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Abstract

This chapter describes a security risk assessment and protection methodology that was developed for
use in the chemical- and process industry in Belgium. The approach of the method follows a risk-
based approach that follows desing principles for chemical safety. That approach is beneficial for
workers in the chemical industry because they recognize the steps in this model from familiar safety
models .The model combines the rings-of-protection approach with generic security practices
including: management and procedures, security technology (e.g. CCTV, fences, and access control),
and human interactions (pro-active as well as re-active). The method is illustrated in a case-study
where a practical protection plan was developed for an existing chemical company. This chapter
demonstrates that the method is useful for similar chemical- and process industrial activities far
beyond the Belgian borders, as well as for cross-industrial security protection. This chapter offers an
insight into how the chemical sector protects itself on the one hand, and an insight into how security

risk management can be practiced on the other hand.

Keywords: chemical industry, security risk assessment, protection, intentional acts, rings-of-

protection concept

1. Introduction

Security focuses on intentional harm. That is to say, the damage to a chemical- or process plant was
intended by a party within or outside the operating company and therefore malignant. Protecting
organisations against this kind of threat is fundamentally different from the protection needed against
accidents in the safety domain. Safety goes hand in hand with an accidental, non-deliberately caused,
event. It requires a different approach from security. Nevertheless, some well-developed tools from the
safety domain can be used effectively when we design a security system for a chemical plant. This

chapter demonstrates that concept. Safety management and risk analysis take centre-stage in this
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chapter. In that sense, this chapter follows different approach to the design of a security system than
the more traditional security management design approaches as described by Garcia (2008) or Gill
(2006). This approach is justified by the fact that workers in the chemical- and process industries are
already very familiar with safety and risk models that are extremely important when operating a plant.
The design methods, even if they are based on similar principles for the protection of human life and
property, have developed differently than security methods. An overview of safety design in the
process industries is given by Mannan (2005) and Cameron and Raman (2005). Since these works are
quite exotic in relation to the security management domain, much of this work hinges on SRMbok by
Talbot & Jakeman where many design models are used that are recognized by security managers and

process safety workers alike.

Starting from Talbot & Jakeman (2009), security can be defined as the condition of being protected
against danger or loss that follows from the intentional and unwarranted actions of others. This
definition looks at security as an end-product. Another way of looking at security is as a process
leading towards a situation where something is ‘to be secured’. Security can thus also be defined as the
process involved in taking preventive measures to avoid harmful incidents caused by (internal or
external) people as well as controlling such incidents and their adverse effects (Reniers, 2011). Both
definitions are useful to understand the requirements for assuring adequate security risk assessments
and protection. The motives for causing damage can vary from mundane (e.g. small financial gain
through theft) to potentially highly damaging terrorist actions. The latter case is of particular interest
for a chemical company since it typically holds mind-boggling amounts of hazardous materials that

are toxic, flammable and sometimes both which potentially makes them a vulnerable target.

Similar with regards to providing safety at a chemical plant, risk assessments are carried out for
security of such plants; they are called ‘security risk assessments’ or ‘threat assessments’ (API
Recommended Practice 780, 2012). The starting point for any security risk assessment is risk
identification. Identifying the security risks and determining the necessary measures to counter those
security risks, is fundamentally different from safety risks. Security risk assessments focus on
‘qualitative likelihood’ (in terms of ‘low’, ‘medium’, ‘high’), consequences, vulnerabilities, threats
and target attractiveness. It is typically a qualitative exercise that often focuses on the identification of
scenarios (for example: blowing up installations X and Y in plant Z; burglary of item A in building B,
etc.). With safety assessments the ‘quantitative likelihood’ (in terms of probabilities and frequencies)
and ‘consequences’ often take centre-stage where the quantitative or semi-quantitative exercises are

performed (Cameron & Raman, 2005).

Like safety assessments, security assessments are focussed on proactive action and consequence

controls. It is these similarities in safety and security that prompts experts to indicate that, for



achieving an optimal result, an integrated approach is required (Fontaine et al., 2007; Holtrop and
Kretz, 2008). This topic is explored in section 2. The basic theoretical concepts that form the basis of
such an integrated approach are dealt with in section 3. The translation to practical cases is explained

in section 4, which is based on an existing chemical plant.

2. Security risk assessment approach

Security risk assessment in the chemical and process industry is characterised by a systematic
approach to organizing information concerning the assets that need to be protected, the threats that
may be posed against those assets, and the likelihood and consequences of attacks against those assets.
Assets are usually grouped into the following categories: know-how, people, property and
infrastructure (e.g. chemical installations), reputation and information. Hence, security risk assessment
serves to improve a chemical company’s understanding of the threats and possible responses to those
threats. As such, it forms the basis for establishing a cost-effective security risk management program
suitable to reduce the potential adverse effects of intentionally induced losses upon the company.

Security risk assessment at a generic level is presented in Figure 1.

Figure 1. Iterative process of security risk assessment as part of security management (based on

Reniers, 2010)
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Before the security risk identification process can take place it is important to undertake a so-called
geographical overview of the company in the Facility Characterization phase. In this phase,
neighbouring companies and their industrial activities that may be a target for adversaries should be
identified, as they may be developing, using, or storing chemical product(s) or process(es) that have
the potential to interact with the product(s) of the company under consideration with extreme results.
Furthermore, the possible access roads from where the adversary may intrude the company’s premises
without being noticed, should be determined. Another important issue to deal with, is how to escape

from the premises in case of a major event.

The security risk identification process should identify all company security risks. For more
information on security risk identification in a chemical industrial surrounding, see Reniers et al.
(2013). This process should be carried out by using desk-top research as well as historical data. Desk-
top research is derived from rather fundamental and theoretical perspectives generating ideas on what
could or might happen and can be found in the professional and academic literature (CCPS, 2003;
Landoll, 2006). Historical data comes from crime incident/management databases, containing, for
example, details of attack histories and experiences at other chemical plants. This information is very
useful for both carrying out security risk identification and for understanding the specificities of risks

and their consequences. It is important that relevant stakeholders (be they internal or external) should



be involved in the security risk identification process. This process might typically include the
company, government officials, policing organizations and even representatives from relevant

intelligence networks.

Once the company’s security risks have been identified, every security risk should be analysed. Also,
the level of every risk, or combination of risks, should be assessed. Once this exercise has been carried
out, individual security risks can be compared and evaluated. As part of the evaluation process, the
companies’ security risk appetite has to be set and agreed upon with the relevant stakeholders. The
outcome of the risk analysis is then compared with the security risk appetite of the company.
Typically, it is the responsibility of the security manager, together with the organization’s board, to
conclude whether the risk is acceptable, tolerable (eventually with countermeasures), or unacceptable
and therefore needs to be mitigated in some way. Every step in the process has to be rigorous and

transparent so that changes over time can be captured as well.

3. General design principles for building up a protection strategy inside a chemical plant

3.1. The rings-of-protection concept

So-called Layers of Protection are specifically used by safety managers in the chemical industry (see
for example CCPS, 1996; Dowell, 1999; Meyer and Reniers, 2013). Detailed process design provides
the first layer of protection. The second Layer of Protection concerns the automatic regulation of the
process heat and material flows and ensuring that sufficient data is available for operator supervision.
In the chemical industry this layer is also called the ‘Basic Process Control Systems’ (BPCS). A
further layer of protection is provided by a high-priority alarm system and instrumentation that
facilitates operator-initiated corrective actions. A Safety Instrumented Function (SIF), sometimes also
called the emergency shutdown system, may be provided as the fourth protective layer. The SIFs are
protective systems which are only needed on those rare occasions when normal process controls are
inadequate to keep the process within acceptable bounds. Any SIF will qualify as one independent
layer of protection. Physical protection may be incorporated as the next layer of protection by using
venting devices to prevent equipment failure from overpressure. Should these different layers of
protection fail to function, walls or soil embankments may be present to contain liquid spills. Plant and

community emergency response plans further address the hazardous event.

The fundamental basis of security management can be expressed in a similar way to the Layers of

Protection used in modern chemical process plants for addressing (safety-related) accidental events. In
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the similar security-related concept of concentric so-called “rings-of-protection” or layered protection
(CCPS, 2003; Fennelly, 2004; Ellis & Hertig, 2010), the spatial relationship between the location of
the target asset and the location of the physical countermeasures is used as a guiding principle. Rings-
of-protection, also known as the layered defences, are based on the ‘Defence in Depth’ principle
(IAEA, 1996; Ellis & Hertig, 2010; ASIS, 2012). An effective countermeasure deploys multiple
defence mechanisms between the adversary and the target. Each of these mechanisms should present
an independent obstacle to the adversary. Figure 2 (based on Reniers, 2010) illustrates the rings-of-

protection concept and its component countermeasures (listed non-exhaustively).

Figure 2. Rings-of-protection concept found in modern chemical plants (based on Reniers, 2010)
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When the security management team has decided which security risks require protection measures, a
company security concept can be designed. In this regard, a complete view of the chemical plant and

its surroundings, geographical as well as socio-technical, is the starting point.

The rings-of-protection concept illustrated in Figure 2, and based on the Defence in Depth approach, is
the backbone for security systems (IAEA, 1996; CCPS, 2003; Fennelly, 2004; Talbot & Jakeman,
2009; Ellis & Hertig, 2010; Reniers, 2010; ASIS, 2012). Most commonly, the terminology of

‘perimeters’ and ‘zones’ is used.



Every ring from Figure 2 is defined and constructed according to the risk sensitivity of the objects
inside that zone (e.g. storage of flammable liquids; a reactor that is prone to explode during process
disturbances, etc.). This occupancy will be important for building the rings-of-protection for the
chemical plant. The barriers that protect a specific ring are designed with a certain ‘resistance against
intrusion’. The target in the centre is the asset that is deemed most attractive for a potential adversary
and therefore requires the most protection. The resistance of a barrier and the time it takes an
adversary to get to the target are important factors in the probability of interruption when setting up a

path analysis.

An adversary will choose a specific path (usually one of several options), also called ‘adversary path’
(Arata, 2006; Garcia, 2006 & 2008; Norman, 2010) to get to a target. The path can be seen as an
ordered series of actions taken against a facility, which, if/when completed, results in a successful
attack. As an example, to destroy a water pump, the series of subsequent actions may be: penetrate
fence, walk to outside door O of building B, penetrate outside door O of building B, walk to inner door
D of target room R, penetrate inner door D of room R, destroy water pump. Remark that several series
of actions may be possible to destroy the water pump, and only one of them is exemplified. The
‘critical path’ is that path (out of a number of possible paths) requiring least time to complete the
ordered series of actions. To adequately protect the target, it is essential that the time needed for the
critical path is higher than the interception time. To this end, for every of the actions composing the
path, there should be a delay element (e.g., a steel fence) and a detection element (e.g., a thermal
camera with VCA). Several possible calculation models are available to carry out a path analysis, for

example the EASI model (Garcia, 2006 & 2008).

A ring-of-protection translates into a number of physical measures, as it is a combination of physical
security equipment, people and procedures. Elements of all these types are typically needed together in
order to guarantee adequate asset protection against different threats be they theft, sabotage, terrorism,

or other malevolent human or technical attacks from outsiders as well as insiders.

3.2. The intrusion process

Before commencing the design of the protection barriers (that is, the rings-of-protection), the different
steps corresponding to an adversary’s intrusion should be understood. These steps will help the
security manager in generating security specifications. A description of an intrusion can be presented

via the acronym “PICER”:
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- Preparation stage: this is where the adversary will start gathering information about the site
and the target. He or she may visit the chemical plant several times and possibly participate in
seminars, site visits, and engage in social engineering (name dropping to enter the site) or even
contract work; the adversary path will be determined by the adversary in this stage.

- Intrusion stage: this is when he or she will enter the site. The time taken to reach the target
was calculated by him/her (while determining the path in the previous stage) so that in event
of an alarm activation there will still be time to escape. Different methods can be used for
calculating the amount of required time to reach the target. Most commonly used is the critical
path method (as explained before);

- Collecting stage: at this stage the adversary collects goods or commits the unwanted action;

- Exit stage: this is when the adversary will leave the chemical plant;

- Rewarding stage: this stage or process is more relevant to law enforcement than the security
manager since it involves trading stolen goods for money. This can take place immediately or

some time later.

The principle of ‘PICER’ is mentioned in a handbook that is published by the Belgian Institute of
Security (Institute of Security Belgium, 2013). The handbook is used in training sessions as required
by Belgian Law (Belgian Official Gazette, 1990) but is regretfully not publicly available. The PICER
principle indicates that the design of the protective rings should be focused on the first perimeter, or at
least as early as possible in the protection process. The first, second, etc. perimeters should be able to
react as soon as possible, even (and preferably, if possible) during the preparation stage. Camera
surveillance may for example help to identify people loitering around the first perimeter or it might
detect people trying to collect information about the strength of the fence. Indeed, when a CCTV
system is installed on a large site, then it will not only return information about an intrusion itself, but
it can also be used in a preventive stage by guards on patrol (receiving information from a distance),

who are able to manually inspect the condition of the fence: intact, broken, cut).

At the moment an attack starts, a detection indicator should be executed. The later the detection takes
place, the greater the difficulty of interception becomes. If an intrusion is detected, there must be a

way of engaging a response.

As already noted, physical protection in itself will not prevent an attack. It is typically a combination
of different security measures that need to be employed, a principle which is defined as “OPER”.
Similar to PICER, the ‘OPER’ principle is mentioned in the training handbook of the Belgian Institute
of Security (Institute of Security Belgium, 2013), which is mandatory by Belgian Law for private
security officers to be examined about to be allowed to carry out their profession (Belgian Official

Gazette, 1990). The OPER acronym stands for:



- Organizational — about security awareness, management requirements for security, and other
procedures to prevent intrusion

- Physical — security equipment such as barriers, fences, etc.

- Electronics — security equipment such as access controls, burglar alarms, cameras, etc.

- Reporting —transmission of an alert to an external dispatch service

The design process of the rings-of-protection will be based upon this OPER principle. Each perimeter
(equal to a certain ring of protection) will consist of a fence with gates or barriers. The access to these
rings will be equipped with the right access control system and (depending on the organization) often
in combination with intrusion detection and CCTV. In the event of an adversary attempting to gain

access the activation of the systems will generate a response.

3.3. Organizational requirements

Adequate security starts with the genuine commitment of organization top management. In the safety
domain, top management commitment has been identified as an essential contributing factor for
adequate safety performance (see e.g. Wu et al. (2008), Kapp (2012)). Due to the similarity between
operational safety and security management, it can be assumed that the same conclusion on
management commitment holds for security. However, in the security field, there are only few
scholarly publications that prove this claim. As an example, qualitative research by Reniers (2011)
indicates that success will depend to a large extent on senior management showing meaningful support

for security.

Security within a chemical plant, as also in other industrial sectors, needs to be clearly defined and set
up according to the security risks present, and considering the balance between the threats and the risk
appetite (see before). If the approach to security is not written down in a security manual, there is a
danger that ad-hoc decisions will be made in dealing with threats, possibly leading to inadequate
responses. We recommend that the development of a credible security manual is based on the

following domains of consideration (see also Talbot and Jakeman, 2009):

- a security policy
- security procedures
- An employees’ screening process

- a security awareness programme
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- security training
- an emergency response facility

- incident reporting

The process needs to be accompanied by a security audit to assess the security ‘maturity’ of the
chemical plant, the results of which can feed into a gap analysis between the existing situation and the
desired situation, to identify areas needing improvements. We recommend, based on more than 20
years of practitioner’s experience, that the audit be performed on 12 security domains: Risk
Assessment Strategy, Human Aspects, Physical Security, Access, Intrusion, CCTV, Fire, Integration,
Guarding, Information Security and Security Audit. Literature supports this taxonomy, e.g., Talbot &
Jakeman (2009) developed a model in which most of the domains, which they call ‘categories’, can be
retrieved. To our best knowledge, the sum of these domains encompass all security items that need to
be considered in a chemical organization, and the possible integration of security with safety is also

taken into account.

The design of a physical protection model for chemical plants is explained more in depth in the next
sections. The explanation is based upon the case study of a real chemical plant and the way security
was setup in this plant (for further reading on the development of an integrated security process, see

Talbot & Jakeman, 2009).

While in this section, we explained the general design principles for building up a protection strategy
inside a chemical plant, the next section elaborates a very practical approach to illustrate how these

design principles can be translated into an industrial case.

4. Security measures and protection; Practice in the chemical industry

4.1. Physical security

In a previous section, the concept of the rings-of-protection (that is, defences in depth or plant
perimeters of protection), was explained. Since the rings will be the basis of the complete security

plan, there will be security breaches if they are not well researched.

Prior to determining the rings-of-protection, an inventory of each part of the plant (building, building
level, department and other ‘clusters’ of the plant) needs to be prepared. The plant’s so-called “vital
points”, especially deserve attention. Vital points (physical assets) mainly include: water-inlet, water-

outlet, storage rooms for waste, electrical generator rooms, and storage locations of highly dangerous



goods. The inventories of every location situated within the premises of the plant serve to identify the
targets.

The subsequent site visit should shed light on the flows of materials (including raw materials,
produced materials and waste), cars, people (own employees, maintenance personnel, contractors,
visitors, and others), information, and ICT. These flows will help determine the most appropriate
locales for access points and also for other security measures. Once a complete inventory has been
finalised, the protection level of zones and perimeters may be determined. In Figure 3, a generic setup

of a chemical plant, using the rings-of-protection concept, is shown.

Figure 3. Generic setup of a chemical plant
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Figure 3 schematically shows zones and perimeters for areas with different risk profiles. So-called
“Typicals” are also indicated on this drawing. A Typical is as a summation of technological items
composing a security barrier, and thus describes the specific detailed technical characteristics of a
security measure installed at a plant or at a part thereof. For example a Typical for car access will
indicate all security elements of which this access point consists: a barrier, a badge-reader to enter the
site, and a vehicle loop to leave the site. These Typicals will be used to describe physical security
needs for the perimeters as well as the requirements for accessing the different zones. The PICER

principle will be used to determine the needed protection within the perimeters and zones. Note also

» Page 11/27



that the security needs are met by the OPER principle: the measures are built up from organizational,

physical, electronic and reporting elements.

For example, ‘(6)’ indicated in Figure 3, is the Typical that represents the access for pedestrians and
cars to ZONE 1, whereas ‘(7)’ is an indication of the access for the entrance of trucks, and (7A)

indicates the access for the entrance of railway carriages.

During this setup, the zone outside the plant borders, called zone ‘0’, should not be neglected.
Although this zone may seem unimportant, it is potentially the starting point of the intrusion. This
zone actually becomes crucial if several chemical installations, not being located at the same premises,
form part of one larger chemical plant. If such is the case, there may be public domain between the
different installations of the plant, and zone ‘0’ may become an important zone where people and/or
materials are transported between the installations. Some secured goods or people will be traveling
from one secured plant to another secured plant. This means that they will be remaining for a defined,
or non-defined, time in a ‘non’-secured zone. In such case, measures need to be set up for securing this

zone or for securing the zones where travel and/or transportation is possible in between.

The first protection ring will in most cases be the boundary of the plant site. Other zones will be:
- 2 = administrative offices for exploitation of the site
- 3 = buildings, essential administrative offices as well as storage rooms, and
production clusters
- 4 = vital zones (see earlier), the operational centre and the central security room

- 5 = high-security areas

To better identify the security countermeasures required, a specific methodology can be used. The
methodology we suggest, uses definitions called URB and URS. URB stands for “User Requirements
Basic” and URS is an acronym of “User Requirements Specific”. This method is based on
practitioner’s experience within security, and is based on a multidisciplinary approach integrating
security and safety needs, and taking financial considerations into account. This object-oriented
approach represents concepts as "objects" that have data fields (attributes that describe the object) and
associated procedures known as methods. It is a well-known programming method and programming
languages such as C++, C#, and Java can be given as examples of such approach. Gabbar and Suzuki
(2004) describe the design of a safety management system using an object-oriented approach. In our
application of the approach to the field of security, the URB explain the generic needs of a specific

element of the perimeter and the throughput in a zone. The URS define the specific rollout of the



physical protection system. The URB as well as the URS are a combination of all possible security

requirements (people, procedures and technical issues).

The way an URB is written down, is given in the procedure displayed in Figure 4. This URB reporting
structure is actually based on the OPER principle.

Figure 4. Scheme of an URB

URB — <indicate the name of the URB>

/* <Start of the rules>

#D <Description part>

#O <The organisational measures to be taken into account>

#P <The specific physical security measures, including resistance time and the norms>

#E <The specific electronic security measures, with an indication of the probability of detection (D ueciion )

expressed in % (value between 0 and 100%) wanted>
#R <Indication of the way this alarm will be transmitted and displayed, with an indication of the Alarm priority (A
value between 1 and 5)>

#L <List of applicable regulations like: internal laws, SEVESO, ...>

*/ <End of the rules>

The generic procedure of Figure 4 gives for the first URB, the syntax as displayed in Figure 5.

Figure 5. Definition of URB for perimeter 1

URB — Perimeter 1

/*

#D <Boundary between Zone 0 and 1>

#0O <Indicate the boundary of the chemical plant>

#P <Fence with a resistance time of t seconds according to following norms: N1, N2, etc.,
access for cars and people must be possible>

#E <Electronic Detection for non-authorised access, based up on Nx with Degection =y % >
#R <Alarms connected to the central Security Management Systems ApgioriTy = 1>

#L <applicable Regulations>

*/
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Once the complete set of URBs has been defined, the URSs can be drafted. An URS describes the
technical specifications of the URB. It is however neither a technical descriptive of the solution, nor is
it a set of procedures. In case of an existing plant it is often common that several URSs are present but
that some of them differ on one or more specific parts. As an example, for the URB 1, for example 6
URSs can be identified, namely:

URS 1 = the fence itself

URS 2 = the access-points for pedestrians and cars

URS 3 = the access-points for the trucks

URS 4 = the access-points for the trains

URS 5 = the access-points for the boats

URS 6 = the access-points to the utilities such as water and electricity

As strange as it may seem, it is worth noting that places where energy is produced or where cooling
water or water needed for production is being stored, are often forgotten as targets for adversaries.

However, these locations should also be protected (Arata, 2006), hence the URS6 in our list above.

On the schematic security drawing of the plant, Typicals (that is, as mentioned, the summation of
technological items composing a security barrier) with a number and a letter should be mentioned. An
important point, especially in chemical plants, is also to make an inventory of ATEX-zones or other
zones with explosion risks, for example in Figure 3 marked as Zone 3. These zones will need specific

equipment for every kind of security technology that will be installed.
To explain in detail the concept of Typicals an example is given here. To enhance the understanding of
Typicals, a plan of a chemical plant with the rings of protections and the Typicals on that plan are

shown in Figure 6.

Figure 6. Chemical plant and its Typicals



Figure 7 gives a schematic drawing of one illustrative Typical, that is, the security equipment needed
for a standard emergency exit. The emergency exit may only be used to access a building in case of
evacuation. As often seen, this door is also used for shortcuts or for smoking outside the building. To
prevent the opening of this door by means of the panic bar, a magnetic contact will additionally be
added in combination with a loud sounder and a camera. In case of an opening the sounder will

indicate the opening of the door, and the camera will start recording the person(s) leaving the building.

Figure 7. Typical 12: “Emergency exit”

Figure 8 shows the same Emergency Exit as is shown in Figure 7, but now this door also needs to be
used as an access point to the building. As its main function is to be an Emergency Exit, the number of

the Typical is kept but a capital “A” is added. This door has the same functionality as the one from
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figure 7, but with a specific operating instruction, namely the use of the door as an entrance with a

badge reader.

Figure 8. Typical 12A: “Emergency exit with access-IN”

This emergency exit can be described by using the technical sheet as given in Figure 9.

Figure 9. Technical sheet for the Typical 12A from figure 8.

TYPICAL 12A Reference TF.XX.0022

BPC400 =CIROCL s ELEY  V008-26/03/2013

PROJECT: Emergency Exit with access-IN

Organisational measurements

Yearly maintenance of all equipments
Guards have to execute a guard tour every day to look for open doors.

Physical measurements

Emergency door must be in accordance with the most restrictive standards of the
Access persons zone, from whereat the emergency exit takes place.

Emergency door must be in accordance with the guidelines of the law

Electronic measurements

When using this door there will be a trigger given to the CCTV to start recording all
images during the time of the buzzer. (in this way one can find out who has used

the emergency exit's)
CCTV

At activation of an alarm the cameras will register the alarm so that a verification is
possible and the recorded images can be analysed afterwards.

At unauthorized exit activates an internal buzzer and report it to the person that
the use is not allowed. A message is given to the monitoring team.

Access control - .
When a person wants to enter the building than he has to use a card reader. This

reader will overrule the standard alarm functions of this door.

The buzzer can be reset only by intervention of the monitoring.

Emergency door is connected to the central system which is located in the
control room.

Every mowve to this door will be reported as an alarm, the alarm message only in

Intrusion detection the event of evacuation will not come through. (overruling)

When you open the door to leave the secure zone is activated the siren

There is a sabotage sensitive magnetic contact present at the door

Reporting measurements

Monitoring will start the senvice reset and alarm handling.




For calculating the budget of such equipment, an inventory of all items has to be made. In Table 1 all

equipment for such an installation of a Typical 12A is summed.

Table 1. Required equipment for the Typical from Figure 8

TYPICAL 12A - Emergency Exit with access-IN

Card reader

Magnetic contact anti-sabotage
Internal sirene with build in flash
PLC for logic of door

Camera external in housing (heated/ventilated) on support

R R R R R R

Controller Access

4.2. Perimeter Protection

Every ring of protection is made up of a perimeter and the corresponding zones (enter- and exit zones).
The perimeter will have a specific resistance based upon the results of the so-called critical path
method (see also earlier in this chapter). The critical path method is a step-by-step technique for
security intrusion that defines the path an intruder could use to reach his or her goal. To define the
critical path, an asset/attack matrix must be made up, and the path with the lowest detection and delay
probability needs to be determined (Garcia, 2006 & 2008; Norman, 2010). To set up such a critical
path analysis, the targets must first be defined. A target is defined as the location the adversary would
like to enter and where he or she would like to commit an undesired act. The method further defines
the time an intruder will need, considering the obstacles and the tools, to reach his or her target. This
time will then be used to calculate the maximal intervention time for guards or police force to be on
location. The way this resistance needs to be built up and the way the possible risks can be mitigated

will be defined by the security manager of the plant.

The first perimeter, usually being the property boundary of the plant, is mostly a simple wired fence.
The fence is a physical OPER measure. It is usually used to prevent trespassing attempts and for
keeping out unwanted visitors. If it should also act as a perimeter with a certain protection against
adversaries (such as burglars, terrorists, etc.), then a more appropriate fence type can be chosen. If it
also has to prevent attacks from vehicles then it may be extended with an anti-ramming device like a
barrier of concrete. However, preventing or mitigating attempted illegal entry should not be regarded
as sufficient protection. Evidence of a potential trespasser should be available as promptly as possible.
To this end, an appropriate perimeter detection system (see for example Figure 10) may be installed.
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This introduces an electronic OPER measure. For chemical plants, the use of thermal cameras with
VCA (Video Content Analysis) is suggested. As the premises of chemical plants are usually rather
large, and often with trees and other vegetation present, tests indicated that thermal camera systems
have the lowest rate of falls alarms when used as perimeter detection. Even in case of over-climbing
and cutting of the fence this seems to be the best solution. Tests have revealed that well-organized
intruders can overcome some of the other security countermeasures such as leaking coax or seismic
pressure systems in several seconds without giving any alarm (also electronic OPER measures). A

schematic drawing of such a perimeter protection is illustrated in Figure 10.

Figure 10. Schematic drawing of Typical perimeter 1 for a chemical plant
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4.3. Access Control

Access control methods like these combine physical and electronic OPER measures in a single
security system. The company security manual needs to guide the choice of an appropriate access
system. It will indicate if a one-by-one access (that is, an access only allowing one person entering or
leaving at one time) is required on a perimeter or just a protection to unauthorised access. Otherwise it
will indicate if people have to identify themselves by means of a second verification system. Maybe
there is also a need for installing an ‘anti-pass back’ (that is, a way to prevent people of accessing a
site twice without leaving the site, e.g. handing over of badges to other people). This can be the case
for example if the number of people in a certain location has to be counted, or if a person cannot
access the plant if he does not possess the right certification, or if a person is not authorised to enter

this specific zone.



All these parameters must be carefully defined before decisions can be made about a type of cards,
doors, and what have you. These parameters will indicate if employees need to access the site by
means of a man-height turnstile or a simple gate-door or no barrier. The number of users and the
timeframe will indicate the type of the door as well as the number of access points. If a one-by-one
access for every employee at the perimeter 1 is needed (e.g., having 500 people entering between 8am
and 8:15am), then several turnstiles to let these people correctly in during this timeframe are required.

This can be visualised as displayed in Figure 11.

Figure 11. Definition of access authorization for a chemical plant
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Access control will help to define the access levels and the behaviour of the access. In a chemical plant
it is important to foresee up-scaling of the access levels. Due to the possibility of this up-scaling, the
behaviour of the access system can be changed in a few seconds. Usually, 3 levels are defined: level
1= normal operations; level 2= degraded operations; level 3= alarm. This will for example reflect in
level 1 as an operational level where everybody has a common or standard access, when authorized.
For level 2 for example there will be a limited access only for persons needed in this operational level.
So this could mean that a person having an access for 24/7 in normal circumstances, no longer is
allowed on the plant in special circumstances, or that the numbers of doors are restricted and that he or

she cannot enter the ‘usual’ buildings.
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Another important issue in the part of access control is the possibility to use mustering points. These
points must be equipped with ‘readers’, who have no access capabilities but who build up the list of all
persons present on this location. Such an inventory of present people can be very useful for rescue
workers searching people in the reactive and curative phase of an incident. The lists will be used to
verify whether there are still persons missing. However, usually a one-by-one access is not possible as
too many people have to enter a plant site at the same time. Therefore a “time and attendance” system

coupled to the wages of the employees, may be a solution.

Access control is not only based upon the readers and the authorisation of having an access. It uses
also doors. These doors must be of the same protection level as the fence. Obviously, it makes no
sense placing a wooden door in a steel fence or placing a reinforced door in a Gyproc constructed wall.
4.4. Intrusion Detection

For intrusion detection systems are electronic measures in OPER. We will use the same setup as for
the access control measurements. Figure 12 provides an overview of the described needs for this

security measurement.

Figure 12. Definition of intrusion detection for a chemical plant
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Most of the chemical plants work on a 24/7 regime. Intrusion systems will therefore be installed on the
perimeter and/or in administrative buildings or those buildings who do not have a 24/7 regime (for

example vital zones).



As the size of a chemical plant can be very large, the first point of detection should be installed on the
first perimeter. However, intrusion can also start from the inside. The probability of each type of
intrusion scenario must be defined in the security risk assessment process. Most often, a burglar alarm
is installed in the buildings, whereas a perimeter detection system is established on the perimeter.

These systems should be connected to a central guarding room. Only this way the guards can react
promptly after an intrusion. The faster there is the correct response after an alarm, the lower the

probability of an adversary to be successful.

4.5. Camera Surveillance

It is often not possible to put a guard at every door or at every location susceptible of an attack. This
cost would be very high for any company, also for a chemical company. Other solutions to detect
possible intrusions are thus required. Electronic systems for detection of intrusion are adequate but
unfortunately not always relevant. For example a fence-wire has to cope with calibration and
compensation problems due to environmental and product behaviour in outdoor installations. As these
problems still generate a lot of ‘unwanted’ alarms, guards are needed for verification of these alarms.
As guards are mostly not present on the location of the intrusion, an additional system must be put in
place to aid them to prevent neglecting these alarms. Therefore it is important to install cameras who
will be the eyes at the location of the guards. Camera’s count as electronic measures in the OPER
system.
Cameras can only visualise what they see. A correct description of the means and scope of the camera
surveillance system is therefore important. The following should be defined in advance to overcome
unusable images for the purpose of the camera surveillance:

- what must be viewed

- which part is important in the picture and which part not

- what definition is required (overview, detection, recognition, identification, ...)

- who is viewing the images and on what basis (reactive, proactive, ...)

- what can prevent the camera of viewing the correct images (plants, construction site, changes

on the perimeter ...)

Cameras are part of the overall security measures and by themselves they will of course not prevent
the security incidents of happening. In Figure 13 some definitions of camera surveillance for a
chemical plant are presented. Nevertheless every chemical plant has its own peculiarities and therefore
definitions must be fitted to the result of the chemical plant’s security assessment and security manual.
As can be seen in Figure 13, the camera surveillance system will mostly be used as a verification of

the act. A camera will not prevent an incident of happening or catch the intruder during the act. It will,
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in the best case scenario, deter an adversary committing an unwanted act. The integration of cameras
with other security technologies is thus needed, especially in chemical plants where premises can be
large and not always well illuminated at all locations. The absence of light can be indeed a problem for

camera surveillance and it must be resolved using the correct techniques.

Figure 13. Definition of camera surveillance for a chemical plant
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The visualisation of the images and the contents of these images can have a better performance by
using intelligent VCA-techniques (Video Content Analysis). If combined with thermal cameras

instead of standard cameras, even day/night, a better result is obtained in chemical plants.

Intrusion can be detected quickly, even sometimes before the actual intrusion takes place, when
combined with the newest 4D/3D techniques called ‘video image understanding’. Video image
understanding is a technique that uses sensors and telemetry in 2D-images together with human
behaviour analysis. It is even so that the combination of thermal cameras and VCA can be used for fire
detection or gas detection. In this case thermal cameras will have a double effect and a reduced cost as
they have a double functionality, especially in the chemical and process industry. Moreover, such
thermal cameras are a nice example of an integration of safety and security needs in a chemical

industrial area.

4.6. System integration




The necessity of integration of procedures, people and systems was already mentioned as the OPER
principle. All the previous sections follow this principle. But there is also a need for integration
between systems. Not only between two security systems, such as camera surveillance and access
control, but between all security systems installed and used within a chemical plant, and between

security and safety needs.

Most often the security manager will use integration for an interaction between fire detection and
access control. It is obliged that some doors, in case of a fire, need to be unlocked or locked, to prevent
the fire to expand or to enable people to escape to fire-free areas. This can be opposed to access
control being a purely security-based solution. Access control is setup to prevent ‘unauthorised’
people to enter the plant, whereas fire detection is setup to leave the plant in case of a fire. Hence
access control demands fail-secure locks where fire detection demands fail-safe locks. In this case the
appropriate lock and access point must be installed so that everyone, in case of fire, has a free exit, but

that the entrance is still secured and only available for those who have access.

This is of course only one part of the integration, even when it still is a very difficult one. For
example, it was observed that after a flash fire alarm an intrusion was seen but was not detected due to
the integration of the two systems not being setup properly. In most cases, the fire alarm will cause the
power to be cut off from the access points and doors will be left unsecured. Hence, integration is more
than setting up some hardware links: it is also about the interaction between systems that sometimes
are not regulated. For example the use of thermal cameras for gas detection or the help of camera
surveillance for an overview of the location of a fire and the additional escape routes. In a chemical
plant it is very important that security people as well as firemen have a complete overview of the fire,
its location, its extension region, the escape routes for people and also the possible routes for the fire
brigade. For chemical plants it is important that part of the integration includes the activity inside the

control rooms, not only between systems but also between people.

5. Discussion

This chapter describes a systematic development for a practical security system in the chemical and
process industry. A specific contribution is the detailed description and analysis of risk-sensitive areas
and so-called Typicals that function as security barriers. The detailed description aids the tracking of
security measures and facilitates and even enables careful thinking about risks and then appropriate
processes and other mitigation measures. We suggest that chemical companies wishing to assess their
security situation, initially perform a gap analysis between the actual state of the plant and the ideal

security situation as described above.
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When the URS is defined, an inventory of the actual (existing) situation of the plant can be made. The
plant’s URS can be used while defining the correct definitions of the Typicals. A difference between
the conceptual URS and the physical URS will be observed. For example there may be several types
of gates in the fence to enable an entrance to a certain zone. At one time the gate may be a sliding gate,
at another time it may be a bi-fold gate. The functionality of the gate will be the same, that is, a truck
entering the site. But the technical specification will be different. Detection of the open/closed state of
a sliding gate will be differently than for a bi-fold gate. This will define the difference between the
USR and the Typicals. It will also impact upon the budget estimation for the proposed security
systems. What is an appropriate budget allocation will vary with circumstance and in any event will

depend on the findings from the gap analysis.

Once all Typicals are defined for the plant, the budget estimation can be commenced. For each Typical
the technical equipment needs to be defined. This equipment typically combines several OPER
measures and will then be used to fix a complete price for the Typical. Inventory of the site will
provide a perspective on the situation as it is; the gap between this state and the to-be state. It also

indicates the number of Typicals.

The combination of the number of Typicals and the ‘to-be installed equipment’ provides for a
calculation of the amount of investment that is needed for the installation of the security system. These

Typicals can be of help later, when changing the site or constructing a new building on this site.

6. Conclusions

To build an effective security design in the chemical- and process industries, it is essential to start
from a structured security risk assessment that is recognized by people working in that industry. This
will help in choosing the right concept for the needed security solutions and protection. Designing a

correct security plan is based on this concept.

The design of so-called Typicals is suggested, and an approach where risk, behaviour and standards
will interact on the roll-out of these Typicals, is proposed for drafting the security plan. For chemical
plants, specific information will be needed, as these kinds of sites are often very large and several
types of production processes take place on the same site, often using large amounts of various
hazardous chemicals. The detailed description of risk-zones, PICER scenario’s and Typicals based on
the OPER system helps to keep track of security measures in the plant but also force analysts to think

carefully whether their security plan provides full coverage of the risks. Whenever possible, it is



recommended to look for double functionalities of the technological equipment, as to optimize the

security countermeasures’ costs, and as to integrate security needs with safety requirements.

Recommended readings

The our knowledge, a security system that is specifically dedicated to bridge the gap between security
and chemical- and process risks is absent outside the references made in this paper. Therefore, we
cannot recommend further reading in that direction, however, we can point out some of the work that
helps the reader understand the approach that is common in the chemical- and process industry that is
followed in this paper. In Lee’s handbook of process safety (Mannan, 2005) chapter 1 (§2.1 —2.3)
describe the background of the problem for process dangers but more relevant for this work: chapter 6
shows the design of risk-control systems in the process industries. Cameron and Raman (2005) show
the preoccupation with numbers and risk but also show a specific concern in the design of
management systems in chapters 3 and 11. The preoccupation with graphical information and maps,
that is also present in this paper, follows from risk analyses in the process industries that use
geographical risk contours (as shown in chapter 9 in Cameron and Raman, 2005). The layers-of-
protection method that is used in process industries is fundamentally different than for security though
lessons about the validity of barriers and the structured analysis of risk reduction can be useful in the

security domain (Dowell, 2001).
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