
University of Huddersfield Repository

Sutcliffe, Victoria

Synthesis and Reactivity of β-Sultams with the Potential to Act as Metallo-Enzyme Inhibitors

Original Citation

Sutcliffe, Victoria (2013) Synthesis and Reactivity of β-Sultams with the Potential to Act as 
Metallo-Enzyme Inhibitors. Masters thesis, University of Huddersfield. 

This version is available at http://eprints.hud.ac.uk/id/eprint/19279/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



 

SYNTHESIS AND REACTIVITY OF      

β-SULTAMS WITH THE POTENTIAL TO 
ACT AS METALLO-ENZYME 

INHIBITORS 

 

 VICTORIA LOUISE SUTCLIFFE 

 

A thesis submitted to the University of Huddersfield in partial fulfilment of the 

requirements for the degree of Master of Philosophy 

 

The University of Huddersfield  

 

Submission date: August 2013 

 



 

 

2 

 

Copyright statement 

i. The author of this thesis (including any appendices and/or schedules to this 
thesis) owns any copyright in it (the “Copyright”) and s/he has given The 

University of Huddersfield the right to use such copyright for any administrative, 

promotional, educational and/or teaching purposes. 

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance 

with the regulations of the University Library. Details of these regulations may be 
obtained from the Librarian. This page must form part of any such copies made. 

iii. The ownership of any patents, designs, trademarks and any and all other 

intellectual property rights except for the Copyright (the “Intellectual Property 

Rights”) and any reproductions of copyright works, for example graphs and 
tables (“Reproductions”), which may be described in this thesis, may not be 

owned by the author and may be owned by third parties. Such Intellectual 

Property Rights and Reproductions  cannot and must not be made available for 

use without the prior written permission of the owner(s) of the relevant 
Intellectual Property Rights and/or Reproductions 

 

 



 

 

3 

 

Abstract 
 

 

 
Enzyme inhibition forms the basis of much of the medicinal chemistry used in the 

treatment of disease. β-Sultams are cyclic sulfonamides which are both β-lactam 

analogues and potential pro-drugs of taurine and substituted taurines: as their 

hydrolysis products. Two β-sultams, their hydrolysis products and a range of 
dicarboxylic acids were tested as inhibitors of BcII, a metallo-β-lactamase enzyme. 

The two β-sultams, their hydrolysis products and some related compounds were also 

tested as inhibitors of glutamine synthetase following work showing that β-sultam 

has an effect on neurotransmission in the CNS. 

 
A novel β-sultam, 1,2-thiazetidine-3-carboxylate-1,1-dioxide (3-carboxy-β-sultam), 

has been synthesised via a four-step process from L-cystine including the removal of 

a benzyl ester group from benzyl 3-carboxylate-β-sultam utilising sodium in liquid 

ammonia. The product has been characterised by NMR and MS. 
 

The rate of hydrolysis of 3-carboxy-β-sultam was investigated using 1H NMR and a 

pH-rate profile produced showing two hydrolysis processes on the acidic limb both of 

which were first order in hydronium ion concentration (kH = 2.00 x 10-1 and          
4.8 M-1s-1 respectively) and an alkali catalysed limb first order in hydroxide 

concentration, kOH = 5.00 x 10-4 M-1s-1. The half-life of 3-carboxy-β-sultam at 

physiological pH is approximately 16.5 days. 

 
The rate of hydrolysis of the unsubstituted β-sultam at acidic pH was investigated by 

ReactIR and shown to be first order in hydronium ion concentration though kH was 

not calculated due to variations in the quality of the collected data. 

 

Neither the 3-carboxy-β-sultam nor the unsubstituted β-sultam inhibited BcII or 
glutamine synthetase. D-Cysteine is a weak inhibitor of BcII, Ki = 7.5 x 10-3 M, and a 

substrate for glutamine synthetase. L-Cysteine is also a substrate for glutamine 

synthetase and L-cysteic acid is a very weak inhibitor of BcII. 

 
The mechanism of BcII catalysed hydrolysis of ertapenem was investigated using 1H 

NMR and shown to proceed via protonation of the ring opened pyrrolidine ring at C3 

leading to the formation of an imine. 
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1.1 Background and Aims of Research  

 

Since antibiotics went into general use in the mid-twentieth century bacteria have 

been developing strategies to fight against them so that today antibiotic resistance is 

a major global health concern.1 Whilst antibiotics are still useful in the fight against 

the majority of bacterial infections some strains of bacteria have evolved resistance 

strategies so that they can no longer be controlled or killed by drugs which were 

once effective against them. The rate of development of new antibiotics has now 

been overtaken by the increase in bacterial resistance so that infections such as 

pneumonia, tuberculosis and post-operative wound infections are becoming 

increasingly resistant to current therapies and causing an increase in previously 

preventable fatalities.2 

One of the most commonly used classes of drugs for treating bacterial infections is 

the β-lactams which includes penicillins (core structures shown in Scheme 3, page 

18). Following years of misuse of antibiotics and natural evolution some bacteria 

have been able to develop innovative strategies for surviving against these drugs. 

One of the most common forms of resistance to β-lactam antibiotics is the 

production of an enzyme which inactivates them: β-lactamase.3 There are two main 

types of β-lactamase enzyme; the most common type are those with a serine- 

residue at the active site with the rest being metallo-enzymes with one or two zinc 

ions at the active site. One way of dealing with resistance to β-lactam antibiotics is 

to administer the drug with a second compound or co-drug which acts as a             

β-lactamase inhibitor. There are a number of clinically available inhibitors for serine 

enzymes; the metallo-enzymes however are less well-studied and the current 

clinically available serine-enzyme inhibitors are inactive against them.  

The development of a compound which will inhibit metallo-β-lactamase enzymes was 

the inspiration for this project. Work carried out by previous members of the 

research group has shown that substituted β-sultams act as inhibitors of a range of 

serine-β-lactamase enzymes.4 In order for a compound to be of use as a drug an 

understanding of its stability and reactivity at physiological pH is required. The aim 

of this work was firstly to synthesise a new β-sultam and to determine its inhibition 

parameters. Secondly, work was carried out to investigate the reactivity of this new 

compound and the parent molecule. The final part of this project was to look at the 

inhibition of a metallo-β-lactamase enzyme by a range of dicarboxylic acids. 

In a second project the β-sultams synthesised as metallo-β-lactamase inhibitors 

were tested as inhibitors of glutamine synthetase. Glutamine synthetase is an 
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enzyme dependent on magnesium or manganese ions and found in the central 

nervous system. Glutamine synthetase has an essential role in the regulation of 

glutamate concentration within the brain and since glutamate is an excitatory 

neurotransmitter the enzyme also has a vital role in regulating neurotransmission. 

The unsubstituted β-sultam, 1,2-thiazetidine-1,1-dioxide, has been shown to 

influence the effect alcohol has on the brain and so its effect on enzymes involved in 

neurotransmission was of interest. 

The final project in this thesis is an investigation into the mechanism of hydrolysis of 

a β-lactam antibiotic, ertapenem, catalysed by the metallo-β-lactamase enzyme, 

BcII. There are ambiguities in the literature as to the site of protonation of the 

pyrrolidine ring following β-lactam ring opening. This investigation aimed to confirm 

which of the proposed mechanisms occurs. 
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1.2 Bacteria, Antibiotics and Resistance 

 

1.2.1 Bacteria 

 

There are two main types of cell; bacteria are prokaryotic cells whereas humans, 

animals, plants and fungi are made up of eukaryotic cells. Prokaryotes are simple 

cells with DNA, proteins and other water soluble components all held within one 

membrane. In eukaryotes the separate components are held within separate 

membranes within the outer cell membrane. Prokaryotes, plant cells and fungal cells 

also have a cell wall, whereas animal and human cells do not. Plant cell walls are 

made of cellulose, hemicellulose and pectin; fungus cell walls are made of chitin and 

bacterial cell walls are made of a layer of peptidoglycan. This peptidoglycan cell wall 

is the structural difference exploited by β-lactam antibiotics; for this reason it will be 

looked at in more detail. 

The cell wall in all bacteria consists of layers of polysaccharide and protein/peptide 

which varies in thickness between Gram positive and Gram negative strains. The 

initial designation of bacteria as Gram positive or Gram negative was based on the 

observations of Christian Gram in 1884.5 In studying the tissues of lungs taken from 

people who had died of pneumonia he wanted to be able to study the bacterial cells 

microsopically and so developed a new staining technique which selectively stained 

only certain strains of bacteria. Those which were stained were deemed Gram 

positive whereas those which resisted staining were Gram negative. 

After the discovery of this considerable difference in bacterial cell biology much work 

was done to establish exactly what caused the differential staining of the various 

strains of bacteria. It wasn’t until the 1950s though that the composition of cell walls 

in Gram positive and Gram negative bacteria was studied in any detail. One paper of 

particular interest, published in the Journal of General Microbiology in 1956, studied 

more than 60 strains of Gram positive bacteria and showed that, in most cases, the 

cell wall was made up predominantly of four sugars: glucose, galactose, glucosamine 

and galactosamine; and four amino acids: alanine, glutamic acid, lysine and aspartic 

acid.6 By the 1960s the structure of both Gram positive and Gram negative bacteria 

had been studied in much more detail, in particular by electron microscopy, and the 

similarities and specific differences between the two types of bacteria was well 

established.7 
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In Gram positive bacteria the cell wall is made of multiple peptidoglycan layers up to 

25 nm thick; in Gram negative bacteria there is only a single peptidoglycan layer, of 

around 3 nm, sandwiched between an inner and outer lipid bilayer (Figure 1).  

 

Figure 1 Cell wall structures in Gram positive and Gram negative bacteria 

 

In both cases the polysaccharide is a NAG-NAM (N-acetylglucosamine –                  

N-acetylmuramic acid) linear chain of the two alternating amino sugars.8 These 

glycan chains are then linked together by peptide chains. Each glycan strand is 

initially synthesised with short amino acid chains attached to each N-acetylmuramic 

acid.  These chains are then joined by a DD-transpeptidase enzyme which cleaves 

one amino acid from a chain ending with D-Ala-D-Ala residues and attaches this to 

either a lysine residue in Gram negative bacteria or a pentaglycine bridge on a lysine 

residue in Gram positive bacteria (see Scheme 1). 
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D-ala-D-ala of first peptide

D-ala

acylated enzyme

second peptide

cross-linked peptides

 

 

Scheme 1 DD-transpeptidase enzyme action in cross-linking peptidoglycan 

chains 

 

This cross-linking between amino acids in different peptide chains results in a 3-

dimensional structure that is strong and rigid as shown diagramatically in Figure 2.9 

Since bacteria reproduce by self-replication, in order to create a new bacterium it is 

necessary to replicate all the features of the cell, including the cell wall. 

 

 

 

Figure 2 Structure of peptidoglycan cell wall. Shows the cross-linking of 

oligosaccharide chains (β-linked NAG-NAM repeats) by tetrapeptides attached to the 

lactic acid group of NAM via an amide bond 
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1.2.2 Antibiotics 

 

β-Lactam antibiotics are a group of anti-bacterial drugs which contain a β-lactam 

moiety as part of their molecular structure. The group includes penicillins, 

cephalosporins and carbapenems and as a group they are among the most 

commonly prescribed drugs in the world (core structures shown in Scheme 3).  

β-Lactam antibiotics work by inhibiting the DD-transpeptidase enzyme responsible 

for the cross-linking of peptide chains in the synthesis of peptidoglycan (Scheme 2). 

The β-lactam ring with an amide side chain is a close structural analogue of           

D-Ala-D-Ala and so fits into the active site of the enzyme. The action of the enzyme 

on the β-lactam forms a stable acyl intermediate. Due to the cyclic nature of the 

compound the leaving group remains attached, blocking the active site and thereby 

inactivating the enzyme. This leaves the bacteria unable to complete the synthesis of 

the cell wall and leads to the batericidal nature of the drug. 

 

Enz-OH

Active site of enzyme 
now blocked.
Inactivated acyl-enzyme 
does not turnover.

 

Scheme 2 Inactivation of DD-transpeptidase enzyme by penicillin 
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Penicillin

Carbapenem PenemOxapenem

Monobactam Nocardicin

Carbacephem

Cephalosporin

Oxacephem

 

Scheme 3 Structures of the main classes of β-lactam antibiotics 

 

The antibiotic action of Penicillium mould was first noticed by Joseph Lister in 187110 

and the presence of an antimicrobial agent was correctly identified by Alexander 

Unfused β-

lactam rings  

β-lactam rings 

fused to six-

membered 

rings 

β-lactam rings 

fused to five-

membered 

rings 
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Fleming in 192911; despite these early observations the pure compound was not 

extracted until 1940.12 Fermentation methods were utilised to produce useful 

amounts of the compound and it went into clinical usage in the mid-1940s; since 

then it has saved countless lives. In order to produce penicillin on a scale large 

enough for the antibiotic to go into wide scale use a large amount of research was 

conducted to optimise the process. One of the first improvements was the movement 

from Penicillium notatum (the strain from which the first penicillin compound was 

isolated) to Penicillium chrysogenum, which gave a much higher yield of bio-active 

compound.13 Further improvements in the fermentation procedure have seen the 

introduction of phenylacetic acid to the broth medium which gives a significant 

increase in the yield of penicillin.14 Precise fermentation conditions have gradually 

been optimised so that fermenters with a capacity of 100 000 to 300 000 gallons can 

now be employed to produce 40-50 grams of penicillin per litre of broth every 5-8 

days. The maintenance of pH and temperature and the rates of aeration and 

agitation are all factors which influence the potential yield; the ideal conditions 

generally employed are a pH of 6.0 with the temperature maintained at 25 oC.15 

These improvements in manufacturing technology have increased the efficiency of 

penicillin production from 70 % to more than 90 % in 50 years and have decreased 

production costs from ~$350 per kilogram in 1950 to ~$15 per kilogram in 2000.16 

Naturally occurring β-lactam antibiotics such as Penicillin F extracted from Penicillium 

notatum (Scheme 4f) and Penicillin G extracted from Penicillium chrysogenum 

(Scheme 4g) tend to have poor oral availability and can have low activity or a 

narrow spectrum of action. The first full synthesis of a penicillin was carried out by 

Sheehan in 1957.17 One of the intermediates formed during this process was          

6-aminopenicillanic acid (6-APA; Scheme 4e), the core structure of all penicillins. By 

adding different R groups to the amine side chain of this compound it is relatively 

simple to synthesise new compounds with the potential for antibiotic action. 
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a

h

f

i

d

j

g

b

c

e

 

Scheme 4 Structures of some β-lactam antibiotics specifically referred to in 
the text: a=Ticarcillin, b=Amoxicillin, c=Piperacillin, d=Ampicillin,                      

e=6-Aminopenicillanic acid, f=Penicillin F (2-pentenylpenicillin), g=Penicillin G 

(benzylpenicillin), h=Cephaloridine, i=Cephalexin and j=Cefuroxime. 
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One of the first major breakthroughs in this area came in 1961 when Doyle, Nayler 

and Smith successfully used this technique to synthesise ampicillin, (6[D(-)-α-

aminophenylacetamido]penicillanic acid, Scheme 4d) a compound which was later 

shown to have broad spectrum activity against both Gram positive and Gram 

negative bacteria.18 One of the main advantages of this compound over previous 

penicillins was its oral bioavailability, a property many penicillins lack due to the acid 

catalysed hydrolysis of the β-lactam ring in the stomach. 

Since then numerous new compounds have been synthesised and tested for 

antibacterial action. Some notable successes are the development of carbenicillin in 

1967, amoxicillin in 1972 (Scheme 4b), piperacillin in 1978 (Scheme 4c) and 

ticarcillin in 1973 (Scheme 4a).19-22 Changing the side chains on the penicillin ring 

can give a number of advantages: increased stability to hydrolysis, a broader 

spectrum of activity, increased bioavailability, increased activity and increased 

resistance to inactivation by β-lactamase enzymes. 

The second family of naturally occurring β-lactam antibiotics is the cephalosporins. 

The first of these to be reported was Cephalosporin C from Cephalosporium 

acremonium, a fungus which also produces Penicillin N.23 From this compound the 

cephalosporin nucleus, 7-aminocephalosporanic acid (7-ACA), was isolated and 

shown to be analogous to the penicillin nucleus 6-APA (Scheme 5). The main 

differences between the two are the replacement of the 6-APA thiazolidine ring with 

a modified dihydrothiazine ring in 7-ACA which also has a substituted methyl acetate 

group at the 3 position on the thiazine ring. As with 6-APA, modification of the 7-ACA 

amine side chain and methyl acetate group has resulted in the production of a 

number of useful antibiotic agents; the first was cephalothin in 196424 and other 

notable compounds are cephaloridine (1964)25, cephalexin (1967)26 and cefuroxime 

(1976)27 (Scheme 4h, i and j respectively). 

6-APA 7-ACA  

Scheme 5 Core structures of penicillins and cephalosporins 
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Carbapenems are yet another group of β-lactam antibiotics based on natural 

products. The first carbapenem, thienamycin (Scheme 6a), was isolated from 

Streptomyces cattleya in 1978.28,29 Other compounds based on the structure of 

thienamycin have since been synthesised and shown to have excellent antibacterial 

activity, particularly against a number of bacteria resistant to penicillins and 

cephalosporins. Imipenem (Scheme 6b) was the first synthetic carbapenem and was 

initially synthesised by Kropp et al and reported in 1985.30 In the 1990s both 

meropenem31 and panipenem32 were developed and these were followed by the 

introduction of ertapenem (Scheme 6c),33 biapenem34 and doripenem35 during the 

first part of the 21st Century. 

 

a

b

c

 

 

Scheme 6 Structures of some carbapenems mentioned in the text                  

(a = Thienamycin, b = Imipenem, c = Ertapenem) 
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1.2.3 Antibiotic Resistance 

 

Staphylococcus aureus are bacteria found naturally on the skin and in the respiratory 

tract and are usually harmless. In certain circumstances however, Staphylococci can 

cause skin infections such as impetigo, respiratory infections, pneumonia and 

meningitis. The development of penicillin had initially meant that these infections 

could be treated effectively, but in 1944 a sample of Staphylococcus aureus was 

discovered which was not killed by penicillin.36 This was the first instance of clinically 

relevant antibiotic resistance and occurred only months after penicillin went into 

general use. The first methicillin resistant Staphylococcus aureus (MRSA) was 

detected in Britain in the 1960s and the strain’s resistance to drugs has continued to 

evolve; it now shows resistance to a range of penicillins and cephalosporins as well 

as non-β-lactam antibiotics such as glycopeptides. Various different classes of 

antibiotics have been introduced over the past 100 years and for most of these some 

bacterial resistance mechanisms have now evolved (Figure 3). 

There are four main mechanisms of antibiotic resistance present in bacteria. The best 

known is antibiotic modification whereby the target enzyme remains sensitive to the 

antibiotic but the bacterium produces another enzyme which can inactivate it prior to 

reaching the target. Growing numbers of bacteria demonstrate this ability, 

particularly via the production of β-lactamase enzymes.37 

A second mechanism conferring resistance is the modification of the target site. 

Structural changes in the target molecule prevent the drug from interacting with it 

whilst it still maintains the ability to carry out its primary function. Resistance to 

cephalosporins by some species has been demonstrated by this mechanism via 

alterations to the structure of their transpeptidase enzymes (often referred to as 

penicillin binding proteins).38 

Some bacteria have demonstrated resistance via alteration of the metabolic 

pathway. Sulfonamides are drugs which work by inhibiting dihydropteroate synthase, 

an enzyme involved in the synthesis of folic acid. Resistance to these drugs has been 

developed by some bacteria which have evolved the ability to take up folic acid from 

the environment, by-passing the need to synthesise it themselves.39 

The last of the four main methods of antibiotic resistance is the ability of the bacteria 

to reduce accumulation of the drug within the cell. This may occur by the reduction 
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Discovery references: Sulfonamides,40 penicillins,12 nitrofuran,41 chloramphenicol,42 tetracyclines,43 streptogramins,44  glycopeptides,45  

ansamycins,46 nitroimidazoles,47 quinolones,48 trimethoprim,49 oxazolidinones,50 lipopeptides51.  

Resistance references: Penicillin,52 sulfonamides,53 streptomycin,54 macrolide,55 methicillin,56 quinolones,57 tetracycline,58 aminoglycoside,59 

vancomycin,60 fluoroquinolones,61 linezolid.62

Figure 3  

Colour coded diagram 

of drug discovery above 

arrow and drug 
resistance below arrow 
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of cytoplasmic membrane permeability to the drug, preventing it entering the cell, or 

by the enhanced expression of efflux pumps which actively remove drug molecules 

from the cytoplasm, a method of resistance demonstrated in bacteria resistant to 

fluoroquinolones.63 

The main mode of β-lactam antibiotic resistance in bacteria is via the production of a 

β-lactamase enzyme, a modified transpeptidase enzyme which interacts reversibly 

with the drug. The hydrolysis of the β-lactam ring renders the antibiotic ineffective. 

Some bacteria are resistant to only selected penicillins but recently strains with 

resistance to multiple drugs have been on the rise. The primary reason for the 

spread of bacterial antibiotic resistance is horizontal gene transfer. There are three 

main methods of horizontal gene transfer (see Table 1) all allowing antibiotic 

resistance genes (along with other genetic material) to be transferred from one 

bacterial species to another. Whilst vertical gene transfer (the passing of genetic 

information from parents to offspring during traditional reproduction) is the focus of 

the majority of genetics work regarding genetic mutations in mammals and plants, 

the transfer of genes by horizontal transfer methods is an extremely common form 

of genetic transfer in bacteria.64 

 

Mode of 

Transfer 

Type of resistance Description 

Vertical Pre-existing  A small number of cells contain mutant DNA 

which confers resistance. Antibiotics kill 
sensitive bacteria within the colony leaving the 

resistant cells to multiply unhindered. 

 

Vertical Mutational  The introduction of a drug to a bacterial colony 

forces bacteria to mutate and adapt leading to 

drug tolerance or dependence.  
 

Horizontal Transmission  A bacterium can acquire genetic material which 
confers resistance in three ways. 

 

Transformation – the genetic information 

moves between cellular DNA. 

 
Transduction – the genetic information is 

transferred by a virus. 

 

Conjugation – a “tunnel” is formed between 
cells through which genetic information may 

pass (see Figure 4). 

 

 

Table 1 Details of the modes of antibiotic resistance in bacteria 



Introduction 

26 

 

Pre-existing and mutational resistance were most probably responsible for the 

majority of cases of antibiotic resistance discovered in the first half of the twentieth 

century and, whilst posing some hazards to health at the time the constant stream of 

new antibiotic discoveries was able to keep infection outbreaks under control. 

Transmission resistance, however, is a different phenomenon and can pose a much 

greater health concern. Transduction and conjugation (shown diagrammatically in 

Figure 4) are particularly worrying due to them enabling antibiotic resistance genes 

to move not only from cell to cell during reproduction but also between cells, even 

between those from different species of bacteria. 

 

 

Figure 4 Transfer of genetic material between bacteria via conjugation:  

1- Donor cell produces pilus. 2- Pilus attaches to recipient cell, brings the two cells 

together. 3- The mobile plasmid is nicked and a single strand of DNA is then 

transferred to the recipient cell. 4- Both cells reform their plasmids, synthesise 
second strands, and reproduce pili; both cells are now viable donors. 

 

One of the most recent cases of horizontal transfer of resistance genes is that of the 

New Delhi metallo-β-lactamase, NDM-1, first discovered in 2008.65 The first case of 

an infection by a bacteria producing NDM-1 was found in Sweden in a man who had 

originally contracted the infection in India. This was one of the first metallo-enzymes 
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shown to confer resistance to carbapenems, though some serine-carbapenemases 

had previously been described. Since that first discovery the enzyme has been 

detected in over fifteen countries around the world, from India and Sweden to the 

USA, UK and Japan among others.66 

The first bacteria found to produce NDM-1 was Klebsiella pneumoniae but since then 

horizontal transfer has led to the enzyme being isolated from various other bacteria 

including some Escherichia coli, Enterobacter cloacae and Salmonella enterica 

strains. This rapid spread of antibiotic resistance across countries and bacterial 

strains is of real worldwide concern. 
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1.3 β-Lactamase Enzymes 

 

The first “penicillinase” enzyme was reported in a paper in Nature by Abraham and 

Chain in 1940, three years before penicillin itself was in clinical use.52 At the time it 

was not seen as a medical problem since it was discovered in Bacillus (Escherichia) 

coli whereas penicillin was at the time used exclusively for Staphylococcus infections. 

Kirby isolated the first β-lactamase enzyme (or penicillin inactivator) from a colony of 

Staphylococcus aureus in 1944 and there are now more than 850 distinct               

β-lactamase enzymes known to be produced by a wide range of both pathogenic and 

non-pathogenic bacteria.36,67 

In order to more easily understand and study the ever-growing number of                 

β-lactamase enzymes they are classified according to either their specific amino acid 

sequence or their affinities regarding substrates and inhibitors. The Ambler classes, 

A to D, classify the enzymes according to their protein structure and the amino acid 

sequence at the active site.68 Classes A, C and D all have serine amino acid residues 

at the active site whereas class B are metallo-enzymes with one or two zinc-ions at 

the active site. A more recent classification (Bush-Jacoby-Medeiros classes) was 

established in 1995 as a way of classifying the enzymes according to their 

functionality.3 This classification scheme again separates the enzymes into four main 

classes, 1 to 4, but this time according to their preferred substrates (penicillin, 

cephalosporin, carbapenem etc.) and inhibitors. A simplified description of the two 

classification schemes and the correlations between them can be found in Table 2. 

Whilst the two classification schemes may differ in their distribution of many of the 

serine-β-lactamase enzymes, Ambler Class B and Bush-Jacobi-Medeiros Class 3 both 

contain all of the metallo-β-lactamases. For reasons of clarity and simplicity only the 

Ambler Classes will be referred to for the remainder of this thesis. 

When Ambler originally proposed the first classification scheme for the β-lactamase 

enzymes they were separated into two main groups, A and B, dependent on their 

mechanism of action.  
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Ambler Class Bush-

Jacoby-

Medeiros 
Class 

Typical 

Substrates 

Known 

Inhibitors 

Representative 

Enzymes 

A 2a Penicillins  Penicillinases from 
Gram positive 

bacteria 

2b Penicillins, 

Cephalosporins 

Clavulanic 

acid 

TEM-1, TEM-2, 

SHV-1 

2be Penicillins, 

Cephalosporins, 

Monobactams 

Clavulanic 

acid 

TEM-3 to TEM-26, 

SHV-2 to SHV-6, 

K1 from Klebsiella 

oxytoca 

2br Penicillins Clavulanic 

acid 

TEM-30 to TEM-36, 

TRC-1 

2c Penicillins, 

Carbenicillin 

 PSE-1, PSE-3, 

PSE-4 

2e Cephalosporins Clavulanic 

acid 

Inducible 

Cephalosporinases 

from Proteus 
vulgaris 

2f Penicillins, 
Cephalosporins, 

Carbapenems 

Clavulanic 
acid 

NMC-A from 
Enterobacter 

cloacae, Sme-1 

from Seratia 

marcescens 

B 3 Most β-lactams 

including 
carbapenems 

EDTA L1 from 

Xanthomonal 
maltophilia, CcrA 

from Bacteroides 

fragilis, BcII from 

Bacillus cereus 

C 1 Cephalosporins  AmpC from Gram 

negative bacteria, 

P99 from 
Enterobacter 

cloacae, MIR-1 

D 2d Penicillins, 

Cloxacillin 

 OXA-1 to OXA-11, 

PSE-2 

(not 

assigned) 

4 Penicillins  Penicillinase from 

Pseudomonas 

cepacia 

 

Table 2 Comparison of the two classification systems for β-lactamase 

enzymes including typical substrates and representative enzymes (adapted 

from Bush, Jacoby and Medeiros 3) 

 

Class A β-lactamases have a serine amino acid residue at the active site. In general 

they all hydrolyse penicillins, though a few are capable of hydrolysing 

cephalosporins, carbapenems and monobactams as well. The majority of enzymes in 

this class are inhibited by clavulanic acid, sulbactam and tazobactam (structures 
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shown in Scheme 12, page 36), three clinically active β-lactam based inhibitors. The 

Class A β-lactamases are the most common source of resistance to β-lactam 

antibiotics and can be secreted by pathogenic bacteria such as Klebsiella 

pneumoniae, Escherichia coli and Staphylococcus aureus as well as non-pathogenic 

bacteria such as Bacillus cereus. 

Class B β-lactamases are dependent on divalent metal ions, usually zinc, for their 

activity. They have a broader spectrum of activity than the serine enzymes and 

effectively hydrolyse most β-lactams including penicillins, cephalosporins, 

monobactams and carbapenems. They are not inhibited by any of the β-lactam 

based inhibitors of Class A enzymes and the most effective inhibitors of Class B 

enzymes (chelating agents such as EDTA) are not suitable for use in vivo. 

The classification scheme has now been extended; Class C β-lactamases (sometimes 

referred to as cephalosporinases) were added to the Ambler classification system in 

1981.69 Although they are serine enzymes like Class A and are structurally similar to 

them they have noticeably different amino acid sequences and are more efficient at 

hydrolysing cephalosporins than penicillins. The best known enzyme in this class is 

AmpC produced by Gram negative bacteria from the Legionella species and 

Escherichia coli and Gram positive Mycobacteria. The production of this enzyme is 

encoded on a gene which occurs on transmissible plasmids, transferred to other 

bacteria by conjugation, and so there is a possibility of the enzyme being produced 

by any species of bacteria.68  

The final group of enzymes in the Ambler classification system are the Class D 

enzymes, with this category being first suggested for the enzyme OXA-1 in 1987.70 

Jacoby et al. also suggested the addition of a fourth class to the Ambler system in 

1988 when they sequenced a new β-lactamase, PSE-2 (a carbenicillin hydrolysing 

enzyme first isolated from Pseudomonas aeruginosa).71 Based on the lack of 

structural similarity between this enzyme and enzymes from the established classes 

A, B and C they suggested that PSE-2 had a distinct evolutionary origin along with 

OXA-1 and that a new group of β-lactamases, Ambler Class D, should be established 

for them and similar enzymes.71 In contrast to the other classes of β-lactamase, and 

in particular Class A enzymes which have been known for many years, Class D is a 

much newer, smaller and slightly overlooked class of β-lactamases. Like Class A and 

C they are active site serine enzymes but their primary structures are significantly 

different to those in the other groups. Whilst Class D enzymes do hydrolyse standard 

penicillins and cephalosporins, they are much more active against substrates from 

the oxacillin class of β-lactam antibiotics (Scheme 7) and are often given the 
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designation OXA. Most serine β-lactamases from Class A and C are inhibited by 

oxacillins due to the steric bulk of the side-chain so the ability of the OXA enzyme 

family to hydrolyse these compounds is a growing clinical concern. The other major 

family of Class D enzymes are the Pseudomonas specific enzymes, designated PSE, 

now known to be produced by Enterobacteriaceae as well as Pseudomonas 

aeruginosa.72 

 

Oxacillin

CloxacillinDicloxacillin

Benzylpenicillin
 

 

Scheme 7 Structures of oxacillin type β-lactam antibiotics (and 

benzylpenicillin for comparison) 
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1.4 Active Site Serine β-Lactamases; Classes A, C and D 

 

The active site serine enzymes act on β-lactam antibiotics in a similar fashion to the 

DD-transpeptidase enzymes;  in fact they are believed to have a similar evolutionary 

history and both reactions can be represented by a similar schematic (Scheme 8).73  

Initial attack on the β-lactam carbonyl by the serine residue forms an acyl-enzyme 

intermediate. With transpeptidase enzymes this intermediate is stable and is the 

basis of the antibiotic action shown by β-lactam compounds. With β-lactamase 

enzymes however, hydrolysis can occur to release the enzyme and leave behind the 

inactivated antibiotic molecule (Scheme 9).  

 

k1

k-1

k2 k3

 

Scheme 8: Schematic representation of mechanism for DD-transpeptidase 

and β-lactamase enzymes with antibiotic compounds 

 

In the case of transpeptidases k3 is very small and so the enzyme is trapped as the 

acyl-enzyme intermediate. For β-lactamases, on the other hand, k2 and k3 are both 

large and so there is rapid hydrolysis of the intermediate and regeneration of the 

enzyme. 
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k1

k2

k3

 

Scheme 9 Mechanism of benzylpenicillin hydrolysis by serine 

β-lactamases 74-76 

 

There are two main mechanisms for inhibition of serine-β-lactamases: mechanism 

based and transition state analogues. Mechanism based or suicide inhibition occurs 

when a substrate analogue binds to the enzyme active site but, due to modifications 

to the structure, an irreversible complex is formed often via reactions between the 

enzyme and inhibitor involving carbonyl groups or imines. Transition state analogue 

inhibitors work by mimicking the transition state of the normal substrate. Since 

enzymes work by stabilising high energy transition state intermediates, transition 

state mimics which do not undergo the normal reaction bind to the active site and so 

block it. Mechanism based inhibitors for serine-β-lactamases include clavulanic acid 

(administered with amoxicillin, marketed as Augmentin), sulbactam (administered 

with ampicillin, marketed as Unasyn) and tazobactam (administered with piperacillin, 

marketed as Zozyn) (see Scheme 4, page 20 for structural details of the penicillins 

and Scheme 12, page 36 for the structures of the inhibitor compounds).  

The best known and probably most widely used mechanism based inhibitor is 

clavulanic acid (Scheme 10).77 Clavulanic acid was first isolated from Streptomyces 

clavuligerus by a research group at Beecham Pharmaceuticals in the mid-1970s.78 At 

the time its fused β-lactam structure was different to all known β-lactams in that it 

has an O-containing oxazolidine ring fused to the β-lactam ring instead of the          

S-containing thiazolidine ring and it does not possess the acyl-amino side chain 

.. 
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found in penicillins and cephalosporins.77 The group carried out extensive 

investigations on the compound and showed that, whilst it had little antibacterial 

activity on its own (only weak inhibition of DD-transpeptidase enzymes is shown in 

most cases), it was a potent inhibitor of the majority of β-lactamases tested from 

both Gram positive and Gram negative bacteria. Interestingly cephalosporinase type 

enzymes were poorly inhibited as were the Bacillus cereus enzymes BcI and BcII.79 

Whilst clavulanic acid shows very little antibacterial action on its own its ability to 

inhibit β-lactamase enzymes from Class A and C increases the activity of penicillin 

drugs (usually amoxicillin or ticarcillin, structures shown in Scheme 4, page 20) 

against β-lactam resistant bacterial infections when they are prescribed in a 

formulation together. 

 

 

Scheme 10 Clavulanic acid (with numbered atoms) 

 

Numerous mechanisms have been put forward for the inactivation of β-lactamase 

enzymes by clavulanic acid80-82 with the two most credible being illustrated in 

Scheme 11.83,84 Initially both mechanisms follow the same pathway. As a mechanism 

based inhibitor clavulanic acid is recognised by the enzyme and initially turned over 

like any other substrate. A serine residue forms an acyl-enzyme intermediate at C7 

and the carbon-nitrogen bond is cleaved. The oxazolidine ring is then opened to form 

a keto-imine. At this point there are two main proposals for the mechanism. The first 

suggests protonation of the nitrogen and loss of hydrogen at C6 to form an enamine 

which is then attacked by a second nucleophilic serine residue to form the 

irreversibly inactivated complex. In the second proposal attack by a nucleophilic 

amino acid residue at C5 leads to the alkylation at the active site which again 

prevents further activity by the enzyme.81 The inactivation of the β-lactamase 

enzyme by clavulanic acid allows the coadministered amoxicillin to bind to the DD-

transpeptidase enzyme in the normal way, inactivating it and leading to cell death. 
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Scheme 11 Possible mechanisms for inhibition of serine-β-lactamase by 

clavulanic acid 

 

Sulbactam and tazobactam are two other clinically approved serine-enzyme 

inhibitors which both contain a β-lactam ring and act in a similar manner (structures 

shown in Scheme 12). They are also administered as co-drugs with either a penicillin 

or cephalosporin antibiotic. 
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Clavulanic acid

TazobactamSulbactam  

Scheme 12 Selected serine-β-lactamase inhibitor structures 

 

The second group of serine-enzyme inhibitors are the transition state analogues. A 

wide range of structurally diverse boronic acids have been shown to act as reversible 

inhibitors of serine-β-lactamases.85-88 The reaction (overview in Scheme 13) involves 

two separate binding steps with the slower of the two leading to inhibition. This slow 

step involves a change in the protein conformation represented mechanistically as 

Enz*.82  

 

slow

 

Scheme 13 Mechanism of β-lactamase inhibition by boronic acids 

 

Phosphonic acid derivatives are another family of compounds which have proven to 

be useful as serine-β-lactamase inhibitors.89 This time the reaction involves 

phosphonylation of the enzyme and this phosphonylated enzyme has a tetrahedral 

conformation. Although the mechanisms vary in detail between Class A and Class C 
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enzymes both classes are inhibited by the compounds and an overview of the 

mechanism is shown in Scheme 14.90-92 

 

X = leaving group eg O-Aryl, S-Aryl, F

 

 

 

Scheme 14 Mechanism of β-lactamase inhibition by phosphonic acid 

derivatives 
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1.5 Metallo-β-Lactamases; Class B 

 

Class B β-lactamases are metallo-enzymes dependent on the coordination of bivalent 

metal ions to demonstrate activity. In general cases the preferred metal is zinc but 

there have been examples of cobalt, cadmium and manganese also conferring 

activity in a variety of enzymes.93 The metallo-β-lactamases can be further 

separated into three subgroups, B1, B2 and B3; first suggested by Rasmussen and 

Bush in 1997 the enzymes are grouped according to amino acid sequence and 

substrate profile.94  

Subclass B1 β-lactamases are all approximately 28 kDa and have three histidine 

residues participating in zinc and water binding at the active site. The subclass 

includes BcII from Bacillus cereus (Figure 6a); CcrA from Bacteroides fragilis;95   

IMP-1 from Pseudomonas aeruginosa, Klebsiella pneumoniae and Serratia 

marscescens96 and BlaB from Chryseobacterium meningsepticum.97 This is the 

largest of the three subgroups and is the best studied with crystal structures and 

peptide sequences being available for a large number of the enzymes in the group as 

well as kinetic data, substrate profiles and inhibition studies. All members of subclass 

B1 require two zinc ions at the active site and they efficiently catalyse the hydrolysis 

of almost all β-lactam compounds including those which inhibit the serine enzymes 

e.g. clavulanic acid and tazobactam. In Figure 5 are two images representing the 

CcrA metallo-β-lactamase enzyme from Bacteroides fragilis.98  The first image shows 

the ribbon structure of the enzyme with α-helices shown in blue and β-sheets in 

yellow. The red spheres represent the zinc ions at the active site. In the second 

image the active site of the enzyme is shown as the molecular surface. A model of a 

benzylpenicillin molecule is shown in red, bound at the active site. The zinc ions are 

represented by purple spheres and the water molecules by blue spheres. This image 

shows the β-lactam ring clearly positioned above the di-zinc bound water molecule. 
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Figure 5 Representations of the metallo-β-lactamase enzyme produced by 
Bacteroides fragilis (as published by Concha et al)98 

 

Subclass B2 β-lactamases are similar to those from subclass B1 in size and amino  

acid sequence but unlike the previous group they have a small substrate profile, only 

being truly active against carbapenems. They require only one zinc ion for activity 

and in many cases are actually inhibited by the binding of a second zinc. 

Representative enzymes for this subclass are CphA from Aeromonas hydrophila99 and 

Bacteroides fragilis (Figure 6b) and Sph-I from Serratia fonticola.100 

 

 

 

           Subclass B1      Subclass B2      Subclass B3 

Figure 6 Representative enzymes from the three subclasses (a) BcII from 

Bacillus cereus, (b) CphA from Bacteroides fragilis and (c) FEZ-1 from Fluoribacter 

gormanii.101 
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Subclass B3 is the most distinctive but least studied of the three classes. Whilst it 

has a similarly broad substrate profile to Class B1 its structure and amino acid 

sequence vary greatly from both subclasses B1 and B2. Enzymes currently assigned 

to subclass B3 are FEZ-1 from Fluoribacter gormanii (Figure 6c),102 CAU-1 from 

Caulobacter crescentus103 and L1 from Stentrophomonas maltophilia.103 Of these L1 

was the first to be assigned as a subclass B3 enzyme and, unlike any of the other 

currently classified metallo-β-lactamases, it has been shown to be tetrameric  

(Figure 7). 

 

 

 

Figure 7 Tetrameric enzyme L1 from Stentrophomonas maltophilia104 

 

1.5.1 Mechanisms of Metallo-β-Lactamases 

 

The mechanism of action of the Class B β-lactamase enzymes, like their structures, 

varies greatly from that of the serine-enzymes. As with serine-enzymes the Class B 

enzymes vary between bacterial strains with regard to their exact amino acid 

sequence and tertiary structure. Several studies have been carried out to try to 

understand the mechanism of action of metallo-β-lactamases.105-108 In 1998 Bounaga 

et al carried out intensive studies of the mono-zinc BcII enzyme and proposed a 

three-step mechanism for the catalytic hydrolysis of benzylpenicillin in which the key 

components were a zinc bound water molecule and an aspartic acid residue (Scheme 
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15).109 In this proposal the zinc bound water molecule is deprotonated due to the 

action of the zinc ion acting as a Lewis acid decreasing the pKa of the bound water. 

The metal bound hydroxide ion acts as a nucleophile to attack the carbon of the β-

lactam carbonyl group to form a tetrahedral intermediate and the zinc acts to 

stabilise the negative charge formed on the carbonyl oxygen. An aspartic acid 

carboxylate anion then deprotonates what was the zinc bound hydroxyl to form a 

dianionic tetrahedral intermediate, again stabilised by the zinc ion. Protonation of the 

amine leaving group by the aspartic acid as the C-N bond of the β-lactam is broken 

completes the hydrolysis.110 Whilst this mono-zinc BcII enzyme did show activity 

against benzylpenicillin further studies have now shown that the di-zinc enzyme is 

the one which shows most activity against β-lactam antibiotics. 

 

Asp 90
Asp 90

Asp 90Asp 90

  

 

Scheme 15 Mechanism of benzylpenicillin hydrolysis by mono-zinc BcII109 

 

All the metallo-β-lactamases currently reported do have a striking number of 

similarities, particularly the di-zinc enzymes. In almost all cases Zn1 is coordinated 

to three histidine residues and a bridging water molecule in a tetrahedral 

conformation. Zn2 is coordinated to the bridging water molecule and three other 

amino acid residues with another molecule of water completing the trigonal 
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bipyrimidal arrangement. These arrangements are shown in Figure 8 where the       

4-coordinated Zn1 and 5-coordinated Zn2 in Bacillus cereus are clearly visible. 

 

 

 

 

Figure 8 Dinuclear centre of Bacillus cereus111 

 

More recently studies have shown that although some mono-zinc β-lactamases are 

catalytically active, for BcII the di-zinc form of the enzyme (as shown in Figure 8) is 

the only one relevant to β-lactam hydrolysis in vivo.112 In fact of the three subclasses 

of metallo-β-lactamase Class B1 (including BcII, BlaB, IMP and VIM) and B3 (L1, 

FEZ-1, GOB-1 and THIN-B) both show maximum efficiency as di-zinc species but 

Class B2 (CphA and Sfh-I) enzymes show a reduction in activity upon binding of a 

second zinc ion.   

The mechanism for the di-zinc metallo-β-lactamase begins with nucleophilic attack of 

the bridging hydroxide ion (Wat 1) on the carbonyl carbon resulting in a negatively 

charged tetrahedral intermediate. The zinc bound water molecule (Wat 2) can then 

donate a proton to the leaving nitrogen forming a hydroxide ion which replaces    

Wat 1 in the now vacant site. The product (hydrolysed β-lactam) can now dissociate 

from the enzyme active site and, once Wat 2 is replaced from the bulk solution, the 

enzyme is ready to catalyse hydrolysis of the next substrate molecule (Scheme 16). 
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Scheme 16 Mechanism of benzylpenicillin hydrolysis by di-zinc BcII113 

 

1.5.2 Metallo-β-Lactamase from Bacillus cereus; BcII 

 

The first β-lactamase enzyme which was reported to require metal ions for activity 

was the BcII enzyme from the bacteria Bacillus cereus.114 There are two strains of 

the bacteria; Bacillus cereus 569/H/9 and Bacillus cereus 5/B/6 both of which 

produce a metallo-β-lactamase enzyme (BcII) and a serine-β-lactamase enzyme 

(BcI). The two metallo-enzymes are almost identical; differing only by 17 amino acid 

substitutions, none of which are involved in the enzyme active   site.112 Although the 

majority of work on BcII has been carried out on enzyme from Bacillus cereus 

569/H/9 work done on the alternative enzyme and differences in some experimental 

conditions have meant that characterisation of the structure, the mechanism of 

action and physical measurements such as kcat, KM and zinc ion binding constants are 

still under debate.  

BcII is a Class B1 metallo-β-lactamase and was first reported in 1966 by Sabath and 

Abraham.114 Although they did not isolate the enzyme they recognised that it was a 
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separate entity to the previously known BcI serine-enzyme. They showed that the 

mixture of the two enzymes efficiently catalysed the hydrolysis of penicillin and 

cephalosporin substrates in the presence of ZnSO4 but in the absence of Zn2+ ions 

(after treatment with EDTA) the “penicillinase” activity was retained whilst the 

“cephalosporinase” activity was lost. 

In 1974 Abraham succeeded in isolating BcI and BcII from Bacillus cereus 569/H/9 

using chromatography.115 Along with Davies and Melling he managed to show that 

the two enzymes were fundamentally different;  the two enzymes have different 

molecular weights (28000 and 22000 Da respectively), very different substrate 

profiles (Table 3), and different amino acid sequences (and of particular note is the 

presence of cysteic acid in BcII which is completely absent from BcI). 

  

Enzyme Substrate Rate of hydrolysis (moles of substrate/ 

minute/mole of enzyme) 

BcI Benzylpenicillin 2.100 x 105 

 

BcII Benzylpenicillin 0.800 x 105 

 

BcII Cephalosporin C 0.506 x 105 

 

 

Table 3 Enzymatic activities of BcI and BcII isolated by Davies, Abraham 

and Melling115 

 

This data was very important as an indication of bacterial ability to evolve new 

resistance strategies with Bacillus cereus now able to resist both penicillin and 

cephalosporin type antibiotics via the production of different enzymes; BcI: a serine-

enzyme and BcII: a metallo-enzyme. Although BcII shows activity against both 

penicillins and cephalosporins it is interesting to note that its penicillin hydrolysis 

rate, whilst being less than that of the BcI rate, is still greater than the BcII 

catalysed rate of cephalosporin hydrolysis. Figure 9 shows a representation of BcII 

with a cephalosporin bound at the active site. 
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Figure 9 Representation of the BcII enzyme with cephalosporin substrate 
superimposed116 

 

On the left of the image is a simulated representation of the BcII metallo-β-

lactamase. The two purple spheres represent the two zinc ions coordinated to 

various amino acid residues, represented by stick models. The space filled molecule 

is a representative β-lactam antibiotic. 

On the right is an enlarged view of the active site of the enzyme. Again the purple 

spheres represent the zinc ions and in this view it is possible to see the Wat 1 

hydroxide ion bound between them (red oxygen and white hydrogen) and the Wat 2 

water molecule (red V with white tips) which is held between the metal and the 

substrate. Comparison of this model structure with the mechanism in Scheme 16 

shows how the arrangements of the water molecule and hydroxide ion are essential 

to the function of the enzyme. The β-lactam antibiotic (a cephalosporin in this case) 

is situated above the zinc ions with the β-lactam ring almost directly above the zinc 

bound hydroxide ion which initiates the mechanism. The Wat 2 water molecule is 

also held in an ideal position to allow protonation of the nitrogen in the second step. 

The amino acids involved in interactions with the zinc ions, the water molecules and 

the antibiotic are shown as stick representations.116 
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1.6 Inhibition of Class B Metallo-β-Lactamases 

 

Various different classes of compounds have been shown to have an inhibitory effect 

on the rate of β–lactam hydrolysis by a range of metallo-β-lactamase enzymes. 

Despite the basic mechanism of catalysis being the same for most of the known 

metallo-β-lactamases the inhibitors which have been reported show massively 

different inhibitory abilities against the different enzymes. 

A high percentage of the reported inhibitor compounds contain sulfur, as a thiol117 or 

thioester118 for example or mimic the structure of the natural β-lactam substrate   

e.g. cyclobutanones.119  

Many zinc dependent enzymes coordinate the metal ion via cysteine residues 

(though histidine and aspartic acid residues are also commonly found to be zinc 

binding amino acids) and compounds containing sulfur are known to be effective as 

zinc dependent enzyme inhibitors due to the mutual affinity of zinc and sulfur.120 It is 

therefore a logical step to assume that sulfur containing compounds may well act as 

effective inhibitors of Class B β-lactamases. 

One of the first reports of sulfur containing compounds being used as inhibitors of 

metallo-β-lactamases was made in 1999 by Nagano et al. They synthesised 

carbapenem analogues with sulfur containing side-chains most of which gave IC50 

values of less than 10 μM against the IMP-1 enzyme from Pseudomonas aeruginosa 

using nitrocefin as the substrate.121 The same group published further examples of 

this family of sulfur compounds the following year122 when a second family of sulfur 

containing inhibitors, mercaptocarboxylates, were also reported by a collaborative 

group from SmithKline Beecham and the University of Liege.123 Although these 

compounds (unlike the previous work in this area) did not contain a β-lactam ring 

they did show structural similarities to benzylpenicillin (Scheme 17). Whilst the 

kinetics of the inhibition were not specifically explored in this paper it was reported 

as an inhibitor and the mode of inhibitor binding was investigated using X-ray 

diffraction. 

 



Introduction 

47 

 

 

 

Scheme 17 Structural similarities between mercaptoacetic acids and 
benzylpenicillin (in bold) 

 

Another family of sulfur containing inhibitors, the cysteinyl peptides, were first 

reported by a research group from the University of Huddersfield in 2001. A range of 

peptides containing a cysteine residue and a number of control compounds were 

investigated as inhibitors of BcII. The best inhibitors of all the compounds tested 

were those with a thiol group and a hydrophobic side chain α to the carboxyl 

terminus of the peptide. The peptide isomers with D-D configuration were the most 

efficient, with N-carbobenzoxy-D-cysteinyl-D-phenylalanine (Scheme 18c) giving the 

best Ki of approximately 3.0 μM. Captopril (Scheme 18d), a thiol containing inhibitor 

of the zinc dependent angiotensin converting enzyme (ACE) was shown to have 

moderate inhibitory activity (Ki ~ 42 μM) whilst the non-sulfur containing N-

phenylacetylglycine (Scheme 18e) showed very poor activity (Ki ~1000 + 150 μM). 

Another interesting result was that for N-carbobenzoxy-D-cysteinyl-D-penicillamine 

(Scheme 18f) which initially showed inhibitory action; however, this was discovered 

to be due to the dithiol nature of the compound chelating the zinc. The mono-thiol 

compounds (Scheme 18a-c) demonstrated their activity by displacing the zinc bound 

hydroxide ion (Wat 1) from the enzyme active site and therefore showed potential 

for clinical usage.124 
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a) b)

c) d)

e) f)

 

 

Scheme 18 Structures of relevant cysteinyl peptides and analogues 

 

Following on from the work of the SmithKline Beecham / University of Liege 

collaboration reported in 2000 the Frère group investigated some simple 

mercaptocarboxylic acids (thiomandelic acids) in 2001 and showed that they 

inhibited a broad spectrum of metallo-β-lactamases from across the three subclasses 

(Table 4). 

 

Enzyme BcII CfiA  

(CcrA) 

L1 IMP-1 IMP-2 VIM-1 BlaB FEZ-1 CphA 

 

Subclass 

 

B1 B1 B3 B1 B1 B1 B1 B3 B2 

Ki (μM) 

 

0.34 0.80 0.051 0.029 0.059 0.23 0.56 0.27 144 

 

Table 4 Inhibition of a range of metallo-β-lactamases by thiomandelic acid 

(structure shown) 

 

The data they collected showed that the mode of inhibition was via the thiol group 

binding to the zinc atoms at the active site whilst the carboxylate group was bound 

to an arginine residue found in most of these enzymes.125 
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Cyclobutanone mimics of β-lactam antibiotics were reported as modest inhibitors of 

both serine- and metallo-β-lactamases in 2010 following on from some less 

successful work in the 1980s.126,127 Enzymes from all four β-lactamase classes were 

chosen for testing and the two best compounds (Table 5) showed IC50 values of less 

than 400 µM for each of the tested enzymes. The best inhibition was shown against 

the Class C enzyme GC1 which had IC50 values of less than 10 μM but the activity of 

the inhibitors against Class B enzymes was also satisfactory with activity against the 

representative Class B enzyme (IMP-1, a subclass B1 enzyme) having IC50 values of 

~100-200 μM.119 

 

Inhibitor structure Class A 

 KPC-2, μM 

Class B  

IMP-1, μM 

Class C  

GC1, μM 

Class D  

OXA-10, μM 

 

26 + 2 213 + 21 4.5 + 0.3 370 + 15 

 

58 + 2 122 + 5 6.5 + 1.4 156 + 6 

 

Table 5 IC50 values for inhibition of β-lactamase enzymes by (1S,5S)-6,6-

dichloro-7-oxo-4-thiabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (top) and 

(2S,3S,5S)-6,6-dichloro-3-methoxy-7-oxo-4-thiabicyclo[3.2.0]heptane-2-carboxylic 

acid (bottom) 119 

 

Structural data for the binding of the cyclobutanones at the enzyme active site was 

obtained for the Class D OXA-1 enzyme. This data enabled the authors to show that 

the conformation of the enzyme-substrate complex was similar enough to that of β-

lactam structures to confirm the binding modes shown in Scheme 19.  
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a) b)

Enzyme

Enzyme

 

Scheme 19 Interactions between cyclobutanones and a) serine β-

lactamases and b) metallo-β-lactamases 

 

The use of single-stranded DNA (ssDNA) is another interesting idea for metallo-β-

lactamase inhibition and it has been shown to reversibly inhibit BcII from Bacillus 

cereus 5/B/6. The initial paper on this was published in 2009 and to date no further 

work in this area has been reported. However, the initial data looks promising with Ki 

values for a 30 residue ssDNA and a 10 residue section of ssDNA being 0.92 nM and 

0.31 nM respectively. Investigations with a second metallo-enzyme showed no 

inhibitory activity suggesting the ssDNA is not simply a chelating agent but actually 

interacts with the active site. Interestingly the same sequence of ssDNA also showed 

no activity against the serine-β-lactamase, BcI. All of this evidence suggests that the 

ssDNA binds the metallo-β-lactamase by interfering with the coordination of either 

one or both of the zinc ions at the active site. The ssDNA molecules were also shown 

to suppress the growth of both Gram positive and Gram negative bacteria when 

added to cultures in combination with the antibiotic cephalexin.128  

Another major group of metallo-β-lactamase inhibitors are dicarboxylates, with some 

showing better activity than the sulfur containing compounds.129 Various different 

dicarboxylates have been investigated starting with succinic acids in 2001130 and 

including phthalic acid derivatives,131 furans132 and most recently diethyl maleates133 

all of which seem to show similar binding interactions with one carboxylate displacing 

the di-zinc bound water molecule (Wat 2) and the second forming a bridge between 

Zn2 and a lysine residue at the active site.129 The investigations carried out on 

succinic acids and phthalic acids both looked at the enzyme IMP-1 from 

Pseudomonas aeruginosa, the furan investigations were computational and focussed 

on the BcII and L1 enzymes and for the study with diethyl maleates isolates from 

Enterobateriaceae and Acinetobacter with IMP, VIM or NDM enzymes were tested. 
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1.7 β-Sultams 

 

1.7.1 Structure 

 

β-Sultams are the sulfonyl analogues of β-lactams. The simplest β-sultam is the 

unsubstituted 1,2-thiazetidine-1,1-dioxide (Scheme 21a, page 53), but many         

β-sultams with substitutions have been reported. The ring may be planar or 

nonplanar and this depends on the nature of any substituents and their positions on 

the ring.134 In either case the ring is highly strained and contains three heteroatomic 

bonds; C-S, S-N and N-C.135 A crystal structure of the substituted β-sultam            

N-methyl-3,4-diphenyl-1,2-thiazetidine-1,1-dioxide was published in 1985.136 This 

showed that the β-sultam ring was distorted relative to the β-lactam ring with a 

buckling of 14.7o and a C-S-N bond angle of 82o. The S-N bond in this β-sultam was 

measured at 1.643 Å which is substantially more than the 1.35 Å carbonyl C-N bond 

length observed in analogous β-lactams. These geometrical variations are likely to 

influence the chemical and enzymatic reactivity with respect to β-lactams. An 

interesting comparison of reactivity in β-sultams and β-lactams has been 

reviewed.137 The paper commences with an overview of the chemical and biological 

activity and reactivity of β-lactams which includes a description of their effectiveness 

as mechanism based inhibitors of serine enzymes. The reactivity of β-sultams (and 

β-phospholactams) is also discussed with reference to the variations in rate 

enhancements seen between the four-membered rings and their respective acyclic 

counterparts. Specific reactions involving acid and base catalysed hydrolysis of β-

sultams are then discussed as explained in greater detail in section 1.7.3. 
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1.7.2 Synthesis 

 

Four main routes to β-sultam synthesis have been reported: 

Cyclisation by S-N bond formation 
 

Cyclisation by C-N bond formation 

 

[2+2] cycloadditions of sulfonimines and alkenes (C-N and C-S bond 

formation) 
 

[2+2] cycloadditions of sulfenes and imines (C-C and N-S bond formation). 

 

 

1.7.2.1 Cyclisation by S-N Bond Formation 

 

By far the most common method of β-sultam synthesis is cyclisation, and of the two 

possible methods for this the formation of the S-N bond is the most popular (Scheme 

20). 

-HCl -HCl

..

 

Scheme 20 Cyclisation via S-N bond formation 

 

The first reported β-sultam was synthesised in this way by Baganz and Dransch in 

1960 (Scheme 21d).138 They took the modified amino acid cystine diethyl ester and 

reacted it with chlorine and ethanol to give the sulfonyl chloride. Neutralisation then 

gave the cyclised product, ethyl 1,1-dioxothiazetidine-3-carboxylate. The first 

reported synthesis of the unsubstituted β-sultam (Scheme 21a) was made by         

Le Berre in 1972 and this was carried out following a similar method.139 Since then 

the same process has been used to synthesise a range of N-substituted and           

3-substituted β-sultams with hypochlorous acid or phosphorus pentachloride being 

used to convert the taurine derivative to the sulfonyl chloride prior to neutralisation 

and cyclisation, usually with either sodium carbonate suspended in ethyl acetate or a 

solution of ammonia in chloroform. 
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Bicyclic β-sultams have also been synthesised in a similar manner. The first report 

was made in 1982 by Koller et al. and concerned the synthesis of some bicyclic β-

sultam based penicillin analogues (Scheme 21e).140 

e

R = CH3 or Na

d

a b c

 

Scheme 21 Structures of some β-sultams of particular interest (and b, the 

unsubstituted β-lactam for comparison) 

 

Another method for the synthesis of β-sultams by S-N bond formation is the 

cyclisation of fluorosulfonyl amino alkanes. This method is less popular than the 

chlorosulfonyl process but has been used to successfully synthesise a number of N-

substituted and 4-bromo β-sultams (general reaction shown in Scheme 22).141 
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Na2CO3

EtOAc

Br2  RNH2

 RNH2

R = Et, i-Pr, t-Bu, Bn. Ph

 

Scheme 22 N-substituted and 4-bromo β-sultams as synthesised by 

fluorosulfonyl amino alkane cyclisation  

 

1.7.2.2 Cyclisation by C-N Bond Formation 

 

The second method of cyclisation is via C-N bond formation. The first report of this 

method was made in 1984 and involved the cyclisation of β-hydroxysulfonamide 

mesylates. This is a relatively simple reaction requiring only exposure to potassium 

carbonate in DMSO at 80 oC to form the substituted β-sultam. In all reported cases 

this method always yields an N-substituted β-sultam but is useful as a method of 

synthesising highly substituted β-sultams (examples shown in Scheme 23).142  
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t-But-Bu

K2CO3

DMSO, 80oC

 

 

 

Scheme 23 β-Sultam synthesis by C-N bond formation during cyclisation 

(scheme for synthesis of 2-tert-butyl-3-(o-nitrophenyl)-1,2-thiazetidine-1,1-dioxide) 

 

1.7.2.3 [2 + 2] Cycloaddition (C-N and C-S Bond Formation) 

 

[2+2] cycloaddition reactions have also been successfully utilised in the preparation 

of β-sultams. N-Sulfonylamines react with nucleophilic olefins to give 1,2-thiazetidine 

1,1-dioxides. The first report of this reaction (an example of C-N and C-S bond 

formation) was made by Burgess and Atkins in 1967 during their research into new 

preparation methods for sulfonylamines. During the attempted preparation of one 

such compound in the presence of 2-(dichloromethylene)-1,3-dioxolane they 

collected and characterised the cycloaddition product; 4,4-dichloro-3,3-

ethylenedioxy-2-ethyl-1,2-thiazetidine 1,1-dioxide (Scheme 24).143  
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Scheme 24 Examples of compounds synthesised by [2+2] cycloaddition 

(scheme shows cycloaddition of 1-(sulfonylamino)ethane and 2-(dichloromethylene)-

1,3-dioxolane) 

 

The first β-sultams synthesised by this method were prepared from highly 

electrophilic N-sulfonylamines, such as N-sulfonylbenzamide, which reacted with 

ethoxyethene to form N- and 3-substituted cycloaddition products.146 Further 

research into the preparation of the sulfonylamine starting materials by the group 

over the next few years lead to the publication of a second paper, this time specific 

to the cycloaddition reaction. In this paper they reported the synthesis of a wide 

range of β-sultams with up to three organic groups substituted at the 3- and 4- 

positions with a carbomethoxy group at the N-position (examples in Scheme 25).145 

 

 

 

 

 

R Et Me CO2Me 

R1 

 

 

Ph 

R2 H H H 

R3 Cl Me H 

R4 Cl Me H 

Ref. 143 144 145 
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Scheme 25 2-carbomethoxy-1,2-thiazetidines synthesised by the method of 

Burgess and Williams145 

 

1.7.2.4 [2 + 2] Cycloadditions (N-S and C-C Bond Formation) 

 

The final general method of β-sultam synthesis and second example of a [2+2] 

cycloaddition reaction generating β-sultams (N-S and C-C bond formation) is the 

reaction of sulfenes with imines as shown in Scheme 26. These reactions of 

benzoylsulfenes with benzylidenamines generate either [2+2] or [4+2] cycloadducts. 

In the first paper reporting this reaction in 1970 it was shown that variation of the R 

group on the benzylidenamine could change the percentage of [2+2] and [4+2] 

yields. The presence of triethylamine was also shown to alter the percentages of the 

products with the [2+2] product being the only one isolated when it was excluded.147 

In a later publication the preference for 3- and 4- substituents to be in cis- geometry 

was shown in the synthesis of 2-methyl-4-phenyl-3-aryl-1,2-thiazetidine-1,1-dioxide 

by this same mechanism.148 

 

 

 

Scheme 26 [2+2] Cycloaddition reaction of 1-phenyl-2-sulfonyl-ethanone 

and a 1-phenyl-methanimine 

 

R1 R2 R3 R4 

Ph H H H 

Ph Ph H H 

Me Me Me H 

1-pyrrolidinoyl H Me Me 
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1.7.2.5 Advances in β-Sultam Synthesis 

 

Since the early investigations of β-sultams numerous advances in the synthesis of 

1,2-thiazetidine-1,1-dioxides have been made. According to a review of sultam 

synthesis published in 2013 there has been a dramatic increase in the amount of 

research being carried out in this area over the past 20 years.149 It is proposed that 

there may be two contributing factors for the increase. Firstly, an academic interest 

in methods of sultam synthesis due to a lack of efficient general reaction schemes 

applicable to sultams of varying ring sizes and substitution patterns. Secondly there 

is a growing interest in the biological activity of sultams and their potential use in 

both the pharmaceutical and agricultural industries.149  

Whilst β-sultam synthesis still mainly relies on the four processes initially highlighted 

above, new methods do show improvements in the asymmetry and potential 

complexity of the structures. Asymmetry may be present within the ring or with 

respect to substituents on C-3 or C-4. 

One of the early reports regarding the synthesis of β-sultams with internal 

asymmetry was made in 2002 by Enders and Wallert and used S-N bond formation 

for the cyclisation of an asymmetric starting material to give 3-substituted β-sultams 

in excellent enantiomeric purity (examples shown in Scheme 27).135  

 

a) HBr, HOAc, CH2Cl2, rt, 3h

b) NEt3, 2h

 

R group Yield (%) over 2 steps ee (%) 

Et 29 >96 

n-Pr 68 >96 

i-Pr 47 >96 

n-Bu 78 >96 

(CH2)2Ph 55 >96 

 

Scheme 27 Examples of high enantio-purity 3-substituted β-sultams as 

prepared by Enders and Wallert135 
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β-Sultams with asymmetric ring substituents have also been synthesised by various 

methods. The variations tend to be in synthesising the acyclic precursors rather than 

in the method of cyclisation which always tends to be by neutralisation in base to 

remove HCl and formation of the N-S bond.149-153 

As previously demonstrated substitutions at the N-, 3- and 4-position are common 

either individually or in combinations of two or three. The group of Hans-Hartwig 

Otto in Greifswald, Germany has spent many years looking at different methods of 

adding reactive substituents to various positions on the β-sultam ring as well as 

synthesising bicyclic systems.154-159 Of particular interest regarding this thesis is the 

work the group reported in 2004 regarding the synthesis of a β-sultam with acetic 

acid substituted at the 3 position on the ring (Scheme 21c, page 53).160 Benzyl 

(R,S)-2-tert-butyldimethylsilyl-1,2-thiazetidine-1,1-dioxide was successfully 

synthesised from an amino acid starting material, (R,S)-S-benzyl-β-homocysteine, 

by oxidative chlorination followed by base-catalysed ring closure and silylation. 

Palladium catalysed hydrogenolysis was used to prepare the acid by ester cleavage 

(Scheme 28). 

1: CHCl3 / EtOH, Cl2 (g)

2: NH3 / CHCl3

BuLi, -78oC, THF,

TBDMS, NH4Cl (aq)H2 Pd/C

 

 

Scheme 28 Synthesis of N-protected 3-acetic acid β-sultam (adapted from 
paper 160)  

 

Another particularly interesting piece of work by the Otto group involves the 

synthesis of 1,2-thiazetidin-3-one 1,1-dioxides; compounds which represent a 

combination of the β-sultam and β-lactam structures. Various different approaches 
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were used to synthesise the 4,4-disubstituted 3-oxo-β-sultams. The first was direct 

cyclisation of 2-chlorosulfonyl-2-methyl-propanoyl chloride with an amine, though 

this only proved successful in the synthesis of the N-unsubstituted compound and 

the N-benzyl derivative. Other derivatives were synthesised by N-alkylation of the  

N-unsubstituted compound via reaction with a bromoalkane and sodium hydride in 

DMF. N-acylated derivatives were also synthesised via reaction with either an acid 

halide or an anhydride with triethylamine in THF. These were particularly unstable 

compounds but interesting due to the presence of a diacylated and sulfonated N-

atom (see Scheme 29).154  

NH3

BnNH2

R-Br

NaH

Et3N

Acyl-halide
R = PhCH2, EtOCOCH2, MeOCH2

Acyl = BrCH2CO, MeOCH2CO, NH2COCH2

 

Scheme 29 Synthesis of 3-oxo-β-sultams 

 

 

1.7.3 Reactivity  

 

Except under highly specific conditions β-sultams undergo hydrolysis by S-N bond 

fission.161 The acid and base catalysed hydrolysis is particularly rapid in comparison 

to both the analogous acyclic sulphonamides (which are especially stable to 

hydrolysis under alkaline conditions) and the analogous β-lactam compounds. As 

sulfonyl transfer reactions are usually much slower (~103 fold) than acyl transfer 

reactions the difference in reactivity between β-sultams and β-lactams is particularly 
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striking.162 Both acid and base catalysed hydrolysis of β-sultams yield the same final 

product but the mechanisms do vary, and this is often reflected in the relative rates 

of the processes when electron donating or withdrawing substituents are present.163 

A huge amount of work has been done by previous members of this group regarding 

the mechanisms and kinetics of β-sultam hydrolysis. In 2000 Baxter et al published a 

thorough report on “Reactivity and Mechanism in the Hydrolysis of β-Sultams”.163 

Within this paper they reported the second order rate constants for the alkaline 

hydrolysis of structurally comparable β-sultams and β-lactams showing the 

significant rate enhancement due to the presence of a sulfonyl group rather than an 

acyl group (compared to the converse situation with the acyclic analogues) (data 

summarised in Table 6). 

The difference in rate enhancements can be explained in terms of thermodynamics 

and transition state stabilisations. Four-membered ring systems are such strained 

systems that ring opening is always thermodynamically favourable. Because the 

opening of the ring reduces the bond strain, reactions which result in the cleavage of 

a ring bond in cyclic systems normally have a lower activation energy due to the 

increased stability of the transition state. This leads to these reactions almost always 

being faster than in the analogous acyclic systems. In β-lactams this rate 

enhancement in the hydrolysis of cyclic over acyclic compounds is only minimal and 

this is because the strain in the ring is not released on formation of the transition 

state (TS). In β-sultams the formation of the TS is accompanied by a large relief in 

strain which explains the significant rate enhancements seen over acyclic 

sulfonamides.  

In β-lactams the initial state and transition state are both destabilised by ring strain 

since the ideal C-C-N bond angle in the initial state is ~120o and in the TS it is ~109o 

based on the preferred trigonal and tetrahedral arrangements respectively. Since the 

ring strain is not significantly reduced by movement to the TS there is little energetic 

advantage and so only minimal rate enhancement is seen. 

Conversely in β-sultams the ring strain relief shown by the five-coordinate 

intermediate significantly enhances rates compared to acyclic systems. As with β-

lactams there is significant ring strain in the initial state with an ideal C-S-N bond 

angle of 109o in the tetrahedral arrangement. The transition state, however, shows a 

trigonal bipyramidal arrangement so that the new C-S-N bond angle of 90o now 

shows the preferred geometry. In acyclic sulfonamides the formation of the TBPI 

does not introduce a more favoured bond angle. The difference in free energy 

between initial and transition states for the cyclic system is therefore reduced in 
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comparison to the acyclic system and the rate enhancements observed accounted 

for.164 

 

  

Sulfonyl analogue 

 

Carbonyl analogue 

Relative rates          

(kOH sulfonyl /      

kOH carbonyl) 

  

 
 
 

 

 

 

 

2.31 x 102 

kOH M
-1s-1 1.41 x 10-2 6.1 x 10-5 

  

 
 

 

 

 

 

 
1.47 x 103 

kOH M
-1s-1 5.69 3.87 x 10-3 

  

 
 

 

 
 

 

 

8.70 x 10-5 

kOH M
-1s-1 <2 x 10-9 2.3 x 10-5 

Relative rates 

in cyclic 

compounds 
(kOH alkyl /   

kOH aryl) 

 

2.47 x 10-3 

 

1.58 x 10-2 

 

 

Table 6 Second order rate constants for the alkaline hydrolysis of some 
analogous acyl and sulfonyl compounds (adapted from 163) 

 

The effect of pH on the rate of both acid and base catalysed hydrolysis of β-sultams 

has also been studied in some depth by previous members of this group. pH rate 

profiles for both the N-methyl- and N-phenyl-β-sultams show a high reactivity 

towards both acid and base hydrolysis with an apparent lack of a pH independent (or 

spontaneous) hydrolysis reaction. The N-methyl-β-sultam shows a minimum rate at 

approximately pH 8 whereas the minimal rate for the N-phenyl-β-sultam is seen at 

around pH 6. Also the rate of hydrolysis of the N-phenyl-β-sultam is considerably 
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more rapid at pH 12 than that of the N-methyl-β-sultam (kobs = 6.67 x 10-2 s-1 and 

1.41 x 10-4 s-1 respectively).165 Through their studies on the effect of N-substituents 

on the rate of hydrolysis the group has shown that electron withdrawing substituents 

on nitrogen increase the rate of the base catalysed reaction and, along with various 

other pieces of data, they were able to convincingly prove the mechanism of alkaline 

hydrolysis and show that it proceeds via the trigonal bipyrimidal intermediate 

previously mentioned.134,163 Of interest here though are the two possible mechanisms 

of bond cleavage after the formation of the trigonal bipyramidal anionic intermediate. 

One route shows a unimolecular ring-opening mechanism via proton transfer and the 

second shows a bimolecular process involving a water molecule (Scheme 30). Both 

methods are kinetically viable and the actual route taken may be influenced by the 

nature and number of substituents on the ring. 

 

 

Proton transfer

 

Scheme 30 Mechanism of the alkaline catalysed hydrolysis of β-sultams 

 

Acid catalysed hydrolysis is a much more facile process showing only one viable 

mechanism (Scheme 31). Initial protonation of the β-sultam nitrogen is followed by 

unimolecular S-N bond fission. The hydrolysis reaction then proceeds via an unstable 

sulfonylium ion which is trapped by water to give the zwitterionic product. In 

contrast to the base catalysed process with acid catalysed hydrolysis N-alkyl-          

β-sultams are more reactive than N-aryl-β-sultams (Table 7) but the differences in 

rate are not so dramatic.134,163 
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N-alkyl β-sultam 

 

N-aryl β-sultam 

 

 

 

 

Observed rate 
difference           

(k alkyl / k aryl) 

 

 
 

  

 
 
 

 

 

kH M-1s-1 2.64 5.63 x 10-2 46.89 

kOH M
-1s-1 1.41 x 10-2 5.69 2.48 x 10-3 

 

Table 7 Comparison of acid and base catalysed reaction rates for N-alkyl and 

N-aryl β-sultams 

 

..

 

Scheme 31 Mechanism of the acid catalysed hydrolysis of β-sultams 

 

The reactivity of 3-oxo-β-sultams (molecules which are both β-sultams and            

β-lactams) has also been investigated with regard to the mechanism and rate of 

hydrolysis. In an early report by the group concerning the hydrolysis of N-benzyl-

4,4-dimethyl-3-oxo-β-sultam compared to an N-acyl-β-sultam product analysis 

showed that for 3-oxo-β-sultams nucleophilic attack occurred at the sulfonyl centre 
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and hydrolysis proceeded via expulsion of a carboxamide leaving group.161 In a later 

paper the second order rate constants for alkaline hydrolysis for a range of N- and 4- 

substituted 3-oxo-β-sultams were shown to be ~103 – 105 M-1s-1 with the fastest 

reaction being the hydrolysis of the previously reported N-benzyl-4,4-dimethyl-3-

oxo-β-sultam with a kOH of 1.83 x 105 M-1s-1. In all cases the hydrolysis proceeded 

via attack at the sulfonyl centre leading to S-N not C-N bond fission which is 

consistent with previous observations that β-sultams are 102 to 103-fold more 

reactive than β-lactams towards alkaline hydrolysis.166 

 

1.7.4 Sulfonyl Compounds as Enzyme Inhibitors 

 

As previously mentioned β-sultams are cyclic compounds which can be formed by 

the cyclisation of taurines: 2-carbon systems with terminal sulfonyl and amide 

groups. The first report of sulfonyl compounds being used as enzyme inhibitors was 

published in 1963, a paper which discussed a range of organic sulfonyl fluorides as 

inhibitors of acetylcholinesterase, α-chymotrypsin and trypsin.167 This paper was 

followed a year later by one which showed phenylmethanesulfonyl fluoride to be an 

irreversible inhibitor of α-chymotrypsin via sulfonylation of an active site serine 

residue.168  

This work was continued over the next two decades with benzenesulfonyl fluorides 

being developed as inhibitors of a range of enzymes (trypsin169, thrombin,170 and 

kallikrein171 among others). The reactivity of aromatic sulfonyl fluorides was also 

developed with the addition of a positively charged benzamidine or pyridinium group 

to the benzene ring, increasing the reactivity. As part of this work                        

(p-amidinophenyl)methanesulfonyl fluoride was synthesised and shown to be an 

irreversible inhibitor of serine proteases, particularly bovine trypsin and human 

thrombin.172 Structures of some of the sulfonyl compounds investigated are shown in 

Scheme 32. 
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b
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Trypsin168

Thrombin169
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Plasmin169

Inhibitor of:
Trypsin171

Thrombin171

Plasmin171

 

 

Scheme 32 Structures of serine protease inhibitors                                  
(a=methanesulfonyl fluoride, b=1-dimethylaminonaphthalene-5-sulfonyl chloride, 

c=(p-[m(m-fluorosulfonylphenylureido)phenoxyethoxy] benzamidine and         

d=(p-amidinophenyl)methanesulfonyl fluoride) 

 

Cyclic sulfonates and sulfate esters have also been investigated with respect to their 

reactivity and enzyme inhibition abilities. Five membered cyclic sulfate esters such as 

catechol cyclic sulfate (Scheme 33a) and 2-hydroxy-α-toluenesulfonic acid sultone 

(Scheme 33b) have been shown to have rates of hydrolysis 107 and 106 times faster 

than the acyclic analogue diphenyl sulfate (Scheme 33c) respectively.173 Conversely 

six-membered systems (Scheme 33d) whilst having a hydrolysis rate faster than that 

of an acyclic analogue (Scheme 33e) by one order of magnitude showed no real rate 

enhancement like that in the five-membered system which has a second order rate 

constant for reaction 104 times higher than the six-membered system.174 This work 



Introduction 

67 

 

on cyclic system rate enhancements follows on from that carried out on phosphate 

esters in the 1950s and 1960s.175  

 

e)

a) b)

c) d)

 

 

Scheme 33 Cyclic and acyclic sultone structures (Ref 173,176) 

 

Sulfonamides were reported as inhibitors of carbonic anhydrase in 1940 and have 

been the subject of much work right up to the present day.177-180 Although much of 

the work still centres around inhibition of carbonic anhydrase, sulfonamides have 

also been shown to inhibit other enzymes such as tyrosine phosphatase,181 a mutant 

isocitrate dehydrogenase found in leukaemia cancer cells182 and aggrecanase, an 

enzyme targeted with regard to osteoarthritis treatment.183 

 

1.7.5 β-Sultams as Enzyme Inhibitors 

 

In 2001 the inactivation of the serine protease enzymes by N-benzoyl-β-sultam was 

first reported184 and this was followed in 2003 by reports of N-acyl-β-sultams 

inactivating the same elastase enzyme.185 Two years later N-acyl-β-sultams were 

shown to inhibit the Streptomyces R61 DD-transpeptidase enzyme by way of 
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sulfonylating the active site serine residue.186 In another paper in the same year 

these same      N-acyl-β-sultams were shown to inactivate the Class C β-lactamase 

P99 from Enterobacter cloacae.187 This paper also looked at the action of analogous 

β-lactams on the same enzyme. The β-lactams were shown to be substrates for the 

enzyme with hydrolysis taking place via an acylation-deacylation process. Conversely 

the β-sultams inactivated the enzyme by sulfonylation of the active site serine 

residue forming a sulfonate ester which then underwent C-O bond fission. ESI-MS 

investigations showed that elimination of the sulfonate anion led to the formation of 

a dehydroalanine residue. 

β-Sultams have the potential to act as inhibitors of β-lactamases via either the 

mechanism based or transition state analogue route. Mechanism based inhibition of 

serine-β-lactamases is possible with β-sultams which have a leaving group at the 3-

position or where there is a leaving group on an N-acyl substituent (Scheme 34). 

 

Scheme 34 Representative structures of β-sultams with the potential to 

inhibit serine β-lactamase enzymes 

 

In a similar manner to β-lactam type inhibitors (clavulanic acid or sulbactam for 

example) the attack of the enzyme at the sulfonyl centre (the carbonyl centre in the 

β-lactams) and loss of the leaving group results in formation of an electron-deficient 

imine or iminium ion which could be attacked by a second nucleophilic amino acid 

residue at the active site. This would trap the enzyme and cause irreversible 

inhibition (see Scheme 35). 
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Scheme 35 Mechanism based inhibition of serine β-lactamase enzymes by β-

sultams 

 

Transition state analogue inhibition could be achieved with metallo-β-lactamases due 

to the tetrahedral sulfonyl group which imitates the sp3 intermediate formed by 

enzyme attack at the carbonyl centre of β-lactam antibiotics during normal enzyme 

action. This could be especially true upon ionisation of the β-sultam to generate an 

anion suitable for complexing to Zn2+. Non-covalent interactions between the zinc ion 

of metallo-enzymes and the sulfonyl group can potentially lead to transition state 

analogue inhibition. A similar result is also possible via interaction of the sulfonyl 

centre with the oxyanion hole of serine enzymes. 

 

 

 

Scheme 36 Zinc interactions with a representative β-sultam and β-lactam 
transition state demonstrating potential for β-sultams to act as transition 

state analogues 

 

It is proposed that 1,2-thiazetidine-3-carboxylate-1,1-dioxide (3-carboxy-β-sultam) 

has the potential to act as a transition state analogue of the Class B β-lactamase 

BcII via interactions of the zinc ion (Zn1) with the sulfonyl group as shown above. 

Further interactions should occur between the amine and zinc bound hydroxide ion 

(Wat 1) and also between the second zinc ion (Zn2) and the carboxylate group as 

demonstrated in Scheme 37.  
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Scheme 37 Potential interactions between the active site of BcII and 3-

carboxy-β-sultam  
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1.8 Glutamine Synthetase 

 

1.8.1 The Roles and Regulation of Glutamic Acid in The Human 
Body 

 

Glutamic acid, or glutamate, is a non-essential, proteinogenic amino acid which also 

has a role in the human body as an excitatory neurotransmitter. It is non-essential 

as it can be synthesised within the body via the synthesis and degradation pathway 

detailed in Scheme 38. The inhibition of any of the enzymes along this pathway will 

necessarily cause a change in the concentration of glutamic acid. 

 

glucose Krebs cycle -ketoglutarate

GABA 
Transaminase

Glu

Gln

GABA

Glutamate 
decarboxylase

Glutaminase
Glutamine
synthetase

 

Scheme 38 Synthesis and degradation of glutamic acid (Glu) 

 

Glutamine synthetase (GS) is an important enzyme in this pathway and plays a vital 

role in the brain, kidneys and liver. Within the brain this enzyme is involved in the 

regulation of glutamate and the metabolism of nitrogen by catalysing the synthesis 

of glutamine. This is an ATP-dependent pathway which involves the phosphorylation 

of the side chain carboxylate group to yield ADP and an acyl-phosphate intermediate. 



Introduction 

72 

 

This intermediate then reacts with ammonia to form glutamine and inorganic 

phosphate (as shown in Scheme 39). 

 

Glu

Gln

ATP ADP

NH3

Pi

 

 

Scheme 39 Overview of glutamine synthetase catalysed formation of 

glutamine from glutamic acid 

 

1.8.2 The Role of Glutamic Acid in Neurodegeneration 

 

Glutamate is the major excitatory neurotransmitter within the central nervous 

system (CNS).188 The concentrations of glutamate within the CNS are approximately 

1000-fold higher than those of the neurotransmitters dopamine, noradrenaline and 

serotonin.189 Glutamate has been shown to be an excitotoxic agent under certain 

conditions; high concentrations of glutamate can cause excessive stimulation of 

glutamate receptors causing the death of cells which express these receptors.188  The 

concentration of glutamate in the extracellular space can be controlled by glutamate 

transporters which transport glutamate across cellular membranes. This is important 

as the removal of glutamate from the extracellular space is the major method of 

terminating an excitatory signal. Alterations in the expression of glutamate 
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transporters and the accompanying changes to extracellular glutamate 

concentrations have been implicated in the following diseases (among others): 

Amyotrophic lateral sclerosis (ALS)190-192 

Alzheimer’s disease193,194 

Huntington’s disease195 

Parkinson’s disease189 

Epilepsy.195 

 

1.8.3 Glutamic Acid Analogues (and Associated Compounds) as 

Enzyme Inhibitors and CNS Drugs 

 

Numerous analogues of glutamate and other compounds in the glutamic acid 

synthesis/degradation pathway have been investigated as potential inhibitors of key 

enzymes in the CNS and as potential drugs for the treatment of a range of diseases, 

particularly those of a neurological nature (some structures are shown in Scheme 

40). Numerous studies have also been carried out on glutamine synthetase from 

sources other than the human CNS; enzymes from rat brain and liver, sheep brain 

and even pea plants have all been investigated. 

L-Methionine sulfoximine is structurally very similar to L-glutamic acid and has been 

shown to act as a convulsant. It irreversibly inhibits glutamine synthetase via tight 

binding of the phosphorylated methionine sulfoximine and ADP at the active site.196 

Another structural analogue of glutamic acid which inhibits glutamine synthetase 

(from pea plants) is tabtoxinine-β-lactam. This is a particularly interesting structure 

which both mimics the structure of glutamate and contains a β-lactam ring, yet it 

does not inhibit DD-transpeptidase enzymes or β-lactamases.197 Taurine, the 

hydrolysis product of β-sultam, is a glutamic acid analogue which has been 

implicated as a potential therapeutic agent. It has been shown to have an effect in 

the treatment of neurodegenerative diseases such as Parkinson’s disease and 

alcohol-induced brain damage possibly due to its anti-inflammatory actions.198 Some 

compounds structurally related to taurine have also been reported to be useful as 

drugs which can reduce the craving for alcohol in recovering post-detoxification 

alcoholics199-201 Acamprosate (N-acetyl homotaurine or 3-acetamidopropane-1-

sulfonic acid) is one such compound; marketed under the trade name Campral it is 
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used to treat alcohol dependancy.202 Other reports suggest that taurine can prevent 

neurodegeneration in the elderly, particularly that associated with Alzheimer’s 

disease.203,204 Gabapentin is an anticonvulsant used in the treatment of epilepsy. It is 

a GABA analogue (rather than a glutamate analogue) but has been shown to have 

effects on the enzymes in the metabolic pathways of both GABA and glutamate.205 

 

Tabtoxinine--lactam

L-Methionine sulfoximine

Gapapentin

Taurine Glutamic acid

GABA
Acamprosate

 

 

Scheme 40 Structure of taurine, glutamic acid and related compounds 
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1.8.4 β-Sultams as Pro-Drugs for Treating Neurodegenerative 

Diseases 

 

As has been previously discussed in section 1.7.3 the hydrolysis of the unsubstituted 

β-sultam (1,2-thiazetidine-1,1-dioxide) yields taurine, a compound which is 

zwitterionic in aqueous solution (Scheme 41). 

 

 

Scheme 41 Hydrolysis of β-sultam to yield taurine  

 

The administration of taurine as a drug however, is not a facile process. The 

zwitterionic nature of the compound makes it highly lipophobic and hydrophilic and 

this decreases the ability of taurine to diffuse across cell membranes so that it is 

poorly absorbed from the gut.206 The charged nature of the molecule also reduces 

the amount of taurine which can be taken across the blood-brain barrier. In order for 

taurine to be a useful drug in the treatment or prevention of neurodegeneration it is 

necessary to find a method of getting it into the brain and to the site of action. Two 

possible ways of facilitating this are: 

Producing taurine analogues with lower hydrophilicity 

 
Producing a pro-drug which in some way releases taurine into cells once it 

has crossed into the brain. 

 

β-Sultams could be ideal pro-drugs for taurine analogues if their half-lives at 

physiological pH are of an order which allows delivery of the pro-drug to the site of 

action prior to hydrolysis. Previous work by Ward et al. has studied the effects of β-

sultam and taurine on the inflammatory response and rate of glutamate release both 

in cells and in rats.198 Their work showed that β-sultam had an enhanced ability to 

reduce the inflammatory response over taurine (its hydrolysis product) both in vitro 

and in vivo. It also had an effect on the amount of glutamate release, and again this 

was a greater effect than with taurine. It is suggested that the increased lipophilicity 

of the β-sultam over taurine increases the uptake across cell membranes and that 
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the use of β-sultams as pro-drugs for taurine analogues may be of significant benefit 

in the treatment of neurodegenerative conditions. Enzymes within the CNS are 

potentially targets for these compounds and their activity as inhibitors of glutamine 

synthetase is therefore of interest.  
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1.9 Mechanism of Ertapenem Hydrolysis by the Metallo-β-

Lactamase enzyme BcII 

 

Ertapenem is a carbapenem antibiotic with a similar mode of action to imipenem and 

meropenem (Scheme 42). In this age of increasing resistance of bacteria to β-lactam 

antibiotics the carbapenems are of vital importance as a last line of attack as 

currently most bacteria are still susceptible to their activity. As with all drugs an 

understanding of their stability and the mechanism of their action is of great 

importance. 

Ertapenem

Imipenem

Meropenem

 

Scheme 42 Structures of representative carbapenem antibiotics 

 

The stability of ertapenem at a range of pHs in aqueous solutions was investigated 

by Zajac et al. and they published pH rate profiles for the hydrolysis of ertapenem at 

temperatures from 30 – 60 oC.207 Tioni et al. studied imipenem hydrolysis and 

specifically looked at the formation of a reaction intermediate in the hydrolysis by 

BcII.208 They used various techniques to characterise the intermediate and concluded 
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that protonation during hydrolysis at the active site of the enzyme occurred initially 

on nitrogen (Scheme 43B), but that tautomerisation may lead to the formation of the  

imine product (Scheme 43C).  

A B C

 

Scheme 43 Tautomerisation of carbapenem (imipenem core structure) after 
hydrolysis 

 

Our studies of ertapenem aim to confirm that protonation actually occurs at C3 of 

the pyrrolidine ring to form the product shown in Scheme 43C.  
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1.10  Instrumental Techniques – React-IR 

 

React-IR is a relatively new technique first introduced in the early 1990’s. It can be 

used to monitor a reaction in situ and in real time without the need for removing 

samples or for further sample preparation. Computer software is available to allow 

the monitoring of specific characteristic wavenumbers producing graphs which show 

the change in absorption due to disappearance of starting materials, appearance and 

disappearance of intermediates or the production of the final products. 

The individual spectra produced during a React-IR experiment are the same as those 

produced in a standard FT-IR experiment. The molecules in the solution absorb the 

IR radiation at frequencies which correspond to the vibrational frequencies of the 

bonds within them. The use of a Fourier transformation allows these absorbances to 

be displayed as a frequency spectrum specific to the solution at that moment in 

time. 

In a React-IR instrument (Figure 10) the IR source, interferometer, beam splitter 

and detector are all housed within the main unit. The optical path of the IR radiation 

is from the source along the probe, through an optical crystal and back up the probe 

to the detector in the main unit. 

 
Figure 10 React-IR spectrometer                

 

 
  

The infrared light passes through the crystal via total internal reflection with multiple 

reflections. This total internal reflection causes an evanescent wave which penetrates 

0.5 to 2 μm into the sample. This is known as attenuated total reflectance (ATR) and 

allows extremely small samples (for example, one drop of < 0.1 ml) to be analysed 

by IR spectroscopy. In order for an evanescent wave to form, the crystal must be 

made of a material with a higher refractive index than the sample solution. Materials 
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often used as ATR crystals are germanium, zinc selenide or, as in the case of our 

instrument, diamond. 

As with other types of spectroscopy the Beer-Lambert Law (     ) can be applied to 

infrared spectroscopy.209 The law states that the absorbance (A) of a solution is 

equal to the concentration (c) of the solution multiplied by the path-length (l) of the 

sample and its molar absorptivity (ε). In the case of solutions containing multiple 

components it is necessary to find a wavelength (or in this case wavenumber) where 

only one component shows an absorbance. In this way it is possible to monitor the 

concentration of a species in solution using ReactIR if a unique absorption band for 

that species can be found. In the case of a reaction where there is a change in 

functional group this can be quite easy using ReactIR, and it is an advantage of 

ReactIR over UV-Vis spectroscopy where no chromophores are created or removed. 

ReactIR was chosen as the technique to follow the hydrolysis of β-sultam to yield 

taurine. Sulfur-oxygen double bonds tend to absorb IR radiation between 1050 and 

1450 cm-1. The exact wavenumber of the absorption depends on the functionality of 

the double bond (part of a sulfone, sulfonic acid, sulphate etc.) and on the presence 

of other functional groups on the molecule. In this case preliminary work showed 

that the β-sultam S=O bond absorbed at 1301 cm-1 and the taurine S=O peak was 

found at 1200 cm-1 when in an aqueous solution. A plot of the absorbances at these 

wavenumbers with respect to time could be fitted to a first order rate law and 

exponential plots would give the pseudo-first-order rate constants for hydrolysis at 

low pH. 
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2.1 Synthesis 

 

2.1.1 General 

 

Solvents and reagents were obtained from commercial sources (Sigma Aldrich or 

Fisher Scientific) and used as obtained unless otherwise stated. 

NMR spectra were recorded on a 400MHz Bruker Ascend spectrometer (unless 

stated) and chemical shifts (δH or δC) are quoted in ppm. The abbreviations used are       

br: broad, s: singlet, d: doublet, t: triplet, m: multiplet, dd: doublet of doublets,     

dt: doublet of triplets. Coupling constants (J) are quoted in Hertz. Infrared spectra 

were obtained on a Thermo Nicolet 380 FT-IR spectrometer as neat samples and the 

absorption peaks are quoted as wavenumbers (cm-1). Mass spectra were recorded on 

an Agilent 6530 Accurate Mass Q-TOF LC-MS fitted with an Agilent 1290 Infinity 

Autosampler. Melting points were recorded on a Gallenkamp melting point 

apparatus. 
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2.1.2 Synthesis of 1,2-thiazetidine-1,1-dioxide (β-sultam)   

 

Synthesis of 2-aminoethanesulfonyl chloride hydrochloride 
(taurine sulfonyl chloride) [2] 

 

EtOH, Cl2
CHCl3

-10 oC

[1] [2]  

2-(2-Aminoethyldisulfanyl)ethanamine dihydrochloride (cystamine dihydrochloride) 

[1] (17.38g, 77.0mmol) was suspended in chloroform (400ml) and ethanol (200ml). 

Chlorine gas was passed into the suspension at -10 oC for 2 hours until saturation 

(noted by a permanent green colouration). The system was purged with nitrogen, 

dry diethyl ether (100ml) was added and the solution stirred at room temperature 

for 2 hours. The white precipitate was recovered by vacuum filtration and washed 

with dry diethyl ether (2 x 25ml) to yield a white crystalline solid (24.9g, 138mmol, 

89%). This was then used directly in the next step without further analysis. 
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Synthesis of 1,2-thiazetidine-1,1-dioxide (β-sultam) [3] 

 

Na2CO3

EtOAc

rt, 60 hours

[3][2]  

2-Aminoethanesulfonyl chloride hydrochloride (taurine sulfonyl chloride) [2] (8.500g, 

47.0mmol) was added to anhydrous sodium carbonate (20.93g, 194mmol) in ethyl 

acetate (250 ml) and stirred at room temperature for 60 hours. The reaction mixture 

was filtered through celite and the solvent removed by reduced pressure rotary 

evaporation at 30 oC to afford a white crystalline solid (1.11g, 10.4mmol, 22%).  

m.p. 52-54 oC (literature value 53 oC).139 

IR υmax (cm
-1) (Neat): 3308, 2958, 2021, 1298, 1260, 1150 (S=O), 799. 

1H NMR δ (CDCl3): 5.58 (1H, br s, NH), 4.32 (2H, dt, J1.78 & 6.96, CH2-SO2), 3.39 

(2H, dt, J3.87 & 6.96, CH2-NH). (literature values 3.39 (2H, dt, J4 & 7, CH2NH), 

4.32 (2H, dt, J2 & 7, SO2CH2), 5.53 (1H, bs, NH) ).210  

13C NMR δ (CDCl3): 60.91 (CH2-SO2), 28.08 (CH2-NH). (literature values 26.8, 

60.6).210 
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2.1.3  Synthesis of 1,2-thiazetidine-3-carboxylate-1,1-dioxide 

(3-carboxy-β-sultam) 

 

Synthesis of benzyl 2-amino-3[(2-amino-3-benzylcarboxy-

propyl)disulfonyl] propanoate dihydrochloride (L-cystine 

dibenzyl ester dihydrochloride) [5] 

1. C6H5CH2OH, 

PTSA

CHCl3
reflux, 72h

2. HCl (g)

[4] [5]

 

2-Amino-3[(2-amino-3-carboxy-3-propyl)disulfanyl]propanoic acid (L-cystine) [4] 

(20.39g, 85.0mmol), 4-methylbenzenesulfonic acid (para-tolusenesulfonic acid) 

(39.95g, 210mmol) and phenyl methanol (benzyl alcohol) (107.6g, 995mmol) were 

added to chloroform (500ml) and heated to reflux (105 oC) under modified Dean and 

Stark conditions for 72 hours. The solution was cooled to room temperature and 

poured onto diethyl ether (800ml). The precipitate was collected by gravity filtration, 

dissolved in saturated sodium hydrogen carbonate solution (800ml), extracted with 

diethyl ether (4 x 200ml) and dried over sodium sulfate. Hydrogen chloride gas was 

passed through the solution until precipitation was complete. The white solid was 

recovered by gravity filtration and allowed to air dry (18.6g, 38.0mmol, 44%). 

m.p. 165-169 oC (dec.); (lit. 166 oC dec.)211 

IR υmax (cm
-1) (Neat): 3365, 3032-2594 (N-H), 1756 + 1737 (C=O), 1600, 1561, 

1537, 1489, 1270, 1248, 1203, 1125, 1098, 1061, 901, 823, 727, 695. (literature 

values 3100-2500 (NH), 1755, 1735 (CO) )156 

1H NMR δ (d6-DMSO): 8.88 (6H, br s, 2x NH3), 7.43 (10H, m, 2x C6H5), 5.23 (4H, 

m, 2x CH2Ph), 4.45 (2H, s, 2x CH2CHCOO), 3.34 (4H, m, 2x SCH2CH). 
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Synthesis of benzyl 2-amino-3-(chlorosulfanyl)propanoate 

hydrochloride [6] 

EtOH, Cl2

CHCl3
0 oC

[5] [6]

 

Benzyl 2-amino-3[(2-amino-3-benzylcarboxy-propyl)disulfanyl]propanoate          . 

dihydrochloride (L-cystine dibenzyl ester dihydrochloride) [5] (6.900g, 14.0mmol) 

was suspended in chloroform (50ml) and ethanol (25ml) at 0 oC. Chlorine gas was 

passed through the solution to saturation (noted by a permanent green colouration). 

Cold dry diethyl ether (50ml) was added and the system purged with nitrogen. The 

flask was stored overnight at 4 oC. The precipitate was recovered by vacuum 

filtration and washed with ethyl acetate (2 x 50ml) to afford the product as a fine 

white powder (6.40g, 21.3mmol, 75%). 

IR υmax (cm-1) (Neat): 3100-2600 (N-H), 2975, 1739 (C=O), 1534, 1385, 1369, 

1244, 1166 (O=S=O), 1083, 1034, 901, 877, 737, 695, 520. (literature values 

3100-2600 (NH), 1750, (CO), 1385, 1170 (SO2) ).
156 

1H NMR δ (d6-DMSO): 8.41 (~2H, br s, NH3
+), 7.44 (5H, m, C6H5), 5.24 (2H, dd, 

CH2Ph), 4.49 (2H, m, CH2SO2Cl), 3.03 (1H, m, CHNH2). (literature values 3.0 (m, 

2H, 3-H2), 4.40 (m, 1H, 2-H), 5.20 (AB, 2H, Ar-CH2), 7.40 (s, 5H, ArH), 8.55 and 

14.4 (br, m, 3H, NH3
+) ).156 

  



Experimental 

87 

 

Synthesis of benzyl 1,2-thiazetidine-3-carboxylate-1,1-dioxide 

(3-benzyl carboxylate β-sultam) [7] 

 

NH3, CHCl3

0 oC, 1h

[6] [7]  

Benzyl 2-amino-3-(chlorosulfanyl)propanoate hydrochloride [6] (2.340g, 7.80mmol) 

was suspended in chloroform (40ml) and stirred vigorously at 0 oC. A solution of 

saturated ammonia in chloroform (40ml) was added slowly and the resulting solution 

stirred for 1 hour. The solution was concentrated by reduced pressure rotary 

evaporation, ethyl acetate (20ml) added and washed with distilled water (2 x 125ml) 

until the organics were clear. The solvent was removed by reduced pressure rotary 

evaporation to leave a yellow oil which solidified on cooling to yield a waxy pale 

yellow solid (0.98g, 4.07mmol, 52%). 

IR υmax (cm
-1) (Neat): 3283 (N-H), 1745 (C=O), 1306, 1288, 1204, 1145 (S=O), 

1074, 739, 732, 696, 674, 464. (literature values 3320 (NH), 1740, (CO), 1320, 

1300, 1155 (SO2) ).
156 

1H NMR δ (CDCl3): 7.45 (5H, m, C6H5), 6.12 (0.75H, br s, NH), 5.33 (2H, s, CH2Ph), 

4.63 (1H, dd, J = 8.92 & 13.06, CHAHBSO2), 4.44 (1H, dd, J = 4.27 & 13.06, 

CHAHBSO2), 4.27 (1H, dd, J = 4.27 & 8.92, CHNH). (literature values 4.15 (dd, J = 

10.2 Hz, 2 Hz 1H, 3-H), 4.32 (dd, J = 13 Hz, 2 Hz, 1H, 4-H), 4.57 (dd, J = 13 Hz, 

10.2 Hz, 1H, 4-H’), 5.22 (s, 2H, Ar-CH2), 7.37 (m, 5H, ArH) ).156 

13C NMR δ (CDCl3): 183 (COO), 141 (Ar-C), 129 (Ar-CH), 128 (Ar-CH), 127 (Ar-

CH), 64 (CH2-SO2), 52 (CH-NH). 
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Synthesis of 1,2-thiazetidine-3-carboxylate-1,1-dioxide (3-

carboxy-β-sultam) [8] 

 

or

NH3 (l), Na

-78 oC, 30 min

[7] [8]
 

Benzyl-1,2-thiazetidine-3-carboxylate-1,1-dioxide (363.1mg, 1.50mmol) was 

dissolved in liquid ammonia (35ml) at -78 oC under a nitrogen atmosphere. Sodium 

metal (50.09mg, 2.18mmol) was added until the solution just remained deep blue. 

Ammonium chloride (37.34mg, 0.70mmol) was added to dissipate the blue colour 

and the ammonia was allowed to evaporate under a stream of nitrogen to yield a 

white solid (450.12mg, includes NH4Cl salt). 

1H NMR δ (D2O): 4.57 (1H, dd, J8.78 & 13.96, CHAHBSO2), 4.23 (1H, dd, J5.34 & 

13.96, CHAHBSO2), 3.98 (1H, dd, J5.34 & 8.78, CHNH). 

13C NMR δ (D2O): 181 (COOH), 64 (CH2-SO2), 43 (CH-NH). 

m/z (LC-MS-QTOF) 149.97 (M-H)-, 105.98 (M-COOH)-. 
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2.1.4 Attempted syntheses of 1,2-thiazetidine-3-carboxylate-

1,1-dioxide (3-carboxy-β-sultam) [8] 

 

[7] [8]  

 

Attempt 1: Catalytic Hydrogenolysis 

5% palladium on carbon (29.10mg) was added to a bubble column and purged with 

nitrogen for 5 minutes. 3-Benzyl carboxylate β-sultam (301.4mg, 1.25mmol) was 

dissolved in methanol (10ml), added to the column and purged for a further 10 

minutes. Hydrogen gas was bubbled through the solution for 1 hour at a flow rate of            

40 ml/min. The catalyst was removed by filtering through celite and the methanol 

removed by rotary evaporation to yield a white powder. 

 

Attempt 2: Catalytic Hydrogenolysis 

10% palladium on carbon (35.68mg) was added to a bubble column and purged with 

nitrogen for 5 minutes. 3-Benzyl carboxylate β-sultam (316.8mg, 1.31mmol) was 

dissolved in methanol (25ml), added to the column and purged for a further 10 

minutes. Hydrogen gas was bubbled through the solution for 2 hours at a flow rate 

of 40 ml/min. The catalyst was removed by filtering through celite and the methanol 

removed by rotary evaporation to yield a white powder. 

 

Attempt 3: Transfer Hydrogenolysis 

10% palladium on carbon was added to a flask and purged with nitrogen for 5 

minutes. 3-Benzyl carboxylate β-sultam (139.9mg, 0.58mmol) was dissolved in 

ethanol (29ml) and added to the flask with 1,4-cyclohexadiene (530μl, 449mg, 

5.6mmol) and stirred under a nitrogen atmosphere at 20 oC for 24 hours. The 
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catalyst was removed by filtering through celite and the solvents removed by rotary 

evaporation to yield a white powder. 

Attempt 4: Base Catalysed Hydrolysis 

3-Benzyl carboxylate β-sultam (116.5mg, 0.483mmol) was dissolved in 1M NaOH 

(5ml) and stirred for 10 minutes. Half the solution was removed and the remainder 

allowed to stir for a further 30 minutes. Upon removal from the reaction flask both 

samples were treated as follows: the solution was extracted with DCM (2 x 1.5ml), 

the aqueous portion was acidified with 2M HCl (1ml), extracted into diethyl ether (2 

x 1ml) and the solvent removed by rotary evaporation. 

 

Attempt 5: Base Catalysed Hydrolysis 

3-Benzyl carboxylate β-sultam (931mg, 3.86mmol) was dissolved in 1.0M NaOH 

(9.5ml) and stirred for 2 minutes at 0 oC. The benzyl alcohol formed was extracted 

with DCM (3 x 6ml). 25ml DCM was added to the aqueous portion which was 

acidified with dropwise addition of 2.0M HCl until the solution reached pH 1. The 

organic layer was separated and a further extraction of the aqueous portion carried 

out with DCM (8ml). These two organic solutions were combined and the solvent 

removed by reduced pressure rotary evaporation. 
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2.1.5 Debenzylation of proline benzyl ester hydrochloride 

 

 

Pd/C, H2

MeOH

 

 

10% palladium on carbon (28.10mg) was added to a bubble column and purged with 

nitrogen for 5 minutes. Proline benzyl ester (232.6mg, 0.97mmol) was dissolved in 

methanol (10ml), added to the column and purged for a further 10 minutes. 

Hydrogen gas was bubbled through the solution for 2 hours at a flow rate of           

30 ml/min. The catalyst was removed by filtering through celite and the methanol 

removed by rotary evaporation to yield an orange oil. 

IR υmax (cm-1) (Neat): 3382, 2958, 1622, 1553, 1450 (C-N), 1376 (C-H), 1318, 

12901, 1266, 1171, 1086, 1038, 988, 946, 910, 898. 

1H NMR δ (D2O): 4.27 (1H, m, CH-COO-), 3.22 (1H, m, CHAHB-NH), 3.20 (1H, m, 

CHAHB-NH), 2.54 (1H, m, CHC-HD-CHCOO), 2.25 (1H, m, CHC-HD-CHCOO), 1.91 (2H, 

m, CH2). (literature values 4.13, 3.42, 3.34, 2.35, 2.07, 2.00).212  
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2.1.6 Attempted cyclisation of 2-amino-3-chlorosulfonyl-

propanoic acid  

 

Synthesis of 2-amino-3-chlorosulfonyl-propanoate 

hydrochloride (L-cysteine sulfonyl chloride) 

 

EtOH, Cl2
CHCl3

-10 oC

 

 

2-Amino-3[(2-amino-3-carboxy-3-propyl)disulfanyl]propanoic acid (L-cystine) 

(4.75g, 19.8mmol) was suspended in ethanol (18ml) and chloroform (30ml). 

Chlorine gas was passed into the suspension at -10 oC for 2 hours until saturation 

(noted by a permanent green colouration). The system was purged with nitrogen and 

the solution stirred at room temperature for 1 hours. Dry diethyl ether (30ml) was 

added and the solution stored at 4 oC overnight. The pale yellow precipitate was 

recovered by gravity filtration and washed with dry diethyl ether (2 x 25ml) (4.14g, 

30.6mmol, 77%). 

1H NMR δ (D2O): 4.44 (1H, dd, J4.5 & 8.3, CH-NH3
+), 3.60 (1H, dd, J4.5 & 15.2, 

CHAHB-SO2Cl), 3.28 (1H, dd, J8.3 & 15.2, CHAHB-SO2Cl). 
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Synthesis of 1,2-thiazetidine-3-carboxylate-1,1-dioxide (3-

carboxy-β-sultam) [8] 

 

 

 

2-amino-3-(chlorosulfanyl)propanoate hydrochloride (L-cysteine sulfonyl chloride) 

(2.12g, 9.51mmol) and sodium carbonate (3.44g, 32.4mmol) were ground together 

and suspended in ethyl acetate (80ml). The suspension was stirred at room 

temperature for 24 hours. The solid residue was recovered by gravity filtration as an 

off white solid (531mg, 3.52mmol, 37%). 

Analysis of the solid product by 1H NMR indicated that the required compound had 

not been prepared as there were no doublet of doublet peaks in the region from  5 to 

3 ppm. Further analysis to identify what had been made was not carried out. 
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2.2 Kinetic studies 

 

 2.2.1 Solutions and Buffers  

 

Hydrochloric acid solutions were prepared from AnalaR grade hydrochloric acid       

1.18 SG ~37 %. Solutions of deuterium chloride and sodium deuteroxide were 

prepared by diluting DCl (20 wt % in D2O, 99.5 % D) and NaOD (30 wt %,           

99+ % D) with D2O (99.9 % D). AnalaR grade reagents were used where available in 

the preparation of buffers and Ultra-Pure Deionised water at 18.2 Ω was used 

throughout. The ionic strength of buffers was maintained at 1.0 M using AnalaR 

grade potassium chloride in all cases. Where buffers were required for use in NMR 

studies the appropriate masses of buffer salts and potassium chloride were dissolved 

in a minimum quantity of D2O, freeze-dried and re-dissolved in the appropriate 

volume of D2O just prior to use. 

The buffers used were chloroacetic acid/chloroacetate (pKa = 2.88), acetic 

acid/acetate (pKa = 4.76), phosphate (pKa = 2.15, 7.2, 12.33) and carbonate (pKa = 

10.25). 

 

2.2.2 pH Measurements 

 

The pH of aqueous buffers was measured at the start and end of each reaction to 

ensure no significant change in pH had occurred. The pH of buffer solutions was 

measured using a Metrohm 751 GPD Titrino instrument fitted with an Ag/AgX 

electrode. Calibration was carried out using standard buffers of pH 9.2, 7.0 and 4.0 

at 25 oC prior to each use. 

For deuterated buffers the pH was measured upon preparation as above and at the 

end of the reaction using a Sigma-Aldrich Micro pH Combination Electrode calibrated 

as previously stated. For deuterated solutions pD is quoted as pH meter reading 

+0.4. 
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2.2.3 Determination of the Acid-Catalysed Rate of Hydrolysis of 

1,2-thiazetidine-1,1-dioxide (β-sultam) using ReactIR 

 

The kinetics of the acid-catalysed hydrolysis of β-sultam were followed by monitoring 

the decrease in reactant concentration at 1301 cm-1 (S=O stretch) and the increase 

in product concentration, monitored at 1200 cm-1 (S=O stretch). IR spectra were 

recorded at regular intervals on a Mettler Toledo ReactIR 4000 fitted with a 6.3mm 

AgX Di-Comp Probe in the range 3000 – 650 cm-1 and the reaction followed until no 

further change in absorbance at either wavenumber was observed.  

Reaction concentrations of β-sultam were between 0.05 mM and 0.20 mM.  

Reactions were started by addition of acid or buffer solution (1.5 ml) to a stirring 

solution of β-sultam (10 mg – 40 mg) in deionised water (0.25 ml). 

Pseudo-first order rate constants were calculated using Microsoft Excel from 

exponential plots of corrected absorbance versus time. pH rate profiles and buffer 

catalysis rates were all calculated by curve plotting in Excel software. 

 

2.2.4 Determination of the Rate Constants for the Hydrolysis of 

1,2-thiazetidine-3-carboxylate-1,1-dioxide (3-carboxy-β-

sultam)  using 1H NMR 

 

The rates of hydrolysis of 3-carboxy-β-sultam were followed using 1H NMR spectra 

recorded on a Bruker Ascend 400 spectrometer at 20 oC. Hydrolysis of the S-N bond 

is accompanied by a decrease in the chemical shift of the three ring protons. The 

change in integral for each of the protons was plotted against time to give a rate 

related to that proton and the average of these gave the overall rate for that 

reaction. The concentration of 3-carboxy-β-sultam was between 0.210 and 0.248 M.  

Pseudo-first order rate constants were calculated using Microsoft Excel from 

exponential plots of integration value versus time. pH rate profiles and buffer 

catalysis rates were all calculated by curve plotting in Excel software. 
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2.3 Enzyme Studies 

 

2.3.1 Inhibition of BcII 

 

2.3.1.1 Solutions and Equipment 

 

The enzyme used was the Class B β-lactamase enzyme, BcII, from Bacillus cereus 

569/H which was kindly supplied by Dharmit Mistry (University of Huddersfield) as 

solutions in MES buffer at pH 6.5 and at known concentrations between 2 and 6 mM. 

It was diluted prior to use with pH 7.1 HEPES buffer containing 0.1 μM ZnSO4. 

Buffers were prepared daily using AnalaR reagents where available and Ultra-Pure 

Deionised water at 18.2 Ω was used throughout. The ionic strength of buffers was 

maintained at 1.0 M using AnalaR potassium chloride or sodium chloride. 

All UV-Vis experiments were carried out on a Cary 4000 UV-Vis spectrometer using 

quartz cells at 30 oC with a water circulator and peltier system to maintain the 

temperature. 

 

2.3.1.2 Reactions 

 

25 μl stock penicillin solution was added to a quartz cell containing 2.5 ml pH 7.1 

HEPES buffer solution (0.1 M, I= 1.0 M, [Zn2+] = 1x10-6 M) and equilibrated at        

30 oC. Inhibitor solution was added to the cell with an appropriate volume of ultra-

pure water to maintain a constant volume across all experiments. The experiment 

was initiated by addition of enzyme solution (20 μl of known concentration between 

1.3 x 10-6 and 7.4 x 10-6 M). The final concentrations within the cell were: 

Penicillin 0.12 - 1.10 mM 

Inhibitor 1.0 μM – 25.0 mM 

Enzyme 1.0 x 10-8 – 5.5 x 10-8 M 

Hydrolysis of benzylpenicillin was followed by measuring the decrease in absorbance 

at 230 nm as a function of time. 
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2.3.1.3 Michaelis-Menten Kinetics 

 

Previous publications have shown that the action of BcII on benzylpenicillin follows 

standard Michaelis-Menten kinetics (Equation 1) and the kinetic constants, kcat, KM 

and kcat/KM were determined using this equation and its derivations as described 

below. 

 

     
           

      
        (Equation 1) 

 

Below saturation, when [S] << KM, the curves were fitted to a simple first order rate 

law to obtain the pseudo-first-order rate constant kobs, which were shown to be first 

order in enzyme concentration and independent of substrate concentration. Above 

saturation, when [S] >> KM, the curves were fitted to a zero order rate law to give 

the Vmax for the reaction. The second order rate constant 
    

  
 was obtained by 

dividing kobs by enzyme concentration; kcat was obtained by dividing Vmax by enzyme 

concentration. 

In order to best analyse the kinetics the data was also fitted to the following linear 

forms of the Michaelis-Menten equation: 

Lineweaver-Burk: 
 

    
  

  

    

 

   
  

 

    
 

Hanes-Woolf:  
   

    
  

   

    
  

  

    
 

Eadie-Hofstee:           
    

   
        

 

A Lineweaver-Burk plot gives      
  (and hence     ) as the y intercept and   

  
  as 

the x intercept. Because it is a double reciprocal plot, of  
      versus  

    , any 

errors in measurement are increased and so the parameters calculated in this way 

are not very reliable. 

Hanes-Woolf plots can again be used to determine values of KM and Vmax. A plot of 

   
      against [S] gives the x intercept as –KM and the slope as      

 . 
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The Eadie-Hofstee equation is represented graphically as a plot of rate versus  

    
     which yields Vmax as the y intercept and –KM as the slope.  

When plotting data in Microsoft Excel software for initial analysis the Hanes-Woolf 

version of the Michaelis-Menten equation gives easiest access to the parameters kcat 

and KM and is most reliable so was used most often when looking at BcII inhibition. 

 

2.3.1.4 Inhibition studies 

 

The kinetic parameters were determined from the second-order rate constant, 
    

  
. 

Inhibition constants, Ki, were calculated using the equation for competitive inhibition 

(Equation 2) which can be rearranged to give Equation 3. 

        
           

       
        

  
  
      (Equation 2) 

 

 
  

    
 
 
  

  

    
 
 
  

  

    
 
 
 
   

  
      (Equation 3) 

 

By plotting  
  

    
 
 
 against [I] the value of –Ki is given by the intercept on the inhibitor 

concentration axis. 

 

2.3.2 Inhibition of Glutamine Synthetase 

 

2.3.2.1 Solutions and Equipment 

 

L-Glutamine synthetase from Escherichia coli W was obtained from Sigma Aldrich as 

a lyophilised powder containing >30% protein and having an activity of 100 - 400 

units/mg protein. The enzymes required for the coupled assay (details in section 

2.3.2.2) were pyruvate kinase and L-lactic dehydrogenase from rabbit muscle 

obtained from Sigma Aldrich as a buffered aqueous glycerol solution containing 900-

1400 units/ml LDH and 600 - 1000 units/ml PK. All other reagents were obtained 

from commercial sources as AnalaR grade products where available and used as 



Experimental 

99 

 

supplied. Buffer solutions and solutions of ATP, PEP and NADH were prepared fresh 

in all cases. Ultra-Pure Deionised water at 18.2 Ω was used throughout. 

 

2.3.2.2 Reactions 

 

The rate of conversion of glutamate to glutamine catalysed by glutamic acid was 

monitored by means of the coupled assay detailed in Scheme 44.  

Three cells were prepared simultaneously according to the following procedure to act 

as a blank cell, control cell and an inhibition cell. Phospho(enol)pyruvate (0.1 ml) 

and β-NADH (0.06 ml) were added to a quartz cell containing 2.6 ml reaction cocktail 

(imidazole buffer at pH 7.1, glutamate, ATP, magnesium chloride, potassium chloride 

and ammonium chloride) and incubated at 37 oC until the absorbance at 340 nm was 

constant. Pyruvate kinase/L-lactic dehydrogenase solution (0.04 ml) was then added 

and the absorbance at 340 nm again monitored until it was constant at 37 oC. The 

following reagents were then added to the three cells: 

Blank:  0.2 ml ultra-pure water 

Control: 0.1 ml ultra-pure water and 0.1 ml glutamine synthetase solution 

Inhibition: 0.1 ml inhibitor solution and 0.1 ml glutamine synthetase solution. 

 

The final concentrations within each cell were: 

Imidazole    34.1 mM 

Sodium glutamate  102 mM 

ATP    8.50 mM 

PEP    1.10 mM 

Magnesium chloride  60.0 mM 

Potassium chloride  18.9 mM 

Ammonium chloride  45.0 mM 

β-NADH   0.250 mM 

PK    28.0 units 

LDH    40.0 units 



Experimental 

100 

 

Inhibitor   1.00 x 10-4 – 1.00 x 10-1 M 

GS    0.400 – 0.800 units 

 

 

 

Scheme 44 Glutamine synthetase coupled assay 

 

The concentrations of PK and LDH were kept high so that the rate of conversion of 

glutamate to glutamine was the overall rate limiting reaction. The oxidation of β-

NADH was followed by measuring the decrease in absorbance at 340 nm as a 

function of time. This was taken to be equivalent to the rate of glutamate conversion 

to glutamine. 

 

2.3.2.3 Calculations 

 

The glutamine synthetase catalysed conversion of glutamate to glutamine is a 

reaction which follows Michaelis-Menten kinetics, as described in section 2.3.1.3. 

The effects of any inhibitor on the rate of this reaction were determined by the 

comparison of initial rates (where [S] >> KM) so that the initial rate was equal to 

Vmax when the curves were fitted to a zero order rate law. The kinetic parameters kcat 

and Ki were not specifically calculated. KM values were calculated from Hanes-Woolf 

plots so that comparisons could be made between control rates and inhibitor reaction 

rates, and between rates of reaction with different inhibitor concentrations.  
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2.4 Mechanistic Study of BcII Catalysed Hydrolysis of 

Ertapenem 

 

2.4.1 Solutions and Buffers 

 

Ertapenem was kindly provided by Merck & Co. BcII was provided by Dharmit Mistry 

as a solution in MES buffer at pH 6.5 at a fixed concentration between 2 and 6 mM 

and was used as supplied. Phosphate buffer (0.1 M, pH 7.0, I = 1.0 M) was prepared 

in deuterium oxide, freeze dried and redissolved in D2O just prior to use. 

 

2.4.2 Mechanistic studies 

 

The mechanism of BcII catalysed hydrolysis of ertapenem was investigated using 

NMR spectroscopy with spectra which were recorded on a Bruker Ascend 400 NMR 

spectrometer. Ertapenem (13.7 mg, 0.288 μmol) was dissolved in deuterated 

phosphate buffer (0.7 ml) and the solution monitored by NMR for 48 hours to ensure 

no uncatalysed hydrolysis took place. BcII (5.0 μl) was added to the solution and this 

solution was monitored for a further 12 hours. 1H, 13C, DEPT, COSY, HSQC and HMBC 

spectra of the compound before and after hydrolysis by BcII were compared to 

propose the mechanism of ring cleavage for the β-lactam ring. 
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3.1 Synthesis 

[9]

[7]

[3]

[8]

[2]

[6]

[5]

 

Scheme 45 Compounds synthesised and/or discussed in this section 

 

Compounds 2, 3, 5, 6 and 7 have been previously reported and were synthesised 

following the procedures suggested either by former members of the group or, in the 

case of compound 7, by Otto et al.156,210 In all cases analytical data for the products 

synthesised corresponded to that published. 13C NMR data for compound [7] has not 

previously been reported; the spectrum showed that the carboxyl carbon gave a 

peak at 181.6 ppm, there were also peaks at 140.7, 129.1, 127.6 and 127.3 ppm for 

the aromatic carbons, the benzyl CH2 carbon appeared at 67.3 ppm and those at 

63.9 and 51.9 ppm were peaks for the β-sultam ring carbons (CH2 and CH 

respectively). 
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Compound 8 is a novel compound; previous work only reported isolation of the      

N-substituted version.156,210 Following the methods for the de-esterification of the    

N-substituted compound [9] suggested by both Rigoreau210 and Schwenkkraus156 

initial attempts to form the 3-carboxy-β-sultam were made using hydrogenolysis.  

When preliminary reactions were not successful further attempts were made using 

different conditions to those originally suggested (following the general procedures 

set out in the Experimental section, pages 89-90). The alternative solvents used 

were methanol, ethanol, benzyl alcohol and ethyl acetate; alternative catalysts (5% 

or 10% palladium on carbon) at different catalyst loadings were utilised; the time 

period of the reaction was increased (1 hour to 2 days) and the flow rate of 

hydrogen was monitored and increased (10 ml/min to 40 ml/min) but in all cases the 

product isolated was either the starting material (under mild conditions, short 

reaction time etc.) or the ring opened β-sultam. Ester cleavage was seen in a few 

attempts, but only when accompanied by S-N bond cleavage. 

In order to validate these methods of de-esterification and to confirm the activity of 

the catalysts a sample of proline benzyl ester hydrochloride was submitted to some 

of the reaction conditions described above (as detailed in the Experimental section, 

page 91). 1H NMR of the isolated product from this reaction confirmed that the 

benzyl ester group had been removed and that the techniques used were viable. It is 

therefore concluded that 3-benzyl carboxylate β-sultam [7] is not susceptible to de-

esterification by hydrogenolysis without simultaneous S-N cleavage and ring-

opening, and so an alternative method was sought. 

As a means of trying to overcome the problems encountered with the previous 

reactions it was decided to try a transfer hydrogenation route to remove the benzyl 

ester group (details in the Experimental section, page 89). Transfer hydrogenation 

utilising 1,4-cyclohexadiene as the hydrogen source is less susceptible to catalyst 

poisoning and benzyl esters can be selectively and efficiently deprotected by this 

method.213,214 Catalyst poisoning was suspected as being one reason why catalytic 

hydrogenolysis had been unsuccessful and so this method initially presented as a 

viable alternative. Unfortunately, as with the previous reactions, no debenzylated β-

sultam was recovered after several attempts. Analysis of the recovered solid in each 

case showed that whilst the β-sultam ring remained intact the benzyl ester group 

was still present (determined by the appearance of a benzyl CH2 peak at 5.2 ppm on 

the 1H NMR spectrum). Previous work on the removal of benzyl ester groups by 

transfer hydrogenation concerning amino acids and peptides has also encountered 

problems with sulfur containing compounds, particularly S-benzylcysteine.214 
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The next method implemented in the attempt to synthesise compound [8] was base 

catalysed hydrolysis. The rationale to this method was the expectation that 

hydrolysis of the ester would be faster than that of the β-sultam because the latter 

becomes pH independent at high pH as the NH ionises. Compound [7] was dissolved 

in 0.1 M sodium deuteroxide (NaOD) and the reaction was monitored by 1H NMR. 

Cleavage of the benzyl ester was too fast to observe; the benzyl CH2 protons had 

shifted from 5.2 ppm, characteristic of an ester, to 4.6 ppm indicating the formation 

of benzyl alcohol during the time taken to collect the spectrum. Initial studies 

showed that the β-sultam ring remained intact with S-N bond cleavage not 

noticeable until after about 20 minutes. Attempts were therefore made to recover 

the 3-carboxy-β-sultam from the aqueous reaction mixture by initially removing the 

benzyl alcohol. The aqueous solution was extracted with deuterated chloroform 

(CDCl3) and both phases were subjected to NMR analysis. The organic phase showed 

the presence of the benzyl alcohol which had been extracted into the CDCl3 along 

with a relatively small amount of the β-sultam [8] or starting ester [7]. The aqueous 

solution showed the presence of a residual amount of benzyl alcohol with a higher 

proportion of [8], some of which had undergone hydrolysis and S-N bond fission. 

In order to improve the chance of recovering the β-sultam [8] intact benzyl-3-

carboxylate β-sultam [7] was hydrolysed in 0.1 M NaOD, this time at low 

temperature (< 0 oC). The extraction into deuterated chloroform was carried out 

rapidly and NMRs of both solutions run immediately (aqueous before organic). Again 

the spectra suggested that hydrolytic removal of the benzyl group had been achieved 

and that the benzyl alcohol produced had been taken into the organic phase whilst 

the majority of the β-sultam remained in the aqueous solution. Under these 

conditions more of the β-sultam ring remained intact and only a small amount of 

hydrolysis had occurred. Having established that the 3-carboxy-β-sultam could be 

prepared in this manner the next step in the synthesis was to isolate the product 

from solution. Attempts were made to acidify the aqueous solution in order to 

protonate the acid group and facilitate its extraction into an organic solvent; 

however, 1H NMR showed that the hydrolysis of the S-N bond occurred on 

acidification. This discovery prompted studies of the pH dependence of hydrolysis of 

the 3-carboxy-β-sultam as discussed in section 3.2.3. 

Since the benzyl ester protecting group was proving difficult to remove and the 3-

carboxy-β-sultam was proving difficult to isolate from aqueous solution it was 

decided to attempt the direct cyclisation of 2-amino-3-chlorosulfonyl-propanoic acid. 

The 2-amino-3-chlorosulfonyl-propanoic acid was synthesised by reaction of L-

cystine with hypochlorous acid (produced in situ by the reaction of chlorine and 
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ethanol in chloroform). The product was characterised by 1H NMR; although no 

literature reference for this was found, comparison to the NMR of L-cystine and 

similarities with the 1H NMR of the benzyl ester analogue and L-cysteic acid 

suggested that the reaction had proceeded as expected and the product was used in 

the second step. The cyclisation of 2-amino-3-chlorosulfonyl-propanoic acid was 

attempted initially using the same conditions as for the benzyl protected compound 

(neutralisation with a saturated solution of ammonia in chloroform) and secondly 

using the milder conditions utilised in the synthesis of the unsubstituted β-sultam 

(sodium carbonate suspension in ethyl acetate). In the first reaction the product was 

a brown solid which showed no 1H NMR peaks characteristic of either the starting 

material or the desired β-sultam. The second reaction yielded a white solid. 1H NMR 

of this compound showed numerous peaks between 1 and 5 ppm, some of which 

were due to contamination by residual solvent. There were three peaks between 2.7 

and 4.2 ppm which showed as doublet of doublets as expected for the ABX system in 

the substituted β-sultam. The A and B proton peaks at 2.8 and 3.0 ppm however 

were at much lower chemical shifts than expected for the β-sultam and so it was 

concluded that cyclisation had not occurred. The presence of the ABX splitting can 

still be accounted for by looking at a Newman projection of the ring-open molecule 

(as discussed in section 3.2.1). 

The final and only successful method attempted for the de-esterification of benzyl-3-

carboxylate β-sultam [7] and isolation of 3-carboxy-β-sultam [8] was the use of 

sodium in liquid ammonia; reagents best known for their use in the Birch reduction 

of aromatic rings. 

There are precedents for the use of sodium and liquid ammonia to remove benzyl 

esters and other functional groups present as N-, S- or carboxyl protecting groups, 

with the first reports involving amino acids and peptides dating back to the 

1930’s.215-217 However, there appear to be very few specific examples of this method 

of ester removal yielding an acid, the normal products of the reaction being alcohols, 

diketones and aldehydes. There was no evidence for the presence of any of these 

functional groups in our studies. Presumably this reductive method involves electron 

transfer from Na and proceeds via a radical mechanism (Scheme 46). 
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1/2

e-
e-

 

 

Scheme 46 Possible mechanisms for the debenzylation of [7] by sodium in 
liquid ammonia (adapted from 218)  

 

Kharasch et al. showed carboxylic acids to be produced as side products in this 

reaction,219 yet all indications from our studies imply that the carboxylic acid is the 

major product. The protocol which was followed for the reaction was taken from a 

paper concerned with the simultaneous removal of three benzyl protecting groups 

(though these were benzyl ether groups, not benzyl esters) from 9-(2’-3’-5’-tri-O-

benzyl-β-D-arabinofuranosyl)adenine [10].220 In 2001 Ramos et al. also used this 

method for removing O-benzyl protecting groups, though again as ethers, not esters. 

R = CH2C6H5

[10]  

The reaction to remove the benzyl ester group was carried out as described in the 

experimental section. After evaporation of the liquid ammonia a white powder 
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remained of which a sample was dissolved in D2O and analysed by NMR. The 1H NMR 

spectrum was studied for evidence of the benzyl ester, bibenzyl (1,2-

diphenylethane) or toluene. In fact, as can be seen in the spectrum in Figure 11, 

there were no peaks in the aromatic region of the spectrum. There are, however, 

three doublet of doublet peaks in the region between 4 and 5 ppm, characteristic of 

the 3-substituted β-sultam ring protons. A small amount of the hydrolysis product 

was also indicated and there were various other unidentified peaks in the region 

below 4 ppm.  

 

 

 

Figure 11 1H NMR of 3-carboxy-β-sultam with expansion of the three 

doublet of doublets characteristic of the β-sultam ABX system 

 

A sample of the crude solid was subjected to mass spectrometry and this showed 

two major peaks; one at m/z 150 and the second at m/z 106 (Figure 12). The peak 

at m/z 150 relates to the desired product (accurate mass 149.97033, calculated 

mass 149.986652) and the one at m/z 106 relates to the decarboxylated product 

(accurate mass 105.98151, calculated mass 105.996276) as shown in Scheme 47. 

The isotope patterns for the molecular anion were in-keeping with those predicted. 

Although the sample masses were not exactly the same as the calculated masses 
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they are close enough to confirm the structure and any deviance from the actual 

mass may be due to the low mass of the molecule. 

 

- CO2

 

 

Scheme 47 Structures of the two ions suggested by mass spectrometry and 

the mechanism of decarboxylation 

 

 

 
Figure 12 Mass spectrum for 3-carboxy-β-sultam 
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3.2 Kinetics 

 

3.2.1 Overview of Hydrolysis 

 

It is well established that β-sultam hydrolysis occurs by exclusive S-N bond fission 

(Scheme 48).163  

H2O

Taurine

Cysteic acid

H2O

 

 

Scheme 48 Hydrolysis of β-sultams (unsubstituted and the 3-carboxy 

derivative) 

 

The unsubstituted β-sultam undergoes acid catalysed hydrolysis to yield taurine 

(characterised by comparison to a standard IR spectrum of taurine) and the           

3-carboxy-β-sultam undergoes both acid and base catalysed hydrolysis to yield 

cysteic acid (characterised by comparison to an NMR spectrum of a standard sample 

of cysteic acid; see Figure 13). 
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Figure 13 NMR of standard cysteic acid (top) and hydrolysed 3-carboxy-β-

sultam (bottom) with expansions of key peaks 

 

A study of the relative hydrolysis rates (previously mentioned in Section 3.1, page 

105) of the ester group and the β-sultam S-N bond of the benzyl ester derivative [7] 

was carried out using 1H NMR. The initial spectrum obtained directly after the           

3-benzyl carboxylate β-sultam had been dissolved in 1M NaOD showed that the ester 
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bond had been cleaved whilst the S-N bond was still intact. After 16 hours about 

60% of the S-N bonds had been cleaved to yield cysteic acid with three distinct 

peaks being present possibly indicating hydrogen bonding interactions between the 

sulfonate and amine groups fixing the conformation of the molecule and retaining 

the ABX splitting patterns (Figure 14). Upon addition of acid, however, this structure 

is no longer particularly favoured so that the 1H NMR at very low pH (<pH 1) shows 

only two peaks in a ratio 2:1 for the CH2 and CH groups respectively. This is 

presumably due to the protonation of the sulfonate group reducing the hydrogen 

bonding and therefore allowing free rotation of the carbon-carbon bond. 

  

Figure 14 Newman projection of cysteine sulfonic acid 

 

 

3.2.2 Hydrolysis of the Unsubstituted β-Sultam [3] 

 

The rates of acid catalysed hydrolysis for the unsubstituted β-sultam (1,2-

thiazetidine-1,1-dioxide, [3]) were established from data collected by ReactIR using 

a combination of chloroacetate buffers (pH 2.3 – 3.5) and dilute hydrochloric acid 

(pH 1.5 and 2.0). Initial reactions were carried out using formic acid; however, this 

decomposed in the presence of the substrate to release bubbles of CO2 which 

disrupted the probe. 

Full spectra were collected every 15 seconds from 3000 - 650 cm-1 and plotted in an 

overlay fashion as seen in Figure 15. The peaks of interest are those at 1300 cm-1   

(β-sultam S=O) and 1230 cm-1 (due to taurine S=O). The initial spectrum is 

represented by the deep blue line showing high β-sultam concentration and low 

taurine concentration. 
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Figure 15 Overlay of IR spectra for the hydrolysis of β-sultam [3] 

 

 

In its simplest form the general rate law for the buffer catalysed hydrolysis of any 

substrate is usually given by: 

                                                   (Equation 4) 

 

The catalytic coefficient for a specific buffer system, kbuf, is equivalent to the two 

buffer terms which may contribute to the rate law: 

                               (Equation 5) 

 

Previous studies of N-substituted β-sultams have shown there to be no significant pH 

independent hydrolysis and no evidence was found for a spontaneous hydrolysis of 

the unsubstituted β-sultam [3].163 Given this assumption the rate law for the 

hydrolysis of β-sultam at acidic pH therefore becomes: 

                         (Equation 6) 

Decrease in 

β-sultam 
concentration 

Increase in 

taurine 
concentration 
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In order to determine the individual constants for the rate law, kH and kbuf, the rate 

of hydrolysis of β-sultam was measured at a range of pHs in chloroacetate buffer at 

constant pH and ionic strength and varying concentrations of buffer under pseudo 

first-order conditions. The observed rate constants, kobs, for hydrolysis of             

1,2-thiazetidine-1,1-dioxide (β-sultam [3]) increased linearly with increasing total 

buffer concentration. This indicates the buffer is also contributing to the overall rate 

of the reaction (as suggested by Equation 4). By plotting the observed pseudo-first- 

order rate constants for hydrolysis against the total buffer concentration two 

important pieces of information can be determined (Figure 16). Extrapolation of each 

line gives the intercept on the y axis, kint, which corresponds to the rate constant at 

zero buffer concentration. This can be used to calculate kH; the rate constant for 

specific acid catalysis. The slopes of the lines in Figure 16 give kbuf at each pH which 

is the total contribution to the rate law by both the undissociated chloroacetic acid 

and the chloroacetate anions in solution (Table 8). 

 

 

Figure 16 Plot of the observed pseudo-first order rate constant for the 
hydrolysis of β-sultam [3] as a function of total chloroacetate buffer 

concentration at the pH indicated by the key 
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pH 2.3 2.55 2.8 3.3 3.5 

kint (s
-1) 6.9 x 10-3 + 

3.45 x 10-4 

6.1 x 10-3 + 

3.05 x 10-4 

4.1 x 10-3 + 

2.05 x 10-4 

2.5 x 10-3 + 

1.25 x 10-4 

1.7 x 10-3 + 

8.50 x 10-5 

kbuf (M
-1s-1) 7.59 x 10-2 + 

3.80 x 10-3 

5.99 x 10-2 + 

3.00 x 10-3 

4.99 x 10-2 + 

2.50 x 10-3 

2.49 x 10-2 + 

1.25 x 10-4 

1.49 x 10-2 + 

7.45 x 10-4 

 

Table 8 Values of parameters derived from Figure 15 

 

A graph of kbuf as a function of the fraction of free base, α, at each pH studied gives 

the individual second order rate constants for catalysis by the acidic and basic 

components of the buffer, kHA and kA-, at α = 0.0 and α = 1.0 respectively (Equation 

7) (Figure 17). 

 

                        (Equation 7) 

 

 

Figure 17 Plot of kbuf vs α (fraction of free base) for the chloroacetate buffer 

catalysed hydrolysis of the unsubstituted β-sultam  

 

The intercept at α = 1.0 is indistinguishable from zero, so no rate constant for 

catalysis of β-sultam hydrolysis by chloroacetate anions, kA-, can be determined. The 

second order rate constant for catalysis by chloroacetic acid, kHA, is given by the 

intercept at α = 0.0 as 9.51 x 10-2 M-1s-1.  

There is only one previous mention of the investigation of the rate of β-sultam 

hydrolysis in chloroacetate buffers to be found and this relates to a study of the 

effect of carboxylic acid catalysed hydrolysis of N-benzyl-β-sultam.137 The value of 
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kHA for this reaction is quoted as 7.61 x 10-2 M-1s-1, which is of the same order of 

magnitude as that of the unsubstituted β-sultam. The proposed mechanism for 

buffer catalysis in this paper was specific acid-nucleophilic catalysis and this is one 

possibility for the mechanism for the hydrolysis of the unsubstituted β-sultam also. 

The general acid catalysed hydrolysis of [3] could be due to several possible 

mechanisms as seen in Scheme 49. Both mechanisms, the concerted general acid 

catalysis and stepwise specific acid catalysis followed by nucleophilic or general base 

catalysis, show equivalent rate laws (Equation 8). 

 

Nucleophilic General

Base

General Acid

 

Scheme 49 Possible mechanisms of catalysis by chloroacetic acid in the 

hydrolysis of β-sultam [3] 

 

                           (Equation 8) 

 

The intercepts of the rate-buffer plots (Figure 16), kint, increase with decreasing pH 

indicative of an acid catalysed pathway. Pseudo first order rate constants for 

hydrolysis of [3] were also determined in solutions of hydrochloric acid. By 

combining the data from buffer catalysis experiments (kH values) with these values a 
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pH rate profile for the hydrolysis of the unsubstituted β-sultam [3] at low pH is 

produced (Figure 18). 

 

 

Figure 18 pH rate profile for acid catalysed hydrolysis of unsubstituted beta-

sultam  

 

Unusually the slope of the plot of log kobs / log kint against pH is 0.6, whereas a 

simple acid catalysed reaction would be expected to generate a slope of 1.0. This 

non-first order dependence on [H+] is also seen by the variation in the values of 

kobs/[H
+] and kint/[H

+] (Table 9). It is difficult to explain this and may be due to error 

in the novel experimental method for determining the rates using the React-IR 

probe. It seems unlikely that this is due to partial formation of the conjugate acid of 

[3] or to the partial occurrence of a pH-independent pathway. 

 

pH 

 

1.6 2.0 2.3 2.6 2.8 3.3 3.5 

kobs /[H
+] 

 

1.67 1.32 1.42 2.23 2.72 5.39 6.01 

 
Table 9 Values of kobs/[H+] over pH range of study 
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3.2.3 Hydrolysis of 3-Carboxy-β-Sultam 

 

The rates of hydrolysis of 3-carboxy-β-sultam [8] at various pH were established 

using data collected by pre-saturation 1H NMR spectra taken at appropriate time 

intervals. Low pH/D experiments were carried out in deuterium chloride (DCl) 

solutions and higher pH/D experiments were carried out in sodium deuteroxide 

(NaOD) solutions. For mid-range pH experiments various deuterated buffers were 

used (as detailed in Table 10) at a range of concentrations in order to establish and 

eliminate any contribution from buffer catalysis. 

 

Buffer pH range (measured) 

 

(pD range) (calculated) 

 

Concentrations utilised (M) 

Phosphate 2.99 - 3.55 

(3.39 – 3.95) 

0.50, 0.25, 0.10 

Acetate 4.78 - 5.32 

(5.18 – 5.72) 

0.50, 0.25, 0.10 

Phosphate 6.59 - 8.01 

(6.99 – 8.41) 

0.50, 0.25, 0.10 

Carbonate 9.69 

(10.09) 

0.50, 0.25, 0.10 

 

Table 10 Details of deuterated buffers employed in the study of 3-carboxy-

β-sultam hydrolysis rates 

 

As with previous work on the hydrolysis of the unsubstituted β-sultam, plots of kobs 

versus buffer concentration gave  kint (the rate constant for hydrolysis at zero buffer 

concentration) and kbuf (the contribution to the rate law by all components of the 

buffer solution; kHA and kA-) (Equation 5). These plots can be seen for a range of 

buffers in Figure 19 showing the increase in observed pseudo-first order rate 
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constant with increasing buffer concentration indicative of buffer catalysis, either by 

the acidic or basic component of the buffer. The values of kint are shown in Table 11 

where it can be seen that the value of the rate constant increases as the pH 

decreases. There is a greater amount of scatter in the data than would be preferred.  

 

 

Figure 19 Plot of the observed pseudo-first order rate constants for the 

hydrolysis of 3-carboxy-β-sultam [8] as a function of total buffer 

concentration (measured pH indicated by the key) 

 

pD 3.39 5.20 5.70 7.00 7.70 8.00 10.09 

kint (s
-1) 3.02  

x 10-2 
6.3  
x 10-3 

1.43  
x 10-2 

2.3  
x 10-3 

3.7 
x 10-3 

2.1 
x 10-3 

5.00  
x 10-4 

 

Table 11 Values of rate constants (kint) for buffers, determined from Figure 
19 

 

In order to establish which form of the buffer is responsible for catalysis it is 

necessary to carry out experiments at a range of pHs in the same buffer system. 

Experiments were carried out in phosphate buffer (at pKa = 7.2) at three pHs. Plots 

of kobs against the total buffer concentration for these experiments gave two 

important pieces of information about the rates of catalysis. The intercept on the y 

axis, kint, corresponds to the rate constant at zero buffer concentration and is the 
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observed first-order rate constant for buffer independent hydrolysis. The slope of the 

graph, kbuf, is equivalent to the contribution to the rate law by both buffer species; 

the dihydrogen phosphate monoanion and the monohydrogen phosphate dianion. A 

plot of kbuf against α, the fraction of free base, gave intercepts of kHA when α = 0.0 

and kA- when α = 1.0. These are the second order rate constants for catalysis by the 

acidic (H2PO4
-) and basic (HPO4

2-) components of the buffer respectively. As with the 

chloroacetate buffer catalysed hydrolysis of the unsubstituted β-sultam this plot 

(seen in Figure 20) shows that the kinetically relevant species for the phosphate 

buffer catalysis (pKa = 7.2) of 3-carboxy-β-sultam is the acidic phosphate 

monoanion, H2PO4
- and that there is no significant catalysis by the dianion HPO4

2-. 

Although there is only limited data (three points) it is still possible to determine the 

value of the rate constant kHA from the graph which is equal to 2.243 x 10-2 M-1s-1. 

 

 

 

 

Figure 20 Plot of kbuf vs α (fraction of free base) for the phosphate buffer 

catalysed hydrolysis of the 3-carboxy-β-sultam   

 

In carbonate buffer systems (pKa = 10.25) data is only available for one pH, pH 
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is again the acidic form of the buffer (HCO3
-) which is responsible for catalysis. The 

plot of kobs gives us the values for kint and kbuf of 4.944 x 10-4 and 2.036 x 10-3 M-1s-1 

respectively. At pH 9.69 α is equal to 0.234 and so the second order rate constant 

for catalysis by the hydrogen carbonate anion, kHA is calculated to be                  

6.46 x 10-4 M-1s-1. 

    

   
      

        (Equation 9) 

 

By combining the data for the hydrolysis of 3-carboxy-β-sultam in carbonate buffer 

(kint) with that for the hydrolysis of 3-carboxy-β-sultam in sodium deuteroxide a 

graph of log kobs versus pH gives a straight line with gradient ~ 1 confirming the first 

order dependence of the rate on hydroxide ion concentration (Figure 21). 

 

Figure 21 Plot of log10 k against pH for the alkaline hydrolysis of 3-carboxy-

β-sultam 

 

At lower pH, when the rate constants for hydrolysis in deuterated hydrochloric acid 

were added to those for hydrolysis in buffer below pH 10 the graph of log k versus 

pH shown in Figure 22 was produced. Attempts to fit all of the data to one line of 

gradient = 1 were not successful and so two individual lines were instead used to 

best-fit the data. 
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Figure 22 Plot of log10 k against pH showing two distinct hydrolysis 

mechanisms at acidic pH 

 

This indicated that there were two contributions to the rate law for the hydrolysis of 

3-carboxy-β-sultam, one at lower pH (1-4) for the hydrolysis of the β-sultam with a 

protonated acid group with the one at slightly higher pH (4-8) being for the 

hydrolysis of the carboxylate anion (Figure 22). In order to establish the rate 

equation for the hydrolysis of 3-carboxy-β-sultam [8] it was therefore necessary to 

determine the pKa of this acid proton. 

 

In order to accurately determine all parameters for the hydrolysis of 3-carboxy-β-

sultam the experimental data was fitted to the rate equation (Equation 10) using 

Microsoft Excel. All of the collected rate data (acid and alkaline hydrolysis) was then 

plotted on one graph with the line calculated from the sum of the individual rate 

terms (Figure 23) (Table 12).  

 

                                          (Equation 10) 

 

This equation is kinetically equivalent to Equation 11 by substitution of specific 

substrates and accounting for ionisation at the relevant pKa. 
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         (Equation 11) 

 

The second term in Equation 11 is kinetically ambiguous and could be due to 

hydrolysis of [RCOOH]: 

Ka

 

    
           

       
 

  
               

                

      

The second order rate constant for the acid catalysed hydrolysis of [8] with 

dissociated carboxylic acid group [RCOO-] is 4.80 M-1s-1 which is 24 fold greater than 

that for [8] with an undissociated carboxylic acid [RCOOH]. This rate enhancement is 

potentially due to the enhanced stability of the conjugate acid (Scheme 50A). The  

rate enhancement seen is not as large as would be expected for the potential 

increase in stability shown and this could be due to intramolecular general acid 

catalysis with the protonated form of the compound (Scheme 50B). 

 

A B

 

 

Scheme 50 Potential mechanisms of rate enhancement with dissociated 3-

carboxy-β-sultam [8] 
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By manipulating the constants in Equation 10 it was possible to arrive at a line which 

fitted the experimental data; these values are shown in Table 12 and the final graph 

is in Figure 23. 

 

 kH, M-1s-1 k’H M
-1s-1 pKa (Ka, M) k0 s

-1 kOH M
-1s-1 

Value from 

data fitting 

2.00 x 10-1 + 

1.00 x 10-2 

4.80 + 

2.40 x 10-1 

4.5  

(3.162 x 10-5) 

1.00 x 10-8 + 

5.00 x 10-10 

5.00 x 10-4 + 

2.50 x 10-5 

 

Table 12 Rate equation constants/parameters for the hydrolysis of 3-
carboxy-β-sultam  

 

 

Figure 23 pH-rate profile for 1,2-thiazetidine-3-carboxylate-1,1-dioxide 

Line calculated from rate equation; points are from experimental data. 

 

Taking the rate as 4.89 x 10-7 M-1s-1 at pH 7 the half-life of 3-carboxy-β-sultam at 

physiological pH can be calculated and is shown to be approximately 16.4 days. 
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3.3 Inhibition Studies 

 

3.3.1 Inhibition of BcII 

 

BcII is the di-zinc Class B1 metallo-β-lactamase enzyme produced by Bacillus cereus 

569/H. Few compounds have been discovered to be inhibitors of the enzyme, 

particularly inhibitors which are specific only to BcII and do not interact with other 

metallo-enzymes such as carbonic anhydrase. BcII is an efficient catalyst of β-lactam 

ring hydrolysis with a kcat/KM value of 4.5 x 105 M-1s-1 for benzylpenicillin              

(kcat = 680 s-1, KM = 1.5 x 10-3 M).110 

 

 

3.3.1.1 β-Sultams and their Analogues as BcII Inhibitors 

 

All β-lactamase enzymes, including BcII are efficient catalysts for the hydrolysis of β-

lactam antibiotics, all of which have a carboxylic acid group at the three position of 

the fused ring. This structure is important for recognition by the enzyme active site 

as it is an analogue of the D-Ala-D-Ala backbone recognised by the DD-

transpeptidase enzymes which β-lactam antibiotics inhibit. 

3-Carboxy-β-sultam [8] was chosen as a potential inhibitor of BcII as possibly the 

sulfonyl centre could interact with Zn1 and the carboxylate with Zn2. Scheme 51 

compares the structures of the 3-carboxy-β-sultam and a generic penicillin. This 

shows the position of the carboxylic acid group relative to the sulfonyl and carbonyl 

groups respectively in each compound. Although both structures are named with the 

carboxylate functionality at the 3-position this is not exactly the same position on 

both molecules, though they are both two bond lengths from the carbonyl/sulfonyl 

group. 
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Scheme 51 Numbering of 3-carboxy-β-sultam and penicillin to show 

carboxylate functionality at 3-position 

 

Due to the similar geometry shown between the two structures (Scheme 51) it was 

hoped that the β-sultam would interact with the active site zinc ions and zinc bound 

water molecules as shown in Scheme 52. 

 

 

Scheme 52 Possible mode of interaction between 3-carboxy β-sultam and 
BcII 

 

Experimental data showed that 3-carboxy-β-sultam is not a substrate for BcII β-

lactamase, and neither is the unsubstituted β-sultam. Equally, neither compound 

showed inhibitory action against BcII despite the structural similarity between the 

two compounds and the β-lactam moeity of the normal substrate. It is possible that 

the lack of steric bulk and functional groups on the test compounds reduced the 

recognition by the active site. There are comparable studies in the literature for work 

done on the inhibition of BcII by analogous β-lactam compounds.221 Although BcII 
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has a broad substrate profile, including penicillins, cephalosporins and carbapenems, 

it has been shown that it does not efficiently catalyse the hydrolysis of 

monobactams. Aztreonam (Scheme 53) is a representative monobactam which binds 

to BcII but is not hydrolysed by it. The azetidinone shown in Scheme 53B is a β-

lactam with an N-acetoxy substituent showing similar functionality to 3-carboxy-β-

sultam which does not bind to BcII at all. The suggestion in this paper was that a 

lack of other substituents may contribute to the lack of binding. It would be 

interesting to investigate 3-carboxy-β-sultams with substituents at the 4-position to 

see if the addition of extra fucnctionality affected the inhibitory action.  

 

A B  

Scheme 53 Structures of monobactams, aztreonam (A) and 2-oxoazetidinyl- 
acetate sodium salt (B) 

  

1,2-Thiazetidine-1,1-dioxide has been shown to be a potentially useful pro-drug, 

hydrolysing in situ to yield taurine.198 Following on from this it seemed logical to 

study the hydrolysis products of the two β-sultams and their analogues as potential 

inhibitors of BcII. The compounds chosen were taurine, L-cysteic acid, L-cysteine and 

D-cysteine (based on their structural relevance and commercial availability) (Scheme 

54). Taurine (the hydrolysis product of β-sultam) and L-cysteine (the thiol analogue 

of the hydrolysis product of 3-carboxy-β-sultam) showed no effect on the activity of 

BcII in the hydrolysis of benzylpenicillin (results for taurine shown in Figure 24). 
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L-Cysteine D-Cysteine

L-Cysteic acid Taurine

 

 

Scheme 54 Hydrolysis products of β-sultams and their analogues 

 

 

Figure 24 Effect on the rate of the BcII catalysed hydrolysis of 

benzylpenicillin by taurine 
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In contrast to the β-sultams, L-cysteic acid did have an effect on the rate of 

benzylpenicillin hydrolysis by BcII. It can be seen in Figure 25 that the rate of 

hydrolysis decreases as the concentration of inhibitor increases. The concentrations 

required to have this effect are very high (inhibitor concentration twenty fold higher 

than substrate concentration) in order to see the rate of hydrolysis approaching zero. 

 

Figure 25 L-Cysteic acid inhibition of BcII 

 

D-Cysteine was also shown to have an effect on the rate of BcII catalysed 

benzylpenicillin hydrolysis. In this case the inhibitor concentrations required were not 

quite so high and D-cysteine was shown to have a Ki value at pH 7 of 7.5 x 10-3 M 

(Figure 26).  
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Figure 26 Inhibition of BcII by D-Cysteine 

 

Compound Effect on activity of BcII 

β-Sultam  No effect 

3-Carboxy-β-Sultam No effect 

Taurine No effect 

L-Cysteic Acid Very weak inhibition 

L-Cysteine No effect 

D-Cysteine Ki = 7.5 x 10-3 M 

 

Table 13 Summary of results for the inhibition of BcII by β-sultams and 
their analogues 
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3.3.1.2 Dicarboxylic Acids as BcII Inhibitors 

 

The second group of compounds chosen as potential inhibitors of BcII were 

dicarboxylic acids. One possibility of the interactions between the two dicarboxylates 

and the two active site zinc ions is demonstrated in Scheme 55A. Derivatives of 

succinic and phthalic acids have been shown to inhibit another Class B1 enzyme, 

IMP-1, via the displacement of the di-zinc bound water molecule, Wat1, by one 

carboxylate and the forming of a bridge by the second carboxylate between Zn2 and 

a lysine residue at the active site as seen in Scheme 55B.129  

 

A B

Enzyme
Enzyme

 

 

Scheme 55 Potential interactions between dicarboxylic acids and BcII 

 

The following dicarboxylic acids were tested as potential inhibitors of the BcII 

catalysed hydrolysis of benzylpenicillin: 

Pimelic acid [10], malonic acid [11], succinic acid [12], oxalic acid [13], 

cyclopentane 1,2-dicarboxylic acid [14] and 2,3-norbornanedicarboxylic acid [15] 

(structures in Scheme 56). 
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oxalic acid [13]

malonic acid [11]

succinic acid [12]

pimelic acid [10]

cyclopentane-1,2-dicarboxylic acid [14] 2,3-norbornanedicarboxylic acid [15] 

 

Scheme 56 Structures of dicarboxylic acids tested as inhibitors of BcII 

 

In all cases the ability of the compound to inhibit the hydrolysis of benzylpenicillin by 

BcII was determined by comparison of the initial rate of substrate hydrolysis in the 

presence of inhibitor to the control rate (with no inhibitor present). In all cases the 

initial rates of the reactions were of the same order with the average rate in the 

presence of a dicarboxylic acid being 11.2 x 10-3 + 1.3 x 10-3 s-1 compared to the 

control rate of 9.2 x 10-3 s-1. No change in pH was noted between the start and end 

of any experiment. This is in sharp contrast to the results seen for L-cysteic acid 

which, other than the amino group and the substitution of a carboxylic for a sulfonic 

acid group is structurally similar to the dicarboxylic acids, particularly succinic acid 

(Scheme 57). Previous work has shown that IMP-1 is inhibited by disubstituted 

succinic acids (dibenzyl-succinic acid shown in Scheme 57) via interactions between 

the two carboxylate groups with Wat1 and Zn2 at the active site. It appears that 

whilst the substituents are not involved in the enzyme-inhibitor interactions they 

may be involved in recognition for the active site. This suggestion is strengthened 

when looking at the difference in IC50 values for the S,S, R,R and R,S stereoisomers 

of dibenzylsuccinic acid which are 0.0027, 0.21 and 200 μM respectively.  
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Succinic acid L-Cysteic acid

Dibenzyl succinic acid  

 

Scheme 57 Structures of L-cysteic acid and succinic acids 

 

The difference in activity seen between L-cysteic acid and succinic acid with BcII may 

also be a function of better substrate recognition for L-cysteic acid due to the 

presence of the amine group. It is not clear why this may be, but it may be due to 

hydrogen bonding or electrostatic interactions between the molecule and amino acid 

residues at the active site. Another possibility is that it may be due to the reduction 

in free rotation of the carbon backbone due to intramolecular hydrogen bonding 

interactions fixing the     L-cysteic acid in a preferential conformation. 
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3.3.2 Inhibition of Glutamine Synthetase 

 

Glutamine synthetase is a polymeric enzyme requiring two metal ions (either Mg2+ or 

Mn2+) at each active site. It effectively catalyses the formation of glutamine from 

glutamate and ammonia; ATP is required to activate the glutamate carboxylate 

group via phosphorylation. 

Initial attempts to monitor the rate of glutamine production were carried out using 

HPLC. Calibration was carried out for glutamate and glutamine in the presence of 

ATP. The reaction was set up with glutamate, ammonium salt, magnesium salt, ATP 

and enzyme in imidazole buffer solution at pH 7.1 and 1.0 M ionic strength 

maintained by addition of potassium chloride. Samples of the solution were removed 

at set intervals and quenched in 1.0 M sodium hydroxide solution to denature the 

enzyme and stop the reaction. The production of ADP by the reaction was an issue as 

it acted as an inhibitor of the enzyme and so only a limited number of enzyme 

turnovers could be monitored. Despite multiple attempts to modify the procedure no 

progress was made and this lead to the use of a coupled assay. 

The coupled assay utilised for the glutamine synthetase (GS) reaction was that 

detailed in the experimental (and shown again in Scheme 58). This procedure has 

been widely used for investigations involving glutamine synthetase.222-224 

 

Kinetic measurements of the biosynthetic activity of the enzyme were performed at 

37 oC in a coupled assay with pyruvate kinase (PK) and lactate dehydrogenase 

(LDH). For every molecule of glutamate which is converted to glutamine, one 

molecule of ATP is converted to ADP. The production of ADP can be measured by the 

following procedure: ADP is converted into ATP by the reaction with 

phospho(enol)pyruvate, catalysed by PK; the pyruvate produced by this reaction is 

then reduced by NADH (catalysed by LDH) to produce lactate and NAD+. Thus the 

rate of reduction in concentration of NADH measured spectrophotometrically at    

340 nm is representative of the rate of conversion of glutamate to glutamine. In 

each experiment a blank (with no GS enzyme present) was run to account for the 

background rate of NADH oxidation. A second cell was also set up as a control to 

measure the rate of GS activity under “normal” conditions. The third cell contained 

all other reactants and enzymes along with the potential inhibitor. 
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Scheme 58 Coupled assay utilised in the UV-Vis monitoring of the glutamine 

synthetase reaction 

 

The compounds tested as inhibitors of glutamine synthetase were selected either due 

to their structural similarity to the normal substrate (glutamate) or because they 

were potential taurine (or taurine analogue) pro-drugs following work carried out by 

Ward et al. showing taurine had a potential effect on neurotransmission in the 

brain.198 The structures of these potential inhibitors are shown in Scheme 59 and a 

summary of the results is shown in Table 14. 

 

L-Cysteine D-Cysteine L-Cysteic acid

-SultamTaurineL-Glutamate

 

 

Scheme 59 Structures of compounds investigated as potential inhibitors of 

glutamine synthetase (and glutamate for comparison) 
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As can be seen from the sample data shown for β-sultam inhibition of glutamine 

synthetase in Figure 27 there is no significant difference in the rate of NADH 

oxidation in the presence of increasing concentrations of inhibitor. Similar results 

were also obtained for reactions involving taurine. 

 

 

 

Figure 27 Effect of β-sultam on the rate of glutamine production catalysed 

by GS (stock inhibitor concentration = 1.5 M) 

 

The rate enhancements seen in the case of L- and D-cysteine are possibly due to 

these compounds acting as substrates for the enzyme, GS. The increased 

concentration of substrate leads to an increase in the rate of ADP production and 

hence an increase in the rate of NADH oxidation. An assay was run with cysteine in 

the absence of glutamate and this confirmed the substrate action by following the 

decrease in the concentration of NADH.  

L-Cysteic acid initially showed a similar rate enhancement to that seen with D- and 

L-cysteine (Figure 28). This was not however due to the compound being a substrate 

but rather the action of the compound catalysing the oxidation of NADH. This is 

assumed to be via an acid-catalysis mechanism but further investigations into this 

were not carried out. 
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Figure 28 Apparent rate enhancements due to L-cysteic acid (stock inhibitor 

concentration = 0.5M) 

 

Compound Effect on activity of glutamine 
synthetase 

β-Sultam  No effect 

3-Benzyl Carboxylate β-Sultam No effect 

3-Carboxy-β-Sultam No effect 

Taurine No effect 

L-Cysteic Acid No effect 

L-Cysteine Rate enhancement 

D-Cysteine Rate enhancement 

 

Table 14 Summary of results regarding glutamine synthetase inhibition 

 

Further work in this area is required to fully explain many of the observations. 

Testing of L- and D-cysteine as substrates of each of the three assay enzymes and 

product analysis would show why the rate enhancements seen occurred. They may 

be due to phosphorylation by GS producing ADP, or reduction by LDH and NADH 

going to NAD+. Another avenue of interest is to test the potential inhibitors against 

other neurotransmitter enzymes such as glutamate decarboxylate or GABA 

transaminase. 
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3.4 Mechanism of Ertapenem Hydrolysis by BcII 

 

1H, 13C, DEPT, COSY, HSQC and HMBC NMR spectra of ertapenem were collected and 

used to assign all 1H NMR peaks to the structure (Scheme 60) as shown in Figure 29, 

with assignments in Table 15. 

 

 

 

Figure 29 1H NMR spectrum of ertapenem in pH 7 deuterated phosphate 

buffer 
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Scheme 60 Ertapenem with carbons numbered for assignment to NMR 

spectra 

 

 

Peak 

shift 

(ppm) 

Splitting Number of 

hydrogens 

Coupling 

constants 

(Hz) 

Position 

7.88 Singlet 1  3 

7.71 Doublet 1 7.6 5 

7.67 Doublet 1 7.6 7 

7.49 Triplet 1 7.8 6 

4.44 Triplet 1 8.0 9 

4.25 Doublet 1 5.98 18 

4.21 Doublet of doublets 1 2.6 + 9.1 21 

4.00 Quintet 1 6.5 11 

3.68 Doublet of doublets 1 6.5 + 11.9 12 

3.45 Doublet of doublets 1 2.5 + 6.2 19 

3.37 Triplet 1 8.2 16 

3.32 Doublet of doublets 1 5.2 + 11.9 12 

2.95 Doublet of triplets 1 7.9 + 14.3 10 

2.21 Doublet of triplets 1 7.1 10 

1.29 Doublet 3 6.2 22 

1.20 Doublet 3 7.3 17 
 

 
Table 15 Assignment of 1H NMR peaks 

 



Results and Discussion, Ertapenem Hydrolysis 

141 

 

Initial attack of the BcII enzyme on the β-lactam carbonyl (carbon-20) of ertapenem 

leads to the cleavage of the C-N bond of the β-lactam ring. The aim of this 

investigation was to prove whether protonation then occurred on the β-lactam 

nitrogen (via enamine formation) or on carbon-13 (via imine formation) (Scheme 

61). 

 

Enamine
formation

Imine
formation

 

Scheme 61 BcII hydrolysis of ertapenem could lead to formation of an imine 
or enamine  

 

Comparison of the 1H NMR spectrum from after ertapenem hydrolysis to that in 

Figure 29 shows several differences in key peaks. There are two new sets of doublets 

at 1.19 and 0.72 ppm which relate to small shifts of the methyl protons (carbons 22 

and 17). There are, however, more significant changes in the peaks related to the 

protons attached to the β-lactam and dihydropyrrole rings. There are significant 
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changes in the chemical shift of the protons on carbons 16, 18 and 19 associated 

with the changes in functionality in this area of the molecule (Table 16). 

 

Chemical shift 

after BcII 

hydrolysis (ppm) 

Chemical shift 

before hydrolysis 

(ppm) 

Splitting Carbon 

number 

Change in ppm 

(from pre-

hydrolysis) 

2.62 4.25 Doublet 18 -1.63 

4.32 3.45 Doublet of 
doublets 

19 +0.87 

2.55 3.37 Triplet 16 -0.82 

 

Table 16 Chemical shift changes for ring protons during hydrolysis 

 

The decrease in chemical shift for the C-16 proton suggests a movement from the 

enamine to imine structure. Further evidence of this mechanism was derived from 

studying the 2D NMR spectra. 

From the HSQC spectrum (Figure 30) there is a correlation between the protons at 

1.05 ppm and the carbon at 14 ppm. These are assigned to the methyl group 

(carbon-17) and correlations between these protons and other carbons can be 

established by the use of an HMBC spectrum. The protons at 1.05 ppm show three 

cross-peaks by HMBC (Figure 31) which can relate to carbons 16 (2 bond lengths), 

18 and 13 (both three bond lengths away). The cross-peak observed at 43 ppm is 

due to interaction of H-17 and C-16. The second cross-peak at 73 ppm is between H-

17 and C-18. The third cross-peak has to be between H-17 and C-13 and is seen at 

57 ppm. There is no peak in the 1H NMR spectrum for this position (nor can a cross-

peak be found on the HSQC spectrum) due to deuterium incorporation. This is 

further evidence for the formation of the imine rather than protonation of the 

nitrogen.  If the enamine had formed then C-13 would be expected to give a peak at 

around 139 ppm (as in the spectrum from before hydrolysis). The drop to 57 ppm 

and lack of signal on the HSQC spectrum indicates deuterium incorporation at this 

position during hydrolysis. 
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Figure 30 HSQC spectrum of BcII hydrolysed ertapenem 
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Figure 31 HMBC spectrum of BcII hydrolysed ertapenem 
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Conclusion 
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A new β-sultam, 3-carboxylate-1,2-thiazetidine-1,1-dioxide was synthesised by the 

debenzylation of 3-benzyl-1,2-thiazetidine-1,1-dioxide using sodium metal in liquid 

ammonia.  

Chloroacetate buffer catalyses the hydrolysis of the unsubstituted β-sultam via the 

acidic form of the buffer with a rate constant of 9.66 x 10-2 M-1s-1. 

3-carboxy-β-sultam undergoes acid and base catalysed hydrolysis and the acid group 

has a pKa of 4.5 (Ka = 3.162 x 10-5). 

D-Cysteine is a weak inhibitor of BcII with a Ki value of 7.5 x 10-3 M. 

None of the β-sultams tested (the unsubstituted β-sultam, 3-benzyl-β-sultam or 3-

carboxy-β-sultam) acted as inhibitors of BcII or GS. 

Dicarboxylic acids did not show inhibition of BcII at millimolar concentrations. Both 

L- and D-Cysteine were shown to be substrates of GS. 

Ertapenem is hydrolysed by BcII to yield an imine functionality in the dihydropyrrole 

ring. 

 



 

147 

 

Bibliography 
 

 (1) Kieny, M.-P.; Kieny, M.-P., Ed.; World Health Organization: 2012. 

 (2) Piddock, L. J. V. The Lancet Infectious Diseases 2012, 12, 249. 

 (3) Bush, K.; Jacoby, G. A.; Medeiros, A. A. Antimicrobial Agents and 

Chemotherapy 1995, 39, 1211. 

 (4) Page, M. I.; Hinchliffe, P. S.; Wood, J. M.; Harding, L. P.; Laws, A. P. 

Bioorganic & Medicinal Chemistry Letters 2003, 13, 4489. 

 (5) Gram, C. Fortschritte der Medicin 1884, 2, 185. 

 (6) Cummins, C. S.; Harris, H. Journal of General Microbiology 1956, 14, 583. 

 (7) Ghuysen, J.-M. Bacteriological Reviews 1968, 32, 425. 

 (8) Perkins, H. Biochemical Journal 1960, 74, 182. 

 (9) Meroueh, S. O.; Bencze, K. Z.; Hesek, D.; Lee, M.; Fisher, J. F.; Stemmler, T. 

L.; Mobashery, S. P Natl Acad Sci USA 2006, 103, 4404. 

 (10) Selwyn, S. Journal of Antimicrobial Chemotherapy 1979, 5, 249. 

 (11) Fleming, A. British Journal of Experimental Patholog 1929, 10, 226. 

 (12) Chain, E.; Florey, H. W.; Hardner, A.; Heatley, N. G.; Jennings, M. A.; Orr-
Ewing, J.; Sanders, A. G. Lancet 1940, 239, 226. 

 (13) Backus, M. P.; Stauffer, J. F.; Johnson, M. J. Journal of the American 

Chemical Society 1946, 68, 152. 

 (14) Moyer, A. J.; Coghill, R. D. Journal of Bacteriology 1947, 53, 329. 

 (15) Ding, M.-Z.; Lu, H.; Cheng, J.-S.; Chen, Y.; Jiang, J.; Qiao, B.; Li, B.-Z.; 

Yuan, Y.-J. Appl Biochem Biotechnol 2012, 168, 1223. 

 (16) Elander, R. Applied Microbiology and Biotechnology 2003, 61, 385. 

 (17) Sheehan, J. C.; Henery-Logan, K. R. Journal of the American Chemical 
Society 1957, 79, 1262. 

 (18) Acred, P.; Brown, D.; Turner, D.; Wilson, M. British Journal of Pharmacology 

and chemotherapy 1962, 18, 356. 

 (19) Sutherland, R.; Croydon, E.; Rolinson, G. British Medical Journal 1972, 3, 13. 

 (20) Fu, K. P.; Neu, H. C. Antimicrobial Agents and Chemotherapy 1978, 13, 358. 

 (21) Brumfitt, W.; Percival, A.; Leigh, D. The Lancet 1967, 289, 1289. 

 (22) Antibiotic Discovery and Development; Dougherty, T. J.; Pucci, M. J., Eds.; 

Springer: New York and London, 2012. 

 (23) Newton, G. G.; Abraham, E. Biochem. J 1955, 62, 651. 

 (24) Griffith, R. S.; Black, H. R. JAMA: the Journal of the American Medical 

Association 1964, 189, 823. 

 (25) Murdoch, J. M.; Speirs, C.; Geddes, A.; Wallace, E. British Medical Journal 

1964, 2, 1238. 

 (26) Wick, W. E. Applied Microbiology 1967, 15, 765. 



 

148 

 

 (27) O'Callaghan, C. H.; Sykes, R.; Ryan, D.; Foord, R.; Muggleton, P. The Journal 

of Antibiotics 1976, 29, 29. 

 (28) Kahan, J.; Kahan, F.; Goegelman, R.; Currie, S.; Jackson, M.; Stapley, E.; 

Miller, T.; Miller, A.; Hendlin, D.; Mochales, S. The Journal of Antibiotics 1979, 32, 1. 

 (29) Kropp, H.; Sundelof, J.; Kahan, J.; Kahan, F. M.; Birnbaum, J. Antimicrobial 
Agents and Chemotherapy 1980, 17, 993. 

 (30) Kropp, H.; Gerckens, L.; Sundelof, J. G.; Kahan, F. M. Review of Infectious 

Diseases 1985, 7, S389. 

 (31) Pryka, R. D.; Haig, G. M. The Annals of Pharmacotherapy 1994, 28, 1045. 

 (32) Kurihara, A.; Naganuma, H.; Hisaoka, M.; Tokiwa, H.; Kawahara, Y. 

Antimicrobial Agents and Chemotherapy 1992, 36, 1810. 

 (33) Xuan, D.; Banevicius, M.; Capitano, B.; Kim, M.-K.; Nightingale, C.; Nicolau, 

D. Antimicrobial Agents and Chemotherapy 2002, 46, 2990. 

 (34) Papp-Wallace, K. M.; Endimiani, A.; Taracila, M. A.; Bonomo, R. A. 

Antimicrobial Agents and Chemotherapy 2011, 55, 4943. 

 (35) Jones, R. N.; Sader, H. S.; Fritsche, T. R. Diagnostic Microbiology and 

Infectious Disease 2005, 52, 71. 

 (36) Kirby, W. M. Journal of Clinical Investigation 1945, 24, 170. 

 (37) Hawkey, P. M. BMJ: British Medical Journal 1998, 317, 657. 

 (38) Malouin, F.; Bryan, L. Antimicrobial Agents and Chemotherapy 1986, 30, 1. 

 (39) Parija, S. C. Textbook of Microbiology and Immunology; 1 ed.; Elsevier: 

Haryana, 2009. 

 (40) Gibberd, G. British Medical Journal 1937, 2, 695. 

 (41) Dodd, M. C.; Stillman, W. B.; Roys, M.; Crosby, C. Journal of Pharmacology 

and Experimental Therapeutics 1944, 82, 11. 

 (42) Gottlieb, D.; Bhattacharyya, P.; Anderson, H.; Carter, H. Journal of 
Bacteriology 1948, 55, 409. 

 (43) Duggar, B. M. Annals of the New York Academy of Sciences 1948, 51, 177. 

 (44) Vazquez, D. Journal of General Microbiology 1966, 42, 93. 

 (45) Pfeiffer, R. R. Review of Infectious Diseases 1981, 3, S205. 

 (46) Gallo, G.; Chiesa, L.; Sensi, P. Analytical Chemistry 1962, 34, 423. 

 (47) Watt, L.; Jennison, R. British Medical Journal 1960, 2, 902. 

 (48) Lesher, G. Y.; Froelich, E. J.; Gruett, M. D.; Bailey, J. H.; Brundage, R. P. 

Journal of Medicinal Chemistry 1962, 5, 1063. 

 (49) Noall, E.; Sewards, H.; Waterworth, P. M. British Medical Journal 1962, 2, 
1101. 

 (50) Diekema, D. J.; Jones, R. N. The Lancet 2001, 358, 1975. 

 (51) Tally, F. P.; DeBruin, M. F. Journal of Antimicrobial Chemotherapy 2000, 46, 

523. 

 (52) Abraham, E. P.; Chain, E. Nature 1940, 146, 837. 

 (53) Hamburger, M.; Schmidt, L.; Sesler, C. L.; Ruegsegger, J.; Grupen, E. S. 

Journal of Infectious Diseases 1943, 73, 12. 



 

149 

 

 (54) Klein, M. Journal of Bacteriology 1947, 53, 463. 

 (55) Hobson, D. The British Medical Journal 1954, 1, 236. 

 (56) Barber, M. Journal of Clinical Pathology 1961, 14, 385. 

 (57) Hane, M. W.; Wood, T. H. Journal of Bacteriology 1969, 99, 238. 

 (58) Franklin, T. Biochemical Journal 1967, 105, 371. 

 (59) Moellering, R. C.; Wennersten, C.; Weinberg, A. N. Journal of Infectious 

Diseases 1971, 124, S207. 

 (60) Orberg, P. K.; Sandine, W. E. Applied and Environmental Microbiology 1984, 

48, 1129. 

 (61) Neu, H. C. Review of Infectious Diseases 1988, 10, S57. 

 (62) Marshall, S. H.; Donskey, C. J.; Hutton-Thomas, R.; Salata, R. A.; Rice, L. B. 

Antimicrobial Agents and Chemotherapy 2002, 46, 3334. 

 (63) Hooper, D. C. Emerging Infectious Diseases 2001, 7, 337. 

 (64) McDaniel, L. D.; Young, E.; Delaney, J.; Ruhnau, F.; Ritchie, K. B.; Paul, J. H. 

Science 2010, 330, 50. 

 (65) Yong, D.; Toleman, M. A.; Giske, C. G.; Cho, H. S.; Sundman, K.; Lee, K.; 

Walsh, T. R. Antimicrobial Agents and Chemotherapy 2009, 53, 5046. 

 (66) Bushnell, G.; Mitrani-Gold, F.; Mundy, L. M. International Journal of Infectious 
Diseases 2013, 17, e325. 

 (67) Drawz, S. M.; Bonomo, R. A. Clinical Microbiology Reviews 2010, 23, 160. 

 (68) Hall, B. G.; Barlow, M. Journal of Antimicrobial Chemotherapy 2005, 55, 

1050. 

 (69) Jaurin, B.; Grundström, T. Proceedings of the National Academy of Sciences 

1981, 78, 4897. 

 (70) Ouellette, M.; Bissonnette, L.; Roy, P. H. Proceedings of the National 

Academy of Sciences 1987, 84, 7378. 

 (71) Huovinen, P.; Huovinen, S.; Jacoby, G. A. Antimicrobial Agents and 

Chemotherapy 1988, 32, 134. 

 (72) Medeiros, A. A.; Hedges, R. W.; Jacoby, G. A. Journal of Bacteriology 1982, 

149, 700. 

 (73) Tipper, D. J.; Strominger, J. L. P Natl Acad Sci USA 1965, 54, 1133. 

 (74) Matagne, A.; Dubus, A.; Galleni, M.; Frère, J. M. Natural Product Reports 

1999, 16, 1. 

 (75) Strynadka, N. C.; Adachi, H.; Jensen, S. E.; Johns, K.; Sielecki, A.; Betzel, 

C.; Sutoh, K.; James, M. N. Nature 1992, 359. 

 (76) Lamotte-Brasseur, J.; Dive, G.; Dideberg, O.; Charlier, P.; Frère, J.-M.; 

Ghuysen, J.-M. Biochemical Journal 1991, 279, 213. 

 (77) Howarth, T. T.; Brown, A. G.; King, T. J. Journal of the Chemical Society, 

Chemical Communications 1976, 266b. 

 (78) Brown, A.; Butterworth, D.; Cole, M.; Hanscomb, G.; Hood, J.; Reading, C.; 

Rolinson, G. The Journal of Antibiotics 1976, 29, 668. 

 (79) Reading, C.; Cole, M. Antimicrobial Agents and Chemotherapy 1977, 11, 852. 

 (80) Knowles, J. R. Accounts of Chemical Research 1985, 18, 97. 



 

150 

 

 (81) Imtiaz, U.; Billings, E.; Knox, J. R.; Manavathu, E. K.; Lerner, S. A.; 

Mobashery, S. Journal of the American Chemical Society 1993, 115, 4435. 

 (82) Page, M. G. P. Drug Resistance Updates 2000, 3, 109. 

 (83) Padayatti, P. S.; Helfand, M. S.; Totir, M. A.; Carey, M. P.; Carey, P. R.; 

Bonomo, R. A.; van den Akker, F. Journal of Biological Chemistry 2005, 280, 34900. 

 (84) Buynak, J. D. Biochemical Pharmacology 2006, 71, 930. 

 (85) Beesley, T.; Gascoyne, N.; Knott-Hunziker, V.; Petursson, S.; Waley, S.; 

Jaurin, B.; Grundström, T. Biochemical Journal 1983, 209, 229. 

 (86) Weston, G. S.; Blázquez, J.; Baquero, F.; Shoichet, B. K. Journal of Medicinal 
Chemistry 1998, 41, 4577. 

 (87) Powers, R. A.; Shoichet, B. K. Journal of Medicinal Chemistry 2002, 45, 

3222. 

 (88) Eidam, O.; Romagnoli, C.; Caselli, E.; Babaoglu, K.; Pohlhaus, D. T.; Karpiak, 
J.; Bonnet, R.; Shoichet, B. K.; Prati, F. Journal of Medicinal Chemistry 2010, 53, 7852. 

 (89) Pratt, R. Science 1989, 246, 917. 

 (90) Chen, C. C. H.; Rahil, J.; Pratt, R. F.; Herzberg, O. Journal of Molecular 

Biology 1993, 234, 165. 

 (91) Lobkovsky, E.; Billings, E. M.; Moews, P. C.; Rahil, J.; Pratt, R. F.; Knox, J. R. 
Biochemistry 1994, 33, 6762. 

 (92) Maveyraud, L.; Pratt, R. F.; Samama, J.-P. Biochemistry 1998, 37, 2622. 

 (93) Badarau, A.; Damblon, C.; Page, M. I. Biochemical Journal 2007, 401, 197. 

 (94) Rasmussen, B. A.; Bush, K. Antimicrobial Agents and Chemotherapy 1997, 
41, 223. 

 (95) Yang, Y.; Rasmussen, B. A.; Bush, K. Antimicrobial Agents and Chemotherapy 

1992, 36, 1155. 

 (96) Galleni, M.; Lamotte-Brasseur, J.; Rossolini, G. M.; Spencer, J.; Dideberg, O.; 
Frère, J.-M. Antimicrobial Agents and Chemotherapy 2001, 45, 660. 

 (97) Rossolini, G. M.; Franceschini, N.; Riccio, M. L.; Mercuri, P. S.; Perilli, M.; 

Galleni, M.; Frère, J.-M.; Amicosante, G. Biochemical Journal 1998, 332, 145. 

 (98) Concha, N. O.; Rasmussen, B. A.; Bush, K.; Herzberg, O. Structure 1996, 4, 
823. 

 (99) Bebrone, C.; Delbrück, H.; Kupper, M. B.; Schlömer, P.; Willmann, C.; Frère, 

J.-M.; Fischer, R.; Galleni, M.; Hoffmann, K. M. Antimicrobial Agents and Chemotherapy 

2009, 53, 4464. 

 (100) Saavedra, M. J.; Peixe, L.; Sousa, J. C.; Henriques, I.; Alves, A.; Correia, A. 
Antimicrobial Agents and Chemotherapy 2003, 47, 2330. 

 (101) Garau, G.; Bebrone, C.; Anne, C.; Galleni, M.; Frère, J.-M.; Dideberg, O. 

Journal of Molecular Biology 2005, 345, 785. 

 (102) García-Sáez, I.; Mercuri, P. S.; Papamicael, C.; Kahn, R.; Frère, J. M.; 
Galleni, M.; Rossolini, G. M.; Dideberg, O. Journal of Molecular Biology 2003, 325, 651. 

 (103) Docquier, J.-D.; Pantanella, F.; Giuliani, F.; Thaller, M. C.; Amicosante, G.; 

Galleni, M.; Frère, J.-M.; Bush, K.; Rossolini, G. M. Antimicrobial Agents and Chemotherapy 

2002, 46, 1823. 



 

151 

 

 (104) Ullah, J. H.; Walsh, T. R.; Taylor, I. A.; Emery, D. C.; Verma, C. S.; Gamblin, 

S. J.; Spencer, J. Journal of Molecular Biology 1998, 284, 125. 

 (105) Wang, Z.; Fast, W.; Valentine, A. M.; Benkovic, S. J. Current Opinion in 

Chemical Biology 1999, 3, 614. 

 (106) Zhang, H.; Hao, Q. The FASEB Journal 2011, 25, 2574. 

 (107) Rasia, R. M.; Vila, A. J. Biochemistry 2002, 41, 1853. 

 (108) Paul-Soto, R.; Bauer, R.; Frère, J. M.; Galleni, M.; Meyer-Klaucke, W.; 

Nolting, H.; Rossolini, G. M.; de Seny, D.; Hernandez-Valladares, M.; Zeppezauer, M.; 

Adolph, H. W. Journal of Biological Chemistry 1999, 274, 13242. 

 (109) Bounaga, S.; Laws, A. P.; Galleni, M.; Page, M. I. Biochemical Journal 1998, 

331, 703. 

 (110) Bebrone, C. Biochemical Pharmacology 2007, 74, 1686. 

 (111) Breece, R. M.; Llarrull, L. I.; Tioni, M. F.; Vila, A. J.; Tierney, D. L. Journal of 
Inorganic Biochemistry 2012, 111, 182. 

 (112) Jacquin, O.; Balbeur, D.; Damblon, C.; Marchot, P.; De Pauw, E.; Roberts, G. 

C. K.; Frère, J.-M.; Matagne, A. Journal of Molecular Biology 2009, 392, 1278. 

 (113) Page, M. I.; Badarau, A. Bioinorganic Chemistry and Applications 2008, 1. 

 (114) Sabath, L. D.; Abraham, E. P. Biochem J 1966, 98, 11C. 

 (115) Davies, R. B.; Abraham, E.; Melling, J. Biochemical Journal 1974, 143, 115. 

 (116) http://www.psc.edu/science/2006/enzyme/ Schneider, M.  Pennsylvania, 

2006; Accessed 2013. 

 (117) Lienard, B. M. R.; Hueting, R.; Lassaux, P.; Galleni, M.; Frère, J. M.; 
Schofield, C. J. Journal of Medicinal Chemistry 2008, 51, 684. 

 (118) Hammond, G. G.; Huber, J. L.; Greenlee, M. L.; Laub, J. B.; Young, K.; Silver, 

L. L.; Balkovec, J. M.; Pryor, K. D.; Wu, J. K.; Leiting, B.; Pompliano, D. L.; Toney, J. H. 

Fems Microbiology Letters 1999, 179, 289. 

 (119) Johnson, J. W.; Gretes, M.; Goodfellow, V. J.; Marrone, L.; Heynen, M. L.; 

Strynadka, N. C. J.; Dmitrienko, G. I. Journal of the American Chemical Society 2010, 132, 

2558. 

 (120) Maret, W. Biochem. J. 2004, 43, 3301. 

 (121) Nagano, R.; Adachi, Y.; Imamura, H.; Yamada, K.; Hashizume, T.; 

Morishima, H. Antimicrobial Agents and Chemotherapy 1999, 43, 2497. 

 (122) Nagano, R.; Adachi, Y.; Hashizume, T.; Morishima, H. Journal of Antimicrobial 

Chemotherapy 2000, 45, 271. 

 (123) Concha, N. O.; Janson, C. A.; Rowling, P.; Pearson, S.; Cheever, C. A.; 
Clarke, B. P.; Lewis, C.; Galleni, M.; Frère, J. M.; Payne, D. J.; Bateson, J. H.; Abdel-

Meguid, S. S. Biochemistry 2000, 39, 4288. 

 (124) Bounaga, S.; Galleni, M.; Laws, A. P.; Page, M. I. Bioorganic & Medicinal 

Chemistry 2001, 9, 503. 

 (125) Mollard, C.; Moali, C.; Papamicael, C.; Damblon, C.; Vessilier, S.; 

Amicosante, G.; Schofield, C. J.; Galleni, M.; Frère, J. M.; Roberts, G. C. K. Journal of 

Biological Chemistry 2001, 276, 45015. 

 (126) Lowe, G.; Swain, S. Journal of the Chemical Society, Perkin Transactions 1 
1985, 0, 391. 

http://www.psc.edu/science/2006/enzyme/


 

152 

 

 (127) Meth-Cohn, O.; Reason, A. J.; Roberts, S. M. Journal of the Chemical Society, 

Chemical Communications 1982, 0, 90. 

 (128) Kim, S. K.; Sims, C. L.; Wozniak, S. E.; Drude, S. H.; Whitson, D.; Shaw, R. 

W. Chemical Biology & Drug Design 2009, 74, 343. 

 (129) Fast, W.; Sutton, L. D. Biochimica et Biophysica Acta (BBA) - Proteins and 
Proteomics 2013, 1834, 1648. 

 (130) Toney, J. H.; Hammond, G. G.; Fitzgerald, P. M. D.; Sharma, N.; Balkovec, J. 

M.; Rouen, G. P.; Olson, S. H.; Hammond, M. L.; Greenlee, M. L.; Gao, Y. D. Journal of 

Biological Chemistry 2001, 276, 31913. 

 (131) Hiraiwa, Y.; Morinaka, A.; Fukushima, T.; Kudo, T. Bioorganic & Medicinal 

Chemistry Letters 2009, 19, 5162. 

 (132) Olsen, L.; Jost, S.; Adolph, H.-W.; Pettersson, I.; Hemmingsen, L.; 

Jørgensen, F. S. Bioorganic & Medicinal Chemistry 2006, 14, 2627. 

 (133) Livermore, D. M.; Mushtaq, S.; Morinaka, A.; Ida, T.; Maebashi, K.; Hope, R. 

Journal of Antimicrobial Chemotherapy 2013, 68, 153. 

 (134) Page, M. I. Accounts of Chemical Research 2004, 37, 297. 

 (135) Enders, D.; Wallert, S. Tetrahedron Letters 2002, 43, 5109. 

 (136) Chiaroni, A.; Riche, C.; Loiseau, P.; Bonnafous, M.; Adam, Y. Acta 
Crystallographica Section C: Crystal Structure Communications 1985, 41, 1265. 

 (137) Page, M. I.; Laws, A. P. Tetrahedron 2000, 56, 5631. 

 (138) Baganz, H.; Dransch, G. Chemische Berichte 1960, 93, 784. 

 (139) Le Berre, A.; Petit, J. Tetrahedron Letters 1972, 13, 213. 

 (140) Cavagna, F.; Koller, W.; Linkies, A.; Rehling, H.; Reuschling, D. Angewandte 

Chemie International Edition in English 1982, 21, 548. 

 (141) Champseix, A.; Chanet, J.; Etienne, A.; Leberre, A.; Masson, J. C.; Napierala, 

C.; Vessiere, R. Bulletin De La Société Chimique De France 1985, 463. 

 (142) Thompson, M. E. The Journal of Organic Chemistry 1984, 49, 1700. 

 (143) Atkins, G. M.; Burgess, E. M. Journal of the American Chemical Society 1967, 

89, 2502. 

 (144) Nagai, T.; Shingaki, T.; Inagaki, M.; Ohshima, T. Bulletin of the Chemical 
Society of Japan 1979, 52, 1102. 

 (145) Burgess, E. M.; Williams, W. M. Journal of the American Chemical Society 

1972, 94, 4386. 

 (146) Atkins, G. M.; Burgess, E. M. Journal of the American Chemical Society 1968, 

90, 4744. 

 (147) Tsuge, O.; Iwanami, S. Bulletin of the Chemical Society of Japan 1970, 43, 

3543. 

 (148) Hiraoka, T.; Kobayashi, T. Bulletin of the Chemical Society of Japan 1975, 

48, 480. 

 (149) Rassadin, V.; Grosheva, D.; Tomashevskii, A.; Sokolov, V. Chemistry of 

Heterocyclic Compounds 2013, 49, 39. 

 (150) Enders, D.; Moll, A.; Schaadt, A.; Raabe, G.; Runsink, J. European Journal of 

Organic Chemistry 2003, 2003, 3923. 

 (151) Enders, D.; Moll, A. Synthesis 2005, 2005, 1807. 



 

153 

 

 (152) Wani, M. C.; Campbell, H. F.; Brine, G. A.; Kepler, J. A.; Wall, M. E.; Levine, 

S. G. Journal of the American Chemical Society 1972, 94, 3631. 

 (153) Bernard, A. M.; Cerioni, G.; Piras, P. P.; Seu, G. Synthesis 1990, 1990, 871. 

 (154) Glasl, D.; Otto, H.-H.; Rihs, G. Helvetica Chimica Acta 1997, 80, 671. 

 (155) Otto, H.-H.; Schwenkkraus, P. Tetrahedron Letters 1982, 23, 5389. 

 (156) Schwenkkraus, P.; Merkle, S.; Otto, H.-H. Liebigs Annalen-Recueil 1997, 

1261. 

 (157) Schwenkkraus, P.; Otto, H.-H. Archiv der Pharmazie 1993, 326, 437. 

 (158) Schwenkkraus, P.; Otto, H.-H. Liebigs Annalen der Chemie 1994, 1994, 251. 

 (159) Meinzer, A.; Breckel, A.; Thaher, B. A.; Manicone, N.; Otto, H.-H. Helvetica 

Chimica Acta 2004, 87, 90. 

 (160) Röhrich, T.; Thaher, B. A.; Manicone, N.; Otto, H.-H. Monatshefte für 

Chemie/Chemical Monthly 2004, 135, 979. 

 (161) Ahmed, N.; Tsang, W. Y.; Page, M. I. Organic Letters 2003, 6, 201. 

 (162) Baxter, N. J.; Laws, A. P.; Rigoreau, L.; Page, M. I. Journal of the Chemical 

Society: Perkin Transactions 1996, 2, 2245. 

 (163) Baxter, N. J.; Rigoreau, L. J. M.; Andrew, P.; Page, M. I. Journal of the 

American Chemical Society 2000, 122, 3375. 

 (164) Wood, J. M., PhD Thesis, University of Huddersfield, 2001. 

 (165) Baxter, N. J., PhD Thesis, University of Huddersfield, 1998. 

 (166) Tsang, W.-Y.; Ahmed, N.; Hemming, K.; Page, M. I. Organic & Biomolecular 

Chemistry 2007, 5, 3993. 

 (167) Fahrney, D. E.; Gold, A. M. Journal of the American Chemical Society 1963, 

85, 997. 

 (168) Gold, A. M.; Fahrney, D. Biochemistry 1964, 3, 783. 

 (169) Baker, B. R.; Erickson, E. H. Journal of Medicinal Chemistry 1968, 11, 245. 

 (170) Geratz, J. D. FEBS Letters 1972, 20, 294. 

 (171) Markwardt, F.; Drawert, J.; Walsmann, P. Biochemical Pharmacology 1974, 

23, 2247. 

 (172) Laura, R.; Robison, D. J.; Bing, D. H. Biochemistry 1980, 19, 4859. 

 (173) Zaborsky, O. R.; Kaiser, E. T. Journal of the American Chemical Society 

1966, 88, 3084. 

 (174) Kaiser, E. T.; Kudo, K.; Zaborsky, O. R. Journal of the American Chemical 

Society 1967, 89, 1393. 

 (175) Westheimer, F. H. Accounts of Chemical Research 1968, 1, 70. 

 (176) Zaborsky, O. R.; Kaiser, E. T. Journal of the American Chemical Society 

1970, 92, 860. 

 (177) Mann, T.; Keilin, D. Nature 1940, 146, 164. 

 (178) Vullo, D.; Leewattanapasuk, W.; Mühlschlegel, F. A.; Mastrolorenzo, A.; 
Capasso, C.; Supuran, C. T. Bioorganic & Medicinal Chemistry Letters 2013. 



 

154 

 

 (179) Pan, P.; Vermelho, A. B.; Capaci Rodrigues, G.; Scozzafava, A.; Tolvanen, M. 

E.; Parkkila, S.; Capasso, C.; Supuran, C. T. Journal of Medicinal Chemistry 2013, 56, 

1761. 

 (180) Akbaba, Y.; Akincioglu, A.; Göçer, H.; Göksu, S.; Gülçin, İ.; Supuran, C. T. 

Journal of Enzyme Inhibition and Medicinal Chemistry 2013, 1. 

 (181) Martins, P. G. A.; Menegatti, A. C. O.; Chiaradia-Delatorre, L. D.; de Oliveira, 

K. N.; Guido, R. V. C.; Andricopulo, A. D.; Vernal, J.; Yunes, R. A.; Nunes, R. J.; Terenzi, H. 

European Journal of Medicinal Chemistry 2013, 64, 35. 

 (182) Wang, F.; Travins, J.; DeLaBarre, B.; Penard-Lacronique, V.; Schalm, S.; 
Hansen, E.; Straley, K.; Kernytsky, A.; Liu, W.; Gliser, C.; Yang, H.; Gross, S.; Artin, E.; 

Saada, V.; Mylonas, E.; Quivoron, C.; Popovici-Muller, J.; Saunders, J. O.; Salituro, F. G.; 

Yan, S.; Murray, S.; Wei, W.; Gao, Y.; Dang, L.; Dorsch, M.; Agresta, S.; Schenkein, D. P.; 

Biller, S. A.; Su, S. M.; de Botton, S.; Yen, K. E. Science 2013, 340, 622. 

 (183) Nuti, E.; Santamaria, S.; Casalini, F.; Yamamoto, K.; Marinelli, L.; La Pietra, 

V.; Novellino, E.; Orlandini, E.; Nencetti, S.; Marini, A. M. European Journal of Medicinal 

Chemistry 2013, 62, 379. 

 (184) Beardsell, M.; Hinchliffe, P. S.; Wood, J. M.; Wilmouth, R. C.; Schofield, C. J.; 

Page, M. I. Chemical Communications 2001, 0, 497. 

 (185) Hinchliffe, P. S.; Wood, J. M.; Davis, A. M.; Austin, R. P.; Beckett, R. P.; 

Page, M. I. Organic & Biomolecular Chemistry 2003, 1, 67. 

 (186) Llinas, A.; Ahmed, N.; Cordaro, M.; Laws, A. P.; Frere, J. M.; Delmarcelle, M.; 

Silvaggi, N. R.; Kelly, J. A.; Page, M. I. Biochemistry 2005, 44, 7738. 

 (187) Tsang, W. Y.; Ahmed, N.; Hinchliffe, P. S.; Wood, J. M.; Harding, L. P.; Laws, 

A. P.; Page, M. I. Journal of the American Chemical Society 2005, 127, 17556. 

 (188) Garattini, S. The Journal of Nutrition 2000, 130, 901. 

 (189) Sheldon, A. L.; Robinson, M. B. Neurochemistry International 2007, 51, 333. 

 (190) Howland, D. S.; Liu, J.; She, Y.; Goad, B.; Maragakis, N. J.; Kim, B.; 

Erickson, J.; Kulik, J.; DeVito, L.; Psaltis, G.; DeGennaro, L. J.; Cleveland, D. W.; Rothstein, 

J. D. Proceedings of the National Academy of Sciences 2002, 99, 1604. 

 (191) Lin, C.-L. G.; Bristol, L. A.; Jin, L.; Dykes-Hoberg, M.; Crawford, T.; Clawson, 
L.; Rothstein, J. D. Neuron 1998, 20, 589. 

 (192) Shaw, P. J.; Ince, P. G. J Neurol 1997, 244, S3. 

 (193) Hynd, M. R.; Scott, H. L.; Dodd, P. R. Neurochemistry International 2004, 

45, 583. 

 (194) Lauderback, C. M.; Hackett, J. M.; Huang, F. F.; Keller, J. N.; Szweda, L. I.; 
Markesbery, W. R.; Butterfield, D. A. J Neurochem 2001, 78, 413. 

 (195) Mattson, M. P. Annals of the New York Academy of Sciences 2008, 1144, 97. 

 (196) Ronzio, R. A.; Rowe, W. B.; Meister, A. Biochemistry 1969, 8, 1066. 

 (197) Thomas, M. D.; Langston-Unkefer, P. J.; Uchytil, T. F.; Durbin, R. D. Plant 
Physiology 1983, 71, 912. 

 (198) Ward, R. J.; Lallemand, F.; de Witte, P.; Crichton, R. R.; Piette, J.; Tipton, K.; 

Hemming, K.; Pitard, A.; Page, M.; Della Corte, L.; Taylor, D.; Dexter, D. Biochemical 

Pharmacology 2011, 81, 743. 

 (199) Wilde, M. I.; Wagstaff, A. J. Drugs 1997, 53, 1038. 

 (200) Mason, B. J. Journal of Clinical Psychiatry 2001, 62, 42. 



 

155 

 

 (201) Zornoza, T.; Cano, M. J.; Polache, A.; Granero, L. CNS Drug Reviews 2003, 

9, 359. 

 (202) Lhuintre, J. P.; Moore, N.; Tran, G.; Steru, L.; Langrenon, S.; Daoust, S.; 

Parot, P.; Ladure, P.; Libert, C.; Boismare, F.; Hillemand, B. Alcohol and Alcoholism 1990, 

25, 613. 

 (203) Wallace, D. R.; Dawson Jr, R. Gerontology 1990, 36, 19. 

 (204) DawsonJr, R.; Liu, S.; Eppler, B.; Patterson, T. Mechanisms of Ageing and 

Development 1999, 107, 73. 

 (205) Goldlust, A.; Su, T.-Z.; Welty, D. F.; Taylor, C. P.; Oxender, D. L. Epilepsy 
Research 1995, 22, 1. 

 (206) Della Corte, L.; Crichton, R. R.; Duburs, G.; Nolan, K.; Tipton, K. F.; Tirzitis, 

G.; Ward, R. J. Amino Acids 2002, 23, 367. 

 (207) Zając, M.; Cielecka-Piontek, J.; Jelińska, A. Journal of Pharmaceutical and 
Biomedical Analysis 2007, 43, 445. 

 (208) Tioni, M. F.; Llarrull, L. I.; Poeylaut-Palena, A. s. A.; Mart , M. A.; Saggu, M.; 

Periyannan, G. R.; Mata, E. G.; Bennett, B.; Murgida, D. H.; Vila, A. J. Journal of the 

American Chemical Society 2008, 130, 15852. 

 (209) Stuart, B. H. Infrared Spectroscopy: Fundamentals and Applications; John 
Wiley and Sons Ltd: Chichester, 2004. 

 (210) Rigoreau, L. J. M., PhD Thesis, University of Huddersfield, 1999. 

 (211) Erlanger, B. F.; Hall, R. M. Journal of the American Chemical Society 1954, 

76, 5781. 

 (212) http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi, A.; "National 

Institute of Advanced Industrial Science and Technology": 2013; Accessed  2013. 

 (213) Kocienski, P. J. Protecting Groups; 3rd ed.; Thieme Marketing: Bad 

Langensalza, 2005. 

 (214) Felix, A. M.; Heimer, E. P.; Lambros, T. J.; Tzougraki, C.; Meienhofer, J. The 

Journal of Organic Chemistry 1978, 43, 4194. 

 (215) Sifferd, R. H.; du Vigneaud, V. Journal of Biological Chemistry 1935, 108, 

753. 

 (216) du Vigneaud, V.; Behrens, O. K. Journal of Biological Chemistry 1937, 117, 

27. 

 (217) Harington, C. R.; Mead, T. H. Biochem. J. 1936, 30, 1598. 

 (218) Dewald, R. R. The Journal of Physical Chemistry 1975, 79, 3044. 

 (219) Kharasch, M. S.; Sternfeld, E.; Mayo, F. R. The Journal of Organic Chemistry 
1940, 05, 362. 

 (220) Reist, E. J.; Bartuska, V. J.; Goodman, L. The Journal of Organic Chemistry 

1964, 29, 3725. 

 (221) Poeylaut-Palena, A. A.; Tomatis, P. E.; Karsisiotis, A. I.; Damblon, C.; Mata, 
E. G.; Vila, A. J. Bioorganic & Medicinal Chemistry Letters 2007, 17, 5171. 

 (222) Kingdon, H. S.; Hubbard, J. S.; Stadtman, E. R. Biochemistry 1968, 7, 2136. 

 (223) Ginsburg, A.; Yeh, J.; Hennig, S. B.; Denton, M. D. Biochemistry 1970, 9, 

633. 

 (224) Maurizi, M. R.; Pinkofsky, H. B.; Ginsburg, A. Biochemistry 1987, 26, 5023. 

http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi


 

156 

 

 

 

 

 


