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Abstract 

There are a large number of finite volume solvers available for solution of isotropic diffusion 

equation. This article presents an approach of adapting these solvers to solve anisotropic diffusion 

equations. The formulation works by decomposing the diffusive flux into a component associated 

with isotropic diffusion and another component associated with departure from isotropic diffusion. 

This results in an isotropic diffusion equation with additional terms to account for the anisotropic 

effect. These additional terms are treated using a deferred correction approach and coupled via an 

iterative procedure. The presented approach is validated against various diffusion problems in 

anisotropic media with known analytical or numerical solutions. Although demonstrated for two-

dimensional problems, extension of the present approach to three-dimensional problems is straight 

forward. Other than the finite volume method, this approach can be applied to any discretization 

method. 

 

Keywords: Anisotropic diffusion, finite volume method 

 

1 Introduction 

Isotropic diffusion equation governs a very wide range of physical processes occurring in isotropic 

media, including heat, mass and momentum transfers. Most media encountered in physical and 

engineering applications are however anisotropic in nature. For these media, the directional 

dependence of their diffusion coefficients must be accounted for. This equation needs to be further 

generalized by introducing the generalized Fick’s law [1-2] with an anisotropic diffusion coefficient, 

and thus forming the anisotropic diffusion equation with additional mixed derivative terms. These 

mixed derivative terms characterize the more complicated interactions in the physical process 

originated from the anisotropy of the media under investigation. Isotropic diffusion equation is 

therefore a very special limiting case of an anisotropic diffusion equation.  

 

Anisotropic diffusion equation arises in very diverse physical processes. Diffusion of water vapours, 

organic vapours and gases in soil, diffusion of nutrients away from fertilizer granules towards plant 

roots in soil and diffusion of contaminants within subsurface geological formations are examples of 

solutal diffusion transport in porous media [3-5]. The structure of these naturally occurring porous 

media is highly irregular in terms of the pore distribution with respect to both size and shape. Given 

the anisotropy (and the heterogeneity) of the media, such diffusion processes can be appropriately 

modelled with an anisotropic diffusion equation. Besides, the generalized Darcy’s law coupled with 

the continuity equation for modeling fluid flow in anisotropic heterogeneous porous media, e.g. 

subsurface geological formations, gives rise to a similar anisotropic diffusion equation in terms of 
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the fluid pressure [6-7]. Heat transfer in structural materials, e.g. wood and laminated metal sheets, 

and crystals is another flourishing field where anisotropic diffusion equation is generally applied [8-

10]. Interestingly, in the recent years, anisotropic diffusion equation finds its application in the field 

of imaging, e.g. diffusion-tensor magnetic resonance imaging [11] and more generally PDE-based 

anisotropic diffusion filters [12-14]. 

 

From a historical point of view, solutions of isotropic diffusion equation were attempted much 

earlier than that of anisotropic diffusion equation. Isotropic diffusion equation has a lucidly simpler 

mathematical structure and therefore is more amenable to both analytical and numerical approaches. 

Some of these developed numerical approaches, e.g. based on the finite difference (FD), finite 

volume (FV), finite element (FE), boundary element (BE) methods and fast Poisson solver [15-19], 

are now well established and implemented routinely as standard solvers, at least for simple 

geometrical configurations. For more complicated geometrical configurations, numerical solution 

implemented on unstructured mesh is still being actively pursued for example in the recent work of 

[20]. Driven by the pressing needs of the above mentioned practical applications involving 

anisotropic media, these methods are then generalized to anisotropic diffusion equation. Such 

generalizations require careful consideration of the discretization procedure that gives proper 

discretization of the diffusion terms.  

 

The applications of FD method for various anisotropic diffusion problems were made in [7, 21-22]. 

In [21], the coordinate system is realigned with the principal direction of the anisotropic diffusion 

coefficient so that the cross derivative terms vanish. This approach is however difficult to be 

generalized for heterogeneous media where the principal direction changes spatially. Of particular 

interest is the improvement made by the introduction of mimetic approach [23-24]. Mimetic 

approach incorporates the essential property of conservation during the discretization procedure and 

gives locally conservative discretization equations. The FV method was also extended and 

employed in the works of [25-27]. For FV method, an accurate approximation of the flux at the 

control volume face remains one of the challenges. Flux-continuity across the control volume faces 

has been given extra attention to produce locally conservative schemes [27-29]. Matrix- [30] and 

flux-splitting [31] approaches were formulated for the FV method on structured and unstructured 

mesh. These approaches employ a deferred correction approach so that the coefficient matrix and 

the flux vector retain similar forms as those resulted from simple diffusion problems. The FE 

method was employed in [32-33] with proper modifications in the treatment of the additional mixed 

derivative terms. One notable effort that increase the method’s accuracy is incorporation of the 

adaptive mesh approach into the framework of a FE method where the underlying mesh adapts 
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dynamically during the solution process was developed [34]. This adaptive mesh approach although 

costly gives excellent results with much lesser numerical smearing for diffusion in highly 

anisotropic media. Extension and applications of the BE method in various problems involving 

conduction heat transfer, fluid flow in porous media and structural problem of an elliptical bar 

under torsion have been demonstrated in [35-36]. It should be mentioned that some of these 

extensions require intricate discretization procedure and therefore not straight forward to implement 

numerically.  

 

Here in this article, an alternative approach that adapts the existing solvers for isotropic diffusion 

equation to solve anisotropic diffusion equation is presented. In this approach, the diffusive flux is 

decomposed into a component associated with isotropic diffusion and another component 

associated with departure from isotropic diffusion. This decomposition transforms an anisotropic 

diffusion equation into the form of an isotropic diffusion equation with additional terms to account 

for the anisotropic effect. These additional terms are treated using a deferred correction approach 

and coupled via an iterative procedure. The advantage of the decomposition approach proposed here 

is that it allows existing solvers for isotropic problems to be extended easily to anisotropic diffusion 

problems (at least for orthogonal coordinate systems). The main contribution of this proposed 

approach is the simplicity it offers in the implementation of such an extension. It just requires an 

additional subroutine be written to evaluate the departure from isotropic term and called from the 

original solver. No other modification on the original code of the solver is required. 

 

It should be noted that different deferred correction approaches have been proposed for the solution 

of anisotropic diffusion problems. In the flux-splitting approach at the flux level [30-31], the flux is 

split into the form of a leading two-point flux and additional cross-diffusion terms. The leading two-

point flux term is approximated implicitly but the remainder flux term is treated explicitly and 

coupled iteratively. With this, the standard five-point (seven-point) stencil is preserved for two-

dimensional (three-dimensional) problems. For flux-splitting at the matrix level [30-31], the 

coefficient matrix in the system of linear equations is effectively decomposed into a penta-diagonal 

matrix and a residual matrix. The penta-diagonal matrix is in the similar form that would be 

obtained by discretizing a simple diffusion equation. In the work of [25], only the cross diffusion 

terms are approximated explicitly  via a deferred correction approach and coupled iteratively. 

Adaptation of these approaches into existing solvers for isotropic diffusion problems requires more 

modifications on the original code for the case where the diagonal components of the diffusion 

coefficient are different. 

 



Computers & Fluids, 2013, 86, pp. 298–309, ISSN 00457930. 

 

 5 

The remaining of the article is separated into five sections. A description of the problem is given in 

Section 2. Section 3 is the core of the article where the reformulation of the anisotropic diffusion 

equation is presented. The numerical solution procedure, including discretization, implementation 

of boundary conditions and convergence criterion, is discussed in Section 4. Validations of the 

present approach against seven different problems are given in Section 5. Finally, the article 

concludes with a few remarks in Section 6.  

 

2 Problem Description 

The domain of interest  , shown in Fig. 1, consists of an anisotropic medium. The steady-state 

diffusion transport of a quantity )(x


  within   is governed by the conservation equation 

 xxSxq


,0)()(  (1) 

where )(xq


 and )(xS


 are the diffusion flux and the volumetric source/sink respectively. When 

)(xq


 is described by the generalized Fick’s law, the anisotropic diffusion flux is as 

)()()( xxxq


  (2) 

where )(x


  is the anisotropic diffusion coefficient, a second order tensor characterizing the 

anisotropy of the medium. Constrained by the Second Law of Thermodynamics, )(x


  is positive 

definite [42]. Substitution of Eq. (2) into Eq. (1) gives a second order elliptic anisotropic diffusion 

equation of the form  

   xxSxx


,0)()()(   (3) 

Equation (3) is subjected to the following mixed boundary condition, i.e. a combination of a 

prescribed )(xP 
  and a prescribed flux )(xqP

n


. 

  xxx P 
),()(  (4a) 

qP
n xxqxnxq 


),()()(  (4b) 

where 

 q ,  q  and  
. n


 is the unit normal vector pointing out of   . 

Dirichlet boundary condition is the limiting case of Eq. (4) when  q
. This article focuses on 

adapting solvers for isotropic diffusion equation to solve anisotropic diffusion equation (Eq. 3) 

subjected to the boundary condition of Eq. (4).  
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Figure 1: Domain of interest for an anisotropic diffusion problem.  

 

3 Mathematical Formulation 

Equation (3) can be reformulated into an isotropic diffusion equation. For this purpose, the 

anisotropic diffusion coefficient is decomposed as 

)()()( max xIxx D


  (5) 

where  

)(),(),(max)(max xxxx zzyyxx


  (6a) 
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 (6b) 

The operator cba ,,max  returns the largest of a , b  and c . It was suggested by one of the 

reviewers of this article that for a symmetric  , max  can also be set to the maximum of the 

eigenvalue so that the decomposition would be frame-independent. With this, )(xq


 can be written 

as  

)()()( max xqxqxq D


  (7) 

where  

)()()( maxmax xxxq


  (8a) 

)()()( xxxq DD


  (8b) 

Upon substitution of Eqs. (7) and (8) into to Eq. (1), Eq. (1) can now be expressed as  

   xxSxSxx D


,0)()()()(max   (9) 

where 






  xxxxS DD


,)()()(   (10) 

Equation (9) is the familiar isotropic diffusion equation. The first term on the left-side (LS) is 

referred to as the isotropic term as it captures diffusion in an isotropic medium of diffusion 

 

   

n̂  
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coefficient )(max x


 . The additional source term )(xSD


 accounts for the effects due to the 

anisotropy of the medium. )(xSD


 is therefore referred as departure from isotropic term. The 

treatment of )(xSD


 will be further discussed in the next section. Essentially, the anisotropic 

diffusion equation (Eq. 3) is now in the form of an isotropic diffusion equation (Eq. 9). By 

incorporating the additional source term )(xSD


, a standard solver for isotropic diffusion equation 

can now be employed to solve Eq. (9).  

 

4 Solution Procedure 

4.1 Discretization  

The finite volume method [17, 37] is employed to numerically solve Eq. (9) in two dimensions on a 

Cartesian mesh. Extension of the presented approach to three dimensions is straight forward. The 

physical domain is first partitioned into a number of non-overlapping control volumes (CVs) as 

shown in Fig. 2. A node is located at the centre of every CV. There are two types of CVs, i.e. 

internal CVs (e.g. CV P) and boundary CVs (e.g. CV PB). For the internal CV P, the neighbouring 

nodes are labeled as W, E, N and S. It has four boundaries, denoted by e, w, n and s (with area of 

eA , wA , nA  and sA  respectively). The four corners of the CV P are denoted ne, nw, se and sw. The 

volume of the CV P is denoted as PV .  , max  and all the components of   are stored at the 

nodes. For ease of reference and without the loss of generality, the dependence of the variables on 

x


 is implied implicitly and will therefore be dropped henceforth. Integration of Eq. (9) over the CV 

P gives 

  0max    PVPV D
PV

SdVdVSdV  (11) 

Employing the Gauss’ divergence theorem, the volume integrations can be converted into surface 

integrations as 

  0max 




    PPP VA DA

SdVAdAd


  (12) 

The conversion of the 2nd term on the LS of Eq. (11) into a surface integration is important to 

ensure flux consistency in the discrezation equation. The terms in Eq. (12) can be approximated 

numerically as 
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 (13b) 

P
m
aveV

VSSdV
P

 


1  (13c) 

The superscript m  refers to quantities of the m  iteration, i.e. the current iteration. Note that Eq. 

(13b) is calculated using the existing values of   from the known 1m  iteration, i.e. previous 

iteration. By doing so, it becomes a ‘known’ source term. With this treatment, the discretization 

equation for Eq. (9) becomes that of an isotropic diffusion equation with ‘known’ source terms 

accounting for the anisotropy of the medium. A standard solver for isotropic diffusion equation can 

therefore be modified easily to solve Eq. (9). In Eqs. (13a) and (13b), 
ex


, 

wx


, 

n
y


 and 

s
y


 

are approximated with central differences, assuming a linear variation of   between two adjacent 

CVs. max  and all the components of D  at the interface e, w, n and s are calculated via a 

harmonic mean for its superiority of maintaining the normal flux continuity. With these 

approximations, Eq. (12) becomes 

11   m
depP
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In the evaluation of Eq. (15f), the values of ne , nw , se , sw  are interpolated linearly from   of 

the neighbouring nodes. 

 

   

Figure 2: Partition of the domain of interest into non-overlapping control volumes.  

 

4.2 Implementation of Boundary Conditions 

The implementation of both a prescribed value 
P  and a prescribed flux 

P
nq  at the boundary are 

discussed here. For a prescribed 
P , the imposition of Eq. (4a) is straight forward.   at the 

boundary nodes, i.e. the hollow nodes in Fig. 2, is set to the prescribed P . Of particular important 

is the imposition of a prescribed flux 
P
nq , i.e. Eq. (4b). To implement this condition, the prescribed 

diffusion flux out of the domain at the boundary P
nq  is brought into the adjacent boundary CVs as a 

volumetric sink and the diffusion flux at the corresponding boundary is set to zero. Note that for 

flux of   diffuses out of the domain, 0P
nq . For example, an additional sink term given by  

BP

B
P
n

extra
V

Aq
S


  (16) 

is added into the boundary CV PB shown in Fig. 2. With this sink term added to account for the 

amount of   diffuses out of the domain, the flux at the boundary can now be set zero, i.e. 

P 

N 

S 

E W 

B P
nq  

n̂
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0)()(  BB xnxq


 (17) 

This can be achieved numerically by setting the associated diffusion coefficients in the 

discretization equation (Eqs. 13a and 13b) to zero, i.e.  

0max 
eexyexx  (18)  

 

4.3 Solution Algorithm 

The overall solution procedure can be summarized as follows: 

(1) Specify max  and D  in Eqs. (6).  

(2) Calculate the volumetric source/sink )(xS


 in Eq. (9).  

(3) Calculate DS  from Eq. (10). 

(4) Solve Eq. (9) for  . 

(5) Repeat steps (2) to (4) until the solution converges. 

 

4.4 Convergence Criterion and Error Calculations 

Application of the discretization equation (Eq. 14) to every CV gives a system of linear equation 

with penta-diagonal coefficient matrix. This system of linear equation is solved iteratively using the 

Thomas algorithm sweeping alternatively in the x  and y direction. No special initial guess is 

employed, i.e. 0, ji . For convergence, the relative changes in   between to successive iterations 

is monitored. The solution is assumed converged when 810

e  where 

m
ji

m
ji

Nj
Mi

e ,
1

,

,...,1
,..,1

/1max  





  (19) 

For the cases considered in this article, a uniform mesh is employed. Mesh refinement is performed 

with a refinement ratio of 
0x

x
h




  where 0x  is the coarsest mesh. Error of the present solution 

will be reported in terms of maximum and root mean square norms discretely defined respectively 

as  

num
ji

exact
ji

Nj
Mi

E ,,

,...,1
,..,1

max  





 (20) 

2

,

1,1

,

2

,,2 



NM

ji

ji
num
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The order of accuracy is then estimated from the slope of the graph 
2

log E  vs. )log(h  fitted using 

the least square method. 

 

5 Results and Discussions 

The present approach is validated against known solutions for diffusion in various media subjected 

to either the limiting case of Dirichlet boundary condition or the more general mixed boundary 

condition. The first three validation exercises concern diffusion in heterogeneous anisotropic media 

with various forms of diffusion coefficients. The exact solutions for these cases were setup using 

the method of manufactured solution [38]. Two additional cases of diffusion in anisotropic media 

with discontinuous diffusion coefficient are then considered. This is followed finally by two 

applications of the presented approach for heat conduction in anisotropic medium with internal heat 

generation and flow in multi-layered anisotropic porous medium.  

 

5.1 Diffusion in a heterogeneous anisotropic medium with a linear variable diffusion 

coefficient  

The validation exercise starts with a medium with a simple linear diffusion coefficient. The domain 

of interest is a unit square of  21,0 . The diffusion coefficient varies linearly in the domain as 















yxy

yyx

215.0

5.01
 (22) 

Within the domain of interest, there is a non-zero variable source term given by 

    yyxyeyxS x sin21cos3   (23) 

With these, it can be verified easily that the exact solution is given by 

yex sin  (24) 

Two tests of which the enforced boundary conditions are different will be considered. In the first 

test, the domain is subjected to the following Dirichlet boundary condition. 

  10,0,  xex xP  (25a) 

  10,1sin1,  xex xP  (25b) 

  10,sin1,0  yyyP  (25c) 

  10,sin,1  yyeyP  (25d) 

The second test, proposed in [39], subjects the domain to a mixed boundary condition of Eq. (26). 

While a prescribed 
P  is applied at the lower and upper boundaries, a prescribed flux 

P
nq  is 

enforced at both the left and right boundaries of the domain.  
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  10,0,  xex xP  (26a) 

  10,1sin1,  xex xP  (26b) 

     10,cos5.01,0  yyyyyqP
n  (26c) 

       10,cos5.02,1  yyyeyyqP
n  (26d) 

Given the smooth nature of the solution, it is expected that most, if not all, of the essential features 

of the solutions can be well captured by a relatively coarse mesh. Mesh independent solutions were 

indeed obtained on the coarsest mesh of 2525 CVs using the present approach for both boundary 

conditions. These solutions are presented together with the exact solution in Fig. 3. The present 

solutions agree well with the exact solution. The errors are plotted in Fig. 4. Both 


E  and 
2

E  

decreases as the mesh is refined. Estimated from the slope of the graphs, the order of accuracy for 

the case of Dirichlet and mixed boundary conditions are respectively 1.7442 and 2.0816. 

 

  

   (a)      (b)  

Figure 3: Solutions for diffusion in a medium with a linear variable diffusion coefficient subjected 

to (a) Dirichlet boundary condition and (b) mixed boundary condition. 
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Figure 4: Errors for the case of diffusion in a medium with a linear variable diffusion coefficient. 

 

5.2 Diffusion in a heterogeneous anisotropic medium with a non-linear variable diffusion 

coefficient  

This exercise demonstrates the capability of the present approach in handling a more general form 

of the diffusion coefficient. Diffusion in again a unit square is considered for a non-linear variable 

diffusion coefficient of the form 

 

  
















22

22

1

1

yxxy

xyyx




 (27) 

where   characterizes the degree of anisotropy in the medium [40]. For 1 , the diffusion 

coefficient reduces to that of an isotropic medium. There is a non-zero variable source term in   

given by 

      3222 242448715 yyxyxS    (28) 

This problem has an exact solution in the form of  

222 31 yxyx   (29) 

Note that the exact solution is independent of  . The following mixed boundary condition of Eq. 

(27) is imposed on the boundary of the domain.  

  10,0, 4  xxxqP
n  (30a) 

  10,321, 2  xxxP  (30b) 

  10,0,0  yyqP
n  (30c) 

        10,6122,1 22  yyyyyyqP
n   (30d) 

For the case of 5.0 , mesh independent solution obtained on a coarsest mesh of 2525 CVs is 

shown in Fig. 5a. For comparison purpose, the exact solution is superimposed. The present solution 

agrees well with the exact solution. Although not shown here, similar agreement is achieved where 
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the boundary is subjected to a Dirichlet boundary condition. The order of accuracy estimated from 

Fig. 6 is 1.7567.  

 

The degree of anisotropy in the medium increases when   is decreasing. For 1 , the medium is 

highly anisotropic. Either a very fine mesh or a multi-scale approach for example in [32] is then 

required to resolve the fine anisotropic features of the medium. For demonstration, the case of 

01.0  is now considered using the present approach. The solution on a mesh of 400400 CVs, 

much finer than the case of 5.0 , is plotted in Fig. 5b. Agreement with the superimposed exact 

solution is good. The order of accuracy is estimated to be 1.6962 surprisingly close to than that for 

the case of 5.0 . 

 

  

   (a)      (b)  

Figure 5: Solutions for diffusion in a medium with a non-linear variable diffusion coefficient with 

(a) 50.0  and (b) 01.0 . 
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Figure 6: Errors for the case of diffusion in a medium with a non-linear variable diffusion 

coefficient. 

 

5.3 Diffusion in a heterogeneous anisotropic medium with an asymmetric non-linear variable 

diffusion coefficient  

Asymmetric diffusion coefficient can occur physically, e.g. the electron heat conductivity tensor 

used in plasma physics [41-42]. The ability to handle asymmetric diffusion tensors is therefore of 

interest. This exercise concerns diffusion in a unit square with an asymmetric non-linear diffusion 

coefficient of the form 


















yxy

xyx

21

1 2

 (31) 

The medium has a non-zero variable source term of the form 

    yxxyyyxxyxS 3cos64sin83cos33sin2194cos116   (32) 

At the boundary of the domain, the following mixed boundary condition is enforced. 

    10,2130,  xxxqP
n  (33a) 

    10,4sin43cos161,  xxxxqP
n  (33b) 

  10,3sin1,0  yyyP  (33c) 

  10,3sin4cos,1  yyyP  (33d) 

The exact solution for this diffusion process is given by  

yx 3sin4cos   (34) 

Figure 7 shows the mesh independent solution computed on a mesh of 5050 CVs and the exact 

solution. A finer mesh is required in this case to sufficiently resolve most features of the solution. 

The present solution agrees reasonably well with the exact solution. Show in Fig. 8 is the plots of 


E  and 

2
E  against h . This approach retains a comfortable order of accuracy of 1.4966 even in 

the event of an asymmetric diffusion coefficient in this case. Figure 9 shows the reduction of 


e  

and 


E  during the iterative solution process for both the present and the original formulation on a 

mesh of 5050 CVs. The original formulation entails directly solving Eq. (3) via the same iterative 

procedure as discussed in Section 4.4. Of course without introducing the deferred correction, the 

original formulation converges within fewer number of iterations. This is generally true for other 

cases considered here in this article. Therefore, having relatively more iteration to achieve 

convergence is the price to pay of using the present formulation which allow easy adaption of 

existing solvers for isotropic diffusion problem to anisotropic diffusion problem by adding a 
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departure from isotropic term implemented in a deferred correction approach. An additional 

computation is also made where the Dirichlet boundary condition is applied. Visually 

indistinguishable solution is obtained and therefore is not shown here.  

 

Figure 7: Solution for diffusion in a medium with an asymmetric non-linear variable diffusion 

coefficient. 

 

 

Figure 8: Errors for the case of diffusion in a medium with an asymmetric non-linear variable 

diffusion coefficient. 
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Figure 9: Reduction of 


e  and 


E  during the iterative solution process for both the present and 

the original formulation. 

5.4 Diffusion in an anisotropic medium with discontinuous diffusion coefficient  

The present approach is now applied to an anisotropic medium in which the diffusion coefficient is 

discontinuous across an irregular internal interface. Here, irregular interface refers to an interface 

that cannot be represented exactly on a computational mesh, e.g. a Cartesian mesh in the current 

problem. Figure 10 depicts a domain consisting of two different homogeneous sub-domains defined 

respectively by  syrx0  and 1 syrx . The diffusion coefficient in each sub-domain is 

constant. It is however discontinuous across the interface between the two sub-domains defined by 

 syrx . The diffusion coefficient is given by 
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110/1

10/11
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110/1

10/11
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 (35) 

where 1,,0  sr  and 1 sr . The diffusion coefficient in the sub-domain of 1 syrx  is 

  times larger than that of the sub-domain of  syrx0 . Note that the directions of both the 

major and minor principle diffusion coefficients are identical in the two sub-domains. The 

anisotropy in each sub-domain is not high, e.g. the sub-domain of  syrx0  has a principal 

diffusion coefficient of 









9.00

01.1
* . The case of enforcing given flux on the top and bottom 

boundaries and given   on the left and right boundaries is considered in [43-44]. Under such 

boundary conditions, the exact solution is given by  
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  (36) 



Computers & Fluids, 2013, 86, pp. 298–309, ISSN 00457930. 

 

 18 

As for boundary conditions, a mixed boundary condition is enforced. Prescribed  yP ,0  and 

 yP ,1  are enforced respectively at the left and right boundaries. These are evaluated from Eq. 

(36). Prescribed flux of  0,xqP
n  and  1,xqP

n  are imposed at the lower and upper boundaries 

respectively.  0,xqP
n  and  1,xqP

n  can be constructed from Eq. (36) using Eq. (4b). The case of 

3/2r , 3/1s , 3/1  and 10  is considered here. Mesh independent solution, obtained on a 

mesh of 5050 CVs, is shown in Fig. 11 together with the exact solution. The present solution is in 

good agreement with the exact solution. The effect of the discontinuity in the diffusion coefficient is 

clearly evident in the solution with a much stepper gradient of   in the sub-domain of 

 syrx0  where the diffusion coefficient is much smaller. Errors as the mesh is refined are 

plotted in Fig. 12. The Cartesian mesh employed cannot represent the discontinuity of the diffusion 

coefficient exactly. More accurate solution can only be obtained by refining the mesh. Therefore it 

is not surprising that the order of accuracy decreases substantially to 1.1157.  

 

 

Figure 10: Schematic of an anisotropic medium with discontinuous diffusion coefficient. 
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Figure 11: Solution for diffusion in a medium with discontinuous diffusion coefficient. 

 

 

Figure 12: Errors for the case of diffusion in a medium with discontinuous diffusion coefficient. 

 

5.5 Diffusion in an orthotropic medium with discontinuous diffusion coefficient 

Figure 13 shows an orthotropic physical domain with a smaller computational domain   

embedded. The physical domain consists of two sub-domains labelled respectively as l  (left, 

5.0*x ) and r  (right, 5.0*x ). The diffusion coefficient is given by 

































5.0*,
100

01

5.0*,
10

050

*

x

x

 (37) 

There is a discontinuity in the diffusion coefficient across 5.0*x . The major principle diffusion 

coefficients in these sub-domains are oriented 90o to each other. Within the domain, there is no 

source/sink term, i.e. 0S . For such a system, the exact solution can be expressed as [44-45] 
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rxx
rr cd



  (38c) 

rl cc  , rl dd   (38d) 

Solution is sought for the computational domain of  21,0  oriented with an angle   from the 

physical domain. With such an orientation, the discontinuity in the diffusion coefficient generally 

does not align with the boundary of the Cartesian mesh in  . The coordinate system and the 

diffusion coefficient in   are related to those of the physical domain via 

*Rxx


  (39) 

R*)(*R)( T xx


  (40) 

where the rotational matrix R  is given by 








 






cossin

sincos
R  (41) 

At the boundary of the computational domain, prescribed 
P derived from Eq. (38) is enforced. 

Figure 14 shows the present mesh independent solutions obtained on a mesh of 100100 CVs for 

0  and 30o. For the case of 
o0 , the discontinuity in the diffusion coefficient is captured 

exactly by the boundary of the Cartesian CVs. This is no longer the case for o30 . The effect of 

the discontinuity in the diffusion coefficient across the interface is captured reasonable well by the 

present solution although a much finer mesh is required. These solutions are in good agreement 

with the exact solution of Eq. (38). From Fig. 15, it can be estimated that the order of accuracy for 

the case of 
o0  and o30  are respectively 1.1825 and 0.8989.  
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Figure 13: Schematic of an orthotropic medium with discontinuous diffusion coefficient. 

 

  

   (a)      (b) 

Figure 14: Solutions for diffusion in an orthotropic medium with (a) 
o0  and (b) o30 . 

 

 

Figure 15: Errors for the case of diffusion in an orthotropic medium with discontinuous diffusion 

coefficient. 
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5.6 Heat Conduction in an Anisotropic Medium 

Heat conduction in the anisotropic medium with an internal heat source is considered. Figure 16 

depicts the domain of interest. Within the hatched region, there is a volumetric heat source of  

   cccgen yxxQ  20579.0exp84851.0cosh105  (42a) 

where  

  8.0/2.0 xxc  (42b) 

  8.0/4.0 yyc  (42c) 

The domain is characterized by the principal conductivity coefficients of 5.6* xxk  and 3.11* yyk . 

The principal axis of 
*
xxk   is orientated 60o to the x -axis. Based on these, the tensorial conductivity 

coefficient in the  yx,  coordinate system can be calculated using Eq. (40). As for boundary 

conditions, the temperatures at the bottom and top of the domain are fixed respectively at 0T oC 

and 50T oC. The two side walls are insulated. Solutions were obtained on two different meshes, 

i.e. 3216 CVs and 6432 CVs. The isotherms of 50/T  for these solutions are shown in Fig. 17. 

Note that the plot is rotated 90o for a better presentation given large aspect ratio of the domain. A 

mesh of 3216 CVs is sufficient to resolve the essential features of the solution. As expected, the 

highest temperature occurs at the center of the region with heat source.  Due to the anisotropy of the 

medium, the solution is not symmetric along 2.0x  and the isotherms are not perpendicular to the 

physical domain. The temperature along the two insulated side walls at 0x  and 4.0x  can be 

evaluated using Eq. (2) in a post-processing calculation. These are shown in Fig. 18. Comparison is 

made against those of the boundary element method and the commercial software ANSYS of which 

are both presented in [46]. The present solution agrees well with these solutions. 

 

 

Figure 16: Schematic of an anisotropic medium with an internal heat source. 
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Figure 17: Normalized isotherms for heat conduction in an isotropic medium. 

 

 

Figure 18: Normalized temperature along the insulated side walls. 

 

 

5.7 Flow in a multi-layered anisotropic porous medium  

Fluid flow through a multi-layered anisotropic porous medium shown in Fig. 19 is considered. The 

flow is governed by the Darcy’s law in the form of Eq. (2) where q


,   and   are respectively the 

velocity vector, permeability tensor and pressure. Coupling this with the continuity equation, an 

anisotropic diffusion equation of the form of Eq. (1) can be derived for the pressure. The multi-

layered porous medium consists of a total of three different homogeneous anisotropic layers 

labelled as A, B and C. The principal permeability tensors for the layer A, B and C are respectively 

o
AA 60,

10

06* 







   (43a) 
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o
BB 60,

10

04* 







   (43b) 

o
CC 60,

10

02* 







   (43c) 

The domain is subjected to the following mixed boundary conditions: 

  10,10,  xxP  (44a) 

  10,02,  xxP  (44b) 

    10,0,1,0  yyqyq P
n

P
n  (44c) 

Note that the right and left boundaries are impermeable. A unit pressure difference is applied across 

the medium in the y -direction. The computed pressure is presented in the first plot of Fig. 20. 

Comparison was made against that of Lorinczi et al. [39] where good agreement is attained. The 

velocity field is shown in the second plot of Fig. 20. Generally, due to the anisotropic nature of the 

porous medium, the flow direction is strongly dictated by the permeability tensor characterising the 

medium.  

 

 

Figure 19: Schematic of a multi-layered anisotropic porous medium. 
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Figure 20: Pressure and velocity field for flow through a multi-layered anisotropic porous medium. 

 

6 Concluding Remarks 

This article presents an approach of adapting solvers for isotropic diffusion equations to solve 

anisotropic diffusion equations. The formulation works by decomposing the diffusive flux into a 

component associated with isotropic diffusion and another component associated with departure 

from isotropic diffusion. This results in an isotropic diffusion equation with additional terms to 

account for the anisotropic effect. These additional terms are treated using a deferred correction 

approach and coupled via an iterative procedure. Validations of the present approach were 

performed for diffusion in various anisotropic media. The approach is applied to investigate heat 

conduction in anisotropic medium with internal heat generation and flow in a multi-layered 

anisotropic porous medium. Although demonstrated for two-dimensional problems, extension of the 

present approach to three-dimensional problems is straight forward. In this article, the approach is 

demonstrated using the finite volume method. It can however be applied equally well for any 

discretization method including the finite difference and finite element methods.  
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Nomenclature 

A  surface area of a control volume 

2
E  root mean square norm error 


E  maximum norm of error 

h  refinement ratio 

I  identity matrix 

k  thermal conductivity 

q


 diffusive flux 

Dq


  departure from isotropic component of the diffusive flux 

maxq


  isotropic component of the diffusive flux 

genQ  volumetric heat generation 

R  rotational matrix 

S  source term 

DS  source term due to departure from isotropic  

T  temperature 

x


 position vector 

x  coordinate axis 

y  coordinate axis 

 

Greek letters 

V  volume  

A  surface area  

  degree of anisotropic 

  transported quantity 

  diffusion coefficient 

max  isotropic component of the diffusion coefficient 

D  departure from isotropic component of the diffusion coefficient 

  domain of interest 

q  boundary with prescribed flux 

  boundary with prescribed   

  orientation of the principal directions 
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Superscript 

m  current iteration 

P  prescribed value 

* principal directions 

 

Subscript 

ave  average 

B  boundary control volume 

n  normal 

P  control volume P 
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