
University of Huddersfield Repository

Bonner, Stephen Arthur Robert

Using Hadoop to implement a semantic method for assessing the quality of medical data

Original Citation

Bonner, Stephen Arthur Robert (2014) Using Hadoop to implement a semantic method for assessing
the quality of medical data. Masters thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/23305/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

UNIVERSITY OF HUDDERSFIELD

Using Hadoop To Implement A Semantic
Method For Assessing The Quality Of

Medical Data

Author:
Stephen BONNER

Supervisor:
Prof. Grigoris ANTONIOU

A thesis submitted to the University of Huddersfield
in partial fulfilment of the requirements for the degree of Masters By Research

High Performance Computing
School Of Computing and Engineering

July 2014

http://www.hud.ac.uk
Research Group Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

1

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns

any copyright in it (the “Copyright”) and s/he has given The University of Huddersfield the

right to use such Copyright for any administrative, promotional, educational and/or teaching

purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the

regulations of the University Library. Details of these regulations may be obtained from the

Librarian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other intellectual

property rights except for the Copyright (the “Intellectual Property Rights”) and any repro-

ductions of copyright works, for example graphs and tables (“Reproductions”), which may be

described in this thesis, may not be owned by the author and may be owned by third parties.

Such Intellectual Property Rights and Reproductions cannot and must not be made avail-

able for use without the prior written permission of the owner(s) of the relevant Intellectual

Property Rights and/or Reproductions.

“Your time is limited, so don’t waste it living someone else’s life. Don’t be trapped by dogma

- which is living with the results of other people’s thinking. Don’t let the noise of others’

opinions drown out your own inner voice. And most important, have the courage to follow

your heart and intuition.”

Steve Jobs 2005

“The secret of the mountain is that the mountains simply exist, as I do myself: the moun-

tains exist simply, which I do not. The mountains have no ”meaning,” they are meaning; the

mountains are. I understand all this, not in my mind but in my heart, knowing how meaning-

less it is to try to capture what cannot be expressed, knowing that mere words will remain

when I read it all again, another day.”

Peter Matthiessen 1978

“If you don’t know, the thing to do is not to get scared, but to learn.”

Ayn Rand 1957

Abstract

Recent technological advances in modern healthcare have lead to a vast wealth of patient

data being collected. This data is not only utilised for diagnosis but also has the potential

to be used for medical research. However, there are often many errors in datasets used

for medical research, with one study finding error rates ranging from 2.3% to 26.9% in a

selection of medical research databases.

Previous methods of automatically assessing data quality have often relied on threshold

rules. These rules can sometimes miss errors requiring complex domain knowledge to

correctly identify. To combat this, a semantic framework has been developed to assess the

quality of medical data expressed in the form of linked open data. Early work in this direction

revealed that existing triplestores are unable to cope with the large amounts of medical data.

In this thesis, a system for storing and querying medical RDF data using Hadoop is de-

veloped. This approach enables the creation of an inherently parallel framework that will

scale the workload across a cluster. Unlike existing solutions, this framework uses highly

optimised joining strategies to enable the completion of eight separate SPARQL queries,

comprising over eighty distinct joins, in only two Map/Reduce iterations. Results are pre-

sented comparing both naı̈ve and optimised versions of the solution against Jena TDB,

demonstrating the superior performance of the Hadoop system and its viability for assess-

ing the quality of medical data.

Acknowledgements

I would like to thank the many people who have supported and helped me with this thesis.

I would firstly like to thank my parents, Dr Louise Bonner and Mr Neil Bonner, for all their

incredible and unwavering support during my academic career. I would also like to thank

my supervisory team of Professor Grigoris Antoniou and Dr Violeta Holmes. I would also

like to thank Dr Laura Moss and Dr David Corsar for their original effort in this work and for

allowing me to expand upon it.

I would like to thank all of my family and friends, of which there are too many to mention

in full here, but I would like to mention Holly Lewis, Joseph Luke, Olive Chittock, Liam

lane, Professor Fiona Tweed, Dave Guldin, Barbara Hughes, Dr John Ambrose and Neil

MacGregor.

I would like to thank all my friends and colleges at the University Of Huddersfield and specif-

ically the members of the High Performance Computing Research Group: Ibad Kureshi,

John Brennan, Mathew Newall, Shuo Liang and Yvonne James. I would also like to ac-

knowledge the open-source software community, particularly: Apache (For their continued

work on Hadoop) and the Linux Foundation. I would also like to acknowledge the use of the

University of Huddersfield Queensgate Grid in carrying out this work.

4

Contents

Abstract 3

Acknowledgements 4

Contents 5

List of Figures 11

List of Tables 14

List of Algorithms 15

Abbreviations 16

1 Introduction 17

1.1 Errors In Medical Databases . 17

1.2 Current Possible Solutions Using Linked Open Data 18

1.2.1 The Semantic Web and Linked Open Data 18

1.2.2 Big Data and Healthcare . 19

1.2.3 Current Implementation . 20

1.3 Project Aims and Motivations . 21

2 Background Technologies 22

2.1 The Resource Description Framework (RDF) 22

2.1.1 An RDF Statement . 23

2.1.2 RDF Graph Representation . 23

5

Contents 6

2.1.3 RDF Serialisation Formats . 24

2.2 Triplestores . 26

2.2.1 Jena . 26

2.3 Simple Protocol and RDF Query Language (SPARQL) 27

2.4 Database Joins . 28

2.5 Hadoop And The Map/Reduce Programming Model 29

2.5.1 Hadoop Cluster Components . 30

2.5.2 The Hadoop Distributed File System (HDFS) 30

2.5.3 Map/Reduce Programming Model . 31

2.5.4 Sort/Shuffle, Partitioner and Combiner Stages 32

2.5.5 Benefits and Drawbacks . 33

2.5.6 Associated Technologies . 34

3 Literature Review 36

3.1 Research Fields . 36

3.2 Distributed Native Triplestores . 37

3.3 Performing Dataset Joins Via Hadoop . 38

3.3.1 Map-Side Join . 39

3.3.2 Reduce-Side Join . 40

3.3.3 Cascade Join . 41

3.3.4 Broadcast Join . 42

3.4 Feasibility Of Using Hadoop For RDF Processing 42

3.5 Strategies For Storing RDF Data On The HDFS 43

3.6 Queries on RDF Data Using Map/Reduce . 44

3.6.1 Existing Theoretical Approaches . 44

3.6.2 Presented Performance Results . 51

3.7 Limitations Of Existing Hadoop RDF Solutions 53

3.7.1 Hadoop Joining Strategies . 54

3.7.2 Data Upload Stages . 55

3.8 Possibility Of A Highly Optimised Solution . 55

Contents 7

4 Analysis Of Current Jena TDB Implementation 57

4.1 Current Implementation . 57

4.2 Limitations of Existing Solution . 58

4.3 Current Implementation Performance Analysis 59

4.3.1 Upload Time . 59

4.3.2 Query Time . 59

4.3.3 Analysis . 60

4.4 The Need For A New Framework . 61

5 Hadoop Implementation and Algorithm Design 62

5.1 Structure and Distribution Of The Real-World Medical Data 62

5.1.1 Subject, Predicate and Object Distribution 63

5.1.2 Distinct Triple Group Distribution . 63

5.2 Data Generation . 64

5.3 Analysis Of Current SPARQL Queries . 64

5.3.1 Min/Max Queries . 65

5.3.2 More Complex Queries . 66

5.4 Hadoop-Based Framework Design . 67

5.4.1 Required Software Functionality . 67

5.4.2 Why Use Hadoop As The Basis For The New Framework? 68

5.4.3 The Two Approaches Taken . 68

5.5 Query Planning . 69

5.6 Approach One - Data Upload Algorithm . 70

5.6.1 Stage One - Compression . 72

5.6.2 Stage Two - Sort On Subject . 72

5.6.3 Algorithm Pseudocode . 73

5.7 Approach One - Data Query Algorithm Design and Joining Strategies 73

5.7.1 Selection Stage . 75

5.7.2 Join Stage . 78

5.8 Approach Two . 81

5.8.1 Selection Phase . 81

Contents 8

5.8.2 Join Phase . 82

5.9 Implementation Summary . 83

5.9.1 Key Theoretical Performance Advantages 83

5.9.2 Summary . 83

6 Test Environment and Optimisations 86

6.1 Details Of Test Environments . 86

6.1.1 Single Machine . 86

6.1.2 Dedicated Hadoop Cluster . 87

6.2 Hadoop Cluster Performance Optimisations 87

6.2.1 Benchmark Generation . 88

6.2.2 Optimum Number Of Map/Reduce Tasks 88

6.2.3 Optimum JVM Heap Memory Allocation 89

6.2.4 JVM Re-use . 91

6.2.5 Sort Memory Allocation . 92

6.2.6 Final Configuration Values . 92

7 Results 94

7.1 Testing Methodology . 94

7.2 Single Node Results . 95

7.3 Single Node Results - Approach One . 95

7.3.1 Upload Results . 95

7.3.2 Upload Results Showing Breakdown Of Passes 95

7.3.3 Query Results . 97

7.3.4 Query Results Showing Breakdown Of Passes 97

7.4 Single Node Results - Approach Two . 98

7.4.1 Query Results . 98

7.4.2 Query Results Showing Breakdown Of Passes 99

7.5 Single Node Comparison . 99

7.5.1 Approach Comparison . 99

7.5.2 Comparison With Jena TDB . 101

Contents 9

7.6 Hadoop Cluster Results . 103

7.7 Cluster Results - Approach One . 103

7.7.1 Upload Performance Across Eight Nodes 103

7.7.2 Query Performance Across Eight Nodes 104

7.7.3 Performance Scalability Across Number Of Nodes 104

7.7.4 Speed-Up Analysis Of Approach One’s Query Stage 105

7.8 Cluster Results - Approach Two . 106

7.8.1 Query Performance Across Eight Nodes 106

7.8.2 Performance Scalability Across Number Of Nodes 108

7.8.3 Speed-Up Analysis Of Approach Two’s Query Stage 108

7.9 Cluster Approach Comparison . 109

7.9.1 Approach Comparison On Eight Nodes 109

7.9.2 Approach Comparison On Four Nodes 111

7.9.3 Approach Comparison With Jena . 111

7.10 Naı̈ve versus Optimised Implementation . 112

8 Interpretation and Discussion Of Results 114

8.1 Summary and Significance Of Results . 114

8.1.1 Single Node Results . 114

8.1.2 Cluster Results . 115

8.1.3 Cluster Size Versus Speed-Up Factor 115

8.1.4 Approach Comparison . 116

8.1.5 Underlying Pass Comparison . 118

8.2 Comparison With Literature . 118

9 Conclusions And Further Work 121

9.1 Conclusions . 121

9.1.1 Project Summary . 121

9.1.2 Aims and Objectives Achieved . 122

9.1.3 Evaluative Conclusions . 122

9.2 Further Work . 124

List of Figures 10

9.2.1 Improvements To The Project . 124

9.2.2 Expansion Of The Project . 125

9.3 Final Conclusions . 126

References 128

A Appendix - SPARQL Queries 134

A.1 Original SPARQL Queries . 134

B Appendix - Hadoop Cluster Configuration Files 138

B.1 HDFS Site . 138

B.2 Mapred Site . 138

B.3 Core Site . 139

C Appendix - Approach One Source Code 140

C.1 Upload Algorithm . 140

C.1.1 Map 1 - Compressor . 140

C.1.2 Map 2 - Create Single Line On Subject 142

C.1.3 Reduce 1 - Create Single Line On Subject 143

C.2 Query Algorithm . 143

C.2.1 Map 1 - Pass 1 . 143

C.2.2 Reduce 1 - Pass 1 . 146

C.2.3 Map 2 - Pass 2 . 149

C.2.4 Reduce 2 - Pass 2 . 150

D Appendix - Approach Two Source Code 158

D.1 Query Algorithm . 158

D.1.1 Map 1 - Pass 1 . 158

D.1.2 Reduce 1 - Pass 1 . 161

D.1.3 Map 2 - Pass 2 . 165

D.1.4 Reduce 2 - Pass 2 . 165

Document Word Count: 24,259

List of Figures

1.1 The Semantic Web Stack . 18

1.2 Real World Open Linked Data . 19

2.1 A Sample RDF Dataset . 24

2.2 Graphic Representation Of RDF Data . 24

2.3 Basic Map/Reduce Workflow . 31

2.4 Full Map/Reduce Workflow . 33

3.1 SPARQL Map/Reduce Research Areas . 36

3.2 Map-Side Join . 39

3.3 Reduce-Side Join . 40

3.4 Kulkarni’s Selection Phase . 46

3.5 Kulkarni’s Join Phase . 47

3.6 Mazumdar’s Example SPARQL Query . 47

3.7 Mazumdar’s Query Execution Plan . 48

3.8 Mazumdar’s First Join . 48

3.9 Goasdoue’s 1-Clique Query . 50

3.10 Goasdoue’s Central Clique Query . 50

3.11 Mazumdar’s Performance Results . 51

3.12 Husain’s Performance Results . 52

3.13 Goasdoue’s Upload Performance Results . 53

3.14 Goasdoue’s Query Performance Results . 53

4.1 Current Approach For Checking Medical Data 58

4.2 Jena TDB Upload Performance . 60

11

List of Figures 12

4.3 Jena TDB Query Performance . 60

5.1 Triple Group Joining Plan . 71

5.2 Approach One - Selection Stage Workflow . 75

5.3 Map-Side Join Example . 76

5.4 Reduce-Side Join Example . 77

5.5 Join Stage Workflow . 79

5.6 Hadoop Job Output Showing Counters . 81

5.7 Approach Two - Selection Stage Workflow . 82

6.1 Number of Map/Reduce Tasks Results . 89

6.2 Hadoop Memory Footprint Calculation . 90

6.3 Optimum Heap Size Result . 90

6.4 JVM Reuse Result . 91

6.5 Hadoop Sort IO Result . 92

7.1 Approach One - Single Machine Upload Time 96

7.2 Approach One - Single Machine Upload Time Showing Breakdown Of Passes 96

7.3 Approach One - Single Machine Query Time 97

7.4 Approach One - Single Machine Query Time Showing Selection And Join
Stages . 98

7.5 Approach Two - Single Machine Query Time 99

7.6 Approach Two - Single Machine Query Time Showing Pass Breakdown . . . 100

7.7 Single Node Query Performance Comparison Between Approaches 101

7.8 Single Node Total Performance Comparison Between Approaches 101

7.9 Single Node Total Performance Comparison Between Hadoop And Jena . . . 102

7.10 Approach One - Upload Performance Across 8 Nodes 103

7.11 Approach One - Query Performance Across 8 Nodes 104

7.12 Approach One - Upload Performance Scalability Across Nodes 105

7.13 Approach One - Query Performance Scalability Across Nodes 106

7.14 Approach One - Query Speed-Up Factor . 107

7.15 Approach Two - Query Performance Across 8 Nodes 107

List of Tables 13

7.16 Approach Two - Query Performance Scalability Across Nodes 108

7.17 Approach Two - Query speed-up Factor . 109

7.18 Eight Node Cluster Approach Query Comparison 110

7.19 Eight Node Cluster Approach Total Comparison 110

7.20 Four Node Cluster Approach Total Comparison 111

7.21 Hadoop Approaches Versus Jena . 112

7.22 naı̈ve versus Optimised Implementation . 113

List of Tables

2.1 Join Example 1 . 29

2.2 Join Example 2 . 29

2.3 Join of Table 1 and 2 on Course-ID . 29

5.1 Subject, Predicate and Object Distribution . 63

5.2 Triple Group Distribution . 63

6.1 Specification Of The Single Machine . 86

6.2 Specification Of The Hadoop Cluster . 87

6.3 Hadoop Configuration Files . 88

6.4 Hadoop Memory Allocation on Cluster . 91

6.5 Hadoop Cluster Final Configuration Values 93

8.1 Specification Of The Clique-Square Hadoop Cluster 119

14

List of Algorithms

1 Medical Data Upload Algorithm . 74

2 Medical Data Query Map/Reduce Iteration 1 78

3 Medical Data Query Map/Reduce Iteration 2 85

15

Abbreviations

RDF Resource Description Framework

SPARQL Simple Protocol And RDF Query Language

URI Uniform Resource Identifiers

URL Uniform Resource Locator

HDFS Hadoop Distributed File System

JVM Java Virtual Machine

RAM Random Access Memory

BGP Basic Graph Patern

NHS National Health Service

LUBM Lehigh University Benchmark

16

Chapter 1

Introduction

1.1 Errors In Medical Databases

Recent technological advances in modern healthcare have led to a vast wealth of patient

data being collected. This data is not only utilised for diagnosis but also has the potential

to be used for medical research. For any conclusions from this research to be of worth, the

underlying data needs to be of high quality. However, according to Goldberg, Niemierko, and

Turchin (2008), there are often many errors in datasets used for medical research. In this

study they found error rates ranging from 2.3% to 26.9% in a selection of medical research

databases. Salati et al. (2011) highlight a series of metrics on which the quality of medical

data can be judged. These are accuracy, completeness, consistency and believability. Salati

et al. (2011) state that the errors which they find present in medical databases can have

three different etiologies: firstly, errors which were present in the original data and then

copied into the medical databases; secondly, errors which occur due to misinterpretation of

the original data; finally, errors which occur when the data is being entered into the database.

With such high error rates present in medical databases there is clear need for a system to

assess the quality of data before it is used as the basis of cutting edge research.

17

Chapter 1. Introduction 18

1.2 Current Possible Solutions Using Linked Open Data

There has been an attempt to create a system which automatically assesses a given dataset

to check for errors contained within (Corsar, Moss, & Piper, 2012). Such a system has been

developed using Semantic Web and Linked Open Data technologies, both of which will be

expanded upon in this section. The concepts relating to the emerging field of Big Data and

how this relates to healthcare will also be explored.

1.2.1 The Semantic Web and Linked Open Data

The original vision of the Semantic Web was established by Berners-Lee, Hendler, and

Lassila (2001). The vision was to create a machine-readable structure to supplement the

pre-existing human-readable content of web pages. According to Davies, Fensel, and van

Harmelen (2003) this structure consists of meta-information, defining specific properties

about any given element of data. This meta-information captures some of the meaning,

or semantics behind the data, leading to the concept being named the Semantic Web

(Antoniou & Harmelen, 2008). The Semantic Web is implemented in a series of layers,

which collectively form the Semantic Web stack illustrated in Figure 1.1. A more in-depth

view of one of the fundamental layers of the Semantic Web, the Resource Description

Framework (RDF), can be found in Chapter 2.

FIGURE 1.1: The Semantic Web Stack (W3C, 2001).

Chapter 1. Introduction 19

Linked Open Data is defined by Bizer, Heath, and Berners-Lee (2009) as being simply

different sources of data which are inter-linked together via the web. These data sources

can be geographically distributed and vary in source, content and format. To enable these

datasets to be linked, Semantic Web technologies and concepts are utilised. The number

of real-world datasets linked to others via the Open Linked Data philosophy is increasing

rapidly as Figure 1.2 demonstrates.

FIGURE 1.2: Real World Open Linked Datasets (Bizer et al., 2009).

1.2.2 Big Data and Healthcare

Big Data is a rapidly increasing area of interest within the computer science field and draws

upon areas from many different disciplines. Both academic and industrial fields are gener-

ating and collecting data at an unprecedented rate and scale. This data, and the analysis of

it, is being used to replace models and guesswork as the basis for decision-making Agrawal

et al. (2011). While there have been some early successes, the true potential of Big Data

and the decisions which can be made from its analysis have, according to Agrawal et al.

Chapter 1. Introduction 20

(2011), have not yet been fully realised. This is due to the technical challenges which stor-

ing and processing the massive volume of data present. Gartner (2011) argues that it is not

only the volume of data which is challenging current technology, but also the variety (the

heterogeneity of data, representation, and semantic interpretation) and velocity (data arrival

and required processing rate) of the data.

The biomedical and general healthcare fields have the potential to be one of the biggest con-

tributors to and benefactors from the big data phenomenon. Feldman, Martin, and Skotnes

(2012) state that the volume of worldwide healthcare data as of 2012 is estimated to be

over 500 petabytes. This Figure is predicted to increase by a factor of 50 to a value of

25,000 petabytes by 2020. Agrawal et al. (2011) state that one of the biggest contributors

to this data explosion will be the use of continuous monitoring machines, both in hospitals

and at home. Howe et al. (2008) explain that analysing this data has the potential to alter

biomedical research and significantly improve healthcare diagnosis.

1.2.3 Current Implementation

A Linked Data approach to assessing the quality of medical data has been created. Corsar

et al. (2012) state that this framework can be broken down into three key stages. Firstly,

pre-existing medical data is converted into RDF data and stored in Jena TDB. Secondly,

the data can be annotated with provenance information, such as the specification of the

machines which recorded the data. Lastly, a data checking component assesses the quality

of the data via a series of SPARQL rules. A more detailed look at the current implementation

can be found in Chapter 4. The current implementation relies on traditional semantic web

technologies which are not well-adapted to process the volume of data which healthcare

entails. Due to this, the current framework suffers from performance and scalability issues

when processing massive RDF datasets.

Chapter 1. Introduction 21

1.3 Project Aims and Motivations

Due to the potential volume of RDF-based medical records, performance issues with the

current framework could limit its adoption in the wider medical community. This project

will explore alternative methods for both storing medical RDF data and also assessing its

quality via a series of SPARQL queries. One of the key considerations for this project will

be performance and scalability of data upload and also query response time.

The specific aims and objectives of this project are as follows:

i) To create a new storage and query framework for medical data, with specific emphasis

being placed on performance. This will be implemented in Apache Hadoop Map/Reduce.

ii) To test the newly developed Hadoop framework using real-world medical data.

iii) To compare performance and scalability of this Hadoop framework against the existing

implementation of the Linked Data approach to assessing the quality of medical data

and draw relevant conclusions.

Chapter 2

Background Technologies

In this chapter the fundamental, underlying technologies utilised in this project will be intro-

duced and explained. These technologies include RDF, SPARQL, Triplestores, Hadoop and

the Map/Reduce programming model.

2.1 The Resource Description Framework (RDF)

The Resource Description Framework (RDF) is one of the fundamental layers of the se-

mantic web stack illustrated in Figure 1.1. According to W3C (2004) RDF is a language

specifically designed to express the relationship between elements on the world wide web.

The philosophy behind RDF is about making statements that are easy for machines or com-

puter programs to understand and process.

Antoniou and Harmelen (2008) state that the fundamental concepts of RDF can be consid-

ered to be: Resources, Properties and Statements.

• Resources are objects or things, about which there is a need to express some infor-

mation. Resources are represented by Uniform Resource Identifiers (URI) which is a

unique way of identifying a specific Resource.

• Properties describe the relationship between different Resources. Each Property is

also identified via a URI.

22

Chapter 2. Background Technologies 23

• Statements are the complete RDF triple. An RDF triple consists of a Resource, a

Property and a Value. Values can be a Resource or literals (such as a string or inte-

ger).

2.1.1 An RDF Statement

Ogbuji (2000) states that an RDF Statement comprises three distinct structural components:

a Subject (about which the statement is being made), a Predicate (describing the relation-

ship between Subject and Object) and an Object (an attribute of the Subject). Ogbuji (2000)

expands upon the concept of an RDF Statement by drawing comparisons with the English

language. For example the sentence ’John Brennan is a lecturer at the University of Hud-

dersfield’ can be represented in RDF with the following structure:

• Subject (’John Brennan’)

• Predicate (’lecturer at’)

• Object (’University of Huddersfield’)

Resources in RDF, as previously discussed, are represented by URI’s. A Uniform Resource

Locator (URL) is a subset of URI’s which is often used to locate an RDF Resource. There-

fore the statement from earlier could more accurately be represented as:

• Subject (http://www.hud.ac.uk/staff/John Brennan)

• Predicate (http://www.hud.ac.uk/role/lecturer)

• Object (http://www.hud.ac.uk)

2.1.2 RDF Graph Representation

As RDF is used to express the relationship between resources, it is often represented as a

graph. For example the RDF graph displayed in Figure 2.2 shows the relationships between

different elements from the dataset displayed in Figure 2.1. RDF graphs are extremely

http://www.hud.ac.uk/staff/John_Brennan
http://www.hud.ac.uk/role/lecturer
http://www.hud.ac.uk

Chapter 2. Background Technologies 24

useful in visualising how simple RDF triple statements can be built up to express complex

relationships between numerous unique resources.

FIGURE 2.1: A Sample RDF Dataset (Goasdoué et al., 2013).

FIGURE 2.2: Graphic Representation Of Sample RDF Data (Goasdoué et al., 2013).

2.1.3 RDF Serialisation Formats

Segaran, Evans, and Taylor (2009) explain that there are several formats in which an RDF

statement can be serialised, including RDF/XML, N3 and N-Triple. The original RDF seri-

alisation is RDF/XML, which builds on the XML structure of tags to represent a Triple. The

earlier statement would be expressed in RDF/XML as:

<?xml version="1.0" encoding="UTF-16"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns"

xmlns:unidomain="http://www.hud.ac.uk/my-rdf-ns">

<rdf:Description rdf:about="http://www.hud.ac.uk/staff/John_Brennan">

<unidomain:lecturerAt rdf:resource="Univerity-of-Huddersfield"/>

Chapter 2. Background Technologies 25

</rdf:Description>

</rdf:RDF>

The N-Triple notation is a simpler way of representing an RDF Triple. Each line of N-Triple

contains a single RDF Statement in full, with the subject, predicate and object separated

by whitespace. Both Subject and Object are represented as a full URI enclosed by angle

brackets. The earlier statement would be expressed in N-Triple as:

<http://www.hud.ac.uk/staff/John_Brennan> <http://www.hud.ac.uk/role-

/lecturer> <http://www.hud.ac.uk>

While the structure of N-Triple is extremely simple, it can lead to a lot of repetition with larger

RDF datasets. It is common for RDF datasets to contain numerous statements that share at

least one element, which the N-Triple format will repeat. The N-Triple format also expresses

RDF data with the full URI, again a wasteful method.

The N3 format attempts to rectify some of the inherent inefficiencies with the N-Triple for-

mat. It does this via two methods. Firstly, N3 replicates the XML namespace mechanism

to allow definition of URI prefixes at the beginning of a RDF document. Secondly, N3 pro-

vides a method of representing statements that share a common element. For example the

statement from earlier could be expanded on in N3 as:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix hud: <http://www.hud.ac.uk/#>.

hud:John_Brennan rdf:type foaf:person;

hud:lecture hud:uni.

Here an extra triple has been introduced. As it shares a common subject with the original

statement, N3 does not repeat it; instead it uses a semi-colon to represent a shared element.

Chapter 2. Background Technologies 26

2.2 Triplestores

A triplestore is a framework designed especially to provide persistent storage of and the

ability to query RDF data Haslhofer, Roochi, Schandl, and Zander (2011). According to

Sequenda (2013), triplestores can be categorised into three groups based on the storage

implementation. These groups are Native, RDBMS-backed and NoSQL. Native triplestores

are designed specifically for, and thus optimised for, storing RDF data. These Native imple-

mentations are independent of other Relational Database Management Systems (RDBMS)

and store the RDF data in the local filesystem. RDBMS-backed triplestores store the RDF

data in a traditional relational database such as MySQL. NoSQL triplestores are a recent

development designed to exploit the advances being made in NoSQL databases such as

Cassandra.

According to Weaver and Williams (2009) while many of the common native triplestores use

advanced database techniques to enable fast querying of RDF data, they require a lot of

pre-processing which can often lead to a prohibitively long data upload time.

2.2.1 Jena

Jena is one of the mostly widely utilised tools used to store and process RDF data and

was originally developed by Hewlett-Packard(Wilkinson, Sayers, Kuno, & Reynolds, 2003).

It comprises a Java API, allowing users to write programs that create or manipulate RDF

data, as well as a native (Jena TDB) and also a RDBMS-backed (Jena SDB) triplestore

to house and query RDF data. Jena implements a query engine called ARQ to perform

SPARQL queries on the triplestore.

While Jena is extremely popular, Husain, Doshi, Khan, and McGlothlin (2009) state that it

suffers from performance issues, particularly related to the initial upload of RDF data. Also

due to the fact that Jena is limited to running on just a single machine, it can only process a

relatively small number of triples at a time. Husain et al. (2009) report that a machine with

2GB of system memory could only store a dataset of 10 million triples.

Chapter 2. Background Technologies 27

2.3 Simple Protocol and RDF Query Language (SPARQL)

According to DuCharme (2011) the Simple Protocol and RDF Query Language (SPARQL)

provides a way of querying RDF data stored in a triplestore and is the W3C standard for

doing so. SPARQL can be compared to the Structured Query Language (SQL), used to

query standard relational databases, as they share a similar syntax and logic. Antoniou and

Harmelen (2008) expand on SPARQL by explaining that conceptually, it is based around

matching graph patterns. According to W3C (2013), a query evaluates what is known as

a basic graph pattern (BGP). Each BGP can contain several query patterns all resembling

an RDF triple. Variables are able to substitute any part of the BGP to allow individual

elements to be extracted from any input triples matching the rest of the pattern (W3C, 2013).

Goasdoué et al. (2013) state that the normative syntax for a SPARQL query is:

SELECT ?v1...?vn WHERE {t1...tn}

with the SELECT ?v1...?vn element representing distinct variables occurring in the input

data and the order in which they are to be returned. FROM is an optional element not

shown, that can be utilised to determine the data source to be queried. The WHERE t1...tn

element forms the BGP and is a series of triple query patterns that will match the graph of

any input triples against the ones specified in the BGP.

A basic SPARQL query that selects all lecturers at the University of Huddersfield would be:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX hud: <http://www.hud.ac.uk/#> .

SELECT ?name

WHERE

{

?name hud:Lecturer hud:Uni .

}

This simple query would return a list of all elements (in this case lecturers at the University)

that matched the triple graph pattern, bound to the variable ?name. However, often more

advanced information is required from a query. The following query would select all peo-

ple who are lecturers at the University of Huddersfield and are also part of the School of

Computing:

Chapter 2. Background Technologies 28

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX hud: <http://www.hud.ac.uk/#> .

SELECT ?name

WHERE

{

?name hud:Lecturer hud:Uni .

?name hud:School hud:Computing .

}

In this example the BGP has two query patterns to match, both of which share a common

variable. According to DuCharme (2011), replicating a variable between two triple patterns

in a SPARQL query is done to join together the two patterns. When the SPARQL query

engine finds a triple with the predicate of hud:Lecturer and an object of hud:Uni it would

bind the subject of such a triple to the variable ?name. When processing the second pat-

tern, possible matches will be limited to results containing the variable ?name. Effectively

results from the first pattern will be joined to results from the second so that only elements

meeting both conditions will be returned. The process of joining data comes from the world

of relational databases and is explored in the next section.

2.4 Database Joins

Silberschatz, Korth, and Sudarshan (2011) explain that theory behind database joins is

structured around relational algebra. They expand this point by stating that relational al-

gebra encompasses a set of operations on relationships which mirror standard algebraic

operations. While standard algebra includes addition, multiplication and subtraction, which

starts with a set of numbers as input and returns a number as output, relational algebra

operations takes a set of relations for input and returns a new relation as output. The most

common relational algebra operation used when discussing joins is the Natural Join (Repre-

sented by ./) (Silberschatz et al., 2011). The Natural Join is the combining of two datasets

by merging matching elements based on a common key, called a Foreign Key (Miner &

Shook, 2012). All patterns that match are included in the result of the join.

Chapter 2. Background Technologies 29

Table 2.1 and Table 2.2 contain data that will be joined via a natural join. In this example

the values of the Teaches-Course from table 2.1 will be joined to 2.2 via the values from the

Course-ID.

Name School Teaches-Course
John Engineering 165
Matt Computing 132
Ibad Engineering 50

Yvonne Computing 74

TABLE 2.1: Join Example 1

Course-ID Course-Name
165 DSP
50 PCA
74 CS

TABLE 2.2: Join Example 2

The join can be expressed as the following: (TeachesCourse ./ CourseID) → NewTable

Joining the two datasets will create a new dataset shown in Table 2.3. All results that can

join via the foreign key will be included in the table, while results not matching (for example

the record for ’Matt’) will be absent.

Name School Teaches-Course Course-Name
John Engineering 165 DSP
Ibad Engineering 50 PCA

Yvonne Computing 74 CS

TABLE 2.3: Join of Table 1 and 2 on Course-ID

2.5 Hadoop And The Map/Reduce Programming Model

Lam (2010) defines Hadoop as an open source framework for the storing and processing

of internet-scale data in a distributed manner. Hadoop tackles the problem of ’Big Data’

by distributing the storage and processing of data to numerous machines. White (2010)

states that Hadoop comprises two main components: the Hadoop Distributed File System

(HDFS), used for storing data across a Hadoop cluster and the Map/Reduce programming

framework, used to process the data. Hadoop has emerged as the de-facto standard for the

processing of Big Data introduced in section 1.2.2.

Chapter 2. Background Technologies 30

2.5.1 Hadoop Cluster Components

According to Chandar (2010) a Hadoop cluster consists of the following components, all of

which are Java Virtual Machines (JVM):

• JobTracker - Master node which controls the submission and scheduling of jobs on

the cluster.

• NameNode - Controller node for the HDFS, which keeps track of which node stores

what data.

• TaskTracker - These nodes are worker nodes for Map/Reduce and are where the

processing happens. A TaskTracker demon does not itself run jobs, instead it controls

the spawning of separate JVMs for each Map/Reduce function.

• DataNode - These nodes comprise the rest of the HDFS and house the data. Usually

DataNodes are also TaskTrackers, so data can be processed on the same node in

which the data resides.

2.5.2 The Hadoop Distributed File System (HDFS)

Rajaraman and Ullman (2012) state that HDFS is an open source imitation of the original

Google File System (GFS). Rather than being stored as a single entity, files stored on a

HDFS are divided into blocks, usually 64 megabytes in size. As the HDFS is designed to

be hosted via commodity machines, each block is replicated three times, with each copy

being stored on a different machine. This inherent file redundancy means that node failure

has no impact on cluster functionality and is another key advantage of Hadoop. Due to the

block nature of HDFS, it is not suited for the storing of files smaller than the size of the block

(Rajaraman & Ullman, 2012).

Chapter 2. Background Technologies 31

2.5.3 Map/Reduce Programming Model

Hadoop’s Java implementation of the Map/Reduce programming model is based on Google’s

proprietary system introduced in a 2004 paper (Lam, 2010). According to Dean and Ghe-

mawat (2004) a standard Map/Reduce pass consists of two distinct phases: a Mapper and

a Reducer. All inputs to a Map/Reduce task are key/value pairs, with all intermediate and

final output also represented in this way.

Dean and Ghemawat (2004) explain the role of each phase in the following manner: the

Map function processes the input key/value pairs, performs a user-defined algorithm, then

outputs an intermediate set of key/value pairs. These intermediate results are grouped on

the key to ensure that all values associated with that key are sent to the same Reduce func-

tion. The Reduce function then performs the final processing and outputs the last set of

key/value pairs. The basic workflow of Map/Reduce is demonstrated in Figure 2.3.

FIGURE 2.3: Simplified Map Reduce Workflow (Rajaraman & Ullman, 2012).

Rajaraman and Ullman (2012) use a word count program as a method of demonstrating

how Map/Reduce operates conceptually. For this example, the input to the program will be

a collection of documents stored on the HDFS. The Map function processes the documents

and breaks them into a sequence of individual words. The function would then emit its

intermediate key/value pair with the word being the key and the value being one. So the

output would be - (w1,1), (w2,1),...,(wn,1) At the grouping stage any replicated keys would

have their values collated before being passed onto the Reduce function. So the input to the

Chapter 2. Background Technologies 32

Reduce function would be (w1, [1 1 1 1 1]), for a word that had five instances in the original

input files. The Reduce function then would sum the values for the key and emit the total,

along with the word as the final output - (w1, 5).

The pseudocode for the word-count program would be:

Map:

void Map(string document) {

for each word w in document {

Emit_Intermediate(w, "1");

Reduce:

void Reduce (string word, list<string> values) {

int count = 0;

for each v in values {

count += StringToInt(v);

Emit_Final(word, count);

2.5.4 Sort/Shuffle, Partitioner and Combiner Stages

Thus far the Map/Reduce model discussed has been a simplified one, with several key

stages absent. These stages include Sort/Shuffle, Partition and Combiner. Together they

are what manage the crucial transfer of data from Mapper to Reducer. White (2010) states

that the Sort/Shuffle stage is what sorts the numerous different values emitted from the

Map stage by their key, and then passes them over the network to a Reduce function. The

Partitioner is responsible for deciding how the output from a Map task is divided before being

sent to a Reduce task. By default Hadoop will equally divide the intermediate Map output

between the number of requested Reduce tasks, while also ensuring that all the values of

a certain key are located within the same partition. However, a user can write their own

Partition function if they require different processes to be performed upon the intermediate

data (White, 2010). Lin and Dyer (2010) state that Combiners are an optimisation that

enable intermediate results to be processed before the Shuffle and Sort phase. A Combiner

can be considered a mini-reducer that process the output from each Map task before it is

passed to the final Reducer. As a Combiner only operates on a single Map task, it has no

Chapter 2. Background Technologies 33

guarantee of access to all values for a specific key so they are only really utilised to reduce

the amount of data to be passed to the final Reducer (Lin & Dyer, 2010).

The location of these additional stages in the Map/Reduce workflow can be seen in Figure

2.4.

FIGURE 2.4: The Full Map Reduce Workflow (Lin & Dyer, 2010).

2.5.5 Benefits and Drawbacks

The word count example discussed in the previous section demonstrates the advantages of

using the Map/Reduce programming model.Rajaraman and Ullman (2012) argue that be-

cause the Map function performs an identical algorithm on all input data, multiple instances

of the Map function can process different parts of the dataset, on different machines, simul-

taneously; thus processing the complete datasets an order of magnitude faster than pro-

cessing the datasets sequentially. Further, White (2010) argues that Hadoop’s approach to

large scale-data processing differs from the traditional High Performance Computing (HPC)

approach. HPC compute nodes usually have no access to data locally, instead they access

it via a centralised shared filesystem over a network. When processing gigabytes of data,

Chapter 2. Background Technologies 34

the network bottleneck can seriously limit the performance of the system. One of the major

advantages of the Hadoop framework is that it tries to ensure that the data to be processed

is available on the local drive of the compute node. This bypasses the need for a time-

consuming network transfer of the data. This key feature, known as data locality, is one of

the main drivers of Hadoop’s performance advantage (White, 2010).

Hadoop imposes strict limits on both the Map and Reduce functions to enable it to perform

the parallelisation. Map functions inherently have to work independently on one set of key/-

value pairs and have no access to other pairs. The Reduce function can only access those

values associated with the key used to generate the reduce function, making features such

as dataset joins complicated (White, 2010). Hadoop is implemented in Java, with each of

the cluster components discussed in section 2.5.1 running as a separate JVM. During a

standard Map/Reduce iteration each Map and Reduce task incurs a start-up penalty asso-

ciated with spawning the JVM. Due to this penalty it is usually best to limit the number of

passes required to complete a set task (Joshi, 2012). Another disadvantage that is asso-

ciated with Hadoop is the steep learning curve in discovering how to correctly program a

Map/Reduce job. White (2010) argues that creating a new Map/Reduce task even for an

experienced programer is not a quick process due the complexity of the code and number

of required functions for even a simple job.

2.5.6 Associated Technologies

There are a selection of other technologies under the Apache Hadoop banner which build

extra functionality onto both the HDFS and Map/Reduce layers. These technologies include:

H-Base, Hive and Pig.

H-Base is an open-source implementation of Google’s Big Table design (Chang et al., 2006).

Taylor (2010) states that it provides a structured, fault tolerant and scalable database layer

that resides on top of the HDFS. Unlike many other projects, H-Base enables real-time

random read and write access to the data contained within a table. H-Base provides no

query language, so users must access the data via a standard Map/Reduce job.

Chapter 2. Background Technologies 35

Hive is a project created by Facebook to provide not only a structured data store, but also a

way of querying the data via an SQL-like language called Hive QL (White, 2010). According

to Taylor (2010) a query created using Hive QL is automatically translated into the required

number of Map/Reduce tasks, enabling users who are familiar with SQL to easily start

processing data via Hadoop. Hive will automatically perform any requested joins between

data elements. However White (2010) shows that if multiple joins are required across data

elements residing in different columns, Hive will perform an un-optimised and slow series of

cascade joins (Cascade joins will be discussed further in section 3.3.3).

According to Taylor (2010), Pig was created to be a high-level data-flow language, com-

prising two elements: The Pig data-flow language named Pig-Latin and the Pig execution

environment which enables the job to run on a local or Hadoop distributed environment.

Taylor (2010) further explains that the Pig-Latin language allows users to express their jobs

as a series of operations and transformations to a selection of input data to create output.

These operations include filtering, sorts and joins. A standard Pig-Latin job usually contains

only a small selection code to complete comparatively complex tasks. In a similar fashion to

Hive, Pig automatically translates these operations into a series of Map/Reduce iterations.

While Pig makes creating Map/Reduce tasks simpler, the trade-off is that a natively writ-

ten job will have comparatively increased performance, especially when performing joins

requiring multiple passes (White, 2010).

Chapter 3

Literature Review

3.1 Research Fields

An analysis of literature from several different fields is required in order to successfully

and efficiently devise a method to perform SPARQL queries via Map/Reduce. Figure 3.1

effectively demonstrates the overlap between the different fields from which this project

draws. This chapter will explore prior research conducted into area 2 highlighted in Figure

3.1: performing SPARQL queries using Map/Reduce.

FIGURE 3.1: SPARQL Map/Reduce Research Areas (Myung, 2010).

36

Chapter 3. Literature Review 37

3.2 Distributed Native Triplestores

According to Owens, Seaborne, and Gibbins (2008) the volume of structured RDF data is

quickly outstripping the ability of native triplestores to store and query. Many of the most

commonly used triplestores are designed to only utilise a single machine. However, in an

effort to improve both upload and query performance, there have been attempts to create

distributed native triplestores that either augment or replace existing solutions.

Weaver and Williams (2009) developed a system that is able to process and query RDF

data on a selection of HPC machines, ranging from commodity Beowulf clusters to IBM

Blue Gene machines. Their implementation is created using the Message Passing Interface

(MPI) to enable parallelisation and requires no processing of the data to be performed before

it is stored. Weaver and Williams (2009) state that while their system performs well when

compared with traditional triplestores, it requires that the entire RDF data set, along with

all intermediate results, fit in the main system memory. They highlight that this approach

has two clear disadvantages. Firstly, any machine must have an equal or greater amount of

RAM to the size of the RDF dataset. This requirement would place a finite limit on dataset

size as it could never exceed the size of system memory. Secondly, as RAM is volatile

storage, this would not be an ideal solution to permanently house the data, as a hardware

or power failure would result in complete data loss.

Owens et al. (2008) present a distributed triple store designed as a direct replacement for

Jena TDB. Their implementation draws on many of the same optimisations employed to

make traditional databases efficient in a parallel environment, while also keeping specific

RDF processing benefits associated with the existing Jena TDB system. The Clustered

TDB divides the underlying hardware into one of two possible roles; Query Coordinators

which receive queries and store the location of the data on the rest of the cluster or Data

Nodes which store the data and perform any operations such as sorts or joins. Owens et

al. (2008) conclude that when the clustered system is compared with the standard Jena

TDB, it shows increased performance in triple load rates. However the system does not

scale well when performing the joins required to complete a SPARQL query, with many of

the performed tests showing a sharp drop-off in performance when running on a cluster

Chapter 3. Literature Review 38

of three machines. On one such query, a Clustered TDB system comprising three nodes

takes four times the amount of time to complete the query, compared with a standard TDB

system.

Harris, Lamb, and Shadbolt (2009) introduce a distributed triplestore called 4-Store. 4-Store

is designed as a complete implementation of a triplestore, handling both the storage and

query requirements. A 4-Store cluster consists of a single processing node controlling a

selection of data nodes on which the RDF data is stored. Two studies, one conducted by

Patchigolla (2011) and one by Haslhofer et al. (2011) both find 4-Store to be one of the

fastest from a selection of different triplestores. Haslhofer et al. (2011) show that even

running on a single node 4-Store is often twice as fast as Jena TDB. However 4-Store has

shown that query performance does not scale well, with performance remaining static once

the cluster size is increased past 4 nodes (Patchigolla, 2011).

3.3 Performing Dataset Joins Via Hadoop

As a complex SPARQL query requires multiple joins, any implementation designed to pro-

cess them via Map/Reduce also requires the ability to perform joins. Joins in SPARQL are

handled by the underlying engine (such as Jena’s ARQ) and therefore are seamless to the

user. However according to Miner and Shook (2012), performing joins in a Map/Reduce

environment is potentially the most complex operation to achieve efficiently. Map/Reduce

was designed to process large datasets by looking at each element in isolation and process-

ing it sequentially, so joining two potentially massive datasets is beyond Hadoop’s design

paradigm.

While joins in Map/Reduce are complicated, several different strategies have emerged that

make them possible. These join strategies include: Map-Side, Reduce-Side, Broadcast and

Cascade joins (Chandar, 2010). These strategies will be explored in greater detail below.

For the Map-Side and Reduce-Side joins, both a Two-way (joining two items in a single

Map/Reduce iteration) and Multi-way join (Joining multiple items in a single Map/Reduce

iteration) will be considered.

Chapter 3. Literature Review 39

3.3.1 Map-Side Join

According to White (2010) a Map-Side join functions by joining the datasets before they

reach the Map function. This eliminates the need for the datasets to be passed to the

Reduce function, as the output of the Map function is the final joined output. While avoiding

the Reduce phase means that a Map-Side join is potentially the quickest join method, the

datasets to be joined have to meet very strict formatting conditions for it to work. White

(2010) expands on two of the fundamental formatting conditions: firstly all input data must

be partitioned using the partitioner, with the number of partitions in each input dataset being

identical. Secondly, all input data must be sorted via the same key to be used for the join,

with all values of a certain join key residing in the same partition. According to Palla (2009)

the Map-Side join uses this precise structure of the input data to enable joining without data

being passed to the reduce function. Figure 3.2 shows a Map-Side join workflow.

FIGURE 3.2: Map-Side Join (Palla, 2009).

The formatting conditions required for a Map-Side join often mean that for many datasets

stored via their original structure, using a Map-Side join is not practical (Chandar, 2010).

Chapter 3. Literature Review 40

However with the introduction of a pre-processing stage, comprising a single Map/Reduce

iteration which simply passes the data through the framework, it can be possible to format

the input data so that it is compliant with the Map-Side join input requirements (Palla, 2009).

3.3.2 Reduce-Side Join

The Reduce-Side join is a more common approach utilised to join data via Map/Reduce and

is implemented using the complete Map/Reduce iteration (Palla, 2009). According to White

(2010) the basic workflow for the Reduce-Side join is as follows: Firstly the Map function

iterates through all records, tagging them with their source dataset and sets the Map output

key as the join key. This will ensure that all values featuring that key are sent to one Reduce

function. The Reduce function can then join the required elements and emit the final output.

A simple two-way Reduce-Side join workflow is illustrated in Figure 3.3. Compared with a

Map-Side join, Reduce-Side joins are much more flexible as there are no restrictions placed

on the structure or partitioning of the input data (White, 2010). However Miner and Shook

(2012) state that the major disadvantage of this method is that all data required for the

join will be passed through the Map/Reduce shuffle phase, thus incurring a costly network

transfer stage.

FIGURE 3.3: Reduce-Side Join (Chandar, 2010).

Afrati and Ullman (2010) show the logic behind the Reduce-Side to be relatively simple. For

example joining the following datasets:

Chapter 3. Literature Review 41

(P (a, b) ./ Q(b, c))

could be achieved by first iterating through both datasets P and Q in the Map function and

emitting b as the key and a as the value for P, and b as the key and c as the value for

dataset Q. The values would be grouped via the common key and the Reduce function

would be presented with the key/value pair of - b(an, cn) The reduce function would then join

the values together to create the final join result:

(P (a, b) ./ Q(b, c)→ FinalResult(a, b, c))

While this approach is suitable for joining two elements, joining multiple elements that de-

pend upon the output of previous joins is not possible via this method. However using a

technique called a Cascade join it is possible to process such situations (Chandar, 2010).

3.3.3 Cascade Join

The Cascade join is a method that allows multiple dependant relations to be joined via

Map/Reduce. According to Afrati and Ullman (2010) a Cascade join is effectively a pre-

determined set of Reduce-Side joins, processed in an iterative manner. Afrati and Ull-

man (2010) verify the logic behind the Cascade Join by demonstrating the joining of three

datasets:

(R(a, b) ./ S(b, c) ./ T (c, d))

Using the first of two Reduce-Side joins, it is possible to join dataset R and S via the join

key b:

(R(a, b) ./ S(b, c)→ IntermediateResult(a, b, c))

Then by employing a second Reduce-Side join it is possible to join the Intermediate result

to dataset T via the join key c to create the final result.

Chapter 3. Literature Review 42

(IntermediateResult(a, b, c) ./ T (c, d)→ FinalResult(a, b, c, d))

As the Cascade join is a set of Reduce-Side joins, it inherits many of the same advantages

and disadvantages. But according to (Chandar, 2010) it has some additional benefits and

drawbacks: A key advantage to Cascade joins is that the only limiting factor to the size and

number of datasets that can be joined is the available HDFS space. However as each join

is a complete Map/Reduce pass, the time overhead needed to setup each one will be in-

curred for each required pass. Cascade joins also inherit the network shuffle costs from the

Reduce-Side join, but multiplied via the number of required passes. Another disadvantage

is that the intermediate join results can consume vast amounts of space on the HDFS. How-

ever these intermediate results can be deleted once the final join result has been returned.

3.3.4 Broadcast Join

Blanas et al. (2010) state that if one of the datasets to be joined is of a small enough size,

it could be stored in memory. This approach, entitled the Broadcast join, can be used as a

performance optimisation for either a Map-Side or Reduce-Side join. A Map-Side join stands

to have the largest performance gain from a Broadcast join, which comes from the lack of

overhead from the Map/Reduce shuffle (Chandar, 2010). According to Lin and Dyer (2010)

a Broadcast join functions by loading the smaller dataset in memory on all machines that

will run a Map function. The Map function can then probe the dataset loaded in-memory to

check for joins possible with the dataset passed to the Map function via the HDFS. Blanas et

al. (2010) suggest the process can be optimised by storing the smaller dataset in an efficient

data structure such as a Hash-Table, allowing for faster checking of element membership.

3.4 Feasibility Of Using Hadoop For RDF Processing

The need for a new and scaleable way to process the increasing amount of RDF data

is apparent. Even some of the most distributed triplestores only use their parallelism to

enable a larger volume of data to be stored, but do not increase the query performance

(Patchigolla, 2011). This need for a new approach to parallel RDF data management has

Chapter 3. Literature Review 43

led some researchers to consider the use of Hadoop to solve the problem. According to

Soule (2011) Hadoop does not at first appear an ideal solution for processing RDF data,

but if handled correctly has the potential to be a viable solution. Hadoop’s intrinsic ability

to scale means it could adapt to fit as RDF data-sets continue to increase in size. Myung,

Yeon, and Lee (2010) further argue that RDF’s simple data model along with potential for

RDF to be rendered as text strings via the N-Triples notation, serve to enhance the case for

investigating Hadoop as an RDF processing platform.

3.5 Strategies For Storing RDF Data On The HDFS

One of the first points to consider when designing any Hadoop application is how the input

Data will be stored on the HDFS. As discussed in section 2.1.3, RDF has the potential to be

serialised in a variety of different formats. Husain (2009) has investigated the storage of RDF

data and argues that from the available formats, the least suited would be RDF/XML as it

requires several lines to represent a single statement. He argues that as Hadoop processes

each line of input data individually, a much more suited RDF format would be N-Triple, as

it allows a complete RDF statement to be rendered in a single line of text. The ability of

Hadoop to process a complete triple on each iteration has clear performance benefits, as

individual triples can be extracted without the need to parse the entire input (Husain et al.,

2009).

Husain et al. (2009) advocate splitting the input data on the HDFS into smaller chunks before

allowing it to be processed. They propose a system whereby the original RDF input data is

split into smaller and more manageable chunks. Firstly the data is divided based on the RDF

Predicate, this stage is called the Predicate Split. Work conducted by Stocker, Seaborne,

Bernstein, Kiefer, and Reynolds (2008) shows that many real-world RDF datasets do not

contain more than twenty different predicates. Splitting the original input data into even

twenty smaller chunks would enable any query to take a much more relevant selection of

input data, thus decreasing the amount of time spent seeking data requested via the query

(Husain, 2009). Husain (2009) further suggest splitting the data again once the Predicate

Chapter 3. Literature Review 44

Split is complete, but this time the split, being based on the RDF Object, could further target

more relevant data to a query.

Rohloff and Schantz (2010) store the RDF data as raw plain text N-Triple files, housed

directly on the HDFS. However rather than storing each triple as a unique entity, a pre-

processing stage is introduced, to store the RDF in a non-native representation. This rep-

resentation stores every triple for a certain subject on the same line of text. Rohloff and

Schantz (2010) demonstrate how this representation works by showing how their system

would store three triples with the common subject of Pub1:

Pub1 :author Prof0 :name "Pub1" a :Publication

As Pub1 only needs to be printed once, this representation also acts as a rudimentary form

of data compression, cutting down on the amount of HDFS space being used.

Goasdoué et al. (2013) store the RDF data in a novel way, exploiting the HDFS data repli-

cation to enable faster query processing. As highlighted in section 2.5, by default the HDFS

will replicate each block of data three times, with each replicated block being distributed to

a unique node wherever possible. In the approach presented by Goasdoué et al. (2013),

each block of RDF data is still replicated three times, but instead of each replication being

identical, one is partitioned on the subject of a triple, one on the property, and the last on the

object. Further to this partitioning, the system stores any identical permutations of a certain

RDF subject, predicate or object on the same HDFS data node.

3.6 Queries on RDF Data Using Map/Reduce

3.6.1 Existing Theoretical Approaches

A number of different Map/Reduce-based approaches to query RDF data stored on a HDFS

have been explored by various researchers. Many of the approaches are designed to pro-

vide a complete SPARQL query engine that translates a given query into a series of Map/Re-

duce jobs with little or no input from the user.

Chapter 3. Literature Review 45

Rohloff and Schantz (2010) introduce a system entitled SHARD, which was one of the first

coherent efforts to query RDF data using Hadoop. They designed the system to complete

two goals: to serve as a persistent storage for RDF data and to provide a SPARQL end-

point to query the stored data. As discussed in section 3.5 they employ a method of storing

the RDF data on the HDFS so that every triple with a common subject is rendered on a

single line of input data. According to Rohloff and Schantz (2010) to complete a response

to any given query, the SHARD system spawns a series of Map/Reduce iterations. The first

iteration maps all the input triples to a list of variable bindings denoted by the first clause in

the SPARQL query. Any triples which match the clause are passed to the reduce and then

saved to the HDFS. This step is repeated n number of times for each of the clauses in the

query, with the input being the original data plus the output from all previous stages. Using

this method allows the system to filter out any previously selected triples which do not meet

the new selection criteria. These intermediate stages join the newly selected triples to the

previous results via a reduce side join. This allows the system to pass only those triples

which meet all the current clauses onto the next iteration. According to Rohloff and Schantz

(2010) once all the clauses have been completed, the final Map/Reduce stage is used to

complete the SELECT element of the query by making sure only the variables originally

requested are presented to the user via the final output.

Kulkarni (2010) presents a system which expands on the Jena ARQ query engine and

attempts to transfer the processing of data to Hadoop. The approach is split into two dis-

tinct phases, with each phase implemented as at least one complete Map/Reduce iteration.

Firstly a selection phase is run to select all the triples required to complete the query. The

selection phase groups the final output based on the order of the patterns from the BGP.

Figure 3.4 shows how, with a query comprising two BGP elements, the selection phase

splits the reducer output into two separate files. The output is formatted with the key being

equal to the pattern number and the complete triple as the value.

Kulkarni (2010) further explains that following the selection phase, the relevant triples are

passed to the join phase, in which any required joins are performed in an iterative fashion.

In this phase any common elements from the previously generated pattern files are joined

together to complete the query. Figure 3.5 shows how the join phase mapper selects joining

Chapter 3. Literature Review 46

FIGURE 3.4: Kulkarni’s Selection Phase (Kulkarni, 2010).

elements from the triples, setting the element to be joined as the key and the full triple as

the value. Leveraging the shuffle and sort phase highlighted in section 2.5, will ensure that

any common elements will be sent to the same reducer and thus can be joined together to

create the final output. Joining via this method means that a large number of triples could

be joined in a single pass, providing they share a common element.

Mazumdar (2011) presents a similar system with the RDF data being first processed by a

selection phase and then a join phase. However this implementation introduces an addi-

tional stage entitled the projection stage. While each stage is similar in role to Kulkarni’s

work, there are slight variations in operation. Mazumdar (2011) states that his selection

stage is used to filter out those triples not required by the query. This stage’s output is a

selection of triples which match at least one of the query patterns, split into separate files on

the HDFS based on the pattern number. This is then passed to the next Map/Reduce task

which performs a Reduce-side join, running iterative passes of the same job if multiple joins

are required. After the Join phase, the data is passed through a concluding stage, which

projects the requested final output from the original query. Processing RDF data using this

approach will require at least three different Map/Reduce iterations to complete any given

query, expanding by one additional iteration per extra join required (Mazumdar, 2011).

Chapter 3. Literature Review 47

FIGURE 3.5: Kulkarni’s Join Phase (Kulkarni, 2010).

Mazumdar (2011) demonstrates how the join phase would iteratively process a certain

SPARQL query shown in Figure 3.6. Figure 3.6 also shows how each of the different triple

patterns are numbered for use later in the query planning stage.

FIGURE 3.6: Mazumdar’s Example SPARQL Query (Mazumdar, 2011).

Figure 3.7 shows the query plan, represented as an RDF graph, that the rest of the join

phase would follow.Mazumdar (2011) states that the query plan is generated based on triple

patterns that share a common variable on which they will be joined. For example pattern 0,2

Chapter 3. Literature Review 48

and 6 share the common variable ?article1, so they would be joined in the first Map/Reduce

join pass.

FIGURE 3.7: Mazumdar’s Query Execution Plan (Mazumdar, 2011).

The resulting output, with the completed join of patterns 0,2 and 6 highlighted in blue, is

shown in Figure 3.8. The join phase would continue in this manner, joining all elements

sharing a common variable via a single Map/Reduce task. According to Mazumdar (2011),

using this method would take a further four iterations to produce the final join stage output.

This would then serve as the input to the projection stage which performs the ’SELECT’

clause of the query shown in Figure 3.6, in this case outputting the request variables of

?name1 and ?name2.

FIGURE 3.8: Mazumdar’s First Join Iteration (Mazumdar, 2011).

Husain, McGlothlin, Masud, Khan, and Thuraisingham (2011) have created a framework

called HadoopRDF. It is highlighted in work conducted by Goasdoué et al. (2013) as being

one of the most advanced of the current implementations created to query RDF data via

Map/Reduce. Similar to the method presented by Husain et al. (2009), the HadoopRDF

system splits all the input triples into separate files based on the predicate. Triples with the

predicate of rdf:type, which they highlight as being the most common predicate, are again

further split into separate files based on the object. To evaluate any given query firstly the

Chapter 3. Literature Review 49

system evaluates which of the pre-split files are required as input for the job. Then, Husain

et al. (2011) explain that the system implements an heuristic approach to find the optimum

method to complete the query. This heuristic approach to finding the best query plan is

what differentiates HadoopRDF from other implementations and, due to its ability to cut

the number of Map/Reduce iterations, is a key driver of its performance (Goasdoué et al.,

2013). The heuristics-based approach uses a greedy algorithm to determine the minimum

numbers of jobs in which a set query can be completed. Once the appropriate plan has

been generated, the system then runs the required number of jobs in a pre-determined

order. The input for a certain job is the output from the previous job, with the original input

being the required selection of split RDF files. If any joins are required on different variables,

HadoopRDF processes them using iterative reduce-side joins. However, HadoopRDF will

join any number of identical variables in a single pass in an effort to reduce the number of

required passes (Husain et al., 2011).

Goasdoué et al. (2013) present an alternative Map/Reduce based RDF query system which

borrows the idea of cliques from graph theory to perform certain queries in a highly efficient

manner. They propose a system of two different clique-based query classifications. Firstly,

they propose the 1-clique query, which are only those queries which join triples via a single

common variable. Figure 3.9(a) shows a SPARQL query which, based on the single com-

mon join variable ?x, would be classified as a 1-clique query. Figure 3.9(b) shows the graph

representation of the same query, with each node being a single triple pattern, connected

by their common join variable of ?x. To implement the 1-clique query via Map/Reduce

Goasdoué et al. (2013) exploit their data replication strategy discussed in section 3.5. The

strategy ensures that any triples which share at least one element are accessible on a single

node. They are then able to exploit the ability of map side joins, highlighted in section 3.3.1,

to perform joins on a single common key in a map only job, bypassing the costly shuffle/sort

phase. Goasdoué et al. (2013) performed an analysis of real-world SPARQL queries taken

from DBPedia before they designed the system. They observe that nearly 99% of queries

from the real-world sample have the potential to be processed via a 1-clique query.

Secondly, Goasdoué et al. (2013) propose the central clique query, defined as a series of

patterns connected via one overlapping element. Figure 3.10(a) shows a SPARQL query

Chapter 3. Literature Review 50

FIGURE 3.9: Goasdoue 1-Clique Query (Goasdoué et al., 2013).

which would qualify as a central clique query. Figure 3.10(b) shows the same query repre-

sented in graph form, illustrating how the two different collections of triple patterns are con-

nected via a single element. To implement a central clique query in map/reduce, Goasdoué

et al. (2013) exploit a map side join and then a reduce side join (discussed in section 3.3.2),

to enable two different triple groups to be joined. For example the query from Figure 3.10

could be completed in one Map/Reduce iteration. Firstly as the query contains two distinct

1-clique queries, each of these would be completed in the map phase as before. Then

the required additional join on the two separate patterns would be accomplished in the re-

duce stage by setting the common variable as the intermediate key. Using this method,

any number of different interconnected 1-clique patterns could be joined by using iterative

Map/Reduce passes.

FIGURE 3.10: Goasdoue’s Central Clique Query (Goasdoué et al., 2013).

Chapter 3. Literature Review 51

3.6.2 Presented Performance Results

This section will explore and compare relevant practical results presented in the literature

detailed in the previous section.

Mazumdar (2011) presents results from the developed solution on a 20 node cluster. To

evaluate the performance, RDF data and SPARQL queries from the SP2 Benchmark were

used. The SP2 Benchmark is a commonly used tool to assess the performance of triple-

stores. It comprises a set of relatively simple SPARQL queries which are run across a

variety of dataset sizes. Full details of SP2 are given by Schmidt, Hornung, Lausen, and

Pinkel (2008). Figure 3.11 shows the results for the solution (Mazumdar, 2011). The results

show that for even relatively simple queries running on a dataset size of 50 million triples,

the solution takes up to 50 minutes to return a response.

FIGURE 3.11: Mazumdar’s Performance Results (Mazumdar, 2011).

Husain et al. (2011) access the performance of their solution called HadoopRDF by running

it on a 10 node cluster. They test HadoopRDF at uploading and querying RDF data from

the LUBM benchmark, against Jena running on a single machine and in main memory. Full

details of LUBM are given by Guo, Pan, and Heflin (2005). The LUBM benchmark comprises

an RDF data generator and a series of SPARQL queries. For the test, they performed a

range of LUBM SPARQL queries on RDF data sets comprising different numbers of triples.

Results from the solution are shown in Figure 3.12. The tests show that for a smaller volume

of triples, Jena is faster. However the HadoopRDF system starts to become faster once the

Chapter 3. Literature Review 52

amount of triples is increased past 25 Million. They also show that Jena is unable to even

process datasets of more than 100M triples. The results also show that the solution is able

to perform a single SPARQL query on one billion triples in under one hour. Husain et al.

(2011) also test the scalability of HadoopRDF by testing how the framework performs on

datasets of up to 6.6 billion triples. They find that the system features a sub-linear increase

in query time against dataset size, meaning that an increase in dataset size does not result

in a proportional increase in the time taken to query it.

FIGURE 3.12: Husain’s Performance Results (Husain et al., 2011).

Goasdoué et al. (2013) present results from their solution which is tested on an eight node

cluster. As well as assessing their own work, they also compare it to the HadoopRDF system

created by Husain et al. (2011). They are also using the LUBM Benchmark to test the upload

and query performance of the system. Figure 3.13 shows the upload performance of the

system on dataset sizes of one and two billion triples. The results show that the system

required 257 minutes to upload one billion triples and the system failed to upload two billion

triples over the eight node cluster.

Figure 3.14 shows the query performance of the system when running on a dataset size of

one billion triples. The results show that the system is much more effective than HadoopRDF

across the range of LUBM SPARQL queries, with the most complex query being completed

Chapter 3. Literature Review 53

FIGURE 3.13: Goasdoue’s Upload Performance Results(Goasdoué et al., 2013).

in 59 minutes. These results show that the solution presented by Goasdoué et al. (2013) has

the best performing query stage of the current SPARQL over Hadoop processing solutions

as detailed in section 3.6.

FIGURE 3.14: Goasdoue’s Query Performance Results(Goasdoué et al., 2013).

3.7 Limitations Of Existing Hadoop RDF Solutions

The systems introduced in the literature from the previous sections are all designed to pro-

cess generic SPARQL queries and are therefore not optimised to any specific case. All the

current implementations only present details of how the systems cope with relatively simple

Chapter 3. Literature Review 54

SPARQL queries from the LUBM or SP2 benchmarks. None give details on how the sys-

tems cope when required to perform large numbers of joins which a complex SPARQL query

would entail. In addition, none of the current solutions explore the possibility of grouping

common joins from different unique SPARQL queries together to save on re-computation.

The following two sections explore two of the main limitations that the current systems share.

3.7.1 Hadoop Joining Strategies

Many of the existing projects which tackle processing RDF over Hadoop rely on the slower

reduce side join, meaning that they would require many iterations to processes complex

queries. Few attempts have looked at the possibility of a map-side or broadcast join to

create highly optimised systems. The work presented by Mazumdar (2011), Rohloff and

Schantz (2010), Husain et al. (2011) and Kulkarni (2010) all perform any required joins via

a series of cascade reduce-side joins. As described in section 3.3.3, cascade joins involve

a lot of data transfer over the network as well as incurring multiple JVM initialisation stages,

both of which will lead to poor performance. From the currently available literature, only

one solution has been developed which attempts to use a map-side join when processing

SPARQL queries. This is the clique-based approach presented by Goasdoué et al. (2013).

This approach uses a map-side method to join triples which share a common element but

falls back to a reduce side method to join additional elements. There appear to be no

available solutions which utilise the highly efficient broadcast join method.

A selection of the current solutions, for example work presented by Kulkarni (2010) and

Rohloff and Schantz (2010), will run one complete Map/Reduce iteration per line of SPARQL

query. This approach ignores the multi-way join method which groups the joining of any

common elements into a single Map/Reduce reduce-side join iteration. As many SPARQL

queries contain common join variables, a system which is unable to exploit this to improve

performance does not appear highly optimised.

Chapter 3. Literature Review 55

3.7.2 Data Upload Stages

Many of the current solutions rely on pre-processing of the data to enable faster querying at

a later date. However these data upload stages often change the structure of the data, thus

removing the characteristic triple format and element order of the RDF data to be stored. For

example the solution presented by Husain et al. (2009) split the original RDF dataset into

different files based on the predicate, meaning that the files would have to be reconstituted if

the user wanted to extract the complete original RDF dataset. In the example presented by

Goasdoué et al. (2013), the order of the RDF elements is altered for each of the three data

replications, meaning that the user would have to re-convert the data back to its original

order of subject, predicate and object. The data upload stage presented by Goasdoué et al.

(2013) also has a further limitation, in that it can only be used to join dataset sizes less then

the size of a HDFS block; by default this is 64MB.

These approaches would need additional Map/Reduce jobs to convert the data back into

the original RDF format. None of the currently available literature explores the possibility

of storing and querying RDF data over Hadoop in its native format. There may very well

be good performance-related reasons for this, but as all the upload stages presented in the

literature take considerable time, the possibility of not requiring one should be explored.

3.8 Possibility Of A Highly Optimised Solution

From reviewing the current literature it is possible to see that there are gaps which would

enable a highly optimised system that stores and Queries RDF data using Hadoop to be

created. Firstly, the case can be made for exploring a system where prior knowledge of

the data to be stored informs a highly optimised system. Knowledge of the structure and

distribution of any RDF data could be utilised to enable efficient map-side and broadcast

joins to be used. For example, triples which contain common elements could be grouped

together to enable map-side joins. Also smaller groups of triples which are required to be

joined to larger groups could be made available via a broadcast join. This would save on

numerous costly iterative reduce-side joins which the current solutions rely upon.

Chapter 3. Literature Review 56

Secondly, the case can be made for designing a system in which knowledge of the type

of SPARQL queries to be performed allows for optimised query planning. Currently none

of the existing system use knowledge of the SPARQL queries which will be performed to

save on costly re-computation. This means that the current solutions would recompute all

the required joins for two SPARQL queries in which only one join was different. A highly

optimised solution would not waste time and resources re-performing joins, instead it would

only perform the additionally required join. This could be achieved by creating a super

query from an input of multiple queries, so that common joins would not be recomputed.

In addition, the intermediate join data could be stored on the HDFS so any future queries

which require the same joins could utilise it.

Chapter 4

Analysis Of Current Jena TDB

Implementation

4.1 Current Implementation

This chapter will introduce and analyse the pre-existing approach used to assess the quality

of medical data using linked data technologies. This approach was developed by Dr David

Corsar and Dr Laura Moss and full details are given by Corsar et al. (2012) and Moss,

Corsar, and Piper (2012).

Corsar et al. (2012) state that this framework can be broken down into three key stages:

firstly, pre-existing medical data is converted into RDF data and stored in Jena TDB. Sec-

ondly, the data can be annotated with provenance information, such as the specification of

the machines which recorded the data. Lastly, a data-checking component assesses the

quality via a series of SPARQL rules. Figure 4.1 shows the complete framework. The most

important of these steps is the data checking stage, which according to Corsar et al. (2012),

comprises a series of SPARQL queries which test various qualities of the data, including

checks on acceptable data ranges and missing data points. If a potential error is found the

system will annotate it with one of two different states based on the level of confidence that

it is truly an error. The two states are ’Possible Error’ and ’Probable Error’ (Corsar et al.,

57

Chapter 4. Analysis Of Current Jena TDB Implementation 58

2012). The function of the data checking stage is to highlight any potential errors in the

dataset to the user before the data is utilised for other purposes.

FIGURE 4.1: Current Approach For Checking Medical Data (Corsar et al., 2012).

4.2 Limitations of Existing Solution

While the current framework functions correctly in the detection of errors, it suffers from two

main performance issues, details of which are given in the papers describing the framework.

Firstly Corsar et al. (2012) explain that their original method of using Jena TDB took over six

hours to upload 1.6 Million triples. Secondly, Moss et al. (2012) explain how the framework,

when working on an RDF dataset comprising 609,168 triples, took over 150 minutes to

return a response for a single SPARQL query. Both these performance issues are related

to the same Semantic Web component of the framework; Jena TDB.

The performance of the current framework will be tested in the following section.

Chapter 4. Analysis Of Current Jena TDB Implementation 59

4.3 Current Implementation Performance Analysis

To assess the real-world performance of the Jena-based framework, it was benchmarked

against a range of RDF dataset sizes. Hardware and software specifications of the machine

on which the benchmarks were run can be seen in section 6.1.1. Both the upload and query

time for the Jena implementation were benchmarked.

A more detailed and comparative analysis of the Jena framework can be found in section

7.5.

4.3.1 Upload Time

Figure 4.2 shows the upload performance of Jena TDB across a range of data set sizes.

As the results show, the upload performance of Jena TDB is poor once the dataset size

increases past 32 million triples, as Jena took 157 minutes to upload 64 million triples.

While this upload performance is not as poor as the claims made by Corsar et al. (2012)

and Moss et al. (2012), direct comparisons between the two results is impossible due to

the lack of knowledge about the test environment and datasets used by Corsar et al. (2012)

and Moss et al. (2012). However both results due suggest that Jena is not able to cope with

storage demands made by the massive potential volumes of NHS RDF data.

4.3.2 Query Time

To assess the query performance of Jena, all of the required queries were run upon the

data sequentially. The results from the queries were written to disk. Figure 4.3 displays the

results from the test. It shows that as the number of triples increases, so does the time taken

to return query responses. As with the upload test, once the number of triples increases

past 32 million, the query performance begins to suffer, with Jena taking over one hour to

complete all the queries (Found in appendix A) on a dataset size of 64 million.

Chapter 4. Analysis Of Current Jena TDB Implementation 60

FIGURE 4.2: Jena TDB Upload Performance

FIGURE 4.3: Jena TDB Query Performance

4.3.3 Analysis

As the results from the previous section shows, the current Jena TDB and SPARQL im-

plementation suffers from performance limitation, even when running on a modern desktop

Chapter 4. Analysis Of Current Jena TDB Implementation 61

machine. This machine is detailed in section 6.1.1. The results for the upload and query

stages produce unsatisfactory results when the number of triples is increased to 64M. In-

deed Jena was not able to return a result when the dataset size was increased to 128

million triples. Neither the upload nor query performance is as poor as (Corsar et al., 2012)

and (Moss et al., 2012) found, however this could be explained by a performance disparity

between the underlying machines used in the test. .

4.4 The Need For A New Framework

The results from this test suggest that Jena is not the platform most suited to perform error

checking on NHS scale RDF datasets. Aside from the performance issues, Jena is only

able to upload to and query data from a single machine, meaning that there will always be

a limit, determined by the size of HDD, on the volume of RDF data that could be processed.

These results show that a new way of assessing the quality of medical data needs to be

developed to be able to cope with the potential volume of RDF NHS data. Logically, the

new framework would scale the work and storage load across multiple machines to enable

more data to be stored and queried. According to Asanovic et al. (2009), this move to a

multi-core and multi-machine approach is being experienced across the whole spectrum of

the computer-science field.

Chapter 5

Hadoop Implementation and

Algorithm Design

As shown in Chapter 4, there is a clear need to produce a new framework that can cope

with the potential volume of NHS RDF data. This chapter will detail how this new framework

was first designed and then implemented.

5.1 Structure and Distribution Of The Real-World Medical Data

For any new framework to be designed, real-world medical data was required. Due to

ethical and privacy reasons it was not possible to have access to large volumes of real

medical data. However, three anonymised datasets were provided by the University Of

Glasgow. The datasets all contain neurological data from the BrainIT project (Chambers

et al., 2009). The datasets contain information regarding neurological readings taken from

patients, along with information regarding the machines and sensors which produced these

values. The provided datasets represent a small period of time for three different patients

and combined they contain 7,933,649 RDF triples. More medical data was synthetically

generated for use in later tests, details of this process can be found in section 5.2.

The rest of this section will explore the structure and distribution of the three real-world

medical data sets.

62

Chapter 5. Hadoop Implementation and Algorithm Design 63

5.1.1 Subject, Predicate and Object Distribution

To better understand the distribution of the data, the number of unique RDF Subjects, Pred-

icates and Objects were obtained using a simple Map/Reduce job. The results of which can

be seen in table 5.1.

RDF Element Number Of Elements
Subject 1,523,106

Predicate 61
Object 1,711,702

TABLE 5.1: Subject, Predicate and Object Distribution

The results show that only 61 unique predicates are used throughout all of the datasets.

Further, it can be seen that the number of unique subjects and objects are closely matched.

It also shows that compared to the total number of triples (7,933,649), many of the subjects

and objects are replicated numerous times.

5.1.2 Distinct Triple Group Distribution

As will be explained in section 5.3, all of the original SPARQL queries join distinct groups

of triples, which are linked by a common theme. Broadly, the distinct groups of triples are

related to two things: patient recording values and permitted value ranges. For any possible

optimisations for later queries, knowledge of the distribution of these triple groups would

be required. In order to explore the distribution of these groups a Map/Reduce algorithm

was devised that assessed the number of members in set triple groups. This was then run

against the same three medical RDF datasets, grouping the triples into one of three groups.

The groups were ?range, ?obs and ?cs and were chosen to reflect the triple groups used in

the SPARQL queries. The result is shown in table 5.2.

Triple Group Name Number Of Elements
?obs 3,426,188

?range 518
?cs 446

TABLE 5.2: Triple Group Distribution

Chapter 5. Hadoop Implementation and Algorithm Design 64

The results show that the distribution of the triple groups is massively skewed towards the

?obs group. The ?obs group has 3,426,188 unique triple instances, which when compared

with the total number of triples in the dataset (7,933,649) shows the ?obs group comprises

a large proportion of the total triples. Both the ?range and ?cs groups contain very few

instances.

5.2 Data Generation

Due to not having access to large volumes of medical data, it became apparent that data

would have to be synthetically generated. As the framework needed to be tested against

massive datasets, one billion triples were generated. To produce the new data, a Map/Re-

duce algorithm was developed which generated new RDF data based upon an input of real

world medical RDF data. The algorithm retains the structure and distribution from the real

world data, but inserts new randomly generated values for the variable triple elements. The

algorithm exploits knowledge of the data so that it does not alter triples which are constant

across all datasets, for example the from the ?range triple group.

To ascertain that the newly generated data matched the structure, distribution and triple

group distribution of the real world, a generated dataset was run through the same algo-

rithms used to assess distribution from section 5.1. This was done to ensure that a real-

world and generated dataset of equal size contained the same number of unique subjects,

predicates and objects, as well as an identical triple group distribution. This ensures that

the SPARQL queries still return correct responses when run against the newly generated

datasets.

5.3 Analysis Of Current SPARQL Queries

The current implementation comprises eight SPARQL queries which test a range of metrics

within the data. In the current framework, these SPARQL queries are run sequentially and

the required joins re-computed for each query.

Chapter 5. Hadoop Implementation and Algorithm Design 65

5.3.1 Min/Max Queries

An example of two of the queries is shown below. These queries test the data for values

outside of the minimum and maximum permitted ranges. Each of the queries comprises

two main sets of BGPs: the ?range pattern which contains information about the expected

range for the values and the ?obs pattern which contains the patient information and reading

values.

---query.aboveMaxAcceptable

// check if a value is above the maximum acceptable value

SELECT ?obs ?p ?htime ?max ?value WHERE {

?range a med:AcceptableRange.

?range med:clinicalRangeMax ?max.

?range pd:hasParameter ?p.

?obs a mo:PhysiologicalObservation.

?obs ssn:observedProperty ?p.

?obs ssn:observationResultTime ?time.

?obs pd:atHumanTime ?htime.

?obs ssn:observationResult ?a1.

?a1 ssn:hasValue ?a2.

?a2 pd:readingValue ?value.

FILTER (?value > ?max)

}

---query.belowMinAcceptable

// check if a value is below the minimum acceptable value

SELECT ?obs ?p ?htime ?max ?value WHERE{

?range a med:AcceptableRange.

?range med:clinicalRangeMin ?min.

?range pd:hasParameter ?p.

?obs a mo:PhysiologicalObservation.

?obs ssn:observedProperty ?p.

?obs ssn:observationResultTime ?time.

?obs pd:atHumanTime ?htime.

?obs ssn:observationResult ?a1.

?a1 ssn:hasValue ?a2.

?a2 pd:readingValue ?value.

FILTER (?value < ?min)

}

Looking at the two queries, it is apparent that they are extracting nearly identical triples from

the datasets; the only difference being the extraction of either the min or max from the range

group.

Chapter 5. Hadoop Implementation and Algorithm Design 66

5.3.2 More Complex Queries

While the min/max queries are relatively complex, requiring the joining of around 12 unique

triples in order for successful completion, the current implementation features more complex

rules. These rules check the given value against the accuracy of the sensor by which the

reading value was recorded and also for medical conditions that may be affecting the values.

Two examples of the more complex rules are shown below. The first rule shown below

checks if a given value is above minimum acceptable value, but when sensor accuracy is

considered, is actually below the minimum. The second rule checks if value is above the

maximum acceptable value which may be explained by the medical condition Hypertension.

---query.aboveMinAcceptableMinusSensorAccuracy2

SELECT ?p ?min ?value ?htime WHERE{

?range a med:AcceptableRange.

?range med:clinicalRangeMin ?min.

?range pd:hasParameter ?p.

?obs a mo:PhysiologicalObservation.

?obs ssn:observedProperty ?p.

?obs ssn:observationResultTime ?time.

?obs pd:atHumanTime ?htime.

?obs ssn:observedBy ?sensor.

?obs ssn:observationResult ?a1.

?a1 ssn:hasValue ?a2.

?a2 pd:readingValue ?value.

?sensor ssn:hasMeasurementCapability ?mc.

?mc a ssn:Accuracy.

?mc ms:capabilityValue ?accuracy.

FILTER (?value > ?min)

LET (?v2 := ?value * ?accuracy)

FILTER ((?value - ?v2) < ?min)

}

---query.aboveMaxAcceptableOkHyptertension

SELECT ?obs ?p ?htime ?max ?value WHERE {

?range a med:AcceptableRange.

?range med:clinicalRangeMax ?max.

?range pd:hasParameter ?p.

?obs a mo:PhysiologicalObservation.

?obs ssn:observedProperty ?p.

?obs ssn:observationResultTime ?time.

?obs pd:atHumanTime ?htime.

Chapter 5. Hadoop Implementation and Algorithm Design 67

?obs ssn:observationResult ?a1.

?a1 ssn:hasValue ?a2.

?a2 pd:readingValue ?value.

FILTER (?value > ?max)

med:Hypertension med:requiredSymptoms ?cs.

?cs med:clinicalFeatures ?cscf.

?cscf pd:hasParameter ?p.

?cscf med:clinicalRangeMax ?csrMax.

?cscf med:clinicalRangeMin ?csrMin.

FILTER ((?value > ?csrMin)&&(?value < ?csrMax))

}

Looking at the two queries, it is apparent that while they do have a more complex structure,

they are extracting and joining many of the same triple groups as the min/max queries.

Analysing the complete set of SPARQL queries (available in appendix A) that make up the

current semantic framework, it can be seen that all of the queries share the ?obs and ?range

distinct triple groups.

5.4 Hadoop-Based Framework Design

With an analysis of the structure and distribution of the datasets and the required SPARQL

queries completed, the next stage was to design a new algorithm that would exploit this

knowledge to enable greater storage potential and performance than the current solution.

5.4.1 Required Software Functionality

The developed framework was designed with the following goals in mind:

1. The framework must perform the same functionality as the existing SPARQL queries.

2. The framework must outperform the existing Jena-based framework.

3. The framework must be scalable to cope with the potentially massive quantities of

NHS data.

Chapter 5. Hadoop Implementation and Algorithm Design 68

5.4.2 Why Use Hadoop As The Basis For The New Framework?

Section 3.2 shows that current attempts to create distributed native triplestores are flawed.

They generally focus on creating systems which utilise the extra machines to allow for

greater storage potential, but not extra query performance. Drawing from the literature

reviewed in Chapters 2 and 3 it is apparent that Hadoop has several key theoretical advan-

tages that make it a preferred choice over traditional and distributed triplestores for process-

ing NHS scale data:

1. Hadoop is inherently parallel and reduces the complexity for developing a distributed

application.

2. Hadoop has been shown to scale performance in a near linear fashion as the number

of nodes increases.

3. Hadoop uses the HDFS which allows for the storage of data to be distributed across

nodes, meaning that a Hadoop cluster can store a massive amount of data provided

that the required number of nodes are present.

4. Each block of HDFS data is replicated three times across unique nodes, thus providing

fault-redundant storage of medical data with no additional effort for the end user.

5. A Hadoop cluster is multifunctional and would not be limited to just one task as would

be the case with a native distributed triplestore cluster.

5.4.3 The Two Approaches Taken

To assess the quality of medical data using Hadoop, two alternative Map/Reduce approaches

have been created. A key consideration was the joining strategies to be used. As shown in

section 3.6, the majority of the existing approaches used to process RDF data using Hadoop

rely on a series of cascading reduce-side joins when processing complex queries. Due to

the vast number of joins required to assess the quality of the medical data, an approach

similar to the existing solutions would result in many Map/Reduce iterations needed to com-

plete the queries. This in turn would result in very poor performance. Section 3.8 highlights

Chapter 5. Hadoop Implementation and Algorithm Design 69

currently unexplored potential optimisations which could be exploited to create a highly ef-

ficient query system. Utilising these optimisations, for example the use of map-side and

broadcast joins as well as grouping common query elements, two alternative approaches

have been created. Work conducted by Myung et al. (2010) highlights N-Triple to be the

most appropriate RDF serialisation format to be used for processing via Hadoop, so both

the approaches will use it as the input format.

• Approach One - The first approach features a data upload phase, which compresses

the data and then formats it in such a way as to enable efficient processing in the

query stage. The query stage then performs all the required queries exploiting the

structure created by the upload stage.

• Approach Two - The second approach features no upload stage, so the query stage is

processing the raw RDF data. Due to this, its query stage is theoretically less efficient

than the first approach, but does not require the potentially costly upload stage.

The following sections will explore the theoretical designs of these two approaches.

5.5 Query Planning

Before designing the implementation, a plan to complete all the queries was created. Firstly

as the queries share many common elements, a super-query was created to avoid the

re-computation of joins. Using this super-query removes a large percentage of duplicated

joins which the standard queries would perform. The listing below shows how all the re-

quired SPARQL queries (a full list of which can be seen in Appendix A) could be compiled

into a single list. While this query would not return the correct result if run upon a stan-

dard SPARQL endpoint, using Hadoop enables the correct joins to be performed. Both

the Hadoop approaches collect all the elements shown below, then the required joins can

be performed. These joins can re-use already completed joins and this is one of the key

performance drivers of the Hadoop-based approaches.

?range a med:AcceptableRange .

Chapter 5. Hadoop Implementation and Algorithm Design 70

?range med:clinicalRangeMax ?max .

?range med:clinicalRangeMin ?min .

?range pd:hasParameter ?p .

?obs a mo:PhysiologicalObservation .

?obs ssn:observedProperty ?p .

?obs ssn:observationResultTime ?time .

?obs pd:atHumanTime ?htime .

?obs ssn:observationResult ?a1

?obs ssn:observedBy ?sensor.

?a1 ssn:hasValue ?a2 .

?a2 pd:readingValue ?value .

?sensor ssn:hasMeasurementCapability ?mc.

?mc a ssn:Accuracy .

?mc ms:capabilityValue ?accuracy .

med:Hypertension med:requiredSymptoms ?cs .

med:Hypotension med:requiredSymptoms ?cs .

?cs med:clinicalFeatures ?cscf .

?cscf pd:hasParameter ?p .

?cscf med:clinicalRangeMax ?csrMax .

?cscf med:clinicalRangeMin ?csrMin .

Figure 5.1 shows a graphic representation of how the various triple groups are linked and

how the Hadoop-based approaches process the required joins. All the elements in a triple

group are linked via a single common element, with links between groups also being be-

tween common elements. Both the Hadoop approaches join the various elements con-

tained within each triple group first and then perform the inter-triple group joins using various

Hadoop joining strategies.

5.6 Approach One - Data Upload Algorithm

Before the data can be queried via Map/Reduce it first must be uploaded to the HDFS.

Rather than store the data in a raw format, with no prior processing, an algorithm was

designed to take the original medical RDF data, compress it and then store it on the HDFS.

As upload time was one of the limiting factors in the original Jena based framework, reducing

Chapter 5. Hadoop Implementation and Algorithm Design 71

FIGURE 5.1: Triple Group Joining Plan

it was a key goal for the Hadoop implementation. The upload algorithm has been designed

to both reduce the amount of space that is required to store the data on the HDFS and also

format it to enable faster query processing later on.

In order to achieve this, the original RDF data is passed through two stages to first compress

it and then sort it, so that all predicates and objects for a particular subject are rendered on

the same line.

Chapter 5. Hadoop Implementation and Algorithm Design 72

5.6.1 Stage One - Compression

Prior research has been performed into creating RDF compression systems using Map/Re-

duce, for example, dictionary encoding of RDF data using Hadoop has previously been

explored by Urbani, Maassen, Drost, Seinstra, and Bal (2013). They demonstrate a system

which, by using their dictionary encoding method, compresses a 92GB LUMB-based RDF

dataset by a factor of three. However the system requires a slow compression and then

decompression stage, both stages taking 66 minutes for the LUMB dataset.

Due to the costly nature of dictionary encoding, an alternative solution has been developed

for this project. To implement this new solution, common predetermined namespaces in

the original RDF data are located and replaced with shorter ones. This has the advantage

of reducing the amount of space each triple consumes on the HDFS and also reducing

the amount of network traffic during the shuffle and sort phase. As the namespaces to

be replaced are predetermined this stage can be implemented as a Map only job. This

approach was chosen instead of a full dictionary encoding as it can be accomplished in a

map only job and is therefore quicker. It also requires no additional Map/Reduce stage to

decode the data once complete, as is required by the dictionary encoding method.

5.6.2 Stage Two - Sort On Subject

For the second stage of the upload algorithm the compressed data is passed to a complete

Map/Reduce iteration. The goal of this stage is to store all of the RDF predicates and objects

for a certain subject on the same line of input on the HDFS. As shown in section 5.1, the

majority of subjects used in the medical data are used in multiple unique triples. Utilising a

method similar to the one described by Rohloff and Schantz (2010), can be justified both

by this replication of subjects and also by the fact that many of the joins required for the

SPARQL queries are performed upon the subject. Using this method reduces replication

of triples to further save space on the HDFS and also enables faster performance of joins

in the query stage. As many of the joins required by the SPARQL queries are acting upon

common subjects, the sort on subject stage will allow the query stage to perform joins via a

map-side join rather then the more costly reduce-side join method.

Chapter 5. Hadoop Implementation and Algorithm Design 73

To implement the sort on subject stage, the Map stage scans the entire compressed RDF

data set, setting each RDF subject as the key and the rest of the triple as the value. The

Reduce stage then outputs the subject followed by all the associated predicates and objects.

Due to the use of a reducer, the sort on subject stage has the potential to be the slower of

the two stages within the complete upload algorithm.

To illustrate how this stage functions, an input of the following set of triples:

sub1 pred1 obj1 .

sub2 pred2 obj2 .

sub1 pred3 obj3 .

sub3 pred4 obj4

Having been passed through the sort on subject stage, would be rendered on a single line

in the format shown below. As the subject sub1 is featured in multiple triples, the predicates

and objects associated with it would be rendered on the same line.

sub1 pred1 obj1 pred3 obj3

5.6.3 Algorithm Pseudocode

The pseudocode for the complete data-upload algorithm is shown in algorithm 1. The com-

plete source code for approach one, including the upload and query algorithm, can be found

in Appendix C.

5.7 Approach One - Data Query Algorithm Design and Joining

Strategies

The query algorithm is designed to replicate the results that would be returned by running

the original SPARQL queries. To achieve this, several different Hadoop joining strategies

were utilised along with exploitation of the distribution of the data. The query algorithm

Chapter 5. Hadoop Implementation and Algorithm Design 74

Algorithm 1: Medical Data Upload Algorithm
Data: Original Medical RDF Data

1 JVM spawning initialisation stage;

2 Map Compressor (Key, Value)
3 Triple[]← tripleParser(V alue);
4 HashTable replaceSection(check, replace);
5 for number of elements in Triple do
6 temp[]← split Triple[i] on #;
7 if replaceSection contains temp[0] then
8 Triple[i] = replaceSection(temp[0]) + temp[1];
9 end

10 end
11 output(Triple[0] + Triple[1] + Triple[2]);
12 end

Result: Compressed Data Stored On The HDFS

13 Map Subject Single Line (Key, Value)
14 Triple[]← tripleParser(V alue);
15 Key ← Triple[0];
16 V alue← Triple[1] + Triple[2];
17 output(Key, V alue);
18 end
19 Reduce Subject Single Line(Key, Values[])
20 temp← null;
21 for elements in V alues do
22 temp← temp + current Values element;
23 end
24 Value← temp;
25 output(Key, Value);
26 end

Result: All Predicates and Objects For A Set Subject Stored On Same Line

utilises many of the available Hadoop data joining strategies to complete the given queries

in a highly optimised manner.

As discussed in section 5.1, the distribution of the medical RDF data can be categorised into

two sections. Firstly a portion of the RDF triples contain information about medical equip-

ment, sensor accuracy, permitted data ranges and medical conditions. This information is a

very small proportion of the datasets and is consistent across them all. Secondly the bulk

of the RDF data concerns the actual time domain records and values associated with the

patients themselves. Knowledge of this meant that it was possible to join the smaller selec-

tion of triples to larger ones via a broadcast join. This was achieved by using the Hadoop

feature called Distributed Cache. The Distributed Cache allows set files from the HDFS to

Chapter 5. Hadoop Implementation and Algorithm Design 75

be pushed to either a Map or Reduce task. This allows multiple elements to be joined via

a broadcast join, thus bypassing the need for a series of Cascade Reduce-Side Joins. Ap-

proach one also leverages the pre-processing of the data to allow for the use of the highly

efficient map-side join to be used for a large proportion of the joins.

5.7.1 Selection Stage

This stage has two main functions and is implemented as a complete Map/Reduce iteration.

Firstly, it traverses all triples stored on the HDFS and selects only those required by the

queries. Secondly, it then performs some of the required joins before the data is passed to

the second stage of the query algorithm. The complete workflow for the selection stage can

be seen in Figure 5.2. This Figure will be referred to throughout this section.

FIGURE 5.2: Approach One - Selection Stage Workflow

The input to this stage is the formatted data emitted by the upload stage and stored on the

HDFS. As the data query algorithm formats the data so that all predicates and objects for

Chapter 5. Hadoop Implementation and Algorithm Design 76

a certain subject are available on the same line, this enables a map-side join to be used

to perform some of the required joins. The requirement for a map-side join is that triples

needing to be joined share a common subject. As highlighted in section 3.3.1, map-side

joins are the most efficient of the available Hadoop joining strategies as they bypass the

need for any of the data to be transferred over the network. The map-side join is possible

using this method, as all the required elements to perform the join are available from within

the current map task and it requires no joins with data that is outside the reach of a certain

mapper. This reach constitutes the data contained within the specific HDFS block against

which the map task has been initiated.

An example section from a SPARQL query which could be joined via a map-side join is

shown in Figure 5.3.

FIGURE 5.3: Example Section Of A SPARQL Query That Can Be Joined Via A Map-Side
Join

Figure 5.3 shows the ?range portion of the query which is common across all the queries.

All of the required BGPs in this portion of the query are joined on the subject. As all the

predicates and objects for a certain subject are available on the same line of input, the data

can be joined in the Map stage. A further optimisation implemented here is the collection of

all the required values for the ?range portion of the query in the same job. The current Jena

implementation would recompute the ?range joins each time for the minimum and maximum

queries, even though the difference is one BGP. In the Hadoop implementation, both the

minimum and the maximum values are collected in the same job. After the values have

been joined together they are collected and then written onto separate files in the HDFS

via a special output function called Hadoop Multiple Outputs. By default, any output from

a Map/Reduce task is combined into a single large file. However, using Hadoop Multiple

Output enables the output from any task to be split into separate, but predetermined files,

when being stored on the HDFS (White, 2010).

Chapter 5. Hadoop Implementation and Algorithm Design 77

The procedure described above is used for other triples groups which meet the requirements

to be joined in the map phase. Each separate triple group is written out to its own unique

file. This is done so that each triple group can be accessed directly at a later time, avoiding

a costly re-search for them. The location of this process, along with the other triples groups

which qualify from a map-side join can be seen in Figure 5.2. The Figure shows how the

various triple groups joined via a map-side join are collected and written into separate files

on the HDFS using Hadoop Multiple Outputs. This step is completed without the need to

initiate a reduce task.

For joins that cannot be performed via a map-side join, they must be completed via a reduce-

side join. An example case for using a reduce-side join would be when an object from one

triple must be joined to a subject from a second triple. An example of this is shown in Figure

5.4.

FIGURE 5.4: Example Section Of A SPARQL Query That Can Be Joined Via A Reduce-
Side Join

To join the triples shown in Figure 5.4 via a reduce-side join, two stages must be performed.

Firstly in the map phase, once one of the triples to be joined has been located, the element

on which it is to be joined is set as the key and the rest of the triple as the value. In addition,

the value is tagged with its join group and its join order. Any common elements will be

passed to the same reducer via the methods discussed in section 3.3.2. The join group

is used in the reduce stage to decide which elements are members of which triple groups.

The join order is used to determine a set order for the elements when being written out on

the HDFS. Figure 5.2 shows the location of the reduce-side join. It also shows how the final

output from any reduce-side joins are also written back onto the HDFS using the Hadoop

Multiple Outputs feature. This is done so that only the files which contain the relevant triples

can be used as input to the join stage, thus avoiding the need to rescan the entire contents

of the HDFS.

Chapter 5. Hadoop Implementation and Algorithm Design 78

The pseudocode for the selection stage for approach one can be seen in algorithm 2. The

source code for the query stage of approach one can be found in appendix C.

Algorithm 2: Medical Data Query Map/Reduce Iteration 1
Data: Compressed Medical RDF Data

1 JVM spawning initialisation stage;

2 Map Pass1 (Key, Value)
3 Hadoop Multiple Output Initialise;
4 dataElementList[]← tripleParser(V alue);
5 if dataElementList Can Be Joined Via A Map-Side Join then
6 if dataElementList contains required triple elements i then
7 V alues← get i1...in+1 from dataElementList;
8 output(Hadoop Multiple Output Group, V alues);
9 end

10 else if dataElementList Must Be Joined Via A Reduce-Side Join then
11 if dataElementList contains required triple elements i then
12 joinKey ← get i1...in+1 from dataElementList;
13 V alue← get element to be joined plus joinGroup plus joinOrder;
14 output(joinKey, V alue);
15 end
16 end

17 Reduce Reduce1 (Key, Values[])
18 Hadoop Multiple Output Initialise;
19 Create Required DataObjects;
20 for element in V alues do
21 switch joinGroup do
22 case i
23 Add element to DataObject i;
24 end
25 endsw
26 end
27 if DataObject is not empty then
28 V alues← get sorted elements from DataObject via joinOrder ;
29 output(Hadoop Multiple Output Group, V alues);
30 end
31 end

5.7.2 Join Stage

This stage has two main functions and is implemented as a complete Map/Reduce iteration.

Firstly it performs the rest of the required joins to compete the queries. Secondly, it then

formats and then emits the final output. The input to this stage is the data emitted by the

previous selection stage. This stage makes use of the broadcast-join method discussed in

Chapter 5. Hadoop Implementation and Algorithm Design 79

section 3.3.4. The use of a broadcast-join enables numerous elements to be joined together

from within the same job. Using the existing methodology from the literature, the joins would

otherwise have been performed via a series of costly cascade reduce-side joins. Figure 5.5

shows the workflow for the complete join stage Map/Reduce iteration. This Figure will be

referred to throughout this section.

FIGURE 5.5: Join Stage Workflow

To perform the broadcast-join, the smaller files created in the selection phase are distributed

to all the reducers running in the join phase. This uniform distribution of files is achieved by

making use of the Hadoop Distributed Cache feature. This feature allows smaller files to be

made available to any Map or Reduce task running upon any node within the cluster. The

files pushed to the reduce phase are extracted into Hashtables, which allows for extremely

Chapter 5. Hadoop Implementation and Algorithm Design 80

fast lookups when checking for element membership. The broadcast join method is particu-

larly applicable in this case, since as highlighted in section 5.1, the data is massively skewed

towards one triple group. This group, which always forms the ?obs part in any query, is far

too large to be stored in memory so must be joined via a reduce-side join. However, the

smaller triple groups can be joined to the larger ?obs group via numerous broadcast joins.

The location of the broadcast join in the join stage workflow can be seen in Figure 5.5.

These concepts are practically implemented in the following manner. Firstly, the map phase,

which takes as input a file containing the ?obs results from the reduce section. The map

phase decides if the current input is an ?obs record or a ?a2 record based on length. These

two triple groups are then joined via the common element and passed to the reduce phase.

In the reduce phase, the two groups will be available in the same job due to the shuffle

and sort phase. The system then performs the rest of the joins via the broadcast method.

As explained above the files which are to be joined via the broadcast join method are all

extracted from the Hadoop distributed cache and loaded into Hashtables in main memory.

Then the different triple groups highlighted in Figure 5.1 can be joined via any common

elements. Each one of the joins performed via the broadcast method would otherwise have

to have been completed via a separate reduce-side join, as they are all performed upon

individual elements. Once the required joins are completed, the algorithm then performs

the conditional logic determined by original queries. The logic conditions include checking

values against a pre-determined range. Figure 5.5 shows the full range of conditional logic

checks which the stage performs. Once the algorithm finds a value that does not meet the

requirements, it will emit the required value and the other associated values back onto the

HDFS. This stage again makes use of the Hadoop Multiple Outputs, to split the output from

each conditional logic check into its own file. This allows a user to more easily see and

access the values which have failed a particular logic check.

In this stage, the algorithm also uses the Hadoop Counter feature. Hadoop counters are

custom values that can be incremented from within either a Map or Reduce task. The

counter is then recorded and output with the rest of the job completion metrics. When

the algorithm has discovered data which do not meet the required quality metrics, it also

increments a relevant counter. Once the algorithm has finished running, the user can assess

Chapter 5. Hadoop Implementation and Algorithm Design 81

how many values have been judged to be errors just from viewing the final job log. An

example of this output can be seen in Figure 5.6. The names represent the metrics which

the framework is assessing and the numbers represent the amount of times data has failed

a certain metric.

FIGURE 5.6: Hadoop Job Output Showing Counters

The pseudocode for the join stage of approach one can be seen in Algorithm 3.

5.8 Approach Two

The second approach is designed to require no prior formatting of the data and takes the

raw unaltered medical RDF as input. In practice, approach two is very similar to the query

phase of approach one introduced in section 5.7.2. Due to the lack of prior data formatting,

the use of a map-side join is not possible and the more costly reduce-side join must be

used. However this drawback can be nullified due to lack of the upload phase. The second

approach is again implemented as two complete Map/Reduce iterations. The source-code

for approach two can be found in Appendix D.

5.8.1 Selection Phase

This stage has two main functions and is implemented as a complete Map/Reduce iteration.

Firstly it traverses all triples stored on the HDFS and selects only those required by the

queries. Secondly, it then performs some of the required joins before the data is passed to

the second stage of the query algorithm.

Chapter 5. Hadoop Implementation and Algorithm Design 82

The selection phase is the key difference between the two approaches, as due to lack of in-

put formatting the phase must use the reduce-side join method to complete all joins. Figure

5.7 shows the workflow for the selection stage of approach two. Compared with the work-

flow for approach one, shown in Figure 5.2, it can be seen that approach two performs all

of the joins in the reduce stage. This means that all of the triple groups required to compete

the queries must be passed through the shuffle and sort phase and thus transferred over

the network. This additional network traffic means that the selection stage of approach two

should demonstrate a much worse performance than approach one.

FIGURE 5.7: Approach Two - Selection Stage Workflow

5.8.2 Join Phase

The join phase for approach two is almost identical to the phase used in approach one. It

joins the two largest triple groups via a reduce-side join, then joins the smaller groups via a

Chapter 5. Hadoop Implementation and Algorithm Design 83

broadcast join using the Hadoop Distributed Cache. As the join stage for approach two is

so similar to approach one, Figure 5.5 can again be used to demonstrate the workflow.

5.9 Implementation Summary

5.9.1 Key Theoretical Performance Advantages

This section will explore the key theoretical performance advantages that the two approaches

offer over the Jena-based framework and also the standard method of joining data in Hadoop

via a series of cascade reduce-side joins.

• Both approaches perform all the required queries and therefore joins within the same

job. This saves on a massive amount of re-computation (due to common query ele-

ments) that running each query sequentially would incur.

• Approach one uses a data upload stage to format the data in such a manner as to

allow highly optimal map-side joins to be utilised in the query phase.

• Both approaches use prior knowledge of the data structure to push smaller triple

groups into the Distributed Cache to enable the use of the broadcast join method.

This removes the need for a series of slow cascade reduce-side joins.

• The approaches should scale well as the number of nodes is increased, meaning

that any additional nodes will reduce query time, not just increase maximum storage

capacity as is the case with current distributed native triplestores.

• The result of any performed joins is left on the HDFS to enable any future queries to

be performed more efficiently, as the joins will not need to be re-computed.

5.9.2 Summary

In summary, two different approaches to assessing the quality of medical data using Hadoop

have been created. Approach one employs an upload stage to compress the data and

Chapter 5. Hadoop Implementation and Algorithm Design 84

format it in such a way as to allow map-side joins to be used to complete a large portion

of the required joins. Approach two requires no upload stage but must use reduce-side

in place of map-side joins. Both approaches share the use of the efficient broadcast join

which is used to avoid multiple cascade reduce-side joins. This technique has not currently

been attempted by any of the current solutions presented in the literature. Both approaches

perform all the required queries simultaneously. This means that the approaches avoid

wasting computational resources re-performing joins on elements common across all the

queries. Again this technique of grouping common query elements is not present in the

current literature and is unique to this framework.

In the following sections, both the Hadoop approaches will be tested against each other and

against the current Jena TDB based implementation.

Chapter 5. Hadoop Implementation and Algorithm Design 85

Algorithm 3: Medical Data Query Map/Reduce Iteration 2
Data: Intermediate Files From First Iteration

1 JVM spawning initialisation stage;
2 Push Required Broadcast Join Files From HDFS Into The Distributed Cache;

3 Map Pass2 (Key, Value)
4 dataElementList[]← tripleParser(V alue);
5 if dataElementList is of size 2 then
6 joinKey ← get element0 from dataElementList;
7 V alue← get element1 from dataElementList + joinGroup;
8 output(joinKey, V alue);
9 else if dataElementList is of size 5 then

10 joinKey ← get element3 from dataElementList;
11 V alue← get element0, 1, 2and4 from dataElementList + joinGroup;
12 output(joinKey, V alue);
13 end

14 Reduce Reduce2(Key, Values[])
15 Hadoop Multiple Output Initialise;
16 Files← Get Broadcast Join Files From The Distributed Cache;
17 Put Files Into HashMaps;
18 for element in V alues do
19 switch joinGroup do
20 case i
21 Add element to HashSet ?obs or HashSet ?a2;
22 end
23 endsw
24 end
25 for element in ?obs and ?a2 do
26 Split ?obs into component elements→ (obs, p, htime, sensor);
27 Extract value From ?a2;
28 Extract min and max From rangeHashMap based on p;
29 if value outside range set by min and max then
30 output(Trigger Condition, requestedElememnts);
31 Increment Hadoop Counter For Trigger Condition;
32 end
33 Extract accuracy From mcHashMap based on sensor;
34 v2← value * accuracy;
35 if value + v2 outside range set by min and max then
36 output(Trigger Condition, requestedElememnts);
37 Increment Hadoop Counter For Trigger Condition;
38 end
39 Extract csrMin and csrMax From cscfHashMap based on p;
40 if value outside range set by min and max combined with csrMin and

csrMax then
41 output(Trigger Condition, requestedElememnts);
42 Increment Hadoop Counter For Trigger Condition;
43 end
44 end
45 end

Result: Data Which Fail To Meet Required Quality Metrics

Chapter 6

Test Environment and Optimisations

This chapter will detail the environments on which the Hadoop and Jena-based approaches

were tested. A Hadoop cluster was created specifically for this project and so the optimisa-

tions employed in the configuration of Hadoop are also explored in this chapter.

6.1 Details Of Test Environments

The framework was tested in two separate environments: a single machine and a dedicated

Hadoop cluster.

6.1.1 Single Machine

Firstly as the framework is required to be efficient even on a single machine, it has been

tested on a modern, standard issue University staff desktop. The software stack for the

machine comprises Fedora 20 64-Bit, Java OpenJDK 1.7.0 51, Hadoop 1.2.1 and Jena

2.11. The hardware specifications of this machine are detailed in table 6.1:

Component Single Machine
CPU Intel i5-3470
RAM 8GB DDR3
HDD 1TB (7200RPM)

TABLE 6.1: Specification Of The Single Machine

86

Chapter 6. Test Environment and Optimisations 87

On this machine Hadoop was configured to run in a pseudo-distributed manner. This means

that the machine is acting as both the head node and also as a data node. To run the

experiments on Jena 2.11, the tdbloader and tdbquery unix binaries were used. The output

from these programs were written to disk so that a fair comparison with Hadoop framework

could be drawn.

6.1.2 Dedicated Hadoop Cluster

Secondly the scalability of the solution was tested against massive RDF datasets on a

dedicated Hadoop cluster. The cluster comprises a head node with eight data nodes, all

of which contain commodity off-the-shelf components. All of the machines are running

an identical software stack, comprising CentOS 6.5 64-Bit, Java OpenJDK 1.7.0 51 and

Hadoop 1.2.1. All the machines communicate via a dedicated Gigabit switch. The hardware

specification of the cluster nodes is detailed in table 6.2.

Component Head Node Data Node
CPU Intel Q8400 Intel Q8400
RAM 4GB DDR2 8GB DDR2
HDD 250GB (7200RPM) 250GB (7200RPM)

TABLE 6.2: Specification Of The Hadoop Cluster

6.2 Hadoop Cluster Performance Optimisations

By default, Hadoop will provide a configured install which is not optimised to the cluster on

which it is running. The configuration of Hadoop is controlled via a series of XML files which

need to present on all machines within the cluster. The key configuration files are shown in

Figure 6.3 (White, 2010).

According to White (2010) there are several parameters contained within these files that are

key for optimising Hadoop for the cluster. To maximise the performance of the framework,

several optimisations were tested and then implemented to tune Hadoop to give optimum

performance.

Chapter 6. Test Environment and Optimisations 88

Filename Description
core-site.xml General configuration settings for Hadoop that

are common to both the HDFS and MapRe-
duce.

hdfs-site.xml Configuration settings which control the three
HDFS daemons: namenode, secondary na-
menode, and datanode.

mapred-site.xml Configuration settings which control the two
MapReduce daemons: jobtracker, and task-
trackers.

TABLE 6.3: Hadoop Configuration Files

6.2.1 Benchmark Generation

In order to test the effectiveness of any configuration changes to the cluster, benchmark re-

sults were collected. Rather than use the standard Hadoop benchmark, one was designed

that would reflect the type of operations that would be performed by the framework. These

include moving files on the HDFS, passing data between reduce tasks and both Map only

and Map/Reduce jobs. Configuration changes were then assessed for performance im-

provement using this benchmark. All benchmarks were repeated five times and an average

taken to compensate for time variations.

6.2.2 Optimum Number Of Map/Reduce Tasks

By default, Hadoop only spawns two Map tasks and two Reduce tasks per node, however

according to White (2010) the combined number of tasks should outnumber the amount of

processors on each datanode by a factor of between one and two. To assess how increasing

the number of Map/Reduce tasks affects the real world performance of the cluster, a number

of different values were tested. Values of two, three, four and six Map/Reduce tasks were

used. The results of the benchmark can be seen in Figure 6.1.

As the results show, changing the number of Map/Reduce tasks does have an impact on

Hadoop’s performance. The default value of only two Map/Reduce tasks consistently per-

forms the worst across all five runs. Increasing the number of tasks to three and then four

increased performance over two tasks. When the number of tasks was increased to six,

performance began to decrease again. This decrease in performance was expected as all

Chapter 6. Test Environment and Optimisations 89

FIGURE 6.1: Optimum Number of Map/Reduce Tasks Results

the datanodes only have quad-core processors. Overall the results show that the optimum

number of Map/Reduce tasks for the cluster is four. This result reflects the theory which

states that the number of Map/Reduce tasks should outnumber the amount of processors

on each datanode by a factor of between one and two. The final value used for the number

of Map/Reduce tasks is four.

6.2.3 Optimum JVM Heap Memory Allocation

White (2010) provides a formula, shown in Figure 6.2 which can be used to calculate

Hadoop’s memory footprint. By default, Hadoop only allocates 200MB of heap memory

to each task. According to White (2010) increasing this to efficiently utilise all available

memory is a key performance enhancement.

To assess how increasing the heap size assigned to each task affects the real-world perfor-

mance of the cluster, a number of different values were tested. Values of 200, 400, 600 and

800 MB were used. The results of the benchmark can be seen in Figure 6.3.

The results show that the default heap size of 200MB used by Hadoop is consistently the

worst performing configuration. Increasing the heap size to 400MB improves performance

Chapter 6. Test Environment and Optimisations 90

FIGURE 6.2: Hadoop Memory Footprint Calculation (White, 2010).

FIGURE 6.3: Optimum Heap Size Result

by a small margin over a heap size of 200MB. Increasing the heap size to 600MB and then

to 800MB neither increases nor decreases cluster performance. This result could highlight

that the type of operations performed by the framework do not benefit from having extra

heap space assigned to tasks.

Taking the results into consideration and to efficiently utilise all of the memory, each Map

and Reduce task was given 600MB of heap space. Table 6.4 shows how memory in the

cluster datanodes is utilised, with the entire collection of Hadoop services consuming a

total of 6,800MBs. Each datanode has 8GB of RAM, which leaves over 1GB of RAM to be

reserved for the OS.

Chapter 6. Test Environment and Optimisations 91

JVM Memory Used (MB)
Datanode 1000MB

Tasktracker 1000MB
Tasktracker child map task 4 X 600MB

Tasktracker child reduce task 4 X 600MB
Total 6800MB

TABLE 6.4: Hadoop Memory Allocation on Cluster

6.2.4 JVM Re-use

As discussed in section 2.5.1, each Hadoop service runs as a separate JVM. According to

White (2010), there is an overhead to start the JVMs which runs the Map and the Reduce

tasks. White (2010) explains that Hadoop enables the re-use of JVMs which can lead to an

increase in performance by removing the need for multiple and costly initialisation phases.

To assess how allowing the re-use of JVM affects the real-world performance of the cluster,

it was benchmarked with JVM use disabled and then enabled. The results of the benchmark

can be seen in Figure 6.4.

FIGURE 6.4: JVM Reuse

As the results show, allowing the reuse of JVMs has a large impact on cluster performance.

In every instance, jobs in which JVM reuse was allowed performed the benchmark faster.

Over the five runs, JVM re-use was an average of 40 seconds faster.

Chapter 6. Test Environment and Optimisations 92

6.2.5 Sort Memory Allocation

According to White (2010), Hadoop only allocated 4KB of memory for its input/output oper-

ations. This allocation can be too conservative for a cluster comprising modern hardware

and White (2010) recommends increasing this to 128KB. To test whether increasing to this

value improved performance, the default value of 4KB was benchmarked against the rec-

ommended value of 128KB. The result of this can be seen in Figure 6.5.

FIGURE 6.5: Hadoop Sort IO Result

The results show that increasing the sort memory on average has no real impact, either

negatively or positively, on cluster performance. The increase in sort memory from 4KB to

128KB leads to an average drop in performance of just 0.8 seconds.

6.2.6 Final Configuration Values

All the final configuration values used for the cluster are shown in Table 6.5. All configuration

values were driven by the results of the benchmark. All of the final Hadoop configuration

XML files used for the cluster are located in Appendix B.

Chapter 6. Test Environment and Optimisations 93

Configuration Value
Num of Map/Reduce Tasks 4
Map/Reduce Heap Memory 600MB

JVM Reuse Allowed
Sort IO Allocation 128KB

TABLE 6.5: Hadoop Cluster Final Configuration Values

Chapter 7

Results

7.1 Testing Methodology

In this chapter, the two different Hadoop-based approaches will be benchmarked when

running on a dedicated Hadoop cluster and a single machine. The two approaches will also

be compared directly against Jena and then against a naı̈ve implementation to assess how

successful the approaches are in increasing performance and scalability. The input datasets

for all the tests comprised variable amounts of the generated RDF data, stored in N-Triple

format. The results will be presented in the following manner: firstly, results from running

on a single machine will be shown, followed by results from running on a dedicated Hadoop

cluster.

In this context, a result is the time taken at the end of a successfully completed job, sub-

tracted from the time at the start. These values are generated from within the Hadoop code

itself and incorporate all the JVM initialisation and HDFS write stages. This gives the total

overall run time of a job. For the Jena-based results, the collection of the start and end time

values as well as the running of the Jena binaries was performed by a shell script.

All the experiments were repeated five times and an average taken to produce the final

presented results. Each test was repeated to compensate for any variations in run time,

stemming from background operating system or Hadoop health tasks. Five was chosen as

the appropriate number of repeats for the experiments as it judged was the best compromise

94

Chapter 7. Results 95

between the limited time available for the project and running an appropriate number of

repeats.

7.2 Single Node Results

In order to assess how the Hadoop-based approaches compare directly with the Jena-based

implementation, both were tested against a range of RDF dataset sizes when running on a

single machine. The tests were performed on the same machine described in section 6.1.1,

so direct comparisons could be drawn. Results will show the total average performance

for the different algorithms, along with a more detailed breakdown of how performance is

spread between the underlying Map/Reduce iterations. The range of dataset sizes used for

the test was: 4M, 8M, 16M, 32M, 64M, 128M, 256M, 512M and 1000M RDF triples.

7.3 Single Node Results - Approach One

7.3.1 Upload Results

Figure 7.1 shows the average time taken to perform the two stages of the upload algorithm.

It shows that as dataset size doubles, the time taken to process increases by an average

factor of 2.2. The increase from 512M to 1000M triples has a disproportionately large in-

crease in process time. The jump to 1000M triples took three times longer to process than

512M did.

7.3.2 Upload Results Showing Breakdown Of Passes

Figure 7.2 displays a breakdown of how long each of the two passes (which together form

the upload algorithm) took to complete. The Figure shows that pass two takes the majority

of the time taken to complete the upload stage. Pass two is the stage in which all the

predicates and objects for a set subject are rendered to a single line. This stage involves a

Chapter 7. Results 96

FIGURE 7.1: Approach One - Single Machine Upload Time

reduce stage so it must transfer a lot of data over the shuffle and sort phase, thus decreasing

performance.

FIGURE 7.2: Approach One - Single Machine Upload Time Showing Breakdown Of Passes

Chapter 7. Results 97

7.3.3 Query Results

Figure 7.3 shows the average time taken for the framework to perform all the required

queries. It shows that the framework scales extremely well as dataset size increases. Ap-

proach one is able to complete all the queries (Found in appendix A) and the associated

joins for 256M triples in under 30 minutes. However at a dataset size of 1000M triples the

time taken to query is abnormally large and does not follow the performance characteristics

set by the preceding dataset sizes. As each query was repeated five times and an average

taken, this result cannot be explained as being an anomaly. Indeed, it must represent the

performance limit of the current solution on the standard desktop machine used for this test.

FIGURE 7.3: Approach One - Single Machine Query Time

7.3.4 Query Results Showing Breakdown Of Passes

Figure 7.4 shows a more detailed breakdown of how the query algorithm performs. For

each dataset size it shows the average time taken for Pass 1 (the selection stage) and Pass

2 (the join stage) and the combined total. The Figure shows how Pass 1 is consistently the

stage taking the greatest amount of time. This is the stage in which the entire collection

Chapter 7. Results 98

of triples is traversed and the relevant ones are extracted, so the assumption can be made

that this stage has the largest data size input. Stage two is where the majority of the joins

are performed but it is also the best performing stage.

FIGURE 7.4: Approach One - Single Machine Query Time Showing Selection And Join
Stages

7.4 Single Node Results - Approach Two

7.4.1 Query Results

Figure 7.5 shows the time taken to query the data using the second approach. As high-

lighted in section 5.8, this approach features no prior formatting of the data and uses the

more costly reduce-side method to complete many of the joins. The results show that ap-

proach two scales well as the dataset size increases, although as with approach one, the

time taken to process 1000M triples is high.

Chapter 7. Results 99

FIGURE 7.5: Approach Two - Single Machine Query Time

7.4.2 Query Results Showing Breakdown Of Passes

Figure 7.6 shows the breakdown for the two passes that together comprise approach two.

Mirroring the results for approach one, the selection stage is consistently the slower of the

two stages. As expected the selection stage for approach two takes a greater amount of

time then that for approach one. This is because approach two must perform all of the

required joins in the reduce stage, whereas approach one performs many joins in the map

stage.

7.5 Single Node Comparison

7.5.1 Approach Comparison

This section presents a performance comparison between the two approaches when run-

ning on a single node. Figure 7.7 shows that approach one is the better performing of the

two approaches when considering only the query stage. For the majority of dataset sizes,

approach one is substantially faster than approach two. As an example for 256M triples

Chapter 7. Results 100

FIGURE 7.6: Approach Two - Single Machine Query Time Showing Pass Breakdown

approach one completes all the queries in 28.19 minutes, while approach two took 126.6

minutes. This means that there is a 349% increase in time taken to complete a query going

from approach one to two. This difference in performance can be explained by approach

one processing compressed data and joining using a map-side join. Indeed the large differ-

ence in performance demonstrates just how effective this technique is in reducing the query

time.

For both approaches, a data set size of 1000M triples returns a query time which does not

follow the performance characteristics of the rest of the dataset sizes. This reinforces the

notion that 1000M is in practice the performance-ceiling for the standard staff desktop.

To more directly compare the two approaches, the upload algorithm from the first approach

also needs to be included to allow for a fairer comparison between the total time required.

A comparison between the combined time taken for the upload and query sections of ap-

proach one and approach two can be seen in Figure 7.8. The Figure shows that when

the complete algorithms are compared, approach two has the best performance across all

dataset sizes. This illustrates that the upload stage of approach one is very costly in terms

of performance.

Chapter 7. Results 101

FIGURE 7.7: Single Node Query Performance Comparison Between Approaches

FIGURE 7.8: Single Node Total Performance Comparison Between Approaches

7.5.2 Comparison With Jena TDB

Figure 7.9 shows how approaches one and two compare directly with Jena TDB, running

against the same dataset sizes and and on the same machine. The results show the total

Chapter 7. Results 102

time taken for all the approaches, this means that for approach one and Jena the results in

Figure 7.9 show the combined upload and query time. This shows that both the Hadoop-

based approaches perform better than Jena across all dataset sizes. Another important

consideration is that Jena was unable to return a result when tested again a dataset size

of 128M and above, while both the Hadoop approaches were able to cope with dataset

sizes up to 1000M triples. However, the Hadoop approaches not only demonstrate better

performance, but they are also more scalable across dataset sizes, even when running on

a single node.

FIGURE 7.9: Single Node Total Performance Comparison Between Hadoop And Jena

This section has demonstrated that Hadoop is more suited to processing NHS-scale RDF

data than Jena TDB, even when running on a single node. However the real strength of

Hadoop is its ability to distribute workload across a cluster of compute nodes. The following

sections explore how the performance of the two Hadoop-based approaches is affected

when they are run on a dedicated Hadoop cluster.

Chapter 7. Results 103

7.6 Hadoop Cluster Results

The Hadoop-based framework was tested on the dedicated Hadoop cluster across a range

of node numbers and dataset sizes. Details of the dedicated Hadoop cluster can be found

in section 6.1.2. The framework was tested on one, two, four and eight nodes and across a

dataset size range of 32M, 64M, 128M, 256M 512M and 1000M triples.

7.7 Cluster Results - Approach One

7.7.1 Upload Performance Across Eight Nodes

Figure 7.10 shows the upload performance of approach one across eight nodes of the

cluster. Mirroring the performance characteristics from the single node, the results show

that pass two constitutes by the far the larger proportion of the total time taken to upload the

data.

FIGURE 7.10: Approach One - Upload Performance Across 8 Nodes

Chapter 7. Results 104

7.7.2 Query Performance Across Eight Nodes

Figure 7.11 shows the query algorithm performance across eight nodes of the cluster. The

results show that the cluster of eight nodes can complete all the queries across a billion

triples in 87 minutes. Hence, once again the selection stage constitutes the vast majority

of the total time taken to query the data. The cluster results show again how optimised the

join stage of approach one is, with the eight node cluster being able to perform all the joins

required for one billion triples in under eight minutes.

FIGURE 7.11: Approach One - Query Performance Across 8 Nodes

7.7.3 Performance Scalability Across Number Of Nodes

To test how approach one scales across different cluster sizes, it was run on different num-

bers of nodes. The results for 512M and 1000M are absent for the single node as the volume

of storage space required to store these volumes of triples was greater than the 250GB of

HDFS capacity available on the single node.

Figure 7.12 shows how the upload algorithm of approach one scales across nodes. As the

number of nodes increases, the time taken to complete the upload algorithm decreases. For

Chapter 7. Results 105

example it took the single node cluster configuration 275 minutes to upload 256M triples,

while it only took the eight node cluster configuration 30 minutes to process the same num-

ber of triples.

FIGURE 7.12: Approach One - Upload Performance Scalability Across Nodes

Figure 7.13 shows how the query algorithm of approach one scales across different num-

bers of nodes. Again, increasing the number of nodes has a dramatic effect on the total time

taken to complete the query algorithm. The increase in number of nodes always results in

a decrease in total time taken to complete the collection of queries.

7.7.4 Speed-Up Analysis Of Approach One’s Query Stage

To assess the relationship between number of nodes and run time, a comparison of speed-

up was performed. To create this comparison, the total time taken for the query algorithm

of approach one across two, four and eight nodes was divided by the time taken for one

node. This enables the speed-up resulting from increasing the number of nodes to become

apparent. The best-case scenario would be that the speed-up would reflect the increase

in node numbers. For example, this best-case scenario would mean that time taken to

complete a set task on one node would be eight times faster when running on eight nodes.

Chapter 7. Results 106

FIGURE 7.13: Approach One - Query Performance Scalability Across Nodes

Figure 7.14 shows the speed-up of different node numbers against a singe node on dataset

sizes up to 256M. The results highlight some very interesting trends in the query speed-

up of approach one. The speed-up factor increases consistently as the number of nodes

increases, which is to be expected. However the speed-up factor for a particular number of

nodes does not stay consistent across dataset sizes. For example at 32M triples the speed-

up factor of going from one node to eight nodes is 2, however at 256M triples the speed-up

factor is 5.9.

7.8 Cluster Results - Approach Two

7.8.1 Query Performance Across Eight Nodes

Figure 7.15 shows the query performance of approach two across the 8 node cluster. As

discussed in section 5.8, this result represents the total time taken for approach two as there

is no upload stage. The Figure shows how pass one (the selection stage) constitutes the

vast majority of the total time taken. When compared to the selection stage of approach

Chapter 7. Results 107

FIGURE 7.14: Approach One - Query Speed-Up Factor

one, shown in Figure 7.11, it can be seen that approach two spends comparatively more of

its total run time completing the selection stage.

FIGURE 7.15: Approach Two - Query Performance Across 8 Nodes

Chapter 7. Results 108

7.8.2 Performance Scalability Across Number Of Nodes

Figure 7.16 shows how approach two scales across the range of cluster sizes. Only the

eight node cluster was able to complete the queries on 1000M tripes, with all other cluster

sizes not having sufficient space on the HDFS. This is one drawback of approach two, as the

input data is not compressed: the intermediate results require more space on the HDFS.

One recurring theme displayed in Figure 7.16 is that an increase in node number always

results in a corresponding decrease in running time. However, the amount by which run

time is decreased is not consistent as the number of nodes is increased.

FIGURE 7.16: Approach Two - Query Performance Scalability Across Nodes

7.8.3 Speed-Up Analysis Of Approach Two’s Query Stage

As with section 7.7.4, the speed-up of approach two’s query time against cluster size was

assessed. Again the speed-up was calculated by dividing the total time taken for the query

algorithm of approach two across two, four and eight nodes against the time taken for one

Chapter 7. Results 109

node. Due to the increased network transfer required by approach two, the observed speed-

up factor is further away from the theoretical max than the speed-up characteristic of ap-

proach one. However the speed-up factor for approach two is still always improved by adding

additional nodes and increases towards the theoretical max as the input dataset size grows.

FIGURE 7.17: Approach Two - Query speed-up Factor

7.9 Cluster Approach Comparison

7.9.1 Approach Comparison On Eight Nodes

This section explores how the two approaches compare directly when running on the full

eight node cluster. Figure 7.18 show a comparison between the query algorithm of approach

one and approach two. The results show that approach two is consistently outperformed by

approach one. This is expected and mirrors the results from the staff desktop machine.

However to more directly compare the two approaches, the combined upload and query

time of approach one needed to be compared to approach two. This result, shown in Figure

7.19, shows that even with the additional time required to perform the upload algorithm,

Chapter 7. Results 110

FIGURE 7.18: Eight Node Cluster Approach Query Comparison

approach one is quicker once the dataset size is increased past 128M. This contradicts the

comparison found between the approaches when running on the single node, as discussed

in section 7.5. This contradiction will be further explored in chapter 8.

FIGURE 7.19: Eight Node Cluster Approach Total Comparison

Chapter 7. Results 111

7.9.2 Approach Comparison On Four Nodes

To see if the performance characteristics from comparing the two approaches on eight

nodes are repeated when running on other cluster sizes, the approaches were compared

when running on four nodes. The results can be seen in Figure 7.20. The results for 1000M

on approach two are missing due to the lack of HDFS storage space on the four node clus-

ter. The Figure shows that, when running on the four node cluster, approach two is always

the better performing of the two stages across all dataset sizes. This contradicts the re-

sults from the eight node cluster where approach one was the best performing stage. This

characteristic will be explored in greater depth in chapter 8.

FIGURE 7.20: Four Node Cluster Approach Total Comparison

7.9.3 Approach Comparison With Jena

To test how the two approaches compare with the Jena TDB approach, Jena was run on one

of the nodes which comprises the Hadoop cluster. This allowed for direct comparisons to be

drawn. Figure 7.21 shows how the two approaches, running on the full eight node cluster,

compare against Jena running on a single node. The dataset size of 128M triples was the

maximum size which Jena was able to successfully run against. This shows how effective

Chapter 7. Results 112

both the Hadoop approaches are when compared with Jena, with Hadoop approach one

being nearly 20 times faster then Jena.

FIGURE 7.21: Hadoop Approaches Versus Jena

7.10 Naı̈ve versus Optimised Implementation

The two Hadoop approaches were also tested against a naı̈ve implementation. This naı̈ve

implementation processes the data in a similar manner to many of the existing Hadoop RDF

systems and makes no use of map-side or broadcast joins. The naı̈ve implementation must

complete all the queries via a series of cascade reduce-side joins. However, it still creates a

super-query to avoid the repetition of joins and makes use of the multi-join method to re-use

the same reducers to join unrelated triples groups simultaneously. This naı̈ve implementa-

tion requires two extra complete Map/Reduce iterations to join all the triples. Figure 7.22

shows how the naı̈ve implementation compares with the two optimised approaches when

running on an eight node cluster. It shows that the naı̈ve implementation performs worst

once the dataset size is increased past 32M triples. The performance deficit of the naı̈ve

implementation to the optimised approaches grows as dataset size increases. It is also

Chapter 7. Results 113

worth noting that the naı̈ve implementation was unable to process dataset sizes larger then

128M triples.

FIGURE 7.22: naı̈ve versus Optimised Implementation

Chapter 8

Interpretation and Discussion Of

Results

8.1 Summary and Significance Of Results

Overall the results show that both Hadoop-based approaches achieve the three objectives

for the required software functionality, as detailed in section 5.4.1. These can be sum-

marised as: returning the same response as the original SPARQL queries, demonstrating

greater performance than Jena TDB and being scalable when running in a distributed envi-

ronment.

8.1.1 Single Node Results

Section 7.5 highlights that even when running on a single machine, both the upload and

query performance of Jena TDB was beaten by the Hadoop approaches. That Hadoop is

better performing was somewhat unexpected, as Jena is designed for use on a single ma-

chine and Hadoop is not. The Hadoop approaches are designed to distribute the workload

across a cluster and are therefore not optimised for single machine use. These results also

highlight just how unsuitable Jena TDB is for processing NHS sized datasets.

114

Chapter 8. Interpretation and Discussion Of Results 115

As detailed in section 7.5, both approaches take an un-characteristically large amount of

time to process 1000M triples. This performance trait is consistent across the upload and

query stages of approach one and approach two. This suggests that this is the limit of the

dataset size which can be processed by the two Hadoop approaches when running on the

single machine. However this is still substantially more then Jena was able to process on

the same hardware.

8.1.2 Cluster Results

The results demonstrate that both the Hadoop approaches scale well when run in a dis-

tributed environment. When run on various cluster sizes, both the approaches always

demonstrate a decrease in run-time as cluster size increases. This highly scaleable nature

of the two approaches is very encouraging and validates the reasons for choosing Hadoop

as the basis for the new framework, which were established in section 5.4.2.

8.1.3 Cluster Size Versus Speed-Up Factor

Figure 7.14 shows the speed-up factor of approach one and Figure 7.17 the speed-up of ap-

proach two. These figures show that an increase in cluster size always results in a decrease

in runtime for both approaches. However, there are two interesting trends that emerge from

further analysis of the speed-up results.

It can be seen that approach one responds better to increases in node numbers, when

compared to approach two. For example, going from a cluster size of one to eight will

speed up query time for approach one by a factor of 5.9 with a dataset size of 256M triples.

Whereas approach two only produces a speed-up factor of 2.9 for the same increase in

nodes and dataset size. This shows that approach one makes more efficient use of the

available cluster resources. This could be due to approach one’s use of the map-side join

technique. This technique allows for better use of the cluster, as each node can do more

independently, without the need to transfer data over the network to a reduce task. Approach

two uses the reduce-side method for all joins and so nodes must wait to send the data to

Chapter 8. Interpretation and Discussion Of Results 116

reduce tasks. This means that individual nodes can do less independently, explaining why

approach two utilises extra nodes less efficiently when compared with approach one.

Another interesting characteristic is that the speed-up from a certain cluster size varies

dependant on input dataset size. For example, approach one’s speed-up going from one to

eight nodes is only 2 at a dataset size of 32 million triples. However, the speed-up factor

increases dramatically to 5.9 at 256M triples. This means that the more data that has to

be queried by approach one, the more optimally the Hadoop cluster will utilise its available

nodes. This trend is not only present going from just a size of one to eight, indeed the speed-

up for all cluster sizes increases towards the optimal value as dataset size increases. This is

clearly a very promising trait when dealing with NHS sized datasets. While this characteristic

is present in the speed-up result for approach two, it is not as pronounced. Again, this could

be due to the increased network transfers which the approach two algorithm requires.

Further tests on greater cluster sizes would need to be performed to assess at what point an

increase in nodes does not result in a decrease in run time. Research conducted by Fadika,

Dede, Govindaraju, and Ramakrishnan (2011) show that Hadoop’s performance increase

does diminish once the cluster is increased past a certain size. However this is dependant

upon the specific task being run.

8.1.4 Approach Comparison

Figure 7.8 shows the comparison between the total time taken for the two approaches on the

single machine. When just considering the two query stages between the two approaches,

approach one is substantially faster than two. However, once the upload stage is included

with the query stage, approach two is the better performing approach. The faster query

stage of approach one would suggest it is more suited to a scenario where the data will be

queried multiple times and thus needs to be stored for longer. Then the performance cost

of the upload stage would be offset by the performance benefit of approach one’s query

stage. Approach two would be more suited to a scenario where the data only needed to be

queried once and the errors removed from the dataset. The performance difference between

the approaches is interesting when considering the results from the single machine, as one

Chapter 8. Interpretation and Discussion Of Results 117

of the biggest performance bottle necks for Hadoop, transferring data over the network, is

not a factor. This allows for a more direct and accurate comparison between approaches.

As expected, approach one uses the pre-processed data to increase query performance

relative to approach two. Even though the use of the map-side join is less of a benefit

when running on a single machine, approach one is still performing its conditional logic on

and writing to disk smaller triple elements due to the compressed data. The reduce task

of approach one’s selection stage is also doing less work then that of approach two, due

to the pre-formatted data. These two reasons are the main factors behind approach one’s

superior query stage when running on the single machine.

The comparison between approaches is not as clear cut when considering the cluster re-

sults. From a cluster size of one to four nodes, the results mirror those from the single

machine, with approach two having better performance when compared with the total time

taken for approach one. However, as Figure 7.19 shows, once the cluster size is increased

to eight nodes, approach one becomes the better performing approach, even with its costly

upload stage included. The disparity between the single, two and four node cluster against

the eight node cluster must be down to the increased demand in the network which an eight

node cluster requires.

Overall, the results suggest that approach two is more suited to running on smaller cluster

sizes due to its performance being affected by the additional network transfer that larger

cluster sizes incur. They also suggest that approach one appears to be more scalable and

is therefore suited to larger cluster sizes. This is because each node can do more work

independently and requires less internode communication. On cluster sizes of four and

below, approach two is more suitable for situations where the data only needs to be queried

once. Approach one is more suitable if multiple queries have to be run, as the cost of

the upload stage would quickly be nullified after only a few queries. However further tests

on much larger clusters could be performed to assess if these performance characteristics

continue.

Chapter 8. Interpretation and Discussion Of Results 118

8.1.5 Underlying Pass Comparison

From reviewing all the results, one clear pattern emerges regarding the underlying passes

which comprise the approaches. Any stage which has to search the input datasets is always

the worst performing stage. In the upload algorithm, this is the sort-on subject stage and

in the query algorithms, this is the selection stage. Both these stages have to traverse the

entire input datasets to search for the required BGP to complete the queries. Traditional

databases use indexes of the data to directly access specific records. Hadoop’s lack of

indexes means that the entire input dataset must be scanned through to select required

records. This explains why the selection stages of the approaches are the slowest stages.

This reinforces research by Kulkarni (2010) that Hadoop’s lack of data filtering, leading to

the whole input being scanned, can have a serious impact on triple selection.

The join stage appears to be highly optimal and demonstrates impressive performance,

even when joining one billion triples. Figure 7.11 displays the results for approach one on

the eight node cluster. It shows that one billon triples are successfully joined in under eight

minutes. This seems to contradict the literature discussed in section 3.3, which highlights

joins as being one of the most complex and costly Map/Reduce operations. That the join

stages are the best performing of the two stages, shows how optimised joining via a broad-

cast join, over a series of cascade reduce-side joins, makes the algorithms.

8.2 Comparison With Literature

Section 7.10 demonstrates how the two Hadoop-based approaches compare when run

against a naı̈ve implementation. Comparing the optimised to the naı̈ve implementation

shows how effective the use of the broadcast joins, over cascade reduce-side joins, re-

ally is. The optimised approach not only enables greater performance but also allows larger

dataset sizes to be processed. Two key advantages which show that, wherever possible,

the broadcast join should be used instead of the cascade reduce-side join which is used

in the existing literature. However, the naı̈ve implementation used as the comparison was

Chapter 8. Interpretation and Discussion Of Results 119

not truly naı̈ve as it still employed a selection of optimisation techniques. A truly naı̈ve im-

plementation, based on the currently available literature, would not re-use reduce tasks to

join unrelated triple groups. Instead, these triple groups would each have to be joined via

their own complete Map/Reduce iterations. As none of the current solutions perform any

analysis of the SPARQL queries to be run before completing the joins, they would all re-

compute the common joins. This would have a massive impact on performance, as the total

time taken would increase proportionately, depending on the total number of queries to be

run. This would suggest that a truly naı̈ve implementation would demonstrate even worse

performance when compared with the optimised approaches created for this project.

Comparisons between the results presented here and those from the currently available lit-

erature are possible. However variations between test environment, datasets and SPARQL

queries make any conclusions drawn from the comparisons hard to make. Section 3.6.2

discusses the presented results from the current literature. The best performing of the ex-

isting solutions is the clique-square implementation presented by Goasdoué et al. (2013).

This work is also the only solution to use the map-side join technique and thus is the most

comparable to approaches created for this project. For a dataset size of 1000M triples the

clique-square approach took a total time of 316 minutes to both upload and run a single

moderately complex query. Table 8.1 shows the specification of the cluster on which the

performance of the clique-square approach was assessed. As can be seen, the clique-

square framework was tested on a cluster of much greater performance than the cluster

used for this project.

Component Node Specification
CPU Intel Xeon 2.93GHz Quad Core
RAM 16GB
HDD 2 x 600GB RAID1

TABLE 8.1: Specification Of The Clique-Square Hadoop Cluster

Section 7.9 shows total time taken for the two approaches created for this project to process

1000M triples on the eight node cluster. This was 374 minutes for approach one and 419

minutes for approach two. Comparisons between these times and the time taken for clique-

square are hard to make, as clique-square only runs one query, whereas the two Hadoop

Chapter 8. Interpretation and Discussion Of Results 120

approaches are completing eight. However, one method for allowing a more direct compar-

ison would be to multiply the query portion of clique-squares total time by eight. This would

reflect the total number of queries that the approaches created for this project complete.

The query portion comprises 59 of the total 316 minutes for the clique-square approach.

Using this method would create a new total run time of 729 minutes for the clique-square

approach to perform the same number of queries as the two approaches created for this

project. While it would be hard to draw significant conclusions from using this method, it

does suggest that the two Hadoop-Medical-RDF approaches have better performance than

clique-square, even when the results for the clique-square approach were gathered from a

cluster of more modern and capable machines.

This hypothetical result could be used to show how effective the unique techniques em-

ployed for this project are in increased query performance. As the clique-square approach

uses map-side joins, its performance deficit to the newly created approaches could be due

to the creation of the super-query (which eliminates common joins) and the use of the broad-

cast join method (which eliminates numerous Map/Reduce iterations).

Chapter 9

Conclusions And Further Work

9.1 Conclusions

9.1.1 Project Summary

This thesis has attempted to provide a solution to the problem of extremely slow query and

upload performance of an existing Semantic Web method used to assess the quality of

medical RDF data. Hadoop was chosen as the basis for the project as existing literature

shows it to be an effective way of parallelising a big data problem across a cluster, leading

to a fast and scaleable solution. Two separate approaches to solving the problem were

created, each using alternative Hadoop joining strategies. Both of the approaches meet

the required software functionality established in section 5.4.1. Each approach has its own

set of strengths and weaknesses, leading to them having their own distinct scenario in

which each would be best suited. Approach one is more suited to running on larger cluster

sizes, as it scales well and is the better performing of the two once the number of nodes is

increased past eight. It is also ideal for situations where the data will be queried more then

once as the upload stage allows for extremely fast querying. Approach two is more suited

to smaller cluster sizes and for when the data only needs to be queried once. The success

or otherwise of the approaches was determined by benchmarking them against the existing

Semantic Web solution and against a naı̈ve Hadoop implementation.

121

Chapter 9. Conclusions And Further Work 122

The work conducted for this paper also resulted in a publication being submitted and is

currently waiting for review (Bonner, Antoniou, Moss, & Kureshi, 2014). The paper focused

on whether Hadoop is a viable platform to assess the quality of medical data and compares

the performance of approach one and comparisons with Jena. The paper was submitted to

the ASE Big Data Science International Conference 2014 to be held in Beijing.

9.1.2 Aims and Objectives Achieved

All of the aims and objectives for this project, specified in section 1.3, have been successfully

achieved.

i) Firstly, two alternative frameworks were created in Apache Hadoop to both store and

query medical RDF data.

ii) Secondly, the newly created approaches were successfully tested on varying quantities

of medical data.

iii) Finally the two Hadoop approaches were tested against the existing Jena implementa-

tion and against a naı̈ve implementation based on the existing literature.

9.1.3 Evaluative Conclusions

Throughout the course of this project, the following points have become apparent:

i) From such positive results it can be said that Hadoop is very effective at storing and

querying medical RDF data, when compared with Jena. Both the Hadoop approaches

demonstrate better performance than Jena when running on the same machine and pro-

cessing the same datasets. The Hadoop approaches also demonstrate good scalability

when tested in a distributed environment, meaning that they are well equipped to deal

with NHS-sized datasets.

ii) The project uses the broadcast join method for completing many of the required joins.

This method reduces the need for a series of cascade reduce-side joins. This project

Chapter 9. Conclusions And Further Work 123

appears to be the first from the currently available literature to make use of the broadcast

join method to perform queries on RDF data.

iii) The project reinforces the idea, introduced by White (2010), that the map-side join

method is much more efficient then the reduce-side method. This can be seen in how

much quicker approach one’s query stage is when compared to approach two’s. This

difference is solely down to the use of map-side joins. The use of map-side joins is

particularly suited to larger cluster sizes as it dramatically reduces the volume of network

traffic.

iv) This project also appears to be the first to introduce the notion of the super-query. A

super-query is created from a series of standard SPARQL queries and is used to save

on the re-computation of common joins. This is something neither Jena nor the existing

Hadoop-SPARQL approaches appear to implement.

v) One clear non-performance related advantage to using Hadoop to query medical data,

rather than a dedicated triplestore cluster like the clustered Jena system introduced by

Owens et al. (2008), is that a Hadoop cluster is inherently multi-functional. Creating a

triplestore cluster would limit the machines used to just the task of processing RDF data.

Using Hadoop to process the medical data would also allow the cluster to be used for

other tasks, hopefully improving the total utilisation of the resource. This could make the

setup and running cost of a Hadoop cluster easier to justify. Using Hadoop as the basis

for the framework enables greater portability, as companies such as Amazon already

offer Hadoop as a service, on demand in the Cloud (Kambatla, Pathak, & Pucha, 2009).

vi) Using Hadoop as the basis of the framework allows for much greater functionality over

what is offered by traditional SPARQL queries. For example both the approaches utilise

the Hadoop counter feature to allow the user to check the exact quantity of records which

failed a specific error check. This summation would have to be performed manually using

the Jena approach. The Hadoop approaches could easily be expanded to remove the

false records from the original input data, leaving an error-free dataset for use in further

research. Again, this is functionality that is impossible to replicate using SPARQL alone.

vii) The two Hadoop approaches have been designed to enable expansion beyond the

current queries. Any future users of the framework could add additional queries with

Chapter 9. Conclusions And Further Work 124

minimal effort and without having a detrimental effect on performance. However the time

taken to add an additional query to the approaches is still significant, especially when

compared to the time taken to write a SPARQL query.

viii) Hadoop could potentially have lots of other uses within the medical data domain, in

addition to being used for error checking. The results gained from this project can be

used as evidence that Hadoop should be strongly considered for future use when large

scale medical data needs processing.

ix) In addition to using Hadoop to query NHS scale RDF datasets, some of the key opti-

misations used in this project could easily be expanded for use with other queries and

datasets. This project shows that scanning the input datasets to see which triples groups

are suitable for joining via the broadcast method is a key way to reduce query time. An-

other optimisation is the use of a pre-processing stage to enable the use of the highly

efficient map-side join method in the triple selection stages.

9.2 Further Work

9.2.1 Improvements To The Project

With hindsight, there are several ways in which this project and the testing of it could have

been improved. These are mostly focused on the test environment and test datasets used.

Due to privacy issues relating to sensitive medical data, it was only possible to test the

frameworks on synthetically generated datasets. While this generated data closely mim-

ics the structure and distribution of the real-world data, it would be good to test that the

frameworks actually perform as well on real-world data.

Due to time and resource restraints, the framework was only tested up to a total dataset size

of one billion triples. One way of further testing the project would be to use massive dataset

sizes of over one billion triples. Based on the current results it is possible to speculate

how the frameworks would behave on a dataset size of two billion triples. Running on the

standard desktop machine, both the frameworks would struggle to process two billion triples

Chapter 9. Conclusions And Further Work 125

in a reasonable time. Running on the eight node cluster, it would be possible to suggest that

approach one could cope well with two billion triples. Both frameworks show that they scale

well as cluster size is increased. To further test the project, the frameworks could be run on

much larger clusters to assess whether and how the scaleability characteristics continue.

9.2.2 Expansion Of The Project

As a result of completing this project, it can be seen that there are evidently ways in which

it could be expanded and lead to future research. Recently the latest version of Hadoop,

version 2, has been released. This version replaces the Map/Reduce framework with YARN,

a substantially different way of implementing the core Hadoop concepts. Full details are

provided by Vavilapalli et al. (2013). While this new version of Hadoop was released too late

for it to form the basis of this project, future research could be performed to port the code

into this new framework. Any performance differences could also be explored to see if this

new version can bring speed-up benefits.

As the project results show, the stage of any of the developed algorithms which consumes

the greatest amount of time, is the stage which has to traverse the original input dataset. For

the two Hadoop query algorithms, this is the selection stage and for the upload algorithm

it is the sort-on subject stage. This problem of traversing the input data is inherent to the

Map/Reduce framework, since it can only have a complete file or collection of files as input.

It has no method of targeting specific portions of a file and thus must scan through the com-

plete file to locate it. This task of locating items is usually handled in traditional databases

by an index, but none currently exist for Hadoop. Due to the distributed nature of Hadoop,

creating an index could prove difficult, as it would not only have to track records location

within files, but also the machine on which it is located. Future research could explore the

creation of an index for Hadoop. There has been some early work conducted in this direc-

tion, for example work by Liao, Han, and Fang (2010), although there is still massive scope

for future research.

Currently this project is customised to process medical RDF data and specific SPARQL

queries. However future research could be performed to allow the framework to process

Chapter 9. Conclusions And Further Work 126

any datasets and queries. Research would also need to be done to allow the optimisation

developed for this project to be performed automatically. Specifically this means, research-

ing a way of automatically traversing the datasets to see the distribution of the triple groups

and discovering which would be of a suitable size for joining via a broadcast join. Research

could also be performed to allow for automatic creation of a super query from a subset of

queries.

All of the values taken for the cluster results were gathered from a dedicated Hadoop clus-

ter. It is possible that future users of the developed frameworks might not have access

to a dedicated resource. Further research could be done to investigate how the frame-

works would cope when moved from a dedicated resource to a Cloud-based resource such

as Amazon’s EC2 Map/Reduce offering. Research has been performed by many people

including Kambatla et al. (2009) to show that Hadoop can successfully be moved to the

cloud, however using the cloud might not be suitable for this project. This is due to the large

privacy concerns that using a publicly available Cloud service to store and process confi-

dential medical data entails. However, the potential performance benefit and cost saving

created by being able to spawn a Hadoop cluster dynamically, depending on the volume of

data to be processed, is definitely worthy of further investigation.

9.3 Final Conclusions

This project can be considered to have been successful, as two alternative Hadoop-based

approaches to assess the quality of medical data have been created. The positive results

gained from comparative testing between the two approaches and Jena can be used to pro-

vide a definitive conclusion to the project. Hadoop is a more effective method to both store

and also query massive RDF datasets than the existing Semantic Web solution. Hadoop

allows for a system to assess the quality of medical data which is not only better performing

than using traditional Semantic Web technologies, but it is also able to process the massive

volumes of data required by the NHS, as it scales the workload across a computer clus-

ter. This project has also introduced two novel methods for use when completing SPARQL

queries using map/reduce: the use of broadcast joins and the creation of the super-query.

Chapter 9. Conclusions And Further Work 127

The work performed for this project will hopefully be used to allow for more and larger

medical databases to be checked for errors and inconsistencies. This should hopefully lead

to more accurate and reliable databases being used in both medical research and also for

diagnosis.

References

Afrati, F. N., & Ullman, J. D. (2010). Optimizing joins in a map-reduce environment.

In Proceedings of the 13th international conference on extending database technology

(pp. 99–110). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

1739041.1739056 doi: 10.1145/1739041.1739056

Agrawal, D., Bernstein, P., Bertino, E., Davidson, S., Dayal, U., Franklin, M., . . . Widom, J.

(2011). Challenges and Opportunities with Big Data 2011-1.

Antoniou, G., & Harmelen, F. v. (2008). A semantic web primer, 2nd edition (cooperative

information systems) (2nd ed.). The MIT Press.

Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., . . .

Wawrzynek, J. (2009). A view of the parallel computing landscape. Communications

of the ACM, 52(10), 56–67.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001, May). The semantic web. Scientific Amer-

ican, 284(5), 34-43. Retrieved from http://www.sciam.com/article.cfm?articleID=

00048144-10D2-1C70-84A9809EC588EF21

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data - the story so far. Int. J. Semantic

Web Inf. Syst., 5(3), 1–22.

Blanas, S., Patel, J. M., Ercegovac, V., Rao, J., Shekita, E. J., & Tian, Y. (2010). A

comparison of join algorithms for log processing in mapreduce. In Proceedings of the

2010 acm sigmod international conference on management of data (pp. 975–986). New

York, NY, USA: ACM.

128

http://doi.acm.org/10.1145/1739041.1739056
http://doi.acm.org/10.1145/1739041.1739056
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21

References 129

Bonner, S., Antoniou, G., Moss, L., & Kureshi, I. (2014). Using hadoop to implement a

semantic method of assessing the quality of research medical datasets. ASE Big Data

Science.

Chambers, I., Gregson, B., Citerio, G., Enblad, P., Howells, T., Kiening, K., . . . Ragauskas,

A. (2009). Brainit collaborative network: analyses from a high time-resolution dataset of

head injured patients. In Acta neurochirurgica supplements (pp. 223–227). Springer.

Chandar, J. (2010). Join algorithms using map/reduce (Unpublished master’s thesis).

University of Edinburgh.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., . . . Gruber,

R. E. (2006). Bigtable: a distributed storage system for structured data. In Proceedings

of the 7th usenix symposium on operating systems design and implementation - volume

7 (pp. 15–15). Berkeley, CA, USA: USENIX Association. Retrieved from http://dl.acm

.org/citation.cfm?id=1267308.1267323

Corsar, D., Moss, L., & Piper, I. (2012). Data quality assessment using linked data: A

case study in the medical domain. In E-kaw 2012, the 18th international conference on

knowledge engineering and knowledge management. Retrieved from http://ekaw2012

.ekaw.org/sites/ekaw2012.ekaw.org/files/ekaw2012pdsubmission21(2).pdf

Davies, J., Fensel, D., & van Harmelen, F. (Eds.). (2003). Towards the semantic web:

Ontology-driven knowledge management. Chichester, UK: Wiley.

Dean, J., & Ghemawat, S. (2004). Mapreduce: simplified data processing on large clus-

ters. In Proceedings of the 6th conference on symposium on opearting systems design

& implementation - volume 6 (pp. 10–10). Berkeley, CA, USA: USENIX Association. Re-

trieved from http://dl.acm.org/citation.cfm?id=1251254.1251264

DuCharme, B. (2011). Learning sparql (S. St. Laurent & J. Perez, Eds.).

Fadika, Z., Dede, E., Govindaraju, M., & Ramakrishnan, L. (2011). Benchmarking

mapreduce implementations for application usage scenarios. In S. Jha, N. gentschen

Felde, R. Buyya, & G. Fedak (Eds.), Grid (p. 90-97). IEEE. Retrieved from http://

dblp.uni-trier.de/db/conf/grid/grid2011.html#FadikaDGR11a

http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://ekaw2012.ekaw.org/sites/ekaw2012.ekaw.org/files/ekaw2012pdsubmission21(2).pdf
http://ekaw2012.ekaw.org/sites/ekaw2012.ekaw.org/files/ekaw2012pdsubmission21(2).pdf
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dblp.uni-trier.de/db/conf/grid/grid2011.html#FadikaDGR11a
http://dblp.uni-trier.de/db/conf/grid/grid2011.html#FadikaDGR11a

References 130

Feldman, B., Martin, E. M., & Skotnes, T. (2012). Big data in healthcare hype and hope.

Gartner. (2011). Pattern-based strategy: Getting value from big data. Retrieved from

http://www.gartner.com/it/page.jsp?id=1731916

Goasdoué, F., Kaoudi, Z., Manolescu, I., Quiané-Ruiz, J., & Zampetakis, S. (2013).

CliqueSquare: efficient Hadoop-based RDF query processing. In BDA’13 - Journées de

Bases de Données Avancées. Nantes, France. Retrieved from http://hal.inria.fr/

hal-00867728

Goldberg, S. I., Niemierko, A., & Turchin, A. (2008). Analysis of data errors in clinical

research databases. In Amia annual symposium proceedings (Vol. 2008, p. 242).

Guo, Y., Pan, Z., & Heflin, J. (2005). Lubm: A benchmark for owl knowledge base systems.

Web Semantics: Science, Services and Agents on the World Wide Web, 3(2-3). Retrieved

from http://www.websemanticsjournal.org/index.php/ps/article/view/70

Harris, S., Lamb, N., & Shadbolt, N. (2009). 4store: The design and implementation of

a clustered rdf store. In 5th international workshop on scalable semantic web knowledge

base systems (ssws2009) (pp. 94–109).

Haslhofer, B., Roochi, E. M., Schandl, B., & Zander, S. (2011, March). Europeana rdf

store report (Technical Report). Vienna: University of Vienna. Retrieved from http://

eprints.cs.univie.ac.at/2833/

Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., . . . others (2008). Big

data: The future of biocuration. Nature, 455(7209), 47–50.

Husain. (2009). Cost-based query processing for large rdf graph using hadoop and mapre-

duce (Tech. Rep.).

Husain, Doshi, P., Khan, L., & McGlothlin, J. (2009). Efficient query processing for large

rdf graphs using hadoop and mapreduce (Tech. Rep.).

Husain, McGlothlin, J. P., Masud, M. M., Khan, L. R., & Thuraisingham, B. M. (2011).

Heuristics-based query processing for large rdf graphs using cloud computing. IEEE Trans.

Knowl. Data Eng., 23(9), 1312-1327. Retrieved from http://dblp.uni-trier.de/db/

journals/tkde/tkde23.html#HusainMMKT11

http://www.gartner.com/it/page.jsp?id=1731916
http://hal.inria.fr/hal-00867728
http://hal.inria.fr/hal-00867728
http://www.websemanticsjournal.org/index.php/ps/article/view/70
http://eprints.cs.univie.ac.at/2833/
http://eprints.cs.univie.ac.at/2833/
http://dblp.uni-trier.de/db/journals/tkde/tkde23.html#HusainMMKT11
http://dblp.uni-trier.de/db/journals/tkde/tkde23.html#HusainMMKT11

References 131

Joshi, S. B. (2012). Apache hadoop performance-tuning methodologies and best practices.

In Proceedings of the 3rd acm/spec international conference on performance engineering

(pp. 241–242). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

2188286.2188323 doi: 10.1145/2188286.2188323

Kambatla, K., Pathak, A., & Pucha, H. (2009). Towards optimizing hadoop provisioning in

the cloud. In Proc. of the first workshop on hot topics in cloud computing (p. 118).

Kulkarni, P. (2010). Distributed sparql query engine using mapreduce (Unpublished mas-

ter’s thesis). University of Edinburgh.

Lam, C. (2010). Hadoop in action. Manning Publications.

Liao, H., Han, J., & Fang, J. (2010). Multi-dimensional index on hadoop distributed file sys-

tem. In Networking, architecture and storage (nas), 2010 ieee fifth international conference

on (pp. 240–249).

Lin, J., & Dyer, C. (2010). Data-intensive text processing with mapreduce.

Morgan and Claypool Publishers. Retrieved from http://dx.doi.org/10.2200/

S00274ED1V01Y201006HLT007

Mazumdar, S. (2011). Complex sparql query engine for hadoop mapreduce (Unpublished

master’s thesis). University of Sophia Antipolis.

Miner, D., & Shook, A. (2012). Mapreduce design patterns building effective algorithms

and analytics for hadoop and other systems. Oreilly & Associates Inc.

Moss, L., Corsar, D., & Piper, I. (2012). A linked data approach to assessing medical data.

In P. Soda & F. Tortorella (Eds.), 25th international symposium on computer-based medical

systems (cbms), 2012 (pp. 1–4). doi: 10.1109/CBMS.2012.6266391

Myung, J. (2010). Sparql processing with mapreduce. Retrieved from http://ids.snu.ac

.kr/w/images/a/a7/2010SS-11.ppt

Myung, J., Yeon, J., & Lee, S.-g. (2010). Sparql basic graph pattern processing with

iterative mapreduce. In Proceedings of the 2010 workshop on massive data analytics on

the cloud (pp. 6:1–6:6). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/1779599.1779605 doi: 10.1145/1779599.1779605

http://doi.acm.org/10.1145/2188286.2188323
http://doi.acm.org/10.1145/2188286.2188323
http://dx.doi.org/10.2200/S00274ED1V01Y201006HLT007
http://dx.doi.org/10.2200/S00274ED1V01Y201006HLT007
http://ids.snu.ac.kr/w/images/a/a7/2010SS-11.ppt
http://ids.snu.ac.kr/w/images/a/a7/2010SS-11.ppt
http://doi.acm.org/10.1145/1779599.1779605
http://doi.acm.org/10.1145/1779599.1779605

References 132

Ogbuji, U. (2000). An introduction to rdf. Retrieved 2000, from http://www.ibm.com/

developerworks/library/w-rdf/

Owens, A., Seaborne, A., & Gibbins, N. (2008). Clustered TDB: A clustered triple store for

jena (Tech. Rep.). Electronics and Computer Science, University of Southampton.

Palla, K. (2009). A comparative analysis of join algorithms using the hadoop map/reduce

framework (Unpublished master’s thesis). University of Edinburgh.

Patchigolla, V. (2011). Comparison of clustered rdf data stores.

Rajaraman, A., & Ullman, J. D. (2012). Mining of massive datasets. Cam-

bridge: Cambridge University Press. Retrieved from http://www.amazon.de/

Mining-Massive-Datasets-Anand-Rajaraman/dp/1107015359/ref=sr 1 1?ie=

UTF8&qid=1350890245&sr=8-1

Rohloff, K., & Schantz, R. E. (2010). High-performance, massively scalable distributed

systems using the mapreduce software framework: the shard triple-store. In E. Tilevich &

P. Eugster (Eds.), Psi eta. ACM. Retrieved from http://dblp.uni-trier.de/db/conf/

oopsla/psieta2010.html#RohloffS10

Salati, M., Brunelli, A., Dahan, M., Rocco, G., Van Raemdonck, D., Varela, G., et al. (2011).

Task-independent metrics to assess the data quality of medical registries using the euro-

pean society of thoracic surgeons (ests) database. European journal of cardio-thoracic

surgery: official journal of the European Association for Cardio-thoracic Surgery , 40(1),

91.

Schmidt, M., Hornung, T., Lausen, G., & Pinkel, C. (2008). Sp2bench: A sparql perfor-

mance benchmark. CoRR, abs/0806.4627 .

Segaran, T., Evans, C., & Taylor, J. (2009). Programming the semantic web. O’Reilly

Media.

Sequenda, J. (2013). Introduction to: Triplestores. Retrieved from http://semanticweb

.com/introduction-to-triplestores b34996

Silberschatz, A., Korth, H., & Sudarshan, S. (2011). Database systems concepts (6th ed.).

New York, NY, USA: McGraw-Hill, Inc.

http://www.ibm.com/developerworks/library/w-rdf/
http://www.ibm.com/developerworks/library/w-rdf/
http://www.amazon.de/Mining-Massive-Datasets-Anand-Rajaraman/dp/1107015359/ref=sr_1_1?ie=UTF8&qid=1350890245&sr=8-1
http://www.amazon.de/Mining-Massive-Datasets-Anand-Rajaraman/dp/1107015359/ref=sr_1_1?ie=UTF8&qid=1350890245&sr=8-1
http://www.amazon.de/Mining-Massive-Datasets-Anand-Rajaraman/dp/1107015359/ref=sr_1_1?ie=UTF8&qid=1350890245&sr=8-1
http://dblp.uni-trier.de/db/conf/oopsla/psieta2010.html#RohloffS10
http://dblp.uni-trier.de/db/conf/oopsla/psieta2010.html#RohloffS10
http://semanticweb.com/introduction-to-triplestores_b34996
http://semanticweb.com/introduction-to-triplestores_b34996

References 133

Soule, N. (2011). Efficient sparql query processing via map-reduce-merge.

Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., & Reynolds, D. (2008). Sparql basic

graph pattern optimization using selectivity estimation. In Proceedings of the 17th interna-

tional conference on world wide web (pp. 595–604). New York, NY, USA: ACM. Retrieved

from http://doi.acm.org/10.1145/1367497.1367578 doi: 10.1145/1367497.1367578

Taylor, R. C. (2010). An overview of the hadoop/mapreduce/hbase framework and its

current applications in bioinformatics. BMC Bioinformatics, 11(S-12), S1. Retrieved from

http://dblp.uni-trier.de/db/journals/bmcbi/bmcbi11S.html#Taylor10

Urbani, J., Maassen, J., Drost, N., Seinstra, F. J., & Bal, H. E. (2013). Scalable rdf data

compression with mapreduce. Concurrency and Computation: Practice and Experience,

25(1), 24-39.

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., . . . others

(2013). Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th

annual symposium on cloud computing (p. 5).

W3C. (2001). Semantic web architecture. Retrieved 07-09-2013, from http://www.w3

.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

W3C. (2004). Rdf primer. Retrieved 07-09-2013, from http://www.w3.org/TR/2004/

REC-rdf-primer-20040210/

W3C. (2013). Sparql 1.1 query language. Retrieved 07-09-2013, from http://www.w3

.org/TR/sparql11-query/#BasicGraphPatterns

Weaver, J., & Williams, G. T. (2009). Scalable rdf query processing on clusters and super-

computers. In The 5th international workshop on scalable semantic web knowledge base

systems (ssws2009) (p. 68).

White, T. (2010). Hadoop: The definitive guide (Second Edition ed.; M. Loukides, Ed.).

O’Reilly. Retrieved from http://oreilly.com/catalog/9780596521981

Wilkinson, K., Sayers, C., Kuno, H., & Reynolds, D. (2003). Efficient RDF storage and

retrieval in Jena2. In Proc. first international workshop on semantic web and databases.

Retrieved from http://www.cs.uic.edu/~ifc/SWDB/papers/Wilkinson etal.pdf

http://doi.acm.org/10.1145/1367497.1367578
http://dblp.uni-trier.de/db/journals/bmcbi/bmcbi11S.html#Taylor10
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/sparql11-query/#BasicGraphPatterns
http://www.w3.org/TR/sparql11-query/#BasicGraphPatterns
http://oreilly.com/catalog/9780596521981
http://www.cs.uic.edu/~ifc/SWDB/papers/Wilkinson_etal.pdf

Appendix A

Appendix - SPARQL Queries

A.1 Original SPARQL Queries

prefix med: <http://www.abdn.ac.uk/~csc316/ontologies/ICUNeuro.owl#>

prefix pd: <http://www.abdn.ac.uk/~csc316/ontologies/PatientData#>

prefix mo: <http://www.abdn.ac.uk/~csc316/ontologies/MedicalObservations#>

prefix ann: <http://www.abdn.ac.uk/~csc316/ontologies/Annotations#>

prefix ms: <http://www.abdn.ac.uk/~csc316/ontologies/MedicalSensors#>

prefix oc: <http://www.abdn.ac.uk/~csc316/ontologies/ObservationCollection#>

prefix spec: <http://www.abdn.ac.uk/~csc316/ontologies/Specification#>

prefix xsd: <http://www.w3.org/2001/XMLSchema#>

prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn/>

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

// check if a value is above the maximum acceptable value

SELECT ?obs ?p ?htime ?max ?value WHERE {

?range a med:AcceptableRange .

?range med:clinicalRangeMax ?max .

?range pd:hasParameter ?p .

?obs a mo:PhysiologicalObservation;

?obs ssn:observedProperty ?p .

?obs ssn:observationResultTime ?time .

?obs pd:atHumanTime ?htime .

?obs ssn:observationResult ?a1

?a1 ssn:hasValue ?a2 .

?a2 pd:readingValue ?value .

134

Appendix A. SPARQL Queries 135

FILTER (?value > ?max)

}

---query.belowMinAcceptable

// check if a value is below the minimum acceptable value

SELECT ?obs ?p ?htime ?min ?value WHERE {

?range a med:AcceptableRange; med:clinicalRangeMin ?min; pd:hasParameter ?p.

?obs a mo:PhysiologicalObservation;

ssn:observedProperty ?p; ssn:observationResultTime ?time; pd:atHumanTime ?htime.

?obs ssn:observationResult/ssn:hasValue/pd:readingValue ?value.

FILTER (?value < ?min)

}

---query.belowMinAcceptablePlusSensorAccuracy2

SELECT ?p ?min ?value ?htime WHERE {

?range a med:AcceptableRange.

?range med:clinicalRangeMin ?min.

?range pd:hasParameter ?p.

?obs a mo:PhysiologicalObservation;

?obs ssn:observedProperty ?p;

?obs ssn:observationResultTime ?time;

?obs pd:atHumanTime ?htime;

?obs ssn:observedBy ?sensor.

?a1 ssn:hasValue ?a2 .

?a2 pd:readingValue ?value .

?sensor ssn:hasMeasurementCapability ?mc. ?mc a ssn:Accuracy;

ms:capabilityValue ?accuracy.

FILTER (?value < ?min)

LET (?v2 := ?value * ?accuracy)

FILTER ((?v2+?value) > ?min)

}

---query.aboveMinAcceptableMinusSensorAccuracy2

SELECT ?p ?min ?value ?htime WHERE {

?range a med:AcceptableRange; med:clinicalRangeMin ?min; pd:hasParameter ?p.

?obs a mo:PhysiologicalObservation; ssn:observedProperty ?p;

ssn:observationResultTime ?time; pd:atHumanTime ?htime; ssn:observedBy ?sensor.

?obs ssn:observationResult/ssn:hasValue/pd:readingValue ?value.

?sensor ssn:hasMeasurementCapability ?mc. ?mc a ssn:Accuracy;

ms:capabilityValue ?accuracy.

FILTER (?value > ?min)

LET (?v2 := ?value * ?accuracy)

FILTER ((?value - ?v2) < ?min)

}

Appendix A. SPARQL Queries 136

---query.belowMaxAcceptablePlusSensorAccuracy2

SELECT ?p ?max ?value ?htime WHERE {

?range a med:AcceptableRange; med:clinicalRangeMax ?max; pd:hasParameter ?p.

?obs a mo:PhysiologicalObservation; ssn:observedProperty ?p;

ssn:observationResultTime ?time; pd:atHumanTime ?htime;

ssn:observedBy ?sensor.

?obs ssn:observationResult/ssn:hasValue/pd:readingValue ?value.

?sensor ssn:hasMeasurementCapability ?mc. ?mc a ssn:Accuracy;

ms:capabilityValue ?accuracy.

FILTER (?value < ?max)

LET (?v2 := ?value * ?accuracy)

FILTER ((?v2+?value) > ?max)

}

---query.aboveMaxAcceptableMinusSensorAccuracy2

SELECT ?p ?max ?value ?htime WHERE {

?range a med:AcceptableRange; med:clinicalRangeMax ?max; pd:hasParameter ?p.

?obs a mo:PhysiologicalObservation; ssn:observedProperty ?p;

ssn:observationResultTime ?time; pd:atHumanTime ?htime;

ssn:observedBy ?sensor.

?obs ssn:observationResult/ssn:hasValue/pd:readingValue ?value.

?sensor ssn:hasMeasurementCapability ?mc. ?mc a ssn:Accuracy;

ms:capabilityValue ?accuracy.

FILTER (?value > ?max)

LET (?v2 := ?value * ?accuracy)

FILTER ((?value - ?v2) < ?max)

}

---query.aboveMaxAcceptableOkHyptertension

SELECT ?obs ?p ?htime ?max ?value WHERE {

?range a med:AcceptableRange;

med:clinicalRangeMax ?max;

pd:hasParameter ?p.

?obs a mo:PhysiologicalObservation;

ssn:observedProperty ?p;

ssn:observationResultTime ?time;

pd:atHumanTime ?htime.

?obs ssn:observationResult/ssn:hasValue/pd:readingValue ?value.

FILTER (?value > ?max)

med:Hypertension med:requiredSymptoms ?cs.

?cs med:clinicalFeatures ?cscf.

?cscf pd:hasParameter ?p.

?cscf med:clinicalRangeMax ?csrMax.

?cscf med:clinicalRangeMin ?csrMin.

FILTER ((?value > ?csrMin)&&(?value < ?csrMax))

Appendix A. SPARQL Queries 137

}

---query.belowMinAcceptableOkHypotension

SELECT ?obs ?p ?htime ?min ?value WHERE {

?range a med:AcceptableRange; med:clinicalRangeMin ?min; pd:hasParameter ?p.

?obs a mo:PhysiologicalObservation;

ssn:observedProperty ?p; ssn:observationResultTime ?time;

pd:atHumanTime ?htime.

?obs ssn:observationResult/ssn:hasValue/pd:readingValue ?value.

FILTER (?value < ?min)

med:Hypotension med:requiredSymptoms ?cs.

?cs med:clinicalFeatures ?cscf.

?cscf pd:hasParameter ?p;

?cscf med:clinicalRangeMax ?csrMax;

?cscf med:clinicalRangeMin ?csrMin.

FILTER ((?value > ?csrMin)&&(?value < ?csrMax))

}

Appendix B

Appendix - Hadoop Cluster

Configuration Files

B.1 HDFS Site

<configuration>

<property>

<name>dfs.name.dir</name>

<value>/home/hdfs/name</value>

</property>

<property>

<name>dfs.data.dir</name>

<value>/home/hdfs/data</value>

</property>

<property>

<name>dfs.replication</name>

<value>3</value>

</property>

</configuration>

B.2 Mapred Site

<configuration>

<property>

<name>mapred.job.tracker</name>

138

Appendix B. Hadoop Cluster Configuration Files 139

<value>192.168.53.1:9001</value>

</property>

<property>

<name>mapred.tasktracker.map.tasks.maximum</name>

<value>4</value>

</property>

<property>

<name>mapred.tasktracker.reduce.tasks.maximum</name>

<value>4</value>

</property>

<property>

<name>mapreduce.map.java.opts</name>

<value>-Xmx600m</value>

</property>

<property>

<name>mapreduce.reduce.java.opts</name>

<value>-Xmx600m</value>

</property>

<property>

<name>mapred.job.reuse.jvm.num.tasks</name>

<value>-1</value>

</property>

</configuration>

B.3 Core Site

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://192.168.53.1:9000/</value>

</property>

<property>

<name>hadoop.tmp.dir</name>

<value>/home/tmp/hadoop-${user.name}</value>

<description>A base for other temporary directories.</description>

</property>

<property>

<name>io.file.buffer.size</name>

<value>131072</value>

</property>

</configuration>

Appendix C

Appendix - Approach One Source

Code

C.1 Upload Algorithm

C.1.1 Map 1 - Compressor

package Mappers ;

import java . i o . IOExcept ion ;

import java . u t i l . Hashtable ;

import org . apache . hadoop . i o . LongWri table ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Mapper ;

import U t i l s . Parser ;

public class Compressor extends Mapper<LongWritable , Text , Text , Text>

{

Hashtable<St r ing , S t r ing> rep lace = new Hashtable<St r ing , S t r ing >() ;

public void setup (Context con tex t) throws IOException , In te r rup tedExcep t i on

{

rep lace . put (”<h t t p : / / www. abdn . ac . uk / ˜ csc316 / on to log ies / ICUNeuro . owl# ” , ”<med”) ;

rep lace . put (”<h t t p : / / www. abdn . ac . uk / ˜ csc316 / on to log ies / Pat ientData# ” , ”<pd ”) ;

rep lace . put (”<h t t p : / / www. abdn . ac . uk / ˜ csc316 / on to log ies / MedicalObservat ions# ” , ”<mo”) ;

rep lace . put (”<h t t p : / / www. abdn . ac . uk / ˜ csc316 / on to log ies / Annotat ions# ” , ”<ann ”) ;

rep lace . put (”<h t t p : / / www. abdn . ac . uk / ˜ csc316 / on to log ies / MedicalSensors# ” , ”<ms”) ;

140

Appendix C. Approach One Source Code 141

rep lace . put (”<h t t p : / / www. abdn . ac . uk / ˜ csc316 / on to log ies / Observa t ionCo l lec t i on # ” , ”<oc ”) ;

rep lace . put (”<h t t p : / / www. abdn . ac . uk / ˜ csc316 / on to log ies / S p e c i f i c a t i o n # ” , ”<spec ”) ;

rep lace . put (”<h t t p : / / www.w3 . org /2001/XMLSchema# ” , ”<xsd ”) ;

rep lace . put (”<h t t p : / / www.w3 . org /2000/01 / rd f−schema# ” , ”<r d f s ”) ;

}

public void map(LongWri table key , Text value , Context con tex t) throws IOException ,

In te r rup tedExcep t i on

{

S t r i n g [] Check = { ”<h t t p : / / www.w3 . org /1999/02/22− rd f−syntax−ns ” ,

”<h t t p : / / p u r l . oc lc . org /NET/ ssnx / ssn / ” ,

”<h t t p : / / l o c a l h o s t :8085/ data / ” } ;

S t r i n g [] Replace = { ”<a>” ,

”<ssn ” ,

”</ ” } ;

S t r i n g T r i p l e [] = nul l ;

t ry {

T r i p l e = Parser . parseTripleDynamic (value . t o S t r i n g ()) ;

} catch (Except ion e) {

e . p r in tS tackTrace () ;

}

for (i n t i = 0 ; i < 3; i ++)

{

S t r i n g temp [] = T r i p l e [i] . s p l i t (” # ”) ;

i f (T r i p l e [i] . s t a r t s W i t h (Check [2]))

{

T r i p l e [i] = Replace [2] + ” : ” + T r i p l e [i] . subs t r i ng (Check [2] . l eng th () , T r i p l e [i] . l eng th ()

) ;

}

else i f (T r i p l e [i] . s t a r t s W i t h (Check [0]))

{

T r i p l e [i] = Replace [0] ;

}

else i f (rep lace . containsKey (temp [0] + ” # ”))

{

T r i p l e [i] = rep lace . get (temp [0] + ” # ”) + ” : ” + temp [1] ;

}

else i f (T r i p l e [i] . s t a r t s W i t h (Check [1]))

Appendix C. Approach One Source Code 142

{

T r i p l e [i] = Replace [1] + ” : ” + T r i p l e [i] . subs t r i ng (Check [1] . l eng th () , T r i p l e [i] . l eng th ()

) ;

}

}

contex t . w r i t e (new Text (T r i p l e [0] + ” ” + T r i p l e [1] + ” ” + T r i p l e [2]) , new Text ()) ;

}

}

C.1.2 Map 2 - Create Single Line On Subject

package Mappers ;

import java . i o . IOExcept ion ;

import org . apache . hadoop . i o . LongWri table ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Mapper ;

public class Data Uploader Pass1 extends Mapper<LongWritable , Text , Text , Text>

{

private Text word = new Text () ;

public void map(LongWri table key , Text value , Context con tex t) throws IOException ,

In te r rup tedExcep t i on

{

S t r i n g T r i p l e [] = nul l ;

t ry {

T r i p l e = U t i l s . Parser . parseTripleDynamic (value . t o S t r i n g ()) ;

} catch (Except ion e) {

e . p r in tS tackTrace () ;

}

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (T r i p l e [1] + ” ” + T r i p l e [2])) ;

}

}

Appendix C. Approach One Source Code 143

C.1.3 Reduce 1 - Create Single Line On Subject

package Reducers ;

import java . i o . IOExcept ion ;

import org . apache . hadoop . mapreduce . ∗ ;

import org . apache . hadoop . i o . ∗ ;

public class Data Uploader Reduce1 extends Reducer<Text , Text , Text , Text>

{

public void reduce (Text key , I t e r a b l e<Text> values , Context con tex t) throws IOException ,

In te r rup tedExcep t i on

{

S t r i n g L i s t = ” ” ;

for (Text va l : values)

{

S t r i n g s t r = va l . t o S t r i n g () ;

L i s t = L i s t + s t r + ” ” ;

}

contex t . w r i t e (new Text (key + ” ” + L i s t) , new Text ()) ;

}

}

C.2 Query Algorithm

C.2.1 Map 1 - Pass 1

package Mappers ;

import java . i o . IOExcept ion ;

import java . u t i l . A r r a y L i s t ;

import java . u t i l . Arrays ;

import org . apache . hadoop . conf . Con f i gu ra t i on ;

import org . apache . hadoop . i o . LongWri table ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Mapper ;

import org . apache . hadoop . mapreduce . l i b . output . Mu l t i p leOutpu ts ;

Appendix C. Approach One Source Code 144

@SuppressWarnings (” unused ”)

public class Pass 1 extends Mapper<LongWritable , Text , Text , Text>

{

private s t a t i c f i n a l Text obs = new Text (” 1 ”) , a2 = new Text (” 2 ”) , range = new Text (” 3 ”) ,

mc = new Text (” 4 ”) , cs = new Text (” 5 ”) ;

private Mul t ip leOutpu ts<Text , Text> mos ;

public void setup (Context con tex t) {

mos = new Mul t ip leOutpu ts<Text , Text>(con tex t) ;

}

public void map(LongWri table key , Text value , Context con tex t) throws IOException ,

In te r rup tedExcep t i on

{

Text jo inKey = new Text () ;

A r rayL i s t<St r ing> dataElementL is t = new Ar rayL i s t<St r ing >() ;

t ry {

dataElementL is t = new Ar rayL i s t<St r ing >(U t i l s . Parser . parseTr ip leDynamic (value . t o S t r i n g ())

) ;

} catch (Except ion e) {

e . p r in tS tackTrace () ;

}

i f (dataElementL is t . con ta ins (”<med: AcceptableRange>”) &&

dataElementL is t . con ta ins (”<med: cl in icalRangeMax>”) &&

dataElementL is t . con ta ins (”<med: c l in ica lRangeMin>”) &&

dataElementL is t . con ta ins (”<pd : hasParameter>”))

{

S t r i n g Max = dataElementL is t . get (dataElementL is t . indexOf (”<med: cl in icalRangeMax>”) +1) ;

S t r i n g Min = dataElementL is t . get (dataElementL is t . indexOf (”<med: c l in ica lRangeMin>”) +1) ;

S t r i n g p = dataElementL is t . get (dataElementL is t . indexOf (”<pd : hasParameter>”) +1) ;

mos . w r i t e (” range ” , new Text (p + ” ” + Min + ” ” + Max + ” ” + dataElementL is t . get (0)) ,

new Text ()) ;

}

else i f (dataElementL is t . con ta ins (”<mo: Phys io log ica lObserva t ion>”) &&

dataElementL is t . con ta ins (”<ssn : observedProperty>”) &&

dataElementL is t . con ta ins (”<ssn : observat ionResul tTime>”) &&

dataElementL is t . con ta ins (”<pd : atHumanTime>”) &&

Appendix C. Approach One Source Code 145

dataElementL is t . con ta ins (”<ssn : observat ionResul t>”) &&

dataElementL is t . con ta ins (”<ssn : observat ionResul t>”))

{

S t r i n g obs = dataElementL is t . get (0) ;

S t r i n g p = dataElementL is t . get (dataElementL is t . indexOf (”<ssn : observedProperty>”) +1) ;

S t r i n g hTime = dataElementL is t . get (dataElementL is t . indexOf (”<pd : atHumanTime>”) +1) ;

S t r i n g a1 = dataElementL is t . get (dataElementL is t . indexOf (”<ssn : observat ionResul t>”) +1) ;

S t r i n g sensor = dataElementL is t . get (dataElementL is t . indexOf (”<ssn : observedBy>”) +1) ;

mos . w r i t e (” obs ” , new Text (obs + ” ” + p + ” ” + hTime + ” ” + a1 + ” ” + sensor) , new

Text ()) ;

}

else i f (dataElementL is t . con ta ins (”<ssn : hasValue>”))

{

contex t . w r i t e (new Text (dataElementL is t . get (dataElementL is t . indexOf (”<ssn : hasValue>”) +1)) ,

new Text (a2+ ” 0 ” +dataElementL is t . get (0))) ;

}

else i f (dataElementL is t . con ta ins (”<pd : readingValue>”))

{

contex t . w r i t e (new Text (dataElementL is t . get (0)) , new Text (a2+ ” 1 ” +dataElementL is t . get (

dataElementL is t . indexOf (”<pd : readingValue>”) +1))) ;

}

else i f (dataElementL is t . con ta ins (”<ssn : hasMeasurementCapabil i ty>”))

{

jo inKey = new Text (dataElementL is t . get (dataElementL is t . indexOf (”<ssn :

hasMeasurementCapabil i ty>”) +1)) ;

con tex t . w r i t e (jo inKey , new Text (mc+ ” 0 ” +dataElementL is t . get (0))) ;

}

else i f (dataElementL is t . con ta ins (”<ssn : Accuracy>”) &&

dataElementL is t . con ta ins (”<ms: capab i l i t yVa lue>”))

{

jo inKey = new Text (dataElementL is t . get (0)) ;

con tex t . w r i t e (jo inKey , new Text (mc+ ” 1 ” +dataElementL is t . get (dataElementL is t . indexOf (”<ms:

capab i l i t yVa lue>”) +1))) ;

}

else i f (dataElementL is t . get (0) . equals (”<med: Hypertension>”) | | dataElementL is t . get (0) .

equals (”<med: Hypotension>”))

{

Appendix C. Approach One Source Code 146

jo inKey = new Text (dataElementL is t . get (dataElementL is t . indexOf (”<med: requiredSymptoms>”)

+1)) ;

con tex t . w r i t e (jo inKey , new Text (” 5b ”)) ;

}

else i f (dataElementL is t . con ta ins (”<med: c l i n i c a l F e a t u r e s>”))

{

jo inKey = new Text (dataElementL is t . get (0)) ;

con tex t . w r i t e (jo inKey , new Text (cs+ ” 0 ” +dataElementL is t . get (dataElementL is t . indexOf (”<med:

c l i n i c a l F e a t u r e s>”) +1))) ;

}

else i f (dataElementL is t . con ta ins (”<med: cl in icalRangeMax>”) &&

dataElementL is t . con ta ins (”<med: c l in ica lRangeMin>”) &&

dataElementL is t . con ta ins (”<pd : hasParameter>”))

{

S t r i n g Max = dataElementL is t . get (dataElementL is t . indexOf (”<med: cl in icalRangeMax>”) +1) ;

S t r i n g Min = dataElementL is t . get (dataElementL is t . indexOf (”<med: c l in ica lRangeMin>”) +1) ;

S t r i n g p = dataElementL is t . get (dataElementL is t . indexOf (”<pd : hasParameter>”) +1) ;

mos . w r i t e (” csc f ” , new Text (p + ” ” + Max + ” ” + Min + ” ” + dataElementL is t . get (0)) , new

Text ()) ;

}

}

public void cleanup (Context con tex t) throws IOException , In te r rup tedExcep t i on

{

mos . c lose () ;

}

}

C.2.2 Reduce 1 - Pass 1

package Reducers ;

import java . i o . IOExcept ion ;

import java . u t i l . HashSet ;

import java . u t i l . Set ;

import org . apache . hadoop . i o . Nu l lWr i t a b l e ;

Appendix C. Approach One Source Code 147

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Reducer ;

import org . apache . hadoop . mapreduce . Reducer . Context ;

import org . apache . hadoop . mapreduce . l i b . output . Mu l t i p leOutpu ts ;

@SuppressWarnings (” unused ”)

public class Reduce 1 extends Reducer<Text , Text , Text , Text>

{

private Mul t ip leOutpu ts<Text , Text> mos ;

public void setup (Context con tex t)

{

mos = new Mul t ip leOutpu ts<Text , Text>(con tex t) ;

}

public void reduce (Text key , I t e r a b l e<Text> values , Context con tex t) throws IOException ,

In te r rup tedExcep t i on

{

U t i l s . DataObject a2 = new U t i l s . DataObject () ;

U t i l s . DataObject mc = new U t i l s . DataObject () ;

U t i l s . DataObject cs = new U t i l s . DataObject () ;

for (Text va l : values)

{

S t r i n g s t r = va l . t o S t r i n g () ;

switch (s t r . charAt (0))

{

/ / Check f o r ?a2 −−

case ’ 2 ’ :

a2 . addElementStr ing (s t r . subs t r i ng (1)) ;

break ;

/ / Begin checking f o r ?mc −−

case ’ 4 ’ :

mc. addElementStr ing (s t r . subs t r i ng (1)) ;

break ;

/ / Begin cheking f o r ?cs −−

case ’ 5 ’ :

s t r = s t r . subs t r i ng (1) ;

Appendix C. Approach One Source Code 148

i f (s t r . equals (” b ”))

{

cs . addElementBool (true) ;

}

else

{

cs . addElementStr ing (s t r) ;

}

break ;

}

}

i f (! a2 . isSt r ingEmpty () && a2 . i sS t r ingOfLeng th (2))

{

S t r i n g [] sor ted = a2 . s o r t S t r i n g () ;

mos . w r i t e (” obs ” , new Text (sor ted [0] + U t i l s . Constants .W SPACE +

sor ted [1]) , new Text ()) ;

}

else i f (! mc. isSt r ingEmpty () && mc. i sS t r ingOfLeng th (2))

{

S t r i n g [] sor ted = mc. s o r t S t r i n g () ;

mos . w r i t e (”mc” , new Text (sor ted [0] + U t i l s . Constants .W SPACE +

sor ted [1]) , new Text ()) ;

}

/ / Output ?cs wi th the p r e f i x <cs

>−−−

else i f (cs . isBoolTrue () && ! cs . isSt r ingEmpty ())

{

S t r i n g [] sor ted = cs . s o r t S t r i n g () ;

mos . w r i t e (” cs ” , new Text (sor ted [0]) , new Text ()) ;

}

public void cleanup (Context con tex t) throws IOException , In te r rup tedExcep t i on

{

mos . c lose () ;

}

}

Appendix C. Approach One Source Code 149

C.2.3 Map 2 - Pass 2

package Mappers ;

import java . i o . IOExcept ion ;

import java . u t i l . A r r a y L i s t ;

import org . apache . hadoop . i o . LongWri table ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Mapper ;

public class Pass 2 extends Mapper<LongWritable , Text , Text , Text>

{

private s t a t i c f i n a l Text one = new Text (” 1 ”) , two = new Text (” 2 ”) ;

public void map(LongWri table key , Text value , Context con tex t) throws IOException ,

In te r rup tedExcep t i on

{

Text jo inKey = new Text () ;

A r rayL i s t<St r ing> dataElementL is t = new Ar rayL i s t<St r ing >() ;

t ry {

dataElementL is t = new Ar rayL i s t<St r ing >(U t i l s . Parser . parseTr ip leDynamic (value . t o S t r i n g ())

) ;

} catch (Except ion e) {

e . p r in tS tackTrace () ;

}

i f (dataElementL is t . s i ze () == 2)

{

jo inKey . set (dataElementL is t . get (0)) ;

con tex t . w r i t e (jo inKey ,new Text (one + dataElementL is t . get (1))) ;

}

else i f (dataElementL is t . s i ze () == 5)

{

jo inKey . set (dataElementL is t . get (3)) ;

con tex t . w r i t e (jo inKey , new Text (two + dataElementL is t . get (0) + U t i l s . Constants .W SPACE +

dataElementL is t . get (1) + U t i l s . Constants .W SPACE +

dataElementL is t . get (2) + U t i l s . Constants .W SPACE +

dataElementL is t . get (4))) ;

}

}

}

Appendix C. Approach One Source Code 150

C.2.4 Reduce 2 - Pass 2

package Reducers ;

import java . i o . BufferedReader ;

import java . i o . Fi leReader ;

import java . i o . IOExcept ion ;

import java . u t i l . HashSet ;

import java . u t i l . Hashtable ;

import java . u t i l . Set ;

import java . u t i l . Vector ;

import org . apache . hadoop . f i l e c a c h e . Dis t r ibutedCache ;

import org . apache . hadoop . f s . Path ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Reducer ;

import org . apache . hadoop . mapreduce . Reducer . Context ;

import org . apache . hadoop . mapreduce . l i b . output . Mu l t i p leOutpu ts ;

@SuppressWarnings (” unused ”)

public class Reduce 2 extends Reducer<Text , Text , Text , Text>

{

Path [] f i l e ;

s t a t i c enum Er ro r { BELLOW MIN, ABOVE MAX, BMIN P SENSOR, BMIN M SENSOR, BMAX P SENSOR,

BMAX M SENSOR, HYPOTENSION, HYPERTENSION }

Set<St r ing> c s c f L i s t = new HashSet<St r ing >() ;

Set<St r ing> c s L i s t = new HashSet<St r ing >() ;

Hashtable<St r ing , Vector<Float>> rangeHashMap = new Hashtable<St r ing , Vector<Float >>() ;

Hashtable<St r ing , Vector<Float>> cscfFinalHashMap = new Hashtable<St r ing , Vector<Float >>() ;

Hashtable<St r ing , F loat> mcHashMap = new Hashtable<St r ing , F loat >() ;

public Mul t ip leOutpu ts<Text , Text> mos ;

/ / Parse values from the d i s t r o cache

public void setup (Context con tex t) throws IOException , In te r rup tedExcep t i on

{

/ / Create the output f o r use i n reduce

mos = new Mul t ip leOutpu ts<Text , Text>(con tex t) ;

f i n a l S t r i n g CSCF FILENAME = ” cscf−m” ;

f i n a l S t r i n g CS FILENAME = ” cs−r−00000” ;

f i n a l S t r i n g RANGE FILENAME = ” range−m−” ;

f i n a l S t r i n g MC FILENAME = ”mc−r−00000” ;

Appendix C. Approach One Source Code 151

Path [] f i l e s = Dis t r ibutedCache . getLocalCacheFi les (con tex t . ge tCon f i gu ra t i on ()) ;

for (Path p : f i l e s)

{

i f (p . getName () . conta ins (CSCF FILENAME))

{

BufferedReader reader = new BufferedReader (new Fi leReader (p . t o S t r i n g ())) ;

S t r i n g l i n e = reader . readLine () ;

while (l i n e != nul l)

{

c s c f L i s t . add (l i n e) ;

l i n e = reader . readLine () ;

}

reader . c lose () ;

}

else i f (p . getName () . conta ins (CS FILENAME))

{

BufferedReader reader = new BufferedReader (new Fi leReader (p . t o S t r i n g ())) ;

S t r i n g l i n e = reader . readLine () ;

while (l i n e != nul l)

{

c s L i s t . add (l i n e) ;

l i n e = reader . readLine () ;

}

reader . c lose () ;

}

else i f (p . getName () . conta ins (RANGE FILENAME))

{

BufferedReader reader = new BufferedReader (new Fi leReader (p . t o S t r i n g ())) ;

S t r i n g l i n e = reader . readLine () ;

while (l i n e != nul l)

{

/ / <?p> <?min> <?max>

S t r i n g [] temp1 = l i n e . s p l i t (” ”) ;

Vector<Float> v = new Vector<Float >() ;

v . add (F loa t . parseFloat (temp1 [1] . subs t r i ng (1 , temp1 [1] . subs t r i ng (1) . indexOf (’ ” ’) +1))) ;

v . add (F loa t . parseFloat (temp1 [2] . subs t r i ng (1 , temp1 [2] . subs t r i ng (1) . indexOf (’ ” ’) +1))) ;

rangeHashMap . put (temp1 [0] , v) ;

l i n e = reader . readLine () ;

}

reader . c lose () ;

Appendix C. Approach One Source Code 152

}

else i f (p . getName () . conta ins (MC FILENAME))

{

BufferedReader reader = new BufferedReader (new Fi leReader (p . t o S t r i n g ())) ;

S t r i n g l i n e = reader . readLine () ;

while (l i n e != nul l)

{

S t r i n g [] temp1 = l i n e . s p l i t (” ”) ;

mcHashMap . put (temp1 [0] , F loa t . parseFloat (temp1 [1] . subs t r i ng (1 , temp1 [1] . subs t r i ng (1) .

indexOf (’ ” ’) +1))) ;

l i n e = reader . readLine () ;

}

reader . c lose () ;

}

}

Vector<Float> v = new Vector<Float >() ;

/ / Jo in <cs> to <cscf> to create the f i n a l csc f to be used i n the main f u n c t i o n f o r

j o i n i n g .

for (S t r i n g csc f : c s c f L i s t) {

for (S t r i n g cs : c s L i s t)

{

i f (csc f . con ta ins (cs . t r i m ()))

{

S t r i n g [] temp1 = csc f . s p l i t (” ”) ;

v . add (F loa t . parseFloat (temp1 [1] . subs t r i ng (1 , temp1 [1] . subs t r i ng (1) . indexOf (’ ” ’) +1))) ;

v . add (F loa t . parseFloat (temp1 [2] . subs t r i ng (1 , temp1 [2] . subs t r i ng (1) . indexOf (’ ” ’) +1))) ;

cscfFinalHashMap . put (temp1 [0] , v) ;

}

}

}

c s c f L i s t . c l ea r () ;

c s L i s t . c l ea r () ;

}

public void reduce (Text key , I t e r a b l e<Text> values , Context con tex t) throws IOException ,

In te r rup tedExcep t i on

{

Set<St r ing> obsL is t = new HashSet<St r ing >() ;

Set<St r ing> a2L i s t = new HashSet<St r ing >() ;

Appendix C. Approach One Source Code 153

S t r i n g temp1 [] = null , obs = null , p = null , ht ime = null , sensor = nul l ;

f l o a t value = 0 , min = 0 , max = 0 , accuracy = 0 , v2 = 0 , csrMax = 0 , csrMin = 0;

/ / Parse values

for (Text va l : values)

{

S t r i n g s t r = va l . t o S t r i n g () ;

switch (s t r . charAt (0))

{

case ’ 1 ’ : a2L i s t . add (s t r . subs t r i ng (1)) ; break ;

case ’ 2 ’ : obsL is t . add (s t r . subs t r i ng (1)) ; break ;

}

}

for (S t r i n g obsE : obsL is t) {

for (S t r i n g valueS : a2L i s t)

{

temp1 = obsE . s p l i t (” ”) ;

/ / Ex t rac t v a r i a b l e s from the ?obs s t r i n g

obs = temp1 [0] ;

p = temp1 [1] ;

ht ime = temp1 [2] + U t i l s . Constants .W SPACE + temp1 [3] ;

sensor = temp1 [4] ;

value = F loa t . parseFloat (valueS . subs t r i ng (1 , valueS . subs t r i ng (1) . indexOf (’ ” ’) +1)) ;

/ / Parse the rangeL is t and s p l i t the elements

i f (rangeHashMap . containsKey (p))

{

Vector<Float> temp = rangeHashMap . get (p) ;

min = temp . elementAt (0) ;

max = temp . elementAt (1) ;

}

else

{

continue ;

}

/ / Perform Min and Max Queries

−−

i f (value < min)

{

Appendix C. Approach One Source Code 154

/ / Output the f i n a l r e s u l t i n f o l l o w i n g format <?obs ?htime ?p ?value ?min>

mos . w r i t e (” BelowMin ” , new Text (obs + U t i l s . Constants .W SPACE +

p + U t i l s . Constants .W SPACE +

htime + U t i l s . Constants .W SPACE +

F loa t . t o S t r i n g (min) + U t i l s . Constants .W SPACE +

valueS) , new Text ()) ;

con tex t . getCounter (E r ro r .BELLOW MIN) . increment (1) ;

}

else i f (value > max)

{

/ / Output the f i n a l r e s u l t i n f o l l o w i n g format <?obs ?htime ?p ?value ?max>

mos . w r i t e (” AboveMax ” , new Text (obs + U t i l s . Constants .W SPACE +

p + U t i l s . Constants .W SPACE +

htime + U t i l s . Constants .W SPACE +

F loa t . t o S t r i n g (max) + U t i l s . Constants .W SPACE +

valueS) , new Text ()) ;

con tex t . getCounter (E r ro r .ABOVE MAX) . increment (1) ;

}

/ / Begin accuracy checks

−−

i f (mcHashMap . containsKey (sensor))

{

accuracy = mcHashMap . get (sensor) ;

v2 = value ∗ accuracy ;

}

else

{

continue ;

}

/ / Below Min Plus Sensor Accuracy

i f ((value < min) && ((v2 + value) > min))

{

/ / Output the f i n a l r e s u l t i n f o l l o w i n g format <?obs ?htime ?p ?value ?min>

mos . w r i t e (” BelowMinPlusSensorAccuracy ” ,new Text (obs + U t i l s . Constants .W SPACE +

p + U t i l s . Constants .W SPACE +

htime + U t i l s . Constants .W SPACE +

F loa t . t o S t r i n g (min) + U t i l s . Constants .W SPACE +

valueS) , new Text ()) ;

Appendix C. Approach One Source Code 155

contex t . getCounter (E r ro r .BMIN P SENSOR) . increment (1) ;

}

/ / Below Min Minus Sensor Accuracy

else i f ((value > min) && ((value − v2) < min))

{

/ / Output the f i n a l r e s u l t i n f o l l o w i n g format <?obs ?htime ?p ?value ?min>

mos . w r i t e (” BelowMinMinusSensorAccuracy ” ,new Text (obs + U t i l s . Constants .W SPACE +

p + U t i l s . Constants .W SPACE +

htime + U t i l s . Constants .W SPACE +

F loa t . t o S t r i n g (min) + U t i l s . Constants .W SPACE +

valueS) , new Text ()) ;

con tex t . getCounter (E r ro r .BMIN M SENSOR) . increment (1) ;

}

/ / Below Max Plus Sensor Accuracy

i f ((value < max) && ((v2 + value) > max))

{

/ / Output the f i n a l r e s u l t i n f o l l o w i n g format <?obs ?htime ?p ?value ?min>

mos . w r i t e (” BelowMaxPlusSensorAccuracy ” ,new Text (obs + U t i l s . Constants .W SPACE +

p + U t i l s . Constants .W SPACE +

htime + U t i l s . Constants .W SPACE +

F loa t . t o S t r i n g (max) + U t i l s . Constants .W SPACE +

valueS) , new Text ()) ;

con tex t . getCounter (E r ro r .BMAX P SENSOR) . increment (1) ;

}

/ / Above Max Minus Sensor Accuracy

else i f ((value > max) && ((value − v2) < max))

{

/ / Output the f i n a l r e s u l t i n f o l l o w i n g format <?obs ?htime ?p ?value ?min>

mos . w r i t e (” AboveMaxPlusSensorAccuracy ” ,new Text (obs + U t i l s . Constants .W SPACE +

p + U t i l s . Constants .W SPACE +

htime + U t i l s . Constants .W SPACE +

F loa t . t o S t r i n g (max) + U t i l s . Constants .W SPACE +

valueS) , new Text ()) ;

con tex t . getCounter (E r ro r .BMAX M SENSOR) . increment (1) ;

}

/ / Begin checks based on Hyper ten t ion and Hypotension

−−−

Appendix C. Approach One Source Code 156

i f (cscfFinalHashMap . containsKey (p))

{

Vector<Float> temp = cscfFinalHashMap . get (p) ;

for (i n t i = 0 ; i < 4; i = i +2)

{

csrMax = temp . elementAt (i) ;

csrMin = temp . elementAt (i +1) ;

i f ((value < min) && (value > csrMin) && (value < csrMax))

{

/ / Output the f i n a l r e s u l t i n f o l l o w i n g format <Value Below Minimum : Hypertension>

mos . w r i t e (” ValueBelowMinimumHypotension ” ,new Text (obs + U t i l s . Constants .W SPACE +

p + U t i l s . Constants .W SPACE +

htime + U t i l s . Constants .W SPACE +

F loa t . t o S t r i n g (min) + U t i l s . Constants .W SPACE +

valueS) , new Text ()) ;

con tex t . getCounter (E r ro r .HYPOTENSION) . increment (1) ;

}

i f ((value > max) && (value > csrMin) && (value < csrMax))

{

/ / Output the f i n a l r e s u l t i n f o l l o w i n g format <?obs ?htime ?p ?value ?min>

mos . w r i t e (” ValueAboveMaximumHypertension ” ,new Text (obs + U t i l s . Constants .W SPACE +

p + U t i l s . Constants .W SPACE +

htime + U t i l s . Constants .W SPACE +

F loa t . t o S t r i n g (max) + U t i l s . Constants .W SPACE +

valueS) , new Text ()) ;

con tex t . getCounter (E r ro r .HYPERTENSION) . increment (1) ;

}

}

}

else

{

continue ;

}

}

}

}

public void cleanup (Context con tex t) throws IOException , In te r rup tedExcep t i on

{

Appendix C. Approach One Source Code 157

mos . c lose () ;

}

}

Appendix D

Appendix - Approach Two Source

Code

D.1 Query Algorithm

D.1.1 Map 1 - Pass 1

import java . i o . IOExcept ion ;

import org . apache . hadoop . conf . Con f i gu ra t i on ;

import org . apache . hadoop . i o . LongWri table ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Mapper ;

@SuppressWarnings (” unused ”)

public class Pass 1 extends Mapper<LongWritable , Text , Text , Text>

{

private s t a t i c f i n a l Text obs = new Text (” 1 ”) , a2 = new Text (” 2 ”) , range = new Text (” 3 ”) ,

mc = new Text (” 4 ”) , cs = new Text (” 5 ”) ;

public void map(LongWri table key , Text value , Context con tex t) throws IOException ,

In te r rup tedExcep t i on

{

Text word = new Text () ;

S t r i n g T r i p l e [] = nul l ;

t ry {

T r i p l e = U t i l s . Parser . parseTripleDynamic (value . t o S t r i n g ()) ;

158

Appendix D. Approach Two Source Code 159

} catch (Except ion e) {

e . p r in tS tackTrace () ;

}

/ / The output format i s (i tem c lass − i tem order − i tem)

i f (T r i p l e [1] . equals (U t i l s . Constants .RDF TYPE))

{

i f (T r i p l e [2] . equals (U t i l s . Constants . MED URI AcceptableRange))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (range + ” b ”)) ;

}

else i f (T r i p l e [2] . equals (U t i l s . Constants . SSN URI Accuracy))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (mc + ” b ”)) ;

}

else i f (T r i p l e [2] . equals (U t i l s . Constants . MO URI Physio logicalObservat ion))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (obs + ” b ”)) ;

}

}

else i f (T r i p l e [1] . equals (U t i l s . Constants . MED URI requiredSymptoms))

{

i f (T r i p l e [0] . equals (U t i l s . Constants . MED URI Hypertension) | | T r i p l e [0] . equals (U t i l s .

Constants . MED URI Hypotension))

{

word . set (T r i p l e [2]) ;

con tex t . w r i t e (word , new Text (cs + ” b ”)) ;

}

}

else i f (T r i p l e [1] . s t a r t s W i t h (U t i l s . Constants . SSN ONTO PREFIX))

{

i f (T r i p l e [1] . endsWith (U t i l s . Constants . SSN URI observedProperty))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (obs + ” 2 ” + T r i p l e [2])) ;

}

else i f (T r i p l e [1] . endsWith (U t i l s . Constants . SSN URI observationResultTime))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (obs + ” b ”)) ;

}

Appendix D. Approach Two Source Code 160

else i f (T r i p l e [1] . endsWith (U t i l s . Constants . SSN URI observat ionResult))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (obs + ” 0 ” + T r i p l e [2])) ;

}

else i f (T r i p l e [1] . endsWith (U t i l s . Constants . SSN URI observedBy))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (obs + ” 3 ” + T r i p l e [2])) ;

}

else i f (T r i p l e [1] . endsWith (U t i l s . Constants . SSN URI hasValue))

{

word . set (T r i p l e [2]) ;

con tex t . w r i t e (word , new Text (a2 + ” 0 ” + T r i p l e [0])) ;

}

else i f (T r i p l e [1] . endsWith (U t i l s . Constants . SSN URI hasMeasurementCapability))

{

word . set (T r i p l e [2]) ;

con tex t . w r i t e (word , new Text (mc + ” 0 ” + T r i p l e [0])) ;

}

}

else i f (T r i p l e [1] . s t a r t s W i t h (U t i l s . Constants .MED ONTO PREFIX))

{

i f (T r i p l e [1] . endsWith (U t i l s . Constants . MED URI clinicalRangeMin))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (range + ” 1 ” + T r i p l e [2])) ;

}

else i f (T r i p l e [1] . endsWith (U t i l s . Constants . MED URI clinicalRangeMax))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (range + ” 2 ” + T r i p l e [2])) ;

}

else i f (T r i p l e [1] . endsWith (U t i l s . Constants . MED URI c l in ica lFeatures))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (cs + ” 0 ” + T r i p l e [2])) ;

}

}

else i f (T r i p l e [1] . s t a r t s W i t h (U t i l s . Constants . PD ONTO PREFIX))

{

i f (T r i p l e [1] . endsWith (U t i l s . Constants . PD URI atHumanTime))

{

Appendix D. Approach Two Source Code 161

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (obs + ” 1 ” + T r i p l e [2])) ;

}

else i f (T r i p l e [1] . endsWith (U t i l s . Constants . PD URI readingValue))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (a2 + ” 1 ” + T r i p l e [2])) ;

}

else i f (T r i p l e [1] . endsWith (U t i l s . Constants . PD URI hasParameter))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (range + ” 0 ” + T r i p l e [2])) ;

}

}

else i f (T r i p l e [1] . equals (U t i l s . Constants . SEN URI Physio logicalObservat ion))

{

word . set (T r i p l e [0]) ;

con tex t . w r i t e (word , new Text (mc + ” 1 ” + T r i p l e [2])) ;

}

}

}

D.1.2 Reduce 1 - Pass 1

import java . i o . IOExcept ion ;

import java . u t i l . HashSet ;

import java . u t i l . Set ;

import org . apache . hadoop . i o . Nu l lWr i t a b l e ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Reducer ;

import org . apache . hadoop . mapreduce . Reducer . Context ;

import org . apache . hadoop . mapreduce . l i b . output . Mu l t i p leOutpu ts ;

@SuppressWarnings (” unused ”)

public class Reduce 1 extends Reducer<Text , Text , Text , Text>

{

private Mul t ip leOutpu ts<Text , Text> mos ;

public void setup (Context con tex t) {

mos = new Mul t ip leOutpu ts<Text , Text>(con tex t) ;

}

Appendix D. Approach Two Source Code 162

public void reduce (Text key , I t e r a b l e<Text> values , Context con tex t) throws IOException ,

In te r rup tedExcep t i on

{

U t i l s . DataObject range = new U t i l s . DataObject () ;

U t i l s . DataObject cs = new U t i l s . DataObject () ;

U t i l s . DataObject a2 = new U t i l s . DataObject () ;

U t i l s . DataObject mc = new U t i l s . DataObject () ;

U t i l s . DataObject obs = new U t i l s . DataObject () ;

for (Text va l : values)

{

S t r i n g s t r = va l . t o S t r i n g () ;

switch (s t r . charAt (0))

{

/ / Check f o r ?obs −−

case ’ 1 ’ :

s t r = s t r . subs t r i ng (1) ;

i f (s t r . equals (” b ”))

{

obs . addElementBool (true) ;

}

else

{

obs . addElementStr ing (s t r) ;

}

break ;

/ / Check f o r ?a2 −−

case ’ 2 ’ :

a2 . addElementStr ing (s t r . subs t r i ng (1)) ;

break ;

/ / Begin checking f o r ?range −−

case ’ 3 ’ :

s t r = s t r . subs t r i ng (1) ;

i f (s t r . equals (” b ”))

{

range . addElementBool (true) ;

}

else

{

Appendix D. Approach Two Source Code 163

range . addElementStr ing (s t r) ;

}

break ;

/ / Begin checking f o r ?mc −−

case ’ 4 ’ :

s t r = s t r . subs t r i ng (1) ;

i f (s t r . equals (” b ”))

{

mc. addElementBool (true) ;

}

else

{

mc. addElementStr ing (s t r) ;

}

break ;

/ / Begin cheking f o r ?cs −−

case ’ 5 ’ :

s t r = s t r . subs t r i ng (1) ;

i f (s t r . equals (” b ”))

{

cs . addElementBool (true) ;

}

else

{

cs . addElementStr ing (s t r) ;

}

break ;

}

}

/ / Output ?obs wi th the p r e f i x <obs>

i f (obs . isBoolTrue () && ! obs . isSt r ingEmpty ())

{

S t r i n g [] sor ted = obs . s o r t S t r i n g () ;

mos . w r i t e (” obs ” , new Text (key + U t i l s . Constants .W SPACE +

sor ted [0] + U t i l s . Constants .W SPACE +

sor ted [1] + U t i l s . Constants .W SPACE +

sor ted [2] + U t i l s . Constants .W SPACE +

sor ted [3]) , new Text ()) ;

Appendix D. Approach Two Source Code 164

}

/ / Output ?a2 wi th the p r e f i x <a2>

−−−

else i f (! a2 . isSt r ingEmpty () && a2 . i sS t r ingOfLeng th (2))

{

S t r i n g [] sor ted = a2 . s o r t S t r i n g () ;

mos . w r i t e (” obs ” , new Text (sor ted [0] + U t i l s . Constants .W SPACE +

sor ted [1]) , new Text ()) ;

}

/ / Output ?range wi th the p r e f i x <range>

−− else i f (range .

isBoolTrue () && ! range . isSt r ingEmpty ())

{

S t r i n g [] sor ted = range . s o r t S t r i n g () ;

mos . w r i t e (” range ” , new Text (sor ted [0] + U t i l s . Constants .W SPACE +

sor ted [1] + U t i l s . Constants .W SPACE +

sor ted [2]) , new Text ()) ;

}

/ / Output ?mc wi th the p r e f i x <mc

>−−−

else i f (mc. isBoolTrue () && !mc. isSt r ingEmpty ())

{

S t r i n g [] sor ted = mc. s o r t S t r i n g () ;

mos . w r i t e (”mc” , new Text (sor ted [0] + U t i l s . Constants .W SPACE +

sor ted [1]) , new Text ()) ;

}

/ / Output ?cs wi th the p r e f i x <cs

>−−−

else i f (cs . isBoolTrue () && ! cs . isSt r ingEmpty ())

{

S t r i n g [] sor ted = cs . s o r t S t r i n g () ;

mos . w r i t e (” cs ” , new Text (sor ted [0]) , new Text ()) ;

Appendix D. Approach Two Source Code 165

}

/ / Output ? csc f w i th the p r e f i x <cscf

>−−−

else i f (! range . isSt r ingEmpty () && range . i sS t r ingOfLeng th (3))

{

S t r i n g [] sor ted = range . s o r t S t r i n g () ;

mos . w r i t e (” csc f ” , new Text (key + U t i l s . Constants .W SPACE +

sor ted [0] + U t i l s . Constants .W SPACE +

sor ted [2] + U t i l s . Constants .W SPACE +

sor ted [1]) , new Text ()) ;

}

}

public void cleanup (Context con tex t) throws IOException , In te r rup tedExcep t i on

{

mos . c lose () ;

}

}

D.1.3 Map 2 - Pass 2

The source code for this is the same as for approach one’s and can be found in Appendix

C.

D.1.4 Reduce 2 - Pass 2

The source code for this is the same as for approach one’s and can be found in Appendix

C.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	1 Introduction
	1.1 Errors In Medical Databases
	1.2 Current Possible Solutions Using Linked Open Data
	1.2.1 The Semantic Web and Linked Open Data
	1.2.2 Big Data and Healthcare
	1.2.3 Current Implementation

	1.3 Project Aims and Motivations

	2 Background Technologies
	2.1 The Resource Description Framework (RDF)
	2.1.1 An RDF Statement
	2.1.2 RDF Graph Representation
	2.1.3 RDF Serialisation Formats

	2.2 Triplestores
	2.2.1 Jena

	2.3 Simple Protocol and RDF Query Language (SPARQL)
	2.4 Database Joins
	2.5 Hadoop And The Map/Reduce Programming Model
	2.5.1 Hadoop Cluster Components
	2.5.2 The Hadoop Distributed File System (HDFS)
	2.5.3 Map/Reduce Programming Model
	2.5.4 Sort/Shuffle, Partitioner and Combiner Stages
	2.5.5 Benefits and Drawbacks
	2.5.6 Associated Technologies

	3 Literature Review
	3.1 Research Fields
	3.2 Distributed Native Triplestores
	3.3 Performing Dataset Joins Via Hadoop
	3.3.1 Map-Side Join
	3.3.2 Reduce-Side Join
	3.3.3 Cascade Join
	3.3.4 Broadcast Join

	3.4 Feasibility Of Using Hadoop For RDF Processing
	3.5 Strategies For Storing RDF Data On The HDFS
	3.6 Queries on RDF Data Using Map/Reduce
	3.6.1 Existing Theoretical Approaches
	3.6.2 Presented Performance Results

	3.7 Limitations Of Existing Hadoop RDF Solutions
	3.7.1 Hadoop Joining Strategies
	3.7.2 Data Upload Stages

	3.8 Possibility Of A Highly Optimised Solution

	4 Analysis Of Current Jena TDB Implementation
	4.1 Current Implementation
	4.2 Limitations of Existing Solution
	4.3 Current Implementation Performance Analysis
	4.3.1 Upload Time
	4.3.2 Query Time
	4.3.3 Analysis

	4.4 The Need For A New Framework

	5 Hadoop Implementation and Algorithm Design
	5.1 Structure and Distribution Of The Real-World Medical Data
	5.1.1 Subject, Predicate and Object Distribution
	5.1.2 Distinct Triple Group Distribution

	5.2 Data Generation
	5.3 Analysis Of Current SPARQL Queries
	5.3.1 Min/Max Queries
	5.3.2 More Complex Queries

	5.4 Hadoop-Based Framework Design
	5.4.1 Required Software Functionality
	5.4.2 Why Use Hadoop As The Basis For The New Framework?
	5.4.3 The Two Approaches Taken

	5.5 Query Planning
	5.6 Approach One - Data Upload Algorithm
	5.6.1 Stage One - Compression
	5.6.2 Stage Two - Sort On Subject
	5.6.3 Algorithm Pseudocode

	5.7 Approach One - Data Query Algorithm Design and Joining Strategies
	5.7.1 Selection Stage
	5.7.2 Join Stage

	5.8 Approach Two
	5.8.1 Selection Phase
	5.8.2 Join Phase

	5.9 Implementation Summary
	5.9.1 Key Theoretical Performance Advantages
	5.9.2 Summary

	6 Test Environment and Optimisations
	6.1 Details Of Test Environments
	6.1.1 Single Machine
	6.1.2 Dedicated Hadoop Cluster

	6.2 Hadoop Cluster Performance Optimisations
	6.2.1 Benchmark Generation
	6.2.2 Optimum Number Of Map/Reduce Tasks
	6.2.3 Optimum JVM Heap Memory Allocation
	6.2.4 JVM Re-use
	6.2.5 Sort Memory Allocation
	6.2.6 Final Configuration Values

	7 Results
	7.1 Testing Methodology
	7.2 Single Node Results
	7.3 Single Node Results - Approach One
	7.3.1 Upload Results
	7.3.2 Upload Results Showing Breakdown Of Passes
	7.3.3 Query Results
	7.3.4 Query Results Showing Breakdown Of Passes

	7.4 Single Node Results - Approach Two
	7.4.1 Query Results
	7.4.2 Query Results Showing Breakdown Of Passes

	7.5 Single Node Comparison
	7.5.1 Approach Comparison
	7.5.2 Comparison With Jena TDB

	7.6 Hadoop Cluster Results
	7.7 Cluster Results - Approach One
	7.7.1 Upload Performance Across Eight Nodes
	7.7.2 Query Performance Across Eight Nodes
	7.7.3 Performance Scalability Across Number Of Nodes
	7.7.4 Speed-Up Analysis Of Approach One's Query Stage

	7.8 Cluster Results - Approach Two
	7.8.1 Query Performance Across Eight Nodes
	7.8.2 Performance Scalability Across Number Of Nodes
	7.8.3 Speed-Up Analysis Of Approach Two's Query Stage

	7.9 Cluster Approach Comparison
	7.9.1 Approach Comparison On Eight Nodes
	7.9.2 Approach Comparison On Four Nodes
	7.9.3 Approach Comparison With Jena

	7.10 Naïve versus Optimised Implementation

	8 Interpretation and Discussion Of Results
	8.1 Summary and Significance Of Results
	8.1.1 Single Node Results
	8.1.2 Cluster Results
	8.1.3 Cluster Size Versus Speed-Up Factor
	8.1.4 Approach Comparison
	8.1.5 Underlying Pass Comparison

	8.2 Comparison With Literature

	9 Conclusions And Further Work
	9.1 Conclusions
	9.1.1 Project Summary
	9.1.2 Aims and Objectives Achieved
	9.1.3 Evaluative Conclusions

	9.2 Further Work
	9.2.1 Improvements To The Project
	9.2.2 Expansion Of The Project

	9.3 Final Conclusions

	References
	A Appendix - SPARQL Queries
	A.1 Original SPARQL Queries

	B Appendix - Hadoop Cluster Configuration Files
	B.1 HDFS Site
	B.2 Mapred Site
	B.3 Core Site

	C Appendix - Approach One Source Code
	C.1 Upload Algorithm
	C.1.1 Map 1 - Compressor
	C.1.2 Map 2 - Create Single Line On Subject
	C.1.3 Reduce 1 - Create Single Line On Subject

	C.2 Query Algorithm
	C.2.1 Map 1 - Pass 1
	C.2.2 Reduce 1 - Pass 1
	C.2.3 Map 2 - Pass 2
	C.2.4 Reduce 2 - Pass 2

	D Appendix - Approach Two Source Code
	D.1 Query Algorithm
	D.1.1 Map 1 - Pass 1
	D.1.2 Reduce 1 - Pass 1
	D.1.3 Map 2 - Pass 2
	D.1.4 Reduce 2 - Pass 2

