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RESEARCH ARTICLE

A novel bidirectional positive-feedback loop between Wnt–b-
catenin and EGFR–ERK plays a role in context-specific
modulation of epithelial tissue regeneration

Nikolaos T. Georgopoulos1,2,*, Lisa A. Kirkwood1,* and Jennifer Southgate1,`

ABSTRACT

By operating as both a subunit of the cadherin complex and a key

component of Wnt signalling, b-catenin acts as the lynchpin

between cell–cell contact and transcriptional regulation of

proliferation, coordinating epithelial tissue homeostasis and

regeneration. The integration of multiple growth-regulatory inputs

with b-catenin signalling has been observed in cancer-derived cells,

yet the existence of pathway crosstalk in normal cells is unknown.

Using a highly regenerative normal human epithelial culture system

that displays contact inhibition, we demonstrate that the receptor

tyrosine kinase (RTK)-driven MAPK and Wnt–b-catenin signalling

axes form a bidirectional positive-feedback loop to drive cellular

proliferation. We show that b-catenin both drives and is regulated by

proliferative signalling cues, and its downregulation coincides with

the switch from proliferation to contact-inhibited quiescence. We

reveal a novel contextual interrelationship whereby positive and

negative feedback between three major signalling pathways –

EGFR–ERK, PI3K–AKT and Wnt–b-catenin – enable autocrine-

regulated tissue homeostasis as an emergent property of physical

interactions between cells. Our work has direct implications for

normal epithelial tissue homeostasis and provides insight as to how

dysregulation of these pathways could drive excessive and

sustained cellular growth in disease.
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INTRODUCTION
b-catenin is a multifunctional signalling protein that, through

regulation of its stability and intracellular localisation, plays a

central role in epithelial tissue homeostasis. Downstream of Wnt

signalling, b-catenin that has translocated to the nucleus functions

indirectly as a transcription factor by modulating the

transcriptional activity of transcription factors of the T-cell
factor/lymphoid enhancer factor (TCF/LEF) family to promote

cell proliferation (Nelson and Nusse, 2004). b-catenin also

functions as a structural component of adherens junctions, where

its association with E-cadherin stabilises the multi-protein
adherens complex at the plasma membrane (Cavallaro and

Christofori, 2004). These two properties of b-catenin place it at
the interface between cell–cell adhesion and the control of
cellular proliferation, as the ability of E-cadherin to sequester b-

catenin at the cell membrane can influence the signalling capacity
of b-catenin and modulate TCF/LEF transcriptional activity
(Nelson and Nusse, 2004).

In the absence of Wnt ligand, b-catenin is phosphorylated by

glycogen synthase kinase 3b (GSK3b), a component of the protein
‘destruction’ complex. This complex also contains the scaffold
protein axin and the adenomatous polyposis coli (APC) protein.

The destruction complex is responsible for the ubiquitylation and
subsequent proteasomal degradation of b-catenin. Upon the
binding of Wnt ligand to Frizzled (Fzd) receptors, an intracellular

signalling cascade triggers the release of b-catenin from the
destruction complex for subsequent trafficking to the nucleus or
cell membrane (Clevers and Nusse, 2012).

A further layer of complexity relates to the interaction of b-

catenin with receptor tyrosine kinase (RTK) and the mitogen-
activated protein kinase (MAPK) signalling pathways (Bikkavilli
and Malbon, 2009). Wnt ligand is reported to trigger proliferation

through extracellular signal-related kinases (ERKs, the classical
MAPKs) in fibroblasts (Yun et al., 2005), and b-catenin can
induce epidermal growth factor receptor (EGFR) gene expression

in hepatocellular (Latasa et al., 2012) and prostate carcinoma
(Guturi et al., 2012) cells. By contrast, a number of mitogenic
factors, such as EGF, have been reported to induce b-catenin
signalling (Ding et al., 2005; Lu et al., 2003; Morali et al., 2001;

Müller et al., 2002); EGFR can drive protein kinase B (AKT)–b-
catenin-mediated maintenance of nasopharyngeal cancer stem
cells (Ma et al., 2013), and various RTKs have been reported to

activate canonical Wnt–b-catenin signalling in murine
chondrocytes (Krejci et al., 2012). Thus, b-catenin has the
capacity to crosstalk with and modulate the function of MAPK

pathways to influence cell proliferation; conversely, RTKs can
regulate cell growth through b-catenin signalling. In most
previous studies, established cell lines derived from carcinomas

or non-epithelial (predominantly mesenchymal) origins have been
investigated and, hence, the importance of crosstalk between
signal transduction pathways in normal epithelial tissue
homeostasis and regeneration is unknown.

Here, we have employed a well-characterised normal human
urothelial (NHU) cell culture system, in which tissue-isolated
cells are maintained as multiple finite (non-immortalised) cell

lines in vitro. In low-Ca2+ (0.09 mM) serum-free medium, NHU
cells adopt a highly proliferative phenotype driven by autocrine
signalling, with amphiregulin recognised as the key EGFR-

activating ligand (Varley et al., 2005). NHU cells exhibit a basal
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phenotype and do not show spontaneous differentiation at
confluence (Lobban et al., 1998; Southgate et al., 1994),

although, unlike immortalised human urothelial cells, the
capacity for differentiation is retained (Georgopoulos et al.,
2011). A second autocrine pathway has been identified in low-
density NHU cell cultures maintained in near-physiological

concentrations of exogenous Ca2+ (2 mM), wherein proliferation
is promoted in juxtaposed cells that form stable intercellular
junctions. This proliferation pathway is mediated by phospho-

activation of AKT and is attenuated by PI3K antagonists or by
functional inactivation of E-cadherin – either of which results in
derepression of the EGFR–ERK pathway and activation of b-

catenin–TCF signalling (Georgopoulos et al., 2010). Our aim here
was to elucidate the interactions between EGFR–ERK and Wnt–b-
catenin signalling in regulating normal epithelial cell proliferation.

RESULTS
Gene expression analysis of Wnt–b-catenin pathway
components in proliferating versus quiescent NHU cells
Gene arrays representing proliferating (24 hour) NHU cell
cultures were analysed for the expression of Wnt pathway-
related transcripts, and this analysis revealed that all the

components necessary for a functional Wnt cascade were
expressed. Seven Frizzled receptors (Fzd2, Fzd3, Fzd4, Fzd5,
Fzd6, Fzd7 and Fzd10) that have been implicated in transducing

the canonical Wnt signal were present, as were the transcripts of
four Wnt ligands (Wnt3, Wnt5a, Wnt6 and Wnt7a). Transcripts

for several downstream targets of Wnt signalling were also
expressed by proliferative cultures, including Axin2 (a key target
of Wnt signalling), survivin (BIRC5), Twist, SKP2 and cyclin
D1. Archetypal extracellular Wnt antagonists, including soluble

Fzd-related protein (sFrp) and Wif1, were not transcribed by
proliferative cultures. A summary of the results from the
expression arrays (and a comparison with results obtained from

contact-inhibited quiescent cultures), along with an independent
verification of the key findings by RT-PCR, is shown in
supplementary material Fig. S1.

Expression of active b-catenin and pharmacological
activation of the canonical Wnt signalling pathway in
proliferating NHU cells
In low-density culture, NHU cells homogeneously expressed
nuclear-restricted active b-catenin, as shown using an antibody
that recognised the Ser37 and Thr41 dephosphorylated form of b-

catenin. This contrasted with growing cultures of the well-
characterised Wnt-responsive SaOS-2 osteosarcoma cell line
(Ueda et al., 1997), which exhibited a diffuse cytoplasmic

labelling pattern with limited nuclear localisation (Fig. 1A).
The highly specific GSK3b antagonist SB415286 (Meijer

et al., 2004) was used to inactivate the destruction complex and

Fig. 1. The effect of Wnt–b-catenin signalling activation by pharmacological inhibition of GSK3b in NHU and SaOS-2 cells. (A) Left, active b-catenin
protein expression was detected by indirect immunofluorescence microscopy in NHU (upper panels) and SaOS-2 cells (lower panels) after 24-hours of culture in
medium supplemented with 10 mM GSK3b inhibitor (SB415286). Treatment with solvent alone [0.1% (v/v) DMSO] served as a negative control. The results
are representative of at least three independent experiments. Scale bar: 50 mm. Right, nuclear translocation of active b-catenin in SB415286-treated and control
cells was also quantified as described in Materials and Methods. The data show the mean nuclear pixel intensity (6s.d.) from independent randomly selected b-
catenin-labelled NHU and SaOS-2 cells (n520); **P,0.01. (B) NHU (left) and SaOS-2 cells (right) were transfected with either TOPFLASH or FOPFLASH
plasmid along with pRL-CMV vector as a transfection control. At 24 hours post-transfection, the medium was changed to include 10 mM SB415286 or 0.1% (v/v)
DMSO (vehicle control) for an additional 24 hours. Subsequently, dual luciferase assays were performed. Data show the mean6s.d. of firefly luciferase
activity for three or four technical replicates following normalisation to the transfection control (Renilla) and are representative of at least three
independent experiments.
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trigger canonical Wnt signalling in a ligand-independent manner.
Following treatment with SB415286, SaOS-2 cells showed

activation and translocation of b-catenin to the nucleus, with
some active b-catenin also present at intercellular contacts. By
contrast, NHU cells, which already exhibited a high level of
nuclear active b-catenin in control cultures, displayed only a

modest increase in nuclear labelling after treatment with
SB415286 (Fig. 1A). These findings indicate that proliferative
NHU cells have an activated Wnt–b-catenin pathway, with a pool

of active b-catenin present in the nucleus.
TCF promoter activity was assessed using the TOPFLASH/

FOPFLASH luciferase reporter assay. SaOS-2 cells showed a

significant increase in luciferase expression when treated with
SB415286 (Fig. 1B); normalised TOPFLASH reporter activity
after SB415286 treatment was 7.5-fold higher (P,0.001) than

that of a vehicle-control-treated sample (Fig. 1B), confirming the
functionality of the pharmacological activator and its ability to
mimic active Wnt signalling. By contrast, there was no significant
change (P.0.05) in TOPFLASH luciferase activity observed in

NHU cells after SB415286 treatment (Fig. 1B).
The FOPFLASH control reporter provided a normalisation

control, as it showed constant activity in NHU cells under

different culture conditions, although it tended to give higher
readouts than were achieved with TOPFLASH; similar
observations were also made with untreated SaOS-2 cells

(Fig. 1B) and have been reported in other epithelial cells
(Papkoff and Aikawa, 1998). TOPFLASH and FOPFLASH are
engineered from the same vector backbone and the only

difference is the presence of a series of tandem LEF1/TCF-
binding sites within TOPFLASH that are mutated in FOPFLASH.
However, also extant within the promoter inserts of both vectors
are a plethora of other transcription-factor-binding sites,

including those of nuclear receptor sub-family 2, GATA and
PPARc, which account for the high basal activity seen.

Blockade of EGFR–ERK and PI3K–AKT pathways reveals
positive feedback between EGFR–ERK and b-
catenin signalling
In NHU cell cultures grown under standard culture conditions
either with or without exogenous EGF, the expression of active b-
catenin fluctuated over time. At a seeding density of
2.56104 cells/cm2, nuclear labelling for active b-catenin was

most intense at 48 hours post-seeding, after which it was seen to
decrease as cells reached confluence (Fig. 2A, Control;
supplementary material Fig. S2). Western blotting results from

parallel cultures corroborated the immunofluorescence
microscopy findings, with active b-catenin expression peaking
at 48 hours of culture (Fig. 2B). In parallel, the expression of

phosphorylated ERK1/2 (phospho-ERK) also peaked at the 48-
hour time-point, indicating a reciprocal pattern of expression for
b-catenin and phospho-ERK. To determine whether b-catenin

activation was due to a change in the activity of the destruction
complex, we probed for the inactive form of GSK3b, which is
phosphorylated at Ser9 (da Costa et al., 1999). Our results
revealed that the increase in active b-catenin expression seen at

48 hours post-seeding was accompanied by an increase in the
amount of inactive phospho-GSK3b (Fig. 2B).

Functional inactivation of EGFR by the pharmacological

inhibitor PD153035 blocked the expression of nuclear active b-
catenin (Fig. 2A,B). This was accompanied by loss of induction
of phospho-GSK3b (Fig. 2B). We have previously shown that

EGFR signalling in proliferative NHU cells is predominantly

relayed across the MEK–ERK intracellular signalling axis
(MacLaine et al., 2008; Varley et al., 2005). Functional ERK

blockade by the MEK inhibitor U0126 caused marked attenuation
of active b-catenin expression and inhibited the induction of
phospho-GSK3b (Fig. 2B). By contrast, functional blockade of
PI3K–AKT signalling with LY294002 caused a marked increase

in the amount of nuclear active b-catenin at all time-points
(Fig. 2A). In this latter state, some cells showed membrane-
localised b-catenin, which was not evident in the control cultures

(Fig. 2A). Notably, phospho-GSK3b expression was dramatically
induced in PI3K–AKT-blocked cells at both the 24- and 48-hour
time-points, yet it was diminished by 72 hours (Fig. 2B).

Moreover, PI3K–AKT inhibition resulted in a substantial
elevation in the levels of phospho-ERK.

To confirm the functionality of b-catenin activation and the

downstream effects of RTK signalling blockade, we assessed the
expression of Axin2 as a direct target of b-catenin–TCF
transcription. The expression of Axin2 was significantly
downregulated (by greater than twofold) after treatment with

the EGFR inhibitor PD153035 for 24, 48 and 72 hours in culture
(Fig. 2C), implying that inhibition of EGFR reduces TCF-
mediated transcription. Treatment with the ERK inhibitor

(U0126) also reduced the expression of Axin2 at the 24- and
48-hour time-points and, to a lesser extent, at the 72-hour time-
point (Fig. 2C). By contrast, PI3K–AKT inhibition (with

LY294002) did not alter Axin2 transcription (Fig. 2C). Similar
observations were made for another b-catenin–TCF
transcriptional target, c-Myc (not shown). We also examined

the expression of E-cadherin (CDH1) mRNA, a repressed indirect
target of b-catenin–TCF signalling (due to repression by the Wnt
target Twist). In contrast to Axin2, CDH1 mRNA expression was
significantly higher in EGFR-blocked cultures (Fig. 2C), an

observation that mirrored our findings at the level of E-cadherin
protein expression (Fig. 2B). Inhibition of neither ERK nor
PI3K–AKT affected the expression of the CDH1 transcript

(Fig. 2C).

Blockade of EGFR reveals the capacity for proliferative Wnt
signalling in NHU cells
The observation that an EGFR–ERK-driven b-catenin–TCF
pathway dominated in proliferative NHU cells (Fig. 2),
combined with our finding that Wnt activation did not promote

TCF activity over the high baseline (Fig. 1), led us to hypothesise
that a blockade of EGFR would permit the influence of
endogenous/exogenous mediators of b-catenin signalling to be

observed. In EGFR-blocked NHU cell cultures, pharmacological
activation of Wnt signalling using the GSK3b antagonist
SB415286 resulted in intense punctate active b-catenin

localisation in the nucleus (Fig. 3A). A comparison of mean
nuclear fluorescence intensities showed that induction of Wnt
signalling in EGFR-blocked cells restored nuclear active b-

catenin levels to those observed in control EGFR-responsive
NHU cells (Fig. 3A, right panel). The activation of Wnt
signalling in NHU cells treated with the ERK inhibitor U0126
did not result in any profound changes in the expression or

localisation of active b-catenin, and b-catenin localisation was
more diffuse across both nuclear and cytoplasmic compartments
(Fig. 3A). Moreover, in a large proportion of cells, active b-

catenin labelling was also evident at the cell membrane (Fig. 3A).
Inhibition of PI3K–AKT signalling resulted in a major increase in
nuclear active b-catenin expression in comparison to controls (in

agreement with Fig. 2), and activation of Wnt signalling by
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SB415286 had little effect on the overall intensity of active b-
catenin expression, although the localisation appeared more

diffuse (Fig. 3A).
The blockade of EGFR in NHU cells by PD153035 reduced

basal TCF promoter activity, as was reflected by low levels of

luciferase reporter activity in the TOPFLASH assays. This allowed
for the first time the detection of significant induction of TCF
promoter activity and, upon Wnt activation with SB415286, there

was an approximately threefold increase in TOPFLASH (but not
FOPFLASH) reporter activity (Fig. 3B), signifying substantial
TCF promoter activation. Wnt-b-catenin activation in NHU cells

treated with the MEK-ERK inhibitor U0126 had little effect on
reporter activity (Fig. 3B). By contrast, reporter assays in PI3K–
AKT-blocked NHU cells showed the previously observed
(Fig. 1B) high basal TCF reporter activity, and GSK3b inhibition

showed a modest yet non-significant increase in promoter activity
(Fig. 3B)

The functional blockade of EGFR severely diminished NHU cell
proliferation, but this could in part be overcome by pharmacological

activation of Wnt signalling (Fig. 3C). Wnt stimulation in MEK–
ERK-blocked NHU cells caused a small yet consistent increase in
cell growth that was, however, not statistically significant (Fig. 3C).

Inhibition of the PI3K–AKT pathway resulted in an initial
retardation of NHU cell proliferation, consistent with our previous
findings (MacLaine et al., 2008). However, Wnt activation had little

effect on proliferation in PI3K–AKT-blocked NHU cell cultures
(Fig. 3C).

b-catenin modulates ERK and AKT signalling as part of a bi-
directional positive-feedback signalling loop
To investigate the role of b-catenin itself, we used a retroviral
shRNA approach to generate NHU sub-lines carrying a stable b-

catenin knockdown (NHU-b-cat-KD cells). Immunoblotting
confirmed a substantial decrease in the expression of both

Fig. 2. Effect of inhibition of EGFR, MEK–ERK and PI3K–AKT on the Wnt–b-catenin signalling pathway in NHU cells. (A) NHU cells were cultured for 24,
48 and 72 hours post-seeding in standard culture medium (Control) or medium containing 1 mM EGFR inhibitor (PD153035), 5 mM MEK–ERK inhibitor (U0126)
or 5 mM PI3K–AKT inhibitor (LY294002). These parallel cultures were then immunolabelled to detect the expression of active b-catenin. Results are
representative of at least three independent experiments. Scale bar: 50 mM. (B) NHU cells were cultured as described for A, before whole-cell lysates were
prepared and the expression of E-cadherin, b-catenin (active and total), ERK (phospho- and total) and phospho-GSK3b (serine 9) was assessed by western
blotting. For phospho-ERK, detection of both ERK1 (upper band) and ERK2 (lower band) isoforms of molecular mass 44 and 42 kDa, respectively, is
indicated by arrowheads. Detection of b-actin served as a loading control. Results are representative of experiments with two NHU lines. (C) NHU cells
were cultured as described for A, total RNA was isolated, cDNA was prepared and quantitative real-time RT-PCR was performed for the direct downstream b-
catenin–TCF target Axin2 (left). E-cadherin (CDH1) mRNA expression was also quantified (right). Data were initially normalised to GAPDH house-keeping
controls and then expressed as fold change relative to solvent-balanced controls. Data represent the log2 mean expression (6s.d.) of three technical replicates.
Solid and dotted lines represent twofold upregulation and twofold downregulation, respectively.
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active and total b-catenin in NHU-b-cat-KD cells in comparison
with NHU-Con control-shRNA-expressing isogenic counterparts
(Fig. 4A). Immunofluorescence microscopy confirmed these

findings and showed that both nuclear active and total b-
catenin expression were reduced in NHU-b-cat-KD cultures in
comparison with controls (Fig. 4B).

Fig. 3. Pharmacological activation of Wnt–b-catenin signalling in NHU cells treated with EGFR, ERK and AKT inhibitors: effects on b-catenin
localisation, TCF transcriptional activity and cell growth. (A) Left, NHU cells were pre-treated for 24 hours with medium supplemented with 1 mM EGFR
inhibitor (PD153035), 5 mM MEK–ERK inhibitor (U0126) or 5 mM PI3K–AKT inhibitor (LY294002). Thereafter, the culture medium was replenished and
supplemented with 10 mM GSK3b inhibitor (SB515286) or solvent [0.1% (v/v) DMSO] alone (Control) in the continued presence of signalling inhibitors for a
further 24 hours. Cells were then immunolabelled to detect expression of active b-catenin. Results are representative of at least three independent experiments.
Scale bar: 20 mM. Right, nuclear translocation of active b-catenin in control cells (micrographs not shown) and PD153035-treated NHU cells in the absence
(PD153035) or presence (PD153035 + SB415286) of 10 mM GSK3b inhibitor was also quantified (as described in Fig. 1). Data represent the mean nuclear pixel
intensity (6s.d.) from independent randomly selected b-catenin-positive cells (n520). (B) NHU cells were transfected with either TOPFLASH or FOPFLASH
plasmid along with pRL-CMV vector as a transfection control. At 16 hours post-transfection, cells were pre-treated with 1 mM EGFR inhibitor (PD153035), 5 mM
MEK–ERK inhibitor (U0126) or 5 mM PI3K–AKT inhibitor (LY294002) for 24 hours. Cells were then incubated for a further 24 hours with 10 mM GSK3b
inhibitor (SB415286) in the continued presence of signalling inhibitors. Subsequently, dual luciferase reporter assays were performed. Data show the mean
(6s.d.) firefly luciferase activity [three technical replicates following normalisation to the transfection control (Renilla), at least three independent experiments].
**P,0.01; *** P,0.001; n.s., non-significant. (C) NHU cells were seeded and allowed to attach overnight. On day 0, cells were cultured in medium
supplemented with 1 mM EGFR inhibitor (PD153035), 5 mM MEK–ERK inhibitor (U0126), 5 mM PI3K–AKT inhibitor (LY294002) or solvent [0.1% (v/v) DMSO]
alone (Control). On day 1, the pathway inhibitor (or solvent) was replenished and, for some cultures, the medium was also supplemented with 10 mM
GSK3b inhibitor (SB415286). Cell proliferation was determined using the MTT assay on days 0, 1, 4 and 6, with the respective culture medium in each case
replenished on day 3. Data show the mean (6s.d.) absorbance at 570 nm (six technical replicates, three independent experiments); *P,0.05 when
comparing the growth of cells treated with GSK3b inhibitor (SB415286) in the presence of EGFR inhibitor (PD153035) versus that of cells treated with
PD153035 alone.
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Fig. 4. The effect of RNAi-mediated b-catenin knockdown on EGFR–ERK and PI3K–AKT signalling activation and proliferation in NHU cells. (A) Left,
whole-cell lysates were prepared from NHU derivatives expressing b-catenin-specific shRNA (NHU-b-cat-KD) and their isogenic control-shRNA-expressing
(NHU-Con) cells, and the expression of active and total b-catenin by was assessed by western blotting. b-actin served as a loading control. The results are
representative of at least two experiments. Right, for the blots shown, b-catenin expression was quantified by densitometric analysis. Data show the relative
band intensity of active and total b-catenin for NHU-b-cat-KD and NHU-Con cells after background subtraction and following normalisation to b-actin band
intensity (the value for NHU-Con cells was arbitrarily set as 100). (B) Active and total b-catenin protein expression was detected by immunofluorescence
microscopy in NHU-b-cat-KD and NHU-Con cells. The results are representative of at least three independent experiments. (C) NHU-b-cat-KD and NHU-Con
cells were seeded (at 26103 cells/well) onto 96-well plates and allowed to attach overnight. Cells were cultured in either standard growth medium (Control)
or medium supplemented with 2 mM CaCl2 (Phys Ca2+). Left, MTT assays were performed as for Fig. 3C. Data show the mean (6s.d.) absorbance at 570 nm
(six technical replicates, three independent experiments). Right, Transformed data for results obtained on day 6 are shown. **P,0.01 when comparing the
growth of NHU-b-cat-KD versus NHU-Con cells cultured in either standard growth medium or medium supplemented with 2 mM CaCl2. (D) Left, whole-cell
lysates were prepared and immunoblotted as described in A for detection of phospho- and total ERK. b-actin served as a loading control. Results are
representative of at least two independent experiments. Right, For the blots shown, phospho-ERK expression was quantified by densitometric analysis. Data
show the relative band intensity of phospho-ERK for NHU-Con and NHU-b-cat-KD cells after background subtraction and following normalisation to b-actin
band intensity (the value for NHU-Con cells was arbitrarily set as 100). Similar results were obtained when phospho-ERK was normalised to total ERK (not
shown). (E) Total or phospho-ERK, phospho-AKT and E-cadherin protein expression was examined by immunofluorescence microscopy in NHU-b-cat-KD and
NHU-Con cells. Results are representative of at least two independent experiments. Scale bars: 50 mm.
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NHU-b-cat-KD cell cultures showed a significant reduction in
growth compared with NHU-Con cells over a 6-day time-course

(Fig. 4C), which was suggestive of a crucial role for b-catenin
activation in NHU cell proliferation. These results were supported
by the finding that, in subconfluent cultures, fewer NHU-b-cat-KD
cells appeared to be actively dividing, as indicated by a decreased

number of Ki67-positive cells (not shown). Strikingly, b-catenin
knockdown resulted in marked attenuation of active (phospho-
ERK) but not total ERK expression (Fig. 4D,E). By contrast, loss

of b-catenin enhanced E-cadherin expression and resulted in a
dramatic increase in nuclear phospho-AKT (Fig. 4E).

Activation and nuclear localisation of b-catenin is
independent of the strength of cell–cell contacts
Because of the fluctuation in nuclear expression of active b-

catenin in NHU cell cultures over time, we altered the initial
seeding density to assess whether this was an effect of culture
density. In comparison with cultures seeded at 2.56104 cells/cm2

(Fig. 2A), seeding NHU cells at half this density (Fig. 5A, see

figure legend) extended the length of time for which active b-
catenin was present in the nucleus to at least 72 hours. A dramatic
reduction in the nuclear b-catenin pool was evident at 144 hours

post-seeding as cultures approached confluence (Fig. 5A).
Seeding cells at a higher density did not ablate the initial
nuclear translocation of active b-catenin, but the expression of

active b-catenin diminished more rapidly (Fig. 5A).
The formation of adherens junctions has been shown to modulate

the availability of b-catenin for nuclear translocation by

sequestering the protein at the cell membrane (Nelson and Nusse,
2004). We thus sought to determine whether the quality and/or
strength of cell–cell contacts could determine the localisation of
active b-catenin. We used a Ca2+-switch approach, whereby

increasing the exogenous Ca2+ concentration from 0.09 mM to a
nearly physiological concentration (2 mM) results in the formation
of stable E-cadherin-mediated cell–cell contacts (Georgopoulos

et al., 2010). Increased Ca2+ concentration stimulated the formation
of adherens junctions, and, by 48 hours, E-cadherin and some b-
catenin was visible at the membrane (Fig. 5B). In common with the

pattern observed under low Ca2+ conditions (Fig. 2A), strong active
b-catenin expression was detectable in the nucleus at 48 hours post-
seeding, although active b-catenin expression was lost by 72 hours.

Our previous studies have reported that progressive increase in

cell density is associated with downregulation of EGFR–ERK
signalling in NHU cultures (Georgopoulos et al., 2010). EGFR–
ERK blockade with the EGFR inhibitor PD153035 not only

severely reduced nuclear b-catenin localisation, but also
increased the amount of active b-catenin at sites of cell–cell
contact (Fig. 5B). The above observations were corroborated by

western blotting, which revealed a strong (,2.5-fold) increase in
active b-catenin between the 24-hour and 48-hour time-points,
which coincided with peak phospho-ERK levels and an ,11-fold

increase in inactive phospho-GSK3b (supplementary material
Fig. S3). Notably, not only were strong cell contacts per se unable
to sequester active b-catenin to the membrane, but they also did
not alter the functional involvement of b-catenin in NHU cell

proliferation as shown by Ca2+-switch experiments in control and
NHU-b-cat-KD cells (Fig. 4C).

Paracrine activation of Wnt–b-catenin signalling in NHU cells
using exogenous Wnt ligands
We investigated whether exogenous Wnt ligand could activate

canonical Wnt signalling in a paracrine fashion in NHU cells to

regulate urothelial regeneration. We tested the effect of two
independent ligands, Wnt3a and Wnt5a, which were chosen based

on their identification as potential autocrine-expressed Wnt
ligands in our gene expression analysis (above). Wnt3a has
been previously shown to interact with several Fzd receptors,
including Fzd2 and Fzd6, both expressed as transcripts by

proliferating NHU cell cultures. Wnt5a has been shown to act as
both an inhibitor and an activator of the canonical Wnt pathway,
depending on receptor availability; if Fzd4 is present, Wnt5a can

activate canonical signalling; however, if the tyrosine kinase
ROR2 is present, Wnt5a inhibits the canonical Wnt cascade
(Carmon and Loose, 2008). AffymetrixTM analysis indicated that

ROR2 was absent, but that Fzd4 mRNA was present in
proliferating NHU cultures and, in light of the high Wnt5a
mRNA expression levels detected in proliferating NHU cultures,

we anticipated that Wnt5a-driven canonical signalling should
prevail.

Wnt3a and Wnt5a ligands were obtained from engineered L
cell derivatives that actively secrete high levels of soluble ligand

into the culture medium (Willert et al., 2003; Willert, 2008). We
first confirmed that the L-Wnt3a and L-Wnt5a cells expressed the
appropriate ligand by RT-PCR (Fig. 6A) and then verified their

functionality using the Wnt-responsive SaOS-2 cells. To activate
Wnt signalling, conditioned medium from each L cell line
(cultured in medium containing 10% FBS) was harvested.

Treatment with L-Wnt3a- but not L-Wnt5a-conditioned medium
led to nuclear active b-catenin that was equivalent in intensity to
that observed following LiCl treatment (Fig. 6B, top row);

concordantly, activation of Wnt signalling resulted in an increase
in TCF promoter activity (Fig. 6C).

Addition of conditioned medium from all three L cell lines led
to an increase in the amount of active b-catenin present at NHU

cell–cell contact points (Fig. 7A), indicative of adherens junction
formation due to the Ca2+ concentration of the DMEM (1.8 mM).
In EGFR-blocked NHU cultures, incubation with either L-Wnt3a-

or L-Wnt5a-conditioned medium resulted in strong nuclear active
b-catenin localisation that was as intense as that observed in the
presence of the GSK3b antagonist (Fig. 7A, lower panels).

Accordingly, a significant increase in TCF reporter activity was
observed when NHU cells were pre-treated and maintained in
EGFR inhibitor and incubated with either L-Wnt3a- or L-Wnt5a-
conditioned medium compared with L-con-conditioned medium

(Fig. 7B). This demonstrated that NHU cells could respond
canonically to both exogenous Wnt3a and Wnt5a ligands, but this
was only evident following blockade of crosstalk from the EGFR

signalling cascade.

NHU cultures are capable of autocrine/paracrine Wnt-ligand-
mediated activation and nuclear localisation of b-catenin
Because the addition of serum to NHU cell cultures will affect the
proliferative phenotype and trigger differentiation (Cross et al.,

2005), it was important to provide exogenous Wnt ligand to NHU
cells in conditioned medium containing minimal serum.
However, adaptation to 1% FBS resulted in L-cell derivatives
failing to produce significant amounts of bioactive Wnt ligand

when assessed in SaOS-2 cells (Fig. 6C). As palmitoylation is an
essential post-translational modification for the biological activity
of secreted Wnt ligands (Komekado et al., 2007; Willert et al.,

2003), we titrated palmitic acid as a supplement in L cell cultures
grown in 1% FBS (supplementary material Fig. S4).
Supplementation of L-cell derivative cultures with 80 mM

palmitic acid restored the functionality of secreted Wnt ligand,
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as evidenced both by the clear induction of nuclear b-catenin
expression in SaOS-2 cells (Fig. 6B, lower panels) and by

equivalent TCF promoter activity to that observed in SaOS-2
cells treated with LiCl (Fig. 6D).

As the secretion of bioactive Wnt from L cells was only

achieved in the presence of serum or palmitic acid, the NHU
cells grown in standard keratinocyte serum-free medium
(KSFM) were unlikely to produce bioactive Wnt ligand.

NHU cell cultures had been shown above to express Wnt3,
Wnt5a, Wnt6 and Wnt7a transcripts, and to determine
whether NHU cells had the potential to secrete functional Wnt
ligand that could be used to drive canonical Wnt signalling

in an autocrine/paracrine fashion, we prepared conditioned
medium from NHU cells cultured in medium supplemented
with either serum (NHU+FBS CM) or palmitic acid (NHU+PA

CM). We initially tested these conditioned media for biological

activity in SaOS-2 cells, where treatment with either NHU-
derived conditioned medium resulted in nuclear translocation of

active b-catenin, which was nearly as intense as that observed in
cells treated with LiCl (Fig. 8B). By contrast, conditioned
medium from control NHU cell cultures did not evoke any

nuclear translocation of b-catenin in SaOS-2 cells (Fig. 8B,
Control).

The effect of NHU+PA CM was tested on parallel homologous

NHU cultures that were pre-treated with PD153035 inhibitor to
block EGFR signalling; this was compared with vehicle and
SB415286-treated control cultures. Treatment of EGFR-blocked
NHU cells with NHU+PA CM did not result in population-wide

nuclear active b-catenin (Fig. 8A), or any increase in TCF promoter
activity (not shown). Strikingly, however, there was a consistent
sub-population of cells that showed intense nuclear active b-catenin

(Fig. 8A). Quantification of the immunofluorescence microscopy

Fig. 5. The effect of culture density and calcium-mediated
cell–cell contacts on the activation and localisation of b-
catenin. (A) NHU cells were seeded at 1.256104 cells/cm2

(Low) or 56104 cells/cm2 (High) and cultured for a total of 24, 48
or 72 hours (and 144 hours for low-density cultures) in standard
culture medium. At the indicated time-points, cells were fixed
and immunolabelled with antibodies for detection of active b-
catenin and E-cadherin. (B) NHU cells were seeded at standard
density (2.56104 cells/cm2) and cultured for a period of 24, 48 or
72 hours in medium supplemented with 2 mM CaCl2 (Phys
Ca2+) in the presence or absence of 1 mM EGFR inhibitor
(PD153035). Expression of active b-catenin and E-cadherin at
the indicated time-points was detected as in A. Results are
representative of at least three independent experiments. Scale
bar: 50 mM.
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images showed that some 5% of cells were positive for nuclear

active b-catenin. Similar results were obtained with NHU+FBS CM
(not shown).

DISCUSSION
The capacity of Wnt and b-catenin to crosstalk with and modulate
the function of the MAPK pathways and, conversely, the capacity

Fig. 6. Activation of Wnt–b-catenin signalling in SaOS-2 cells by treatment with Wnt3a- and Wnt5a-ligand-containing conditioned medium. (A) Wnt3a
and Wnt5a secreting L cells (L-Wnt3a and L-Wnt5a, respectively) and the parental control L cell line (L-Con) were tested by RT-PCR for expression of the
respective Wnt ligand mRNA. PCR products were resolved by 1% (w/v) agarose gel electrophoresis and visualised using UV trans-illumination. Genomic DNA
(g-DNA con) was used as a template control; GAPDH expression served as a loading control and to verify the presence of intact cDNA. Reverse transcriptase
(RT)-negative (RT2) samples were included to prove the absence of g-DNA contamination. (B) Active b-catenin expression was detected by indirect
immunofluorescence microscopy in SaOS-2 cells after a 24-hour treatment with conditioned medium (CM) from control, L-Wnt3a and L-Wnt5a cells (L-Con CM,
L-Wnt3a CM and L-Wnt5a CM, respectively), as detailed in Materials and Methods. Conditioned medium was obtained from L cells cultured in standard medium
supplemented with 10% (v/v) serum (10% FBS CM), medium with 1% (v/v) serum (1% FBS CM) and medium containing 1% (v/v) serum supplemented
with 80 mM palmitic acid (1% FBS CM+PA). Treatment with L-con CM supplemented with 20 mM LiCl served as a positive control. Results are representative
of three experiments. Scale bar: 50 mm. (C) SaOS-2 cells were transfected with either TOPFLASH or FOPFLASH plasmid along with transfection control pRL-
CMV vector. At 24 hours post-transfection, cells were treated with L-Con CM, L-Wnt3a CM and L-Wnt5a CM, obtained from L cells cultured in medium
supplemented with 10% (v/v) serum or 1% (v/v) serum. After 24 hours, dual luciferase reporter assays were performed. Data show the mean (6s.d.) firefly
luciferase activity (three or four technical replicates following normalisation to transfection control, three independent experiments) (D) SaOS-2 cells were
transfected as described for C and, 24 hours later, were treated with L-Con CM or L-Wnt3a CM that was obtained from L-Con and L-Wnt3a cells cultured in
medium supplemented with 1% (v/v) serum, medium containing 1% (v/v) serum supplemented with 80 mM palmitic acid or medium supplemented with 10% (v/v)
serum. After 24 hours, dual luciferase reporter assays were performed as for C. Treatment with 20 mM LiCl served as a positive control and negative
controls included solvent-balanced conditioned medium [containing 0.1% (v/v) ethanol – not shown] and transfection alone with no treatment (Control).
***P,0.001; NS, non-significant.
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Fig. 7. Paracrine Wnt–b-catenin signalling
activation in NHU cells: treatment with exogenous
Wnt3a and Wnt5a ligands in EGF-responsive and
EGFR-blocked cells. (A) To detect active b-catenin
protein expression by indirect immunofluorescence
microscopy, NHU cells were pre-treated for 24 hours in
the presence or absence of 1 mM EGFR inhibitor
(PD153035). This was followed by a 24-hour treatment
with conditioned medium (CM) from control (L-con), L-
Wnt3a and L-Wnt5a cells (L-Con CM, L-Wnt3a CM and
L-Wnt5a CM, respectively) obtained from L cells
cultured in medium supplemented with 10% (v/v)
serum. These treatments were carried out in the
absence (10% FBS CM) or presence (PD153035+10%
FBS CM) of EGFR inhibitor. Parallel cultures
additionally treated with 10 mM GSK3b inhibitor
(SB415286) were used as positive controls for b-
catenin nuclear translocation. Results are
representative of three experiments. Scale bar: 50 mm.
(B) NHU cells were transfected with either TOPFLASH
or FOPFLASH plasmid along with transfection control
pRL-CMV vector. Starting at 16 hours post-transfection,
cells were pre-treated with or without 1 mM EGFR
inhibitor (PD153035) for 24 hours. Following this, cells
were cultured in L-Con CM, L-Wnt3a CM or L-Wnt5a
CM obtained from L cells cultured in medium
supplemented with 10% (v/v) serum. These treatments
were performed in the absence or presence of EGFR
inhibitor. At 24 hours post-treatment, dual luciferase
assays were performed. Data show the mean (6s.d.)
firefly luciferase activity (three or four technical
replicates following normalisation to transfection
control, three independent experiments). ***P,0.001.

Fig. 8. Autocrine Wnt–b-catenin signalling in NHU cells. (A) NHU cells were pre-treated for 24 hours with standard medium (KSFMc) supplemented with
1 mM EGFR inhibitor (PD153035), before treatment for 24 hours with conditioned medium (CM) from NHU cells cultured in KSFMc supplemented with 80 mM
palmitic acid (NHU+PA CM). Expression of active b-catenin was detected by immunofluorescence microscopy. Parallel cultures treated with 10 mM GSK3b
inhibitor (SB415286) were used as positive controls for b-catenin nuclear translocation. Negative controls included treatment with conditioned medium from NHU
cells cultured in KSFMc containing 0.1% (v/v) ethanol alone (Control), as well as non-treated cells (not shown). Two representative images from one of
three independent experiments are shown for NHU cells treated with conditioned medium (NHU+PA CM). White arrowheads, strong nuclear labelling in a subset
of treated NHU cells. (B) SaOS-2 cells were treated for 24 hours with conditioned medium from NHU cells cultured in standard medium (KSFMc) in the
presence of 10% (v/v) serum (NHU+FBS CM) or conditioned medium from NHU cells cultured in standard medium supplemented with 80 mM palmitic acid.
Expression of active b-catenin was detected by immunofluorescence microscopy. Treatment with 20 mM LiCl served as a positive control for b-catenin
activation. Negative controls were as described in A. For both A and B, lower panels show Hoechst 33258 labelling of nuclei. Scale bar: 50 mm.
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of RTKs to trigger b-catenin signalling are characteristics that are
generally associated with cancer-derived cell lines where, by

definition, there is dysregulation of normal homeostatic growth
regulatory pathways. Using an epithelial cell culture system that
retains normal features by being both of finite lifespan and
competent to undergo differentiation, we have shown here that

bidirectional interactions between Wnt–b-catenin and RTK–
MAPK pathways operate contextually within a single epithelial
cell type to regulate proliferation.

In conditions that inhibit the formation of stable adherens
junctions, NHU cell cultures showed intense nuclear b-catenin
staining associated with rapid population growth. We found a

correlation between active b-catenin expression, ERK activity
(phospho-42/44) and inactive (Ser9 phosphorylated) GSK3b,
whereas blockade of EGFR or MAPKs reduced the expression

and/or nuclear translocation of active b-catenin, ablated phospho-
GSK3b and impaired TCF-mediated transcription. This crosstalk
from MAPKs to b-catenin appears to be mediated through the
phosphorylation of GSK3b and potentially by the ERK-mediated

activation of the ribosomal proteins p70 S6 (officially known as
RPS6KB2) and p90 RSK (officially known as RPS6KA1), as
described in a variety of tumour cells (Ding et al., 2005).

A functional Wnt–b-catenin pathway has not been previously
demonstrated in NHU cells, but analysis of the transcriptome of
proliferating cells revealed the potential for an intact signalling

pathway, with the expression of all key Wnt pathway components
and absence of antagonists. Further compelling evidence for Wnt
pathway activity in proliferating NHU cells was obtained from

detection of Axin2, a feedback repressor and hallmark target of
canonical Wnt signalling (Jho et al., 2002; Li et al., 2010), along
with other downstream gene targets including survivin (Hughes
and Brady, 2005), Twist (Zhang et al., 2001), SKP2 (Tang et al.,

2009) and cyclin D1 (Howe et al., 2003). By contrast, Wif1, a
potent extracellular antagonist of Wnt signalling, was only
upregulated in quiescent contact-inhibited NHU cell cultures

(supplementary material Fig. S1). Wif1 is frequently
hypermethylated in urothelial carcinoma (Urakami et al., 2006)
and its knockdown increases the cell proliferation rate, probably

through increased transcription of c-Myc (Tang et al., 2009). Our
results imply a homeostatic role for Wif1 in tissue quiescence
through the silencing of Wnt signalling.

Initial experiments to activate Wnt pharmacologically with

SB415286 failed to elicit a significant response because of high
basal b-catenin activity. Thus, activation with Wnt ligand neither
led to further significant increases in already substantial basal

TCF activity, nor did it mediate any further cell proliferation
increase in already highly proliferative NHU cells. Blockade of
EGFR by pre-treatment with PD153035 efficiently inhibited all

endogenous b-catenin activity and thence enabled SB415286 to
influence b-catenin nuclear translocation and TCF-mediated
transcription. This highlights not only a role for b-catenin

crosstalk in mediating EGFR signalling in NHU cells, but also
reveals that, in the absence of dominant EGFR signalling,
alternative mechanisms of b-catenin activation are able to
compensate to drive NHU cell proliferation. The fact that

signalling downstream of EGFR must be completely blocked to
observe a clear response with SB415286 implies that
phosphorylation-mediated inhibition of GSK3b by MAPKs/

ERKs might not be the only point of crosstalk between EGFR
and b-catenin signalling cascades. The presence of a residual
nuclear active b-catenin pool in NHU cells after treatment with

U0126 indicates that a second convergence point between EGFR

and b-catenin signalling pathways might exist. One such
convergent point might be the EGFR tyrosine kinase itself –

EGFR tyrosine kinase activity has previously been shown to
phosphorylate b-catenin at Tyr654, destabilising the E-cadherin–
b-catenin complex and releasing b-catenin for nuclear
translocation (Kinch et al., 1995; Müller et al., 1999; Piedra

et al., 2003).
Our results provide evidence that a bidirectional positive-

feedback loop exists between Wnt–b-catenin and EGFR–ERK in

NHU cells to efficiently drive sustained cellular proliferation. We
have shown that EGFR-driven ERK-mediated inactivation of
GSK3b results in b-catenin–TCF activation in NHU cells to

promote proliferation. Blockade of EGFR–ERK (but not PI3K–
AKT) signalling unmasked the potential for Wnt-pathway-
mediated b-catenin activation, which, by triggering the

activation of ERK, alleviated the ‘brake’ on proliferation
exerted by EGFR blockade.

The knockdown of b-catenin (in NHU-b-cat-KD cells) caused
significant reduction in NHU cell proliferation, resulting in a

reduced proportion of NHU-b-cat-KD cells in cell cycle (based
on Ki67 expression). b-catenin knockdown caused a significant
reduction in phospho-ERK by an unknown mechanism, although

it has been speculated that Raf1 is involved in activating ERK
downstream of b-catenin (Yun et al., 2005). As a result of b-
catenin knockdown, E-cadherin and phospho-AKT expression

were both increased. The latter result is in agreement with our
previous findings that EGFR–ERK and AKT signalling pathways
are mutually exclusive in driving NHU cell proliferation

(Georgopoulos et al., 2010). Thus, following the formation of
stable adherens junctions (Georgopoulos et al., 2010) or b-catenin
knockdown (here), NHU cells switch from a predominantly ERK-
driven mode of proliferation to one that utilises the PI3K

pathway. We have previously shown that NHU cell cultures
treated with the PI3K antagonist LY294002 incur a short-lived
inhibition of proliferation that is overcome within days

(MacLaine et al., 2008), most probably as a result of the
downregulation of E-cadherin, leading to the release of b-catenin
to the nucleus. Here, growth assays performed in the presence of

LY294002 revealed that NHU-b-cat-KD cells are more
dependent on the PI3K–AKT pathway. Thus, NHU cells have
the machinery to adapt and switch between the two growth-
regulatory pathways. In one, EGFR signalling involves the

activation of b-catenin, which, in turn, acts as a suppressor of the
second, contact-dependent PI3K–AKT pathway.

Under adherens-junction-promoting conditions, active b-

catenin is sequestered at intercellular junctions, resulting in the
downregulation of b-catenin-regulated gene expression and
increased cell–cell adhesion. Such sequestration of b-catenin is

antagonised by a number of growth factor signalling mechanisms
that either disrupt the adherens junction or downregulate E-
cadherin expression and lead to a reduction in cell–cell contact

coupled with an increase in TCF-mediated gene transcription. In
this manner, b-catenin acts as a key coordinator of growth-factor-
induced proliferation and cell–cell adhesion (Nelson and Nusse,
2004). When bound as an intracellular component of the adherens

junction, b-catenin is spatially separated from the soluble
cytoplasmic pool and is unable to translocate to the nucleus.
In subconfluent cultures, b-catenin is found to be Tyr-

phosphorylated at its C-terminal domain and does not interact
with the components of the adherens junction (Müller et al., 1999;
Shibamoto et al., 1994; Takeichi, 1995). Examples of Tyr-

phosphorylation events that disrupt the adherens junction include
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phosphorylation of b-catenin at Tyr654 by Src or EGFR
(disrupting the cadherin–b-catenin complex) and Tyr142

phosphorylation by Fer or Fyn (abrogating the interaction of b-
catenin with a-catenin) (Kinch et al., 1995; Müller et al., 1999;
Piedra et al., 2001; Piedra et al., 2003; Roura et al., 1999;
Takeichi, 1995). By contrast, confluent cultures mainly express

non-Tyr-phosphorylated, Ser/Thr-phosphorylated b-catenin,
which localises at the membrane as an intrinsic component of
the adherens junction (Müller et al., 1999; Shibamoto et al., 1994;

Takeichi, 1995). Also, long-term EGF exposure can enhance E-
cadherin repression by b-catenin–TCF-mediated expression of
the transcriptional repressors Snail and Twist, suggesting a

positive-feedback mechanism between the two pathways (Lickert
et al., 2000), which is in agreement with our observation made
here of Twist expression in proliferative NHU cells where b-

catenin is actively signalling.
Seeding NHU cells at low density resulted in prolonged nuclear

expression of b-catenin, whereas high seeding densities resulted in
weak nuclear expression. The most obvious explanation for this

apparent confluence-dependent effect on b-catenin activity is
provided by our previously published findings showing EGFR
downregulation in confluent NHU cell cultures (Varley et al.,

2005). The present work corroborates these published findings, as a
reduction in the expression of phospho-ERK was observed as NHU
cultures became more densely populated. The ability of adherens

junction formation to modulate the availability of b-catenin for
nuclear translocation by sequestering the protein at the cell
membrane could potentially be an important link in modulating the

proliferation-quiescence switch in NHU cells. In low-Ca2+ growth
medium, such as KSFMc, Ca2+-dependent cell–cell engagement is
weak and b-catenin expression at the cell membrane is low.
However, stimulating adherens junction engagement by increasing

the concentration of extracellular Ca2+ did not reduce the levels
of nuclear b-catenin or the activity of TCF. These results suggest
that, once released from the destruction complex, b-catenin

preferentially translocates to the nucleus. How this is regulated
remains unclear, but evidence suggests that activated EGFR can
phosphorylate b-catenin at Tyr654, negating its ability to interact

with E-cadherin at the adherens junction (Kinch et al., 1995; Piedra
et al., 2003). Our findings support this scenario, as blockade of
EGFR not only reduced the level of nuclear b-catenin but also
increased the amount of b-catenin at the membrane. Therefore, our

observations demonstrate that the quality of cell–cell contacts,
although important in increasing the level of active b-catenin
sequestered at sites of contact, does not alter the ability of b-catenin

to translocate to the nucleus, nor does it interfere with its function
in epithelial growth. Instead, b-catenin activation is predominantly
dictated by proliferative signalling cues, and its gradual

downregulation in cultured cells coincides with progression from
cell proliferation to quiescence. Collectively, our study suggests
that b-catenin might be crucial in the proliferation-quiescence

switch seen during tissue regeneration. Overall, there appears to be
a complex communication network between EGFR signalling,
Wnt–b-catenin signalling and cell–cell contact, as summarised in
Fig. 9. We suggest that b-catenin plays a central role in the

regulation of this network, which strengthens the already
prominent role of b-catenin in the maintenance of normal
epithelial tissue homeostasis and renders it a potential target for

deregulation in the transition from normal to malignant cell
growth.

In addition to pharmacological activation of Wnt signalling,

we examined whether biologically active Wnt ligand family

members could trigger canonical Wnt signalling in NHU cells.
For this purpose, we utilised L-cell derivatives producing Wnt

ligands in conditioned medium. Previous reports on the
production of bioactive Wnt ligand have recommended the
inclusion of 10% (v/v) serum when harvesting conditioned
medium, as serum contains albumin-bound palmitic acid that is

required for Wnt post-translational palmitoylation (Povelones and
Nusse, 2005). However, this imposed a practical difficulty for
studying exogenous Wnt signalling in NHU cell cultures and for

assessing whether NHU cells were capable of producing
autocrine Wnt ligand, as serum is known to induce NHU
differentiation (Cross et al., 2005). Wnt ligands are hydrophobic

in nature owing to the many essential lipid modifications that
occur during the maturation process. Post-translational
modification of Wnt occurs in the ER and begins with the

addition of a hydrophobic palmitate moiety, a process known as
palmitoylation, which occurs on the first, absolutely conserved
cysteine residue (Cys77 in Wnt 3a and Cys104 in Wnt 5a)
(Reichsman et al., 1996; Willert et al., 2003) and which is

essential for activity but not for secretion itself (Komekado et al.,
2007; Willert et al., 2003). In our study, conditioned medium
from serum-reduced Wnt-secreting L cell lines did not produce

significant amounts of bioactive Wnt ligand and thus supported
the results presented in previous publications (Willert et al., 2003;
Willert, 2008). To overcome this, palmitic acid was added to the

growth medium of L Wnt-3a cells to replace serum. Because of
issues with the solubility and precipitation of palmitic acid in
aqueous medium (not shown) a maximum concentration of

80 mM palmitic acid was obtained (compared with 110 mM in
medium containing 10% FBS, as measured by gas-liquid
chromatography; not shown). This was adequate to restore Wnt
ligand secretion and activity to ,50% of that observed with

serum-supplemented medium, thus confirming that palmitic acid
was required for the production of bioactive Wnt ligand. This
observation provides the first conclusive evidence that serum can

be reduced when harvesting bioactive Wnt ligand, but only if the
growth medium is supplemented with palmitic acid. More
importantly, by exploiting the successful palmitic-acid-based

approach to produce active Wnt ligands, we were able to
demonstrate for the first time that biologically active Wnt ligands
can induce canonical Wnt–b-catenin signalling in NHU cells.

Our studies also provided some intriguing observations when

we examined the ability of NHU cells to carry out autocrine/
paracrine Wnt signalling by endogenously produced Wnt ligands.
We demonstrated that EGFR-blocked NHU cells that had been

incubated with conditioned medium from isogenic palmitic-acid-
treated NHU cell cultures showed limited overall Wnt pathway
activation, which was restricted to a small proportion of NHU

cells that displayed high levels of active nuclear b-catenin after
treatment. At present, the basis for this heterogeneity and its
implications are unclear; however, the data imply that there might

be a small subset of cells capable of driving self-renewal in
response to autocrine/paracrine Wnt signalling. It is tempting to
speculate that this might represent a subpopulation of cells with
the ability to initiate their own programme of self-renewal, such

as a stem cell population.
The presence of resident adult stem cell populations has been

described for many organs, including brain, lung and heart, as

well as many epithelial tissues, including liver, colon and skin
(Mimeault and Batra, 2008). Although research into urothelial
stem cells is ongoing, no unequivocal resident stem cell

population has been identified in human urothelium, although
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in situ observations have been used to infer a basal progenitor
(Gaisa et al., 2011). In the rat, a subpopulation of highly clonogenic
BrdU-label-retaining (i.e. long lived) basal cells have been
identified and have been shown to express markers consistent

with stem cells in other tissues (including Bcl-2, p63, KRT14 and
b1 integrin) (Kurzrock et al., 2008). In the mouse, a subset of
KRT5+ basal urothelial cells have been shown to express Sonic

hedgehog (Shh), a ligand that is important during embryonic
development. The relevance of these studies to human urothelium
remains unclear, as there appear to be fundamental differences in

the regulation of urothelial regeneration between human and rodent
urothelium in vivo (Chopra et al., 2008), and the plasticity to revert
from a suprabasal to a basal phenotype is a feature of human

urothelial cells, at least in vitro (Wezel et al., 2013). The role of
Wnt–b-catenin signalling has been more widely studied in rodent
urothelium than in human, and the pathway has been found to play
an important role in tissue homeostasis. In the mouse, proliferation

in response to bacterially or chemically induced injury is regulated
by signal feedback between the basal urothelial cells and the
underlying stromal cells. After injury, basal urothelial cells were

seen to secrete Shh, evoking the expression of Wnt ligands from
the underlying stroma. Both stromal and urothelial cells
proliferated in response to Wnt ligand, restoring urothelial

integrity (Shin et al., 2011). Our observation of autocrine/
paracrine Wnt–b-catenin activation in a subset of NHU cells
might represent an important step towards identifying self-renewal
mechanisms in human urothelium.

In summary, our study provides evidence for a bi-directional
signalling loop between Wnt–b-catenin and RTK-driven MAPK
signalling pathways that serves to drive proliferation in a normal
epithelial cell population. This has important implications for

normal epithelial physiology, where the crosstalk could represent
an extremely efficient mechanism to rapidly initiate, accelerate
and sustain cell growth during tissue regeneration, for instance,

following tissue damage. Upon completion of tissue regeneration
and establishment of contact inhibition, rapid cell-contact-
mediated downregulation of RTK signalling (combined with the

induction of inhibitory Wnt components) would attenuate b-
catenin signalling, thus switching off the signalling feedback loop
and, subsequently, cell proliferation. Moreover, this efficient

mechanism would represent a molecular target in carcinogenesis,
as its dysregulation (constitutive activation) would provide a
strong growth advantage during malignant transformation
(Ahmad et al., 2011a; Ahmad et al., 2011b).

MATERIALS AND METHODS
Reagents and antibodies
Pharmacological inhibitors PD153035, U0126 and LY294002 were

purchased from VWR (Merck). GSK3b inhibitors SB415286 and LiCl

were from Sigma Aldrich. The antibodies used were against; active b-

catenin dephosphorylated on Ser37 and Thr41 (8E7; a kind gift from

Hans Clevers, Utrecht University), total b-catenin (C2206; Sigma

Aldrich), b-actin (AC-15; Sigma), E-cadherin (HECD-1; Abcam), total

ERK (16; Transduction Laboratories), phospho-42/44 MAPK

(D13.14.4E; Cell Signalling Technology), AKT (7; BD Biosciences),

Fig. 9. Model of Wnt–b-catenin signalling crosstalk with EGFR–ERK and cell–cell-contact-mediated b-catenin regulation and their roles in NHU cell
proliferation. (A) At low density, EGFR present on the NHU cell surface is activated by EGF ligand. EGFR activation leads to phosphorylation of ERK (P-ERK),
subsequent translocation of phospho-ERK to the nucleus and induction of cell proliferation. Phospho-ERK inactivates the destruction complex, allowing b-
catenin to accumulate and enter the nucleus. (B) As culture density increases, the intense signalling crosstalk between b-catenin and EGFR–ERK results in a
positive-feedback loop that accelerates growth and supports a highly proliferative (regenerative) phenotype, thus leading to rapid increases in cell numbers.
Interestingly, the activities of b-catenin and AKT appear to be mutually exclusive. (C) Confluence-induced reduction in the expression of EGFR leads to a
decline in EGFR signalling and reduction in phospho-inhibition of GSK3b. As a consequence, the activity of the destruction complex is reinstated.
Moreover, cytosolic b-catenin is sequestered to the cytoplasmic tail of E-cadherin and, as a result, extensive adherens junctions form. Once a critical number of
cell–cell contacts have been established, excess b-catenin is targeted for degradation by the destruction complex. Phospho-ERK and active b-catenin levels are
low, cells enter G1 growth arrest and cells exit the regenerative response.
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phospho-473 AKT (clone D9E; Cell Signalling Technology) and

phospho-9 GSK3b (AB30619; Abcam). The secondary antibodies were

from Invitrogen. The secondary antibodies for immunofluorescence

microscopy were Alexa-Fluor-488-conjugated goat anti-mouse-IgG and

Alexa-Fluor-594-conjugated goat anti-rabbit-IgG, and those used for

western blotting were Alexa-Fluor-680-conjugated goat anti-mouse-IgG,

Alexa-Fluor-800-conjugated goat anti-rabbit-IgG and Alexa-Fluor-680-

conjugated donkey anti-goat-IgG.

NHU cell culture
Surgical specimens of normal ureteric urothelium were obtained with

NHS Research Ethics Committee approval and with informed consent

from patients with no histological evidence of urothelial dysplasia or

malignancy. The preparation and maintenance of finite NHU cell lines

was as detailed previously (Southgate et al., 1994; Southgate et al.,

2002), and NHU cultures were maintained in complete supplemented

keratinocyte serum-free medium (KSFMc). In the studies described here,

an assessment of cell death is not included as it did not play a

contributory role.

Cell lines
The b-catenin-knockdown shRNA-expressing sub-line (NHU-b-cat-KD)

and its isogenic control-shRNA-expressing sub-line (NHU-Con) have

been described previously (Georgopoulos et al., 2010). SaOS-2 cells were

obtained from the ATCC and cultured in McCoy’s 5A medium

supplemented with 15% (v/v) FBS. L-Wnt3a, L-Wnt5a and parental L

cells (Willert, 2008) were provided by Paul Genever (University of York)

and were cultured in DMEM containing 10% (v/v) FBS. These lines were

used for the production of Wnt-ligand-containing conditioned medium.

Production of conditioned medium
Conditioned medium was collected from L-cell derivatives as described

previously (Qiang et al., 2009) and filtered through 0.2-mm TuffrynH
filters (VWR) prior to immediate use or storage at 4 C̊. For some

experiments, 3-day-conditioned medium was collected from L cell lines

or NHU cells maintained in medium [DMEM with 1% (v/v) FBS or

KSFMc, respectively] and supplemented with 80 mM palmitic acid

(added to prewarmed medium from a 20 mg/ml stock in ethanol).

Conditioned medium was tested for its ability to activate the canonical

Wnt pathway in SaOS-2 and NHU cells by dilution 1:10 (v/v) with

standard growth medium for each target cell type (i.e. McCoy’s 5A with

15% FBS or KSFMc, respectively).

Affymetrix data analysis
Expression array data analysed in the present study were selected from an

experimental series analysed using AffymetrixTM GeneChip Human

Genome U133 Plus 2.0 (HG-U133 Plus 2.0) arrays, as described

previously (Böck et al., 2014), and the data are available in the

ArrayExpress database under the accession number E-MTAB-2188.

Affymetrix .CEL files were analysed using ArrayassistTM 5.5.1 software

(Agilent). Background was removed and chips were normalised using the

Microarray suite 5 (MAS5) algorithm, before an absolute calls database was

generated. The arrays representing non-differentiated NHU cell cultures

over a time series of 6, 24, 72 and 144 hours were assessed for the

expression of cell-cycle-associated MKI67 and the ‘proliferation signature’

genes PLK1, BUB1 and TOP2A (Tago et al., 2000). From this, the 24-hour

and 144-hour cultures were selected for study as representing the most

and least proliferative time-points, respectively. The data on the signal

intensities for these two arrays were transferred to ExcelH and IngenuityH
Pathway Analysis (IPA) software (Ingenuity Systems) for further analysis.

Reverse transcription-PCR and real-time PCR analysis
Quantification of transcript expression was conducted by real-time PCR

using SYBRH green reagents (Applied Biosystems) or by semi-

quantitative reverse transcription (RT)-PCR. Forward and reverse target

gene primer sequences are provided in the supplementary material Table

S1. RNA was isolated, cDNA synthesised and PCR performed using

protocols and reaction profiles described elsewhere (Fleming et al.,

2012). Genomic DNA (gDNA) was used as the control for RT-PCR and

was purified from cultured cells using a DNeasy Blood and Tissue Kit

(Qiagen).

Western blotting
Immunoblotting was performed as described elsewhere (Georgopoulos

et al., 2010) and involved SDS-PAGE and protein transfer onto

Immobilon-FL polyvinylidene fluoride (PVDF) membrane (Millipore)

and probing with primary antibodies and then appropriate secondary

antibodies. Immunolabelling was visualised on a LI-COR OdysseyTM

infrared imaging system and band intensity was quantified by

densitometric analysis using Odyssey software.

Immunofluorescence microscopy
NHU and SaOS-2 cells were seeded at a density of 56103 to 26104 cells/

well (depending on the experiment) on Teflon-coated 12-well glass slides.

Cells were fixed either in a 1:1 (v/v) mixture of methanol:acetone or in 10%

(v/v) formalin in PBS. Formalin-fixed slides were permeabilised in 0.1%

(w/v) Triton X-100. Nuclei were visualised with 0.1 mg/ml Hoechst 33258,

and proteins of interest were detected with the specific primary antibody

followed by appropriate secondary conjugated to Alexa Fluor 488 or Alexa

Fluor 594. Slides were examined under epi-fluorescence illumination on an

Olympus BX60 microscope, and nuclear and cytoplasmic labelling were

quantified using Photoshop (Adobe) as described previously (Hubbell et al.,

2002). Briefly, Hoechst 33258 images were superimposed onto the adjacent

fluorescent image to be quantified. Background labelling was normalised

and the Hoechst 33258 image was used as a mask to calculate mean nuclear

intensity from the histogram. The selection was then inversed to give

cytoplasmic and membrane labelling intensities.

Cell proliferation assays
Cell proliferation was indirectly determined by measurement of cell

culture biomass using the MTT assay. Cells were seeded onto 96-well

plates at a seeding density of 26103 cells/well (under low or

physiological Ca2+ conditions for NHU cells) and were incubated for

24 hours at 37 C̊ (day 21). Cells were treated with pharmacological

inhibitors (single inhibitors or combinations thereof) in triplicate wells

(day 0) and plates were assayed by MTT on days 0, 1, 3 and 6. A solvent

balanced control was included at each time-point. Medium and inhibitors

were replenished on day 3.

Luciferase reporter assays
NHU and SaOS-2 cells were seeded onto 24-well plates at a density of

46104 cells/well. The following day, 0.5 mg of TOPFLASH or FOPFLASH

vector (along with 0.01 mg of pRL-CMV plasmid) was transfected into

NHU cells using FugeneH HD reagent (Promega). Transfected cells were

incubated for 16 hours, the medium was replaced with normal growth

medium and cells were treated with Wnt ligand or GSK3b inhibitor for 24–

72 hours. Lysates were prepared and Dual Luciferase Assays were

performed as recommended by the manufacturer (Promega).

Statistical analysis
Statistics were performed using GraphPad InStat v3.05 (GraphPad).

Parametric statistics [mean and s.d. (n21)] were used for descriptive

purposes, and tests of significance were by means of a two-tailed

Student’s t-test – significance was assumed when P#0.05.
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