
University of Huddersfield Repository

Vallati, Mauro, Cerutti, Federico and Giacomin, Massimiliano

Argumentation Frameworks Features: an Initial Study

Original Citation

Vallati, Mauro, Cerutti, Federico and Giacomin, Massimiliano (2014) Argumentation Frameworks
Features: an Initial Study. In: European Conference on Artificial Intelligence (ECAI), 18th-22nd
August 2014, Prague, Czech Republic. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/20365/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Argumentation Frameworks Features: an Initial Study
Mauro Vallati1 and Federico Cerutti2 and Massimiliano Giacomin3

Abstract. Semantics extensions are the outcome of the argumenta-
tion reasoning process: enumerating them is generally an intractable
problem. For preferred semantics two efficient algorithms have been
recently proposed, PrefSAT and SCC-P, with significant runtime
variations. This preliminary work aims at investigating the reasons
(argumentation framework features) for such variations. Remarkably,
we observed that few features have a strong impact, and those ex-
ploited by the most performing algorithm are not the most relevant.

1 INTRODUCTION

Abstract argumentation [5] is a popular approach for non-monotonic
reasoning. Although it is built on just arguments — vertexes of a
graph — and attacks — directed edges — it has been proved able to
encompass other approaches to non-monotonic reasoning [5]. Given
these simple structures, argumentation theory prescribes several se-
mantics [1]: each semantics identifies the so-called semantics exten-
sions, viz. sets of arguments that are “collectively acceptable”.

In this paper we focus on the so-called preferred semantics [5]: it
has interesting theoretical properties [5] making it one of the most
used semantics. The enumeration problem associated to this seman-
tics is at the second level of the polynomial hierarchy [6]: this jus-
tifies the search for efficient mechanisms for solving it (solvers).
Among others, two solvers have been recently proposed: PrefSAT
[3], which translates the enumeration problem into several SAT prob-
lems, and SCC-P [4], which exploits the SCC-recursiveness schema
[2]. PrefSAT is more efficient than other state-of-the-art solvers [3],
but in some situations it is way less efficient than SCC-P [4].

The aim of this paper is to explain the significant runtime variation
between PrefSAT and SCC-P [4] by implementing so-called empir-
ical performance models (EPMs) [8]. First, we run the two solvers
on a large number of instances (AFs). For each instance, the solvers’
performances are recorded and a set of instances features is com-
puted. Each feature is a real number that summarises a property of
the instance. A predictive model is then learnt as a mapping instance
features–solver performance. Finally, the EPMs are cross-validated.

Although EPMs are well established within AI [8], as to our
knowledge this is the first study in argumentation theory (whose
main concepts are summarised in Section 2). Since the critical step
to building accurate EPMs is identifying a “good” set of instance
features, the core of this paper is to investigate suitable features for
argumentation frameworks (Section 3): as a preliminary study, we
focused on features related to graph theory. Finally Section 4 sum-
marises the main contributions and concludes the paper.

1 University of Huddersfield, UK, email: m.vallati@hud.ac.uk
2 University of Aberdeen, UK, email: f.cerutti@abdn.ac.uk
3 University of Brescia, Italy, email: massimiliano.giacomin@unibs.it

2 PRELIMINARIES

An argumentation framework (AF) [5] is a pair 〈A,→〉, where A
is a set of arguments (vertexes of a graph) and → ⊆ A × A is a
set of attacks (directed edges). S ⊆ A is conflict-free iff ∀a,b ∈
S, 〈a,b〉 /∈ →. An argument a ∈ A is acceptable w.r.t. S ⊆ A iff
∀b ∈ A | 〈b,a〉 ∈ →, ∃c ∈ S | 〈c,b〉 ∈ →. S ⊆ A is admissible
iff it is conflict-free and each argument of S is acceptable w.r.t. S.
S ⊆ A, admissible, is a complete extension iff each argument, which
is acceptable w.r.t. S, belongs to S. S ⊆ A is a preferred extension
iff it is a maximal (w.r.t. set inclusion) complete extensions.

Two efficient algorithms for preferred extensions enumeration
have been proposed: PrefSAT [3] and SCC-P [4]. PrefSAT solves
the SAT problem equivalent to find a complete extension in an AF.
Then, it finds a preferred extensions using a hill-climbing. The al-
ready found extensions are excluded by subsequent search steps.

SCC-P [4] implements the SCC-recursiveness schema [2] which
exploits the partial order of strongly connected components (SCCs).
First, the extensions of the frameworks restricted to the initial (i.e.
not receiving any attack) SCCs are computed and combined together.
Then each SCC which is attacked only from initial SCCs is consid-
ered: the extensions of such a SCC are locally computed and merged
with those already obtained. Then the subsequent (w.r.t. the par-
tial order) SCCs are considered until no remaining SCCs are left to
process. The schema is recursive: for each SCC (1) all arguments
attacked by the extension selected in the previous SCCs are sup-
pressed; (2) the procedure is recursively applied to the remaining part
of the SCC. The base of the recursion is reached when there is only
one SCC: in this case a solver similar to PrefSAT is called. Unsur-
prisingly, SCC-P proved [4] to be more efficient than PrefSAT on
AFs with a significant number of SCCs. In the other cases, PrefSAT
is much more efficient [3, 4] than the other state-of-the-art solvers.

3 ANALYSIS

PrefSAT, SCC-P and the features extraction have been run on a clus-
ter with computing nodes equipped with 2.5 Ghz Intel Core 2 Quad
ProcessorsTM, 8 GB of RAM. A cutoff of 15 minutes was imposed
to compute the preferred extensions for each AF. For each solver we
recorded the overall result: success (found all the preferred exten-
sions), crashed, timed-out or ran out of memory. Unsuccessful runs
were assigned a runtime equal to the cutoff.

The 10,000 AFs are generated using a parametric random ap-
proach allowing to select (probabilistically — average, standard de-
viation) the density of attacks for each SCC; and how many argu-
ments (probabilistically) in each SCC attack how many arguments
(probabilistically) in how many (probabilistically) other SCCs. The
number of arguments ranges between 10 and 40,000. We exploited a
10-fold cross-validation approach on a uniform random permutation

of our instances — a standard method where nine slices are used for
training and the tenth for testing. EPMs are built using WEKA [7].
Features. We considered 26 features, belonging to 5 classes: graph
size (5), degree (4), SCC (5), graph structure (5), times (7).
Graph size features: number of vertices, number of edges, ratios
vertices–edges and inverse, and graph density (NT – non trivial).
Degree features (overall NT): average, standard deviation, maxi-
mum, minimum degree values across the nodes in the graph.
SCC features (overall NT): number of SCCs, average, standard devi-
ation, maximum and minimum size.
Graph structure: presence of auto-loops, number of isolated vertices
(NT), flow hierarchy (NT) and results of test on Eulerian (NT) and
aperiodic structure of the graph (NT).
Finally, the needed CPU-time for extracting each NT feature has
been considered. It is worth mention that usually the overall features
extraction process takes less than a CPU-time second per instance
apart from the aperiodicity of the graph (up to 20 seconds). A feature
is trivial if its extraction requires less than 0.001 seconds.
Prediction and Feature Importance. We considered EPMs for both
classification and regression approaches. Classification approaches
classify the AF into a single category: this indicates the algorithm
which is predicted to be the fastest. Regression techniques model
the behaviour of each algorithm for predicting its runtime on a new
AF. Since solvers runtimes vary from 0.01 to 900 CPU seconds, we
trained our regression models to predict log-runtime rather than ab-
solute runtime: this have been effective in similar circumstances [8].
We first assessed the performance of various classification and re-
gression models, and we observed that random forests performed
best in classification, and M5-Rules in regression.

Table 1 shows the results for prediction and regression (RMSE)
using the best performing models, with 10-fold cross validation on a
uniform random permutation of our full set of 10,000 AFs. Results
are shown by generating EPMs considering the single best feature
(B1), the best two and three of them (B2, B3), all the features but
SCC-related ones (A-S) and all the extracted features (All). Best fea-
tures are selected according to a greedy forward search in the space
of features: starting from an empty subset, it iteratively adds a new
feature to the considered subset. It stops when the addition of any
attribute results in the decrease of the evaluation. The evaluation of
a subset of features is done by considering the predictive ability of
each feature along with the degree of redundancy between them.

From Table 1, the three best features for the classification task are:
(1) the density, (2) the minimum degree value and (3) the number
of SCCs. Remarkably, the density of the AF allows to achieve, even
while used alone, significant classification performance. From [4],
SCC-related information are believed to be very informative, thus
without SCC features we expect a noticeable decrease of the EPMs
performance. Interestingly, considering the number of SCC in the
3-best features introduces some noise that worsen the performance.
For the regression task, the three best features for predicting PrefSAT
runtimes are the same exploited for classification, while for SCC-P
are: (1) the density, (2) the number of SCC and (3) the size of the
largest SCC. According to the results, SCC-P performance are some-
how easier to predict than PrefSAT ones. Differently from classifica-
tion, for the regression task exploiting the three best features allows
significantly better runtime prediction than the best single feature.

In addition to the results discussed in Table 1, it is worth mention-
ing that: (I) for AFs with few arguments (“small”) the classification
psrocess mainly depends on the ratio vertices/edges, while for “big-
ger” AFs it mainly depends on the average degree value; (II) con-
sidering only SCC-related features drops the classification accuracy

Table 1. Evaluation of classification and regression EPMs for different
features subsets. B1, B2, B3 indicates the best 1, 2 and 3 features according
to a greedy forward search; A-S indicates all the features but SCC-related

ones; All indicates all the extracted features
Classification (Higher is better)

B1 B2 B3 A-S All
Accuracy 83.5% 82.6% 80.9% 83.5% 84.4%
Precision PrefSAT 84.0% 83.3% 80.3% 83.3% 84.2%
Precision SCC-P 83.1% 82.0% 81.4% 83.7% 84.6%

Regression - RMSE log (Lower is better)
B1 B2 B3 A-S All

PrefSAT 1.39 1.31 0.93 0.89 0.89
SCC-P 1.36 0.80 0.78 0.76 0.75

— proportion of instances correctly classified — to 62.3%; (III) the
EPM precision — the proportion of true positives within a class —
is similar between the two algorithms; (IV) w.r.t. regression EPM for
SCC-P, 88.9% of the predictions are within a factor of 1 of the ob-
served runtimes with the full feature set, vs. 82.4% and 60.4% when
using respectively B3 and B1 features; (V) for PrefSAT the corre-
sponding values are: 77.5%, 75.9% and 61.0%; (VI) not considering
aperiodicity of the AF — the most expensive feature to extract —
the regression performance does not change, while the accuracy of
the classification decreases of 0.2%.

4 CONCLUSIONS
Two efficient solvers have been proposed for enumerating the pre-
ferred extensions of argumentation frameworks. Exploiting EPMs
for predicting solvers’ performance leads to practical improvements
[8], by allowing per-instance solver selection, and provides useful
insights that can be exploited for further solvers improvement.

In this work we identified a set of features and analysed their effec-
tiveness for both classification and regression predicting tasks. Table
1 shows that small set of features, easy to compute, leads to good
EPMs. Remarkably, although one of the considered solver exploit
the partial order of SCCs, SCC related features are very informative
only in conjunction with other features.

Future work includes extending this preliminary work on features
collection, by encoding AFs in different structures and by consider-
ing probing features; considering other state-of-the-art solvers; and
engineering a portfolio approach.

REFERENCES
[1] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin, ‘An intro-

duction to argumentation semantics’, Knowledge Engineering Review,
26(4), 365–410, (2011).

[2] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida, ‘SCC-
recursiveness: a general schema for argumentation semantics’, Artificial
Intelligence, 168(1-2), 165–210, (2005).

[3] Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin, and Mauro
Vallati, ‘Computing preferred extensions in abstract argumentation: A
sat-based approach’, in TAFA, pp. 176–193, (2013).

[4] Federico Cerutti, Massimiliano Giacomin, Mauro Vallati, and Marina
Zanella, ‘A SCC recursive meta-algorithm for computing preferred la-
bellings in abstract argumentation’, in KR, (2014). to appear.

[5] Phan M. Dung, ‘On the Acceptability of Arguments and Its Fundamental
Role in Nonmonotonic Reasoning, Logic Programming, and n-Person
Games’, Artificial Intelligence, 77(2), 321–357, (1995).

[6] Paul E. Dunne and Michael Wooldridge, ‘Complexity of abstract argu-
mentation’, in Argumentation in AI, eds., I Rahwan and G Simari, chap-
ter 5, 85–104, Springer-Verlag, (2009).

[7] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten, ‘The WEKA data mining software: An
update’, SIGKDD Explorations, 11(1), 10–18, (2009).

[8] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown, ‘Algo-
rithm runtime prediction: Methods & evaluation’, Artificial Intelligence,
206(0), 79 – 111, (2014).

