a bond.

Dipeptide oxygen-iron distances or r values for all dipeptides can be found in Table 5.1.

Figure 5.5 exhibits the RDF profiles for EE. The RDF profiles of the remaining dipeptides

can be found in the Appendix. When the RDF data for the dipeptides was examined,

it can be inferred that oxygen atoms of EE bond to both octahedral and tetrahedral

iron of the {100}, in both the in vacu and solvated systems. Conversely, on the {111}
surface, only octahedral iron bonding is present. A similar trend is also presented for both

mutated sequences (AE and AA); however, in these instances, tetrahedral iron bonding

is not present for the solvated system on the {100} surface. This suggests that when the

dipeptides are attached to either surface, different iron attachment sites are favoured, with

octahedral iron attachment being the preferred for both surfaces, with the exception of the

original sequence, where tetrahedral iron attachment is the preferred on the {100} surface.

These data suggest that a single or double alanine substitution, along with the addition

of water, is detrimental to the iron binding potential as it appears to have inhibited
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Figure 5.5: RDF plots for EE. FET is tetrahedral iron, FEO is octahedral iron. Blue is {100} in vacu.

Red is {100} solvated. Green is {111} in vacu. Purple is {111} solvated.

tetrahedral iron bonding on the {100} surface.

These data also show that, the intensity of the first peak of the RDF is greater in the in vacu

systems, suggesting that once water is introduced into the system, it is more difficult for

dipeptide oxygen to have an iron atom as a next nearest neighbour and for this to remain

for the simulation duration, as water will bond preferably to the magnetite surface. For

the solvated systems, the most intense peak is shown for EE on the {111} surface having

octahedral iron as its next nearest neighbour, proposing that in these systems the oxygen

present is more freely accessible to the next nearest neighbouring irons.

The RDF data can be examined alongside the FE − Oaminoacid bond distance data ex-

tracted from the final simulation coordinates (Table 5.2).
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Dipeptide Fe type Surface System r (Å)

EE FET 100 in vacu 1.98

solvated 1.88

111 in vacu -

solvated -

FEO 100 in vacu 2.03

solvated 2.28

111 in vacu 1.93

solvated 2.03

AE FET 100 in vacu 2.08

solvated -

111 in vacu -

solvated -

FEO 100 in vacu 1.98

solvated 2.08

111 in vacu 1.93

solvated 2.03

AA FET 100 in vacu 2.18

solvated -

111 in vacu -

solvated -

FEO 100 in vacu 2.13

solvated 2.23

111 in vacu 2.03

solvated 2.08

Table 5.1: Dipeptide r (Å) values from RDF data.
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{100} surface attachment {111} surface attachment

Dipeptide Oxygen type BL In Vacu (Å) BL Solvated (Å) Oxygen type BL In Vacu (Å) BL Solvated (Å)

EE 1st E O 1.96 NB 1st E O 1.91 2.20

1.97 1.90 1.92 2.03

2nd E O 2.02 2.11 E-E PBO 2.15 NB

2.03 NB 2nd E O 2.09 2.12

NBO 2.17 NB 2.27 2.15

1.95 NB

AE NBO 2.08 NB NBO 2.01 NB

E O 2.01 NB E O 1.88 2.18

1.91 NB - 2.23

1.94 NB

AA NBO 2.24 NB A-A PBO 1.96 1.97

NBO 1.92 2.07

Table 5.2: Dipeptide FE −Odipeptide bond distance data. BL is bond length, E O is glutamate side chain oxygen, x-x PBO is inter–residue peptide bond oxygen and NBO is

N–terminal peptide bond oxygen.
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The dipeptide bond distance data shows that, for EE in vacu, bonding through both side

chain oxygens of glutamate occurred, and even, two bonds from one oxygen of the side

chain oxygen of the C–terminal glutamate in the {111} surface system. This suggests

strong bonding of the dipeptide to the magnetite, which was evident with the original

dipeptide showing a more intense g(r) peak in the RDF data. Less bonding occurred when

the systems were solvated, suggesting that the oxygen in water bonds more favourably to

the magnetite iron compared to oxygen in the dipeptides, leading to the dipeptide being

pushed away from the magnetite surface, or remaining outside of the water adsorption

layer, to allow the water to move closer to the surface and bind (Figure 5.6). This was

reflected by the solvated systems having less intense g(r) peaks than the corresponding in

vacu systems. The average bond lengths for the original sequence are; 2.03 Å and 2.01

Å on the {100} surface for in vacu and solvated systems respectively, and 2.07 Å and

2.13 Å on the {111} surface for in vacu and solvated systems respectively.

With a single substitution of glutamate to alanine, both oxygens on the side chain of

glutamate bonded to magnetite iron. Again, the addition of water to the system was

detrimental to this bonding; however, with mutation this effect was worsened, as there

was a loss of potential binding sites due to the substitution of glutamate side chain oxygen

for a methyl group. This is reflected in that there is no bonding present for AE on the

{100} solvated surface. This effect is less severe on the {111} solvated surface as there are

still two bonds from one of the side chain oxygen of glutamate to the magnetite present.

When this data is compared to that of the RDF it can be seen that the removal of the

potential binding sites of the second glutamate reduces the intensity of the g(r) compared

to the original dipeptide values. The average bond lengths in AE are; 2.00 Å for the in

vacu system on the {100} surface, and 1.94 Å and 2.21 Å on the {111} surface for the

in vacu and solvated systems respectively.

For the double substitution mutant, AA, only bonding to peptide bond oxygen was pos-

sible. On the {100} surface, only an N–terminal peptide bond oxygen bond was present,

however, upon system solvation it is no longer present. With the {111} surface, there was

an additional bond present (A-A PBO), and this bond is also present when the system is

solvated. The average bond lengths in AA is; 2.24 Å for the in vacu system on the {100}
surface, and 1.94 Å and 2.02 Å on the {111} surface for the in vacu and solvated systems

respectively.

As with the amino acid residues, residence times and average coordination numbers were

considered in order to gain a more accurate representation of bonding behaviour through-
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Figure 5.6: Bond distance images for the in vacu and solvated systems of EE. a){100} in vacu, b){100}

solvated, c){111} in vacu and d){111} solvated.

out the simulations.

Tables 5.3 and 5.4 represent the residence times and average coordination numbers for

bonding between all oxygen present in the dipeptides and tetrahedral and/or octahedral

iron on both the {100} and {111} magnetite surfaces. Figure 5.7 describes the different

possible oxygen binding sites using the original dipeptide, EE, as an example.
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

EE {100} surface E O 98.63 0.95 3.33 0.09 999.00 1.00 0.00 0.00

E O 119.26 0.96 2.41 0.08 8.03 0.04 0.00 0.00

E-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 4998.00 1.00 0.00 0.00 2.74 0.09

E O 4998.00 1.00 0.00 0.00 999.00 1.00 0.00 0.00

NBO 0.00 0.00 172.13 0.96 0.00 0.00 31.31 0.25

EE {111} surface E O 0.00 0.00 4952.86 1.01 0.00 0.00 896.89 1.82

E O 0.00 0.00 4951.75 1.00 0.00 0.00 374.47 0.98

E-E PBO 0.00 0.00 4958.03 1.00 0.00 0.00 81.23 0.19

E O 0.00 0.00 4991.19 1.00 0.00 0.00 329.54 1.12

E O 0.00 0.00 4951.17 1.20 0.00 0.00 359.07 1.33

NBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.3: Residence times (RT) and average coordination numbers (av. CN) of the dipeptide sequences. (E O = side chain oxygen of glutamate, x-x PBO = inter–residue

peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

AE {100} surface E O 0.00 0.00 4984.13 1.01 0.00 0.00 169.36 0.88

E O 0.00 0.00 4990.86 1.00 0.00 0.00 235.98 0.79

A-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NBO 485.20 0.55 204.30 0.42 0.00 0.00 12.64 0.04

AE {111} surface E O 0.00 0.00 4975.04 1.01 0.00 0.00 178.65 1.84

E O 0.00 0.00 4977.32 1.01 0.00 0.00 399.66 0.73

A-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NBO 0.00 0.00 4939.19 1.00 0.00 0.00 125.98 0.25

AA {100} surface A-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NBO 185.33 0.17 875.15 0.79 0.00 0.00 52.99 0.10

AA {111} surface A-A PBO 0.00 0.00 4993.47 1.00 0.00 0.00 70.21 1.26

NBO 0.00 0.00 4989.00 1.00 0.00 0.00 723.60 0.98

Table 5.4: Continued. Residence times (RT) and average coordination numbers (av. CN) of the dipeptide sequences. (E O = side chain oxygen of glutamate, x-x PBO =

inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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Figure 5.7: Different possible oxygen binding sites of EE. NBO is N–terminal peptide bond oxygen. E-E

PBO is glutamate glutamate peptide bond oxygen. 1st E relates to the side chain oxygen of the first

glutamate.

The dipeptide residence time data shows that, for EE in vacu, when attached to the {100}
surface, both oxygens of the N–terminal glutamate bound to iron for over 99% of the sim-

ulation length (4998.00 ps), however, each oxygen attached to a different iron type. When

this system is solvated the FET − Odipeptide bond continues to be present for over 99%

of the simulation length (999.00 ps), however, the residence time of the FEO −Odipeptide

bond drops to 2.74 ps, suggesting that attachment at this site is no longer favourable.

Another bond is, however, formed lasting for over 99% of the simulation length (999.00

ps) for one of the oxygen of the C–terminal glutamate to tetrahedral iron, proposing that

the low value for the equivalent in vacu residence time is due to the formation of this

bond toward the latter stages of this system simulation. The residence time data for the

{111} surface shows a very different trend, as there is no tetrahedral iron bonding present

at all. For the in vacu system all oxygen showed octahedral iron bonding lasting for over

99% of the simulation length, with the exception of the N–terminal peptide bond oxygen

showing no bonding (0.00 ps). Upon solvation bonding reduces greatly, with one of the

C–terminal glutamate oxygen having the longest residence time at 896.89 ps, whilst the

remaining possible bonds do not last longer than 38% of the simulation length. This data

suggests that the addition of water provides competitive binding to the magnetite, and the

magnetite in many cases has a stronger affinity for the water than the original dipeptide.

With a single alanine substitution, no tetrahedral iron bonding was exhibited, except for

to the N–terminal peptide bond oxygen (485.20 ps) on the {100} in vacu surface. However,

for {100} surface octahedral iron bonding, bonds formed to each of the glutamate oxygen
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lasting for over 99% of the simulation length (4984.13 ps and 4990.86 ps). Upon solvation,

no tetrahedral iron bonding was present and no octahedral iron bonding lasted longer

than 24% of the simulation length, again suggesting competitive water binding, with the

substitution of glutamate for alanine increasing the magnetite–water affinity. For the

AE–{111} surface, octahedral iron bonding was existent for all oxygen present, with the

exception of the A-E peptide bond oxygen, lasting over 98% of the simulation length. On

addition of water, bonding greatly diminishes, with the bond between octahedral iron and

one of the glutamate oxygen exhibiting the longest residence time at 399.66 ps, whilst the

remaining possible bonds do not last longer than 18% of the simulation length, suggesting

that single substitution of a glutamate for an alanine clearly has a detrimental effect on

the potential iron binding.

With the mutant consisting of a double alanine substitution, the N–terminal peptide bond

oxygen and the A-A peptide bond oxygen are the only possible bonding areas. The {100}
in vacu surface showed no bonding for the A-A peptide bond oxygen, and no bonding

lasting over 18% of the simulation length to the N–terminal peptide bond oxygen. When

the system was solvated, only one bond was exhibited (NBO-FEO), which lasted just 52.99

ps. For the {111} surface, as with EE and AE, no tetrahedral iron bonding was present.

With octahedral iron, bonding to both of the peptide bond oxygen was seen lasting over

99% of the simulation length for the in vacu system. With the addition of water to this

system the residence times of these bonds drop (70.21 ps and 723.60 ps), suggesting that

attachment at this site is no longer favourable.

On comparison of all dipeptides, it is shown that the amount of bonding lasting over

99% of the simulation length reduces more with the removal of each glutamate from the

sequence (e.g. in vacu {111} systems from 5 to 3 to 2 bonds), particularly when water

is present and providing competitive binding, suggesting that the oxygen present in the

glutamate are areas of favourable iron binding.

As with the amino acid residues of Chapter 4, the interfacial energies of the peptide

sequences on the {100} and {111} magnetite surfaces were calculated using the Yang et

al method[164], giving an indication of how easily the peptide sequences can be adsorbed

onto the different magnetite surfaces. All related energy data from the interfacial energy

calculations of the dipeptides can be found in Table 5.5.

The solvated dipeptide interfacial energy data shows that, the {100} surface produces

lower interfacial energy values (between 5.98 eV and 7.23 eV) than the {111} surface
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{100} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

EE -6.33 7.86 7.23 0.00

AE -4.42 5.95 6.22 1.01

AA 1.53 0.00 5.98 1.24

{111} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

EE -8.73 6.99 7.39 4.38

AE -7.80 6.06 11.78 0.00

AA -1.74 0.00 7.60 4.18

Table 5.5: Interfacial energies for all dipeptides on the {100} and {111} surface, using the Yang et al

method[164]. Eint of s-p is the interfacial energy of the slab–peptide system. Ediff of s-p is the difference

in interfacial energy from the highest interfacial energy of the slab–peptide system. Eint of s-p-w is the

interfacial energy of the slabpeptide–water system. Ediff of s-p-w is the difference in interfacial energy

from the highest interfacial energy of the slab–peptide–water system.

(between 7.39 eV and 11.78 eV). On the {100} surface, EE had the highest interfacial

energy value and AA was shown to have the lowest, whilst on the {111} surface, AE had

the highest interfacial energy and EE now exhibited the lowest value. This data suggests

that the interfacial energy trends are surface dependent and that, for the {100} surface,

iron binding appears to improve with each glutamate substitution. Furthermore, this data

shows that the presence of water in the system has an unfavourable effect on the interfacial

energy, as much lower energies (predominantly of a negative value) are presented for the

in vacu system. Water also affects the interfacial behaviour of the dipeptides, as the

in vacu system interfacial energy trends differ greatly from the solvated systems, as for

both surfaces, the lowest energy was exhibited for the original dipeptide sequence and

the interfacial energy increases with each subsequent alanine substitution. For the {100}
surface, this is the complete opposite of what is seen for the solvated surface, whereas, with

the {111} surface, EE still exhibits the lowest energy, however, AE exhibits the highest

energy value, which is considerably higher than both EE and AA (4.39 eV than EE as

opposed to 0.21 eV higher as seen for AA. The increase in interfacial energy with the

addition of water could be explained by the need for more energy in the system to allow

for the dipeptide to get close to the magnetite surface through the structured water layers.

As discussed in more detail with the amino acid interfacial energies (Section 4.2.2 Non–

polar Amino Acid Attachment), there are many problems with this method of calculating
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adsorption energy. The absolute values themselves are noticeably an order of magnitude

larger than anticipated and the solvated trends are not as expected from experimental

studies. The relative residence times of various surface interactions, however, reveal the

expected trend, and as it can be shown that RT × ln(τ1/τ2) = (∆H2
ads − ∆H1

ads) =

(E1
des−E2

des), then this method for determining the change in adsorption energy is perhaps

more reliable. Furthermore, rather than directly calculating the adsorption energy, via this

interfacial energy method, an alternative would be to use an indirect method, such as those

based on the Potential of Mean Force, which has been considered in Section 3.3.5.

Tetrapeptide Attachment

Figure 5.8: RDF plots for DEEV. FET is tetrahedral iron, FEO is octahedral iron. Blue is {100} in

vacu. Red is {100} solvated. Green is {111} in vacu. Purple is {111} solvated.

Figure 5.8 exhibits the RDF profiles for DEEV. The RDF profiles of the remaining

tetrapeptides can be found in the Appendix. The tetrapeptide RDF data shows that,

as with the dipeptides, only octahedral iron bonding is present for the {111} surface at-

tachments. With the mutated tetrapeptides, tetrahedral iron bonding is present in the

148



{100} solvated systems, unlike in the dipeptide mutated systems, suggesting that the addi-

tional amino acid residues to the sequences encourages tetrahedral iron attachment, which

could be due to the presence of further potential oxygen binding sites. The tetrapeptides

show the same type of bonding suggesting that mutation of the original sequence does not

affect iron bonding type, unlike with the dipeptides.

From the tetrapeptide RDF data it can also be seen that, the in vacu systems had higher

intensity first peaks than the corresponding solvated systems. For each tetrapeptide,

the most intense g(r) peak belonged to the oxygen bonding through an octahedral iron

on the {111} surface, suggesting that this is the preferred means of attachment for the

tetrapeptides. It was unexpected to see that the two single substituted mutants presented

with more intense g(r) peaks than the original sequence, in particular DAEV, leading to

the belief that single substitution improves octahedral iron binding on the {111} surface.

When the solvated system data was examined, again octahedral iron bonding on the {111}
surface produce the most intense g(r) peaks, with DAEV having the largest.

When the tetrapeptide solvated values are compared to the dipeptide solvated values, for

tetrahedral iron bonding on the {100} surface, EE, has the largest g(r) value, however, no

other dipeptide presents with this type of bonding, whilst all of the tetrapeptides exhibit

this bonding type. This suggests that the addition of the extra amino acids affects the

binding potentials of the peptides in this system, improving the bonding through tetrahe-

dral iron but not to the extent of the original dipeptide sequence. When the octahedral iron

bonding on the {100} surface was compared for the peptides, it was shown that the single

mutated dipeptide and the original tetrapeptide had the highest intensity first peaks, and

that, the tetrapeptides produced more intense g(r) peaks than the dipeptides, with the

exception of AE, again proposing that the addition of the extra amino acids improves the

potential octahedral iron bonding but not to the extent of the single mutated dipeptide

sequence. No tetrahedral iron bonding was present on the {111} surface for any of the

peptides, suggesting that the addition of the extra amino acids has no effect on this type

of bonding. On comparison of the {111} surface octahedral iron bonding, it can be seen

that the single mutated tetrapeptide DAEV produces the most intense g(r) peak, whilst

the equivalent dipeptide, AE, produces the smallest. This suggests that the addition of

the extra amino acids has a significant effect on potential octahedral iron bonding for this

particular sequence. Tetrapeptide oxygen-iron distances or r values for all tetrapeptides

can be found in Tables 5.6 and 5.7.

The FE − Otetrapeptide bond distance data for all tetrapeptides are represented in Tables
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Tetrapeptide Fe type Surface System r (Å)

DEEV FET 100 in vacu 1.98

solvated 2.08

111 in vacu -

solvated -

FEO 100 in vacu 1.98

solvated 2.03

111 in vacu 1.98

solvated 2.03

DAEV FET 100 in vacu 1.98

solvated 1.88

111 in vacu -

solvated -

FEO 100 in vacu 1.98

solvated 2.08

111 in vacu 2.03

solvated 2.03

Table 5.6: Tetrapeptide r (Å) values from RDF data.

5.8, 5.9 and 5.10.
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Tetrapeptide Fe type Surface System r (Å)

DEAV FET 100 in vacu 1.88

solvated 1.93

111 in vacu -

solvated -

FEO 100 in vacu 1.98

solvated 2.13

111 in vacu 1.93

solvated 2.03

DAAV FET 100 in vacu 2.03

solvated 2.23

111 in vacu -

solvated -

FEO 100 in vacu 1.98

solvated 2.03

111 in vacu 1.98

solvated 2.03

Table 5.7: Continued. Tetrapeptide r (Å) values from RDF data.
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{100} surface attachment {111} surface attachment

Tetrapeptide Oxygen type BL In Vacu (Å) BL Solvated (Å) Oxygen type BL In Vacu (Å) BL Solvated (Å)

DEEV D O 1.94 NB D-E PBO 2.16 NB

2.02 2.11 1st E O 2.28 2.08

1st E O 2.11 2.05 2.23 NB

2.11 2.55 1.97 2.04

2nd E O 2.00 NB 2.14 NB

1.97 NB E-E PBO 1.91 2.03

2nd E O 2.05 2.04

2.18 2.19

2.01 2.06

2.08 NB

E-V PBO 2.14 NB

Table 5.8: Tetrapeptide FE − Otetrapeptide bond distance data. BL is bond length, D O is aspartate side chain oxygen, E O is glutamate side chain oxygen, x-x PBO is

inter–residue peptide bond oxygen and NBO is N–terminal peptide bond oxygen.
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{100} surface attachment {111} surface attachment

Tetrapeptide Oxygen type BL In Vacu (Å) BL Solvated (Å) Oxygen type BL In Vacu (Å) BL Solvated (Å)

DAEV NBO 1.95 NB NBO 2.07 2.01

D O 1.95 NB D O 2.03 2.08

1.99 2.00 D-A PBO 2.15 2.20

D-A PBO 2.18 NB A-E PBO 2.08 1.86

E O 1.96 NB E O 2.09 2.12

1.95 NB 1.97 2.13

2.05 2.03

2.03 NB

E-V PBO 2.02 2.24

Table 5.9: Continued. Tetrapeptide FE − Otetrapeptide bond distance data. BL is bond length, D O is aspartate side chain oxygen, E O is glutamate side chain oxygen, x-x

PBO is inter–residue peptide bond oxygen and NBO is N–terminal peptide bond oxygen.
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{100} surface attachment {111} surface attachment

Tetrapeptide Oxygen type BL In Vacu (Å) BL Solvated (Å) Oxygen type BL In Vacu (Å) BL Solvated (Å)

DEAV D O 1.98 NB NBO 2.07 NB

1.94 2.13 D O 1.94 2.18

D-E PBO 2.13 2.18 - 2.11

E O 1.87 2.07 1.91 2.20

1.97 1.99 E O 1.98 2.00

E-A PBO 2.21 2.26 1.93 2.02

E-A PBO 2.21 NB

DAAV NBO 2.22 NB NBO 2.05 NB

D O 1.99 2.00 D O 1.95 2.16

2.00 NB - 2.08

D-A PBO 1.98 NB 2.11 2.13

- 2.00

A-V PBO 1.94 2.28

Table 5.10: Continued. Tetrapeptide FE −Otetrapeptide bond distance data. BL is bond length, D O is aspartate side chain oxygen, E O is glutamate side chain oxygen, x-x

PBO is inter–residue peptide bond oxygen and NBO is N–terminal peptide bond oxygen.
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The tetrapeptide bond distance data (Figure 5.9) shows that the DEEV tetrapeptide

exhibits increased bonding on the {111} surface than the {100} surface. However, on the

{100} surface, only iron bonding through aspartate and glutamate side chain oxygen was

seen, whereas, on the {111} surface, bonding from both the side chain oxygen and the

peptide bond oxygen of glutamate (D-E, E-E and E-V) was evident. This suggests that

different surfaces have different preferences for oxygen type.

This data also suggests that, iron binding ability was reduced with the addition of water

to the systems, due to more favourable bonding between the magnetite slab and water

molecules. The trends shown are represented in the RDF data by the more intense g(r)

peaks for the {111} surface rather than the {100} surface, and for the in vacu systems

rather than the solvated systems. The average bond lengths for an iron to a tetrapeptide

oxygen in DEEV was; 2.03 Å and 2.24 Å on the {100} surface for the in vacu and solvated

systems respectively, and 2.10 Å and 2.07 Å on the {111} surface for the in vacu and

solvated systems respectively.

As would be expected, when the bond distance data of DEEV was compared to that of EE,

the addition of extra amino acids resulted in increased bonding due to the greater number

of available oxygen binding sites. This suggests that as sequence length increases as does

iron binding potential. There was also similar types of bonding on each surface seen, i.e.

the {100} surface is predominantly side chain oxygen attachment whereas with the {111}
surface there is a mix of side chain oxygen and peptide bond oxygen attachments.

With a single substitution of glutamate to alanine, there is the same amount of bonding

with similar bonding types found for the DAEV and DEAV sequences in the {100} in vacu

system, as both show bonding to each of the aspartate and glutamate side chain oxygens

and to two types of peptide bond oxygen (N–terminal and D-A for DAEV, and D-E and

E-A for DEAV). Whereas, with the {111} in vacu system, more bonding was present with

DAEV than DEAV, suggesting that sequence order effects potential iron binding and that

two charged amino acids together in a sequence reduces iron binding potential, however,

more bonding was present for DEEV than DAEV suggests proposing that three charged

residues together actually improves the potential binding. Iron binding decreases with the

substitution of glutamate for alanine.

For DAEV, solvation has a greater detrimental effect on the {100} iron binding than

{111} surface as fewer bonds that were present in the in vacu systems remain for the

solvated. For the solvated DEAV systems, the same amount of bonding was exhibited
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Figure 5.9: Bond distance images for the in vacu and solvated systems of DEEV. a){100} in vacu,

b){100} solvated, c){111} in vacu and d){111} solvated.

for both surface types, however, on the {100} surface there was a mixture of side chain

oxygen and peptide bond oxygen binding exhibited, whilst on the {111} surface, only side

chain oxygen bonding was present. The average bond lengths for an iron to a tetrapeptide

oxygen in DAEV were; 2.00 Å and 2.00 Å on the {100} surface for the in vacu and

solvated systems respectively, and 2.05 Å and 2.08 Å on the {111} surface for the in vacu

and solvated systems respectively. The average bond lengths for an iron to a tetrapeptide

oxygen in DEAV were; 2.02 Å and 2.13 Å on the {100} surface for the in vacu and

solvated systems respectively, and 2.01 Å and 2.10 Å on the {111} surface for the in vacu

and solvated systems respectively.

On comparison of the single substitution sequences, as expected, with the addition of

extra amino acid residues more bonding was present. In the dipeptide, an N–terminal
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peptide bond oxygen bond and 2/3 glutamate side chain oxygen bonds were present for

the in vacu systems, whereas, for the tetrapeptides, DAEV also exhibited this bonding but

also presented with bonding from the aspartate side chain oxygens and the inter–residue

peptide bond oxygens. DEAV also exhibits these bonding types, with the exception of the

N–terminal peptide bond oxygen, as only the {111} surface exhibited with this.

When considering the double substitution mutant, more bonding is present in the {111}
surface systems than the {100}. Both surfaces exhibit aspartate side chain oxygen bonding

but to differing extents, particularly for the solvated systems, with more bonding in the

solvated {111} system than in the {111} in vacu system. Peptide bond oxygen bonding

was also present for both (NBO and D-A PBO for the {100} surface, and NBO and A-V

PBO for the {111}). As expected, bonding decreased greatly with the double substitution.

The average bond lengths for an iron to a tetrapeptide oxygen in DAAV is; 2.03 Å and

2.24 Å on the in vacu surface for the in vacu and solvated systems respectively, and 2.10

Å and 2.07 Å on the {111} surface for the in vacu and solvated systems respectively.

On comparison of the fully mutated tetrapeptide bond distance data with its dipeptide

counterpart, more bonding is apparent with the addition of extra amino acid residues,

due to the presence of further potential oxygen binding sites, with substantial aspartate

side chain oxygen bonding being seen, particularly on the {111} surface, suggesting that

as sequence length increases as does iron binding potential.

Tables 5.11, 5.12, 5.13, 5.14 and 5.15 represent the residence times and related average

coordination numbers for bonding between all oxygen present in the tetrapeptides and

tetrahedral and/or octahedral iron on both the {100} and {111} magnetite surfaces.
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FET in vacu FEO in vacu FET solvated FEO solvated

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

DEEV {100} surface E-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 4998.00 1.00 0.00 0.00 144.57 0.57 0.00 0.00

E O 1.00 0.00 4997.00 1.00 0.00 0.00 14.17 0.05

E-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 1835.57 1.01 0.00 0.00 999.00 0.99

E O 0.00 0.00 1852.14 1.00 0.00 0.00 316.35 0.90

D-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 4993.00 1.00 0.00 0.00 20.03 0.60 0.00 0.00

D O 0.00 0.00 4993.00 1.00 0.00 0.00 999.00 1.00

NBO 3.50 0.01 57.18 0.43 0.00 0.00 34.02 0.42

Table 5.11: Residence times (RT) and average coordination numbers (av. CN) of the DEEV sequence. (D O = side chain oxygen of aspartate E O = side chain oxygen of

glutamate, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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FET in vacu FEO in vacu FET solvated FEO solvated

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

DEEV {111} surface E-V PBO 0.00 0.00 4929.61 1.00 0.00 0.00 19.09 0.12

E O 0.00 0.00 3021.27 1.86 0.00 0.00 664.65 1.98

E O 0.00 0.00 3022.16 1.86 0.00 0.00 221.90 1.74

E-E PBO 0.00 0.00 4906.94 1.06 0.00 0.00 707.02 1.53

E O 0.00 0.00 1931.81 1.14 0.00 0.00 975.07 1.03

E O 0.00 0.00 1843.62 1.13 0.00 0.00 981.22 1.01

D-E PBO 0.00 0.00 4983.00 1.00 0.00 0.00 236.62 0.47

D O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NBO 0.00 0.00 1979.52 1.00 0.00 0.00 33.96 0.11

Table 5.12: Continued. Residence times (RT) and average coordination numbers (av. CN) of the DEEV sequence. (D O = side chain oxygen of aspartate E O = side chain

oxygen of glutamate, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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FET in vacu FEO in vacu FET solvated FEO solvated

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

DAEV {100} surface E-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 2027.11 1.00 0.00 0.00 93.93 0.19

E O 0.00 0.00 4992.47 1.00 0.00 0.00 72.70 0.14

A-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D-A PBO 173.20 0.83 0.00 0.00 112.64 0.51 0.00 0.00

D O 4625.86 0.97 31.70 0.02 0.00 0.00 0.00 0.00

D O 4216.05 0.99 16.75 0.01 999.00 1.00 0.00 0.00

NBO 0.00 0.00 4781.00 0.96 0.00 0.00 22.00 0.49

DAEV {111} surface E-V PBO 0.00 0.00 4924.33 1.01 0.00 0.00 139.58 0.95

E O 0.00 0.00 2781.10 1.99 0.00 0.00 992.02 1.00

E O 0.00 0.00 3181.39 2.00 0.00 0.00 999.00 2.00

A-E PBO 0.00 0.00 4987.00 1.00 0.00 0.00 999.00 1.00

D-A PBO 0.00 0.00 4334.18 1.00 0.00 0.00 999.00 1.00

D O 0.00 0.00 4639.00 0.93 0.00 0.00 999.00 1.00

D O 0.00 0.00 0.00 0.00 0.00 0.00 4.82 0.04

NBO 0.00 0.00 4324.62 1.00 0.00 0.00 999.00 1.00

Table 5.13: Residence times (RT) and average coordination numbers (av. CN) of the DAEV sequence. (D O = side chain oxygen of aspartate E O = side chain oxygen of

glutamate, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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FET in vacu FEO in vacu FET solvated FEO solvated

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

DEAV {100} surface A-V PBO 6.48 0.04 1.20 0.08 0.00 0.00 2.07 0.05

E-A PBO 74.66 0.87 1.00 0.00 255.36 0.94 0.00 0.00

E O 4998.00 1.00 0.00 0.00 999.00 1.00 0.00 0.00

E O 1.19 0.07 4998.00 1.00 2.86 0.02 95.83 0.94

D-E PBO 0.00 0.00 4994.00 1.00 0.00 0.00 999.00 0.98

D O 0.00 0.00 4969.25 1.00 48.99 0.61 11.50 0.02

D O 4528.00 0.91 233.61 0.09 11.50 0.02 6.70 0.04

NBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DEAV {111} surface A-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-A PBO 0.00 0.00 4427.27 0.95 0.00 0.00 35.10 0.62

E O 0.00 0.00 4644.14 0.99 0.00 0.00 665.46 1.54

E O 0.00 0.00 3824.66 1.00 0.00 0.00 310.16 1.00

D-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 0.00 0.00 4512.05 1.07 0.00 0.00 604.82 1.89

D O 0.00 0.00 4166.74 1.19 0.00 0.00 247.75 0.90

NBO 0.00 0.00 2009.25 0.99 0.00 0.00 118.17 0.23

Table 5.14: Residence times (RT) and average coordination numbers (av. CN) of the DEAV sequence. (D O = side chain oxygen of aspartate E O = side chain oxygen of

glutamate, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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FET in vacu FEO in vacu FET solvated FEO solvated

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

DAAV {100} surface A-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D-A PBO 4654.95 0.93 0.00 0.00 16.26 0.48 6.20 0.06

D O 0.00 0.00 4998.00 1.00 0.00 0.00 329.38 0.99

D O 4998.00 1.00 0.00 0.00 9.90 0.04 0.00 0.00

NBO 1215.60 0.92 154.46 0.06 20.51 0.22 0.00 0.00

DAAV {111} surface A-V PBO 0.00 0.00 825.42 0.91 0.00 0.00 145.77 1.32

A-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 0.00 0.00 4979.66 1.00 0.00 0.00 904.91 1.95

D O 0.00 0.00 4999.00 1.00 0.00 0.00 517.61 1.65

NBO 0.00 0.00 2652.98 1.04 0.00 0.00 49.14 0.32

Table 5.15: Residence times (RT) and average coordination numbers (av. CN) of the DAAV sequence. (D O = side chain oxygen of aspartate, x-x PBO = inter–residue

peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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The DEEV residence time data shows that, when the {100} surface was in vacu, bonding

between tetrahedral iron and the side chain oxygen of aspartate and the C–terminal glu-

tamate was exhibited, lasting over 99% of the simulation length. Bonding for this length

of time was also seen between octahedral iron and the remaining side chain oxygens of

aspartate and the C–terminal glutamate. No bonding existed for any inter–residue peptide

bond oxygen and only octahedral bonding lasting under 1.2% of the simulation length was

shown for the N–terminal glutamate side chain oxygens. When this system was solvated,

only the octahedral iron–aspartate side chain oxygen bond remained lasting over 99% of

the simulation length. The residence times of all other in vacu bonds lasting over 99%

of the simulation length drop significantly, showing no bonding lasting over 32% of the

simulation length, with the exception of an octahedral iron bond to one of the oxygen

of the N–terminal glutamate, which, upon solvation, lasted over 99% of the simulation

length, suggesting that the bond formed in the latter stages of the in vacu simulation and

remained when the system was solvated.

When this data was compared to the equivalent dipeptide data, for the tetrapeptides,

more bonding was seen, in particular more bonding lasting over 99% of the simulation

length was exhibited, this is to be expected with the addition of the extra amino acids, in

particular the addition of aspartate. The trend of no peptide bond oxygen bonding, except

for NBO, was also apparent for the dipeptide on the {100} surface. Different trends in

bonding lasting over 99% of the simulation length for the solvated systems are exhibited,

for EE, the bonds were to tetrahedral iron, whereas, for DEEV, they were to octahedral

iron.

When examining the {111} surface systems for DEEV, it can be seen that no tetrahedral

iron bonding exists. Octahedral iron bonding lasting over 98% of the simulation length

was exhibited to the D-E, E-E and E-V peptide bond oxygens when the system was in

vacu, however, upon solvation, the residence times of these bonds drop significantly, with

the longest retention time being less than 71% of the simulation length. Solvation of the

system also leads to bonds between octahedral iron and the N–terminal glutamate side

chain oxygens lasting over 97% of the simulation length. The equivalent in vacu bonds

last approximately 38% of the simulation length, suggestive of them forming in the latter

stages of the simulation and remaining once solvated.

When this data was compared to the equivalent dipeptide data, no tetrahedral iron bond-

ing was present for either peptide type. The octahedral iron bonding trends differ greatly.

For the in vacu systems, EE exhibits bonding lasting over 99% of the simulation length

163



to all potential binding oxygen, with the exception to the N–terminal peptide bond oxy-

gen, whereas, DEEV shows only inter–residue peptide bond oxygen bonds lasting for this

length of time. On addition of water, EE shows no bonding lasting over 90% of the simu-

lation length, whilst DEEV exhibits two bonds lasting over 97% of the simulation length.

This data suggests that the addition of more potential binding sites to the sequence has a

greater beneficial effect on the iron binding affinity of the solvated system as opposed to

the in vacu.

The residence time data for the single substituted tetrapeptide mutants on the {100}
surface shows that, for the DAEV in vacu system, tetrahedral iron bonding lasting over

84% of the simulation length was exhibited for both side chain oxygen of aspartate, and

octahedral iron bonding lasting over 95% of the simulation length were seen to a side

chain oxygen of glutamate and the N–terminal peptide bond oxygen. When solvated, the

residence times of these bonds drop (the biggest drop being a 93% drop in length), with the

exception of the tetrahedral iron bond to the aspartate side chain oxygen, which is present

for over 99% of the simulation length. For DEAV on the {100} surface, more bonding was

present lasting over 90% of the simulation length than with DAEV, suggesting that the

iron ions bind preferentially to DEAV. For the in vacu system, tetrahedral iron bonding

lasting over 90% of the simulation length was exhibited to one of the side chain oxygen

of aspartate and one of the side chain oxygen of glutamate, and octahedral iron bonding

lasting over 99% of the simulation length were shown to the remaining side chain oxygens

of aspartate and glutamate and to the D-E peptide bond oxygen. When this system is

solvated, the majority of the residence times of the in vacu bonds drop (the biggest drop

being a 98% drop in length), with the exception of the tetrahedral iron bond to a glutamate

side chain oxygen and the octahedral iron bond to the D-E peptide bond, which lasted for

over 99% of the simulation length.

On comparison of AE against DAEV and DEAV on the {100} surface, more bonding

was present, with an increase in bonding lasting over 99% of the simulation length also

being seen for the tetrapeptides, in particular DEAV, which was to be expected with the

addition of extra potential iron binding sites. The lack of tetrahedral iron bonding to

glutamate oxygen and A-E peptide bond oxygen exhibited in AE is also seen in DAEV,

as the majority of the tetrahedral iron bonding present involves the aspartate residue,

however, this is not so for DEAV, as a tetrahedral iron bond to a glutamate side chain

oxygen is exhibited lasting over 99% of the simulation length of both the in vacu and

solvated simulations, suggesting that this type of bonding is sequence dependent. With
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the octahedral iron bonding for AE, each of the oxygen of glutamate has a bond that

lasts over 99% of the simulation length for the in vacu system, however, with the addition

of the extra amino acids, this strength of bonding of glutamate diminishes, as for both

tetrapeptides only one of the two glutamate oxygen have bonds lasting over 99% of the

simulation length. Also, for the solvated systems, no octahedral iron bonding lasting over

24% and 9% of the simulation length was present for either AE or DAEV, respectively; yet,

DEAV exhibits a bond which last over 99% of the simulation length to the D-E peptide

bond oxygen.

When the single substituted tetrapeptide {111} surface systems were examined it was

found that, no tetrahedral iron bonding was present for either DAEV or DEAV. For the

octahedral iron in vacu system, with DAEV, bonds lasting over 86% of the simulation

length were found to all peptide bond oxygen and to one side chain oxygen of aspartate.

Upon solvation, the residence time of the bond to E-V peptide bond oxygen dropped by

85%, however, the other bonds that lasted over 86% of the simulation length in the in

vacu system lasted over 99% of the simulation length when solvated. Additionally, bonds

between octahedral iron and both oxygen of glutamate lasting over 99% of the simulation

length were present for the solvated system. For the {111} surface, more bonding was

present lasting over 83% of the simulation length for DAEV than DEAV, suggesting that

the iron ions bind preferentially to DAEV. For the DEAV in vacu system, bonds were

present between octahedral iron and both side chain oxygen of aspartate, the one side chain

oxygen of glutamate, and E-A peptide bond oxygen, lasting over 83% of the simulation

length. However, upon solvation of the system, the residence times of these bonds drop

significantly (the biggest drop being an 85% drop in length).

When the tetrapeptide {111} surface data was compared to its dipeptide counterpart

data it was shown that, all single alanine substituted sequences exhibit no tetrahedral

iron bonding. With octahedral iron bonding, the addition of extra amino acids leads to

increased bonding for the tetrapeptides, as would be expected. The DAEV residence time

data did not follow the trend of AE for the in vacu system, with neither of the glutamate

side chain oxygen of DAEV showing bonding lasting over 64% of the simulation length,

whilst, for AE these bonds lasted over 99% of the simulation length, and the A-E peptide

bond oxygen bond in DAEV lasted over 99% of the simulation length, whereas, for AE this

bond was not present. For the corresponding solvated systems, the trend of AE was again

not followed, as all but two possible bonds on DAEV lasted over 99% of the simulation

length, however, there was no bonding lasting over 40% of the simulation length in the AE
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solvated system. The DEAV residence time data also did not follow the trend of AE for

the in vacu system, as only one bond was present in both systems lasting over 92% of the

simulation length (between octahedral iron and one of the side chain oxygen of glutamate).

When the DEAV system was solvated it showed a similar trend to AE, showing no long

lasting bonding (the longest residence times were 665.46 ps and 399.66 ps for DEAV and

AE, respectively). This data suggests that the addition of extra amino acids, changes the

way in which the sequence binds to iron ions.

The residence time data for the alanine double substitution on the {100} surface it was

shown that, there was no A-A or A-V peptide bond oxygen bonding present. There was

also no long term iron bonding for the solvated systems, with the longest residence time

being 329.38 ps. For the in vacu systems, bonding lasting over 93% of the simulation length

was exhibited between tetrahedral iron and one of the side chain oxygen of aspartate and

D-A peptide bond oxygen, and between octahedral iron and the other side chain oxygen

of aspartate.

On comparison with the {100} surface data of the double substituted dipeptide it was

seen that, there was an increase in bonding for DAAV with the addition of extra amino

acid residues. Neither DAAV nor AA exhibited any A-A peptide bond oxygen bonding,

and the N–terminal peptide bond oxygen bonding is minimal for all systems.

With the {111} surface there was no D-A or A-A peptide bond oxygen bonding present. As

with the other tetrapeptides, there was also no tetrahedral iron bonding is present. With

the octahedral iron bonding, for the in vacu system, both side chain oxygen of aspartate

have bonds lasting over 99% of the simulation length, however, upon solvation, only the

bond to the second oxygen of aspartate continues to last over 90% of the simulation length.

On comparison of the {111} surface data of DAAV with that of AA, it was shown that,

very different trends were exhibited, as for the in vacu octahedral bonding of AA, bonds

lasting over 99% of the simulation length were present for the N–terminal peptide bond

oxygen and the A-A peptide bond oxygen, however, with the addition of extra amino

acid residues, there was no A-A peptide bond oxygen bonding present and the N–terminal

peptide bond oxygen bond last only 2652.98 ps. This data suggests that the addition of

the extra amino acid residues, effects how the residues from the dipeptide sequence react

with the magnetite iron.

The interfacial energies of the tetrapeptides on the magnetite surfaces can be found in

Table 5.16.
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{100} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

DEEV -6.16 2.65 8.21 0.00

DAEV -8.25 4.74 7.76 0.45

DEAV -5.24 1.73 8.09 0.12

DAAV -3.51 0.00 6.19 2.02

{111} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

DEEV -10.13 2.94 15.21 0.32

DAEV -13.23 6.04 15.52 0.00

DEAV -9.70 2.51 10.57 4.96

DAAV -7.19 0.00 15.14 0.38

Table 5.16: Interfacial energies for all tetrapeptides on the {100} and {111} surface, using the Yang et al

method[164].Eint of s-p is the interfacial energy of the slab–peptide system. Ediff of s-p is the difference

in interfacial energy from the highest interfacial energy of the slab–peptide system. Eint of s-p-w is the

interfacial energy of the slab–peptide–water system. Ediff of s-p-w is the difference in interfacial energy

from the highest interfacial energy of the slab–peptide–water system.

The solvated tetrapeptide interfacial energy data shows that, the {100} surface produces

lower interfacial energy values (between 6.19 eV and 8.21 eV) than the {111} surface

(between 10.57 eV and 15.52 eV). For the {100} solvated surface, the DEEV sequence

produces the highest interfacial energy value, whereas the fully mutated sequence pro-

duces the lowest interfacial energy value, suggestive of the presence of glutamate in the

sequence leading to a reduced iron binding potential, particularly if the glutamate is next

to aspartate in the sequence. For the solvated {111} system, the values for the DEEV,

DAEV and DAAV are similar, with a much smaller value exhibited for DEAV, suggesting

that this particular mutation improves the iron binding potential compare to the original

sequence.

This data also shows that, solvating the system has an unfavourable effect on the interfacial

energy, as the observed energies are again considerably lower for the in vacu system. The

solvation of the system also affects the interfacial behaviour of the tetrapeptides, as the

trends seen for the in vacu systems are very dissimilar to the solvated systems. DAEV

consistently produces the lowest energy for the in vacu systems, followed by DEEV, and

then interfacial energy increases with each subsequent alanine substitution. The increase

in interfacial energy suggests potential competitive binding of the magnetite iron surface
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to the water oxygen.

On comparison of the dipeptide interfacial energy data with the tetrapeptide data, it can

be seen that for the solvated systems the tetrapeptides produce higher interfacial energy

values than their dipeptide counterparts. These results suggest that the addition of the ex-

tra amino acid residues to the sequence reduce the iron binding potential of the sequences.

However, for the in vacu systems, the opposite is seen as the tetrapeptides produce lower

interfacial energies than their dipeptide counterparts, again proposing that the presence

of water in the systems is detrimental to the iron binding, providing competitive oxygen

for the magnetite iron to bind with. This data also suggests that in the in vacu system,

the addition of the extra amino acids actually enhances the iron binding potential of the

sequence.

As with the dipeptides, there are concerns with this direct method of calculating the

adsorption energy, possible reasons for these were discussed previously for the dipeptides.

An alternative indirect method of adsorption energy calculation is explored in the following

section. This method utilises a constrained molecular dynamics version of the systems,

focusing on the Potential of Mean Force and free energy evaluation.

5.3 Constrained system

5.3.1 Computational Methods

The methods used for this section of work are as detailed in Chapter 4.3.1. A series of

Potential of Mean Force simulations were run to determine the iron binding affinity of the

capped peptide chains, previously relaxed with SANDER, PMEMD and DL POLY, then

attached to the magnetite {100} or {111} surface and solvated. Each PMF calculation

was run for 1 ns NVT at 300 K and the average force was integrated with respect to the

constraint distance to produce the free energy of binding[139].

5.3.2 Results and Discussion

Free energy profiles were created for the aforementioned systems. Within the free energy

profiles, 0 Å on the x-axis is an approximate representation of where the magnetite surface

lies based on the first strongest peak for an FEO iron ion in the related density profile. The

free energy of the simulation system as a function of peptide chain centre of mass (CoM)
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distance from the magnetite surface for the dipeptides (EE, AE, AA) and tetrapeptides

(DEEV, DAEV, DEAV and DAAV) attached to the {100} and {111} surfaces are shown

in the free energy profiles. Peaks in the water density profiles indicate areas within the

system which contain a high concentration of water molecules.

Dipeptide Attachment

Figure 5.10: A comparison of the free energy profiles of the dipeptides. Distance refers to distance

between the peptide CoM and the magnetite surface. The dashed line represents the water density profile

for the system.

From the free energy profile results for the different dipeptides (Figure 5.10) it was evident

that, on the {100} surface, the double glutamic acid to alanine substitution does appear to
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reduce the iron binding activity of the sequence. Nevertheless, the AE sequence produces a

significantly higher free energy profile, suggesting that a single E to A substitution confers

even greater reductive effect on iron binding. Between 10 Å and 5.5 Å is optimal for

attachment, after which point, an increase in free energy was detected, corresponding with

the presence of the intense water layers.

Whereas, with the {111} surface energy profile, a different free energy trend is seen, with

AA exhibiting the highest free energy values, proposing that iron binding affinity is surface

dependent. For AA, between 10 Å and 5.5 Å is optimal for attachment, after which point,

an increase in free energy was detected, corresponding with the presence of the intense

water layers. For EE and AE, the maximal free energies correspond to the distance at

which the larger water peak occurs, suggesting that the water layers affect the free energy

profiles, however, as the maximal free energies are low (0.49 eV and 0.76 eV for EE and

AE, respectively) this water influence is minimal. Between 8 Å and 2.5 Å and 8 Å and 5

Å are optimal for attachment for EE and AE, respectively, as the profiles exhibit negative

values within this region.

Upon examination of the energy minima for the dipeptide sequences (Figure 5.11) it

can be observed that, on the {100} surface, only the original sequence, EE, exhibited a

negative value for its energy minima, producing a value of -0.0310 eV at 7.9 Å, suggesting

a preferable attachment distance. On the {111} surface, all of the dipeptide sequences

except for the double substituted sequence, AA, exhibited a negative value for their energy

minima, with EE producing the lowest value at -0.3831 eV. The energy minima for these

residues fall between 6.6 Å and 7 Å, suggesting that attachment of the residue centre of

mass at this distance would be preferable.
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Figure 5.11: A close-up comparison of the free energy profiles of the dipeptides between -0.5 eV and 0.5

eV, exhibiting the free energy minima.
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Tetrapeptide Attachment

Figure 5.12: A comparison of the free energy profiles of the tetrapeptides. Distance refers to distance

between the peptide CoM and the magnetite surface. The dashed line represents the water density profile

for the system.

From the free energy profile results for the different tetrapeptides (Figure 5.12) it was

shown that, on the {100} surface, a single E to A substitution (both DEEV to DAEV and

DEEV to DEAV) produces a considerable increase in the maximal free energy compared to

that of DEEV, suggesting that irrespective of its position within the sequence, a single E

to A mutation has a significant reductive effect on iron binding. In addition, this reductive

effect was also observed when a double substitution occurs (DEEV to DAAV), however,

to a lesser extent. Between 10 Å and 6 Å is optimal for attachment, after which point,
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an increase in free energy was detected, corresponding with the presence of the intense

water layers. The initial increase in free energy corresponds with the distance at which

the smaller of the two water peaks occurs. The increase in free energy at this distance

was greater for DAAV than for the other tetrapeptides, which exhibit a gradual increase

in energy, however, the increase for this sequence remains at this rate as the CoM gets

closer to the surface. A further increase in free energy, corresponding with the distance at

which the larger water peak occurs, was displayed for the single substituted sequences.

This data relates to that of the dipeptides on the {100} surface, suggesting that for this

particular surface a single substitution has a greater reductive effect on iron binding ability

than a double substitution. The EE and DEEV, and the AA and DAAV sequences show

similar free energy profiles on the {100} surface, therefore, the addition of D and V to EE

and AA appears to have had little, if any, effect. The addition of D and V to AE, to form

either DAEV or DEAV, shows a reduction in free energy from the AE sequence for both

variations, suggesting that the extra amino acids increase the iron binding ability of the

AE amino acid sequence, irrespective of the sequence configuration.

Whereas, with the {111} surface energy profile, a different free energy trend is seen,

with DEEV and DAEV producing similar free energy profiles, whilst, DEAV and DAAV

exhibit greatly decreased free energy values, with DEAV actually producing a negative free

energy value when the CoM was closest to the surface. This data suggests that the DEAV

and DAAV mutations have much higher iron binding affinities than the original DEEV

sequence. For DEEV and DAEV, between 10 Å and 5.5 Å is optimal for attachment, after

which point, an increase in free energy was detected, corresponding with the presence of

the intense water layers. This is similar for DAAV, however, the optimal attachment region

is extended to 3.5 Å. For DEAV, between 1.5 Å and 0 Å is optimal for attachment, as the

profiles exhibit negative values within this region, proposing that this is the preferential

sequence for surface attachment. For DEAV and DAAV sequences, the water density

of the system appears to have little or no effect on the free energy profiles. It can be

deduced from the results that a single alanine substitution has differing effects on the

iron binding affinity dependent on where the substitution is within the sequence, with

DAEV exhibiting a minimal effect on free energy when compared to DEEV, whilst DEAV

appears to significantly enhance iron binding ability. From this data it can be deduced

that the E adjacent to the V has the greatest influence on the iron binding as when this was

substituted, in both DAAV and DEAV, a very large decrease in free energy was displayed.

On comparison of the dipeptide and tetrapeptide {111} surface data it was shown that,
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the EE and DEEV sequences show differing free energy profiles in that the addition of

extra amino acids increases the effect that the water layers have on sequence attachment,

with EE exhibiting minimal influence on the free energy profiles from the water layers,

whilst DEEV displayed an increase in free energy corresponding with the presence of the

intense water layers. This suggests that the addition of D and V to EE on the {111}
surface has had a detrimental effect on iron binding ability. This occurrence is also true

of the AE and DAEV sequences. For the AE and DEAV sequences, the addition of D

and V to AE reduces the free energy on the {111} surface, with the profile exhibiting

no obvious influence from the water layers, suggesting again that the effects seen are

greatly sequence dependent. The AA and DAAV sequences produce significantly different

free energy profiles; with the AA profile demonstrating that sequence attachment is more

favourable as the CoM distance from the surface increases, whereas the DAAV profile

shows sequence affinity is independent of distance from the surface. This implies that the

addition of D and V to AA on the {111} surface has increased the iron binding ability of

the sequence.

Upon examination of the energy minima for the tetrapeptide sequences (Figure 5.13) it can

be observed that, on the {100} surface, only the original sequence, DEEV, and the single

substituted sequence, DAEV, exhibited a negative value for their energy minima, with

DEEV producing the lowest value at -0.0164 eV. The energy minima for these residues

fall at approximately 9.5 Å , suggesting that attachment of the residue centre of mass at

this distance would be preferable. On the {111} surface, all of the tetrapeptide sequences

exhibited a negative value for their energy minima, with DEAV producing the lowest value

at -0.2690 eV. The trend of favourable attachment distance is very different from the {100}
surface, with DEEV, DAEV, DEAV and DAAV exhibiting centre of mass distances of 6

Å , 9.3 Å , 0 Å and 9.1 Å respectively.
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Figure 5.13: A close-up comparison of the free energy profiles of the tetrapeptides between -0.5 eV and

0.5 eV, exhibiting the free energy minima.
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Surface Free Energy

Figure 5.14: A comparison of the free energy values for the dipeptide CoM at the magnetite surface for

both the {100} and {111} surfaces.

When the free energy values for the dipeptides centre of mass at the magnetite surface were

examined (Figure 5.14) it was shown that, on the {100} surface, the EE sequence exhibits

a free energy value of 2.33 eV, whereas, on the {111} surface, its value was significantly

lower (0.23 eV). Similarly, the AE and AA sequences demonstrated free energy values

of 5.85 eV and 3.38 eV, respectively, on the {100} surface, but much lower values on the

{111} surface (0.69 eV and 2.56 eV, respectively). These data show that the {111} surface

has lower free energy values, representing greater iron binding, suggesting that this is the

preferential surface of attachment.

Figure 5.15: A comparison of the free energy values for the four amino acid chains at the magnetite

surface for both the {100} and {111} surfaces.

The free energy values for the tetrapeptides centre of mass at the magnetite surfaces are

shown in Figure 5.15. On the {100} surface, the DEEV sequence exhibits a free energy

value of 2.04 eV, whereas, on the {111} surface, its value is higher, 2.68 eV. Conversely,

the single substitution mutants, DAEV and DEAV, show free energy values of 4.33 eV
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and 4.47 eV, respectively, on the {100} surface, but exhibit largely decreased values on

the {111} surface (2.48 eV and -0.27 eV, respectively). Similarly, on the {100} surface,

the double mutation (DAAV) gives a free energy value of 3.34 eV, but a reduced value of

0.35 eV on the {111} surface. These data show that, with the exception of DEEV, the

tetrapeptides have a higher iron binding affinity for the {111} surface.

On the {100} surface, the addition of D and V to AE (giving both DAEV and DEAV)

shows an increase in iron binding ability, suggesting that the extra amino acids increase the

affinity of the sequences for the {100} surface. Equally, on the {111} surface, a significant

decrease in free energy was seen for the DEAV sequence from the AE sequence value,

suggesting again that the extra amino acids improve iron binding ability. However, for the

DAEV sequence, an increase in free energy from the value for AE is exhibited, proposing

that for this sequence the addition of D and V is not beneficial to iron binding. The

addition of D and V to AA shows no effect on binding affinity to the {100} surface, whereas
on the {111} surface binding affinity increases thus confirming that the addition of these

particular extra amino acids improves the affinity for iron binding. In the formation of

DEEV, on the {100} surface, an increase in the attraction between surface and amino acid

sequence was displayed. Yet, the opposite was true for the {111} surface, consequently,

the {100} surface shows more favourable sequence attachment when the extra amino acids

were present.

5.4 Summary

This chapter demonstrates, for the first time, the interaction of in vacu and solvated

magnetite crystal {100} and {111} surfaces with a glutamic acid repeat motif, found in

the wild–type Mms6 protein C–terminus, and its subsequent sequential mutation with

alanine moieties, in both unconstrained and constrained systems.

5.4.1 Unconstrained

Our results for the unconstrained systems indicate that, octahedral iron attachment is

preferred for the {111} surface, whilst the {100} surface exhibits no particular preference,

with the exception of the mutated dipeptides which exhibits only octahedral iron binding

for the solvated systems. More bonding was present in the {111} surface systems than

the {100} surface systems, with the exception of DEAV which exhibits the same amount
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of bonding on both surfaces, suggesting that this is the preferred surface of attachment.

Less bonding present in the solvated systems than the in vacu systems, proposing that the

addition of water to the systems is detrimental to the iron binding potential of the peptides,

providing competitive binding to the magnetite. The interfacial energy data suggests that

the lowest solvated energies were found on the {100} surface, however, this data looks

at average energy values of the full magnetite/amino acid residue/water interface over a

simulation, whereas, other forms of data analysis focus on bonding present within the

systems throughout the simulations. The {100} surface may exhibit lower interfacial

energy due to the surfaces behaviour with water. The in vacu interfacial energies are

considerably lower, further enforcing the detrimental effect of system solvation.

The hypothesis of this study was that iron binding would decrease with sequential muta-

tions of the original glutamate repeat motif with alanine moieties. The data show that,

the substitution of glutamate for alanine clearly has a detrimental effect on the potential

iron binding of the dipeptides, as the bonding present reduces more with the removal of

each glutamate from the sequence. The exception to this is the interfacial energy data

of solvated systems, in particular for the {100} surface, where the opposite of this hy-

pothesis is seen, with EE exhibiting the highest interfacial energy and the AA displaying

the lowest interfacial energy. This suggests that the behaviour of the interface between

the magnetite surface and the water has a strong effect on the overall interfacial energy.

When the dipeptides sequences were extended to tetrapeptides, with the addition of the

aspartate and valine residues, more bonding was present. This is believed to be due to the

greater availability of potential oxygen binding sites. This was also demonstrated with

the in vacu interfacial energies, where the lowest interfacial energies were exhibited for

the tetrapeptides. Proposing that, the addition of these particular amino acid residues

to the sequences leads to preferential tetrapeptide sequence attachment. However, when

the systems were solvated, the interfacial behaviours exhibited differed greatly, with the

lowest interfacial energy sequences being AA on the {100} surface and EE on the {111}
surface again proposing that the presence of water in the system greatly effects the system

interfacial behaviours.

5.4.2 Constrained

The Potential of Mean Force data indicates that the {111} surface is the preferred surface

of attachment, with the lone exception of DEEV, as this surface produces the lowest free

energy values throughout the simulations. This is in concordance with the {111} surface
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also conforming to the magnetic easy axis[94], having the lowest energy, and thus repre-

senting the more favourable attachment site. The constrained system data also shows that

the substitution of glutamic acid for alanine has surface–dependent differential modula-

tory effects on the iron binding ability of peptide sequences to magnetite. An increase in

free energy with both single and double E to A mutations from the original EE sequence

was demonstrated, thus indicating a reduction in iron binding affinity, on the {100} and

{111} surfaces. When the EE sequence was extended DEEV, and was subsequently mu-

tated, sequence attachment to the {100} surface again showed increases in free energy,

thus further indicating a reduction in iron binding affinity. However, on the {111} surface

the substitution of E for A appears to enhance iron binding ability, as shown by a decrease

in free energy. The E adjacent to the V on the {111} surface appears to have the greatest

influence on the iron binding, as its substitution produces the most significant decrease in

free energy.
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Chapter 6

The Interaction of Pentapeptides with Magnetite

6.1 Introduction

As mentioned previously, the C–terminal of the Mms6 is a hydrophilic and acid rich

region[100], which is believed to play an important role in binding ferric ions with a high

affinity [253]. To test this hypothesis, a range of mutants were designed by experimentalists

[254], based on the C–terminal of the Mms6 protein, as shown in Figures 6.1, 6.2, 6.3, 6.4,

6.5 and Table 6.1.

Figure 6.1: Sequence of the C–terminal region of the Mms6 protein, exhibiting the designed mutants.

The pentapeptide and tetrapeptide regions have been highlighted.

Acidic amino acids were targeted by the experimentalists for mutagenesis as they are

likely to have ability for iron binding due to their negative charge at neutral to basic

pH. This is a required property for magnetite formation and stability, allowing for the

coordination of the positively charged iron ions. Thus, all aspartic acids residues and

glutamic acids residues present in the C–terminal sequence are substituted for alanine

producing mutants with designations such as D179A. A double glutamic acid mutant,

EE187AA, was also created. The GinsV mutant was created in order to investigate the

spacing between clusters of acidic amino acids. The arginine substitution mutant (R192A)

was created to investigate its role in iron binding, as the arginine residue is conspicuous

due to it being a lone residue of the opposing charge state within a highly acidic region.

In this chapter, molecular dynamics (based on classical atomistic potentials) are used to
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Pentapeptide Mutation Name Mutation Explanation

SRDIE D179A Substitution of D at position 179 for A.

DIESA E181A Substitution of E at position 181 for A.

SDEEV D186A Substitution of D at position 186 for A.

E187A Substitution of E at position 187 for A.

E188A Substitution of E at position 188 for A.

EE187AA Double substitution of E from position 187 for A.

EVELR E190A Substitution of E at position 190 for A.

GinsV Insertion of G after V at position 189.

ELRDA R192A Substitution of R at position 192 for A.

LRDAL D193A Substitution of D at position 193 for A.

Table 6.1: Explanation of the pentapeptides and related mutations investigated in this study. (D is

aspartate, A is alanine, E is glutamate, G is glycine, V is valine and R is arginine.)

study the attachment of pentapeptides created from the C–terminal sequence and their

related mutations, both in vacu and solvated, to the {100} and {111} crystal surfaces,

and the effects these mutations have on iron binding. The investigation examines the

interfacial relationships and how these can vary dependent on the surface utilised, which

amino acid residues are involved in the peptide chain and whether the sequence is mutated.

This study was divided into two; a classic molecular dynamics system and a constrained

molecular dynamics system using the Potential of Mean Force.
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Figure 6.2: Structures of the SRDIESA sequences investigated. a) DIESA, b) DIASA c) SRDIE and d)

SRAIE.
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Figure 6.3: Structures of the ELRDAL sequences investigated. a) ELRDA, b) ELADA c) LRDAL and

d) LRAAL.

Figure 6.4: Structures of the EVELR sequences investigated. a) EVELR, b) EVALR and c) EVGELR.
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Figure 6.5: Structures of the SDEEV sequences investigated. a) SDEEV, b) SAEEV c) SDAEV d)

SDEAV and e) SDAAV.
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6.2 Computational Methods

6.2.1 Unconstrained System

As with Chapters 4 and 5, the starting structures of the peptide chains were generated

and capped using TLEAP. SANDER, PMEMD and DL POLY were used for structural

and system relaxation. The TIP3P/fs potential was used for any water present in the

simulations. Upon placement of the relaxed peptide chains in the vacuum gap vacuum

gap above the magnetite slab surface and run further in vacu and solvated for 5 ns and 1ns,

respectively. All systems were run at 300 K. The ensembles, potentials and parameters

used are described in Chapters 2 and 3.

The evolution of potential energy of all of the pentapeptides as a function of time were

plotted, an example of which is shown for one of the original sequences, DIESA (Figure

6.6). A full set of potential energy plots can be found in the Appendix. The equilibration

period for all simulations was 20 ps, after which point all of the pentapeptide energies

converge.

Figure 6.6: Evolution of potential energy as a function of time plots for DIESA. a) {100} solvated

surface. b) {111} solvated surface.

6.2.2 Constrained System

As with the unconstrained system, AMBERTOOLS TLEAP was used to produce the

initial amino acid structures, including terminal end capping. AMBER’s in built software
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was used to relax the peptide structures in preparation for conversion into DL POLY

format, whereby, they were relaxed further, both in vacu and solvated, using molecular

dynamics. Subsequently, the water was removed and the peptides were included into

the slab surface system, where they were run further in vacu then solvated. As before,

the systems were at 300 K throughout. A series of Potential of Mean Force simulations

were run to determine the iron binding affinity of the capped peptide chains. Each PMF

calculation was run for 1 ns NVT at 300 K and the average force was integrated with

respect to the constraint distance to produce the free energy of binding[139].

6.3 Results and Discussion

6.3.1 Residues 177-183 (DIESA & SRDIE)

Unconstrained System

As with Chapters 4 and 5, radial distribution function (RDF) data was examined for

the 177-183 pentapeptides attachment to the {100} and {111} magnetite surface, using a

distance of 1.5 Å to 2.5 Å . R values for pentapeptides in the region of 177-183 can be

found in Tables 6.2 and 6.3.

Figure 6.7 exhibits the RDF profiles for DIESA. The RDF profiles of the remaining 177-183

pentapeptides can be found in the Appendix. The RDF data for the 177-183 pentapeptides

shows that, both octahedral and tetrahedral iron bonding was exhibited for the {100}
surface, with the exception of SRAIE, which exhibited no octahedral iron bonding for the

solvated {100} system. Whereas, with the {111} surface, only octahedral iron bonding was

present. When the 177-183 pentapeptides were attached to the {111} surface, octahedral

iron attachment was favoured. The iron bonding trend was the same for all 177-183

pentapeptides, suggesting that sequence alteration had no effect on the resultant iron

bonding type.

From the 177-183 pentapeptide RDF data it can also be seen that, the in vacu system

produced a more intense first peak than the corresponding solvated system, with the

exception of tetrahedral iron bonding in the D179A {100} system, proposing that, upon

solvation, it was more difficult for a pentapeptide oxygen to have an iron as a next nearest

neighbour and for this to remain for the simulation duration. For the solvated systems,

the largest g(r) peak was shown for octahedral iron bonding in the D179A {111} system,
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Pentapeptide Fe type Surface System r (Å)

DIESA FET 100 in vacu 1.98

solvated 1.88

111 in vacu -

solvated -

FEO 100 in vacu 2.08

solvated 2.23

111 in vacu 1.98

solvated 2.03

DIASA FET 100 in vacu 1.98

solvated 1.88

111 in vacu -

solvated -

FEO 100 in vacu 2.13

solvated 2.23

111 in vacu 1.93

solvated 1.98

Table 6.2: R (Å) values from RDF data for pentapeptides in the region of 177-183.

suggesting that, the oxygen present in this pentapeptide was more freely accessible to the

next nearest neighbouring irons.

By examining the FE−Opentapeptide bond distance data, the results of the RDF data can

be some way explained. This data for the 177-183 pentapeptides is represented in Tables

6.4 and 6.5.
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Pentapeptide Fe type Surface System r (Å)

SRDIE FET 100 in vacu 1.93

solvated 1.93

111 in vacu -

solvated -

FEO 100 in vacu 2.03

solvated 2.08

111 in vacu 1.98

solvated 2.03

SRAIE FET 100 in vacu 2.13

solvated 2.03

111 in vacu -

solvated -

FEO 100 in vacu 2.03

solvated -

111 in vacu 1.93

solvated 2.03

Table 6.3: R (Å) values from RDF data for pentapeptides in the region of 177-183.
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Figure 6.7: RDF plots for DIESA. FET is tetrahedral iron, FEO is octahedral iron. Blue is {100} in

vacu. Red is {100} solvated. Green is {111} in vacu. Purple is {111} solvated.
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{100} surface attachment {111} surface attachment

Pentapeptide Oxygen type BL In Vacu ( Å) BL Solvated ( Å) Oxygen type BL In Vacu ( Å) BL Solvated ( Å)

DIESA NBO 2.05 NB NBO 2.09 NB

D O 1.95 1.92 D O 1.92 2.00

1.97 NB 2.10 2.33

D-I 2.02 2.18 D-I 2.10 NB

I-E 2.10 2.48 I-E 2.20 NB

S-A 2.16 NB E O 1.96 1.98

2.11 1.95

1.98 NB

E-S 2.09 2.13

DIASA D O 1.94 NB NBO 2.21 NB

2.06 1.84 D O 2.02 1.91

D-I 2.02 2.11 2.06 1.93

A-S 2.21 2.10 I-A 2.10 NB

S-A 2.17 NB S-A 2.04 NB

Table 6.4: 177-183 pentapeptide FE −Opentapeptide bond distance data. BL is bond length, E O is glutamate side chain oxygen, D O is aspartate side chain oxygen, x-x PBO

is inter–residue peptide bond oxygen and NBO is N–terminal peptide bond oxygen.
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{100} surface attachment {111} surface attachment

Pentapeptide Oxygen type BL In Vacu ( Å) BL Solvated ( Å) Oxygen type BL In Vacu ( Å) BL Solvated ( Å)

SRDIE NBO 2.18 NB NBO 1.95 2.11

D O 1.95 NB S-R 2.02 2.15

E O 1.93 1.89 D O 2.27 2.01

1.97 NB 1.94 2.09

I-E 2.01 NB

E O 1.95 NB

1.87 NB

SRAIE NBO 2.17 NB NBO 1.99 NB

S-R 2.18 NB S-R 2.25 NB

E O 1.94 NB E O 1.90 2.03

- 2.03 1.89 2.05

Table 6.5: Continued. 177-183 pentapeptide FE − Opentapeptide bond distance data. BL is bond length, E O is glutamate side chain oxygen, D O is aspartate side chain

oxygen, x-x PBO is inter–residue peptide bond oxygen and NBO is N–terminal peptide bond oxygen. NB is no bonding.
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The 177-183 pentapeptides bond distance data (Figure 6.8) shows that, for DIESA in

vacu, bonding differed dependant on the surface of attachment. The {111} surface showed

bonding through both side chain oxygen of glutamate, however, no glutamate bonding

was apparent for the {100} surface. The {100} surface showed S-A peptide bond oxygen

bonding, whereas, the {111} surface exhibited E-S peptide bond oxygen bonding. There

were some commonalities in bonding type between the two surfaces, with both surfaces ex-

hibiting N–terminal, D-I and I-E peptide bond oxygen bonding and bonding through both

side chain oxygen of aspartate. This data suggests that, the DIESA sequence had more

of an affinity to the {111} surface, particularly in the case of glutamate. Less bonding

occurred when the systems were solvated, suggesting that the iron ions may be prefer-

entially binding to the oxygen of water as opposed to the oxygens of the pentapeptides.

The average bond lengths for a magnetite iron to a pentapeptide oxygen in the DIESA

sequence was; 2.04 Å and 2.19 Å on the {100} surface for in vacu and solvated systems

respectively, and 2.06 Å and 2.08 Å on the {111} surface for in vacu and solvated systems

respectively.

With the mutation of the DIESA sequence to DIASA, less bonding was present than for

the original sequence, proposed to be due to the removal of potential oxygen binding

sites from the sequence. Both surfaces exhibited S-A peptide bond oxygen bonding and

bonding through both side chain oxygen of aspartate, however, other bonding types present

differed dependent on surface type, with D-I and A-S peptide bond oxygen bonding being

exhibited for the {100} surface, whilst, the {111} surface displayed N–terminal and S-A

peptide bond oxygen bonding. Again, the addition of water to the system was detrimental

to this bonding, as a reduced amount of bonding was seen, with all of the peptide bond

oxygen bonding removed from the {111} surface. The average bond lengths for an iron to

a pentapeptide oxygen in DIASA was; 2.08 Å and 2.02 Å on the {100} surface for the

in vacu and solvated systems respectively, and 2.09 Å and 1.92 Å on the {111} surface

for the in vacu and solvated systems respectively.

For the SRDIE sequence, less bonding was present than for the DIESA sequence, sug-

gesting that the iron binding potential is sequence dependent. For SRDIE in vacu, both

surfaces displayed N–terminal peptide bond oxygen bonding, bonding through both side

chain oxygen of glutamate and bonding through side chain oxygen of aspartate (one bond

for the {100} surface and two for the {111} surface). The {100} surface presented with

no other bonding, whilst, the {111} surface exhibited S-R and I-E peptide bond oxygen

bonding. This data suggests that, the SRDIE sequence has more of an affinity to the {111}
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Figure 6.8: Bond distance images for the in vacu and solvated systems of DIESA. a){100} in vacu,

b){100} solvated, c){111} in vacu and d){111} solvated.

surface, particularly with peptide bond oxygen bonding. As previously seen, less bonding

arose when the systems were solvated, suggesting more favourable bonding between the

iron ions and the oxygen of water, which is detrimental to peptide–magnetite binding.

The average bond lengths for a magnetite iron to a pentapeptide oxygen in the SRDIE

sequence was; 2.01 Å and 1.89 Å on the {100} surface for in vacu and solvated systems

respectively, and 2.00 Å and 2.09 Å on the {111} surface for in vacu and solvated systems

respectively.

The SRAIE sequence (D179A), presented with less bonding than the original sequence,

particularly for the {111} surface, again, assumed to be due to glutamate substitution and

thus removal of potential oxygen binding sites. Both surfaces exhibited the same types

of bonding; N–terminal and S-R peptide bond oxygen bonding and bonding through side
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chain oxygen of glutamate (one bond for the {100} surface and two for the {111} surface),

suggesting that attachment to different surface types had minimal effect on iron binding

potential. Again, solvation was detrimental to bonding, with fewer bonds present in

the solvated systems. For the {111} surface, no bonding present in the in vacu system

was exhibited, however, bonding was displayed through the other side chain oxygen of

glutamate. The average bond lengths for an iron to a pentapeptide oxygen in SRAIE

was; 2.10 Å and 2.03 Å on the {100} surface for the in vacu and solvated systems

respectively, and 2.01 Å and 2.04 Å on the {111} surface for the in vacu and solvated

systems respectively.

As with Chapters 4 and 5, residence times were considered in order to gain a more accurate

representation of bonding behaviour throughout the simulations. Tables 6.6, 6.7, 6.8, 6.9,

6.10 and 6.11 represent the residence times and average coordination numbers for bonding

between all oxygen present in the 177-183 pentapeptides and tetrahedral and/or octahedral

iron on both the {100} and {111} magnetite surfaces.
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

DIESA {100} surface S-A PBO 59.21 0.49 52.59 0.02 16.00 0.03 0.00 0.00

S O 9.85 0.01 1.49 0.04 0.00 0.00 0.00 0.00

E-S PBO 141.66 0.13 310.68 0.44 0.00 0.00 39.10 0.34

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I-E PBO 1446.84 0.70 216.74 0.14 72.16 0.82 9.90 0.05

D-I PBO 0.00 0.00 494.21 0.91 0.00 0.00 77.20 0.89

D O 3203.39 1.00 2.27 0.00 999.00 1.00 0.00 0.00

D O 913.00 0.37 3158.36 0.63 1.50 0.00 13.80 0.04

NBO 3166.00 0.63 515.18 0.24 5.67 0.01 1.33 0.00

Table 6.6: Residence times (RT) and average coordination numbers (av. CN) of the DIESA sequence. (E O = side chain oxygen of glutamate, D O = side chain oxygen of

aspartate, S O = side chain oxygen of serine, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

DIESA {111} surface S-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S O 0.00 0.00 2705.51 1.09 0.00 0.00 150.66 0.99

E-S PBO 0.00 0.00 4998.00 1.00 0.00 0.00 998.26 1.00

E O 0.00 0.00 4990.40 1.00 0.00 0.00 968.51 1.25

E O 0.00 0.00 3046.57 1.85 0.00 0.00 205.96 0.52

I-E PBO 0.00 0.00 4999.00 1.00 0.00 0.00 113.91 0.27

D-I PBO 0.00 0.00 2323.78 1.68 0.00 0.00 33.66 0.87

D O 0.00 0.00 4799.67 1.06 0.00 0.00 128.89 1.74

D O 1.50 0.00 4963.95 1.00 0.00 0.00 353.68 0.99

NBO 0.00 0.00 4650.00 0.93 0.00 0.00 74.97 0.15

Table 6.7: Continued. Residence times (RT) and average coordination numbers (av. CN) of the DIESA sequence. (E O = side chain oxygen of glutamate, D O = side chain

oxygen of aspartate, S O = side chain oxygen of serine, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).

196



in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

DIASA {100} surface S-A PBO 140.04 0.16 751.32 0.80 0.00 0.00 17.62 0.09

S O 0.00 0.00 61.84 0.12 0.00 0.00 1.00 0.00

A-S PBO 240.03 0.73 0.00 0.00 42.38 0.64 0.00 0.00

I-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D-I PBO 0.00 0.00 2155.81 0.99 0.00 0.00 29.96 0.67

D O 4810.22 0.97 79.20 0.03 999.00 1.00 0.00 0.00

D O 4998.00 1.00 1.00 0.00 33.74 0.07 0.00 0.00

NBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DIASA {111} surface S-A PBO 0.00 0.00 4964.29 1.00 0.00 0.00 38.51 1.16

S O 0.00 0.00 1.33 0.00 0.00 0.0 0.00 0.00

A-S PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I-A PBO 0.00 0.00 4960.95 1.00 0.00 0.00 25.68 0.06

D-I PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 0.00 0.00 4981.81 1.00 0.00 0.00 730.68 1.14

D O 0.00 0.00 4978.42 1.00 0.00 0.00 996.43 1.02

NBO 0.00 0.00 43.33 1.36 0.00 0.00 20.97 0.08

Table 6.8: Residence times (RT) and average coordination numbers (av. CN) of the DIASA sequence. (E O = side chain oxygen of glutamate, D O = side chain oxygen of

aspartate, S O = side chain oxygen of serine, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SRDIE {100} surface E O 4997.00 1.00 0.00 0.00 333.96 0.98 0.00 0.00

E O 3.00 0.00 4992.00 1.00 0.00 0.00 327.92 0.87

I-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D-I PBO 0.00 0.00 186.38 0.88 0.00 0.00 4.76 0.10

D O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 2660.36 0.85 503.57 0.15 30.30 0.11 0.00 0.00

R-D PBO 2.50 0.00 28.97 0.74 0.00 0.00 1.00 0.00

S-R PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S O 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

NBO 1330.00 0.27 830.64 0.71 3.50 0.01 0.00 0.00

Table 6.9: Residence times (RT) and average coordination numbers (av. CN) of the SRDIE sequence. (E O = side chain oxygen of glutamate, D O = side chain oxygen of

aspartate, S O = side chain oxygen of serine, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SRDIE {111} surface E O 0.00 0.00 4996.00 1.00 0.00 0.00 231.90 0.46

E O 0.00 0.00 4856.87 1.05 0.00 0.00 3.17 0.01

I-E PBO 0.00 0.00 4997.00 1.00 0.00 0.00 52.33 0.18

D-I PBO 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

D O 0.00 0.00 1975.98 1.95 0.00 0.00 735.14 1.97

D O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R-D PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S-R PBO 0.00 0.00 4979.81 1.00 0.00 0.00 847.96 1.00

S O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NBO 0.00 0.00 4987.53 1.00 0.00 0.00 998.38 1.00

Table 6.10: Continued. Residence times (RT) and average coordination numbers (av. CN) of the SRDIE sequence. (E O = side chain oxygen of glutamate, D O = side chain

oxygen of aspartate, S O = side chain oxygen of serine, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SRAIE {100} surface E O 0.00 0.00 4330.00 0.87 0.00 0.00 1.50 0.00

E O 0.00 0.00 0.00 0.00 996.00 0.99 0.00 0.00

I-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A-I PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R-A PBO 7.00 0.00 7.25 0.00 0.00 0.00 0.00 0.00

S-R PBO 320.06 0.83 323.99 0.13 4.44 0.02 0.00 0.00

S O 1.75 0.02 2.12 0.02 1.00 0.00 27.84 0.15

NBO 320.68 0.13 103.19 0.80 21.98 0.04 12.91 0.05

SRAIE {111} surface E O 0.00 0.00 4940.54 1.04 0.00 0.00 466.77 1.07

E O 0.00 0.00 4911.88 1.01 0.00 0.00 435.43 1.82

I-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A-I PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R-A PBO 0.00 0.00 241.19 0.86 0.00 0.00 695.43 0.98

S-R PBO 0.00 0.00 2864.34 0.99 0.00 0.00 48.58 0.20

S O 0.00 0.00 23.12 0.42 0.00 0.00 10.23 0.08

NBO 0.00 0.00 71.87 0.52 0.00 0.00 83.47 0.19

Table 6.11: Residence times (RT) and average coordination numbers (av. CN) of the SRAIE sequence. (E O = side chain oxygen of glutamate, D O = side chain oxygen of

aspartate, S O = side chain oxygen of serine, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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The 177-183 pentapeptides residence time data shows that, for DIESA {100} in vacu sys-

tem, there was no bonding present that lasted over 65% of the simulation length. Bonding

lasting between 63% and 64% of the simulation length was exhibited between tetrahedral

iron and the N–terminal peptide bond oxygen and one of the side chain oxygen of aspar-

tate, and also, between octahedral iron and the other side chain oxygen of aspartate. When

this system was solvated, the bond between tetrahedral iron and one of the side chain oxy-

gen of aspartate was present for over 99% of the simulation length. This suggests that the

lower value for the equivalent in vacu residence time was due to the formation of this bond

toward the latter stages of this system simulation. No other bonding lasting over 8% of

the simulation length was present for this system, suggesting preferential magnetite–water

bonding. There was no glutamate bonding for either DIESA {100} system, proposing that

this acidic residue is not of interest for iron binding within this sequence.

The DIESA {111} surface residence time data showed a very different trend, with no

tetrahedral iron bonding present for either system. For the in vacu system, bonding lasting

over 93% of the simulation length was seen between octahedral iron and N–terminal, I-E,

and E-S peptide bond oxygen, both side chain oxygen of aspartate, and one of the side

chain oxygen of glutamate. All other available oxygen showed bonding lasting between

46.5% and 61% of the simulation length, with the exception of S-A peptide bond oxygen,

which showed no bonding. However, upon solvation, only the bonds between octahedral

iron and one of the side chain oxygen of glutamate and E-S peptide bond oxygen lasted

over 97% of the simulation length. No other bonding was present lasting over 36% of the

simulation length, suggesting that the addition of water had a detrimental effect on iron

binding, as water provides competitive binding to the magnetite.

With the single alanine substitution of DIESA to DIASA, in the {100} in vacu system,

bonding lasting over 96% of the simulation length was exhibited between tetrahedral

iron and both side chain oxygen of aspartate. No other bonding lasting over 44% of the

simulation length was seen. When this system was solvated, only one of the bonds between

tetrahedral iron and the side chain oxygen of aspartate continued to last over 99% of the

simulation length. There was no other bonding lasting over 4.5% of the simulation length

present for the solvated system, suggesting that, again, water was providing competitive

binding and the glutamate substitution reduced the number of potential binding sites,

leading to a stronger affinity of the magnetite for water than for the pentapeptide.

On examination of the corresponding DIASA {111} surface data, no tetrahedral iron

bonding was present. Bonding was exhibited to both side chain oxygen of aspartate, and
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to I-A and S-A peptide bond oxygen through octahedral iron that lasted over 99% of the

simulation length, within the in vacu system. No other bonding lasted over 1% of the

simulation length. Again, with the addition of water, only the bond between octahedral

iron and one of the side chain oxygen of aspartate lasted over 99% of the simulation

length. The other side chain oxygen of aspartate showed bonding that lasted for 73% of

the simulation length. No other bonding lasted over 4% of the simulation length. The

substitution of a glutamate for an alanine had an adverse effect on the potential iron

binding of the pentapeptide, as hypothesised, as there was a considerable drop in the

residence times exhibited when compared to that of the DIESA sequence.

When the residence times of the SRDIE sequence were considered it was shown that, in

the {100} in vacu system, only two bonds present lasted over 99% of the simulation length,

these were between tetrahedral iron and one of the side chain oxygen of glutamate, and

octahedral iron and the other side chain oxygen of glutamate. Bonding lasting for 53%

of the simulation length was also exhibited between tetrahedral iron and one of the side

chain oxygen of aspartate. No other bonding lasting over 27% of the simulation length

was present. Upon solvation, no bonding lasting over 34% of the simulation length was

displayed, suggesting that the addition of water had an extremely detrimental effect on

the sequences iron binding potential.

When the residence time data was examined for SRDIE on the {111} surface it was shown

that, as with DIESA and DIASA, no tetrahedral iron bonding was present. For the in vacu

system, bonding lasting over 97% of the simulation length was seen between octahedral

iron and N–terminal, S-R and I-E peptide bond oxygen, and both side chain oxygen of

glutamate. A bond lasting for 40% of the simulation length was also displayed to one of

the side chain oxygen of aspartate. On addition of water, only the N–terminal peptide

bond oxygen bond continued to last over 99% of the simulation length, however, bonding

lasting between 74% and 85% of the simulation length was present to S-R peptide bond

oxygen and to one of the side chain oxygen of aspartate. This reduction in residence times

suggests that solvation leads to water providing competitive magnetite binding.

On comparison of the residence time data for the two original sequences (DIESA and

SRDIE) it can be seen that, for the {100} in vacu system, only SRDIE exhibited bonding

lasting over 99% of the simulation length, whilst the longest residence time displayed

for DIESA was 3203.39 ps (64% of the simulation length). However, DIESA shows more

bonding in general, but most of these bonds did not last over 29% of the simulation length.

When these systems were solvated, DIESA exhibited one bond that lasted over 99% of the
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simulation length, whereas, SRDIE exhibited no such bonding. When the {111} surface

in vacu system was examined it was shown that, DIESA presented with six bonds lasting

over 93% of the simulation length, however, SRDIE showed only five bonds lasting over

this length of time. Upon solvation, DIESA presented with two bonds lasting over 97%

of the simulation length, whereas, SRDIE exhibited just one bond that lasted over this

length of time. From the solvated systems data it can be seen that, DIESA is the preferred

sequence of attachment, with the {111} surface being the favoured for this sequence.

The residence time data for the single alanine substitution to SRAIE, in the {100} in vacu

system, showed one bond lasting over 86% of the simulation length, between octahedral

iron and one of the side chain oxygen of glutamate, with no other bonding lasting over

6.5% of the simulation length present. When this system was solvated, a bond was formed

between tetrahedral iron and one of the side chain oxygen of glutamate lasting over 99% of

the simulation length, whilst, no other bonding lasted over 2.8% of the simulation length.

When the {111} surface simulations were examined, as with the other 177-183 pentapep-

tides, no tetrahedral iron bonding was present. For the in vacu system, bonding lasting

over 98% of the simulation length was seen between octahedral iron and both side chain

oxygen of glutamate. A bond lasting over 57% of the simulation length was also exhibited

to S-R peptide bond oxygen. Upon solvation, no bonding was present that lasted lasting

over 70% of the simulation length, suggesting that the presence of water was unfavourable

for the iron binding potential of the sequence.

On comparison of the residence time data of the two mutated sequences (DIASA and

SRAIE) it can be seen that, for the {100} in vacu system, DIASA presented with more

bonding lasting over 86% of the simulation length than SRAIE (two bonds and one bond,

respectively). This suggests that DIASA was the preferred pentapeptide of attachment.

On addition of water, both DIASA and SRAIE exhibited one bond lasting over 99% of

the simulation length, suggesting no favoured sequence of attachment when the systems

were solvated. From the {111} in vacu system data it was shown that, DIASA exhibited

more bonding lasting over 98% of the simulation length than SRAIE (four bonds and

two bonds, respectively), suggesting that DIASA is the preferred sequence of attachment.

Upon solvation, this trend was exhibited again, as DIASA presented with one bond lasting

over 99% of the simulation length, whilst, SRAIE exhibited no bonding lasting over this

length of time. It is worth noting that, for the mutated sequences, the most prominent

bonding was seen to the remaining acidic residues. In the original counterparts, these

acidic residues were also the areas of prominent iron binding, with the substituted acidic
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residues having exhibited far less bonding. The retention time data of the natural solvated

systems shows that, there was no preference for either sequence with the {100} surface,

however, for the {111} surface, DIASA is the preferred sequence of attachment.

As with Chapters 4 and 5, the interfacial energies of the 177-183 pentapeptide sequences

on the {100} and {111} magnetite surfaces were calculated. All related energy data from

the interfacial energy calculations of the pentapeptides can be found in Table 6.12.

{100} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

DIESA -4.34 0.00 7.72 0.00

DIASA -5.09 0.75 7.23 0.49

SRDIE -28.87 24.53 7.63 0.09

SRAIE -22.52 18.18 7.39 0.33

{111} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

DIESA -13.61 6.10 10.73 7.50

DIASA -7.51 0.00 18.23 0.00

SRDIE -27.42 19.91 13.61 4.62

SRAIE -22.01 14.50 11.66 6.56

Table 6.12: Interfacial energies for all 177-183 pentapeptides on the {100} and {111} surface, using the

Yang, Stipp and Harding method[164]. Eint of s-p is the interfacial energy of the slab–peptide system.

Ediff of s-p is the difference in interfacial energy from the highest interfacial energy of the slab–peptide

system. Eint of s-p-w is the interfacial energy of the slabpeptide–water system. Ediff of s-p-w is the

difference in interfacial energy from the highest interfacial energy of the slab–peptide–water system.

From the solvated 177-183 pentapeptides interfacial energy data it can be seen that, the

{100} surface produced lower interfacial energy values (between 7.23 eV and 7.72 eV) than

the {111} surface (between 10.73 eV and 18.23 eV). For the {100} surface, the mutated

sequences produced lower interfacial energies than their original counterparts, suggesting

that mutation improves sequence iron binding potential. For the {111} surface, DIASA

produced a higher interfacial energy than DIESA, suggesting that the substitution was

detrimental to the iron binding affinity of the sequence (as hypothesised), whereas, with

SRDIE, the mutated sequence (SRAIE) produced a lower interfacial energy, proposing

that the substitution improved the sequence iron binding potential.

This data also shows that, the presence of water in the system had a detrimental effect

204



on the interfacial energies, as the energies exhibited were much lower for the in vacu

systems, in particular for SRDIE and its mutation, for example, on the {111} surface,

solvation significantly increased the interfacial energy of SRDIE from -27.42 eV to 13.61

eV. Solvation of the systems also affected how SRDIE and its mutation reacted at the

interface, as the interfacial energy trends differed dependent on whether the systems were

solvated or not. The lowest interfacial energy was exhibited for the original sequence,

when in vacu, however when solvated the opposite was observed. The increase in interfacial

energy with the addition of water could be resultant from preferential attachment of water

to the magnetite surface.

Whilst the absolute values for the adsorption energy are clearly an order of magnitude

larger than expected, the relative energies within a sequence may be more reliable for

amino acid binding potential comparison. The trends shown upon solvation are counter-

intuitive and contradictive of experimental studies; however, it is clear that this is an

artefact of the energy calculation method utilised, as the expected trend is revealed in the

relative residence times of various surface interactions. As it can be demonstrated that,

RT × ln(τ1/τ2) = (∆H2
ads −∆H1

ads) = (E1
des − E2

des), then this method is perhaps more

reliable for determining the change in adsorption energy between the various pentapeptide

sequences. This interfacial energy method also requires the measurement of small differ-

ences between large energies, which leads to large uncertainties in the results. Another

possible error incorporated into the calculation of the interfacial energies for the hydrated

systems, is the assumption that all the water molecules within the systems containing the

slab and water are perfectly hydrated throughout the slab, i.e. the bulk density is that of

the bulk water simulation. However, as the simulations are run within an NVT ensemble,

this is not necessarily the case. Therefore, if insufficient water is present at the start of the

simulation, some of the water molecules will eventually become under coordinated, thus

increasing the energy of the simulation cells. Furthermore, rather than directly calculating

the adsorption energy, via this interfacial energy method, an alternative indirect method

of adsorption energy calculation is explored in the following section. This method utilises

a constrained molecular dynamics version of the systems, focusing on the Potential of

Mean Force and free energy evaluation.
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6.4 Constrained system

Free energy profiles were created for 177-183 pentapeptide sequences. As previously, 0

Å on the x-axis is an approximate representation of where the magnetite surface lies. The

profiles again exhibit the free energy of the simulation system as a function of peptide

chain centre of mass (CoM) distance from the magnetite surface.

Figure 6.9: A comparison of the free energy profiles of the 177-183 pentapeptides. Distance refers to

distance between the peptide CoM and the magnetite surface. The dashed line represents the water density

profile for the system.

From the free energy profile results for the different 177-183 pentapeptides (Figure 6.9)

it was evident that, on the {100} surface, the mutation of DIESA to DIASA reduced the
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iron binding activity of the sequence as hypothesised, whereas, the mutation of SRDIE

to SRAIE increases the iron binding activity by reducing the free energy. The mutant

DIASA produced the highest free energy of all 177-183 pentapeptide sequences. Between

10 Å and 4 Å is optimal for attachment, after which point, an increase in free energy was

detected, corresponding with the presence of the more intense water peak. It is proposed

that the successive increase in free energy was attributable to a requirement for more

energy within the system for the sequences to pass through the water barrier in order to

enable sequence attachment to the {100} surface.

Whereas, with the {111} surface energy profile, there was very little difference between

the free energy profiles of the four sequences. It can also be seen that, the mutation of

DIESA to DIASA appears to slightly increase the iron binding activity of the sequence,

whereas the mutation of SRDIE to SRAIE appears to slightly reduce the iron binding

activity of the sequence. The original sequence DIESA produces the highest free energy

of all 177-183 pentapeptide sequences. For DIASA and SRAIE, the optimal distance for

attachment was between 10 Å and 6 Å , and between 10 Å and 4 Å , respectively, after

which point, an increase in free energy was detected, corresponding with the presence of

the intense water layers. Between 7.5 Å and 4 Å and 6 Å and 3 Å are optimal for

attachment for DIESA and SRDIE, respectively, as the profiles exhibit negative values

within this region. The small changes in free energy seen for the sequence profiles suggests

that the water absorption layers have minimal influence on the free energy profiles.

Upon examination of the energy minima for the 177-183 pentapeptides (Figure 6.10) it

can be observed that, on the {100} surface, all of the 177-183 pentapeptides exhibited

a negative value for their energy minima, with DIESA producing the lowest value at -

0.0468 eV. The trend of favourable attachment distance varies with sequence, with DIESA,

DIASA, SRDIE and SRAIE exhibiting centre of mass distances of 6.6 Å , 9.6 Å , 10

Å and 6.7 Å respectively. On the {111} surface, again, all of the 177-183 pentapeptides

exhibited a negative value for their energy minima, with SRDIE producing the lowest

value at -0.2429 eV. The trend of favourable attachment distance showed DIESA, DIASA,

SRDIE and SRAIE exhibiting centre of mass distances of 5.6 Å , 7.8Å , 5.3 Å and 8.7

Å respectively.
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Figure 6.10: A close-up comparison of the free energy profiles of the 177-183 pentapeptides between -0.5

eV and 0.5 eV, exhibiting the free energy minima.
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Figure 6.11: A comparison of the free energy values for the 177-183 pentapeptides CoM at the magnetite

surface for both the {100} and {111} surfaces.

The free energy values for the 177-183 pentapeptides centre of mass at the magnetite

surfaces are shown in Figure 6.11. On the {100} surface, the DIESA sequence exhibits

a free energy value of 2.93 eV, whereas, on the {111} surface, its value is lower, 1.20

eV. Similarly, the DIASA, SRDIE and SRAIE sequences demonstrated much higher free

energy values (4.42 eV, 3.05 eV and 2.23 eV, respectively) on the {100} surface, than

exhibited on the {111} surface (0.69 eV, 0.75 eV and 1.01 eV, respectively). These data

show that, the {111} surface has significantly lower free energy values, representing greater

iron binding, suggesting that this was the preferential surface of attachment for the 177-

183 pentapeptide sequences. It also shows that, the sequence with the lowest free energy

when the CoM is at the surface was SRAIE for the {100} surface and DIESA for the {111}
surface.
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6.4.1 Residues 190-195 (ELRDA & LRDAL)

Unconstrained System

R values for pentapeptides in the region of 190-195 can be found in Tables 6.13 and 6.14.

Pentapeptide Fe type Surface System r (Å)

ELRDA FET 100 in vacu 2.03

solvated 2.08

111 in vacu -

solvated -

FEO 100 in vacu 2.08

solvated 2.13

111 in vacu 1.93

solvated 2.03

ELADA FET 100 in vacu 1.98

solvated 2.03

111 in vacu -

solvated -

FEO 100 in vacu 2.03

solvated 2.13

111 in vacu 1.98

solvated 2.03

Table 6.13: R (Å) values from RDF data for pentapeptides in the region of 190-195.

Figure 6.12 exhibits the RDF profiles for ELRDA. The RDF profiles of the remaining

190-195 pentapeptides can be found in the Appendix. The 190-195 pentapeptides RDF

data shows that, for ELRDA and its mutant ELADA, both octahedral and tetrahedral

iron bonding was exhibited for the {100} surface. Whereas, with the {111} surface only

octahedral iron bonding was present. However, this trend differed for LRDAL and its mu-

tant LRAAL. With LRDAL, both octahedral and tetrahedral iron bonding was exhibited

for the {111} surface. Whereas, with the {100} surface, only octahedral iron bonding was

present. LRAAL exhibited a similar trend to both ELRDA and ELADA, however, there

was also no tetrahedral iron bonding for the solvated LRAAL {100} system. When the

190-195 pentapeptides were attached to the {111} surface, octahedral iron attachment was

the preferred attachment type.
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Pentapeptide Fe type Surface System r (Å)

LRDAL FET 100 in vacu -

solvated -

111 in vacu 2.03

solvated 1.98

FEO 100 in vacu 2.08

solvated 2.13

111 in vacu 2.03

solvated 2.03

LRAAL FET 100 in vacu 2.18

solvated -

111 in vacu -

solvated -

FEO 100 in vacu 2.13

solvated 2.18

111 in vacu 2.03

solvated 2.13

Table 6.14: Continued. R (Å) values from RDF data for pentapeptides in the region of 190-195.

The iron bonding trend was the same for all 190-195 pentapeptides, with the exception of

LRDAL, suggesting that the sequence mutation had no effect on the resultant iron bonding

type. The change in trend for LRDAL suggests that, the presence of two oppositely charged

residues adjacent to each other effects the iron bonding types possible. The presence of

the positively charged residue in LRAAL may also explain the removal of tetrahedral iron

bonding in the {100} solvated system.

The 190-195 pentapeptide RDF data also shows that, the in vacu systems produced a

higher intensity first peak than the corresponding solvated systems, suggesting that, upon

system solvation, it was more difficult pentapeptide oxygens to have an iron ion as a

next nearest neighbour. For the solvated systems, the strongest g(r) peak was shown for

octahedral iron bonding in the ELADA {111} system, proposing that in this system the

pentapeptide oxygen present was more freely accessible to the next nearest neighbouring

irons.
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Figure 6.12: RDF plots for ELRDA. FET is tetrahedral iron, FEO is octahedral iron. Blue is {100} in

vacu. Red is {100} solvated. Green is {111} in vacu. Purple is {111} solvated.
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{100} surface attachment {111} surface attachment

Pentapeptide Oxygen type BL In Vacu ( Å) BL Solvated ( Å) Oxygen type BL In Vacu ( Å) BL Solvated ( Å)

ELRDA NBO 2.32 2.25 E O 1.92 2.27

E-L 2.43 2.19 1.98 1.97

L-R 2.14 2.36 D O 1.93 NB

D O 1.97 2.11 1.88 1.99

1.96 1.97 D-A 1.88 2.25

ELADA NBO 2.00 NB NBO 1.99 2.08

E-L 2.09 NB E O 1.92 1.97

A-D 2.08 2.15 2.02 2.22

D O 1.93 2.02 E-L 2.10 2.01

2.12 NB A-D 1.97 2.25

D O 1.96 2.19

1.96 NB

D-A 2.24 NB

Table 6.15: 190-195 pentapeptide FE − Opentapeptide bond distance data. BL is bond length, E O is glutamate side chain oxygen, D O is aspartate side chain oxygen, x-x

PBO is inter–residue peptide bond oxygen and NBO is N–terminal peptide bond oxygen. NB is no bonding.
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{100} surface attachment {111} surface attachment

Pentapeptide Oxygen type BL In Vacu ( Å) BL Solvated ( Å) Oxygen type BL In Vacu ( Å) BL Solvated ( Å)

LRDAL NBO 2.21 2.14 NBO 2.08 NB

L-R 2.01 2.35 D O 2.05 1.96

R-D 1.97 NB 1.89 NB

D-A 2.21 NB 2.00 1.94

A-L 2.10 NB D-A 2.19 NB

LRAAL A-A 2.10 NB NBO 1.99 NB

L-R 2.07 NB

R-A 1.95 2.23

Table 6.16: Continued. 190-195 pentapeptide FE−Opentapeptide bond distance data. BL is bond length, D O is aspartate side chain oxygen, x-x PBO is inter–residue peptide

bond oxygen and NBO is N–terminal peptide bond oxygen. NB is no bonding.
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The bond distance data is represented in Tables 6.15 and 6.16. The 190-195 pentapeptides

bond distance data (Figure 6.13) shows that, for the ELRDA in vacu systems, bonding

differed dependant on the attachment surface. On the {111} surface, bonding was present

through both side chain oxygens of glutamate, however, no glutamate bonding was ap-

parent for the {100} surface. The {100} surface showed N–terminal, E-L and L-R peptide

bond oxygen bonding, whereas, the {111} surface exhibited D-A peptide bond oxygen

bonding. The only commonality in bonding type between the two surfaces was the bond-

ing through both side chain oxygens of aspartate. This data suggests that, for the EL-

RDA sequence, there was no surface preference, however, there was more of an affinity for

particular oxygen types dependent on surface type (acidic side chain oxygen on the {111}
surface and peptide bond oxygen on the {100} surface). On the {100} surface, the amount

of bonding present does not change upon solvation, suggesting that the addition of water

had minimal effect on the iron bonding potential of the sequence. However, upon solvation

of the {111} surface, one of the bonds to one of the side chain oxygens of aspartate was

no longer present, proposing that the presence of water in this system was detrimental to

iron binding. The average bond lengths for a magnetite iron to a pentapeptide oxygen

in the ELRDA sequence was; 2.16 Å and 2.18 Å on the {100} surface for in vacu and

solvated systems respectively, and 1.92 Å and 2.12 Å on the {111} surface for in vacu

and solvated systems respectively.

With the mutation of the ELRDA sequence to ELADA, the same amount of bonding

was seen as for ELRDA in the {100} in vacu system, although, the type of bonding

differed, with bonding through A-D peptide bond oxygen for ELADA, as opposed to L-R

peptide bond oxygen bonding. On the {111} surface, however, more bonding was exhibited

for ELADA, with the same bonding type exhibited as for ELRDA but with additional

bonding to N–terminal, E-L and A-D peptide bond oxygen bonding. This could be due

to the removal of the positively charged arginine residue, which may cause repulsive ionic

interactions with the positively charged iron ions, leading to potential system stabilisation

upon sequence mutation. The addition of water to the system was detrimental to bonding,

in particular for the {100} surface, reducing the amount of bonding present. The average

bond lengths for an iron to a pentapeptide oxygen in ELADA was; 2.04 Å and 2.09 Å on

the {100} surface for the in vacu and solvated systems respectively, and 2.02 Å and 2.12

Å on the {111} surface for the in vacu and solvated systems respectively.

The bond distance data for the LRDAL in vacu systems shows that, there was the same

amount of bonding present as in the ELRDA sequence, however, the bonding type differed,
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Figure 6.13: Bond distance images for the in vacu and solvated systems of ELRDA. a){100} in vacu,

b){100} solvated, c){111} in vacu and d){111} solvated.

as for the {100} surface there was only peptide bond oxygen bonding present in LRDAL,

and for the {111} surface there was more peptide bond oxygen bonding and obviously no

glutamate bonding displayed for LRDAL. This data suggests that, although the amount

of potential iron binding was not sequence dependent, the type of bonding was. For

the LRDAL in vacu systems, both surfaces exhibited N–terminal and D-A peptide bond

oxygen bonding. The {100} surface also displayed L-R, R-D and A-L peptide bond oxygen

bonding, whereas, the {111} surface presented with three bonds through the side chain

oxygens of aspartate. This data suggests that, there was no surface preference for the

LRDAL sequence, however, there was more of an affinity for particular oxygen types

dependent on the surface involved (acidic side chain oxygen on the {111} surface and

peptide bond oxygen on the {100} surface, as with ELRDA). Both surfaces exhibited less

bonding when the systems were solvated, suggesting more favourable bonding between
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iron ions and the oxygen of water. The average bond lengths for a magnetite iron to

a pentapeptide oxygen in the LRDAL sequence was; 2.10 Å and 2.25 Å on the {100}
surface for in vacu and solvated systems respectively, and 2.04 Å and 1.95 Å on the

{111} surface for in vacu and solvated systems respectively.

The LRAAL sequence displayed less bonding than the LRDAL sequence, particularly for

the {100} surface. This was hypothesised to be due to the removal potential oxygen

binding sites, with the substitution of aspartate. The two surfaces exhibited different

bonding, with the {100} surface showing only A-A peptide bond oxygen bonding, whilst,

the {111} surface presented with N–terminal, L-R and R-A peptide bond oxygen bonding,

proposing that different surface types affect the amount of potential iron binding possible.

Once again, solvation was detrimental to bonding, as the {100} surface displayed no

bonding after solvation, and the {111} surface showed only R-A peptide bond oxygen

bonding. The severe lack of bonding present for the LRAAL systems suggests that, due

to an absence of acidic residues, there were very limited areas along the sequence that

could potentially provide iron binding sites. The average bond lengths for an iron to a

pentapeptide oxygen in LRAAL was; 2.10 Å for the in vacu system on the {100} surface,

and 2.01 Å and 2.23 Å on the {111} surface for the in vacu and solvated systems

respectively.

Tables 6.17, 6.18, 6.19 and 6.20 represent the residence times and average coordination

numbers for bonding between all oxygen present in the 190-195 pentapeptides and tetra-

hedral and/or octahedral iron on both the {100} and {111} magnetite surfaces.
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

ELRDA {100} surface D-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 0.00 0.00 4477.00 0.89 0.00 0.00 174.90 0.95

D O 4990.00 1.00 0.00 0.00 999.00 1.00 0.00 0.00

R-D PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L-R PBO 4991.00 1.00 0.00 0.00 175.25 0.92 0.00 0.00

E-L PBO 0.00 0.00 4991.00 0.99 0.00 0.00 355.70 0.95

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NBO 585.47 0.95 0.00 0.00 46.24 0.85 0.00 0.00

ELRDA {111} surface D-A PBO 0.00 0.00 4978.90 1.00 0.00 0.00 999.00 0.99

D O 0.00 0.00 4026.94 1.34 0.00 0.00 185.12 0.75

D O 0.00 0.00 4989.00 1.00 0.00 0.00 998.54 1.12

R-D PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L-R PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-L PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 4988.50 1.00 0.00 0.00 625.40 1.75

E O 0.00 0.00 4791.13 1.08 0.00 0.00 230.86 0.97

NBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.17: Residence times (RT) and average coordination numbers (av. CN) of ELRDA. (E O = side chain oxygen of glutamate, D O = side chain oxygen of aspartate, x-x

PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

ELADA {100} surface D-A PBO 1.00 0.00 1.11 0.01 0.00 0.00 1.73 0.03

D O 0.00 0.00 4994.00 1.00 0.00 0.00 3.46 0.16

D O 4997.00 1.00 0.00 0.00 999.00 1.00 0.00 0.00

A-D PBO 0.00 0.00 4974.82 1.00 0.00 0.00 253.35 0.91

L-A PBO 32.00 0.07 0.00 0.00 1.00 0.00 8.72 0.03

E-L PBO 1643.70 0.93 0.00 0.00 56.48 0.37 0.00 0.00

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NBO 0.00 0.00 765.62 0.97 0.00 0.00 5.36 0.23

ELADA {111} surface D-A PBO 0.00 0.00 1503.89 0.99 0.00 0.00 1.50 0.00

D O 2.16 0.01 2993.42 0.60 0.00 0.00 7.00 0.01

D O 0.00 0.00 1635.68 1.00 0.00 0.00 462.69 1.79

A-D PBO 0.00 0.00 4994.00 1.00 0.00 0.00 999.00 1.00

L-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-L PBO 0.00 0.00 4995.00 1.00 0.00 0.00 358.15 0.91

E O 0.00 0.00 1532.57 1.59 0.00 0.00 999.00 1.00

E O 0.00 0.00 3435.03 1.31 0.00 0.00 999.00 1.99

NBO 0.00 0.00 4979.81 1.00 0.00 0.00 307.53 0.99

Table 6.18: Residence times (RT) and average coordination numbers (av. CN) of ELADA. (E O = side chain oxygen of glutamate, D O = side chain oxygen of aspartate, x-x

PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

LRDAL {100} surface A-L PBO 0.00 0.00 4992.00 0.99 0.00 0.00 38.22 0.80

D-A PBO 0.00 0.00 1548.02 0.97 0.00 0.00 1.67 0.01

D O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R-D PBO 0.00 0.00 70.33 0.88 0.00 0.00 7.89 0.40

L-R PBO 0.00 0.00 4994.00 1.00 0.00 0.00 172.99 0.84

NBO 0.00 0.00 4997.00 0.98 0.00 0.00 80.78 0.76

LRDAL {111} surface A-L PBO 0.00 0.00 13.54 0.10 0.00 0.00 0.00 0.00

D-A PBO 0.00 0.00 3848.00 0.77 0.00 0.00 3.36 0.03

D O 1.00 0.00 1681.99 0.99 0.00 0.00 643.68 0.97

D O 4724.91 0.95 4990.00 1.00 292.24 0.58 350.65 0.85

R-D PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L-R PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NBO 0.00 0.00 4982.63 1.00 0.00 0.00 37.18 0.11

Table 6.19: Residence times (RT) and average coordination numbers (av. CN) of LRDAL. (D O = side chain oxygen of aspartate, x-x PBO = inter–residue peptide bond

oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

LRAAL {100} surface A-L PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A-A PBO 0.00 0.00 1677.08 0.98 0.00 0.00 7.84 0.03

R-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L-R PBO 293.90 0.12 1.00 0.01 0.00 0.00 0.00 0.00

NBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LRAAL {111} surface A-L PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R-A PBO 0.00 0.00 4990.18 1.00 0.00 0.00 205.17 0.99

L-R PBO 0.00 0.00 1400.99 0.99 0.00 0.00 74.40 0.32

NBO 0.00 0.00 4992.00 1.00 0.00 0.00 56.92 0.25

Table 6.20: Residence times (RT) and average coordination numbers (av. CN) of LRAAL. (x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide

bond oxygen).
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The 190-195 pentapeptides residence time data shows that, for the ELRDA in vacu sys-

tems, when attached to the {100} surface, there were four bonds present that lasted for

over 90% of the simulation length, (tetrahedral iron bonding to L-R peptide bond oxygen

and to one of the side chain oxygens of aspartate and octahedral iron bonding to E-L

peptide bond oxygen and to the other side chain oxygen of aspartate). No other bonding

was exhibited lasting for over 12% of the full simulation for this system. Upon solvation,

only one bond was present for over 99% of the simulation length, between tetrahedral

iron and one of the side chain oxygens of aspartate. Again, no other bonding lasting over

36% of the simulation was present for this system, suggesting preferential magnetite–water

bonding.

When the residence time data was examined for ELRDA on the {111} surface, a different

trend was shown, with no tetrahedral iron bonding present for either system. For the in

vacu system, bonding for over 81% of the full length of the simulation was displayed be-

tween octahedral iron and both side chain oxygens of glutamate, both side chain oxygens

of aspartate and D-A peptide bond oxygen. No other bonding was seen for this system.

Upon solvation, only the bonds between octahedral iron and one of the side chain oxygens

of aspartate and D-A peptide bond oxygen continued to last over 99% of the simulation

length and no other bonding present lasted over 63% of the full length of the simula-

tion. This data suggests that, the addition of water, provides competitive binding to the

magnetite.

The residence time data for the single alanine substitution to ELADA, in the {100} in

vacu system, showed bonding lasting over 99% of the simulation length, exhibited between

tetrahedral iron and one of the side chain oxygens of aspartate, and between octahedral

iron and A-D peptide bond oxygen and the other side chain oxygen of aspartate. No other

bonding lasting over 33% of the simulation was seen. When this system was solvated,

only the bonding between tetrahedral iron and one of the side chain oxygens of aspartate

continued lasting over 99% of the full length of the simulation, whilst, no other bonding

lasted over 26% of the simulation length. This data suggests that, again, water was

providing competitive binding.

On examination of the corresponding {111} surface data, no tetrahedral iron bonding was

present, with the exception of the tetrahedral iron bond to one of the side chain oxygens

of aspartate lasting for only 0.04% of the simulation length in the in vacu system. With

the octahedral iron, bonding was exhibited to N–terminal, E-L and A-D peptide bond

oxygen that lasted over 99% of the full length of the simulation. Bonding lasting between
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60% and 69% of the simulation length was also seen to one of the side chain oxygens of

glutamate and one of the side chain oxygens of aspartate. No other bonding lasting over

35% of the simulation length was exhibited for this system. With the addition of water,

the bond to A-D peptide bond oxygen continued to last over 99% of the full length of the

simulation, however, the two other bonds that lasted over this length of time in the in

vacu simulation no longer did, now presenting with bonds lasting between 31% and 36%

of the simulation length. Both side chain oxygens of glutamate exhibited bonding lasting

over 99% of the simulation length, suggesting that the lower values for the equivalent in

vacu residence times are due to the formation of this bond toward the latter stages of

this system simulation. No other bonding lasting over 47% of the simulation length was

exhibited.

When the residence times of LRDAL {100} systems were considered it was shown that,

no tetrahedral iron bonding was present, which was a very different trend to that seen

for ELRDA (and ELADA). In the in vacu system, three bonds present lasted over 99%

of the full length of the simulation; between octahedral iron and N–terminal, L-R, and

A-L peptide bond oxygen. No other bonding lasting over 31% was exhibited. When this

system was solvated, no bonding was present lasting over 18% of the full length of the

simulation, suggesting that the addition of water to the system was severely detrimental

to the LRDAL {100} surface iron binding potential.

When the residence time data was examined for LRDAL on the {111} surface, a tetrahedral
iron bond to one of the side chain oxygen of aspartate was present lasting over 95% of the

simulation length, this, again, was different to the trend seen for ELRDA and ELADA.

Bonding lasting for over 99% of the full length of the simulation was also seen between

octahedral iron and N–terminal peptide bond oxygen, and one of the side chain oxygens

of aspartate. Bonding was also exhibited between octahedral iron and D-A peptide bond

oxygen lasting for 77% of the simulation length. No other bonding lasting over 34% of

the full simulation length was displayed. Upon solvation, there was no bonding present

lasting over 65% of the simulation length. This reduction in residence times suggests,

again, preferential magnetite–water bonding.

On comparison of the residence time data for the two original sequences (ELRDA and

LRDAL) it can be seen that, for the {100} in vacu system, ELRDA had more bonding

lasting over 90% of the simulation length (four bonds for ELRDA and three bonds for

LRDAL). Upon solvation, ELRDA exhibited more bonding lasting over 99% of the simu-

lation length than LRDAL (one bond for ELRDA and no bonds for LRDAL). When the
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{111} surface in vacu system was examined it was shown that, ELRDA, again, exhibited

more bonding lasting over 81% of the simulation length (five bonds for ELRDA and three

bonds for LRDAL). Upon addition of water, this trend was continued with ELRDA pre-

senting with two bonds that lasted over 99% of the full length of the simulation, whilst,

LRDAL exhibited no bonding lasting for this length of time. From the solvated systems

data it can be seen that, ELRDA was the preferred sequence of attachment, with the

{111} surface being the favoured for this sequence.

The residence time data for LRAAL attached to the {100} surface showed that, there was

no bonding exhibited lasting over 34% of the simulation, with one bond present for only

0.02% of the simulation length, suggesting that this sequence was very unfavourable for

attachment to magnetite.

When residence time data for the {111} surface showed that, no tetrahedral iron bonding

was present for system. For the in vacu system, bonding lasting for over 99% of the

full length of the simulation was seen between octahedral iron and N–terminal and R-A

peptide bond oxygen. No other bonding lasting over 29% of the simulation length was

exhibited. Upon solvation, no bonding was present that lasted over 21% of the simulation

length. The {111} surface data, again, suggests that LRAAL attachment on this surface

was not favourable.

On comparison of the residence time data for ELADA and LRAAL it can be seen that,

for the {100} surface in vacu system, ELADA had more bonding lasting over 99% of

the simulation length than LRAAL (three bonds for ELADA and no bonds for LRAAL),

suggesting that ELADA was the preferred sequence of attachment. When these systems

were solvated, this trend was seen again, with ELADA exhibiting one bond lasting over

99% of the full length of the simulation, whilst, LRAAL presented with no bonds lasting

for this length of time. For the {111} in vacu system it was shown that, ELADA again, had

more bonding lasting over 99% of the simulation length, exhibiting three bonds of this time

length, whilst, LRAAL presented with two bonds of this length scale, again proposing that

ELADA was favoured for attachment to magnetite. Upon solvation, ELADA presented

with three bonds that lasted over 99% of the full length of the simulation, whereas, LRAAL

exhibited no bonding for this time scale. The solvated system data showed that, ELADA

was the preferred sequence of attachment, with the {111} surface displaying the strongest

attachment. The retention time data for the 190-195 pentapeptides also showed that, the

190-194 sequence and its mutation (R192A) were preferred over the 191-195 sequence and

its mutation (D193A).
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All related energy data from the interfacial energy calculations of the 190-195 pentapep-

tides can be found in Table 6.21.

{100} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

ELRDA -27.44 22.25 6.42 2.43

ELADA -5.19 0.00 8.85 0.00

LRDAL -25.68 20.49 8.71 0.13

LRAAL -16.55 11.37 5.98 2.86

{111} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

ELRDA -42.49 33.42 3.58 15.97

ELADA -9.06 0.00 11.22 8.33

LRDAL -24.22 15.16 19.55 0.00

LRAAL -16.88 7.82 16.58 2.97

Table 6.21: Interfacial energies for all 190-195 pentapeptides on the {100} and {111} surface, using the

Yang, Stipp and Harding method[164]. Eint of s-p is the interfacial energy of the slab–peptide system.

Ediff of s-p is the difference in interfacial energy from the highest interfacial energy of the slab–peptide

system. Eint of s-p-w is the interfacial energy of the slab–peptide–water system. Ediff of s-p-w is the

difference in interfacial energy from the highest interfacial energy of the slab–peptide–water system.

From the solvated 190-195 pentapeptides interfacial energy data it can be seen that, the

{100} surface produced lower interfacial energy values (between 5.98 eV and 8.85 eV)

than the {111} surface, with the exception of ELRDA (between 11.22 eV and 19.55 eV

(excluding ELRDA at 3.58 eV)). For the {100} surface, ELADA produced a larger interfa-

cial energy than ELRDA, suggesting that the mutation reduced the iron binding potential

of the sequence. However, for LRAAL, a smaller interfacial energy was produced than

LRDAL, suggesting that the substitution of the acidic residue improved the iron bind-

ing potential of the sequence. For the {111} surface, ELADA produced a much larger

interfacial energy than ELRDA, suggesting that the substitution is detrimental to the

interfacial energy of the system, whereas, as with the {100} surface, LRAAL produced a

lower interfacial energy, suggesting that mutation improved the interfacial energy of the

system.

This data also shows that, solvation had a detrimental effect on the iron binding potential

of the sequences, as the in vacu energies produced were much lower than the solvated

energies, for example, on the {111} surface, ELRDA exhibited a substantial increase in
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interfacial energy from -42.49 eV to 3.58 eV. The addition of water to the system also

affected the pentapeptides interfacial behaviour, as the interfacial energy trends differed

for the in vacu and solvated systems. For example, the LRDAL {100} in vacu showed one

of the lowest interfacial energies, however, upon solvation, it exhibited one of the highest.

Preferential attachment of water to the magnetite surface could explain the increase in

interfacial energy with the addition of water.

Again, there are concerns with this direct method of calculating the adsorption energy,

with larger than expected energy values produced and expected trends not exhibited,

possible reasons for which were discussed for the 177-183 pentapeptides. An alternative

indirect method of adsorption energy calculation is explored in the following section. This

method utilises a constrained molecular dynamics version of the systems, focusing on the

Potential of Mean Force and free energy evaluation.

6.5 Constrained system

Free energy profiles were created for 190-195 pentapeptide sequences, as shown in Figure

6.14.

The free energy profiles for the different 190-195 pentapeptides (Figure 6.14) showed that,

on the {100} surface, the mutation of ELRDA to ELADA increased the iron binding

activity, with the exception of between 2 Å and 4 Å , whereby, the ELADA sequence

slightly increased the free energy of the system, compared to that seen for ELRDA. From

this data it was also evident that, the mutation of LRDAL to LRAAL greatly reduced the

iron binding activity of the sequence, as hypothesised, with LRDAL exhibiting energies

as low as -0.47 eV at its minima and LRAAL exhibiting energies as high as 7.38 eV at its

maxima. The mutant LRAAL produced the highest free energy of all 190-195 pentapeptide

sequences. For ELRDA, ELADA and LRAAL, between 10 Å and 5.5 Å was optimal

for attachment, after which point, an increase in free energy was detected (a substantial

increase for LRDAL), corresponding with the presence of the more intense water peak. It

is proposed that the successive increase in free energy was attributable to a requirement

for more energy within the system for the sequences to pass through the water barrier

in order to enable sequence attachment to the {100} surface. The much larger energy

increase for LRDAL, suggests that it was considerably harder for this sequence to attach

within close range of the magnetite surface, for this system, compared to ELRDA and its

mutation. However, for LRDAL, the optimal attachment region was between 8.5 Å and
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1.5 Å as the profile exhibited negative values within this region. From this distance

toward the surface an increase in free energy was exhibited, proposing that it was more

difficult for the sequence to attach closer to the magnetite surface.

Whereas, with the {111} surface energy profile, there was little difference between the

free energy profiles of the four sequences, with the exception of LRDAL. It can also be

seen that, mutation of the original sequences appears to slightly increase the iron binding

affinity of the sequences. The original sequence LRDAL produced the highest free energy

of all 190-195 pentapeptide sequences. For ELRDA, LRDAL and LRAAL, between 10

Å and 3.75 Å was optimal for attachment, after which point, an increase in free energy

was detected (a more substantial increase for LRDAL), corresponding with the presence of

the intense water layers. ELADA exhibited a negative free energy throughout its profile,

thus, attachment was favourable at any distance explored, however, the free energy of

this sequence was at its lowest when the CoM was at 1 Å from the magnetite surface,

suggesting that this was the preferred distance for attachment. The small changes in free

energy seen for the sequence profiles, with the exception of LRDAL, suggest that the water

absorption layers have minimal influence on the free energy profiles.

Upon examination of the energy minima for the 190-195 pentapeptides (Figure 6.15) it

can be observed that, on the {100} surface, only ELADA and LRDAL exhibited a negative

value for their energy minima, with LRDAL producing the lowest value at -0.4681 eV. The

energy minima for these residues fall between 4.1 Å and 5.7 Å, suggesting that attachment

of the residue centre of mass at this distance would be preferable. On the {111} surface, all

of the 190-195 pentapeptides except for LRAAL exhibited a negative value for their energy

minima, with ELADA producing the lowest value at -0.3559 eV. The trend of favourable

attachment distance differs from the {100} surface, with ELRDA, ELADA and LRDAL

exhibiting centre of mass distances of 6.6 Å , 1 Å and 6.3Å respectively.
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Figure 6.14: A comparison of the free energy profiles of the 190-195 pentapeptides. Distance refers

to distance between the peptide CoM and the magnetite surface. The dashed line represents the water

density profile for the system.
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Figure 6.15: A close-up comparison of the free energy profiles of the 190-195 pentapeptides between -0.5

eV and 0.5 eV, exhibiting the free energy minima.
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Figure 6.16: A comparison of the free energy values for the 190-195 pentapeptide CoM at the magnetite

surface for both the {100} and {111} surfaces.

The free energy values for the 190-195 pentapeptides centre of mass at the magnetite

surfaces are shown in Figure 6.16. On the {100} surface, the ELRDA sequence exhibits

a free energy value of 3.52 eV, whereas, on the {111} surface, its value was much lower,

0.58 eV. Similarly, the ELADA and LRAAL sequences demonstrated much higher free

energy values (2.54 eV and 7.38 eV, respectively) on the {100} surface, than exhibited on

the {111} surface (-0.03 eV and 0.40 eV, respectively), particularly for LRAAL. However,

for LRDAL, the {111} surface exhibits a higher free energy value than the {100} surface,

although the difference in energy was minimal (0.59 eV). This data showed that, with

exception of LRDAL, the {111} surface exhibited considerably lower free energy values,

representing greater iron binding, proposing that this was the preferential surface of at-

tachment for the 190-195 pentapeptide sequences. The free energy profiles also showed

that, the sequence with the lowest free energy when the CoM is at the surface was LRDAL

for the {100} surface and ELADA for the {111} surface.
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6.5.1 Residues 188-192 (EVELR)

Unconstrained System

R values for pentapeptides in the region of 188-192 can be found in Table 6.22.

Pentapeptide Fe type Surface System r (Å)

EVELR FET 100 in vacu 2.18

solvated 2.28

111 in vacu -

solvated -

FEO 100 in vacu 2.03

solvated 2.03

111 in vacu 2.03

solvated 1.98

EVALR FET 100 in vacu 2.33

solvated 2.33

111 in vacu -

solvated -

FEO 100 in vacu 2.03

solvated 2.03

111 in vacu 2.03

solvated 2.03

EVGELR FET 100 in vacu 1.93

solvated 1.93

111 in vacu -

solvated -

FEO 100 in vacu 1.98

solvated 2.08

111 in vacu 2.03

solvated 2.08

Table 6.22: R (Å) values from RDF data for pentapeptides in the region of 188-192.

Figure 6.17 exhibits the RDF profiles for EVELR. The RDF profiles of the remaining

188-192 pentapeptides can be found in the Appendix. The RDF data for the 188-192

pentapeptides showed that, for all pentapeptides, both octahedral and tetrahedral iron
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Figure 6.17: RDF plots for EVELR. FET is tetrahedral iron, FEO is octahedral iron. Blue is {100} in

vacu. Red is {100} solvated. Green is {111} in vacu. Purple is {111} solvated.

bonding was exhibited for the {100} surface. Whereas, with the {111} surface, only

octahedral iron bonding was present. When the 188-192 pentapeptides were attached to

the {111} surface, octahedral iron attachment was the preferred attachment type. The

iron bonding trend was the same for all 188-192 pentapeptides proposing that sequence

alteration had no effect on the resultant type of iron bonding.

From the 188-192 pentapeptide RDF data it can also be seen that, the in vacu system

produced a more intense first peak than the corresponding solvated system, suggesting

that, upon addition of water to the systems, it was more difficult for a pentapeptide

oxygen to have an iron as a next nearest neighbour. For the solvated systems, the strongest

g(r) peak was shown for through octahedral iron bonding in the EVALR {111} system,

proposing that the oxygen present in this sequence was more freely accessible to the next

nearest neighbouring irons.

The FE − Opentapeptide bond distance data for the 188-192 pentapeptides is represented

in Tables 6.23 and 6.24.
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{100} surface attachment {111} surface attachment

Pentapeptide Oxygen type BL In Vacu ( Å) BL Solvated ( Å) Oxygen type BL In Vacu ( Å) BL Solvated ( Å)

EVELR NBO 2.11 2.34 E-L 1.99 NB

E O 2.01 1.98 E O 2.28 NB

2.04 2.20 1.96 NB

E-V 2.27 2.39 2.14 NB

EVALR NBO 2.07 NB NBO 2.09 2.22

E O 1.96 2.12 E O 2.17 2.01

2.06 1.94 1.92 2.26

E-V 2.26 NB 1.93 2.09

- 1.99

V-A 1.99 2.09

L-R 1.96 2.07

Table 6.23: 188-192 pentapeptide FE − Opentapeptide bond distance data. BL is bond length, E O is glutamate side chain oxygen, x-x PBO is inter–residue peptide bond

oxygen and NBO is N–terminal peptide bond oxygen. NB is no bonding.
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{100} surface attachment {111} surface attachment

Pentapeptide Oxygen type BL In Vacu ( Å) BL Solvated ( Å) Oxygen type BL In Vacu ( Å) BL Solvated ( Å)

EVGELR E O 2.06 2.34 NBO 2.13 NB

2.05 1.84 E O 1.92 2.00

E-V 2.20 NB 2.11 2.03

2.03 2.03

2.00 2.15

G-E 1.97 NB

E O 1.94 2.25

2.11 1.97

E-L 2.14 NB

Table 6.24: Continued. 188-192 pentapeptide FE−Opentapeptide bond distance data. BL is bond length, E O is glutamate side chain oxygen, x-x PBO is inter–residue peptide

bond oxygen and NBO is N–terminal peptide bond oxygen. NB is no bonding.
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The 188-192 pentapeptides bond distance data (Figure 6.18) shows that, bonding differed

dependant on surface of attachment. For the EVELR in vacu system, the two surfaces

showed bonding through both side chain oxygens of the glutamate (N–terminal glutamate

for the {100} surface and C–terminal glutamate for the {111} surface). There were no

other commonalities present, as the {100} surface showed N–terminal and E-V peptide

bond oxygen bonding, whereas, the {111} surface exhibited only E-L peptide bond oxygen

bonding. This data suggests that, as the EVELR sequence exhibited the same amount

of bonding on each surface there was no surface preference, however, there was more of

an affinity for side chain oxygen on the {111} surface, whereas, the {100} surface had

more of an affinity to peptide bond oxygen, proposing that surface type had no effect on

the bonding amount but did affect the bonding type. On the {111} surface, no bonding

between magnetite iron and pentapeptide oxygen occurred when the system was solvated,

suggesting more favourable bonding between magnetite iron and the oxygen of water.

The average bond lengths for a magnetite iron to a pentapeptide oxygen in the EVELR

sequence was; 2.11 Å and 2.23 Å on the {100} surface for in vacu and solvated systems

respectively, and 2.09 Å in the solvated {111} surface system.

With the mutation to EVALR, on the {100} surface, the same amount and type of bonding

was seen for the in vacu system, as was exhibited for EVELR, suggesting that, the mutation

of the sequence in the in vacu system had no effect on the sequence iron binding affinity.

For the {111} surface, three bonds to glutamate side chain oxygens were exhibited, as with

EVELR, however, the mutation lead to more bonding being present than for the original

sequence, with the addition of N–terminal, V-A and L-R peptide bond oxygen bonding

being present in this system. The E-L peptide bond oxygen bond was not exhibited as

it does not exist in the mutated sequence. These results suggest that substitution was

beneficial to the iron binding affinity of the sequence. With the addition of water, for

the {100} surface, the peptide bond oxygen bonds were no longer present, suggesting that

bonding between magnetite iron and the oxygen of water was more favourable than to

peptide bond oxygen. For the {111} surface, more bonding was seen when the system

was solvated than when it was in vacu, again, suggesting that mutation increased the iron

binding affinity of the sequence. The average bond lengths for an iron to a pentapeptide

oxygen in EVALR was; 2.09 Å and 2.03 Å on the {100} surface for the in vacu and

solvated systems respectively, and 2.01 Å and 2.10 Å on the {111} surface for the in vacu

and solvated systems respectively.

For the glycine insertion mutant, EVGELR, less bonding was present for the {100} surface
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Figure 6.18: Bond distance images for the in vacu and solvated systems of EVELR. a){100} in vacu,

b){100} solvated, c){111} in vacu and d){111} solvated.

than for EVELR and EVALR, with the lack of N–terminal peptide bond oxygen bonding,

which was present in EVELR and EVALR. Hence, the addition of glycine into this position

of the sequence was detrimental to the iron binding affinity. More bonding was present

for EVGELR on the {111} surface than for EVELR and EVALR, as EVGELR exhibited

four bonds to magnetite iron from the side chain oxygens of glutamate, whilst EVELR

and EVALR displayed only three of such bonds. EVGELR also exhibited E-L peptide

bond oxygen bonding (as with EVELR), and N–terminal peptide bond oxygen bonding

(as with EVALR). Unlike the other 188-192 pentapeptide sequences, the glutamate side

chain oxygen bonding for EVGELR was to both glutamate in the sequence. This sequence

also exhibited G-E peptide bond oxygen bonding. This data suggests that the insertion

of glycine greatly improved the iron binding affinity of the sequence. With the addition

of water, no peptide bond oxygen bonding was present, again, suggesting preferential
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bonding of magnetite to the oxygen of water than to peptide bond oxygen. This residence

time data suggests that within the solvated systems, acidic residue bonding is the preferred

method of attachment. The average bond lengths for an iron to a pentapeptide oxygen

in EVGELR was; 2.10 Å and 2.09 Å on the {100} surface for the in vacu and solvated

systems respectively, and 2.04 Å and 2.07 Å on the {111} surface for the in vacu and

solvated systems respectively.

Tables 6.25, 6.26, 6.27 and 6.28 represent the residence times and average coordination

numbers for the bonding present in the 188-192 pentapeptides.
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

EVELR {100} surface L-R PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-L PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

V-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-V PBO 212.41 0.92 0.00 0.00 36.46 0.61 2.33 0.01

E O 0.00 0.00 4946.96 1.01 0.00 0.00 999.00 1.00

E O 0.00 0.00 4997.00 1.00 0.00 0.00 92.03 0.87

NBO 0.00 0.00 4987.32 0.99 0.00 0.00 2.51 0.20

EVELR {111} surface L-R PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-L PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 1042.77 1.90 0.00 0.00 168.69 0.72

E O 0.00 0.00 4974.47 1.99 0.00 0.00 169.49 0.34

V-E PBO 0.00 0.00 4978.00 1.00 0.00 0.00 161.51 0.32

E-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.25: Residence times (RT) and average coordination numbers (av. CN) of the EVELR. (E O = side chain oxygen of glutamate, x-x PBO = inter–residue peptide bond

oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

EVALR {100} surface L-R PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A-L PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

V-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-V PBO 22.04 0.61 0.00 0.00 17.11 0.22 0.00 0.00

E O 0.00 0.00 4973.34 1.00 0.00 0.00 159.03 0.98

E O 0.00 0.00 4974.00 0.99 0.00 0.00 999.00 1.00

NBO 0.00 0.00 4947.23 0.99 0.00 0.00 7.95 0.13

EVALR {111} surface L-R PBO 0.00 0.00 1476.96 0.99 0.00 0.00 163.57 1.30

A-L PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

V-A PBO 0.00 0.00 938.18 0.88 0.00 0.00 999.00 1.00

E-V PBO 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 4070.40 1.80 0.00 0.00 999.00 2.00

E O 0.00 0.00 3683.83 1.29 0.00 0.00 333.20 1.82

NBO 0.00 0.00 61.44 1.23 0.00 0.00 32.09 1.00

Table 6.26: Residence times (RT) and average coordination numbers (av. CN) of the EVALR. (E O = side chain oxygen of glutamate, x-x PBO = inter–residue peptide bond

oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

EVGELR {100} surface L-R PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-L PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

G-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

V-G PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-V PBO 1106.00 0.98 0.00 0.00 3.53 0.02 0.00 0.00

E O 1.00 0.00 4891.61 1.00 20.20 0.05 479.00 0.89

E O 4999.00 1.00 0.00 0.00 999.00 1.00 0.00 0.00

NBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.27: Residence times (RT) and average coordination numbers (av. CN) of the EVGELR. (E O = side chain oxygen of glutamate, x-x PBO = inter–residue peptide

bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

EVGELR {111} surface L-R PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-L PBO 0.00 0.00 369.35 1.09 0.00 0.00 18.30 0.06

E O 0.00 0.00 2206.00 0.43 0.00 0.00 333.45 0.98

E O 0.00 0.00 4993.00 1.00 0.00 0.00 101.24 0.91

G-E PBO 0.00 0.00 2000.66 0.71 0.00 0.00 113.50 0.23

V-G PBO 0.00 0.00 982.27 0.40 0.00 0.00 0.00 0.00

E-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 3406.64 1.98 0.00 0.00 703.60 1.98

E O 0.00 0.00 4965.95 1.99 0.00 0.00 999.00 2.00

NBO 0.00 0.00 4996.00 1.00 0.00 0.00 8.49 0.05

Table 6.28: Continued. Residence times (RT) and average coordination numbers (av. CN) of the EVGELR. (E O = side chain oxygen of glutamate, x-x PBO = inter–residue

peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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The 188-192 pentapeptides residence time data shows that, for the EVELR in vacu system,

when attached to the {100} surface, there were three bonds present lasting over 99% of

the simulation length, all of which were through octahedral iron. This bonding was to

N–terminal peptide bond oxygen and to both of the side chain oxygens of the N–terminal

glutamate. No other bonding exhibited lasted over 5% of the simulation length. When

this system was solvated, only one bond was present for over 99% of the full length of the

simulation, between octahedral iron and one of the side chain oxygen of the N–terminal

glutamate. No other bonding lasted over 10% of the simulation length for this system,

suggesting that the presence of water was disadvantageous to the iron binding potential

of this sequence.

When the equivalent {111} surface residence time data was examined, no tetrahedral iron

bonding was found to be present for either system. For the in vacu system, bonding that

lasted over 99% of the full length of the simulation was seen between octahedral iron

and the V-E peptide bond oxygen and one of the side chain oxygen of the C–terminal

glutamate. No other bonding exhibited for this system lasted over 21% of the simulation

length. Upon solvation, no bonds were present that lasted over 17% of the simulation

length, proposing that, the addition of water provides competitive binding to the mag-

netite.

The single alanine substitution to EVALR, for the {100} in vacu system, showed no

bonding lasting over 0.5% of the simulation length exhibited through tetrahedral iron.

Through octahedral iron, however, three bonds were present lasting over 99% of the full

length of the simulation. These were to N–terminal peptide bond oxygen and to both

of the side chain oxygens of glutamate. No other bonding was displayed for this system.

Upon system solvation, only one bond was present for over 99% of the simulation length,

between octahedral iron and one of the side chain oxygens of glutamate. No other bonding

was present for this system. This data suggests that, water provides competition for iron

binding.

The corresponding {111} surface data showed no tetrahedral iron bonding. With the

in vacu system octahedral iron bonding, a bond was exhibited to one of the side chain

oxygens of glutamate that lasted for 81% of the simulation length. A bond that lasted for

74% of the simulation length was also seen to the other side chain oxygen of glutamate.

No other bonding present lasted over 30% of the simulation length. With the addition

of water, two bonds were displayed which lasted over 99% of the simulation length. One

of the bonds was to one of the side chain oxygen of glutamate, which continued from
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the in vacu system. The other bond was to V-A peptide bond oxygen, suggesting that

the shorter equivalent in vacu V-A peptide bond oxygen residence time was due to the

formation of this bond toward the latter stages of this system simulation. For this system

no other bonding lasting over 34% of the simulation length was exhibited.

On comparison of the residence time data for EVALR and EVELR, it can be seen that for

the {100} in vacu system, EVALR had the same amount of bonding that lasted over 99%

of the full length of the simulation as EVELR (three bonds for each sequence), and these

bonds were also of the same type (octahedral iron to N–terminal peptide bond oxygen and

to both of the side chain oxygens of the N–terminal glutamate). This data suggests that,

the sequence mutation had no effect on the iron binding potential of the {100} in vacu

system. When these systems were solvated, again, EVALR and EVELR presented with

the same amount of bonding lasting over 99% of the full length of the simulation (one

bond to the side chain oxygen of glutamate for both). When the {111} surface in vacu

system was examined, EVELR showed more bonding lasting over 82% of the simulation

length (two bonds for EVELR and one bond for EVALR). These results suggest that,

mutation of EVELR reduced the potential iron binding of the sequence. Upon solvation,

EVALR exhibited the most bonding lasting over 99% of the simulation length (two bonds

for EVALR and no bonds for EVELR). Based on the solvated systems data, for the {100}
surface, sequence mutation had no effect on iron binding, hence, attachment was not

sequence dependent. EVALR was the preferred sequence of attachment for the {111}
surface.

The residence time data for EVGELR showed that, for the {100} in vacu system, bonding

was exhibited through tetrahedral iron to one of the side chain oxygens of the N–terminal

glutamate and through octahedral iron to the other side chain oxygen of the N–terminal

glutamate, lasting over 98% of the simulation length. No other bonding was exhibited

lasting over 23% of the simulation length. When this system was solvated, only the tetra-

hedral iron bond to one of the side chain oxygens of the N–terminal glutamate continued

to last for over 99% of the simulation length. The octahedral iron bond to the other side

chain oxygen of the N–terminal glutamate exhibited bonding lasting for 48% of the sim-

ulation length. No other bonding lasting over 2% of the simulation length was observed.

When the residence time data for EVGELR on the {111} surface was examined, again,

no tetrahedral iron bonding was exhibited. Octahedral iron bonding was exhibited to N–

terminal peptide bond oxygen, one of the side chain oxygen of the N–terminal glutamate,

and one of the side chain oxygen of the C–terminal glutamate that lasted over 99% of the
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simulation length, within the in vacu system. Bonding lasting between 40% ad 69% of the

simulation length was also seen to the other side chain oxygens of both glutamate, and

to G-E peptide bond oxygen. No other bonding lasted over 20% of the simulation length.

Upon solvation, the bond to one of the side chain oxygen of the N–terminal glutamate

continued to last over 99% of the simulation length, however the bond to one of the side

chain oxygens of the C–terminal glutamate only lasted for 10% of the simulation length

with the presence of water. Bonding was seen to the other side chain oxygen of the N–

terminal glutamate lasting for 70% of the simulation length, however, no other bonding

presented lasting over 34% of the simulation length.

On comparison of the residence time data for EVGELR and EVELR it can be seen that,

for the {100} surface in vacu system, EVELR had more bonding lasting over 99% of the

simulation length (three bonds for EVELR and two bonds for EVGELR), which suggests

that, the sequence mutation reduced the iron binding potential of the sequence, as hypoth-

esised. However, when these systems were solvated, EVGELR exhibited the same amount

of bonding lasting over 99% of the full length of the simulation as EVELR (one bond

for each to the side chain oxygen of the N–terminal glutamate), suggesting no sequence

preference. When the {111} surface in vacu system was examined it was shown that,

EVGELR exhibited more bonding lasting over 99% of the full length of the simulation

(three bonds for EVGELR and two bonds for EVELR), proposing that, the mutation im-

proved the sequence iron binding potential. Upon solvation, this trend remained the same,

with EVGELR displaying one bond that lasted over 99% of the simulation length, whilst,

EVELR exhibited no bonding that lasted for this length of time. From the solvated sys-

tems data it was shown that, for the {100} surface, mutation of the original sequence had

no effect on the iron binding potential, hence, attachment was not sequence dependent.

EVGELR was the preferred sequence of attachment for the {111} surface, proposing that,

as with EVALR, the mutation improved iron binding affinity.

All related energy data from the interfacial energy calculations of the 188-192 pentapep-

tides can be found in Table 6.29.

The solvated 188-192 pentapeptides interfacial energy data showed that, the {100} surface

produces lower interfacial energy values (between 6.84 eV and 7.50 eV) than the {111} sur-

face, with the exception of EVGELR (between 8.28 eV and 13.65 eV (excluding EVGELR

at 5.72 eV)). For the {100} surface, both mutations exhibited larger interfacial energy val-

ues than EVELR, with EVALR producing the largest, suggesting that mutation reduced

the iron binding potential of the sequence, as hypothesised, but the extent of this effect
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{100} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

EVELR -26.40 6.69 6.84 0.66

EVALR -19.71 0.00 7.50 0.00

EVGELR -26.60 6.89 7.34 0.16

{111} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

EVELR -23.91 5.52 13.65 0.00

EVALR -18.39 0.00 8.28 5.37

EVGELR -25.56 7.17 5.72 7.93

Table 6.29: Interfacial energies for all pentapeptides on the {100} and {111} surface, using the Yang,

Stipp and Harding method[164]. Eint of s-p is the interfacial energy of the slab–peptide system. Ediff of

s-p is the difference in interfacial energy from the highest interfacial energy of the slab–peptide system.

Eint of s-p-w is the interfacial energy of the slab–peptide–water system. Ediff of s-p-w is the difference in

interfacial energy from the highest interfacial energy of the slab–peptide–water system.

was dependent on the type of mutation. For the {111} surface, both mutations produced

smaller interfacial energy values than EVELR, with EVGELR producing the smallest

value, suggesting that the sequence mutation improved the iron binding potential, and

again, the extent of this influence was dependent on mutation type.

This data also indicated that, again, the addition of water was damaging to the systems

interfacial energy, as the energies exhibited were much lower for the in vacu system, for

example, on the {111} surface, EVELR presented with a significant increase in interfacial

energy values upon solvation, from -23.91 eV to 13.65 eV. Preferential attachment of water

to the magnetite surface could explain the increase in interfacial energy with the addition

of water. Solvation of the system also affected the pentapeptides interfacial behaviour, as

the energy trends for the in vacu systems are very different to the related solvated systems,

with the exception of EVALR on the {100} surface, and EVGELR on the {111} surface,

both of which exhibited the same trend whether in vacu or solvated.

As with the other pentapeptides, there are concerns with this direct method of calculating

the adsorption energy, which are discussed for the 177-183 pentapeptides along with pos-

sible reasons for these. An alternative indirect method is explored in the following section

which utilises a constrained molecular dynamics version of the systems, focusing on the

Potential of Mean Force and free energy evaluation.
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6.6 Constrained system

Free energy profiles were created for the aforementioned systems as shown in Figure 6.19.

Figure 6.19: A comparison of the free energy profiles of the 188-192 pentapeptides. Distance refers

to distance between the peptide CoM and the magnetite surface. The dashed line represents the water

density profile for the system.

The free energy profiles for the different 188-192 pentapeptides (Figure 6.19) showed that,

on the {100} surface, both mutations of EVELR reduced the iron binding activity between

0 Å and 3.5 Å , however, between 3.5 Å and 9 Å the mutation increase the iron binding

activity. Between 0.75 Å and 3.5 Å EVALR produced the highest mutant free energy,

however, from this distance until the sequence CoM is at the surface, EVGELR produced
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the higher free energy value. For EVELR, between 10 Å and 9 Å was optimal for

attachment, after which point, a gradual increase in free energy was detected, which

appears to be independent of any water barrier influence. Thus, it is put forward that this

successive increase in free energy is attributable to a requirement for more energy within

the system to enable sequence attachment to the magnetite crystal as it moves closer

towards the {100} surface. For EVALR and EVGELR, between 10 Å and 4.5 Å and

between 10 Å and 5 Å , respectively, was optimal for attachment, after which point, an

increase in free energy was detected, corresponding with the presence of the smaller water

absorption layer. It is proposed that the successive increase in free energy was attributable

to a requirement for more energy within the system for the sequences to pass through the

water barriers in order to enable sequence attachment to the {100} surface.

Whereas, with the {111} surface energy profile, there was little difference between the free

energy profiles of the three sequences, with EVELR showing a marginally larger change

in free energy than EVALR and EVGELR. It can also be seen that, EVELR mutation

appears to slightly increase the iron binding activity of the sequence and minimal difference

in the free energy profiles of the two types of mutation was displayed. For EVALR and

EVGELR, between 10 Å and 4 Å and between 10 Å and 4.5 Å , respectively, was

optimal for attachment, after which point, a slight increase in free energy was detected,

corresponding with the presence of the smaller water absorption layer. It is proposed

that the successive increase in free energy was attributable to a requirement for more

energy within the system for the sequences to pass through the water barriers in order

to enable sequence attachment to the {100} surface. For EVELR, between 10 Å and

8.5 Å was optimal for attachment, after which point, a slight increase in free energy

was detected, which appears to be independent of any water barrier influence. Thus, the

successive increase in free energy was proposed to be attributable to the need for more

system energy, to enable sequence attachment. The small changes in free energy seen for

the sequence profiles suggest that the water absorption layers have minimal influence on

the free energy profiles.

Upon examination of the energy minima for the 188-192 pentapeptides (Figure 6.20) it can

be observed that, on the {100} surface, only EVALR and EVGELR exhibited a negative

value for their energy minima, with EVALR producing the lowest value at -0.0178 eV. The

energy minima for these residues fall between 7.3 Å and 7.5 Å, suggesting that attachment

of the residue centre of mass at this distance would be preferable. On the {111} surface,

again, only EVALR and EVGELR exhibited a negative value for their energy minima,
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with EVGELR producing the lowest value at -0.0442 eV. The energy minima for these

residues fall between 6.5 Å and 7.1 Å, suggesting that attachment of the residue centre

of mass at this distance would be preferable.
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Figure 6.20: A close-up comparison of the free energy profiles of the 188-192 pentapeptides between -0.5

eV and 0.5 eV, exhibiting the free energy minima.
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Figure 6.21: A comparison of the free energy values for the 188-192 pentapeptide CoM at the magnetite

surface for both the {100} and {111} surfaces.

The free energy values for the 188-192 pentapeptides centre of mass at the magnetite

surfaces are shown in Figure 6.21. On the {100} surface, the EVELR sequence exhibits

a free energy value of 2.67 eV, whereas, on the {111} surface its value was much lower,

0.60 eV. Likewise, the EVALR and EVGELR sequences demonstrated much higher free

energy values (4.40 eV and 4.70 eV, respectively) on the {100} surface, than exhibited

on the {111} surface (0.18 eV and 0.11 eV, respectively). With both sets of mutation

energy values being similar, it suggests that similar effects on the systems are seen despite

very different sequence mutations being present. This data showed that, the {111} surface

presented with significantly lower free energy values than the {100} surface, representing

superior iron binding, proposing that this was the preferential surface of attachment. The

free energy profiles also showed that, the sequence with the lowest free energy when the

CoM is at the surface was EVELR for the {100} surface and EVGELR for the {111}
surface.
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6.6.1 Residues 185-189 (SDEEV)

Unconstrained System

R values for pentapeptides in the region of 185-189 can be found in Tables 6.30 and 6.31.

Pentapeptide Fe type Surface System r ( Å)

SDEEV FET 100 in vacu 1.98

solvated 1.98

111 in vacu -

solvated -

FEO 100 in vacu 1.98

solvated 2.08

111 in vacu 2.03

solvated 2.08

SAEEV FET 100 in vacu 1.93

solvated 1.93

111 in vacu -

solvated -

FEO 100 in vacu 1.98

solvated 2.03

111 in vacu 1.98

solvated 2.03

SDAEV FET 100 in vacu 2.03

solvated 2.03

111 in vacu -

solvated -

FEO 100 in vacu 1.98

solvated 2.08

111 in vacu 1.98

solvated 2.03

Table 6.30: R (Å) values from RDF data for pentapeptides in the region of 185-189.

Figure 6.22 exhibits the RDF profiles for SDEEV. The RDF profiles of the remaining

185-189 pentapeptides can be found in the Appendix. The RDF data for the 185-189 pen-

tapeptides shows that, for all pentapeptides, both octahedral and tetrahedral iron bonding
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Pentapeptide Fe type Surface System r ( Å)

SDEAV FET 100 in vacu 1.98

solvated 2.03

111 in vacu -

solvated -

FEO 100 in vacu 1.98

solvated 2.13

111 in vacu 2.03

solvated 2.03

SDAAV FET 100 in vacu 2.08

solvated 2.18

111 in vacu -

solvated -

FEO 100 in vacu 2.03

solvated 2.03

111 in vacu 1.98

solvated 2.03

Table 6.31: Continued. R (Å) values from RDF data for pentapeptides in the region of 185-189.

was displayed for the {100} surface. Whereas, with the {111} surface only octahedral iron

bonding was exhibited. As the iron bonding trend was the same for all 185-189 pentapep-

tides, the data suggests that mutation of the sequence had no effect on the iron bonding

type that resulted.

The RDF data for the 185-189 pentapeptide also showed that, the most intense first peak

was exhibited for the in vacu systems rather than the corresponding solvated system,

suggesting that, with the addition of water, it was more difficult for the pentapeptide

oxygens to have an iron ion as a next nearest neighbour. For the solvated systems, the

strongest g(r) peak was shown for octahedral iron bonding in the {111} surface SDEAV

system, suggesting that, the oxygen present was more freely accessible to the next nearest

neighbouring irons.

The FE − Opentapeptide bond distance data for the 185-189 pentapeptides is represented

in Tables 6.32, 6.33 and 6.34.
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Figure 6.22: RDF plots for SDEEV. FET is tetrahedral iron, FEO is octahedral iron. Blue is {100} in

vacu. Red is {100} solvated. Green is {111} in vacu. Purple is {111} solvated.
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{100} surface attachment {111} surface attachment

Pentapeptide Oxygen type BL In Vacu ( Å) BL Solvated ( Å) Oxygen type BL In Vacu ( Å) BL Solvated ( Å)

SDEEV S-D 1.97 NB NBO 1.96 1.98

D O 1.95 2.06 S-D 2.21 2.11

2.07 2.18 D O 2.17 2.13

E O 2.03 2.07 2.03 2.04

1.95 2.09 2.00 NB

E-E 2.13 2.26 2.19 NB

E O 2.04 2.13 D-E 2.05 2.51

2.00 NB E O 1.92 2.17

E-V 2.19 NB - 2.14

2.26 NB

2.02 NB

E O 2.02 2.24

- 2.16

1.97 2.05

Table 6.32: 185-189 pentapeptide FE − Opentapeptide bond distance data. BL is bond length, E O is glutamate side chain oxygen, D O is aspartate side chain oxygen, x-x

PBO is inter–residue peptide bond oxygen and NBO is N–terminal peptide bond oxygen. NB is no bonding.
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{100} surface attachment {111} surface attachment

Pentapeptide Oxygen type BL In Vacu ( Å) BL Solvated ( Å) Oxygen type BL In Vacu ( Å) BL Solvated ( Å)

SAEEV E O 2.08 NB NBO 1.97 NB

1.93 1.90 S-A 1.99 NB

E O 2.02 1.99 E O 1.93 2.12

1.90 1.92 - 2.05

1.95 1.97

E O 1.93 2.10

2.26 NB

2.07 2.06

1.98 2.16

E-V 1.98 NB

SDAEV D O 2.02 NB NBO 2.03 1.96

2.15 2.04 S-D 1.96 2.49

E O 1.96 NB D O 2.17 2.06

1.93 NB 1.96 2.00

A-E 2.15 2.24

E O 2.02 2.14

- 2.05

2.08 2.06

2.13 2.08

Table 6.33: Continued. 185-189 pentapeptide FE − Opentapeptide bond distance data. BL is bond length, E O is glutamate side chain oxygen, D O is aspartate side chain

oxygen, x-x PBO is inter–residue peptide bond oxygen and NBO is N–terminal peptide bond oxygen. NB is no bonding.
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{100} surface attachment {111} surface attachment

Pentapeptide Oxygen type BL In Vacu ( Å) BL Solvated ( Å) Oxygen type BL In Vacu ( Å) BL Solvated ( Å)

SDEAV S-D - 2.13 NBO 2.04 1.99

D O 2.08 1.98 S-D 2.22 2.14

1.98 NB D O 2.09 2.08

E O 2.14 NB 2.21 NB

1.96 1.93 1.86 1.94

D-E 2.12 2.03

E O 1.92 2.15

- 2.02

2.03 1.96

2.15 2.11

A-V 2.06 NB

SDAAV S-D 2.05 2.19 NBO 1.94 2.28

D O 1.93 NB S-D 1.98 2.09

2.06 2.15 D O 1.94 2.39

A-A 2.17 2.42 1.90 2.21

- 2.00

A-A 2.00 2.39

Table 6.34: Continued. 185-189 pentapeptide FE − Opentapeptide bond distance data. BL is bond length, E O is glutamate side chain oxygen, D O is aspartate side chain

oxygen, x-x PBO is inter–residue peptide bond oxygen and NBO is N–terminal peptide bond oxygen. NB is no bonding.
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The 185-189 pentapeptides bond distance data (Figure 6.23) showed that, for the SDEEV

in vacu system, bonding differed dependant on surface of attachment. For the {100}
surface, bonding was present through the two side chain oxygens of both glutamate, and

both side chain oxygens of aspartate. This bonding was also observed for the {111} surface,
however, more acidic residue side chain oxygen bonding was present for this surface. Both

surfaces also exhibited S-D peptide bond oxygen bonding. The {100} surface displayed E-

E and E-V peptide bond oxygen bonding, whilst, the {111} surface showed N–terminal and

D-E peptide bond oxygen bonding. This data suggests that, the {111} surface was slightly

more favourable for iron binding. Upon solvation, the amount of bonding present was

reduced, suggesting that, the presence of water was disadvantageous to the iron bonding

potential of the sequence, however, the {111} surface remained the preferred surface of

attachment, as the amount of bonding was greater than that presented for the {100}
systems. The average bond lengths for a magnetite iron to a pentapeptide oxygen in the

SDEEV sequence was; 2.04 Å and 2.13 Å on the {100} surface for in vacu and solvated

systems respectively, and 2.07 Å and 2.15 Å on the {111} surface for in vacu and solvated

systems respectively.

With the mutation of SDEEV to SAEEV, less bonding was displayed for the mutant

sequence, particularly for the {100} surface. This phenomenon was proposed to be due

to the removal of the potential oxygen binding sites of aspartate. Bonding to the two

side chain oxygens of both glutamate was exhibited, although, more of this bonding type

was present on the {111} surface than the {100} surface (four bonds to the C–terminal

glutamate for the {111} surface and two bonds for the {100} surface). The {100} surface

exhibited no other bonding, whereas, the {111} surface also presented with N–terminal,

S-A and E-V peptide bond oxygen bonding, suggesting that different surface types affect

the iron binding potential of the sequence, with {111} surface attachment again favoured.

The addition of water to the systems had an adverse effect on bonding, particularly on

the {111} surface, as all peptide bong oxygen bonding was removed for this surface. The

average bond lengths for an iron to a pentapeptide oxygen in SAEEV was; 1.98 Å and

1.94 Å on the {100} surface for in vacu and solvated systems respectively, and 2.01 Å and

2.08 Å on the {111} surface for in vacu and solvated systems respectively.

For the SDAEV sequence {100} in vacu system, the same amount of bonding was present

as in the equivalent SAEEV system, thus, less bonding was present than for the original

sequence. In this system, only acidic side chain oxygen bonding was present, (to both side

chain oxygens of aspartate and to both side chain oxygens of glutamate). In the {111}
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Figure 6.23: Bond distance images for the in vacu and solvated systems of SDEEV. a){100} in vacu,

b){100} solvated, c){111} in vacu and d){111} solvated.

surface, SDAEV exhibited one more bond than SAEEV, presenting with N–terminal, S-D,

A-E peptide bond oxygen bonding, and bonding to both side chain oxygens of aspartate

(one bond per each oxygen) and bonding to both side chain oxygens of glutamate (one

bond to one oxygen and two bonds to the other oxygen), suggesting that potential iron

binding was surface dependent. Less bonding occurred when the {100} surface system was

solvated, as only one bond was displayed, suggesting more favourable bonding between

the iron ions and the oxygen of water. For the {111} surface, more bonding was seen upon

solvation, with both side chain oxygens of glutamate presenting with two bonds each. This

data postulates that, the addition of water improved the sequence iron binding potential.

The average bond lengths for a magnetite iron to a pentapeptide oxygen in the SDAEV

sequence was; 2.02 Å and 2.04 Å on the {100} surface for in vacu and solvated systems

respectively, and 2.06 Å and 2.12 Å on the {111} surface for in vacu and solvated systems
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respectively.

For the SDEAV sequence {100} in vacu system, the same amount and type of bonding

were seen, as in the equivalent SDAEV system (bonding to both side chain oxygens of

aspartate and to both side chain oxygens of glutamate). However, the {111} in vacu

system, exhibited more bonding than the other mutated sequences, though, there was

still less bonding than was seen for SDEEV. SDAEV exhibited bonding to N–terminal,

S-D, D-E and A-V peptide bond oxygen bonding, bonding to both side chain oxygens of

glutamate, and bonding to both side chain oxygens of aspartate. These results suggested

that the {111} surface had more of a preference for peptide bond oxygen bonding than the

{100} surface. As previously seen, less bonding was displayed upon solvation, suggesting

more favourable bonding between the magnetite iron and the oxygen of water. For the

{100} surface, a bond to one of the side chain oxygens of aspartate and a bond to one of

the side chain oxygens of glutamate were no longer present, however, a new bond existed

to S-D peptide bond oxygen. For the {111} surface, the A-V peptide bond oxygen bond

and one of the side chain oxygen aspartate bonds were no longer present, however, a new

bond exists to the other glutamate side chain oxygen, proposing that, along with being

detrimental to the amount of bonding, solvation also changed the type of bonding present.

The average bond lengths for a magnetite iron to a pentapeptide oxygen in the SDEAV

sequence was; 2.04 Å and 2.01 Å on the {100} surface for in vacu and solvated systems

respectively, and 2.07 Å and 2.05 Å on the {111} surface for in vacu and solvated systems

respectively.

For the double substitution mutant, SDAAV, less bonding was present than for any other

185-189 pentapeptide sequence. This phenomenon was postulated to be due to the removal

of the two acidic residues from the original sequence, thus, removal of more potential

oxygen binding sites than the other mutant sequences. Both surfaces exhibited bonding to

both side chain oxygens of aspartate, and to S-D and A-A peptide bond oxygen. Whilst,

the {111} surface, also showed N–terminal peptide bond oxygen bonding. This data

suggests that, the {111} surface was the preferred surface for attachment. Upon solvation,

less bonding occurred for the {100} surface system, with the loss of an aspartate side chain

oxygen bond. For the {111} surface, a new aspartate side chain oxygen bond was formed

with the addition of water, suggesting that the presence of water improved the iron binding

potential of this sequence. The average bond lengths for a magnetite iron to a pentapeptide

oxygen in the SDAAV sequence was; 2.05 Å and 2.25 Å on the {100} surface for in vacu

and solvated systems respectively, and 1.95 Å and 2.23 Å on the {111} surface for in
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vacu and solvated systems respectively.

Tables 6.35, 6.36, 6.37, 6.38, 6.39, 6.40, 6.41, 6.42 and 6.43 represent the residence times

and average coordination numbers for bonding between all oxygen present in the 185-

189 pentapeptides and tetrahedral and/or octahedral iron on both the {100} and {111}
magnetite surfaces.
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SDEEV {100} surface E-V PBO 0.00 0.00 224.46 0.74 0.00 0.00 4.71 0.03

E O 0.00 0.00 581.95 0.99 0.00 0.00 5.63 0.01

E O 169.03 0.14 857.35 0.87 0.00 0.00 495.11 0.97

E-E PBO 0.00 0.00 675.62 0.98 0.00 0.00 90.46 0.87

E O 0.00 0.00 4967.57 1.00 0.00 0.00 999.00 1.00

E O 395.01 0.47 547.59 0.53 0.00 0.00 973.90 0.98

D-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 4998.00 1.00 0.00 0.00 999.00 1.00 0.00 0.00

D O 4998.00 1.00 0.00 0.00 42.78 0.50 0.00 0.00

S-D PBO 0.00 0.00 494.16 0.92 0.00 0.00 398.61 0.71

S O 0.00 0.00 1.00 0.00 7.22 0.11 0.00 0.00

NBO 41.13 0.12 1.00 0.00 0.00 0.00 0.00 0.00

Table 6.35: Residence times (RT) and average coordination numbers (av. CN) of SDEEV. (S O = side chain oxygen of serine, D O = side chain oxygen of aspartate, E O =

side chain oxygen of glutamate, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SDEEV {111} surface E-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 1499.32 1.19 0.00 0.00 507.50 0.95

E O 0.00 0.00 1306.17 1.24 0.00 0.00 628.78 1.77

E-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 1929.87 1.10 0.00 0.00 883.25 1.66

E O 0.00 0.00 1872.59 1.24 0.00 0.00 105.00 0.94

D-E PBO 0.00 0.00 1543.15 0.44 0.00 0.00 41.43 0.68

D O 0.00 0.00 1990.82 0.79 0.00 0.00 41.46 0.25

D O 0.00 0.00 4824.94 1.39 0.00 0.00 631.75 1.98

S-D PBO 0.00 0.00 924.52 0.97 0.00 0.00 781.02 1.69

S O 0.00 0.00 6.28 0.33 0.00 0.00 0.00 0.00

NBO 0.00 0.00 4995.00 1.00 0.00 0.00 999.00 1.00

Table 6.36: Continued. Residence times (RT) and average coordination numbers (av. CN) of SDEEV. (S O = side chain oxygen of serine, D O = side chain oxygen of

aspartate, E O = side chain oxygen of glutamate, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SAEEV {100} surface E-V PBO 19.50 0.55 0.00 0.00 18.66 0.32 0.00 0.00

E O 4999.00 1.00 0.00 0.00 999.00 1.00 0.00 0.00

E O 1.02 0.01 4999.00 1.00 0.00 0.00 999.00 1.00

E-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 3479.70 0.70 735.04 0.30 999.00 1.00 0.00 0.00

E O 1548.71 1.00 2.50 0.00 9.00 0.02 0.00 0.00

A-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.37: Residence times (RT) and average coordination numbers (av. CN) of SAEEV. (S O = side chain oxygen of serine, E O = side chain oxygen of glutamate, x-x

PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SAEEV {111} surface E-V PBO 0.00 0.00 4996.00 1.00 0.00 0.00 230.03 0.45

E O 0.00 0.00 3292.41 1.76 0.00 0.00 279.13 1.63

E O 0.00 0.00 3302.07 1.81 0.00 0.00 293.26 1.76

E-E PBO 0.00 0.00 148.60 0.26 0.00 0.00 0.00 0.00

E O 0.00 0.00 1157.13 1.26 0.00 0.00 239.88 1.81

E O 0.00 0.00 4895.34 1.01 0.00 0.00 999.00 1.00

A-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S-A PBO 0.00 0.00 4991.00 1.00 0.00 0.00 14.61 0.08

S O 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

NBO 0.00 0.00 4363.03 1.00 0.00 0.00 33.95 0.06

Table 6.38: Continued. Residence times (RT) and average coordination numbers (av. CN) of SAEEV. (S O = side chain oxygen of serine, E O = side chain oxygen of

glutamate, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).

264



in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SDAEV {100} surface E-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 4269.00 0.85 0.00 0.00 3.04 0.02

E O 0.00 0.00 4272.00 0.85 0.00 0.00 37.47 0.14

A-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D-A PBO 234.60 0.24 1.00 0.00 0.00 0.00 0.00 0.00

D O 1199.75 0.75 0.00 0.00 377.62 1.00 0.00 0.00

D O 4995.00 1.00 0.00 0.00 4.63 0.02 0.00 0.00

S-D PBO 0.00 0.00 256.53 0.45 0.00 0.00 0.00 0.00

S O 1.00 0.00 2.80 0.12 0.00 0.00 2.57 0.01

NBO 0.00 0.00 1.91 0.00 0.00 0.00 0.00 0.00

Table 6.39: Residence times (RT) and average coordination numbers (av. CN) of SDAEV. (S O = side chain oxygen of serine, D O = side chain oxygen of aspartate, E O =

side chain oxygen of glutamate, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SDAEV {111} surface E-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 4956.77 1.99 0.00 0.00 665.20 1.97

E O 0.00 0.00 4424.68 1.38 0.00 0.00 993.59 1.96

A-E PBO 0.00 0.00 4997.53 0.97 0.00 0.00 18.62 0.67

D-A PBO 0.00 0.00 9.38 0.00 0.00 0.00 0.00 0.00

D O 0.00 0.00 3647.00 0.73 0.00 0.00 999.00 1.00

D O 0.00 0.00 1829.00 1.19 0.00 0.00 202.77 1.04

S-D PBO 0.00 0.00 4997.00 1.00 0.00 0.00 100.64 0.94

S O 0.00 0.00 7.70 0.00 0.00 0.00 1.00 0.00

NBO 0.00 0.00 4996.16 1.00 0.00 0.00 999.00 1.00

Table 6.40: Continued. Residence times (RT) and average coordination numbers (av. CN) of SDAEV. (S O = side chain oxygen of serine, D O = side chain oxygen of

aspartate, E O = side chain oxygen of glutamate, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SDEAV {100} surface A-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E-A PBO 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00

E O 4998.00 1.00 0.00 0.00 999.00 1.00 0.00 0.00

E O 0.00 0.00 4998.00 1.00 0.00 0.00 62.58 0.44

D-E PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 4997.00 1.00 0.00 0.00 806.42 0.99 0.00 0.00

D O 4997.00 1.00 0.00 0.00 17.30 0.06 0.00 0.00

S-D PBO 0.00 0.00 48.28 0.63 0.00 0.00 267.01 0.95

S O 11.27 0.33 69.72 0.39 24.08 0.77 0.00 0.00

NBO 83.24 0.08 1.33 0.00 0.00 0.00 0.00 0.00

Table 6.41: Residence times (RT) and average coordination numbers (av. CN) of SDEAV. (S O = side chain oxygen of serine, D O = side chain oxygen of aspartate, E O =

side chain oxygen of glutamate, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SDEAV {111} surface A-V PBO 0.00 0.00 4989.40 1.00 0.00 0.00 33.32 0.08

E-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E O 0.00 0.00 4994.47 1.99 0.00 0.00 971.96 1.93

E O 0.00 0.00 4981.72 1.00 0.00 0.00 793.79 1.84

D-E PBO 0.00 0.00 4999.00 1.00 0.00 0.00 999.00 1.00

D O 0.00 0.00 4731.90 1.18 0.00 0.00 987.34 1.04

D O 0.00 0.00 4214.23 1.99 0.00 0.00 636.54 1.90

S-D PBO 0.00 0.00 49.57 0.71 0.00 0.00 377.27 1.00

S O 0.00 0.00 4.23 0.59 0.00 0.00 45.90 1.11

NBO 0.00 0.00 4995.40 1.00 0.00 0.00 999.00 1.00

Table 6.42: Continued. Residence times (RT) and average coordination numbers (av. CN) of SDEAV. (S O = side chain oxygen of serine, D O = side chain oxygen of

aspartate, E O = side chain oxygen of glutamate, x-x PBO = inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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in vacu system solvated system

FET FEO FET FEO

RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN RT (ps) Av. CN

SDAAV {100} surface A-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A-A PBO 0.00 0.00 656.48 0.95 0.00 0.00 5.62 0.35

D-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 0.00 0.00 4995.00 1.00 0.00 0.00 999.00 1.00

D O 0.00 0.00 3566.87 0.98 0.00 0.00 9.69 0.03

S-D PBO 1557.50 0.99 0.00 0.00 246.40 0.97 0.00 0.00

S O 1.83 0.00 17.38 0.23 0.00 0.00 25.08 0.57

NBO 1.17 0.03 222.50 0.09 0.00 0.00 0.00 0.00

SDAAV {111} surface A-V PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A-A PBO 0.00 0.00 1731.89 1.34 0.00 0.00 57.02 1.65

D-A PBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D O 0.00 0.00 4991.00 1.00 0.00 0.00 999.00 0.99

D O 0.00 0.00 3227.39 1.77 0.00 0.00 999.00 1.98

S-D PBO 0.00 0.00 4990.00 1.00 0.00 0.00 999.00 0.98

S O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NBO 0.00 0.00 4992.00 1.00 0.00 0.00 999.00 1.00

Table 6.43: Residence times (RT) and average coordination numbers (av. CN) of SDAAV. (S O = side chain oxygen of serine, D O = side chain oxygen of aspartate, x-x PBO

= inter–residue peptide bond oxygen and NBO = N–terminal peptide bond oxygen).
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The 185-189 pentapeptides residence time data showed that, for the SDEEV {100}in
vacu system, there were three bonds present that lasted over 99% of the full length of

the simulation (tetrahedral iron bonding to both side chain oxygens of aspartate and

octahedral iron bonding to one of the side chain oxygen of the N–terminal glutamate).

No other bonding exhibited lasted over 18% of the simulation length. When this system

was solvated, three bonds were present for over 97% of the full length of the simulation,

however, the bonding type differed to that shown for the in vacu system, with a tetrahedral

iron bond to one of the side chain oxygens of aspartate, and a bond to each of the side chain

oxygens of the N–terminal glutamate through octahedral iron being present, suggesting

that the addition of water makes glutamate attachment more favourable than aspartate

attachment. No other bonding was present lasting over 50% of the simulation length.

As the amount of bonding lasting over 97% of the simulation length did not alter upon

solvation, it was proposed that, water had a minimal effect on iron binding potential.

The residence time data for SDEEV on the {111} surface showed that, no tetrahedral

iron bonding was present for either system. For the in vacu system, bonding lasting over

96% of the full length of the simulation was seen between octahedral iron and N–terminal

peptide bond oxygen, and one of the side chain oxygens of aspartate. No other bonding

lasting over 40% of the simulation length was seen for this system. Upon solvation, only

the bond between octahedral iron and N–terminal peptide bond oxygen continued to last

over 99% of the full length of the simulation. This data suggests that the addition of water

provides competitive binding to the magnetite. Bonding was also present, lasting between

51% and 88% of the simulation length, between octahedral iron and all of the side chains

oxygens of the glutamates and the S-D peptide bond oxygen.

With a single alanine substitution of SDEEV to SAEEV, for the {100} in vacu system,

bonding lasting over 99% of the full length of the simulation was exhibited between tetra-

hedral iron and one of the side chain oxygens of the C–terminal glutamate, and between

octahedral iron and the other side chain oxygen of the C–terminal glutamate. Bonding

lasting for 70% of the simulation length was also seen between tetrahedral iron and one

of the side chain oxygens of the N–terminal glutamate. No other bonding present for this

system lasted over 31% of the simulation length. Upon solvation, the bonding which lasted

over 99% of the simulation length in the in vacu system, continued to last for this length

of time, however, the bond between tetrahedral iron and one of the side chain oxygens of

the N–terminal glutamate also lasted over 99% of the full length of the simulation with the

addition of water, proposing that, the shorter equivalent in vacu residence time was due
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to the formation of this bond towards the latter stages of this simulation. This systems

residence time data suggests that, the addition of water improved the iron binding affinity

of the sequence. No other bonding present lasted over 2% of the simulation length.

Again, no tetrahedral iron bonding was exhibited when the corresponding {111} surface

data was examined. With the octahedral iron, bonding was exhibited to N–terminal, S-

A and E-V peptide bond oxygen, and one of the side chain oxygens of the N–terminal

glutamate that lasted over 87% of the full length of the simulation. Bonding lasting for

66% of the simulation length was also seen to both side chain oxygens of the C–terminal

glutamate. No other bonding present lasted over 24% of the simulation length. With

the addition of water, only the bond between octahedral iron and one of the side chain

oxygens of the N–terminal glutamate lasted over 99% of the simulation length, suggesting

that, waters presence in the system was unfavourable for the iron binding ability of the

sequence. No other bonding was exhibited lasting over 30% of the simulation length.

On comparison of the residence time data of SAEEV and SDEEV, it was seen that, for the

{100} surface in vacu system, SDEEV had more bonding lasting over 99% of the simulation

length than SAEEV (three bonds for SDEEV and two bonds for SAEEV), thus, the

SDEEV sequence was the preferred for attachment in this system. Upon solvation, both

sequences exhibited three bonds that lasted over 97% of the full length of the simulation,

suggesting no preferential sequence for this system. The {111} in vacu system data showed

that, SAEEV exhibited more bonding than SDEEV (four bonds for SAEEV and two bonds

for SDEEV), proposing that the SAEEV sequence was preferred for attachment. When

these systems were solvated, both sequences exhibited one bond that lasted over 99% of the

simulation length, proposing that there was no favoured sequence. Based on the natural

solvated systems, the {100} surface was the preferred surface of attachment, however,

there was no preferred sequence of attachment.

For the SDAEV {100} in vacu system, there were three bonds present lasting over 85%

of the full length of the simulation(octahedral iron bonding to both side chain oxygens of

glutamate and tetrahedral iron bonding to one of the side chain oxygens of the aspartate).

No other bonding was exhibited for this system lasting over 24% of the simulation length.

Upon addition of water, no bonding was present lasting over 38% of the simulation length,

suggesting that the addition of water to the system is severely detrimental to the iron

binding potential of this sequence.

When the corresponding {111} surface residence time data, there was no tetrahedral iron
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bonding displayed. With the octahedral iron, N–terminal, S-D and A-E peptide bond

oxygen bonding, and bonding to both side chain oxygens of glutamate was exhibited

lasting over 88% of the simulation length. Bonding lasting for 73% of the simulation

length was also revealed between octahedral iron and one of the side chain oxygens of

aspartate. No other bonding was exhibited lasting over 37% of the simulation length.

Upon solvation, the bonds between octahedral iron and N–terminal peptide bond oxygen

and one of the side chain oxygens of glutamate continued to last over 99% of the full length

of the simulation. Also, the bond to one of the side chain oxygens of aspartate lasted

over 99% of the simulation length, suggesting that the lower value for the equivalent in

vacu residence time is due to the formation of this bond toward the latter stages of the

simulation. No other bonding present lasted over 67% of the full length of the simulation.

This reduction in residence times suggests that when this system was solvated, the water

provides competitive binding to the magnetite.

On comparison of the residence time data for SDAEV and SDEEV, it was seen that, for the

{100} in vacu system, both sequences exhibited three bonds that lasted over 85% of the full

length of the simulation, suggesting no preferential sequence attachment for this system

type. When water was added to these systems, SDEEV exhibited more bonding lasting

over 97% of the simulation length (three bonds for SDEEV and no bonds for SDAEV),

suggesting that SDEEV was the preferred attachment sequence. When the {111} in vacu

system was examined it was shown that, SDAEV exhibited more bonding lasting over 88%

of the simulation length than SDEEV (five bonds for SDAEV and two bonds for SDEEV),

proposing that SDAEV was the preferred sequence of attachment, hence, the mutation

improved the iron binding affinity of the sequence. Upon solvation, SDAEV presented

with more bonding lasting over 99% of the simulation length than SDEEV (three bonds

for SDAEV and one bond for SDEEV). Based on the natural solvated systems, each

surface had a different sequence preference. For the {100} surface the preferred sequence

of attachment was SDEEV, whereas, SDAEV was the preferred sequence of attachment

for the {111} surface.

For the SDEAV {100} in vacu system it was shown that, bonding lasting over 99% of

the full length of the simulation was exhibited between tetrahedral iron and both side

chain oxygens of aspartate and one of the side chain oxygens of glutamate, and between

octahedral iron and one of the side chain oxygens of glutamate. No other bonding lasting

over 2% of the simulation length was displayed for this system. Upon solvation, only the

bond between tetrahedral iron and one of the side chain oxygen of glutamate continued
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to last over 99% of the simulation length. Bonding was also observed between tetrahedral

iron and one of the side chain oxygens of aspartate lasting for 81% of the simulation length.

This data suggests that, an adverse effect was seen for the sequence iron binding potential

with the addition of water to the system.

When the residence time data for the SDAEV {111} system was examined, there was no

tetrahedral iron bonding present. With the octahedral iron, bonding was exhibited to

N–terminal, D-E and A-V peptide bond oxygen, both side chain oxygens of aspartate,

and both side chain oxygens of glutamate that lasted over 84% of the full length of the

simulation. No other bonding lasting over 1% of the simulation length was present for

this system. Upon solvation, the bonds between octahedral iron and N–terminal and D-E

peptide bond oxygen, one of the side chain oxygens of aspartate and one of the side chain

oxygens of glutamate lasted over 97% the full length of the simulation. Bonds lasting

between 64% and 79% of the simulation length were also displayed between octahedral

iron and the other side chain oxygens of aspartate and glutamate. No other bonding lasted

over 38% of the simulation length. This reduction in residence times suggests that, when

water was present in the system, competitive binding to the magnetite was provided.

On comparison of the residence time data for SDEAV and SDEEV it can be seen that, for

the {100} in vacu system, SDEAV had more bonding lasting over 99% of the simulation

length (four bonds for SDEAV and three bonds for SDEEV). This occurrence suggests

that, the mutated sequence is the preferred for attachment. When these systems were

solvated, SDEEV exhibited more bonding lasting over 97% of the simulation length than

SDEAV (three bonds for SDEEV and one bond for SDEAV). When the {111} in vacu

system was examined it was shown that, SDEAV had more bonding lasting over 84% of

the simulation length than SDEEV (seven bonds for SDEAV and two bonds for SDEEV),

again suggesting that, SDEAV was the preferred sequence of attachment. Upon solvation,

SDEAV again presents as the sequence of preferred attachment, as it presents with more

bonding lasting over 97% of the simulation length than SDEEV (four bonds for SDEAV

and one bond for SDEEV). Based on the solvated systems residence time data, a different

sequence preference was seen for each surface, as the {100} surface showed a preference

for SDEEV, whereas, SDAEV was the preferred sequence of attachment for the {111}
surface.

The residence time data for the double substitution mutant, SDAAV, shows that, for the

{100} in vacu system, there was no bonding present lasting over 32% of the simulation

length through tetrahedral iron.
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With the octahedral iron, bonding was exhibited to one of the side chain oxygens of

aspartate that lasted over 99% of the full length of the simulation. Bonding lasting for

71% of the simulation length was also seen between octahedral iron and the other side

chain oxygen of aspartate. No other octahedral iron bonding present lasted over 14% of the

simulation length. Upon solvation, the bond between octahedral iron and one of the side

chain oxygens of aspartate continued to last over 99% of the full length of the simulation.

No other bonding was exhibited lasting over 25% of the simulation length, suggesting that

competitive binding of water caused the retention times of water to reduce.

When the {111} surface simulations were examined, as with the other 185-189 pentapep-

tide sequences, no tetrahedral iron bonding was present. For the in vacu system, bonding

lasting over 99% of the full length of the simulation was seen between octahedral iron and

N–terminal and S-D peptide bond oxygen, and one of the side chain oxygens of aspartate.

Bonding was also exhibited between octahedral iron and the other side chain oxygen of

aspartate lasting for 65% of the simulation length. No other bonding lasting over 35% of

the simulation length was displayed. When this system was solvated, the bonding between

octahedral iron and N–terminal and S-D peptide bond oxygen, and one of the side chain

oxygens of aspartate continued to last over 99% of the full length of the simulation. Ad-

ditionally, the bond between octahedral iron and the other side chain oxygen of aspartate

lasted over 99% of the simulation length. This data suggests that the addition of water

improved the iron binding potential of the sequence.

On comparison of the residence time data for SDAAV and SDEEV it was seen that, for

the {100} in vacu system, SDEEV had more bonding lasting over 99% of the simulation

length than SDAAV (three bonds for SDEEV and one bond for SDAAV), suggesting that

SDEEV was the pentapeptide of preferred attachment. Upon solvation, again SDEEV

had more bonding lasting over 97% of the simulation length than SDAAV (three bonds

for SDEEV and one bond for SDAAV). On examination of the {111} surface in vacu

system residence time data it was shown that, SDAAV had more bonding lasting over

96% of the simulation length than SDEEV (three bonds for SDAAV and two bonds for

SDEEV), suggesting that the mutant sequence was the preferred for attachment. Upon

addition of water, again SDAAV had more bonding lasting over 99% of the simulation

length than SDEEV (four bonds for SDAAV and one bond for SDEEV). From the natural

solvated system data, each surface exhibited a different sequence preference, with SDEEV

being favoured for attachment on the {100} surface the preferred sequence of attachment is

SDEEV, whereas, for the {111} surface SDAEV was the preferred sequence of attachment.
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All related energy data from the interfacial energy calculations of the 185-189 pentapep-

tides can be found in Table 6.44.

{100} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

SDEEV -9.13 2.98 8.03 0.45

SAEEV -6.15 0.00 7.54 0.94

SDAEV -8.55 2.40 7.18 1.30

SDEAV -7.56 1.41 7.72 0.76

SDAAV -9.44 3.29 8.48 0.00

{111} surface attachment

Eint of s-p (eV) Ediff of s-p (eV) Eint of s-p-w (eV) Ediff of s-p-w (eV)

SDEEV -11.81 5.07 11.11 7.04

SAEEV -15.91 9.17 6.76 11.38

SDAEV -13.45 6.71 12.08 6.07

SDEAV -9.80 3.05 18.14 0.00

SDAAV -6.74 0.00 6.97 11.17

Table 6.44: Interfacial energies for all 185-189 pentapeptides on the {100} and {111} surface, using the

Yang, Stipp and Harding method[164]. Eint of s-p is the interfacial energy of the slab–peptide system.

Ediff of s-p is the difference in interfacial energy from the highest interfacial energy of the slab–peptide

system. Eint of s-p-w is the interfacial energy of the slab–peptide–water system. Ediff of s-p-w is the

difference in interfacial energy from the highest interfacial energy of the slab–peptide–water system.

The solvated 185-189 pentapeptide interfacial energy data showed that, the {100} sur-

face produced lower interfacial energy values (between 7.18 eV and 8.48 eV) than the

{111} surface, with the exception of SAEEV and SDAAV (between 11.11 eV and 18.14

eV (excluding SAEEV at 6.76 eV and SDAAV at 6.97 eV)). For the {100} surface, the

SAEEV, SDAEV and SDEAV mutant sequences produced smaller interfacial energy val-

ues than SDEEV (with SDAEV producing the smallest), whereas, SDAAV produced a

larger interfacial energy value than SDEEV (as hypothesised). This data suggests that,

only the mutation to SDAAV causes a reduction in iron binding potential, with the single

substitutions of acidic residues to alanine leading to increased iron binding affinity. For

the {111} surface, the SDAEV and SDEAV mutations produced larger interfacial energies

than SDEEV, whilst, SAEEV and SDAAV produced smaller interfacial energy values than

SDEEV (with SAEEV producing the smallest), proposing that, the effect of mutation on

iron binding potential was sequence dependent, as single glutamate mutations reduced iron
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binding affinity, whereas, aspartate mutation and double glutamate mutation improved

iron binding potential.

This data also showed that, solvation of the systems had an adverse effect on the interfacial

energies, as the energies displayed were much lower for the in vacu system, with values

increasing greatly, for example, on the {111} surface, SDEEV presented with an increase

in interfacial energy from -11.81 eV to 11.11 eV upon solvation. The increase in interfacial

energy can be explained by preferential attachment of water to the magnetite surface.

Solvation of the system also affected the way that the sequences reacted at the interface,

as the energy trends for the in vacu systems were very different to the related solvated

systems. An example being, SDAAV on the {100} surface, in which, in vacu, the sequence

had the lowest interfacial energy of the 185-189 pentapeptides, however, upon solvation it

exhibited the highest interfacial energy.

There are, as with the other pentapeptides, issues with this method of directly calculating

the adsorption energy, with larger than expected energy values produced and expected

trends not exhibited. Potential reasons for the problems displayed were discussed for the

177-183 pentapeptides. Indirect Potential of Mean Force based methods of adsorption

energy calculation are an alternative, and are considered in the following section, which

utilise a constrained molecular dynamics version of the systems.

6.7 Constrained system

Free energy profiles were created for the aforementioned systems as shown in Figure 6.24.

The free energy profiles for the different 185-189 pentapeptides (Figure 6.24) showed that,

on the {100} surface, all sequences exhibited very similar profiles. The mutants SDAEV

and SDEAV slightly reduce the iron binding activity (with the free energy profile for

SDAEV following very closely that of SDEEV), whereas, the SAEEV and SDAAV mu-

tants slightly increase the iron binding activity by exhibiting lower free energy values. The

mutant SDEAV produced the highest free energy of all 185-189 pentapeptide sequences.

For SDEEV, SDAEV, SDEAV and SDAAV, between 10 Å and 5.5 Å was optimal for

attachment, after which point, an increase in free energy was detected, corresponding with

the presence of the smaller water absorption layer. It is proposed that the successive in-

crease in free energy was attributable to a requirement for more energy within the system

for the sequences to pass through the water barriers in order to enable sequence attach-
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ment. Although, SDAAV exhibits a larger rate of increase in free energy corresponding

with the stronger of the two water peaks, suggesting that, this particular water peak had

more of an effect on iron binding ability of the sequence. However, for SAEEV, the op-

timal attachment region was between 8.5 Å and 3.5 Å as the profile exhibits negative

values within this region. From this distance toward the surface an increase in free energy

was exhibited, proposing that it was more difficult for the sequence to attach closer to the

magnetite surface.

Whereas, the {111} surface energy profile showed that, SDAEV, SDEAV and SDAAV

appeared to display similar free energy trends, whilst SDEEV and SAEEV exhibited a

similar trend in profile. SDEEV presented with the lowest free energy profile, suggesting

that the mutations are doing as hypothesised, whilst SDAEV produced the highest free

energy of all 190-195 pentapeptide sequences. For SDAEV, SDEAV and SDAAV, between

10 Å and 5 Å, between 10 Å and 3 Å and between 10 Å and 7.5 Å, respectively, was

optimal for attachment, after which point, a slight increase in free energy was detected,

corresponding with the presence of the smaller water absorption layer. For SDAEV and

SDEAV, the stronger of the water layers appears to have a greater effect on the free

energy as a larger rate of increase was exhibited corresponding with this peak for these

sequences, suggesting that, this particular water peak had more of an effect on iron binding

ability of the sequence. For SDAAV, however, a greater rate of increase in free energy was

exhibited when the sequence centre of mass had passed through the water layers and was

getting closer to the magnetite surface, suggesting possible configurational effects. SDEEV

exhibited a negative free energy throughout its profile until 0.5 Å, thus, attachment was

favourable at any distance explored until then. The small changes in free energy seen for

the SDEEV and SAEEV sequences suggest that the water absorption layers have minimal

influence on the free energy profiles.

Upon examination of the energy minima for the 185-189 pentapeptides (Figure 6.25) it

can be observed that, on the {100} surface, all of the 185-189 pentapeptides except for

SDAAV exhibited a negative value for their energy minima, with SAEEV producing the

lowest value at -0.4354 eV. The energy minima for these residues fall between 6.7 Å and

9.3 Å, suggesting that attachment of the residue centre of mass at this distance would be

preferable. On the {111} surface, all of the 185-189 pentapeptides exhibited a negative

value for their energy minima, with SDEEV producing the lowest value at -0.3578 eV. The

trend of favourable attachment distance is different from the {100} surface, with SDEEV,

SAEEV, SDAEV, SDEAV and SDAAV exhibiting centre of mass distances of 2.5 Å , 8.1
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Å , 6.5 Å , 4.2 Å and 9.5 Å respectively.
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Figure 6.24: A comparison of the free energy profiles of the 185-189 pentapeptides. Distance refers

to distance between the peptide CoM and the magnetite surface. The dashed line represents the water

density profile for the system.
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Figure 6.25: A close-up comparison of the free energy profiles of the 185-189 pentapeptides between -0.5

eV and 0.5 eV, exhibiting the free energy minima.
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Figure 6.26: A comparison of the free energy values for the pentapeptide CoM at the magnetite surface

for both the {100} and {111} surfaces.

The free energy values for the 185-189 pentapeptide centre of mass at the magnetite sur-

faces are shown in Figure 6.26. On the {100} surface, the SDEEV sequence exhibits a

free energy value of 3.30 eV, whereas, on the {111} surface its value was much lower

(0.27 eV). Similarly, the mutation sequences demonstrated higher free energy values (3.17

eV, 3.45 eV, 3.55 eV and 2.57 eV, respectively) on the {100} surface, than exhibited on

the {111} surface (0.35 eV, 2.00 eV, 1.63 eV and 1.49 eV, respectively). The SDEEV and

SAEEV sequences showed very similar free energy values for both surfaces, proposing that

the aspartate substitution had little effect on iron binding ability. The mutation SDEAV

had the greatest reductive effect on iron binding for the {100} surface, whereas, for the

{111} surface, SDAEV had the greatest reductive effect on iron binding. On the {100}
surface, the single glutamate substitution mutants reduced the iron binding affinity of

the sequence, whilst, the double glutamate substitution mutant increased the iron bind-

ing ability. On the {111} surface, all mutants increased the free energy of the sequence

attachment. This data showed that, the {111} surface presented with significantly lower

free energy values than the {100} surface, representing superior iron binding, suggesting

preferential attachment. The free energy profiles also showed that, the sequence with the

lowest free energy when the CoM is at the surface was SDAAV for the {100} surface and

SDEEV for the {111} surface.
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6.8 Summary

6.8.1 Residues 177-183 (SRDIESA)

Unconstrained

Our results for the unconstrained 177-183 pentapeptide systems indicate that from the

RDF profiles, tetrahedral iron attachment is preferred for the {100} surface and octahedral

iron attachment is preferred for the {111} surface. For the solvated systems, DIASA on

the {100} surface produces the most intense g(r) peak for the tetrahedral iron attachment,

whereas, the mutation SRAIE on the {111} surface produces the highest intensity g(r)

value for the octahedral iron attachment, leading to the idea that attachment of the

pentapeptides to the magnetite surface is dependent on many things such as surface type,

iron type and sequence.

For the bond distance data, more bonding was present in the {111} surface systems,

suggesting that this is the preferred surface of attachment, with the exception of DIASA

which exhibits the same amount of bonding on both surfaces for the in vacu system and

shows a preference for the {100} surface in the solvated system. Also, in the solvated

systems DIESA and DIASA exhibit the most bonding for the {100} surface, whereas,

DIESA displayed the most on the {111} surface. Additionally, at least one bond is present

to each acidic residue present when solvated, with the exception of SRDIE which exhibits

only glutamate bonding on the {100} surface and only aspartate bonding on the {111}
surface.

The residence time data indicates that for the in vacu systems, on the {100} surface,

the most bonding lasting over 90% of the simulation length was exhibited for DIASA and

SRDIE (bonds through acidic residues), whilst, on the {111} surface, DIESA exhibited the

most, suggesting that attachment was surface and sequence dependent. For the solvated

systems, on the {100} surface, the most bonding lasting over 90% of the simulation length

was exhibited for DIESA, DIASA and SRAIE (all are bonds between tetrahedral iron and

acidic residues), whilst, on the {111} surface, again, DIESA exhibited the most, suggesting

that this sequence was the favoured for the {111} surface.

The interfacial energy data suggests that, the lowest solvated interfacial energies were

found on the {100} surface, however, this data looks at average energy values of the full

magnetite/peptide/water interface over a simulation, whereas other forms of data analysis
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focus on bonding present between the peptides and the magnetite surfaces throughout the

simulations. The {100} surface may exhibit lower interfacial energy due to the surfaces

behaviour with water. The in vacu interfacial energies are considerably lower, further

enforcing the detrimental effect of system solvation. For the solvated systems, on the

{100} surface the mutations have lower interfacial energy values than their original se-

quence counterparts, which was contrary to the expected behaviour. On the {111} surface,

DIESA has a lower interfacial energy than its mutated counterpart, however, SRDIE has a

higher interfacial energy than its mutated counterpart, again reinforcing that attachment

is surface and sequence dependent.

Constrained

The Potential of Mean Force data indicates that, the {111} surface was the preferred

surface of attachment, as this surface produced much lower free energy values, thus much

improved iron binding. Also, on the {100} surface, the mutation of DIESA to DIASA

reduced iron binding, whilst on the {111} surface the mutation improved iron binding

ability. With SRDIE, the opposite was displayed, with the mutation improving iron bind-

ing ability on the {100} surface, whilst, on the {111} surface the mutation reduces iron

binding. This suggested that, sequence mutation alone does not always lead to reduced

iron binding ability, as sequence, surface type and water influence also have an effect.

6.8.2 Residues 190-195 (ELRDAL)

Unconstrained

From the RDF data, for ELRDA and ELADA, for the {111} surface octahedral iron

attachment was preferred, whilst, the {100} surface exhibits no particular preference.

With LRDAL, octahedral iron attachment was preferred for the {100} surface, whilst the

{111} surface exhibited no iron type preference. With LRAAL, octahedral iron attachment

was the preferred for both surfaces. For the solvated systems, ELRDA on the {100}
surface produced the most intense g(r) peak for the tetrahedral iron attachment, whereas,

ELADA on the {111} surface produced the highest intensity g(r) value for the octahedral

iron attachment, leading to the idea that attachment of the pentapeptides to the magnetite

surface was dependent on many things such as surface type, iron type and sequence.

For the bond distance data, more bonding was present for the mutated peptide sequences
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in the {111} surface systems, suggesting that this was the preferred surface of attachment.

However, in vacu, the original sequences exhibited the same amount of bonding on both

surfaces, suggesting that there was no surface of preference. Yet, when solvated, LRDAL

exhibited the same amount of bonding on both surfaces, whilst, ELRDA exhibited more

bonding on the {100} surface. Additionally, ELRDA exhibited the most bonding on

the {100} surface, whereas, on the {111} surface, ELADA displayed the most bonding.

Furthermore, at least one bond is present to each acidic residue present when solvated,

with the exception of LRDAL on the {100} surface (exhibiting no acidic residue bonding)

and LRAAL (which contains no acidic residues).

The residence time data indicates that, for the in vacu systems, ELRDA exhibits the

most bonding lasting over 89% of the simulation length, for both surfaces, suggesting that

attachment of this pentapeptide to the magnetite surface is favoured. For the solvated

systems, ELRDA and ELADA exhibit the most bonding lasting over 99% of the simu-

lation length on the {100} surface, whereas, on the {111} surface, ELADA exhibits the

most bonding for this time length, suggesting that, attachment was surface and sequence

dependent.

The interfacial energy data suggests that the lowest solvated energies were found on the

{100} surface, with the exception of ELRDA whose lowest energy was on the {111} sur-

face, however, this data looks at average energy values of the full magnetite/peptide/water

interface over a simulation, whereas, other forms of data analysis focus on bonding present

within the systems throughout the simulations. The in vacu interfacial energies are consid-

erably lower, particularly for ELRDA, further establishing the unfavourable effect of water

on the system. For the solvated systems, for both surfaces, ELRDA had a lower interfacial

energy than ELADA, whilst, LRDAL had a higher interfacial energy than LRAAL, again

emphasising that attachment was surface and sequence dependent.

Constrained

The Potential of Mean Force data indicates that the {111} surface is the preferred surface

of attachment, as this surface produces the lowest free energy values throughout the simu-

lations, with the exception of LRDAL. Also, for the free energy values when the CoM was

at the magnetite surface, on both surfaces, the mutation of ELRDA (ELADA) improved

iron binding. With LRDAL, on the {100} surface, the mutation reduced iron binding

ability, whilst, on the {111} surface the mutation improved iron binding. Again, show-
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ing that, surface type and pentapeptide sequence affect iron binding ability, along with

sequence mutation.

6.8.3 Residues 188-192 (EVELR)

Unconstrained

From the RDF data, octahedral iron attachment is preferred for the {111} surface, whilst

the {100} surface exhibits no particular preference. For the solvated systems, EVGELR

on the {100} surface produced the highest intensity g(r) value for the tetrahedral iron

attachment, whereas, EVALR on the {111} surface produced the most intense g(r) peak

for the octahedral iron attachment, proposing that attachment of the pentapeptide to the

magnetite surface was dependent on many things including surface type, iron type and

sequence.

For the bond distance data, more bonding was present in the {111} surface system than

the {100} surface system, with the exception of EVELR, which exhibited the same amount

of bonding on both surfaces for the in vacu system, and displayed more bonding on the

solvated {100} surface, suggesting that the {111} surface was the preferred surface of

attachment. Additionally, EVELR exhibited the most bonding on the {100} surface,

whereas, on the {111} surface, EVALR displayed the most bonding.

The residence time data indicates that for the in vacu systems, on the {100} surface,

EVELR and EVALR exhibited the most bonding lasting over 99% of the simulation length,

whereas, on the {111} surface, EVGELR exhibited the most bonding for this time length.

For the solvated systems, on the {100} surface, all of the pentapeptides exhibit the same

amount of bonding lasting over 99% of the simulation length, thus attachment is inde-

pendent of sequence. Whilst, on the {111} surface, EVALR exhibited the most bonding

lasting over 99% of the simulation length.

The interfacial energy data suggests that the lowest solvated energies were found on the

{100} surface, with the exception of EVGELR, however, this data looks at average energy

values of the full magnetite/amino acid residue/water interface over a simulation, whereas,

other forms of data analysis focus on bonding present within the systems throughout the

simulations. The in vacu interfacial energies were considerably lower than their equivalent

solvated values. For the solvated systems, on the {100} surface, EVELR had a lower

interfacial energy than its mutated counterparts (as hypothesised), however, on the {111}
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surface, EVELR had a higher interfacial energy than EVALR and EVGELR.

Constrained

The Potential of Mean Force data indicates that the {111} surface is the preferred surface

of attachment, as this surface produces the lowest free energy values throughout the sim-

ulations. From the pentapeptide CoM at the magnetite surface free energy data, on the

{100} surface, both mutations reduced iron binding ability, whilst, on the {111} surface

both mutations improved iron binding ability.

6.8.4 Residues 185-189 (SDEEV)

Unconstrained

From the RDF data, octahedral iron attachment is preferred for the {111} surface, whilst

the {100} surface exhibits no particular preference. For the solvated systems, SAEEV

on the {100} surface produced the highest intensity g(r) value for the tetrahedral iron

attachment, whereas, SDEAV on the {111} surface produced the most intense g(r) peak

for the octahedral iron attachment, again proposing that there are many factors affecting

attachment other than sequence mutation.

For the bond distance data, more bonding was present in the {111} surface system, sug-

gesting that this is the preferred surface of attachment. Also, SDEEV exhibited the most

bonding for both surfaces. Additionally, at least one bond is present to each acidic residue

present in the solvated system, with the exception of SDAEV on the {100} surface which

exhibited no bonding to glutamate.

The residence time data indicates that for the in vacu systems, on both surfaces, SDEAV

exhibited the most bonding that lasting over 90% of the simulation length, suggesting that

attachment of this pentapeptide is preferential. For the solvated systems, on the {100}
surface, SDEEV and SAEEV exhibit the most bonding lasting over 99% of the simulation

length, whereas, on the {111} surface, SDEAV and SDAAV exhibit the most bonding

lasting for this length of time.

The interfacial energy data suggests that, the lowest solvated energies were found on the

{100} surface, with the exception of SAEEV and SDAAV. The {100} surface may exhibit

lower interfacial energy due to the surfaces behaviour with water. The in vacu interfacial
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energies are, again, considerably lower than the corresponding solvated system values.

For the solvated systems, on the {100} surface, SDAEV had the lowest interfacial energy,

however, SAEEV had the lowest interfacial energy on the {111} surface, again, reinforcing

that attachment is surface and sequence dependent.

Constrained

The Potential of Mean Force data indicates that the {111} surface is the preferred surface

of attachment for all peptide sequences explored, as this surface produces much lower

free energy values, thus much improved iron binding. From the pentapeptide CoM at the

magnetite surface free energy data it was seen that, on the {100} surface the sequences

have very similar free energy values, suggesting that mutation has very minimal effect on

the iron binding affinity with this surface, with the exception of SDAAV which improved

iron binding ability. On the {111} surface, SAEEV and SDEEV exhibited similar free

energy values, whilst, the other mutations reduced iron binding affinity, with SDAEV

having the greatest effect.

6.8.5 General

This chapter demonstrates, for the first time, the interaction of experimentally designed

pentapeptides and their related mutants based on the C–terminal Mms6 sequence with in

vacu and solvated magnetite crystal {100} and {111} surfaces, in both unconstrained and

constrained systems. The hypothesis of this study was that iron binding would decrease

with mutation of the original Mms6 C–terminal sequences; however, the data showed that

this was not always the case. For the unconstrained 177-183 pentapeptides (SRDIESA)

natural solvated system data, the hypothesis was confirmed for the {111} surface, with

the exception of the interfacial energy for SRDIE. However, for the {100} surface, it was

deduced that the mutation either had no effect on how the sequence bound or the mutation

improved iron binding. For the unconstrained 190-195 pentapeptides (ELRDAL) natural

solvated system data, the hypothesis was only confirmed with the bond distance data for

LRDAL on both surfaces, and ELRDA on the {100} surface, and using the interfacial

energy data for ELRDA on both surfaces. The hypothesis was contradicted using the

residence time data, as for both ELRDA and LRDAL the mutants either exhibited the

same amount of bonding as the original sequence lasting over 89% of the simulation length

or displayed more bonding lasting for this length of time. Thus, no obvious trend in the
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effect of mutation was exhibited for the 190-195 sequences. For the unconstrained 188-192

pentapeptides (EVELR) natural solvated system data, the hypothesis was confirmed for

the {100} surface, with the exception of the residence time data, whereby, the mutations

had the same amount of bonding lasting over 99% of the simulation length as EVELR.

However, for the {111} solvated system, it was deduced that one or other of the mutations,

dependent on the data analysis method, improved iron binding (EVALR from the bond

distance data and the residence time data and EVGELR from the interfacial energy data).

For the unconstrained 185-189 pentapeptides (SDEEV) natural solvated system data, the

hypothesis was only confirmed using the bond distance data on both surfaces, and the

residence time data on the {100} surface. The hypothesis was contradicted using the

interfacial energy data for both surfaces, as in both cases a mutant produces the lowest

interfacial energy value (SDAEV for the {100} surface and SAEEV for the {111} surface),

and using the residence time data on the {111} surface, as the mutant sequences SDEAV

and SDAAV exhibit the most bonding lasting over 99% of the simulation length. Thus,

no obvious trend in the effect of mutation was exhibited for the 185-189 sequences. The

unconstrained data proposes that, there are many factors affecting the iron binding ability

of all pentapeptides explored other than sequence mutation, such as, surface type, iron

type and sequence dependence.

The constrained system data also showed this to be true, as the Potential of Mean Force

data indicated that, for the 177-183 pentapeptides, on the {100} surface, the mutation

of DIESA to DIASA confirmed the hypothesis, whilst, on the {111} surface the mutation

improved iron binding ability. However, the opposite was seen for the mutation of SRDIE,

with the {111} surface confirming the hypothesis. For the 190-195 pentapeptides, on both

surfaces, the mutation of ELRDA disproved the hypothesis, improving iron binding. The

same phenomenon was exhibited for LRDAL on the {111} surface, however, on the {100}
surface the hypothesis was proved correct. For the 188-192 pentapeptides, the hypothesis

was confirmed for the {100} surface, however, on the {111} surface the mutation improved

iron binding affinity. For the 185-189 pentapeptides, on the {100} surface, it was deduced

that the mutation had minimal effect on how the sequence bound, as the mutants produced

similar free energy values to SDEEV, with the exception of SDAAV which improved iron

binding ability. On the {111} surface, the hypothesis was confirmed for the mutants

with the exception of SAEEV which exhibited a similar free energy value to SDEEV. The

constrained data proposes, again, that sequence mutation was not the only factor affecting

iron binding potential. The {111} surface was the preferred surface of attachment, as

this surface produces the lowest free energy values throughout the simulations, with the
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exception of LRDAL.
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Chapter 7

Conclusion

Atomistic simulations were used in this thesis to model the magnetite surface interac-

tions at the atomic level. The aim of this work was to attempt to further the current

understanding of the biomineralisation of magnetite in magnetotactic bacteria through

computational simulations. The results in this thesis cover a range of organic molecule

attachments on the {100} and {111} magnetite surfaces.

The aim of Chapter 4 was to reveal, for the first time, the interaction of the individual

C–terminal Mms6 amino acid residues with magnetite surfaces. The {100} and {111}
surfaces were considered both in vacu and solvated. It was established from the uncon-

strained system data that, the {111} surface was particularly favourable for iron binding

to occur and that octahedral iron attachment was preferred over tetrahedral iron attach-

ment. Additionally, it was apparent that a higher affinity for iron binding was displayed

by the acidic amino acids. Furthermore, the addition of water molecules to the uncon-

strained systems diminished the iron binding abilities of all the amino acids. The Potential

of Mean Force data obtained further supported that, the 111 surface was the preferred

surface of attachment, as this surface produced significantly lower free energy values for

the majority of amino acid investigated, the exception being glutamine.

Chapter 5 focused on the interaction of in vacu and solvated magnetite surfaces with

a glutamic acid repeat motif and its corresponding sequence mutations, in both uncon-

strained and constrained systems. The results of data analysis for the unconstrained sys-

tems showed that, as with the amino acids, octahedral iron bonding was more favourable

and that the {111} surface was the preferred for dipeptide and tetrapeptide attachment.

The hypothesis of this study was that iron binding ability would decrease with sequen-

tial mutations. This was proven to be true for the dipeptides, with less bonding present

with each subsequent glutamate substitution. The addition of extra amino acid residues

to the sequences lead to preferential tetrapeptide sequence attachment. Again, solvation
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was detrimental to the iron binding potential of the peptides. The constrained system

data, again, confirmed the unconstrained findings, indicating that the {111} surface is

the preferred surface of attachment, with the exception of DEEV. The Potential of Mean

Force data also shows that, mutation has surface–dependent differential modulatory effects

on the iron binding ability of peptide sequences, as for the dipeptides on both surfaces

and the tetrapeptides on the {100} surface, confirmed the hypothesis whereas, for the

tetrapeptides on the {111} surface the hypothesis was contradicted.

In Chapter 6, for the first time, the interactions of the C–terminal Mms6 pentapeptides

and their related mutants with the magnetite {100} and {111} surfaces, in both uncon-

strained and constrained systems, were investigated. The hypothesis of this study was that

iron binding would decrease with mutation of the original Mms6 C–terminal sequences;

however, the data showed that this was not always the case. For the unconstrained sol-

vated 177-183 pentapeptides (SRDIESA), the hypothesis was proven correct for the {111}
surface, with the exception of the interfacial energy for SRDIE. However, for the {100}
surface, mutation either improved iron binding or had no effect on sequence binding. For

the solvated unconstrained 190-195 pentapeptides (ELRDAL), the hypothesis was only

confirmed with the bond distance data for LRDAL (both surfaces) and ELRDA ({100}
surface), and using the interfacial energy data for ELRDA (both surfaces). The hypoth-

esis was disproved using the residence time data for both ELRDA and LRDAL, as the

mutants either exhibit the same amount of bonding as, or more bonding than, the original

sequences lasting over 89% of the simulation length. For the solvated unconstrained 188-

192 pentapeptides (EVELR), the hypothesis was confirmed for the {100} surface, with

the exception of the residence time data. Conversely, for the {111} surface, one or other

of the mutations improved the iron binding potential of the sequence (EVALR with bond

distance and residence time data and EVGELR with the interfacial energy data). For the

solvated unconstrained 185-189 pentapeptides (SDEEV), the hypothesis was only con-

firmed using the bond distance data (both surfaces) and the residence time data ({100}
surface). The hypothesis was refuted using the interfacial energy data (both surfaces),

as a mutant produced the lowest interfacial energy (SDAEV for the {100} surface and

SAEEV for the {111} surface), and using the residence time data ({111} surface), as the

mutant sequences SDEAV and SDAAV exhibit the most bonding lasting over 99% of the

simulation length. Additionally, the presence of water in the unconstrained systems was

detrimental to the iron binding potential of the pentapeptides.

The constrained pentapeptide system data also showed that, iron binding did not always
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decrease with mutation of the original sequences, as the free energy profiles showed that, for

the 177-183 pentapeptides, the mutation of DIESA confirmed the hypothesis on the {100}
surface, but, improved iron binding ability on the {111} surface, whereas, for the SRDIE

mutation the reverse was seen. For the 190-195 pentapeptides, the mutation of ELRDA

disproved the hypothesis, improving iron binding, which was also the case for LRDAL on

the {111} surface, however, the hypothesis was proven on the {100} surface. For the 188-

192 pentapeptides, for the {100} surface the hypothesis was confirmed, however, mutation

improved iron binding affinity on the {111} surface. For the 185-189 pentapeptides, on

the {111} surface, the hypothesis was verified, with the exception of SAEEV, however, on

the {100} surface, as mutation either had minimal effect on sequence binding or improved

it (SDAAV). The Potential of Mean Force data obtained further supported that, the 111

surface was the preferred surface of attachment, as this surface produces the lowest free

energies, with the exception of LRDAL.

For all studies undertaken, the interfacial energy method of data analysis encountered

problems, with the absolute adsorption energy values appearing to be an order of mag-

nitude larger than expected, and the solvated behavioural trends shown being counter-

intuitive and contradictive of experimental studies. Possible reasons for these issues could

be that the interfacial energy method entails the measurement of small variances between

large energies, leading to large errors in the results. Also, for the hydrated systems, if

insufficient water was present at the start of the simulation, some of the water molecules

will eventually become under coordinated, thus increasing the energy of the simulation

cells. Future work would validate this method of data analysis or establish a more reliable

method of direct adsorption energy calculation.

This work has, for the first time, investigated the interaction of the C–terminal Mms6 pro-

tein with the magnetite {100} and {111} surfaces, in both unconstrained and constrained

systems, through the use of amino acids and, di-, tetra- and pentapeptides and related

mutants. These studies have highlighted the strong influence that water has over the sys-

tems and that for the majority of biomolecules explored the 111 surface was the preferred

surface of attachment. However, this work can be taken much further. Future work to

advance the current investigations would explore ever increasing polypeptide chain lengths

in order to explore the influence of extra amino acids on the iron binding potential, and

whether particular residues within the sequence affect how others behaviour, also how this

influences iron binding. This would naturally lead to the attachment of the full Mms6

C-terminal sequence to the magnetite surfaces, which could subsequently be mutated.
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Another possible direction for future work would be to investigate different starting posi-

tions and configurations for the biomolecules, establishing whether the binding behaviours

would significantly differ from what has already been revealed. Furthermore, individual

iron ions could be utilised to study iron binding, as opposed magnetite surfaces, in order

to get a better idea of where the preferred areas of iron attachment are on the original

sequences. This could then lead to the addition of extra iron ions into the biomolecule-iron

ion system, so as to examine the influence this addition has on the biomolecule configura-

tion and the free energy of the system.
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Appendix A

Appendix

A.1 Chapter 4

Evolution of the potential energy of the amino acid residues as a function of time. The

x-axis is the timestep in ps and the y-axis is the potential energy in eV. The red line

indicates the in vacu system and the blue line represents the solvated system.
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Figure A.1: Non-polar amino acid residues. a) ALA {100}, b) ALA {111}, c) ILE {100}, d) ILE {111},

e) LEU {100}, f) LEU {111}, g) MET {100}, h) MET {111}, i)VAL {100} and j) VAL {111}.

Figure A.2: Polar amino acid residues. a) GLN {100}, b) GLN {111}, c) SER {100} and d) SER {111}.
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Figure A.3: Acidic amino acid residues. a) ASP {100}, b) ASP {111}, c) GLU {100} and d) GLU {111}.

Figure A.4: Basic amino acid residues. a) ARG {100}, b) ARG {111}, c) LYS {100} and d) LYS {111}.
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Radial distribution function profiles for the amino acid attachment to the {100} and {111}
surfaces both in vacu and solvated. FET is tetrahedral iron, FEO is octahedral iron. Blue

is {100} in vacu. Red is {100} solvated. Green is {111} in vacu. Purple is {111} solvated.

The x-axis is the r value (or distance) in Å and the y-axis is the g(r) value.

Figure A.5: RDF plots for the non-polar amino acids; a) ALA O-FET, b) ALA O-FEO, c) ILE O-FET,

d) ILE O-FEO, e) LEU O-FET and f) LEU O-FEO.
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Figure A.6: RDF plots for the non-polar amino acids; a) MET O-FET, b) MET O-FEO, c) VAL O-FET

and d) VAL O-FEO iron.

Figure A.7: RDF plots for the polar amino acids; a) GLN O-FET, b) GLN O-FEO, c) SER O-FET,

and d) SER O-FEO iron.
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Figure A.8: RDF plots for the acidic amino acids; a) ASP O-FET, b) ASP O-FEO, c) GLU O-FET,

and d) GLU O-FEO iron.

Figure A.9: RDF plots for the basic amino acids; a) ARG O-FET, b) ARG O-FEO, c) LYS O-FET, and

d) LYS O-FEO iron.
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A.2 Chapter 5

Evolution of the potential energy of the di- and tetrapeptides as a function of time. The

x-axis is the timestep in ps and the y-axis is the potential energy in eV. The red line

indicates the in vacu system and the blue line represents the solvated system.

Figure A.10: Dipeptides. a) EE {100}, b) EE {111}, c) AE {100}, d) AE {111}, e) AA {100}, f) AA

{111}.
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Figure A.11: Tetrapeptides. a) DEEV {100}, b) DEEV {111}, c) DAEV {100}, d) DAEV {111}, e)

DEAV {100}, f) DEAV {111}, g) DAAV {100}, h) DAAV {111}.
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Radial distribution function profiles for the di- and tetrapeptide attachment to the {100}
and {111} surfaces both in vacu and solvated. FET is tetrahedral iron, FEO is octahedral

iron. Blue is {100} in vacu. Red is {100} solvated. Green is {111} in vacu. Purple is

{111} solvated. The x-axis is the r value (or distance) in Å and the y-axis is the g(r)

value.

Figure A.12: Radial distribution function plots for the dipeptides; a) EE O-FET, b) EE O-FEO, c) AE

O-FET, d) AE O-FEO, e) AA O-FET and f) AA O-FEO iron.
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Figure A.13: Radial distribution function plots for the tetrapeptides; a) DEEV O-FET, b) DEEV O-

FEO, c) DAEV O-FET, d) DAEV O-FEO, e) DEAV O-FET, f) DEAV O-FEO, g) DAAV O-FET and h)

DAAV O-FEO iron.
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A.3 Chapter 6

Evolution of the potential energy of the pentapeptides as a function of time. The x-axis

is the timestep in ps and the y-axis is the potential energy in eV. The red line indicates

the in vacu system and the blue line represents the solvated system.

Figure A.14: 177-183 pentapeptides. a) DIESA {100}, b) DIESA {111}, c) DIASA {100}, d) DIASA

{111}, e) SRDIE {100}, f) SRDIE {111}, g) SRAIE {100} and h) SRAIE {111}.
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Figure A.15: 190-195 pentapeptides. a) ELRDA {100}, b) ELRDA {111}, c) ELADA {100}, d) ELADA

{111}, e) LRDAL {100}, f) LRDAL {111}, g) LRAAL {100} and h) LRAAL {111}.

Figure A.16: 188-192 pentapeptides. a) EVELR {100}, b) EVELR {111}, c) EVALR {100}, d) EVALR

{111}, e) EVGELR {100} and f) EVGELR {111}.
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Figure A.17: 185-189 pentapeptides. a) SDEEV {100}, b) SDEEV {111}, c) SAEEV {100}, d) SAEEV

{111}, e) SDAEV {100}, f) SDAEV {111}, g) SDEAV {100}, h) SDEAV {111}, i) SDAAV {100} and j)

SDAAV {111}.
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Radial distribution function profiles for the pentapeptide attachment to the {100} and

{111} surfaces both in vacu and solvated. FET is tetrahedral iron, FEO is octahedral

iron. Blue is {100} in vacu. Red is {100} solvated. Green is {111} in vacu. Purple is

{111} solvated. The x-axis is the r value (or distance) in Å and the y-axis is the g(r)

value.
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Figure A.18: Radial distribution function plots for the 177-183 pentapeptides; a) DIESA O-FET, b)

DIESA O-FEO, c) DIASA O-FET, d) DIASA O-FEO, e) SRDIE O-FET, f) SRDIE O-FEO, g) SRAIE

O-FET and h) SRAIE O-FEO iron.
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Figure A.19: Radial distribution function plots for the 190-195 pentapeptides; a) ELRDA O-FET,

b) ELRDA O-FEO, c) ELADA O-FET, d) ELADA O-FEO, e) LRDAL O-FET, f) LRDAL O-FEO, g)

LRAAL O-FET and h) LRAAL O-FEO iron.
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Figure A.20: Radial distribution function plots for the 188-192 pentapeptides; a) EVELR O-FET, b)

EVELR O-FEO, c) EVALR O-FET, d) EVALR O-FEO, e) EVGELR O-FET and f) EVGELR O-FEO

iron.
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Figure A.21: Radial distribution function plots for the 185-189 pentapeptides; a) SDEEV O-FET, b)

SDEEV O-FEO, c) SAEEV O-FET, d) SAEEV O-FEO, e) SDAEV O-FET and f) SDAEV O-FEO.
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Figure A.22: Radial distribution function plots for the 185-189 pentapeptides; a) SDEAV O-FET, b)

SDEAV O-FEO, c) SDAAV O-FET and d) SDAAV O-FEO iron.
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