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ABSTRACT 

 

High power machinery such as steam turbines, large pumps and motors often use journal 

bearings as rotor supports. This type of bearing is simple, low cost and with high load 

carrying capacity. However, abnormal operating conditions in the journal bearings will 

degrade machine performance, increase operating cost and may cause unexpected sudden 

failure which is dangerous in both engineering and safety terms.  

Bearing condition monitoring can detect faults at an early stage and prevent the occurrence 

of such failures which can be catastrophic. 

Monitoring techniques that have been used for monitoring of journal bearing are lubricant 

analysis, vibration analysis, noise and acoustic emission analysis. Lubricant analysis has 

been used effectively for condition monitoring for a long time but cannot be implemented in 

real time.  

Many researchers have studied the use of the vibration and sound signals and acoustic 

emissions generated by the hydrodynamic journal bearing for detecting and diagnosing 

faults. The studies give relatively little information regarding surface vibration and airborne 

sound characteristics for self-aligning spherical journal bearings, nor has comprehensive 

condition monitoring been implemented for a particular self-aligning spherical bearing 

journal.  

Surface vibration, airborne sound analysis and acoustic emission monitoring can be used 

simultaneously to detect any signal emitted from the bearing at very wide frequency range. 

Sound vibration occurs in solid structure, liquid and gases transmitted to air surrounding 

create airborne sound.  

This study has conducted a thorough review of theoretical and experimental studies. The 

research began with designing and building a test rig consisting of a drive system, radial 

loading system, torsion loading system, the bearing testing system itself and control, data 

acquisition and measurement instrumentation systems include encoder, pressure transducers, 

thermocouples, load cells, vibration transducer, acoustic and acoustic emission sensors. 
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Preliminary experiments were conducted to ensure all equipment and instrumentation 

worked well and also to test measurement repeatability. Preliminary experiment results 

showed that all the equipment either driving, loading, data acquisition and measurement 

system works well.  

Experimental analysis of the surface vibration, airborne sound and acoustic emission 

analysis responses in time domain and frequency domain analysis include RMS value, 

Kurtosis and mean value showed good repeatability. The AE measurement response showed 

the best repeatability, followed by surface vibration and airborne response. 

Theoretical study shows that the self-aligning spherical journal bearing system under radial 

load generated surface vibration, airborne sound and acoustic emission responses that 

originated from external force excitation such as fluctuating loads due to system 

misalignment or unbalance and internal excitation such as asperity in boundary or mixed 

operation. These excitations generate structure-borne vibration and acoustic emission. The 

structure-borne vibration dynamic responses then radiated airborne sound. Airborne sound 

also originated from oil pressure fluctuation and flow turbulence. The surface vibration and 

airborne sound frequency responses occur at frequencies < 100kHz and the acoustic 

emission frequency responses appear at high frequencies >100kHz. 

The amplitude and frequency of surface vibration, airborne sound and acoustic emission is 

influence by radial load, shaft speed and surface quality of journal and bearing components 

themselves. The quality of asperity contact between journal and bearing may be due to 

manufacturing defect, lubricant and surface deterioration over time during operation.  

The experiments and analysis of the surface vibration, airborne sound and acoustic emission 

characteristics of the self-aligning spherical journal bearing indicate that there is a positive 

correlation between the spectrum mean value of surface vibration, airborne sound and 

acoustic emission with radial load and speed. Meanwhile, when use higher lubricant 

viscosity creates lower surface vibration, airborne sound and acoustic emission mean 

amplitude.  

Investigation of lubricant deterioration due to water contaminant indicated that when use 

higher concentration contaminant in the lubricant generates higher spectrum mean value of 

surface vibration, airborne sound and acoustic emission responses.  
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The surface deterioration experiment showed that there is a clear significant different in the 

frequency domain of surface vibration, airborne sound and acoustic emission between a 

scratched surface and a normal surface journal bearing.  

The surface vibration, airborne sound and acoustic emission frequency characteristic for 

scratches and lubricant deterioration creates different peak amplitudes and different 

frequency. The larger the scratch generate the greater the amplitude and higher frequency. 

From of the three measurement systems used, acoustic emission is the most sensitive and a 

better detect of the bearing fault than followed by vibration and air-born sound measurement 

system. Therefore the acoustic emission measurement technique can be integrated with 

surface vibration, airborne sound for rotating machinery/engine condition monitoring. Using 

surface vibration, airborne sound and acoustic emission monitoring the symptoms of early 

damage at low, medium or high frequency can be detected and more severe and catastrophic 

failure can be prevented, and finally very high maintenance costs can be eliminated. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Complex industrial machinery such as heat engines, turbo-machinery and manufacturing or 

production machinery consists of many components, a key element is the transmission 

system used for transmitting power, movement and torsion from one place to another.  

A bearing is a machine component which supports the machine load, and is a key in 

ensuring safe and efficient operation. There are two broad types of bearings widely used in 

machinery: journal and roller bearings. A common journal bearing is simply a cylindrical 

sleeve containing a lubricating fluid which surrounds a rotating shaft and prevents metal to 

metal contact.  

Researchers have studied the vibro-acoustic and acoustic emission characteristics of rolling 

bearings and cylindrical sliding bearings, but studies of surface vibration, airborne sound 

and acoustic emission for self-aligning spherical journal bearings are still very limited 

publications. 

A self-aligning spherical journal bearing consist of a spherical plain bearing having a 

spherical contact surface which permits the bearing to move freely in all directions. This 

gives it the capability to self-align, which means it can accommodate a degree of 

misalignment. This bearing uses an oil ring lubrication system. The self-aligning spherical 

journal bearing (SASJB) is a relatively new type of journal bearing and is shown in Figure 

1.1 (Arvis, 2009). 

 

Figure 1. 1 Self-aligning spherical journal bearing 
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Previous study has shown that most engine or machinery problems are caused by bearing 

failure, with over 40% of motor failures in machines of 100HP (75kWatt) or more, due to 

bearing problems (Schoen et al., 1995).  

An analysis of typical failures in electrical motors suggests that over half of all faults in the 

rotor and/or stator, and approximately 40% of all failures are bearing related (Shreve, 2003). 

Induction machine failure surveys have found the most common failure mechanism to be 

bearing related faults (40%), stator related (36%) and other faults (22%) (Sin et al., 2003).   

Aircraft accident investigation has indicated that the Super Stallion Helicopter CH-53E 

accident during a test flight was caused by a rotor bearing failure (Tepler and Baldor, 1996). 

Flood (2007) showed that 13% of all mechanical seal failures are the consequence of 

distress that originated with bearing problems. 

Above information give information that most damage of the electrical machine and the 

machine power is caused by bearing faults. Therefore an intensive of bearing monitoring is 

required.  

The bearing may be relatively cheap but because it transmits high power it may fail 

catastrophically if damaged, which could include not only loss of production and complete 

loss of machine power, but also serious health and safety issues. Based on the time frame in 

which the event occurs failure can be classified as catastrophic, intermittent, out of tolerance 

and maladjustment (Kreith, 1998).  

 In an hydraulic system, the stage of the system malfunction caused by contamination can be 

categorized as degradation failure, transient or intermittent failure and finally catastrophic 

failure (Babcock et al., 2003).  

By bearing condition monitoring, early faults and symptoms of failure can be detected and 

the catastrophic failure avoided. 

1.2 Motivation and Topic of Research 

The most commonly used techniques for monitoring bearings are lubrication analysis, 

surface vibration, airborne sound analysis, acoustic emission analysis and bearing 

performance analysis. 

Many condition based maintenance and non-destructive testing techniques can be applied to 

manufacturing, petroleum refining, chemical and associated industries. A survey of CM 
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systems in industry showed  that industry typically used vibration analysis in 17.29% of 

cases, oil analysis 13.20%, infra-red thermograph 11.57%, human senses 10.75%, motor 

current analysis 9.00%, dye penetrant examination 8.64%, ultrasonic thickness testing 

8.53%, ultrasonic crack detection 7.36%, magnetic particle inspection 6.54%, acoustic 

emission analysis 4.56%, and other methods 2.56% (Higgs et al., 2004).  

Lubricant analysis has been widely used since the 1960’s after railway companies in the 

United States first introduced this method in the late 1940’s (Poley, 2007). 

Vibration analysis is one of the most commonly used CM techniques in industry.  It has the 

great advantage that it yields relevant data in a quantitative format and can be operated 

remotely in real-time. Based on the measured signal, pre-set alarm limits can be triggered 

automatically (Roylance, 2003). 

Ahmadi and Mollazade (2009) used vibration condition monitoring for bearing fault 

diagnosis of a mine stone crusher and the results indicated that such a technique was 

effective for machine fault prediction and diagnosis. Choy and his co-workers successfully 

used vibration monitoring to identify and quantify bearing damage in a rolling bearing 

(Choy, et al., 2005).  

Shiroishi and his companion succeeded in detecting damage of the outer race on a rolling 

bearing using vibration analysis by combining the high frequency resonance technique 

(HFRT) and adaptive line enhancement (ALE) (Shiroishi, et al., 1999). 

Vibration monitoring has also been used to monitor and diagnose faults in a reciprocating 

engine (DeBotton, 2000), rotating machine (Pandey, 2011), an electrical motor (Monavar, 

2008) and a gear box (Saravanan, 2009).  

DeCamillo and co-workers investigated the characteristics of a tilt pad journal bearing 

(DeCamillo, et al., 2008).  

However the literature search revealed relatively little information regarding the application 

of vibration analysis to journal bearings particularly self-aligning spherical journal bearings. 

Acoustic or sonic analysis is the measurement of sound pressure waves generated by 

component contact inside equipment and radiated from the surface of the machine. Its 

application in industry with respect to monitoring bearing faults is relatively new (Grible, 

2006).  
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Airborne sound from journal bearings is generated mainly by mechanical contact between 

journal or shaft and bearing. Sound also can be generated by hydrodynamic sources. 

Airborne sound is characterized by its amplitude and frequency, and while it has been used 

for noise control for health, safety and comfort purposes in places of work such as noise 

monitoring on aircraft (Genesca et al., 2011) and acoustic monitoring on a diesel engine 

(Jiang, 2008). 

Acoustic emission (AE) is an inspection technique which detects elastic waves generated by 

such sources as cracking, cleavage, fretting and so forth. To treat AE waves theoretically, 

elasticity dynamics is needed to model AE sources and solve the wave propagation 

equations (Ohtsu, 2000). AE may be used to investigate or to measure the transient elastic 

energy wave that is generated from rapid strain energy caused by deformation or damage 

within or on the surface. Dickershof (2006) investigated lubrication regimes in sliding 

bearings using acoustic emission. They reported that AE analysis is an appropriate 

measurement procedure to detect incipient failure of sliding bearings with correlation 

between the emitted acoustic signal and the energy dissipated in the sliding metallic contact. 

AE has been widely used in a number of fields to monitor the wear in bearings. When the 

wear increases, the asperity contact also increases, which will produce more vibration and 

acoustic emission. AE has also been used to detect and estimate rolling bearings defects 

(Abdullah, 2006).  

Holford and co-workers used AE for crack detection in aircraft construction (Holford, 

2009). 

Thermography is a predictive maintenance technique that can be used to monitor the 

condition of plant machinery, structure, and systems.  It uses instrumentation designed to 

monitor the emission of infrared energy to determine operating temperature. By detecting 

areas of elevated temperatures, an experienced technician can locate incipient problems 

within the machine and/or plant (Mobley, 2002). 

Previous researchers have studied the vibration characteristics of hydrodynamic journal 

bearings in the lower frequency range (f  20 kHz) and the higher frequency range (f 100 

kHz) for monitoring and detecting damage in ball and journal bearings. These studies give 

relatively little information regarding acoustical properties of noise radiated from the 

bearings (Rho et al., 2003). 
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Previous researchers have studied low, medium, high and very high frequency vibration, 

airborne sound and AE characteristics of a hydrodynamic journal bearing but these studies 

give relatively little information regarding to the surface vibration, airborne sound 

characteristics for self-aligning spherical journal bearings, nor has comprehensive condition 

monitoring been found of a particular self-aligning spherical bearing journal.  

This research will investigate a new type journal bearing – the self-aligning spherical 

journal bearing and will focus on the using of surface vibration, airborne sound and acoustic 

emission analysis at low, medium, high and very high frequency ranges simultaneously for 

early fault detection and diagnosis.  

Thus the title of this research is 

An Investigation of Surface Vibration, Airborne Sound 

and Acoustic Emission Characteristics of a Journal Bearing for Early Fault Detection 

and Diagnosis

. 

1.3 Research Aims and Objectives 

The aim of this research is to develop on line condition monitoring technique for journal 

bearing based on surface vibration, airborne sound and acoustic emission measurements. To 

achieve this aim main objectives have been set as follows: 

1. To design comprehensive test system including mechanical, electrical and measuring 

systems for testing a self-aligning spherical journal bearing under different operating 

conditions.  

2. To develop surface vibration, airborne sound signal generation models for 

understanding the dynamic behaviours of a self-aligning spherical journal bearing. 

3. To develop a monitoring measurement and analysis system for journal bearing 

condition monitoring. 

4. To study the characteristics of surface vibration, airborne sound and acoustic emission 

signal response of the self-aligning spherical journal bearing under the influence of 

radial load and speed variation. 

5. To investigate the characteristics of the surface vibration, airborne sound and acoustic 

emission response of the self-aligning spherical journal bearing under different oil 

viscosities such as ISO VG 32, ISO VG 68 and SAE 90. 
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6. To investigate the characteristic of surface vibration, airborne sound and acoustic 

emission due to lubrication deterioration caused by different water contaminant in the 

lubricant 0%, 1.25% and 2.5%.  

7. To investigate the characteristic of surface vibration, airborne sound and acoustic 

emission due to the bearing surface deterioration caused by scratching.  

8. To develop Mathlab
TM

 codes for processing and analysing the data sets from the 

accelerometers, microphones and AE sensors in the time, frequency and time-frequency 

domains. 

9. To provide guide lines for further research and development of surface vibration, 

airborne sound and AE characteristic for self-aligning spherical journal bearing for 

early fault detection. 

1.4 Outline of Thesis 

This thesis is organised into eight chapters according to the logical connection involved in 

achieving the research objectives.  The following is a brief description of each chapter: 

Chapter one is the introduction and contains background, motivation and title of the research 

topic, the research aims and objectives and an outline of thesis.  

Chapter two explains journal bearing types, lubricant selection for journal bearing, 

lubrication system, journal bearing faults and failures modes and journal bearing monitoring 

methods and techniques. 

Chapter three describes the surface vibration, airborne sound and AE sources of a self-

aligning spherical journal bearing including bearing components.  

Chapter four describes the experimental facilities; the test rig and its components including 

the electrical motor drive, the torque load system, the instrumentation and data acquisition 

systems and analysis software, the self-aligning spherical journal bearing, the seeded journal 

bearing faults and the experimental program. 

Chapter five examines the repeatability analysis of the test rig and characteristics of the 

measured surface vibration, airborne sound and acoustic emission of the self-aligning 

spherical journal bearing with radial load and speed variation. 
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Chapter six presents the lubricant quality monitoring through surface vibration, airborne 

sound and acoustic emission characteristics on uncontaminated and water contaminated 

lubricant in the self-aligning spherical journal bearing. 

Chapter seven reports the scratched surface monitoring through surface vibration, airborne 

sound and acoustic emission on the self-aligning spherical journal bearing.  

Chapter eight presents the conclusions and reviews the achievements of the project against 

the aim and objectives, describes the contribution to knowledge made by the research, 

suggests possible future work and list of publications.  
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CHAPTER TWO 

JOURNAL BEARINGS, FAILURE MODES AND MONITORING TECHNIQUES 

2.1 Bearing types 

Bearings are machine components used to transmit power and to move a certain parts, and 

also for load support. This may be achieved by some form of rolling motion or by some 

form of sliding action. Based on this fundamental difference, bearings may be divided into 

two broad classes namely Rolling Bearings (RB) and Sliding Bearings (SB). In the rolling 

bearing, rolling elements are located between inner and outer rings as shown in Figure 2.1. 

 

 

 

 

The rolling bearing consists of four parts: an outer ring, an inner ring, the rolling elements 

and the retaining cage or separator. With ball bearings the outer ring and the inner ring are 

concentric with each other and separated by the insertion of balls circumferentially at equal 

distances.  

Basic types of rolling bearings commonly used in machine can be divided into ball bearings, 

cylindrical roller bearings, barrels or spherical roller bearings, taper roller bearings and 

needle roller bearings (Klebanov, et al., 2008). Based on the direction of the loads, rolling 

bearings can be classified into radial bearings and thrust bearings and also can be grouped as 

cylindrical bore and taper bore bearings. 

 Figure 2. 1 Rolling bearing 



   

                                                                                                                                                  33  

 

 

A journal bearing also known as a plain bearing or sleeve bearing is a bearing without any 

rotating element but with a sliding component as shown in Figure 2.2.   

 

 

 

 

(Berry, 2005) 

2.2 Journal bearing  

A journal bearing is a bearing in which a shaft rotates freely in a supporting metal sleeve or 

shell with a layer of oil or grease separating the two parts due to fluid dynamic effects. 

Journal bearings are used to support high radial loads and are used for low to high speeds. 

Typical applications include large milling systems, engine crankshafts, gearboxes, and shaft 

bearing supports (Johnson, 2001).  Journal bearing or sleeve bearing may be grouped into 

five basic types: plain cylinder bore, two lobe bore, four lobe bore, four pad tilting and five 

pad tilting bearings (Finley et al., 2001). However the journal bearings can is also be 

divided into solid, bushed, split, thrust (Khurmi and Gupta, 2005), and the new self-aligning 

spherical journal bearing. 

2.1.1 Solid bearings 

The simplest journal bearing is a shaft rotating in a hole bored in the machine housing. 

However the hole has to be prepared as a bearing surface and this can be done by using 

hardened steel in the bearing. Solid journal bearings are used where a removable cap is not 

required. 

Figure 2. 2 Journal bearing 

http://www.absoluteastronomy.com/topics/Bearing_%28mechanical%29
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Figure 2. 3 Solid journal bearing 

 (Royersford, 2001) 

 

2.1.2 Bushing 

Bushing is a journal bearing where a bush is inserted to act as a sleeve, see Figure 2.4. The 

bush will be of a softer material such as bronze and will be replaced when its wear is 

deemed excessive. Some common types of bushing include flanged and split bushes. 

 

Figure 2. 4 Simple bronze bushing 

 

Flanged bushings are a sleeve bushing with a flange extending radial outward at one end, 

see Figure 2.5. The flange on the bush is usually to provide a thrust bearing surface.  
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Figure 2. 5 Flanged bush 

 (Aurora, 2010) 

 

The split bushing is composed of a pair of semi cylindrical halves, each provided with a 

ridge and a groove on the contact surfaces to allow them to be fitted together accurately and 

easily. Split bushings are used as components in larger power transmission devices. Split 

bushings aid in the absorption of shock, minimize the need for additional lubrication, reduce 

noise and vibration, and reduce the maintenance required for optimal operation. A split 

bearing and housing is shown in Figures 2.6 and 2.7. 

 

Figure 2. 6 Split flange bushing 

 (Arvis, 2009) 
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Figure 2. 7 Schematic of split long flange bushing 

 (Arvis, 2009) 

2.1.3 Thrust bearing 

A thrust journal bearing is used to support shafts subjected to an axial load. Thrust bearings 

are sub-divided into pivot bearings and collar bearings.  The pivot bearing is a thrust vertical 

bearing where the loaded shaft rest on a foot step of the bearing, see Figure 2.8. The collar 

bearing can be for a vertical or horizontal shaft through the bearing with single or multiple 

collars. 

 

Figure 2. 8 Pivot bearing 

 (Khurmi and Gupta, 2005) 
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2.1.4 Tilting pad bearing 

Tilting pad or pivoting shoe bearings consist of a journal or shaft rotating within a shell 

made up of curved pads. The housing is split its long centre line with a number of shoes and 

a pad fitted under the rim of each shoe that allows the shoes to tilt, see Figure 2.9. Each pad 

is independently aligned with the surface curvature of the shaft (Scott, 2005).  

 

Figure 2. 9 Radial and thrust pad bearing 

 (Kingbury, 2010) 

 

2.1.5 Self-aligning spherical journal bearing  

The self-aligning journal bearing consist of a spherical plain bearing have a spherical 

contact surface which permits the inner ring to move freely in all directions. This gives it the 

capability to self-align, which means it can accommodate a degree of misalignment.  Self-

aligning journal bearings and housings have a split spherical journal bearing, housing and 

seal. This bearing is suitable for high speeds and is quiet in operation. The bearing shells can 

be replaced without the need to dismantle the whole unit from the shaft. This bearing uses 

an oil ring lubrication system. The spherical self-aligning journal bearing is a relatively new 

type of journal bearing which is produced by Arvis bearings and is shown in Figure 2.10 

(Arvis, 2009). 
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Figure 2. 10 Self-aligning spherical journal bearing 

 

2.2 Journal bearing lubrication 

There are no rolling elements in journal bearings. Their mechanical design and construction 

may be relatively simple, but the hydraulic theory of these bearings can be complex. Journal 

bearings consist of two components separated by a lubricant film. The most common cause 

of premature bearing failure is probably loss or inadequate lubricant. Inadequate lubrication 

may come from wrong type of lubricant, too little and too much lubricant or wrong 

frequency of lubricant top-up. If the lubricant film is thick enough to separate the contacting 

surfaces the friction coefficient will be reduced and the fatigue life of the bearing will be 

extended. 

2.2.1 Lubricant selection 

Selection of the proper lubricant is a crucial to prevent premature failure in the journal 

bearing. Lubricant selection is the starting point in the pursuit of right lubrication 

application. Many criteria should be considered when selecting a lubricant for a machinery, 

equipments or components. 

Journal bearings are lubricated by a fluid lubricant, where full fluid lubrication gives 

complete separation between journal bearing surface and shaft, therefore the friction 

coefficient is low. 
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The minimum information required for the determination of proper viscosity ISO grade for 

journal bearing includes speed of shaft (rpm), operation temperature of the oil in the bearing 

and approximate pressure loading (Pa or Psi) (Johnson, 2008). 

There are a number of tables that can be used for ISO viscosity grade lubricant selection for 

journal bearing. 

Table 2.1 provides an ISO viscosity grade lubricant selection based on oil temperature and 

shaft speed (rpm) for medium pressure such as for automotive or reciprocating engines, 

about 20.7 to 35 MPa (3000 to 5000 Psi). For most of industrial application the pressure 

range is between 690 to 2070 kPa (100 to 300 Psi). 

Table 2. 1  Viscosity selection for medium pressure. 

(Johnson, 2008) 

Shaft speed  Operating oil temperature (C) 

(rpm) 20-50 60 75 90 

800 ISO 68 ISO 100 ISO 150  

1200 ISO 46 ISO 68 ISO 100-150  

1800 ISO 32 ISO 46 ISO 68-100 ISO 150 

3600 ISO 32 ISO 32 ISO 46-68 ISO 68-100 

10000 ISO 32 ISO 32 ISO 32 ISO 32-46 

 

Table 2.2 also provide ISO viscosity grade selection based on bearing or oil temperature and 

shaft speed. 

Table 2. 2  Viscosity selection in general  

(Scott, 2005) 

Shaft speed  Bearing/oil temperature (C) 

(rpm) 0-50 60 75 90 

300 to 1500 ISO 32 ISO 68 ISO 100-150  

1800 ISO 32 ISO 32-46 ISO 68-100 ISO 100 

3600 ISO 32 ISO 32 ISO 46-68 ISO 68-100 

10000 ISO 32 ISO 32 ISO 32 ISO 32-46 
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The selection of appropriate absolute lubricant viscosity grade (cP) based on shaft surface 

velocity (m/s) and bearing pressure load (kPa or kN/m
2
) is shown in Figure 2.11. 

 
 

Figure 2. 11 Selection of lubricant viscosity 

(Neale, 2001) 

 

The two tables and the figure show that for journal bearing operating at 1450 rpm, the 

lubricant with viscosity kinematic specification of ISO VG 32 and 46 or with minimum 

kinematics viscosity of 28.8 cSt and 41.4 cSt are appropriate (Noria, 2001).  

The figure 2.11, tables 2.1 and 2.2 indicate that the higher the shaft speed, the lower the 

lubricant viscosity required and that the higher the operating temperature of equipment or 

machinery the higher the lubricant viscosity that is required. 
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2.2.2 Lubricant supply methods 

Journal bearing are usually oil lubricated, but for low speed equipment grease may be used. 

Common types of journal bearing lubrication system are; hand oiling, drip and wick feed, 

ring and collar feed, bath and splash lubrication and pressure feed (Neale, 2001) 

Hand oiling is used for low speed and cheap journal bearings only. Drip feed lubrication is 

feed of lubricant based on gravity and the lubricant reservoir is usually of glass or Plexiglas. 

Oil ring lubrication is where lubrication of the bearing is by means of a ring riding on the 

rotating shaft which brings up oil from the top of the oil reservoir into which it dips.  The 

ring has an inner diameter about 1.5 times that of the shaft. The journal bearing is slotted to 

accommodate the ring, see Figure 2.12.  

 

 

 

(Bloch, 2005) 

 

Oil collar lubrication or disk feeding is where a rigid collar which is integral with the shaft 

or journal dips into the oil reservoir. During rotation it carries the oil and throws it off into a 

small clearance on both sides of the collar after which the oil flows by gravity through the 

oil hole and groove to the bearing surface as shown in Figure 2.13   

 

Figure 2. 12  Ring oil lubrication 
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(Gopinath, no date) 

 

In the oil bath lubrication system the components in contact are sealed in a chamber part 

filled with oil. The oil level in the chamber is such that the parts are partly submerged and 

when the submerged components rotate they pick up oil and splash it over the contacting 

components (Joice, 1995). 

In splash lubrication oil is splashed by rapidly moving parts from the oil pan or oil trays. 

The oil is thrown upward as droplets or fine mist and provides an adequate oil supply to the 

bearing.  

In pressured oil feeding, pressure of a pump is used to supply oil to a circumferential groove 

in the main bearing. Such a system is used with bearings that operate under heavy loads and 

high speed.   

2.2.3 The lubrication regimes 

The coefficient of friction of a bearing is very important, because it determine the life time 

of bearing. The coefficient of friction for full lubricated journal bearing is a function of 

bearing modulus, diametral clearance ratio and bearing length to diameter ratio. The bearing 

modulus depend on the absolute viscosity of the lubricant an as well as angular speed and 

bearing pressure ( Khurmi and Gupta, 2005).  

Figure 2. 13  Oil collar lubrication 
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The lubrication regimes can be distinguished by using the Stribeck curve. This curve plots 

the relationship between the coefficient of friction (f) and the bearing parameter or modulus 

ηN/p, where  is the absolute viscosity of the lubricant in kg/m.s, N is the shaft speed in rpm 

and p is the pressure on the projected area in Pa.  

The Steinbeck curve shows how the coefficient of friction changes with lubrication regime: 

boundary lubrication, mixed-film lubrication and hydrodynamic lubrication.  
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(Hori, 2006) 

 

Boundary lubrication occurs when the lubricating film has the same thickness as the surface 

roughness (Ra). The high points of asperities on the solid surfaces will contact each other. 

Boundary lubrication occur when the pressure on the lubricated contact too high, the 

running speed too low or the surface roughness too great.  

The surface films vary in thickness from 5x10
-9

 to 50x10
-9

  m, the minimum film thickness 

of a mixed lubrication regime is less than the surface roughness (h<Ra)  (Hamrock,2006). 

On the smoothest machined surfaces the height of asperities is about 25x10
-9

 m (Hamrock, 

2006). 

 

Figure 2. 14 The Stribeck curve 
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Mixed lubrication occurs between the boundary and hydrodynamic lubrication range. The 

fluid film thickness is slightly greater than the surface roughness (h>Ra), so that there is 

very little asperity or high point contact, but the surfaces are still close enough together to 

have an affect on each other.  The minimum film thickness of a mixed lubrication regime is 

hmin 10
-9 

m and the maximum thickness at the commencement of the hydrodynamic 

lubrication regime is hmin10
-6 

m (Dennis and Smith, 1994). 

Hydrodynamic lubrication means that the load-carrying surfaces of the bearing are separated 

by a relatively thick film of lubricant which prevents metal-to-metal contact. Hydrodynamic 

lubrication does not depend upon the introduction of the lubricant under pressure. The film 

pressure is created by the moving surface itself pulling the lubricant into a wedge-shaped 

zone at a velocity sufficiently high to separate the surfaces against the load on the bearing. 

Hydrodynamic lubrication is also called full-film, or fluid, lubrication (Nisbett, 2008). 

Another lubrication system for journal bearings is hydrostatic lubrication which is the 

process of lubrication using pressure from an external pump to separate journals and bearing 

surfaces.  

2.3 Journal bearing failures 

Bearings are small and relatively cheap components of an engine or machine, however 

failure of a machine bearing commonly leads to serious problems including the need for a 

complete overhaul. The early detection of the symptoms of faults that could lead to failure 

in journal bearings is crucial to allow repair to be made in time to prevent possible 

catastrophic failure.  

The bearing damage that often occurs in journal bearings includes scratching, wiping, wear 

and fatigue. The most common causes of journal bearing failure are associated with 

inadequate lubrication, improperly machined component and overloading. 

Clevite has stated that the eight most common causes of premature machine bearing failure 

are the ingress of dirt 45%, mis-assembly 13%, misalignment 13%, insufficient lubrication 

11%, overloading 8%, corrosion 4%, improper journal finish 3% and others 3% (Clevite, 

2002). In practice premature bearing failure is often due a combination of several of these 

factors.  

http://www.substech.com/dokuwiki/doku.php?id=bearings_in_internal_combustion_engines&DokuWiki=c71c9bcce1c3a0ab8260cf988a436ca7#functions_of_bearings_in_internal_combustion_engines
http://www.substech.com/dokuwiki/doku.php?id=bearings_in_internal_combustion_engines&DokuWiki=c71c9bcce1c3a0ab8260cf988a436ca7#internal_combustion_engine
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2.3.1 Scratching 

The scratching of journal bearing can be caused by solid contaminant in the lubricant. Solid 

contaminant from outside in the form of sand and from the machine itself can form wear 

particle that scratch the surface of the journal bearing.  

The large solid contaminant particles such as dirt, dust and metallic hard particles present in 

the lubricant embed in the soft material bearing lining displacing bearing material and 

creating a high spot. The high-spot make contact with journal cause a rubbing action that 

can lead to the rupture of bearing lining. This problem can create high friction, high 

vibration and noise. Illustration of a scratched journal bearing is shown in Figure 2.15. 

 

 

 

 

(Clevite, 2002) 

 

2.3.2 Wiping 

Wiping is minor rub on the bottom of journal bearing subject to a vertical load (see Figure 

2.16). The lubrication breakdown can cause wiping damage and loss of clearance before the 

hydrodynamic lubricating film has developed. The lubrication breakdown may be 

influenced by inadequate supply of lubricant, using a lubricant of too low viscosity grade for 

the application and also fluid contaminant present in the lubricant. Loss of clearance in the 

journal bearing causes wiping at the bearing centre. 

 

Figure 2. 15 Scratch marking on bearing surface 
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(Neale, 2008) 

 

Inadequate supply of lubricant can occur when using lubricant with too low a viscosity, 

when the bearing temperature is too high, when there is misalignment between the shaft and 

the bush, and excessive load. 

2.3.3 Wear 

Wear is loss of surface material due to surface contact. Wear can be divided into abrasive 

wear, adhesive wear, erosion wear and corrosive wear. Abrasive wear is usually due to 

small particle contamination and is the most common form of wear in lubricated machinery. 

Two-body abrasion occurs when the metal surface roughness on one surface cuts directly 

into a second metal surface.  

Adhesive wear is the transfer of material from one contacting surface to the other. It occurs 

when high loads, temperatures or pressures causes the asperities of two metal surfaces to 

come into contact and can result in small spot-welds then the immediately shearing of the 

metal in these areas.  

Figure 2. 16 Wiping damage 



   

                                                                                                                                                  47  

 

 

Erosion could be considered a form of abrasive wear. It occurs principally in high-velocity, 

fluid streams where solid particle debris becomes entrained in the lubricant (Scott, 2008).  

Corrosion is often caused by the contamination of lubricants in service. Corrosion wear is 

surface damage resulting from exposure to a reactive environment (Scott, 2008). 

2.3.4 Fatigue 

Fatigue damage takes place when the journal bearing is under concentrated cyclic loading of 

misalignment, eccentricity, imbalance, bent shaft, thermal and vibration. The fatigue 

mechanism occurs more rapidly when repeated bending of the bearing is involved.  

Imperfect cylindrical geometry of the journal bearing is also a cause of localized loading of 

engine bearings with consequent wear.  

One form of wear is subsurface fatigue which occurs after many working cycles application 

at high-stresses in the metal. This causes small cracks in the subsurface of the metal, which 

then propagate to the surface, resulting in small pieces of surface metal being removed. 

Surface fatigue results in hairline cracks in the surface of the bearing which may appear to 

open in the direction of rotation.  Pieces of bearing may spill out or appear to be pulled 

away in the direction of rotation, see Figure 2.17. 

 

 

(Noria, 2004) 

2.3.5 Eccentric bearing 

An eccentric bearing is one kind of the imperfect bearing geometry. Eccentric bearings can 

be caused by manufacturing error but also can be operation system. An eccentric bore fault 

of the journal bearing is a cause of localized high loading of the bearings with consequent 

wear. The localized high loading of journal bearing creates bearing geometrical problems 

such as eccentric oval, taper and ellipse bearing bores. 

Figure 2. 17  Mechanical fatigue 

http://www.substech.com/dokuwiki/doku.php?id=bearings_in_internal_combustion_engines&DokuWiki=c71c9bcce1c3a0ab8260cf988a436ca7#functions_of_bearings_in_internal_combustion_engines
http://www.substech.com/dokuwiki/doku.php?id=bearings_in_internal_combustion_engines&DokuWiki=c71c9bcce1c3a0ab8260cf988a436ca7#functions_of_bearings_in_internal_combustion_engines
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(Clevite, 2002) 

2.4 Review of journal bearing monitoring techniques 

Journal bearings are considered superior to rolling element bearings in vibration absorption, 

shock resistance, quietness and long life. All these characteristics arise because the journal 

bearing is supported along its shaft on a thin oil film (Hori, 2006). The smaller outside 

diameter of a journal bearing compared with that of a rolling element bearing is often 

beneficial.  

The interaction contact between two surfaces in relative motion and how different 

monitoring techniques can be used to detect and diagnose wear-related failure is shown in 

Figures 2.19 and 2.20. As the first surface (under load) approaches the second, the interface 

between them becomes a closely interrelated system influencing the way the surfaces slide 

over each other.  As the sliding starts, any fluid lubricant will shear and the viscous response 

to surface discontinuities will produce pressure in the fluid. If the pressure is sufficient to 

balance the applied load, sliding will occur with no solid contact between the surfaces.  

Increasing the load causes the fluid film to decrease in thickness and high spots on the 

surface can protrude through the lubricant layer, sliding will occur but now with contact 

between the surfaces which will erode them and cause particle wear debris in the lubricant 

(Glaecer et al, 1992).  

 

Figure 2. 18 Wear pattern caused by a tapered journal 
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Figure 2. 19 Interaction contact between two surfaces in relative motion 

Figure 2. 20 Deployment of monitoring techniques in the early wear regime 



   

                                                                                                                                                  50  

 

 

The most commonly used monitoring techniques deployed throughout industry for 

monitoring bearings are lubrication analysis, surface vibration, airborne sound analysis and 

bearing performance but the human senses can also be used detect the symptoms of machine 

component faults include journal bearings. 

2.4.1 Monitoring using the human senses 

The first methods for monitoring and inspection of machines used the human senses of 

touch, sight, hearing and smell. Most, if not all, maintenance personal use at least one 

human sense to monitor machines. Mobley has sensibly argued they should always make a 

concerted effort to increase the sensitivity of their own senses as experience is generally the 

best teacher (Mobley, 2004) 

The human senses may be able to detect the difference between healthy and faulty bearings 

but are generally not sensitive to small changes, and have the inherent problem of being 

subjective and cannot be expressed in quantitative terms.  However, this method remains 

viable and should be included in modern monitoring systems (Mobley, 2002). 

2.4.2 Lubrication analysis 

Lubricant monitoring analysis is comparable to blood analysis for human beings and is an 

important method of predictive maintenance. It can be used to assess the condition of the 

lubricant and detect the symptoms of early failure of machinery or components, and thus 

avoid expensive consequences and prolong the machine or equipment life.   

The lubricant condition is influenced by the presence of contaminants which may originate 

from external sources such as water, dust/silica or from internal sources such as metal worn 

away from machine components. The contamination present in the lubricant reflects the 

machinery or equipment health. The contamination also may change the physical and 

chemical property of oil and finally cause degradation of the lubricant.  

The general parameter used for lubrication monitoring analysis is viscosity and the tests 

used are viscosity index test, TAN (Total Acid Number) or TBN (Total Base Number) and 

water contaminant concentration test. A cleanliness test also called particle counting 

analysis is used for determining the number of particles in the oil and is expressed in the 

ISO cleanliness code. Spectrum oil analysis is used to determine the material present in the 

wear debris in the lubricant for example Fe, Cr, Cu, Sn, etc, and is usually expressed in ppm 

(part per million).  
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Ferrography analysis is used for determining size and form of the solid particle in detail. 

Using these tests it is possible to characterize the wear process (Almeida, 2003).  

2.4.3 Vibration analysis 

Vibration analysis is one of the most commonly used CM techniques in industry. Vibration 

analysis has been established and proven as a comprehensive technology to identify a 

variety of problems.  A good vibration condition monitoring program can detect problems 

and help determine the cause and allows time for appropriate corrective action before 

equipment failure (Hamernick, 2006)  

Using vibration analysis the condition of a machine can be monitored constantly and 

detailed analysis may be made regarding the health of machine and any faults which may 

occur or have been arisen ( Jayaswal et al., 2008). 

Some of the common faults that can be detected using vibration monitoring analysis are 

unbalance, bent shaft, eccentricity, misalignment, looseness, belt drive problems, gear 

defects, bearing defects, electrical faults, oil whirl, cavitations and shaft cracks (Girdhar, 

2004) 

Excessive vibration can cause damage to structures and machine sub-assemblies, resulting 

in mis-operation, excessive wear, or even fatigue failure. Bearing vibration occurs from 

many elements in various modes and frequencies simultaneously. Vibration analysis is used 

to assess the condition of machine bearings and diagnose any problem. Vibration analysis 

technique is capable of covering a wide range of machine diagnostics and faults within the 

bearing (Ahmad, 2009). 

The vibration parameters are displacement (m), velocity (m/s) and accelerations (m/s
2
 or g). 

The vibration velocity is usually measured in the frequency range of 10 to 1000 Hz.  

Measurement should be displacement, velocity or acceleration. Each of which has amplitude 

and frequency. The amplitude of vibration in the machine is a measure of vibration 

magnitude displacement on the bearing. The amplitude value may be used to trigger an 

alarm for high vibration and stop the machine if the vibration exceeds the safe limit.  

 

 



   

                                                                                                                                                  52  

 

 

The frequency of the vibration indicate number of rate the vibration amplitude occurring. 

The frequency also tells what kind of the vibration sources. The frequency is commonly 

expressed in Hertz (Hz) or cycle over second. 

For measuring bearing vibration, a vibration acceleration sensor is used which determines 

the acceleration of the measured point relative to a reference system.  

The vibration acceleration sensor is the best tool for determining the force from machine 

vibration. The accelerometer uses a piezoelectric crystal under tension and compression 

displacement to convert mechanical energy into an electrical signal.  The piezoelectric 

sensors are very good vibration transducers available for industry application. They are 

solid, usable over a wide temperature range and resist damage from severe shock and 

vibration (Mobley, 2002) 

Accelerometer mounting is very important because it will affect the vibration 

measurements. Improperly mounting accelerometers on the machine can lead to erroneous 

data and permanent damage to the accelerometer. 

Ideally accelerometer should be mounted on a place closed to vibration source such as on 

the bearing housing. The accelerometers mounted on bearing housing should provide three-

way readings of the acceleration, in the horizontal, vertical and axial directions (Commtest, 

2006). 

In practice the process of vibration analysis requires gathering complex machine data. The 

vibration signal originates from many sources of vibration. Each source generates its own 

signal. The final signal is the sum of the individual signals and is displayed as a composite 

signal. 

The final signal can be displayed in the time domain, frequency domain or in the time 

frequency domain. The bearing condition can be determined by comparing between the 

RMS amplitude values of frequency domain signal with an ISO severity chart. The vibration 

sources can be explained by spectrum analysis. 

2.4.4 Acoustic or airborne sound analysis 

Airborne sound (AS) can be a loud low frequency or a soft high frequency sound. The 

human ear can detect a very wide range of both sound levels and frequencies ranging from 

about 20 to 20 kHz. AS will invariably be a composite formed from a combination of 

numerous different frequency sources.   
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The amplitude of the sound wave can be expressed as sound intensity level or sound 

pressure level. Sound intensity level is the power per unit area per unit time of the sound 

wave and expressed in Watt/m
2
. It indicates the total acoustic power emitted by the source. 

The sound pressure is expressed in Pascal (Pa), but usually a logarithmic scale is used where 

the units are decibels (dB). Sound pressure of a sound wave can be measured using 

acoustic/sound transducer or microphone. 

2.4.5 Acoustic emission analysis 

AE may be used to investigate or to measure the transient elastic energy wave that is 

generated from the rapid release of strain energy caused by deformation or damage within or 

on the surface of a material. The AE signal is a result of the surface of the material releasing 

strain energy caused by a deformation which may originate from the interaction of two 

surfaces that are in relative movement such as occurs in a journal bearing or rolling bearing 

(Mba, 2003).  

AE can be used to identify the presence of bearing defects before they appear in the 

vibration acceleration range. The signal detected in the AE frequency range represents 

bearing defect rather than other defects, such as imbalance, misalignment, looseness and 

shaft bending. AE parameters such as RMS and AE counts can be used for detecting bearing 

damage, while numerous diagnostic technique such as wavelet, higher order statistics, 

neural networks etc., could be applied to aid diagnosis (Mba, 2003). 

Dickershof et al., (2006) investigated lubrication regimes in a sliding bearing using AE. 

They reported that AE analysis is an appropriate measurement procedure to detect incipient 

failure in sliding bearings with correlation between the emitted signal and the energy 

dissipated in the sliding metallic contact. 

AE sensors are piezoelectric with a number of specifications available: general purpose 

sensors, wide band sensors, low frequency sensors, medium frequency sensors, differential 

sensors and high temperature sensors which can be used according to the requirements 

(PAC, 2010). 

Based on the shape of the time-domain of the AE signal there are three types of AE: burst, 

continuous and mixed, see Figure 2.21. Of course, the differences between the three types of 

signal are arbitrary, if the bursts are frequent enough the burst type signal will appear 

continuous. And, in fact, many apparently continuous AE signals are composed of a 

multitude of overlapping bursts. The intensity of AE activity depends on the properties of 
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the material involved. Factors that tend to increase the amplitude of the AE are high 

strength, high strain rate, low temperature, thick section, brittleness, and whether the 

material is cast (Miller and McIntire, 1987). 

The acoustic emission energy magnitude is influenced by external load, component 

materials, roughness or asperity, geometrical occurrence and lubricant viscosity. The 

increasing of these parameters may create the acoustic emission energy amplitude to 

increase except for lubricant viscosity. 

 

 

Figure 2. 21 AE signal types 

From top down: burst, continuous and mixed (Price et al., 2003) 

 

Another effect on the AE process is the Kaiser effect. This is a special phenomenon 

concerning crack growth. Once a defined stress has been applied to a sample and then 

removed, AE will not be induced again in that sample until the level of applied stress 

exceeds that of the defined stress (Miller and McIntire, 1987). This phenomenon affects the 

AE generation process as when a rotating component passes a fault in a bearing which 

generates stress in the material. 

The parameters which can be extracted from the signal depend on the type of the signal. For 

the burst type of signal the parameter are: the duration of the AE event, AE counts, AE 

count rate, AE energy, AE peak amplitude and the signal rise or decay time, see Figure 2.21. 

(Mechefske et al., 2002). 
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An AE event may be defined by the detected AE signal. The AE count is the number of 

times an AE signal crosses a given threshold limit. AE count rate is a rate at which AE 

counts occur. AE peak amplitude is the peak value attained by the signal waveform during 

the AE event. The duration (tAE) is the time between the first and last crossings of the AE 

threshold. Energy in an AE signal corresponds to the energy released by the AE source 

(Mechefske et al., 2002). 

 

Figure 2. 22 A burst AE signal and the characteristic parameters 

 

Based on the Figure 2.22, the number of AE counts (cAE) is 7, the AE amplitude ≌ 1.4, AE 

duration 

(tAE) is ≌ 345 μs. 

AE count rate (crAE) can be determined by: 
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The characteristic of an AE signal such as frequency, amplitude, duration time, growth and 

decay rate time are influenced by the mode of generation and are very different for different 

materials and machine components (Mechefske et al., 2002).  
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2.5 Analysis of surface vibration and airborne sound signals 

The main purpose of the analysis of vibration signals is to determine the magnitude of the 

vibration generated and the source of the vibration. Success in vibration analysis depends on 

the data acquisition system and processes used to measure the amplitude and frequency of 

the individual components, relative phases of the vibration signal, and trend of the overall 

vibration level (Shreeve, 1995).  

Machine vibration monitoring techniques are usually based on the time-domain, frequency-

domain, time-frequency domain and quefrency (cepstrum) techniques. Time and frequency 

domain techniques consist of waveform and statistical analysis (Rao, 2004).  

2.5.1 Time-domain analysis of vibration signals 

The time waveform is the raw unprocessed signal obtained from the vibration transducer, 

and is a graph of amplitude of the vibration signal as a function of time. The time-domain 

signal is complex because it is the sum of all the individual frequency components that are 

present, and is a visual representation of the instantaneous value of the motion.  

When performing fault diagnosis using the time-domain vibration signal, statistical methods 

are invariably applied. The most common statistical parameters are root mean square 

(RMS), crest factor (CF), peak value (PK), skewness (SK) and kurtosis (KT) (Kim et al., 

2007). However, today the entropy spectrum (EN) and probability density function (PDF) 

are increasingly popular. 

Root mean square (RMS) is a measure of the energy content of a signal. The root mean 

square of a variable X is the square root of the arithmetic mean or average of the square of 

the X value. For a set of data number X1, X2, ... Xn, XRMS is defined as: 

n

X

X

n

i

i

RMS


 1

2

         (2.2) 

Where Xi is the value of variable X at instant i, and n is the number of data points. 

Peak value (PK) is the maximum absolute value of the waveform. For a set of data number 

X1, X2, …. Xn, PK is be expressed as (Kim et al., 2007): 
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 XX PK max          (2.3) 

Where │X│is the absolute value of X.  

The crest factor (CF) is a measure of the number and sharpness of the peaks in the signal 

and might be used to determine whether a signal contains repeated impulses. A high CF 

value for the vibration signal from a bearing would usually be taken to be an indication of a 

fault. The CF is the ratio of the peak value (XPK) to the RMS value (XRMS) of a waveform 

(Kim et al, 2007): 

RMS

PK

X

X
CF            (2.4) 

Skewness (SK) is a measure of the lack of symmetry in the data distribution. For data set 

X1, X2, …. Xn, SK is given by (Marques de Sa, 2007):  
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          (2.5) 

Where X is the mean of data set X1, X2, …. Xn, and S is the standard deviation of the 

distribution (De Caurcey, 2003): 
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         (2.6) 

Kurtosis (KT) is a measure of whether the data is peaked or relatively flat. Usually it is 

compared with the Gaussian or Normal distribution. For data X1, X2 until Xn, the formula 

for kurtosis is given by the following equation (Kim et al., 2007):   
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        (2.7) 

Where, the symbols have their usual meanings.  

If KT is negative then the distribution is flatter than the Gaussian, if KT is positive it means 

the distribution is more peaked than the Gaussian.   
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Entropy EN is a measure of the uncertainty associated with a random variable. If X1, X2, …. Xn 

form a dataset, the formula for the Shannon entropy may be expressed as (Kim et al., 2007):  

     
i

n

i

i
XpXpXEN

2

1

log.


        (2.8) 

Where p(Xi) is the probability of variable X having the value Xi. 

The probability density function (PDF) is commonly used for time-domain analysis. The 

PDF of a continuous random variable is a function which can be integrated to obtain the 

probability that the random variable takes a specific value in a given interval. 

The PDF for the normal distribution of a continuous variable Xi can be expressed as 

(Mendenhall and Sincich, 2007): 
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Where, the symbols are having their usual meaning. 

The probability for aXib may be expressed as: (Norton and Karzub, 2003)  

 

       (2.10) 

 

2.5.2 Frequency-domain analysis of vibration signal. 

Spectrum or frequency-domain signal is a plot of amplitude of vibration signal as a function 

of frequency. The vibration signal of a machine is generated both by the individual 

components and by their assembling and installation. Each component in a working 

machine will generate specific identifiable frequencies, thus a given frequency spectrum can 

often be attributed directly to corresponding machine components (Rao, 2004).  

Quefrency domain or cepstrum analysis is the result of taking the Fourier transform of such 

a dB power spectrum; it is the spectrum of the logarithmic power spectrum. The cepstrum is 

often used to detect periodicities, such as harmonics, in the spectrum.  

    dxxfbXaP
b

a
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If the power spectrum, Sx(), of the time signal, x(t), is expressed as (Rao, 2004): 

    2
txFSx           (2.11) 

Then the power ceptrum, Cpx(τ), is a real valued function and is the inverse of the Fourier 

transform of the square of the logarithm of the power spectrum of the signal (Norton and 

Karzub, 2003):  

    2

10

1 log  xx SFCp          (2.12) 

Power ceptrum analysis is usually used as a complementary tool to identify components 

which are not readily identifiable by spectral analysis alone. 

Trending analysis is used to predict the likelihood of occurrence of future events, e.g. the 

RMS amplitude of the time-domain vibration signal is monitored and plotted over time, and 

if the magnitude exceeds a certain critical level then remedial action is taken. 

However the vibration signal of a machine while generated by the individual components 

will also be affected by their assembly, installation and interaction. By comparison of the 

actual frequency domain signal with a signal from a healthy machine the status condition 

(good, satisfactory, unsatisfactory or unacceptable) may be determined. 

2.6 Summary 

Summary of bearing type: 

The function of bearing is to support other machine components. Based on the natural of 

contact, the bearing can be classified in to rolling bearing and journal bearing. Journal 

bearing superior than rolling bearing and is used to support high radial load at low, medium 

and high speed. The journal bearing can be divided in to solid bearing, bushing, flange bush, 

split flange bushing, pivot, tilting pad and self-aligning spherical journal bearing. The self-

aligning spherical journal bearing can accommodate misalignment. 

Summary of journal bearing lubrication: 

Lubricant is a very important component in the bearing system. The most common of 

premature bearing failure initiate from lubrication problem. Selection of lubricant can be 

considered based on speed, load and temperature operation. Journal bearing under medium 

load, normal temperature operation and medium speed ISO VG 32 or ISO VG 46 of 

lubricant can be applied. The self-aligning spherical journal bearing apply oil ring 
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lubrication. The process of journal bearing lubrication system there are three kinds of 

lubrication regimes such as boundary, mixed and hydrodynamic regimes. Hydrodynamic 

lubrication is the bearing surface fully be separated by lubrication oil film and generate 

minimum vibro-acoustic and acoustic emission amplitude responses. 

Summary of journal bearing failure: 

Premature bearing failure is often due to a combination of contaminant, miss-assembly, 

misalignment, insufficient lubrication, over loading, corrosion and others. These factors will 

create the journal bearings damage includes scratching, wiping, wear and fatigue. The 

premature bearing failure initiates from contaminant or inadequate lubricant, if these case 

can be identified as early as possible the severe failure and catastrophic can be prevented. 

Summary of journal bearing monitoring techniques: 

Based on the interaction contact between two surfaces under load in relative motion, the 

monitoring techniques in the early wear regime include lubricant monitoring, vibration 

monitoring, airborne monitoring and acoustic emission may be applied. Vibration 

monitoring is most commonly used condition monitoring in industry, but vibration 

measurement only detect signal at low until medium frequency. Airborne sound also can be 

used for monitoring for bearing condition at medium frequency. Higher airborne sound 

amplitude indicates the machine or equipment condition. The airborne sound may originate 

from gas, air or fluid pressure fluctuation, also from structural vibration sound. In practice 

the source of airborne sound high amplitude some time difficult to be analyzed. Acoustic 

emission may detect signal at high frequency that be caused asperity contact between 

bearing and shaft which is indication of the early fault and lubrication degradation in a 

journal bearing. There surface vibration, airborne sound and acoustic emission monitoring 

techniques can be associated to get effective and comprehensive monitoring techniques for 

journal bearing. 

Summary of surface vibration, airborne sound and acoustic emission signal analysis: 

Machine surface vibration, airborne sound and acoustic emission monitoring techniques 

based on the time domain and frequency domain. Time domain and frequency domain 

techniques consist of waveform and statistical analysis. The time waveform is the raw 

unprocessed signal from accelerometer. The statistics parameters analysis are root mean 

square, crest factor, peak value, skewness, and kurtosis and probability density factors. The 

statistic parameter analysis cannot be used to determine the natural frequency of source of 

signal. 
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Spectrum or frequency domain signal is a plot of vibration amplitude again to frequency. 

Spectrum analysis is able to detect the amplitude come from and natural frequency 

characteristic of vibrate components. If the value of amplitude still cannot be identified well 

the power spectrum analysis is required. Mean value of spectrum amplitude and comparison 

spectrum analysis also used to determined influence of a few experiment parameter of 

vibro-acoustic and acoustic emission such as radial load, speed and fault variations. 
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CHAPTER THREE 

SURFACE VIBRATION, AIRBORNE SOUND AND ACOUSTIC EMISSION 

SOURCES IN A SELF-ALIGNING SPHERICAL JOURNAL BEARING 

3.1 Introduction 

Self-aligning spherical journal bearings have spherical plain bushings that have an inner 

bore and outer spherical sliding surfaces in contact. It can support large radial loads and 

tolerate small misalignment. There are many types of spherical bushings, but they are often 

divided into steel-on-steel, steel-on-bronze, bronze-on-steel and maintenance-free types. 

The structure of a self-aligning spherical journal bearing unit is shown in Figure 3.1. It 

mainly consists of a self-slinging spherical journal bearing and a bearing house. The inner 

sleeve of the bearing operates as a normal journal bearing which is subjected to motion and 

radial load, the spherical surfaces on the outer surface allows misalignment of the shaft in 

the inner sleeve. 

 

 

 

Figure 3. 1 Self aligning spherical journal bearing components 
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Based on this structure and operating process, its dynamic responses of surface vibration, 

airborne sound and acoustic emission can be understood as shown in Figure 3.2. There are 

two main excitation sources: external forces such as fluctuation loads from system 

misalignment and imbalance, and internal excitations such as the asperity contact in 

boundary operation. These excitations will cause structure-borne vibrations and acoustic 

emissions of the bearing vibrations system. These structure-bore dynamic responses then 

radiate airborne sound. In addition fluid dynamics such as oil pressure fluctuations and flow 

turbulences also produces airborne sounds. 

The vibration system of journal bearing is formalised with two distinctive phases: normal 

hydrodynamic lubrication and boundary lubrication. There is a high speed motion between 

the shaft and a bearing sleeve. Because of this relative motion between these components 

their contacting surfaces may be separated each other by a layer of lubricant. On the other 

hand the motion between the spherical surface and its seating on bearing housing is very 

tiny and the contacting surfaces may have only a very thin lubricant film.  

In normal operation, i.e. excluding the instability of lubrication which is often resulted from 

inadequate system design and configuration, the hydrodynamic lubrication occurs between 

the shaft and bearing surfaces. It means that the oil film formed by hydrodynamic 

lubrication process can separate shaft and bearing perfectly. The dynamic parameters: 

stiffness and damping is thus due to oil properties only. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. 2 Vibro-acoustic responses generation process 

 

Vibro-acoustic responses 

 
Surface Vibration Airborne Sound Acoustic Emission 

External force excitation Internal asperity contact excitation 

Vibration system 

Oil pressure 

oscillation 



   

                                                                                                                                                  64  

 

 

However, the contact between spherical bearing and bearing is a mixed lubrication system 

because of small hydrodynamic effects. It means that these two surfaces cannot be 

completely separated and there will be high degree of asperity contact. Therefore, the 

dynamic parameter: stiffness and damping are determined not only by oil properties but also 

surface finish quality and material properties.  

With these understandings, the vibration system of journal bearing between shaft and 

bearing can be described as a mass damping system, while contact between the bearing with 

the bearing housing due to mainly direct contact or asperity contact can be represented as 

micro vibration damping stiffness systems. 

Thus a self-aligning spherical journal bearing operating under radial load (F) and angular 

speed () can be modelled as Figure 3.3 for understanding the generation processes of 

surface vibration, airborne sound and acoustic emission.   

The surface vibration and airborne sound in journal bearings are excited from two main 

kinds of sources. These are excitations due to primary sources and excitation due to 

secondary sources. The first sources are structural and manufacturing defects which are 

inherent in both the manufacturing quality and the configuration of bearing installation. The 

second source in journal bearing can be asperity contact between journal and bearing due to 

abnormal operations.  

It is well known that acoustic emission is the phenomenon of transient elastic wave 

generation in a material under stress. When some materials are subjected to stress above a 

certain level, a rapid release of strain energy takes places in the form of elastic waves 

(Bonnes and McBride, 1991). 

Acoustic emission occurs in journal bearings due to direct contact between the journal and 

the bearing. Direct contact is due to operation of the journal bearing under mixed lubrication 

regimes, so that the surface contact cannot be separated perfectly by the oil film. In other 

words, lubrication system in the journal bearing is combination between boundary and 

hydrodynamic lubrication regimes. Acoustic emission responses occur randomly at high 

frequencies. 
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Figure 3. 3 Surface vibration, airborne sound and AE generation 

 

Airborne sound response that occurs in journal bearings can be derived from the journal 

bearing component vibration, pressure fluctuation in the journal bearing and the direct 

contact between the journal and the bearing surface.  

Premature failure often occurs in journal bearings due to both fluid and solid contaminants. 

These contaminants cause surface deterioration and change the surface roughness on the 

journal bearing and increase the asperity contact number. 

Asperities present in the journal and bearing can cause a mechanical component to generate 

surface vibration, airborne sound and acoustic emission. Vibro-acoustic frequency response 

and acoustic emission caused by asperity contact occurs at high frequencies. The number of 

asperity contacts influenced by the quality of asperity contact, quality of lubricant and 

lubrication regime.  
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In hydrodynamic lubrication regime the journal and bearing are completely separated so 

there is no asperity contact at all. The vibro-acoustic and acoustic emission amplitude 

responses in this lubrication regime are thus very small. 

The mixed lubrication regime is when the asperities are not fully separated, depending on 

the quality of lubricant or film oil layer, speed, pressure and quality of surface. When the 

bearing is not lubricated or lacks adequate lubrication the number asperity contacts increases 

and the vibro-acoustic and acoustic emission responses increase. Asperity contact in journal 

bearings is not simple because it involves aspect tribology and the local micro-structure 

including deformation manufacturing defect. 

The surface vibration, airborne sound and acoustic emission amplitude in the journal 

bearing is influenced by the contact surface quality of machine component itself. The 

quality of asperity contact between journal and bearing may come from manufacturing 

defect and surface deterioration during operation time. 

 

3.2 Surface vibration sources 

As explained earlier the vibration occurring in journal bearings is caused mainly by 

mechanical problems such as external misalignment and unbalanced forces, internal oil 

pressure and impulsive excitation due to asperity contact between the journal and the 

bearing. 

3.2.1 Vibration model 

To understand the influences on vibration responses, a vibration model including these 

forces was developed based on their generation mechanisms. The self-aligning spherical 

journal bearing vibration system consists of shaft mass (ms), stiffness between shaft and 

bearing (ksb), the damping coefficient between shaft with the bearing (csb); the mass of the 

bearing (mb), bearing stiffness between bearing and housing (kbh), damping coefficient 

between bearing and bearing housing (cbh); the mass of the bearing housing (mh), equivalent 

stiffness of bearing housing (kh) and equivalent damping coefficient of bearing housing (ch). 

When the asperity contact occurs between the shaft and bearing surfaces, the contact 

dynamic parameters for each micro spring-damper and stiffness are denoted as kicsb and cicsb 

, and between bearing and house is kicbh and cicbh. Moreover, asperity contact creates new 

excitations. When asperity contact occurs, the interactions between asperity peaks produce 
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elastic deformation and restoration. This effect will lead to micro impulsive forces 

F1s(t)….Fns(t) that act on to contact masses and cause corresponding high frequency 

vibration responses.  

The free body diagrams and vibration model for vibration motion in vertical direction can be 

represented as in Figure 3.4. 

ms

mb

mh

xs

xb

xh

ksb

csb

kh ch

kicsb

cicsb

kicbh cicbh

Fe(t)




n

i

is
tF

1

)(

kicbh cicbh

 

 

Figure 3. 4 Free body diagram of self-aligning spherical journal bearing 

 

According to the signs for each response, the three governing equations for the system can 

be derived, assuming   xs > xb : 
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In Equations (3.1) - (3.2) the equivalent stiffness and damping coefficients are the 

combination of stiffness and damping effects of two surfaces. 

Obviously, high amplitude external and internal forces will produce large vibration 

responses. However the vibration responses measured from the surface of bearing house can 

be influenced by the combined effect of the stiffness and damping values in different parts. 

3.2.2 Responses due to external forces 

To understand vibration responses due to external forces, the vibration model can be 

simplified for the case of hydrodynamic lubrication when the asperity contact effect can be 

ignored in Equations (3.1) and (3.2). In addition, external dynamic forces usually occur in 

the low frequency range (<1000Hz)  and high frequency effects due to asperity contacts for 

shaft and bearing surfaces can be ignored. However, for full representation of the vibration 

measurement process, the mean values of stiffness (
cbh

k ) and damping (
cbh

c ) for the faces 

between our surface and house surface can be considered. This will lead to:  
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Equations 3.4 and 3.5 may be expressed in matrix form: 4 and5 may be expressed in matrix 

form: 
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Determination of frequency natural of vibration motion equation in a journal bearing can be 

calculated by assuming a free un-damped surface vibration system and a harmonic solution 

of the form: 

tjuex  ; tjjeux  ; tjeux 2        (3.8) 

 

Matrix of free un-damped vibration system yields: 
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If    is Eugenvalue and expressed as: 

2             (3.10) 
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The matrix yields to: 
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Tabel 3. 1 Journal bearing parameter data 

 

Mass of shaft  (kg)   

 

ms=1.75 

Mass of  bearing (kg)   

 

mb=0.35 

Mass of bearing housing (kg)   

 

mh=6.0 

Damping coefficient between shaft and bearing (N/(m/s)) 

(Matsumura,2012) 

 

 (Matsumura,2012) 

 

csb=0.35 

Damping coefficient between bearing and housing (N/(m/s))  cbh=0.45 

Damping coefficient bearing housing (N/(m/s)) 

 

ch=0.35 

Mean damping coefficient between bearing and housing (N/(m/s)) ccbh=0.4 

Stiffness between shaft and bearing (N/m) 

 

ksb=140 

Stiffness between bearing and housing (N/m) 

 

kbh=600 

Stiffness of bearing housing (N/m) 

 

kh=5000 

Mean stiffness between bearing and housing (N/m) 

 

kcbh=2800 

 

 

Eigen value analysis is used to determine the frequency responses of surface vibration 

analysis. Based on journal bearing parameter data (Table 3.1), by using Eigen analysis, the 

results for the natural frequencies are 1=7.9 kHz, 2=28.4 kHz and 47.7 kHz. 

In the journal bearings system unbalance problems may be caused by manufacturer’s error 

or due to bearing damage such as cracks or wear. With an unbalanced mass the resulting 

centrifugal force is a function of the unbalanced mass (mo), the distance of the location of 

unbalance to shaft axis or eccentricity (e) and angular speed () and a direction vector. The 

magnitude of centrifugal force due to unbalance in the vertical direction is: 
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)sin(2

0
temF

c
          (3.12) 

 

Tabel 3. 2 Journal bearing operation parameter data 

 

Mass of unbalance  (kg)   

 

mo=0.05 

Eccentricity (m) 

 

e=d/4 

Speed (rpm) 

 

n=1450 

Diameter of shaft (m) 

 

d=0.035 

 

From Table 3.1 and added the data bearing operation parameters shown in Table 3.2, using 

ordinary differential equation 45 (ODE 45) program the time domain vibration response can 

be obtained as shown in Figure 3.5, and the frequency domain vibration responses as shown 

in Figure 3.6. 
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Figure 3. 5 Calculated time domain response due to unbalance 
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Figure 3. 6  Calculated spectrum response due to unbalance 

 

Figure 3.6 shows that the peak amplitude due to unbalance occurs at 20 Hz. The amplitude 

is determined by the amount of unbalance caused by manufacturing errors or damage such 

as wear and cracks or other surface deterioration. The frequency at which the peak occurs is 

the first frequency fundamental or shaft speed. The next high amplitude occurs at the second 

harmonic of frequency fundamental. 

The journal bearing damping coefficient and stiffness coefficient may change due to 

lubricant deterioration of contaminant over the life time of the lubricant. The journal bearing 

damping and stiffness coefficients may also change due to surface deterioration due to wear 

and scratching. The change of damping and stiffness coefficients will influence the vibration 

amplitude and frequency response. 

 

 

 



   

                                                                                                                                                  73  

 

 

The effect of damping coefficient on the vibration spectrum response is shown in the Bode 

diagram in Figure 3.7.  
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Figure 3. 7 Frequency responses in different damping coefficients 

 

Figure 3.7, shows that when the journal bearing damping coefficient changes the amplitude 

of the frequency response also changes. The greater the damping coefficient creates the 

lower the amplitude, and vice versa is. 

Figure 3.8 shows the vibration frequency response of the journal bearing when the stiffness 

is changed due to, for example, lubricant deterioration or surface deterioration. 
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Figure 3. 8 Frequency responses in different stiffness 

 

Figure 3.8 shows that when the stiffness coefficient changes the frequency response changes 

significantly in terms of both amplitude and resonant frequencies. The greater stiffness 

coefficient generates high amplitude at the frequency. 

3.2.3 Responses due to asperity contact  

When the bearing is under abnormal operation, high levels of asperity contact occur in 

shaft-bearing interface. This means the effect of additional stiffness and damping due to 

asperity contact has to be included to describe the system, i.e. in the model the stiffness 

between shaft and bearing becomes 



n

i

icsbsb kk
1

and the damping coefficient 

becomes 



n

i

icsbsb cc
1

.  

Moreover, because of this asperity contact, a new vibration source has to be formalised and 

expressed as the asperity excitation )()(
1

tftf
n

i

icsbc 


 . As this excitation process is very 

close to that of AE excitations it will be modelled in Section 3.4 as an AE energy release. 
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For this source the induced vibration response, )(tfc  is modelled to be proportional to 

energy release rate. 

3.3 Airborne sound sources 

3.3.1 Lubricant pressure fluctuation  

The generation of hydrodynamic oil pressure in the journal bearing due to shaft rotation 

creates noise. In the journal bearing, sound or acoustic wave travels in the radial direction 

from the component outwards through the lubricant (fluid), the bearing housing (solid) and 

the surrounding air.  

A schematic of the self-aligning journal bearing under a hydrodynamic lubrication state is 

presented in Figure 3.9 

 

Figure 3.9 A schematic of the self-aligning journal bearing under hydrodynamic lubrication 

 

As shown in Figure 3.9, with h, , and V denoting the film thickness, oil absolute viscosity 

and linear velocity respectively, the Reynolds equation for pressure p distribution in a 

journal bearing under steady condition may be expressed as (Rho et al., 2003): 
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If the radius of the shaft is denoted by R and the relations x=R and V= R are used, then 

the Reynolds equation can be expressed as: 
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For a long journal bearing, the pressure distribution is given by: (Rho et al., 2003).  

 
  222

cos12

sin)cos2(6


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






r
c

VR
p

       (3.15)

 

Where cr is radial clearance (m),  is eccentricity ratio, and θ is contact angle (rad). Equation 

(3.15) shows that the oil pressure produces fluctuations with time because the operating 

parameters such as speed and load are time-varying. In addition, bearing conditions such as 

the clearances and lubrication quality can also alter the pressure fluctuation characteristics.   

In the journal bearing, sound or acoustic waves travels in the radial direction from the 

component outwards through the lubricant (fluid), the bearing housing (solid) and the 

surrounding air, see Figure 3.10. 

 

 

Figure 3. 10 Journal bearing acoustic transmission 
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The relationship between oil pressure fluctuation pf, pressure reflected wave pr  in the 

bearing and bearing housing and pressure transmitted wave pa (Pa) into the surrounding air 

may be written as (Rho and Kim, 2003):  

ab

b

fa

ZZ

Z
pp




2
         (3.16) 

Where the acoustic impedance of bearing Zb (kg/m
2
.s) is proportional to bearing density b 

(kg/m
3
) and sound speed in bearing material is  cb (m/s). 

 

bbb
cZ 

          (3.17)
 

 

The acoustic impedance of the surrounding air Za (kg/m
2
.s) is proportional to air density a 

(kg/m
3
) and sound speed in air ca (m/s). 

 

aaa
cZ 

           (3.18)
 

 

The amplitude of sound pressure fluctuation level in oil is measured by its RMS value is: 

 




Tt

t

mrmsf dtpp
T

p .
1 2

         (3.19)

 

Where p is the instantaneous pressure in the oil, and Pm is the mean pressure of the oil 

defined as: 






Tt

t

m dtp
T

p .
1

          (3.20)

 

pm is the mean pressure of oil (Pa); T is the period of steady state response(s).  

 

The sound pressure level in the fluid film, Lp, may be expressed in dB (Adams, 2001): 

ref

m

p

p
Lp

10
log20

         (3.21) 
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Where: Lp: Pressure level in fluid film (dB), and Pref is the reference pressure (2x10
-5

 Pa).  

If the sound pressure level at the outer bearing housing is pa (Pa) then the sound level 

transmitted into the air in a radial direction at the outer bearing housing Lpa (dB) can be 

written as:  

ref

a

pa

p

p
L

10
log20

          (3.22)

 

The average sound pressure level, Lpab, transmitted to air through bearing and bearing 

housing in the radial direction at outer surface of bearing housing may be expressed as: 

(Rho and Kim, 2003).  






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
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A
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pab
dAL

.1.0

10
10log10

         (3.23)

 

Where: A is the surface area of the bearing. 

 

The influence of the design parameters (see Table 3.3) on the airborne sound responses by 

geometric parametric calculation are presented in Figure 3.11.  

 

Tabel 3. 3 Geometrical journal bearing parameter 

 

Dynamic viscosity of lubricant ISO VG 32 (cSt) or (mm
2
/s) 

 

=32  

 Dynamic viscosity of lubricant ISO VG 46 (cSt) or (mm
2
/s) 

 

=46 

 Dynamic viscosity of lubricant ISO VG 68 (cSt) or (mm
2
/s) 

 

=68 

 Oil density (kg/m
3
) 

 

=850 

 Shaft diameter (mm) 

Radial clearance cr=0.025mm 

 

d=35 

Radial 

clearance 

cr=0.025mm 

 

Length of bearing (mm) L=75 

Speed (rpm) 

 

N=1450 

 Eccentricity ratio 

 

=0.7 
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Figure 3. 11 Bearing pressure level (dB) in three different viscosities 

 

Figure 3.11 shows that there is a positive correlation between the speed of rotation of the 

bearing and airborne pressure level. When speed increases airborne pressure levels also rise.  

3.3.3 Bearing roughness excitations  

Friction airborne sound is the sound radiated when two rough surfaces contact each other 

under speed and load as can happen without an adequate layer of lubricating oil between 

shaft and bearing. The friction airborne sound can be classified in two types depending on 

the contact pressure. When the contact pressure is high, the contact and amplitude of 

airborne sound is strong. When the contact pressure is light, the amplitude of noise is weak 

(Akay, 2002). 

The friction noise can originate as stick slip due to asperity contact. The airborne sound is 

produced by vibration response of the coupled solids (Emira et al., 2011). 

Fundamental studies on friction noise can be founded in Ben Abdelounis and his 

companion, who showed that under normal light load and rough surface the vibration level 

increases as the logarithm of the product of surface roughness and the sliding speed, with 

shock frequencies occurring between antagonist asperities at sliding surface speed (Ben 

Abdelounis et al., 2011). 
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The relationship between surface roughness, sliding speed and airborne sound level is given 

by (Ben Abdelounis et al, 2011): 
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Where : Lv is noise or airborne sound level (dB), Ra2 is mean arithmetic surface roughness 

for second component (m), Ra1 is mean arithmetic surface roughness for first component  

(m), V1 is velocity of first components and V2 is velocity of second component. The 

exponent n and m are independent and they are respectively of 0.82n0.97 and 

0.95m1.22. 

When considering the apparent asperity contact area, the radiated airborne sound power 

could be proportional to roughness, sliding speed and apparent contact area is expressed in 

the following general equation: 

10

a

cara
AVRP




          (3.25) 

Where: Pra is the radiated airborne sound power, Ra is mean arithmetic surface roughness, V 

is sliding speed, Ac is apparent contact area, a is exponent expressed in dB/decade,  and  

 are independent exponents.  

The equation for the radiated airborne sound power indicates that the amplitude of sound 

power will increase with contact surface roughness, contact area and speed. 

Use of improper lubricant viscosity will influence the contact area. If less viscous lubricant 

(caused by water contaminant) or improper lubricant is used then the contact area can 

increase and generate higher radiated airborne sound amplitude. 

In the event of journal bearing damage due to the surface scratching or wearing, the 

roughness index increases, thereby increasing the amplitude of the radiated airborne sound. 

3.3.4 Component vibration  

Vibrations of journal bearing components are vibrating solid surfaces in contact with a 

prime mover that radiate sound to the environment around the bearing. 

The radiation airborne sound power is proportional to the vibrating area and the mean 

square vibrating velocity (Gerges et al.,2013): 
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radvsaas
VAcP  2          (3.26) 

Where: Pra is the radiated sound power (Watt); a is the air density (kg/m
3
); cs is the speed of 

sound (m/s); Av is the vibrating area (m
2
), V  is mean square vibrating velocity (m/s) and 

rad is the radiation efficiency. 

 3.3.5 Fluid flow turbulence 

Oil turbulence in the journal bearing also generates airborne sound, especially at high 

sliding speeds. Oil turbulence can be generated by interaction of the fluid and moving solid 

objects such as the shaft in the journal bearing. 

The aerodynamic airborne sound power generated by turbulent flow is a function of the flow 

velocity (Gerges et al., 2013): 

u

rat
UP


           (3.27) 

Where: Prat is radiated sound power (Watt); U is the flow velocity (m/s); u is 6 to 8. 

Thus doubling of the flow velocity (U), increases the sound power by a factor 2
6
 to 2

8
, that 

is by a factor between 64 and 256. 

3.4 Acoustic emission sources 

3.4.1 Asperity contact excitation 

As shown in the schematic and free-body diagram (Figure 3.4) external loads on the 

bearings cause acoustic emission in addition to surface vibration and airborne sound. The 

frequency responses occur at a high frequency and random. 

AE is the phenomenon of transient elastic wave generation in a material under stress. When 

some materials are subjected to stress above a certain level, a rapid release of strain energy 

takes places in the form of elastic waves which can be detected by an AE transducer 

(Choudury and Tandon, 2000). 

AE has been detected from tribological components such as bearings which rub against or 

slide over each other, generating friction and wear (Kolubaev et al., 2010; Cludema, 1996). 

The sources of AE signals generated by mechanical loading and failure of materials include 

such friction effects as plastic deformation, change in surface structure and appearance of 

http://en.wiktionary.org/wiki/tribological
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wear debris and formation of fatigue pits, so AE signal analysis may be of use in detecting 

journal bearing early failure. 

When two solid bodies are in contact with each other, the true contact between them occurs 

at only a limited number of asperities. The pressures on those points are high and this 

asperity contact was found to be the main source of AE in sliding friction (Bonnes and 

McBride, 1991). In journal bearing operation the coefficient of friction depends on the 

operating condition and AE analysis is an appropriate measurement to detect incipient 

failure of sliding bearings because of the correlation between friction, emitted signal and 

energy dissipated in the sliding metallic contact which results in a substantial increase of the 

signal amplitude in the frequency range around 100 kHz. Damage or failure can be 

recognized independently by contact geometry, sliding speed, shell and lubricant 

temperatures (Dickerhof et al., 2006).  

There will be a relationship between AE and power loss; if the increase in AE signal is due 

to increased asperity contact there will be increased friction and increased power loss. (Ali 

et al., 2008). 

Solid surfaces are covered by asperities which have a random height distribution. Figure 

3.12 shows contact areas for an ideal smooth surface and a second rough surface (Fan et al., 

2009).  

 

Figure 3. 12 Contact of rough and smooth surfaces 
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Surface roughness (Ra) is the RMS of the height of the individual asperities, Ra1, etc. N is 

number of asperities. (Ford, 1993). 
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         (3.28)  

If z is the variable representing the height distribution of the surface, and the cumulative 

probability that the random variable z will not exceed a specific value of D exists we will 

have a probability density function f(z) that can be expressed as (Stolarski, 1990): 

  dzzfDzP
D


0

)(0 =1        (3.29) 

Where P(0 ≤ z ≤ D) is the probability that the height of the asperity will lie between 0 and 

D. 

If two surfaces approach each other so that the distance between their smooth surface planes 

is d (see Figure 3.12)  which is less than the height of the  asperities, those asperities higher 

than d will support the load.  

The proportion of the asperities with a height greater than d and less than D will be (Fan et 

al, 2009): 

     



d

D

d

dzzfdzzfdzP 1)(.         (3.30) 

If the total number of asperities per unit area is n, and the number of asperities per unit area 

in contact (height greater than d) is na then:   

 P (z >d) = na/n          (3.31) 

Assume each asperity is deformed the same amount by the load (W). If the area of contact is 

Ai, then the average load on each asperity in contact will be:  

ia

i

An

W
W            (3.32) 

where: Wi is the average load for each asperity (N), W is external total load (N), Ai  is 

asperity contact area (m
2
) and na is number of asperities per unit area (1/m

2
). 
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3.4.2 Acoustic emission energy release 

If the asperities of two components surfaces contact each other under influence of an 

external load and slide over each other, the stored elastic energy can be expressed as (Fan et 

al., 2009):   

 WdE
ei

           (3.33) 

where: Eei is the stored elastic energy (J), W is the applied load (N) and d is consequent 

deformation (m). 

The contact between journal bearing and shaft is the contact between two parallel cylinders. 

The maximum deflection of the asperities in the contact area between two parallel cylinders 

is influenced by total load W (N), radius of each of the cylinders (R1 and R2 (m)), half-

length of bearings in contact, L (m), half wide of bearing contact b(m)  and equivalent 

modulus of elasticity E (N/m
2
). The maximum deformation  (m) may be written 

(Stachowiak et al., 2001): 
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The stored of energy of elasticity Eei (J) is the applied load W (N) multiplied by consequent 

deformation d (m). From Equation (3.34) the change in deformation d with change in load 

dW is: 
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where E(N/m
2
) is the effective elasticity of the two materials whose surfaces are in contact 

each other.  

Equation (3.35) for d is substituted into Equation (3.33), for Eei and integrated: 
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The equivalent elastic modulus for two different solid materials in contact, E, is given by 

(Stachowiak et al., 2001) and depends on the Poisson ratio for the two materials (1 and 2 

respectively), and the modulus of elasticity for the two materials (E1 and E2).  
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The relation between stored energy of elasticity in a pair of asperities in contact, Eei and the 

maximum deformation  can be expressed using Equation (3.36) for Eei and Equation (3.34) 

for .  

Equation (3.36) is divided by Equation (3.35) yields to: 

2

WEei 


 

WE
ei

5.0           (3.38) 

If  = z-d, the mean value of energy of elasticity for one asperity contact can be expressed as 

(Fan et al, 2009): 

 dzWE
ei

 5.0           (3.39) 

The total of the stored energy of elasticity, Ee, due to asperity contact for contact area A is 

(Fan et al., 2009): 

eiae
EAnE            (3.40) 

Substitute Equation (3.39) for Eei into Equation (3.40) for Ee:  

 

 dzWAnE
ae

 5.0           (3.41) 

 

The contact between the shaft surface and journal bearing “hole” is as shown in Figure 3.13 

and may be likened to two parallel cylinders in concave contact. 
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Figure 3. 13 Contact between shaft surface and journal bearing 

 

The first body is the hole in a journal bearing with radius R1x =  and R1y = R1. The second 

body is the cylinder shaft surface with radius R2x =  and R2y =R2. These are in contact with 

each other. The equivalent radius of curvature of contact is (Stachowiak et al., 2001): 
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For the given values of R1x, R1y, R2x and R2y: 

21

111

RRR



           (3.43) 

If the velocity of sliding motion of the surfaces in contact is V (m/s) and the Hertzian 

contact width for the asperities is 2b (m), the time t (s) required to release an individual 

asperity is: 

V

2b
t              (3.44) 

For two parallel cylinders in concave contact, as shown in Figure 3.13, under radial load W 

(N), radius of first cylinder is R1 (m), radius of second cylinder is R2(m), a half-length of 

cylinder L (m), equivalent radius of two cylinder radius is R(m) and equivalent Young’s 

modulus of the two materials is E(Pa), the Hertzian contact half width of between two 

parallel cylinders in concave contact is (Stachowiak et al., 2001): 
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Equation (3.45) for b substituted into Equation (3.44) for t, gives the release time as: 
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Introducing Co into Equation (3.34) for  gives:  
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Rearranging gives 
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On substituting this value of 
2
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
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LE
 into Equation (3.46) gives the time release as a 

function of deflection yield: 
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If  = z-d, the mean of the release time for one asperity contact t can be expressed as: 
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The release rate of the energy of elasticity eE (J/s) can be calculated as: 
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Where eE is the release rate of the elastic energy (W), A is asperity contact area (m
2
), na  is 

number of asperity (peaks/m
2
), V  is sliding motion velocity (m/s), W is radial load (N), E is 

equivalent elasticity modulus of the two materials (N/m
2
), L is a half-length of bearing (m), 

R is  equivalent radius of cylinder (m), R1 is shaft or journal radius (m), R2 is bearing bore 

radius (m)  and b is a half width of the two cylinder contact (m).  

 

The effect of linear velocity and radial load the elastic energy release rate on self aligning 

journal bearing can be determined by considering the geometrical design parameters of the 

journal bearing. Data for the geometrical design parameters of the journal bearing are given 

in Table 3.4.  

Tabel 3. 4  Journal bearing geometrical design parameter data 

Number of asperity area density  (1/mm
2
)   

 

 na: 16025 (Abdo, 2006)  

 
Nominal shaft diameter (mm) d=35 

Length of bearing (mm) 

 

L=75 

 
Shaft speed (rpm) 

 

N=1450  

 
Radial load 1 (N ) or (bar) 

 

W1= 400 or (2) 

 
Radial load 2 (N ) or (bar) 

 

W2= 1000 or (10) 

 
Radial load 3 (N ) or (bar) 

 

W3= 1800 or (20) 

 
Equivalent modulus of elasticity (N/mm

2
) 

 

E=38700  

 
 

Effect of speed on the elastic energy release rate for three different radial loads can be seen 

in Figures 3.14 and 3.15.  
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Figure 3. 14 Energy release under three different load variation 
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Figure 3. 15 AE Energy release under three different speed variation 
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The Figures 3.14 and 3.15 shows that the AE energy releases are influenced by speed and 

radial load. Under higher radial load will generate higher AE energy release, also for 

increasing of speed.  

Lubricant viscosity also affects the AE released, when using a more viscous lubricant 

asperity contact number declines as the surfaces are more separated by the layer of 

lubricant, therefore energy released also reduced. 

Water contaminants in the lubricant can reduce oil viscosity and decrease the layer of 

lubricant so that the asperity contact increases and AE energy released is also increased. 

Effect of journal bearing surface damage will increase the amount of asperity contact so that 

energy AE or AE amplitude response also increases. 
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CHAPTER FOUR 

EXPERIMENTAL FACILITIES 

4.1 Introduction 

To confirm the theoretical understanding gained in Chapter 3, a journal bearing test system 

was developed for an experimental study of the bearing’s dynamic responses under different 

operating conditions including typical bearing faults. In the meantime, it will be used for 

developing appropriate data analysis methods to extract useful information for early fault 

detection and diagnosis. 

The test system as developed has three subsystems: a mechanical subsystem which is 

capable to simulate typical bearing operating conditions, an electrical control subsystem 

which allows the mechanical subsystem to be controlled for different test programs, and a 

measurement subsystem which allow both operating condition data and dynamic response 

data of the testing bearing to be recorded for further analysis.  

4.2 Test rig construction and components 

The mechanical system was designed to operate two journal bearings simultaneously. It 

consists of a three phase AC driving motor, couplings, torque load system, hydraulic ram, 

hand pump, two SA35M self-aligning spherical journal bearings, load cell and main drive 

shaft. As shown on Figure 4.1 these components are installed on a base frame.  

 

Figure 4. 1 Test rig construction 
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The torsion load is a DC generator placed at the end of the rig. The electrical drive motor is 

connected to the main test rig and DC generator by a hard rubber coupling.  

4.2.1 Testing bearings 

The two SA35M self-aligning spherical journal bearings to be tested were mounted at the 

drive end (DE) and non-drive end (NDE) of the drive train. The self-aligning spherical 

journal bearing is shown in the figure 4.2.  

 

 

 

Figure 4. 2 Self-aligning journal bearing SA35M 

 

To maintain axial displacement at DE and NDE bearings a pair of washers is installed. The 

washer in addition to functioning as a stopper to prevent axial movement also serves as a 

thrust bearing. The self-aligning spherical journal bearing assembly, including the washer, is 

shown in Figure 4.3.  

The preliminary experiments showed that high radial loading of the journal bearings loading 

generated high temperature. Reducing the heat generated in the loaded bearing, loading 

bearing replaced by two cylinders rolling bearing. 

Table 4.1 gives the housing dimensions of the self-aligning spherical journal bearing and 

main performance parameters. 
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(Arvis, 2009) 

 

 

 

 

 

 

 

 

Figure 4. 3 Self aligning spherical journal bearing assembly 

 

4.2.2 AC driving motor 

The test rig was driven by a 9 kWatt (12.5 HP), 3-phase, 4 pole electric induction motor at a 

speed of 1450 rpm with a shaft diameter, 38 mm. 

Specification of the test rig motor was: 

Table 4. 1 Self-aligning journal bearing SA35M housing dimensions 

Type of  bearing Self-aligning journal bearing  

Bearing code  SA35M/S 4170  

Diameter of bearing hole  (mm) 35 

Length of bearing (mm) 76 

Spherical diameter of bearing (mm) 82 

Maximum load (kN) 10 

Maximum speed (rpm) 5000 

Lubrication system  Ring lubrication  
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Table 4. 2 Test rig motor specification 

 

 

 

 

 

 

 

 

 

 

4.2.3 Hydraulic cylinder 

The radial load is applied on the bearings by using a hydraulic cylinder system with pressure 

gauge and load cell and powered by a hand pump. The maximum pressure exerted by the 

hydraulic cylinder was 380 bar gauge. The specification of hydraulic ram is summarized in 

table 4.3. 

 

 (Steerforth, 2011) 

 

 

 

 

 

 

Pressure in the hydraulic cylinder originated from the hand pump via a hand pump tank as 

oil reservoir. The hand pump is double stroke and can be flange mounted directly onto a 

tank. This hand pump is designed to operate a single acting cylinder, an unloading valve is 

optional. A 0.6 metre lever handle was included as the standard with hand grip. The 

specification of the hydraulic pump is summarized in Table 4.4. 

 

Manufacturer Clarke 

Type of mounting Foot mounting (B3) 

Phase 3 Phase 

Pole number/rpm 4 pole/1450 rpm 

Starter requirement  20Amp 

Power 9kWatt/12.5Hp 

Shaft diameter 38mm with standard keyway 

shaft 
Frame size 132 

Table 4. 3 Hydraulic ram specification   

Manufacturer Steerforth 

Type Single acting 

Stroke (mm) 200 

Bore diameter (mm) 40 

Rod diameter (mm)  27 

Outside diameter (mm)  50 

Piston diameter (mm) 30 
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(HP, 2003) 

 

 

 

 

 

The hand pump tank is made of 3 mm steel, and can be mounted using M8 bolts in a vertical 

or horizontal position. Tank specification is as shown in Table 4.5. 

 

 

 (HP, 2003) 

 

 

 

 

 

 

The principle of the hydraulic installation specified in Tables 4.4 and 4.5. 

 

Figure 4. 4 Hydraulic system schematic 

Table 4. 4 Hydraulic hand pump specification 

Manufacturer/model Hydra products 

Type HPMU12 

Displacement (cm
3
) 12 

Work pressure (bar) 320-380 

Height (mm) 166 

Total height (mm) 273 

Table 4. 5  Hydraulic pump tank specification 

Manufacturer/model Hydra 

products 
Type RP 408.01 

Capacity (litres) 1 

Length (mm) 150 

Width (mm) 100 

Height (mm) 120 
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This system allows the bearing to be radial loaded from 2.0 Bar to 30 Bar.  

4.2.4 Hard rubber coupling 

A hard rubber coupling (HRC) is used to connect the electrical motor drive shaft to the 

bearing testing shaft and at the other end of the gear train to connect the bearing shaft to the 

DC motor as a torque loading, see Figures 4.1. HRC couplings are used as general purpose 

couplings with a flexible element which can accommodate a degree of misalignment and 

absorb vibration. The specification of the HRC130H was: 

 

 

(Maryland, 2008) 

 

  

 

 

 

 

 

 

 

Based on the bore size and type, there are three HRC couplings: HRC couplings with type B 

(cylinder bore), with type F for a taper lock bushing where the widest part of the taper lock 

bush faces the flexible element, and type H for taper lock bushings where the widest part of 

the taper lock bush faces away from the flexible element. In this case an H type coupling, 

HRC130H with taper lock bushing 1610 was used. 

4.2.5 DC Generator 

The test rig uses a Siemens DC generator as a torsion loader, where the loading is adjusted 

through the Siemens microcontroller. The magnitude of the load is expressed as a 

percentage of the maximum power which is 9.9 kW at speed of 2850 rpm, supply voltage 

400V and current of 28A.  

Table 4. 6  Specification for Fenner Coupling HRC130H 

Manufacturer Fenner 

Type HRC130H 

Size 130 

Bore diameter (mm) 14-42 

Outer diameter (mm) 130 

Diameter of hub (mm) 105 

Length of hub (mm) 18.0 

Width of rubber (mm) 36 

Taper lock bush size code 1610 
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DC generator was used to provide the torque loads to makes it easier to control the loading. 

The torque loads and speed control was done using the Siemens Micro Controller system. 

4.3 Speed and torque controller  

The test rig can be operated at different speeds and different torque loads, so a speed and 

torque controller was required. A Park 690 AC drive with Siemens Micro Master Controller 

was installed so that the motor could be run at different speeds and different torque loads.  

The Siemens Micro Master Controller was installed on the rig and proved easy to use and 

was able to deliver torque and speeds accurately. Loading is conducted using a set-up panel 

screen that includes number of steps, time of operation (minute), AC motor speed (%) and 

DC torsion load (%) 

 

 

 

Figure 4. 5 Siemens Micro Master Controller and data acquisition system 
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4.4 Data acquisition and measurement systems 

The data acquisition system (DAS) consisted of two sets of multiple channels of ADC 

converters with associated software for collecting vibration, acoustic and AE data. 

In the vibration monitoring system, the relevant hardware was the vibration transducer 

which has a useful frequency band up to 10 kHz, an amplifier and/or pre-amplifier, and a 

data acquisition card (DAC) installed in a PC. The amplifier increases the vibration signal 

and serves to isolate the processing and display equipment from unwanted interference from 

the vibration pick up.  

The software allows data acquisition with different triggering modes, which is convenient 

for viewing the data in real time and saving data to the hard drive. In addition, DAC has 

basic data analysis capabilities such as correlation, synchronised time averaging and 

spectrum analysis of data.  

4.4.1 Data acquisition system for vibration and airborne sound 

In these experiments the DAS system was a Sinocera YE6232B, a 16-channel high speed 

data acquisition system which recorded all the measurements data at a sampling rate of 96 

kHz, see Figure 4.6.  

 

 

 

Figure 4. 6 Sinocera YE6232B 
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Table 4. 7 Technical specifications of the Sinocera 

(GST, DAQ,2010) 

DAQ system manufacturer  Sinocera YE6230B 

Number of Channels  16 channels. Selectable voltage/IEPE input.  

Multiplexing isused to sample each channel in 

turn. 
A/D conversion resolution 16 bit 

Sampling rate (maximum) 100kHz per channel parallel sampling  

Input range  ±5V 

Gain Selectable, either 1, 10 or 100 

Filter  Anti-aliasing filter 

Signal frequency range 30 kHz 

Interface USB 2.0 

Software YE7600 

 

The data acquisition system is supported by general purpose YE76000 software for data 

acquisition, conditioning and analysis as part of the data acquisition system. This software 

supports the YE6232B and allows users to set up parameters for data acquisition, data 

conditioning, data formatting, real-time analysis and signal sources. It also possesses 

efficient data storage and fast data conversion to Matlab format; 16 bit with 16 channels. It 

has the capability of real time domain analysis, frequency domain, statistical analysis and 

time-frequency domain.  It also allows selection of acquisition modes: oscilloscope, manual 

continuous and triggered. 

Vibration transducers 

The vibration transducer is used to measure machinery or structural vibration by converting 

vibration energy into a measurable voltage. Velocity pickups, accelerometers and eddy 

current or proximity probes can be used for vibration measurement. Today accelerometers 

are by far the most popular vibration transducers used with rotating machinery (Girdhar and 

Scheffer, 2004). 

The accelerometers attached to the test rig were Sinocera model CA-YD-185TNC. Two 

were attached to the NDE bearing, in the horizontal direction. These are piezoelectric 

devices with integrated electronics in which a piezoelectric material responds to mechanical 

deformation by developing an electrical charge across its surfaces. A charge amplifier is 

used to produce a voltage which is directly proportional to the applied mechanical stress. 

The specification of the accelerometer is given in Table 4.8.  
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Table 4. 8 Specification of the Sinocera accelerometer model CA-YD-185TNC 

(GST,Accelerometer,2010) 

 

Manufacturer Sinocera 

Type Accelerometer (piezoelectric) 

Model CA-YD-185TNC 

Frequency range 0.5Hz to 5000Hz 

Voltage Sensitivity  4.96mV/ms
2
 

Temperature range -20ºC to 120ºC 

 

The accelerometers were attached to the bearing housing casing using a threaded bronze 

stud. The vibration transducers were each connected to the DAS as described above and 

then to the computer via a USB port. 

Acoustic sensors 

The acoustic sensor or microphone is used to measure the airborne sound radiated from 

journal bearing to its surrounding.  

When a component of machine vibrates in the presence of air, the air molecule at the surface 

will start to vibrate as well. The vibration transmits through the air as oscillating pressure at 

frequency and amplitude depend on the original sound source. A microphone is designed to 

convert pressure oscillations to electrical signals which can be saved and analyzed to get 

information on the nature and characteristic of the sound source. 

The piezoelectric microphone is one kind of microphone that can be used for test and 

measurement purposes. The piezoelectric microphone uses a quartz or ceramic crystal 

structure. This type of microphone is able to gain very high amplitude pressure range. The 

output voltage of piezoelectric is proportional to the pressure exerted on it. 

The microphones were used are Sinocera model BAST YG 201 07067 for the DE bearing 

and model BAST YG 201 07065 for the NDE bearing. The microphones were placed 220 

mm away from the accelerometer pick up. The microphone was directly connected to the 

DAS and then connected with the computer by USB.  
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Table 4. 9 Specifications of the Sinocera microphone model BAST YG 201 

(BAST, 2007) 

Manufacturer  Sinocera 

Name BAST YG 201 07067 with ICP Microphone 

Preamplifier 
Type   CHZ 211 serial 0069 

Frequency response 20Hz to 100 kHz ± 0.2 dB 

Dimensions Ø 12.7 mm x 70 mm  

Sensitivity 49.5 mV/Pa 

Maximum output voltage 5.0 Vrms 

Operating temperature 

range 
-40C to +80 C 

  

4.4.2 Data acquisition system for AE 

The AE data acquisition system use PAC PCI-2 commercial data acquisition system. The 

PCI-2 AE System is a 2-channel data acquisition and digital signal processing system on a 

single full-size 32-bit PCI-Card. The PAC PCI-2 data acquisition board is shown in Figure 

4.7. (PAC, 2009) 

Channel 1

Channel 2

 

Figure 4. 7 PCI-2 AE System board  

In the operation of data acquisition, waveform transfer and processing is supported by the 

Windows platform of PACwin Suite. The PAC Windows platform consisting of AEwin
TM

, 

which can be run in standard Windows such as Windows 98, 2000 and XP. The sampled AE 

waveforms can be continuously transferred to the hard disk. Hence the AE signal can be 

saved up to the capacity of the hard disk in the computer. The PCI-2 AE system 

specification is shown in Table 4.10.  

 



   

                                                                                                                                                  102  

 

 

Table 4. 10 Specifications of the PCI-2 AE system specification 

(PAC, 2009) 

Manufacturer  Physical Acoustic Corporation 

AE input 2 channels 

Input impedance  50 ohm or 1000 ohm 

Frequency response 1kHz-3MHz 

Minimum noise threshold 17dB 

ADC Type 18bit 40 MSPS per channel maximum 

Dynamic range >85dB 

Sample rate 100kS/s-40MSPS 

Operating temperature 5C to +45 C 

DC Power 12Volt, 1.0 amps 

 

Advanced analysis can use the Mathlab
TM

 code for configuring the AE signal and streaming 

data system as shown in Figure 4.8. 

 

Figure 4. 8 AE signal measurement and data streaming system configuration 

The acoustic emission sensor is a transducer that converts the mechanical energy carried by 

the elastic wave into an electrical signal. The transducer most used in acoustic emission 

application is the piezoelectric transducer. The AE transducer used here the wide band 

model PAC WD FQ 35 with sample frequency 1 MHz. The specification of AE transducer 

is as shown in Table 4.11. 
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Table 4. 11 AE transducer specification 

(PAC, 2010) 

Manufacturer Physical Acoustic 

Corporation 
Type Wideband AE Sensor 

Model WD FQ 35 

Peak sensitivity 64.50 dB ref 1V/bar 

Frequency response Peak frequency 263,67 kHz 

Frequency range 100kHz-1MHz 

Operating range -45 C to 125 C 

AE DAS AEwinTM for PCI2 version 

E1.55 pre amplified by 40 dB.  
 

The output signal from AE-sensor was pre-amplified by 40 dB through a preamplifier 

20/40/60 dB gain. 

4.4.3 Load cell 

The load cell converts mechanical force into an electric signal. In this test it is used to 

measure the radial force imposed on the bearings by the hydraulic ram. The specification of 

the Sinocera model CL-YB-11.5kN load cell is given in Table 4.12. This type of load cell is 

essentially a high precision strain gauge.  

Table 4. 12 Sinocera load cell specification 

(GST, Load Cell, 2010) 

Manufacturer  Sinocera  

Name Weight Transducer (Strain Based) 

Type   CL-YB-11 

Sensitivity 1.5mV/N 

Linear range 0-5kN 

Overload 150% 

Operating temperature -20 to +60C 

Material Special alloy steel 

Output connection Five core shielded cable 
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4.4.4 Temperature sensor 

For measuring the temperature on the bearings being tested, TC Ltd commercial type K 

thermocouples were used. These are miniature (1.5 mm diameter) mineral insulated 

thermocouples with miniature flat pin plug connected to the data acquisition system through 

a preamplifier and distributor. The specifications of the thermocouple are shown in Table 

4.13.  

Table 4. 13  Thermocouple specification 

(TC, 2009) 

Manufacturer TC Ltd 

Type K 

Sheath diameter 1.5 mm x 250 mm 

Sheath material 321 Stainless Steel 

Operating range -100 C to 800 C 

4.4.5 Pressure sensor 

A radial load is imposed on the bearing testing measured using load cell and pressure 

transducer. The pressure transducers used to measure the radial load from the hydraulic 

pump are strain gauge pressure transmitters RS 249 3836. The strain gauges are small 

components that are fixed to a surface that is strained. The change in length of the element 

caused by external pressure or external force produces change in the electrical resistance. 

The electrical resistance change is processed and converted into a voltage. The specification 

of the pressure transmitter is presented in table 4.14.  

Table 4. 14  Pressure transmitter specification 

(RS) 

Manufacturer RS 

Type 249 3836  

Supply 10V dc 

Output 0-100 mV 

Operating range 40bar G 
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4.4.6 Shaft encoder 

Encoder or speed transducer is widely used for measuring the output speed of rotating 

objects such as electrical motors, turbines and internal combustion engines. This encoder is 

a sensor produces signals due to rotation movement of such items as an electrical motor 

shaft. The DC type of encoder or tachometer generates a voltage directly proportional to the 

shaft speed. The encoder is coupled and installed to the electrical end of the motor shaft. 

The encoder used is economic for small devices, has a long life and very small torque ball 

bearings. Specification of the encoder is shown in Table 4.15. 

Table 4. 15  Encoder specification 

(Hengstler, 2001) 

Manufacturer HENGSLER 

Type RI 32  

Mounting Round flange 

Number of pulses 100 

Shaft diameter 5mm 

Maximum speed 6000 rpm 

Operating temperature  -10 – 60C 

Supply voltage DC 5V10% 

 

4.5 Seeded faults 

Most premature bearing faults (45%) is caused by the presence of impurities in the lubricant 

(Clevite, 2002). Water, fuel and gas contamination of the lubricant may result in inadequate 

lubrication and eventually cause wear. Solid contaminants cause immediate damage (e.g. 

scratching) to the bearing surface. 

The information contained in the surface vibration, airborne sound and acoustic emission 

responses for self-aligning journal bearing due to viscosity variation and lubricant surface 

deterioration were investigated in a series of experiments which imitated bearing 

deterioration due to water contamination of the lubricant and scratched surface bore. 

4.5.1 Water contaminated lubricant 

Water in oil creates rust and sludge, change in viscosity, foaming, acidity and decrease of 

lubricant film strength. Water contamination accelerates the aging process resulting in, 



   

                                                                                                                                                  106  

 

 

amongst other things, corrosion, reduced lubricant film strength, damaged components and 

premature aging of the oil (Noria Corporation, 2003). The potential sources of water 

contamination in lubricating oil including leakage from cooler, condensation of atmospheric 

humidity, coolant jacket leak and contamination from top-up oil or during oil changes.  

The mixing of lubricant ISO VG 46 with water was done manually by using a chemical 

measuring tube. Concentration of water and lubricant were as follows 0%, 1.25% and 2.5%.  

4.5.2 Surface scratch 

Scratching is a problem that is often found in journal bearing failures, see Section 2.9. A 

scratch is a step change in the local roughness in the surface of a journal bearing. It also 

means a change the distribution and size of the local asperities which can lead to changes in 

amplitude and frequency of vibration, noise and AE emitted from the bearing. 

To obtain information in a controlled way on the surface vibration, airborne sound response 

to the presence of a scratch an artificial or imitation scratch was introduced into the bearing. 

The artificial scratch was made by cutting a circumferential scratch on the surface bearing 

bore every two millimetres along the length of bearing using a lathe cutting tool. The journal 

bearing with seeded with a scratch fault which was 0.05 mm deep and 0.1 mm wide, see 

Figure 4.20. 

 

 

(a)                                                        (b) 

Figure 4. 9 Self-aligning spherical journal bearing, normal and with seeded scratch 

 



   

                                                                                                                                                  107  

 

 

4.6 Experimental procedure 

This study investigated the changes in vibration, airborne sound and AE signal 

characteristics of a self-aligning spherical journal bearing fault due to lubricant viscosity 

variation, lubricant and surface deterioration. The lubricant deterioration is due to water 

contaminant in three concentrations 0%, 1.25%, and 2.5% by volume.  

The surface deterioration is due to circumferential scratches each 0.05 mm deep and 0.1 mm 

wide. The surface vibration, airborne sound and AE characteristics of the self-aligning 

spherical journal bearing will also be functions of radial load and speed and lubricant 

viscosity. 

4.6.1 Radial load and speed variation. 

Because the SA35M self-aligning spherical journal bearing is relatively new, there was little 

information available regarding its response to changes in radial load, speed and lubricant 

viscosity. Thus the aim of this experiment was to obtain surface vibration, airborne sound 

and acoustic emission characteristics of the self-aligning spherical journal bearing due to 

variation in radial load, shaft speed and lubricant kinematic viscosity.  

The initial experiments consisted of two set of tests: the first was for four speeds 362.5 rpm 

(25% of the maximum speed of 1450 rpm), 725 rpm (50% of the maximum speed), 1087.5 

rpm (75% of the maximum speed) and 1450 rpm (maximum speed). At each speed there 

were three different radial loadings: 2bar, 10bar and 20bar. Through all the tests the bearing 

was lubricated with specified lubricant ISO VG 32. 

The tests were performed start save at a temperature of 22.5°C, so that the effect of 

temperature on the surface vibration, airborne sound and acoustic emission responses can be 

reduced. 

The sensors used have been described in Sections 4.3.1 (accelerometers), (microphone) and 

4.3.2 (AE sensor). The accelerometers were attached to the bearing housing casing by a 

threaded bronze stud and the microphones were placed 220 mm behind the accelerometer. 

The AE sensors were placed on the horizontal surface of the bearing housing.  
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4.6.2 Lubricant viscosity variation 

The test rig used to determine the effect of viscosity variation on surface vibration, airborne 

sound and acoustic emission with the same speed and loading parameters as in the first sets 

of tests but with four different lubricants: ISO VG 32 (as a reference) and lubricants ISO 

VG 46, ISO VG 68 and SAE 90. 

4.6.3 Lubricant deterioration due to water contaminant 

This series of experiments used the test rig to investigate the characteristics of the surface 

vibration, airborne sound and acoustic emission response from the SA35M self-aligning 

spherical journal bearing it was tested using lubricant ISO VG 46 with four levels of water 

contamination 0%, 1.25% and 2.5% by volume. The tests were conducted under constant 

radial load of 2bar, 10bar and 20bar with speed 25%, 50%, 75% and 100% of maximum 

speed (1450rpm). This test also was performed on the test rig. 

4.6.4 Scratching surface deterioration  

These experiments were used to investigate the characteristics of the surface vibration, 

airborne sound and acoustic emission signals for the SA35M self-aligning spherical journal 

bearing with surface deterioration caused by scratching.  

The experiment program investigating the effects of surface deterioration was done by 

comparing the surface vibration, airborne sound and acoustic emission signals from two 

otherwise identical journal bearings for the same speed and load but with and without the 

seeded fault. The two bearings are shown in Figure 4.2, the bearing with the seeded faults is 

at the drive end (DE) and the normal bearing is at the non-drive end (NDE).   

The scratched surfaces experiments were conducted under constant torsion load of 2 bar, 10 

bar and 20 bar under speeds of 25%, 50%, 75% and 100% maximum speed. The bearing 

was lubricated by specified lubricant ISO VG 32.  

The analysis is done by comparing the surface vibration, airborne sound and acoustic 

emission responses of the scratched bearing with that of the reference bearing. Tests of the 

reference bearing were conducted by installing normal bearing on both DE and NDE under 

same load and speed conditions. 

 

 



   

                                                                                                                                                  109  

 

 

4.6.5 Summary of experiment procedure 

Summary of experiment procedure can be shown in table 4.16 and 4.17. 

 

Table 4. 16  Experiment procedure for repeatability and viscosity variation 

 

No Experiment type Speed (%) Radial load (Bar) 

1 Repeatability 25 2, 10 and 20 

  50 2, 10 and 20 

  75 2, 10 and 20 

  100 2, 10 and 20 

2 Viscosity variation   

 ISO VG 32 25 2, 10 and 20 

  50 2, 10 and 20 

  75 2, 10 and 20 

  100 2, 10 and 20 

 ISO VG 68 25 2, 10 and 20 

  50 2, 10 and 20 

  75 2, 10 and 20 

  100 2, 10 and 20 

 SAE 90 25 2, 10 and 20 

  50 2, 10 and 20 

  75 2, 10 and 20 

  100 2, 10 and 20 
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Table 4. 17  Water contaminant in oil and scratching surface bearing 

 

No Experiment type Speed (%) Radial load (Bar) 

3 Water contaminant in oil ISO VG 46   

 % water contaminant 25 2, 10 and 20 

  50 2, 10 and 20 

  75 2, 10 and 20 

  100 2, 10 and 20 

 1.25% water contaminant 25 2, 10 and 20 

  50 2, 10 and 20 

  75 2, 10 and 20 

  100 2, 10 and 20 

 2.5% water contaminant 25 2, 10 and 20 

  50 2, 10 and 20 

  75 2, 10 and 20 

  100 2, 10 and 20 

4 Scratching surface bearing   

 Normal surface bearing 25 2, 10 and 20 

  50 2, 10 and 20 

  75 2, 10 and 20 

  100 2, 10 and 20 

 Scratching surface bearing 25 2, 10 and 20 

  50 2, 10 and 20 

  75 2, 10 and 20 

  100 2, 10 and 20 
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CHAPTER FIVE  

SURFACE VIBRATION, AIRBORNE SOUND AND ACOUSTIC EMISSION 

CHARACTERISTICS OF A SA35M SELF-ALIGNING SPHERICAL JOURNAL 

BEARING UNDER DIFFERENT OPERATION  

5.1 Introduction 

To develop more effective methods for the detection of developing faults in self-aligning 

spherical journal bearings, this chapter investigates surface vibration, airborne sound and 

acoustic emission signals from such bearings under different operating conditions. The 

study of changes in radial load, rotation speed and the quality of the lubricant give a fuller 

understanding of the physical processes of feature development in bearings.  

All the tests were performed on the test rig described in Chapter 4.1 using two SA35M self-

aligning spherical journal bearings as described in Section 4.1.1. Experiments were carried 

out with the journal bearings installed on the driven (DE) and non-driven (NDE) sides of the 

load cell see Figure 4.1. The accelerometer CAY-YD-187 TNC, microphone BAST YG 201 

and the data acquisition system Sinocera YE6230B were used in the experiment, were 

described in Section 4.3. 

The acoustic emission experiments used a Physical Acoustic Corporation (PAC) Model WD 

FQ 35 and WD FQ 36 is as described in Section 4.3.2. The Data Acquisition System and 

tools for measurement and analysis tools are AEwin
TM

 for PCI2 version E1.55 pre amplified 

by 40 dB, with sampling rate 1MHz and record length for 10 second.  

The experiment for determining the effect of speed and radial load on surface vibration, 

airborne sound and acoustic emission characteristics was performed for radial loads of 2 bar, 

10 bar and 20 bar. Each experiment the motor speed was operated at 25%, 50%, 75% and 

100% of the maximum of 1450 rpm.  

To reduce the influence of temperature on the vibration, acoustic and acoustic emission 

signals the initial data collection was always carried out at the same temperature of 22.5 C.  

Installation of instrumentation measurement such as accelerometer, microphone and 

acoustic emission sensors are as shown in Figure 5.1. 
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Figure 5. 1 Instrumentation measurement installation 

 

Each experiment was performed 3 or 4 times to get a good reliability and repeatability of 

data. Statistical parameters such as RMS value and Kurtosis value for the time and 

frequency domains were used for descriptive and comparative analysis of the surface 

vibration, airborne sound and acoustic emission spectra. 
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5.2 Repeatability of experimental results 

The result of repeatability test is divided in to surface vibration, airborne sound and acoustic 

emission measurement result. Each measurement result the time domain, RMS means value, 

kurtosis, spectrum and mean value of spectrum and comparative analysis are applied.  

5.2.1 Surface vibration 

Figure 5.2 is the time domain surface vibration (SV) signal of the two self-aligning spherical 

journal bearings DE and NDE for three tests operated at 100% speed with radial load 10 bar 

and use lubricant ISO VG 32.  

Figure 5.2 shows no significant difference between the first, the second and third 

experiments. 
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Figure 5. 2 SV signal of bearing under 10bar radial loads for three tests 
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Experimental repeatability can also be seen from the SV RMS of the raw signal as shown in 

Figure 5.3  
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Figure 5. 3 SV RMS value from raw signal of DE and NDE bearing under three loads and 

four speeds for three test runs 

 

The SV RMS values from the raw signal indicates that while the influence of speed is clear 

to see, particularly from 75% to 100% of maximum speed,  the variation in radial load do 

not give significant difference because the RMS values obtained at the different loads 

overlapped. These variations occur due to the difficulty of precisely controlling the radial 

load because lack of sensitivity in the pressure transducer allows a small pressure drop in 

the hydraulic system.  

Figure 5.4 is the SV frequency domain signal for the journal bearings operating at 100% 

maximum speed and 20 bar radial load for three test runs. 
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Figure 5. 4 SV spectra of DE and NDE bearing under 20 bar load and 100% maximum 

speed 

 

The spectrum of the surface vibration is shown in Figure 5.4 and in general it can be seen 

that there is a small difference in pattern and peak amplitude at 5.6 kHz of the spectra 

between the first, second and third experiments.  

Figure 5.5 shows surface vibration RMS values for different loads and speeds for both DE 

and NDE bearings which also demonstrate experimental repeatability. 
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Figure 5. 5 SV mean spectrum response value on bearing under different load and speeds for 

three test runs 

 

The SV RMS value on DE and NDE bearings for different speeds and three radial loads 

shows repeatability under the experimental limitations mentioned above and, importantly, at 

speeds above the minimum the ranges of the measurements do not overlap.  

5.2.2 Airborne sound  

Figure 5.6 shows the time domain of airborne sound (AS) signal for the DE and NDE 

bearings. The figure shows no significant differences between the three test results which is 

confirmed by the RMS value of airborne sound for both DE and NDE bearings obtained 

under three loads and at four speeds, see Figure 5.7. It can be seen that the plots for the tests 

are difficult to distinguish because they overlap. As with the vibration signal the RMS level 

initially increases with speed, but unlike the vibration signal, the RMS value for the airborne 

sound drops at greater than 75% of the maximum speed. This case is caused by improving 

of lubrication system. 
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Figure 5. 6 AS signal for DE and NDE bearings under 10bar radial loads at maximum speed 

for three test runs 
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Figure 5. 7 AS RMS values from raw time domain signals for DE and NDE bearings under 

three loads and four speeds for three test runs 
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Figure 5. 8 AS spectra for DE and NDE bearings under maximum load and at maximum 

speed for three tests runs 

 

Figure 5.8 shows the AS spectra obtained for the DE and NDE bearings at 100% speed and 

20 bar radial load for three test runs. It can be seen that the three spectrums are within 

experimental repeatability.  

Figure 5.9 shows the AS means spectra for DE and NDE bearing under different speeds and 

radial loads. As with the vibration signal the mean value initially increases with speed, but 

unlike the vibration signal the mean value for the airborne sound drops at after 75% of the 

maximum speed. The figure shows that the variability in measurement with change in radial 

load means that it is not possible to distinguish significant differences between test runs for 

different loadings.  
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Figure 5. 9 AS mean spectra for DE and NDE bearing under different speeds and radial 

load. 

5.2.3 Acoustic emission 

Figure 5.10 shows the amplitude of the time domain signals of the acoustic emission (AE) 

of the self-aligning spherical journal bearings when operated at 100% speed with three 

radial loads; 2 bar, 10 bar and 20 bar using lubricant of ISO VG 32. Three tests runs were 

performed.  

Figure 5.10 also indicates that the AE signal is a mix of burst and continuous types and that 

signal amplitude increased with increasing radial load. It means that more and larger AE 

events are generated at high radial load. 
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The three AE signals in the three tests show no significant difference. Based on the figure it 

was concluded that the AE signal repeatability was good.  
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Figure 5. 10 AE time domain signal for DE and NDE bearing under three loads at maximum 

speed for three test runs 

 

Figure 5.11 shows the time domain AE RMS value for three test runs of the DE and NDE 

bearings for three radial loads at four speeds. 
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Figure 5. 11 AE RMS values for DE and NDE bearings in three loads at four speeds for 

three test runs 

 

Figure 5.11 clearly shows that increase in load gives a significant increase in time domain 

AE RMS amplitude and that as the speed increases the AE RMS amplitude also increases. It 

can be seen that the results for each load and speed are not significantly different and this is 

taken to mean the repeatability of AE RMS amplitude tests is very good. It can also be seen 

that the results at each speed and load (except possibly at the lowest speed) are substantially 

different from each other. 

Figure 5.12 shows the frequency domain of AE signal of a journal bearing under three radial 

loads 2 bar, 10 bar and 20 bar at 100% speed for three test runs at frequency range of 1-

100kHz. 
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Figure 5. 12 AE spectra for DE and NDE bearings under three loads at 100% speeds for 

three test runs 

 

Figure 5.12 shows that AE peaks occur at about 5.2 kHz and 36.6 kHz, with a high 

amplitude range between 2.5 kHz and 42 kHz. The figure shows that when the radial load 

increases the peak value also increases. The comparison of AE spectra in the three test runs 

shows no substantial difference in either pattern or amplitude. This is taken to mean the 

repeatability of the AE experiment is satisfactory. 

Figure 5.13 is the mean value of the AE spectrum for three radial loads on the bearing for 

four speeds and three test runs. 
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Figure 5. 13  AE mean value for DE and NDE bearings in three loads at four speeds for 

three test runs 
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Figure 5.13 shows that AE mean response for the NDE journal bearing for two frequency 

ranges; low frequency (20 kHz-90 kHz) and high frequency (90 kHz-320 kHz) has good 

repeatability but with some small variation at maximum load for the high frequency 

measurement probably due to small variation in load due lack of sensor sensitivity. The 

frequency ranges were selected based on the spectrum pattern shown in Figure 5.12 which 

shows high amplitudes in the frequency range 20 kHz-90 kHz, but greater than 90 kHz the 

AE amplitude is lower than amplitude at less than 90 kHz. 

From Figures 5.2 to 5.13 for SV, AS and AE responses in both time and frequency domains 

it is concluded that overall repeatability is quite acceptable, although not 100%. It is 

suggested that the imperfection in repeatability is due mainly to radial load leakage in the 

hydraulic system because of the lack of sensitivity of the pressure transducer and as a 

secondary effect the difficulty of controlling the temperature of the local environment 

although the experiment always started at 22.5
o
C. 

The AE response shows the best repeatability, followed by SV and then the AS. 

Determination of the surface vibration, airborne sound and acoustic emission responses 

characteristics is done by averaging of three sets of experiment data. 

 

5.3 Surface vibration characteristics 

This section presents the results obtained from the investigation of SV characteristic of a 

self-aligned spherical journal bearing due to speed and radial load variation using lubricant 

ISO VG 32. 

5.3.1 Time domain analysis 

Figure 5.14 shows the time domain of the SV acceleration raw signal of the DE and NDE 

self-aligning journal bearing for three kind of radial loads at 100% of maximum speeds. 
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Figure 5. 14  SV signal for DE and NDE bearings for three radial loads at maximum speed 

 

Figure 5.14 shows that the SV amplitude for self-aligning journal bearings at 100% of motor 

speed increases with radial load. The figure indicates that there is small difference in 

amplitude between DE and NDE bearings which might be due to their different positions 

and starting conditions. The influence of radial load and speed on the vibration response can 

be seen in statistical parameter and spectrum analysis. 

Figure 5.15 is the Kurtosis value for the time domain raw signal for DE and NDE bearings 

for different speeds and radial loads. 

 

 

 

 



   

                                                                                                                                                  126  

 

 

20 30 40 50 60 70 80 90 100
2

3

4

5

6
DE Kurtosis Value from Raw Signal

Speed (%)

K
u
rt

o
s
is

 

 

20 30 40 50 60 70 80 90 100
2.5

3

3.5
NDE Kurtosis Value from Raw Signal

Speed (%)

K
u
rt

o
s
is

 

 

 

Figure 5. 15  Kurtosis values of raw SV time domain signal for both DE and NDE bearings. 

 

Figure 5.15 shows that the Kurtosis value is affected by the speed, increasing with speed at 

low speeds but levelling off or falling as the speed approaches its maximum value. The 

figure shows that for the DE bearing Kurtosis increased with load, but this was not the case 

for the NDE bearing. Radial load does not appear to influence the Kurtosis value in a 

consistent manner.  

The Kurtosis value lies between 2.0 and 3.4 for the NDE bearing which indicates that the 

sampled amplitude distribution was close to Gaussian, but for the DE bearing the range was 

between 2.5 and 5.1 which indicates that only at the highest speed was the sampled 

amplitude distribution close normal distribution or closed Gaussian because Kurtosis close 

to 3.  

Figure 5.16 is the SV RMS value of the time domain of the raw signal for DE and NDE 

bearings under three different radial load and four speeds 
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Figure 5. 16 SV RMS value for time domain signal for both DE and NDE bearings for three 

radial loads and four speeds 

 

Generally Figure 5.16 shows a small positive correlation between speed and SV RMS value 

for the raw signal time domain, but at maximum speed the RMS value increases 

significantly. Only at maximum speed does there appear to be a significant differences in 

SV RMS values with radial load. For identifying the effect of radial load against SV RMS 

value it is necessary to use the SV spectrum or SV spectrum analysis for getting an accurate 

analysis. 

5.3.2 Frequency domain analysis 

SV spectra for the DE and NDE journal bearing for three radial loads at 25% of the 

maximum speed are shown in Figure 5.17 and at maximum speed in Figure 5.18. 
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Figure 5. 17 SV spectra for DE and NDE bearings under three radial loads at 25% 

maximum speed 
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Figure 5. 18 SV spectra for DE and NDE bearings under three radial loads at maximum 

speed 
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Figure 5.18 show that there are small differences in SV responses at the DE and NDE 

bearings. This is due to differences in the initial conditions and respective loads of the two 

bearings. High amplitudes can be seen in the frequency spectrum for both bearings in the 

range 3 kHz to 6 kHz. It can be seen that when the bearings operate at low speed (25%) and 

low load (2 bar), Figure 5.17, the bearings generated similar amplitude vibration to those 

obtained when the bearings operated at low speed with medium radial load of 10 bar.  

Figure 5.19 shows the mean value of SV spectrum for the frequency range between 4 kHz 

and 7 kHz, for DE and NDE for three radial loads and four speeds. As can be seen as the 

speed increases the vibration amplitude also increased. There are substantial differences in 

SV bearing responses in DE and NDE bearings under different radial loads; 2 bar, 10 bar 

and 20 bar 
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Figure 5. 19  SV mean value of spectrum (high frequency range 4 kHz to 7 kHz) for DE and 

NDE bearings under three radial loads at four speeds 
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According to existing surface vibration theory the SV RMS value, the amplitude of 

vibration is a function of the speed of shaft according to a quadratic equation relationship, 

while the effect of radial load on the vibration acceleration amplitude corresponding to a 

linear equation.  

5.4 Airborne sound characteristics 

The experiment for determining the effect of speed and radial load on airborne sound (AS) 

characteristics of the DE and NDE self-aligning journal bearings were performed in parallel 

with SV measurements. Thus the radial loadings were 2 bar, 10 bar and 20 bar and the 

speeds were 25%, 50%, 75% and 100% of the maximum. Lubricant ISO VG 32 was used in 

both DE and NDE bearings. 

5.4.1 Time domain analysis 

The AS time domain raw signals for DE and NDE bearings for maximum speed and three 

radial loads are shown in Figure 5.20 which shows that the AS amplitude for both bearings 

show no significant difference due to radial load.  
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Figure 5. 20 AS signals for DE and NDE bearings for maximum speed and three radial 

loads 
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Figure 5.21 shows the effect of speed and radial load on the RMS of the raw time domain 

AS signal. It can be seen that initially as the speed increases the RMS amplitude of the AS 

slowly increases but at maximum speed, the AS amplitude increases relatively sharply. 

When the radial load on the bearing increased from 2 bar to 10 bar no significant change in 

the AS RMS levels were observed. But when increasing the load from 10 bar to 20 bar a 

substantial decrease in RMS level was noted. This phenomenon is due to improving 

lubrication film.   
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Figure 5. 21 AS RMS value of raw signal for DE and NDE bearing for four speeds and three 

radial loads 

 

Figure 5.22 shows the Kurtosis for the AS time domain raw signal for three radial loads and 

four speeds.  

Figure 5.22 shows that, overall, when speed increased the Kurtosis for the DE bearing 

tended to increase. No precise or clear trends were observed for the Kurtosis for the NDE 

bearing. The effect of increasing the radial load was unclear and depended upon the speed of 

the bearing for both bearings. The figure shows that Kurtosis value for both the DE and 

NDE bearings varied between about 2.95 and 3.05 indicating a Gaussian distribution.  
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Figure 5. 22  Kurtosis value of AS time domain raw signal in DE and NDE bearings for 

three radial loads and four speeds 

 

5.4.2 Frequency domain analysis 

The spectrum of the AS for the DE and NDE bearings for three radial loads at low speed 

(25% of maximum speed) is shown in Figure 5.23 which indicates that radial load does not 

significantly affects the AS amplitude response. The AS large peak amplitudes occur at high 

frequency range 4.75 kHz up to 6.5 kHz and highest amplitude state at frequency 5.4 kHz 

Clearly there is a difference in the AS signal between the DE and NDE bearings. This is due 

to differences in bearing condition and radial load on the bearing.  
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Figure 5. 23 AS spectra for DE and NDE bearings under three radial loads at speed 25% 

maximum 
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Figure 5. 24  AS spectra for the DE and NDE bearings at maximum speed and three radial 

loads 
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Figure 5.24 is the AS signal spectra from the DE and NDE bearings at maximum speed and 

three radial loads. The figure shows that the radial load does not affect to the AS spectrum 

amplitude significantly.  

Confirmation can be seen on the RMS AS spectrum amplitude for speed variation as shown 

in Figure 5.25.   
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Figure 5. 25 AS mean value of spectrum (7 kHz to 18 kHz) for DE and NDE bearings for 

three radial loads and four speeds 

 

Figure 5.25 shows the effect of speed on the AS RMS for the high frequency (7 kHz to 18 

kHz) spectrum response for both DE and NDE bearings for three radial loads and four 

speeds. Both the figures show the same general “concave” shape, an initial increase in AS 

RMS amplitude followed by a decrease when the speed reached maximum. The figure also 

indicates that the effect of radial load on the AS RMS amplitude was not significant.  

5.5 Acoustic emission characteristics 

This section describes the results obtained using AE to detect the effects of radial load and 

rotation speed on the two bearings installed on DE and NDE sides of the hydraulic ram.  The 

AE sensor was mounted on bearing housing in the horizontal direction. 
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The initial set of experiments was to test the effects of three radial loads and four drive 

speeds. The viscosity grade of the lubricant was ISO VG 32. As with the surface vibration 

and airborne sound analysis, the determination of AE characteristics used both time and 

frequency domain analysis and AE mean analysis.   

5.5.1 Time domain analysis 

The raw AE time domain waveforms for DE and NDE bearings are shown in Figure 5.26 

and 5.27 for three radial loads; 2 bar, 10 bar and 20 bar with 50% and 100% of maximum 

speed respectively. 
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Figure 5. 26 AE signal for DE and NDE bearing for three radial loads at 50% maximum 

speed 
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Figure 5. 27 AE signal for DE and NDE bearing for three radial loads at maximum speed 
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Figures 5.26 and 5.27 indicate that the AE response is a mix of burst and continuous signals, 

and that the amplitude increases with increasing radial load; more and larger AE events are 

generated at higher speeds. The AE signals for the two bearings (DE and NDE) are different 

due to different initial conditions and different installed positions. 

200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

Speed(rpm)

K
u
rt

o
s
is

Kurtosis on DE

200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

Speed(rpm)

K
u
rt

o
s
is

Kurtosis on NDE

 

 

2bar

10bar

20bar

 

Figure 5. 28  Kurtosis values of raw AE signal for both DE and NDE bearings for three 

radial loads and four speeds 

 

Figure 5.28 shows the Kurtosis value obtained from the raw AE time domain signal for both 

bearings for three load and four speeds. The figure shows that the Kurtosis for the DE 

bearing generally exhibits values > 3, thus the distribution of data of AE signal is non-

Gaussian. However, for the NDE bearing 7 of the 12 measurements are < 3, suggesting that 

the distribution of data is close to the Gaussian distribution.  

The high values of Kurtosis can be explained by the fact that AE signals, even when 

described as continuous, are a series of impulses which means the Kurtosis – which is a 

measure of the peakedness of the signal – will return a high value.  
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The trends in Kurtosis with load for the DE and NDE bearings are difficult to be drawn a 

general conclusion. 

The Figure 5.29 shows the RMS mean value of the AE signal response for the DE and NDE 

bearing for four different speeds and three radial loads.  
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Figure 5. 29  AE RMS value from raw signal for DE and NDE bearings for four different 

speeds and three radial loads 

 

Figure 5.29 shows a positive correlation between speed and the AE RMS response for the 

raw signal. The figure also shows significant increase in AE amplitude with increase in 

radial load.  

5.5.2 Frequency domain analysis 

Figures 5.30 and 5.31 are the AE spectra for DE and NDE bearing for three radial loads at 

100% of maximum speed respectively in different range of frequency.  
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Figure 5. 30  AE spectra for DE and NDE bearing for radial load 20 bar at 100% maximum 

speed at frequency range 1-100kHz 

200 400
0

1

2

3

4

5
x 10

-3

A
m

p
lit

u
d
e
 (

m
V

)

Test  under 2bar-100%rpm

 

 

DE

NDE

200 400
0

1

2

3

4

5
x 10

-3

A
m

p
lit

u
d
e
 (

m
V

)

Test  under 10bar-100%rpm

200 400
0

1

2

3

4

5
x 10

-3

A
m

p
lit

u
d
e
 (

m
V

)

Test  under 20bar-100%rpm

200 400
0

1

2

3

4

5
x 10

-3

A
m

p
lit

u
d
e
 (

m
V

)

Test  under 2bar-100%rpm

200 400
0

1

2

3

4

5
x 10

-3

A
m

p
lit

u
d
e
 (

m
V

)

Test  under 10bar-100%rpm

200 400
0

1

2

3

4

5
x 10

-3

A
m

p
lit

u
d
e
 (

m
V

)

Test  under 20bar-100%rpm

200 400
0

1

2

3

4

5
x 10

-3

Frquency(kHz)

A
m

p
lit

u
d
e
 (

m
V

)

Test  under 2bar-100%rpm

200 400
0

1

2

3

4

5
x 10

-3

Frquency(kHz)

A
m

p
lit

u
d
e
 (

m
V

)

Test  under 10bar-100%rpm

X: 365.5

Y: 0.003295

200 400
0

1

2

3

4

5
x 10

-3

Frquency(kHz)

A
m

p
lit

u
d
e
 (

m
V

)

Test  under 20bar-100%rpm

 

 

Figure 5. 31 AE spectra for DE and NDE bearing for radial load 20 bar at maximum speed 

at frequency range 100-500kHz 

 

Figures 5.30 and 5.31 show that increasing in radial load generates higher AE signal 

amplitude. The figures also show that for both DE and NDE bearings as speed increased so 

did the amplitude of the peaks in the spectrum. The figures indicate that high amplitude 

peaks are present at frequency of 365.5 kHz.  

Figure 5.32 shows the mean value of the AE spectrum in the DE bearing at low frequency 

range 20 kHz to 90 kHz and at high frequency range 90 kHz up to 320 kHz. The mean value 

in the NDE bearing at low and high frequency range for three radial loads and four speeds is 

shown in figure 5.33. 
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Figure 5. 32  AE mean amplitude for low (20 kHz to 90 kHz) and high frequency (90 kHz to 

320 kHz) ranges for the DE bearing for three loads and four speeds 
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Figure 5. 33 AE mean amplitude for low (20 kHz to 90 kHz) and high frequency (90 kHz to 

320 kHz) ranges for the DE bearing for three loads and four speeds 
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Both figure show that for both bearings the mean value of the AE spectrum increased as 

speed increased. When radial load is increased, the AE mean amplitude also increased.  

As mentioned in Chapter 3 the magnitude AE energy generated in the journal bearing is 

affected by the radial load and speed. The released AE energy increases with radial load and 

is linearly influenced by the speed. 

Based on the relationship between speed, radial load and amplitude; the SV, AS and AE 

signals show that the magnitude of the RMS value for each of the three type of signals 

increased with increase in radial load and speed.  

5.6 Discussion of load and speed characteristics 

Repeatability, signal characteristics of surface vibration, airborne sound and acoustic 

emission responses in a self-aligning spherical journal bearing under different speed and 

load are as follows: 

5.6.1 Repeatability 

As described in Chapter 4 the test rig used for this study is a new test rig, so it was 

necessary to analyze the repeatability of the response to establish a correct result every time 

an experiment is run. 

To determining the repeatability of surface vibration, airborne sound and acoustic emission 

testing responses, it is necessary to run the measurement system 3 to 4 times for each 

specific data collection. The acquired data is then further processed using Matlab
TM

 

software for analysis. Analyses used include time domain analysis such as the RMS value of 

the raw signals, and in the frequency domain the mean value of the spectrum over a given 

bandwidth. 

The repeatability of the surface vibration signal indicates that there is no significant 

difference between the first, second and third tests from the analyses in the time and 

frequency domains. The repeatability for airborne sound and acoustic emission signals were 

similar.  

The repeatability of the RMS value of the raw signal of the surface and airborne sound for 

the three kinds of experiments cannot be identified because the each graphic coincidence 

and they are plotted close to each other.  
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The spectra for the three measurements showed no significant difference. 

The mean values for the spectral analysis of the surface vibration and acoustic emission 

indicate that the repeatability of the responses for light, medium and heavy loads are very 

good. However, the mean value of the response for the spectral airborne sound cannot be 

identified.  

From the three measured parameters it is shown that acoustic emission responses have the 

best repeatability rate followed by a surface vibration and airborne sound respectively. 

5.6.2 Radial load characteristics 

In the time domain analysis, the responses of the surface vibration and airborne sound 

indicate that the radial load has no significant impact on the amplitude of the responses. But 

the effect of radial load on the acoustic emission signal’s amplitude is significant and 

noticeable. 

The analysis of the RMS value of the raw signal of surface vibration and airborne sound 

indicates that the effect of radial load on both signals is difficult to be distinguished. 

However, the analysis of the RMS values of the acoustic emission signal shows very clearly 

that there is a positive relationship. When the radial load increases the AE RMS value from 

raw signal also increases. 

The effect of radial load against Kurtosis values for the surface vibration and airborne sound 

does not show a significant difference when the load is varied although the Kurtosis value is 

approaching 3 and close to the Gaussian data distribution pattern. The effect of radial load 

on AE Kurtosis value also cannot be distinguished. The Kurtosis value on the acoustic 

emission signal response is very high due to the essentially burst types of signal. 

The effect of radial load on the AE spectrum responses is very obvious and significant, but 

on the surface vibration and airborne sound spectrum the influence of the radial load on the 

amplitude and spectrum pattern is not significant. 

The spectrum mean value for the high frequency bands for surface vibration and acoustic 

emission show a highly significant response to radial load, but the airborne sound response 

cannot be identified. The measurements indicate that the acoustic emission once again has 

the best sensitivity responses followed by the surface vibration and airborne sound. 
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5.6.3 Speed characteristics 

The effect of speed variations on the surface vibration, airborne sound and acoustic emission 

responses can be analysed using the RMS value, Kurtosis and spectrum mean value. There 

is a positive correlation between the speed and the RMS value of the surface vibration, 

airborne sound and acoustic emission responses. When the speed is increased the RMS 

value of the raw signal for vibration and acoustic emission surface also increases. 

The effect of speed on the kurtosis value for the surface vibration, airborne sound and 

acoustic emission responses could not be identified.  

The spectrum mean value analysis shows that there is a positive correlation between the 

speed and the mean amplitude of the spectrum of the surface vibration and acoustic 

emission responses. When the speed is increased the spectrum of the mean values of the 

surface vibration and acoustic emission responses also increases. 

 The mean value of the airborne sound spectrum initially showed a positive correlation with 

speed, but after reaching a speed of 75%, the maximum the mean spectrum amplitude 

decreased. This could be due to the improved lubrication system on the journal bearing. 

The third parameter measurement again showed that the acoustic emission response has the 

best response followed by the surface vibration. 

The best parameter that shows the influence of radial load and speed on the surface 

vibration, airborne sound and acoustic emission spectrum responses is the mean spectrum 

value for the high frequency range. 

5.6.4 Frequency characteristics 

Surface vibration, airborne sound and acoustic emission have different frequency responses. 

Spectrum analysis on the surface vibration (see Figures 5.4, 5.17 and 5.18) showed that high 

amplitude responses are dominant at frequencies between 3 kHz and 6 kHz. Peaks with the 

largest amplitudes are located at frequencies around 3.1 kHz, 4.1 kHz and 5.7 kHz. 

The spectra of the airborne sound response (see Figures 5.8, 5.23 and 5.24) show that high 

amplitudes dominate in the frequency band between 4.8 kHz and 6.1 kHz with the largest 

amplitude peak located at 5.4 kHz. 
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The spectra of the acoustic emission response (see Figures 5.12, 5.30 and 5.31) show that 

maximum amplitudes appear in the ranges from 3 kHz up to 12 kHz, and 12 kHz up to 50 

kHz. The peak amplitudes occur at frequencies 5.6 kHz and 36 kHz. 

Surface vibration, airborne sound and acoustic emission in a journal bearing caused by 

asperity contact occur in the higher frequency spectra and with random temporal 

distribution. Journal bearing surface imperfections can be expressed by its roughness level 

between bearing contact surfaces. 

The AE Kurtosis of the journal bearings shows high values. This means that the signal data 

pattern is of a non-Gaussian distribution. The AE signals of journal bearings are formed 

from the combination of continuous and burst type responses originating from the surface 

asperities – the making and breaking of welds. The impulse signal or hit occurs due to the 

level of imperfections or early fault on the contact surfaces of the shaft and journal bearing 

also the journal bearing side surface with the stopper surface. Amani also founded  that the 

Kurtosis value for the AE signal in gear transmission is greater than 10 in the early stages of 

wearing and in the final stages the Kurtosis value increases to over 100 (Amani, 2004).  

The other SV, AS and AE characteristics of a journal bearing are also influenced by the 

quality or viscosity of the lubricant, this investigation will be presented in Chapter 6. 

5.7 Summary of load and speed characteristics 

Based on the result investigation and discussion of the self-aligning spherical journal with 

radial load and speed variation it can be summarized as follows: 

5.7.1 Repeatability experimental results 

It is indicated that overall repeatability of the measurements is acceptable, although not 

100% match both for surface vibration and acoustic emission responses. It is suggested that 

the imperfection in repeatability is due mainly to radial load leakage in the hydraulic system 

and  lack of sensitivity of the pressure transducer. The AE response shows the best 

repeatability, followed by surface vibration and then the airborne sound measurement. 
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5.7.2 Surface vibration, airborne sound and acoustic emission characteristics  

Surface vibration, airborne sound and acoustic emission characteristics of a self-aligning 

spherical journal bearing vary with radial load and speed as follows. 

The effect of speed and radial load on surface vibration: 

 There is a positive correlation between the speed and the RMS value of the raw signal. 

 The influence of the radial load on the RMS value from the raw signal cannot be 

detected. 

 SV Kurtosis value due to speed variations shows a distribution that was close to 

Gaussian, but is not consistent regarding the different radial load variation.  

 High amplitude dominates at frequencies from 3 kHz up to 6 kHz. 

 High amplitude peaks occur at frequencies of 3.05 kHz, 4.05 kHz and 5.6 kHz. 

 The effects of speed and radial load variation on the spectrum mean value are clear and 

significant. 

The effect of speed and radial load variation on airborne sound response: 

 There is a positive correlation between speed and the RMS value of the raw signal.  

 The effect of radial load on the RMS value of raw signal was not detected.  

 AS Kurtosis value was close to that for a Gaussian distribution, but it did not 

distinguish between different radial loads. 

 High amplitude peaks dominated the AS spectrum from 4.75 kHz to 6.5 kHz, with the 

highest amplitude peak at 5.4 kHz. 

 There was a positive correlation between speed and spectrum mean value but after the 

speed reached 75% of the maximum, the spectrum mean value slightly decrease. The 

influence of radial load cannot be identified. 

Effect of speed and radial load on acoustic emission: 

 There is a positive correlation between speed and radial load on AE RMS value from 

the raw signal and significant differences between in different load. 

 AE Kurtosis had values that were far from Gaussian and were not consistent. 
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 High amplitudes dominated the frequency range between 250 kHz to 425 kHz. 

 The highest amplitude peaks occurred at 365.5 kHz 

 There is a positive correlation between speed and radial load and AE spectrum mean 

value in both the low and high frequency ranges. 
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CHAPTER SIX 

LUBRICANT QUALITY MONITORING  

6.1 Introduction  

This chapter describes the result of an investigation into the surface vibration and airborne 

sound and acoustic emission characteristics of a self-aligning spherical journal bearing as a 

function of viscosity, an important factor that determines the quality of the lubricant, by 

using three lubricants meeting specifications ISO VG 32, ISO VG 68 and SAE 90, and 

contaminating the lubricant by adding known proportions of water. 

Lubricating qualities are very important to ensure the longevity of a machine, because early 

damage or failure may be caused by selecting the wrong lubricant. The qualities of the 

lubricant influence stiffness, damping coefficient and damping factor of lubricant and they 

will affect the surface vibration (SV) and airborne sound (AS) response of the bearing. The 

higher viscosity of lubricant in the journal bearing will generate the SV and AS responses 

decreasing. When a thinner lubricant is applied greater SV and AS levels will be produced.  

The quality of the lubricant will also affect the acoustic emission (AE) response because it 

will determine asperity contact between surfaces. If the lubricant used on the journal bearing 

has a higher viscosity, the amount of asperity contact will decrease due to a thicker mean 

layer of lubricant. Since the amount of energy dissipated in the form of friction is reduced 

with increase in thickness of the lubricant layer, so the AE energy generated will decrease.  

Lubrication systems in engines and machines are similar to the blood circulating system in 

humans and the condition of the lubricating oil can indicate the health of the machine 

(Akintunde, 2008). The function of lubrication is to reduce wear and friction, remove 

contaminants and heat, and to cool the process (Singh, 2002). The condition of the 

lubricating oil will influence the machine operating system and the working life of engine 

components especially bearings, both rolling and journal bearings. Lubricant failure, 

degradation or deterioration can result in the impaired functioning of the bearings. 

Lubricant deterioration can be caused by gaseous, fluid or solid contaminants. Solid particle 

contaminants such as silica and wear particles act as an abrasive which accelerates wear of 

engine components, decreases efficiency and generates additional heat. As a result the 

engine consumes extra fuel, develops less power and there is an increase in maintenance 

cost.  
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Water contamination in oil can be the root cause of many problems; creating rust and 

sludge, changing viscosity, depleting additives, decreasing lubricant film strength and so 

damaging components, causing foaming, premature aging of the oil, etc. (Noria, 2003) 

Cantley (1977) developed a figure relating bearing life to water content as measured by a 

number of tests including crackle or bubble test, the Karl Fischer test and spectrometric oil 

analysis. Figure 6.1 shows an adaptation of Cantley's findings and illustrates the strong 

relationship between water content and relative bearing life. 

 

  

  

(Noria Corporation, 2001) 

 

Early failure of machinery and equipment often begins with lubricant deterioration which 

may be caused by the presence of contaminants, especially fluids or water. If water 

contamination of lubricants can be detected using vibration, airborne sound and/or acoustic 

emission responses, catastrophic failure can be prevented and risks of failure reduced with 

gains in safety, economics and finance. Therefore, it is proposed to use the surface vibration 

and airborne sound and AE characteristics to monitor the lubrication quality in journal 

bearings.  

 

Figure 6. 1 Bearing life with water contamination of lubricating oil 
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The temperature of a lubricant has a significant effect on the surface vibration, airborne 

sound and acoustic emission responses of the bearing thus the data collection was always 

undertaken under similar temperature conditions at 22.5C by using temperature sensors and 

digital thermometer. 

The first experiment was a series of tests used three uncontaminated lubricants that met the 

specifications of ISO VG 32, ISO VG 68 and SAE 90 respectively. 

The second experiment was a series of tests used lubricant ISO VG 46 contaminated with 

the addition of water: 0%, 1.25% and 2.5%  (vol/vol).  

The bearings on the DE side of the motor and NDE bearing were normal in all tests.  The 

bearing on the DE and NDE side of the motor initially had zero water in the lubricant as 

reference, and in every test the same contaminated lubricant was used in both bearings. 

Again three radial loads were imposed (2 bar, 10 bar and 20 bar) and the bearing were tested 

at 25%, 50%, 75% and 100% of maximum speed (1450 rpm).  

The experiment is repeated 3 to 4 times to get a good repeatability. Subsequent analysis was 

done by calculating the mean value of the three or four data sets. In each case the data was 

obtained in the time and frequency domains.  

 

6.2 Abnormal lubricating. 

6.2.1 Surface vibration analysis 

The SV characteristics of a self-aligning spherical journal bearing with quality of lubricant 

were obtained for “viscosity 1” (ISO VG 32), “viscosity 2” (ISO VG 68) and “viscosity 3” 

(SAE 90), for abnormal lubricating will be presented in sub-chapter 6.3.  

Time domain analysis and frequency domain analysis are used in the surface vibration 

analysis. 

Figure 6.2 show the time-domain of the raw SV acceleration signal of the DE and NDE self-

aligning journal bearings for the three lubricants at maximum speed. The first, second and 

third test represents radial load 2 bar, second test 10 bar and the third test 20 bar. 
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Figure 6. 2  SV signal on bearing for different lubricant viscosities at 100% speed and radial 

load of 10bar 

 

Figure 6.2 shows that the effect of the quality or viscosity of lubricant cannot be 

distinguished from the SV amplitude. The figure also indicates a small difference in 

amplitude between DE and NDE bearing - this may be caused by their different positions 

and starting bearing condition.  

The influence of lubricant quality on SV response was further investigated by statistical 

parameter analysis: RMS and Kurtosis. Figure 6.3 shows the Kurtosis value of the raw 

signal for DE and NDE bearings at four speeds, three radial loads and three values of the 

viscosity.  

.  

.  
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Figure 6. 3 Kurtosis value of raw signal for three different loads, four speeds and three 

lubricant viscosities 

 

The figure indicates that radial load does not produce a constant effect on the Kurtosis 

value. The Kurtosis values lie between 2.5 and 5.8 for DE bearing and 2.5 and 3.2 for NDE 

bearing, which indicates that signal amplitude distribution was close to a Gaussian data 

distribution for NDE bearings. However, the Kurtosis cannot be used to identify the effect 

of viscosity under the test conditions and there is no consistent change in Kurtosis with 

either speed or lubricant. 

Figure 6.4 shows the RMS value of the SV signal from the journal bearings as a function of 

shaft speed, radial load and lubricant. Figure 6.4 shows a small positive correlation between 

speed and SV RMS value, but the effect of radial load and viscosity variation are difficult to 

be identified. 
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Figure 6. 4 SV RMS value from raw signal in DE and NDE under different speed, radial 

loads and lubricant viscosity 

 

The SV responses of the DE and NDE journal bearing at 50% maximum speed and 20 bar 

radial load for the three lubricants ISO VG 32, 68 and SAE 90, are shown in Figure 6.5. It 

can be seen that there are small differences in SV spectrum responses between the DE and 

NDE bearings. The NDE spectrum response is higher than the DE response, this is due to 

differences in the initial conditions and loading of the two bearings.  

Individual high amplitude peaks can be seen in the frequency range from about 3.0 kHz up 

to 4.5 kHz, but between 4.7 kHz and 6.3 kHz there appears a more continuous spectrum 

with a series of broad peaks. This was the case for all three lubricants.  

The peak values generated by the bearing when operated 50% of speed and 20 bar radial 

load with three kind of  viscosity of lubricant occur at frequency 3.05 kHz, 4.05 kHz, 4.1 

kHz, 5.3 kHz and 5.7 kHz. The highest amplitude peak occurs at 5.7 kHz 



   

                                                                                                                                                  152  

 

 

. 

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
0

0.02

0.04
(a) SV Signal at Speed of 50% and under test: 2 with viscosity: 1

Frequency (Hz)

A
m

p
lit

u
d
e
 (

m
/s

2
)

 

 

DE

NDE

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
0

0.02

0.04
(b) SV Signal at Speed of 50% and under test: 2 with viscosity: 2

Frequency (Hz)

A
m

p
lit

u
d
e
 (

m
/s

2
)

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
0

0.02

0.04
(c) SV Signal at Speed of 50% and under test: 2 with viscosity: 3

Frequency (Hz)

A
m

p
lit

u
d
e
 (

m
/s

2
)

 

Figure 6. 5 SV spectrum in DE and NDE bearing for three different lubricant viscosities at 

50% maximum speed, radial load 20 bar 
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Figure 6. 6 SV spectrums in DE and NDE bearing for three different lubricants at maximum 

speed, radial load 20 bar 
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Figure 6.6 is the spectrum of the SV responses for the DE and NDE bearings under radial 

load of 20 bar and maximum speed of 1450 rpm. The figure shows high amplitude peaks at 

frequencies from 3.0 kHz to 3.7 kHz and between 3.9 kHz and 6.3 kHz.  The peak values 

generated by the bearing when operated at maximum speed and 20 bar radial load with three 

different lubricants were at 3.05 kHz, 4.05 kHz, 4.1 kHz and 5.7 kHz. The highest amplitude 

occurred at 3.05 kHz. Figure 6.6, also shows that a higher viscosity gives a lower peak SV 

amplitude at 3.05 kHz, from 0.029 m/s
2
 to 0.016 m/s

2
 

Figure 6.7 shows the effect of speed, radial load and lubricant viscosity on the RMS value of 

the raw SV signal when it has been high frequency filtered (4 kHz to 7 kHz). The most 

obvious effect that can be seen is a positive relationship between speed and RMS SV 

amplitude response  
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Figure 6. 7 SV mean value in DE and NDE bearing under different speed, radial loads and 

lubricant viscosity at high frequency 
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Figure 6.7 also shows that the RMS amplitude of the high frequency SV signal increases 

with increase in radial load and decreases with increase in lubricant viscosity for both DE 

and NDE bearings.  

6.2.2 Airborne sound characteristics 

The airborne sound measurements were performed at the same time as the surface vibration 

measurements so the conditions are identical: three radial loads - 2 bar, 10 bar and 20 bar, 

speeds of 25%, 50%, 75% and 100% of the maximum and lubricants conforming to ISO VG 

32, ISO VG 68 and SAE 90.  

In the airborne sound characteristic also use time domain and frequency domain analysis. 

The raw AS signal responses for the DE and NDE bearings for maximum speed and 10 bar 

radial load for three lubricant viscosities are shown in Figure 6.8. It can be seen that the 

time-domain of the raw AS signal from DE and NDE bearings do not appear significant 

different for the different viscosities. 
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Figure 6. 8 AS signal in DE and NDE bearing under different lubricant viscosity at 

maximum speed with 10 bar radial load 
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As in previous discussions (see Sections 5.3 and 5.4) there is little difference in the 

responses of the SV and AS signals between DE and NDE bearings. The different response 

may be caused by different condition and unsymmetrical distribution radial load. 

Figure 6.9 shows the relationship between RMS of the raw AS signal and speed, radial load 

and viscosity for DE and NDE bearings. 
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Figure 6. 9 AS RMS value raw signal for DE and NDE bearings under three different loads, 

four speeds and three viscosities 

 

Figure 6.9 shows that as the speed increases the AS RMS amplitude for both DE and NDE 

bearings increases initially, but after about 75% of maximum speed, the AS amplitude 

decreases. This phenomenon may be caused by improved lubrication. When the radial load 

on the bearing is increased there is no significant change in amplitude. This condition may 

not be due to the AS signal from the bearings alone but may be due to other components 

such as cooling fan motor, cooling fan and DC generator motors and DC generator itself. 

Figure 6.10 shows the Kurtosis values for the raw AS signal for DE and NDE bearings for 

variation in radial load, speed and lubricant viscosity 
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Figure 6. 10 Kurtosis value of AS raw signal for DE and NDE bearings under three different 

loads, four speeds and three viscosities 

 

Figure 6.10 shows that when speed increases, the Kurtosis value tends to increase but not in 

a consistent manner. The effects of increasing radial load and varying viscosity are not 

sufficiently discernible to be useful for condition monitoring. The range of Kurtosis values 

for DE and NDE bearings were within 2.9 to 3.15, indicating that the data distribution 

approaches Gaussian. 

AS frequency domain response for DE and NDE bearings under a radial load of 10 bar and 

50% of maximum speed with three different viscosities is shown in Figure 6.11.  

Figure 6.12 is the AS frequency domain response for 10 bar radial load at maximum speed 

for three different lubricant viscosities.  

Figure 6.11 and 6.12 generally indicate that viscosity variation does not significantly affect 

the AS spectral response. The figures also show that is difficult to distinguish the AS 

response of journal bearings operating at medium speed (50%) and maximum speed.  
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Figure 6. 11 AS spectrum for DE and NDE bearings under 10 bar radial load, at 50% 

maximum speed for three different lubricant viscosities 
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Figure 6. 12 AS spectrum for NDE bearings under 10 bar radial load, at maximum speed for 

three different lubricant viscosities 
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Minor peaks in the AS spectrum occur in the range between 3 kHz to 4.5 kHz, but the 

dominant peaks occur between 4.8 kHz until 6.1 kHz. The highest amplitude peak occurs at 

5.4 kHz and followed by the peak at 5.6 kHz. 

A clear difference can be seen in the AS spectra between the DE and NDE bearings. This is 

due to differences of early bearing condition and radial load on the bearing because their 

positions are not absolutely symmetric with respect to the load, as described previously in 

Section 6.2.2.1. These differences are due to the test set up they appear in every set of 

readings.  

Figure 6.13 shows the effect of speed, radial load and lubricant viscosity on the AS RMS 

spectra for DE and NDE bearings for the low frequency range (3 kHz up to 6 kHz).  
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Figure 6. 13 AS spectral mean value (3 kHz to 6 kHz) for DE and NDE bearings for four 

speeds and three loads with three different lubricants 
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Figure 6.13 shows the effect of speed on the RMS of the AS low frequency spectrum for DE 

and NDE bearings with radial load and viscosity. The pattern is much the same as for Figure 

6.9, when the speed increases the AS RMS amplitude increased but declined after reaching 

at speed of about 75% of maximum. The figure also indicates that the effect of radial load 

and viscosity on the RMS amplitude was small and difficult to identify.  

The decreasing of airborne sound RMS value after 75% of speed may be due to a better 

lubrication system.  

6.2.3 Acoustic Emission characteristics 

This section describes the results of monitoring using acoustic emission (AE) to detect the 

effects of change in lubricant viscosity on two SA35M self-aligning spherical journal 

bearings. The AE sensor and its mounting are described in Section 4.1. The initial set of 

experiments tested the effects of viscosity for three lubricants meeting specifications ISO 

VG 32, 68 and SAE 90, three radial loads (2 bar, 10 bar and 20 bar) and four speeds.  

As with the SV and AS analysis, AE characteristic due to viscosity variation used time-

domain, frequency domain, comparative, include Kurtosis, RMS and mean value analysis.  

The time-domain waveforms shown in Figure 6.14 and 6.15 are for raw AE signals for DE 

and NDE journal bearings under three radial loads, three different lubricant viscosities at 

50% and 100% maximum speed. 

Figure 6.14 and 6.15 indicate that the AE signal response is a mix of burst type and 

continuous type and that the amplitude increases with both increasing radial load and 

rotational speed. The AE time-domain amplitude also shows a significant difference with 

lubricant viscosity.  Lubricants that are less viscous will produce higher AE peak amplitude 

compared with lubricants that are more viscous. Apart from that the AE responses of DE 

and NDE bearings are similar and do not differ significantly.  
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Figure 6. 14 AE signal for DE and NDE bearings under three radial loads and three 

viscosities at 50% maximum speed 
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Figure 6. 15 AE signal for DE and NDE bearings under three radial loads and three 

viscosities at maximum speed 

 

Figure 6.16 shows the RMS value of the AE raw signal for the time-domain with speed, 

radial load variation and different viscosities for the DE bearing. 
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Figure 6. 16 AE RMS value from raw signal for DE bearing under three radial loads, four 

speeds and three lubricant viscosities 

 

Figure 6.16 shows that there is a positive correlation between shaft speed and AE RMS 

value of the raw signal for each of the three radial loads; 2 bar, 10 bar and 20 bar. No clear 

or consistent differences in the RMS value were discerned with change in viscosity. 

Figure 6.17 shows the RMS value of the AE raw signal for the time-domain with speed, 

radial load and three different lubricant viscosities for the NDE bearing. It can be seen there 

is a clear and distinct increase in the RMS value as the speed increased. It also appears clear 

that as radial load increases so does the AE RMS. The figure also appears to show that an 

increase in lubricant viscosity causes a decrease in the AE RMS amplitude of the raw signal. 

The decrease is quite clear for all three radial loads. This decrease is explained because a 

more viscous lubricant will decrease asperity contact so AE release is also reduced. 
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Figure 6. 17 AE RMS value from raw signal for NDE bearing under three radial loads, four 

speeds and three lubricant viscosities 

 

The RMS values from the raw signal for the NDE bearing show more or less similar results, 

increasing in RMS value as the speed increased, and increase in AE RMS amplitude when 

the radial load increased. It is also clear for all radial loads that using a lubricant with a 

higher viscosity produces a lower AE RMS response, because a more viscous lubricant 

decreases asperity contact and less AE energy is released. 

Figure 6.18 shows the relationship between speed and Kurtosis for the raw data obtained for 

three radial loads and three different viscosities of the lubricant for DE and NDE bearings. It 

can be seen that the Kurtosis does not show a consistent pattern. The Kurtosis has very high 

values caused by the type of signal which consists of continuous and burst type 

accompanied by multi hit. At the lowest speed the maximum radial load gave the largest 

Kurtosis value, but there was a clear peak in the Kurtosis at a speed of 50% maximum for 

the lubricant with minimum viscosity for all loads. 
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6.2.3.2 Frequency domain analysis 

The AE spectra for the raw signal from DE and NDE bearings under the three radial loads 

and for the three lubricant viscosities are shown in Figure 6.19 for 100% maximum speed at 

frequency range 1-100 kHz 

As previously Viscosity 1 represents lubricant with ISO VG 32, viscosity 2 corresponds to 

ISO VG 68 and viscosity 3 represents SAE 90. 

 

 

 

 

Figure 6. 18 Kurtosis of AE signal from DE and NDE bearing under different radial 

loads, for four speeds and three lubricant viscosities 
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Figure 6. 19 AE spectrum for DE and NDE bearings for three radial loads, three lubricant 

viscosities at 100% maximum speed at frequency range 1-100kHz 

 

The figures demonstrate that the quality of lubricant affects the amplitude of AE spectrum: a 

higher viscosity lubricant produces a spectrum with lower amplitude. In this figure high 

amplitudes occur in the frequency range from about 3.0 kHz to about 50 kHz. Clear peaks 

appear at frequencies of 5.3 kHz and 36.6 kHz.  

Figure 6.20 is AE spectra in DE and NDE bearings under the three radial loads and for the 

three lubricant viscosities at 100% maximum speed at frequency range 100-500 kHz 
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Figure 6. 20  AE spectrum for DE and NDE bearings for three radial loads, three lubricant 

viscosities at maximum speed 

 

The figures also demonstrate that the quality of lubricant affects the amplitude of AE 

spectrum: a higher viscosity lubricant produces a spectrum with a lower amplitude. The 

figures show that high amplitudes occur 361.9 kHz.  

 The highest amplitude under 20 bar radial load at 100% maximum speed with ISO VG 32 

is 0.0058 mV at 366.2 kHz. The corresponding value for ISO VG 68 is 0.0052 mV at 365.7 

kHz and for SAE 90 is 0.0047 mV at 361.9 kHz. There are significance differences in the 

AE spectrum amplitudes and frequency for the three different lubricant viscosities. 
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The effect of viscosity can also be seen in Figure 6.21 which shows the relationship between 

speed and AE mean value in the (low) frequency range 20 kHz to 90 kHz for the NDE 

bearing for three radial loads at four speeds. Figure 6.22 is the corresponding figure for the 

high frequency range 90 kHz to 320 kHz. 
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Figure 6. 21 AE mean amplitude in frequency range 20 kHz to 90 kHz for NDE bearing for 

three radial loads, four speeds and three lubricant viscosities 

 

Figure 6.22 corresponds to Figure 6.21 except that the frequency range is from 90 kHz to 

320 kHz. The mean amplitude generally appears to increase with rotational speed for all 

three loads and lubricants. However, at radial load 20 bar there is a decreasing mean value 

near maximum speed. It can be seen that generally an increase in radial load produced an 

increase in the mean AE amplitude.    

At 2 bar and 10 bar radial loads the difference in mean AE signals for the different 

viscosities is not significant. At 20 bar load the lowest viscosity (ISO VG 32) gives the 

lowest value for mean AE which is caused by out of AE frequency range.  



   

                                                                                                                                                  168  

 

 

Change in lubricant viscosity may be identified through SV and AE analysis, but with AS 

this is unlikely. 
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Figure 6. 22 AE mean amplitude in frequency range 90 kHz to 320 kHz for NDE bearing for 

three radial loads, four speeds and three lubricant viscosities 

 

6.3 Water contaminated lubricant monitoring 

A common form of lubricant deterioration is due to water ingression or vapour 

contaminants. If these contaminants can be detected early possible damage of machinery or 

machine components can be reduced or avoided. SV, AS and AE analysis is expected to be 

able to detect the presence of such contaminants in the lubricants used in the given journal 

bearings. 

6.3.1 Surface vibration monitoring  

Figure 6.23 represent the raw SV signal from the self-aligning spherical bearing for radial 

load 10 bar at maximum speed for three different concentrations of water contaminant in the 

lubricant ISO VG 46, 0.0% (contaminant 1), 1.25% (contaminant 2) and 2.50% and 

(contaminant 3). Lubricant ISO VG 46 also can be used for journal bearing lubricant under 

medium load. 
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Figure 6.23 shows little or no increase in amplitude of the raw SV signal with increased 

level of water contaminant in the lubricating oil. There is very little difference between SV 

signal responses for the DE and NDE bearings.  

Figure 6.24 shows the RMS amplitude of the raw SV signal for three radial loads and four 

speeds for three levels of lubricant contamination. There is very little difference between SV 

signal responses for the DE and NDE bearings. As previously the RMS level increases with 

speed, particularly above 75% of maximum speed. No significant differences can be seen 

due to changes in radial load or level of water contamination. The RMS value of the raw SV 

signal is not able to detect the effects of the given contaminants in the lubricant.  

Figure 6. 23 SV signal with three different levels of water contaminant at 100% speed 

under 10bar radial load 
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Figure 6. 24 SV RMS of raw signal for four speeds, three radial loads and three levels of 

contaminant  
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Figure 6. 25 Kurtosis for raw signal from DE and NDE bearings for four speeds, three radial 

loads and three levels of contaminant 
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Figure 6.25 shows the Kurtosis values obtained from DE and NDE bearings for the raw SV 

signal with change in speed, radial loading and lubricant contamination. 

It can be seen that effect of speed on Kurtosis values is small and not consistent. The effect 

of change in level of water in the oil is not significant. The effect of increasing radial load 

becomes clear only at the maximum load. The Kurtosis value of the DE bearing is between 

2.5 and 5.5, and between 2.5 and 3.3 for the NDE bearing. Thus for the NDE bearing the AE 

signal data has a Gaussian distribution. However the SV Kurtosis analysis cannot detect 

concentration of water contamination in the lubricant. 

Figure 6.26 and 6.27 show SV spectra for DE and NDE bearings under radial load of 10 bar 

with three levels of water contaminant (0%, 1.25% and 2.5% (vol/vol)) at 50% and 100% 

maximum speed, respectively. 
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Figure 6. 26  SV spectrum under different water contaminants at 50% speed 
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Figure 6. 27  SV spectrum under different contaminants at 100% speed 

 

Figures 6.26 and 6.27 show that SV peaks value occur at 3.0 kHz to 4.5 kHz and then 4 kHz 

to 6.0 kHz. Peak amplitude appears at 3.1 kHz, 4.1 kHz and 5.6 kHz.  The effects of 

changing the levels of water contaminant from 0% to 2.5 % cannot be identified either at 

50% maximum speed or maximum speed. These figures suggest it is not possible to identify 

contaminants in the lubricant from the SV amplitude alone.  

Figure 6.28 shows the relationship between speed, radial load and water contaminant 

concentration in the lubricant on the SV mean amplitude over the high frequency band 7 

kHz to 9 kHz for both DE and NDE bearings. 
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Figure 6. 28 SV mean spectrum 7 kHz to 9 kHz for radial load of 10 bar, maximum speed 

and three levels of water contaminant 

 

Figure 6.28 again shows a positive correlation between speed and radial load against mean 

of the SV signal for the high frequency band. However the figure shows that there are no 

significant differences in amplitude response with increasing water contaminant in the 

lubricant.  

6.3.2 Airborne sound characteristics  

Figure 6.29 shows the time-domain AS response for a radial load of 10 bar at maximum 

speed with different water contaminant concentrations in the lubricant (0%, 1.25% and 2.5% 

(vol/vol)).  
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Figure 6.29 shows no significant difference in SV signal pattern regarding water 

contaminant in the lubricant.  

Figure 6.30 is a plot of the relationship between RMS value of the AS signal with three 

levels of water concentration for DE and NDE bearings with three radial loads and four 

speeds. It is clear that the results obtained are generally similar to those obtained from 

previous experiments. There is no consistent relationship between increase in speed and AS 

RMS amplitude, nor are there any significant changes in AS RMS amplitude with either 

radial load or concentration of water contaminant. 

Figure 6. 29 AS signal for three levels of water contaminant concentration, 10 bar 

radial load at maximum speed 
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Figure 6. 30 AS RMS from raw signal in different load, speed and water contaminant 

concentration 
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 Figure 6. 31 Kurtosis value of in different load, speed and water contaminant concentration 
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Figure 6.31 shows the Kurtosis for the raw AS signal for the three levels of lubricant 

contamination for the three radial loads and four speeds. 

The results obtained show that there is no significant difference in Kurtosis value regarding 

variation of water contaminant concentration. Speed has no significant effect on the 

Kurtosis value for either DE or NDE bearings. The effect of variation in radial load and 

level of water contaminant on the Kurtosis cannot be identified. Overall the Kurtosis value 

for both DE and NDE bearings was between 2.9 and 3.3 so the AS data had a Gaussian 

distribution, but the Kurtosis analysis cannot identify the influence of water contaminant in 

the lubricant.  

6.3.2.2 Frequency domain analysis 

Figure 6.32 is AS spectrum for DE and NDE bearings for three different concentrations of 

water in the lubricant under 10 bar radial load at 50% maximum speed. Figure 6.33 is the 

corresponding AS spectrum but with maximum speed.  

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
0

0.02

0.04
(a) AS Signal at Speed of 50% and under test: 2 with contaminant: 1

Frequency (Hz)

A
m

p
lit

u
d
e
 (

P
a
)

 

 

DE

NDE

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
0

0.02

0.04
(b) AS Signal at Speed of 50% and under test: 2 with contaminant: 2

Frequency (Hz)

A
m

p
lit

u
d
e
 (

P
a
)

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
0

0.02

0.04
(c) AS Signal at Speed of 50% and under test: 2 with contaminant: 3

Frequency (Hz)

A
m

p
lit

u
d
e
 (

P
a
)

 

Figure 6. 32 AS spectrum under 10bar radial load at 50% speed with different water 

contaminant concentration 
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The spectra show the high amplitudes are dominant between 5.0 kHz to 6.0 kHz with the 

highest amplitude at 5.4 kHz. The influence of contaminant to the AS amplitude is difficult 

to be identified. 

Figure 6.34 shows the mean amplitude for the high frequency band, 7 kHz to 18 kHz, of the 

AS spectrum for three radial loads, four speeds and three levels of contaminant. 

 

 

 

Figure 6. 33 AS spectrum under 10bar radial load at 100% speed with different water 

contaminant concentration 
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Figure 6. 34 AS mean spectrum with different water contaminant concentration under 10bar 

radial load and 100% speed 

 

The results obtained are very similar to those obtained earlier, see Figure 6.30. There 

appears to be no significant change in mean amplitude for this high frequency band with 

change in radial loading or change in level of contaminant. There is some change in mean 

value with change in speed but this is not consistent and not useful for the detection of level 

of contaminant. It is concluded that the AS mean value measurement analysis cannot be 

used to monitor presence of water contaminant in the journal bearing lubricant. 

6.3.3 Acoustic emission characteristics  

Figures 6.35 and 6.36 are the time-domains of the raw AE signals for the DE and NDE 

bearings with water contaminant levels of 0%, 1.25% and 2.5% under different radial loads 

at 50% and 100% of maximum speed.  
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Figure 6.35 and 6.36 show that the AE signal is both continuous and burst type. The 

amplitude of the signal clearly and significantly increased with both speed and radial load. 

The figures also shows that increasing the level of water contaminant in lubrication system 

create higher amplitude and number of impulse of signal. This increasing of impulse is 

caused by increasing of asperity contact between surface bearing and shaft.  

 

Figure 6. 35 signal under different levels of water contamination and load at 50% speed 
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Obviously, the direct comparison between AE signal for 0%, 1.25% and 2.5% water 

contaminant in the lubricant confirms the clear differences between the AE waveforms both 

the amplitude and impulsive nature of the events forming the signal. 

RMS of the AE raw signal from the DE and NDE bearings for four speeds, three radial 

loads and three level of water contaminant in the lubricant is shown in the Figures 6.37 and 

6.38. 

Figure 6. 36  AE signal under different levels of water contamination, and load at 100% 

speed  
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Figure 6. 37  AE RMS from raw signal under speed, radial load and different water 

contaminant concentration. 
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Figure 6. 38 AE RMS from raw signal for NDE bearings for three radial load, four speeds 

and three water contaminant concentrations. 
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Figures 6.37 and 6.38 confirm that speed and radial load have a positive correlation with AE 

RMS response. It can be seen that an increase in the level of concentration of water in the 

lubricant generate higher amplitude in RMS value in DE bearing, but in NDE bearing 

indicate that influence increasing of water contaminant to the RMS amplitude value is not 

consistent.  

AE spectra generated by the DE and NDE bearings under three radial loads and three levels 

of water contaminant concentrations at 100% speed maximum speed at frequency range 1-

100 kHz and 100 kHz-500 kHz can be seen in Figures 6.39, and 6.40.  
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Figure 6. 39  AE spectrum under radial load and different water contaminant concentration 

at 100% speed. 
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Figures 6.39 and 6.40 show that increasing the radial load from 2 bar to 10 bar and to 20 bar 

very clearly increases the peak amplitudes of the AE spectrum, particularly at frequency 

36.5 kHz for AE spectrum in frequency range 1-100kHz and at frequency 361.7kHz for 

spectrum in frequency range 100-500kHz. The effect of increase of speed also has a 

significant effect on the peak amplitudes of AE spectrum. However, any effect due to water 

contaminant concentration in the lubrication is difficult to identify at either speed.   

 

Figure 6. 40 AE spectrum under radial load and different water contaminant concentration at 

100% speed in frequency range 100kHz-500kHz. 
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Figure 6.41 is the plot of mean value of AE signal amplitude for the frequency range 20 kHz 

to 90 kHz for four speeds, three radial loads and three levels of water contaminant 

concentration in the lubricant. It can be seen that mean AE amplitude increases with 

rotational speed and radial load.  The effect of the level of water in the lubricant on the AE 

mean amplitude is small but can be seen for all three loads at higher speeds. For lower 

speeds the differences cannot be significant because the lines meet and even cross each 

other. 
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Figure 6. 41 AE mean value  in DE bearing under different speed, radial load and with water 

contamination at frequency range 20 kHz-90 kHz 

 

Figure 6.42 is the plot of mean AE signal amplitude for the frequency range 90 kHz to 320 

kHz for four speeds, three radial loads and three levels of water contaminant concentration 

in the lubricant. Once again it can be seen that mean AE amplitude increases with rotational 

speed and radial load, but now there is some overlap in these values at lower speeds. The 

effect of the level of water in the lubricant on the AE mean amplitude can be detected at 

maximum speed but is not significant below that except at the lowest load (2 bar). 
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Figure 6. 42 AE mean value  in DE bearing under different speed, radial load and with water 

contamination at frequency range 90kHz-320kHz 

 

Conclusion to be drawn from comparisons of SV, AS and AE characteristics on presence of 

water contaminant in the bearing lubricant are as follows: 

SV raw time-domain and frequency domain signals cannot distinguish between the water 

contaminated lubricant and uncontaminated lubricant. However, SV RMS measurements 

using both low and high frequency bands can detect significant differences in the signals 

when water contaminant is present in the DE bearing.  

RMS analysis of the AE time-domain signal shows a positive correlation between water 

contaminant concentrations in the lubricant and RMS level for the signal from the DE 

bearing.  

It was found that the level of water contamination in the lubricant significantly affected the 

mean value of the AE spectrum.  The greater the level of contamination in the lubricant the 

greater the amplitude of the AE mean value for the frequency range 90 kHz-320 kHz. 
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The presence of water contaminant in the lubricant will affect its physical and chemical 

properties. This will include reducing its kinematic viscosity which will affect system 

stiffness, damping coefficient and friction coefficient which could affect the stability of the 

shaft movement. It will also affect the asperity contact area and numbers of asperities on 

opposing faces in contact with each other. Thus it would be expected that the introduction of 

water contaminant into the lubricant would increase the amplitude of the surface vibration 

and acoustic emission.  

Further research should explore the specific effect of water contamination of the surface 

vibration and acoustic emission responses of a journal bearing with small water 

concentration in the lubricant.  

6.4 Discussion of abnormal viscosity and water contaminated lubricant monitoring 

The results obtained from monitoring water contaminated lubricant in a journal bearing 

through simultaneous surface vibration, airborne sound and acoustic emission measurement 

are: 

6.4.1 Viscosity changing of lubricant 

Time domain analysis of the surface vibration, airborne sound and acoustic emission are all 

unable to identify any changes of lubricant viscosity in the journal bearing. 

The RMS values of the raw vibration signal of the surface vibration and airborne sound 

monitoring are also unable to identify changes in the viscosity of the lubricant. The RMS of 

the acoustic emission raw signal on the other hand was able to identify changes in the 

viscosity of lubricants in the journal bearings, but not consistently. 

The kurtosis analysis used for the three monitoring techniques was unable to detect changes 

of lubricant viscosity in the journal bearing. 

Spectrum analysis for surface vibration, airborne sound and acoustic emission shows the 

effect of changing the viscosity lubricant on bearing journal is not significant so that the 

spectrum analysis is also unable to detect any changes in viscosity. However the band pass 

spectra of the acoustic emission signal, at both lower and higher frequencies, are able to 

detect changes in the viscosity of lubricants in journal bearings. 
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The comparison of vibration spectrum between using ISO VG 32 to ISO VG 68 (Figure 

6.43) shows that with higher viscosity generates smaller amplitude peaks in the spectrum. 

This is consistent with theory that by using a higher viscosity of lubricant the damping 

coefficient will increase and will reduce surface to surface contact, decrease the stiffness of 

the system and reduce the amplitude of the frequency response. 
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Figure 6. 43 SV spectrum under 20 bar, 100% and in different viscosity 

 

The frequency analysis shows that the peak value appears at two frequencies 4.1 kHz and 

5.6 kHz. The effect of lubricant viscosity changes appear significant at peak value that occur 

at 5.6kHz. 

The mean value of the AE spectrum is capable of identifying the presence of lubricant 

viscosity change in the journal bearing. 

6.4.2 Water contaminant in lubricant 

The tests have shown that time domain analyses of surface vibration and airborne sound are 

unable to identify water contaminant in the lubricant.  
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Time domain analysis of the AE signal was able to identify the difference between water 

contaminated and non-contaminated lubricant in the journal bearing. The acoustic emission 

signal of water contaminated lubricant has more burst and hits than the non-water 

contaminated lubricant signal. 

RMS value of raw signals for surface vibration and airborne sound were unable to detect the 

presence of water contaminant in the lubricant.  However the RMS value for the raw AE 

signal was able to distinguish the influence of the concentration of water contaminant 

lubricant in the journal bearing. 

Kurtosis analysis for the three techniques could not identify water contamination in the 

lubricant. The Kurtosis values for surface vibration and airborne sound were close to the 

value of 3. 

Spectrum analysis for surface vibration, airborne sound and acoustic emission was not able 

to identify the presence of water contaminant in the lubricant.  

Analysis of surface vibration and acoustic emission signals showed the mean value was able 

to identify a change in the concentration of water in the lubricant at all three loads used. The 

airborne sound mean value was not able to identify differences of concentration of water in 

the lubricant. 

The surface vibration spectrum contained high amplitude peaks in the frequency ranges 3.9 

kHz to 4.5 kHz and 5 kHz to 6 kHz. Individual peak amplitudes occurred at 3.1 kHz, 4.1 

kHz and 5.7 kHz. The highest amplitude of the spectrum airborne sound arise at a frequency 

of 5.7 kHz. 

The acoustic emission spectrum contains high amplitude peaks in the frequency ranges 3 

kHz to 5.4 kHz and 12 kHz to 60 kHz. Peak values occurred at frequencies of 5.3 kHz and 

36.5 kHz. However, specific frequency characteristics for water contaminant in the lubricant 

could not be identified clearly. 
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Figure 6. 44  Vibration spectrum under 20 bar, 100% and in different contaminant 

 

The Figure 6.44 is a comparison of vibration spectra of a journal bearing using lubricant 

without contaminant and with 2.5% water contaminant in the lubricant. The spectra are 

significantly different. The water contaminated lubricants has a lower damping factor so the 

amplitude of the spectral peaks will increase. Also because lubricant contaminated with 

water has increases stiffness the frequency of the peaks will increase. 

6.5 Summary of lubricant quality monitoring 

Based on the lubricant quality monitoring experiment, analysis and discussion it can be 

summarized as: 

6.5.1 The effect of changing viscosity on the surface vibration, airborne sound and acoustic 

emission responses. 

The effect of changing viscosity on the surface vibration was as follows: 

 In the viscosity variation also there is a positive correlation between speed and RMS 

value from the raw signal but effect of radial load variation is difficult to be determined.  
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 SV Kurtosis value was close to that of Gaussian the data distribution but was not 

influenced by change in viscosity. 

 High amplitudes also were dominant in the frequency range between 3 kHz and 6 kHz. 

 High amplitude peaks also occurred at 3.05 kHz, 4.1 kHz and 5.6 kHz. There is some 

influence in the SV spectrum with change in viscosity with higher viscosity generating 

lower amplitude vibrations. 

Effect of viscosity variation of the airborne sound responses as follows: 

 There is positive correlation of speed and RMS value until the speed reached 75% of 

maximum speed after which the RMS value decreased. 

 The influence of viscosity and radial load on the RMS value of the raw signal is 

difficult to be distinguished. 

 Kurtosis values due to speed variation are to Gaussian distribution but did not identify 

the influence of viscosity or change in radial load.  

 High amplitude appear dominant in the frequency range from 4.25 kHz to 6 kHz. 

 Highest amplitude peak lies at a frequency 5.4 kHz. 

 The influence of viscosity and change in radial load on the mean value of the spectrum 

is difficult to distinguish 

Effect of changing viscosity on acoustic emission response: 

 There is a positive correlation between of speed and radial load and the RMS value 

from raw signal. 

 The influence of change in viscosity on the RMS value of the raw signal is clear but 

less consistent. 

 Kurtosis values do not match with Gaussian distribution data because of AE signal 

burst type. 

 High amplitudes were dominant in the frequency range between 250 kHz and 425 kHz. 

Peak amplitudes occurred 366.2 kHz. 

 The change to the spectrum mean value with change in viscosity was very clear and 

significant at frequencies 20kHz  up to 90kHz and 90kHz up to 320kHz 
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6.5.2. The effect of water contaminant concentration in the lubricant on surface vibration, 

airborne sound and acoustic emission responses. 

Influence of water contaminant concentration on surface vibration responses: 

 The effect of speed variation on the RMS value from the raw signal was significant but 

the influence of radial load and water contaminant could not be distinguished. 

 Kurtosis value cannot be used for identifying the water contaminant in lubricant 

 High amplitudes appear in the frequency spectrum between 3 kHz to 6 kHz, but 

dominate in the frequency range between 4 kHz to 6 kHz. 

 Highest peak amplitude was located at 5.6 kHz  followed 3.2 kHz and 4.2 kHz 

 Greater water concentration in the lubricant gave rise to higher amplitudes in the 

frequency spectrum of the vibration responses. 

The effect of water contaminant concentration on the airborne sound response: 

 Effect of radial load and water contaminant on the RMS value of the raw signal could 

not be distinguished but the influence of speed was clear, as described above. 

 Kurtosis value showed a Gaussian distribution pattern but could not be used to 

determine the effects of radial load or water contaminant. 

 High amplitudes dominate the frequency spectrum in the range between 4.8 kHz and 

6.1 kHz. The highest peak amplitude is at 5.4 kHz. 

 The effect of radial load and contaminant on the mean value of the spectrum at either 

low or high frequencies was not discernible. 

Effect of water contaminant concentration on the acoustic emission: 

 The effect of speed and radial load on the RMS value of raw signal was clear and 

significant. 

 Effect of water contaminant on AE RMS value of the raw signal was clearly visible but 

less significant. 

 High amplitudes dominate the spectrum in the frequency range between 250 kHz to 425 

kHz and highest peak amplitude occur at 361.7 kHz . 
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 The effect speed, radial load and water contaminant on the spectrum mean value in both 

the low frequency and high frequency bands was clear and significant, although not 

large. Higher water contaminant in the lubricant generates a higher spectrum mean value 

response. 

 The effect of the water contaminant can be detected by surface vibration and acoustic 

emission monitoring technique. 
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CHAPTER SEVEN 

SURFACE SCRATCH MONITORING  

7.1 Introduction 

There are many causes that lead to a bearing failure including poor journal surface finish 

due to such factors as inadequate lubrication with foreign solid particles embedded in the 

bearing surface. A consequence will be poor surface contacts or metal to metal contact 

which can generate large frictional forces resulting from resistance to shear of local contact 

points which oppose relative sliding motion. At these points rapid wear occurs and transfer 

of material to the counter surface which can result in deterioration of the bearing surface. 

Where hard particles of material contaminate the lubricant this can cause significant 

scratching which will affect the bearing journal’s surface roughness, friction coefficient and 

stiffness. Scratches will influence surface vibration (SV), acoustic emission (AE) and 

airborne sound (AS) responses.  

This chapter examines the characteristics of surface vibration, airborne sound and acoustic 

emission signals obtained when the surfaces of a self-aligning spherical journal are seeded 

with known scratches.  

7.2 Test method  

All the tests were carried out with the test rig arrangement and sensors described in Chapter 

4.2. The bearing containing the seeded scratched surface was made in the NDE bearing; the 

healthy bearing was installed on the DE side. The radial loadings were 2 bar, 10 bar and 20 

bar and the rotational speeds: 25%, 50%, 75% and 100% of maximum speed (1450 rpm). 

ISO VG 32 lubricant was used in both NDE and DE journal bearings. A description of the 

circumferential scratches seeded on the inner surface (0.05 mm deep and 0.1 mm wide) is 

given in Section 4.5 and Figure 4.9. As previously the temperature at which the tests were 

performed was 22.5 C.  

The analysis is done by comparing statistical parameters obtained from the time and 

frequency domains of the surface; vibration; airborne sound and AE signal spectra for the 

scratched bearing and reference bearing.  
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Surface vibration, airborne sound and AE characteristic for bearing reference has been 

obtained in previous experiments (see chapter five).  

The results of the experiment are grouped into surface vibration, airborne and acoustic 

emission measurements.  

7.3 Surface vibration analysis 

7.3.1 Time domain analysis 

Figure 7.1 shows SV signals in the time domain for the healthy or normal self-aligning 

journal bearing and scratched bearing for three radial loads at 100% of speed.  
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Figure 7. 1  SV signals for a normal bearing and a scratched bearing under different radial 

load at 100% speed. 

 

The difference signals between the two bearings conditions are difficult to distinguish.  The 

relationship between speed, radial load and bearing condition of the surface vibration RMS 

value from raw signal is presented in Figure 7.2. 
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Figure 7. 2 RMS value from raw signal in different load, speed and bearing condition 

 

Figure 7. 2 again show that the effects for speed and load on the RMS as previously noted. 

There is no clear difference in signals when the scratch is introduced. 

Figure 7. 3 shows the Kurtosis values obtained from the raw time domain signals for 

different radial load and speeds for scratched and normal bearings. For the NDE bearing 

there is a significant difference between unscratched bearing and bearing with scratches 

seeded into it only at maximum speed.  

 

Figure 7. 3 Kurtosis value on bearing in different load, speed and bearing condition 
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The figure appears to show that generally the differences are not significant except at 100% 

full speed for loads 20 bar and 2 bar. Based on this analysis, Kurtosis analysis failed to 

identify clear differences between normal bearing and bearing with scratch fault.  

The following analyses of the spectra are descriptive and comparative and include 

comparisons of mean amplitude for low and high frequency ranges. 

7.3.2 Frequency domain analysis 

SV response of the two bearings for three different radial loads at 100% speed is shown in 

Figure 7.4.  
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Figure 7. 4  SV spectrum under different load and condition at 100% of speed 
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The figure shows that there are differences in the spectra between the two bearings 

especially in the frequency range between 3.7 kHz to 4.8 kHz.  

Increasing radial load increases the peak 4.2 kHz for the scratched bearing, this increase 

originates from scratching. However, spectrum analysis was also not able to discern clearly 

the influence of the scratches on the SV spectrum response. Further analyses of speed, radial 

load and bearing condition on the mean SV value for the NDE bearing in the low frequency 

range (2 kHz – 6 kHz) and high frequency range (6 kHz-40 kHz)  are shown in Figures 7.5 

and 7.6. 
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Figure 7. 5 SV mean value in bearing under different load, speed and bearing condition at 

low frequency range 

 

Figure 7.5 shows the mean SV value for the low frequency band (2 kHz – 6 kHz) for normal 

and scratched bearings. The mean value for both bearings increases with speed. But SV 

mean value does not clearly and consistently distinguish between scratched and normal 

bearing. It is concluded that the mean SV value may not be appropriate to detect differences 

between normal and scratched bearings.  
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Figure 7. 6 SV mean value in bearing under different load, speed and bearing condition at 

high frequency range 

 

The relationship between speed, radial load and bearing condition is presented in Figure 7.6 

and shows that the mean value of the SV signal increases with radial load and with speed. 

Also a clear difference between the SV mean values for scratched and normal bearings can 

be seen.  It is concluded that the mean value of the SV signal for the high frequency band   

(6 kHz-40 kHz) is a promising method of detecting scratched bearings. In this frequency 

range there is a significant different influence of scratching and normal bearing to the SV 

mean value. Vibration response due to scratching occurs at high frequency and randomly. 

7.3 Airborne sound analysis 

Monitoring airborne sound measurement for the normal and scratching bearing used time 

domain and frequency domain analyses, the results are presented below. 

7.3.1 Time domain analysis 

Figure 7.7 shows AS signal amplitude for the journal bearing when normal and scratched 

under three different radial loads for maximum speed. The figure does not show that any 

clear difference between the two bearings, thus the AS signals do not directly suitable to 

detect bearing failure due to surface scratches. 
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Figure 7. 7 AS signal different bearing condition and radial load at speed 100% 

 

Figure 7. 8 AS RMS value from raw signal in bearing under different speed, radial load and 

bearing condition 
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Figure 7.8 shows the RMS value of the AS signal for three radial loads, a range of speeds 

for NDE bearing. The figure demonstrates that the RMS value of the AS signal cannot 

clearly and consistently differentiate the two bearings and so the AS time domain is deemed 

not suitable to detect bearing failure due to surface scratching. 

Figure 7.9 shows the Kurtosis of the time domain of the RMS raw signal for both bearings 

with radial loading and speed. 

 

Figure 7. 9 Kurtosis value in bearing under different radial load, speed and bearing 

condition 

 

Figure 7.9 shows that for NDE normal and scratched bearing cannot be distinguished clearly 

and consistently. Kurtosis values in NDE ranged from 2.9 to 3.1 which means the peaks in 

of the signal were close to a Gaussian distribution. 

7.3.2 Frequency domain analysis 

Figure 7.10 shows the AS spectra for scratched and normal bearings under different radial 

loads at 100% speed. It can be seen that the spectra for the raw AS signal cannot clearly 

differentiate between the healthy and scratched bearings over the range of speeds and loads 

tested. The highest amplitude in the spectra occurs in the frequency band between 4.75 kHz 

and 6.5 kHz.  
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Figure 7. 10 AS spectrum in bearing under different radial load and different condition 

 

Figure 7.11 shows the relationship between speed, radial load and bearing condition for the 

mean values of the raw AS signal. The figure shows that for the low frequency range (2 

kHz-6 kHz) the AS mean value is unable to differentiate between the normal and scratched 

bearing.  
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Figure 7. 11 AS mean value in bearing under different load and different condition at low 

frequency band 
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Figure 7. 12 AS mean value in bearing under different load and different condition at high 

frequency band 

 

Figure 7.12 shows the relationship between speed, radial load and bearing condition for the 

mean values of the raw AS signal for the high frequency band (6 kHz - 40 kHz).  

The figure also shows the effect of the scratch on the bearing can be distinguished at less 

than 50% of maximum speed. The effect then disappears but re-appears at after 75% of 

maximum speed. However it is concluded that the mean of the high frequency AS signal is 

not able to detect scratched bearings consistently. 

7.4 Acoustic emission analysis 

7.4.1 Time domain analysis 

Figure 7.13 shows the time domain of the AE signals for scratched and normal bearings at 

maximum shaft speed for three different radial loads. As previously the figure indicates a 

clear and substantial difference between the AE signals at low radial load medium and high 

load.  
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Figure 7. 13  AE signal comparison for similar bearing condition under different load at 

100% speed 

 

Figure 7.13 shows there is significant differences between the two signals so the AE signal 

has the potential of demonstrating a clear and substantial difference between the normal and 

scratched bearings. It can be seen that the signal changes from a continuous to bursts type 

and this would be expected from insertion of scratches. An investigation of the influence of 

the level of scratch on the AE signal will be conduct in further experiments. 

 

Figure 7. 14  AE RMS value in bearing under different load and different condition 
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The influence of speed and radial load on the AE RMS amplitude of the two bearings is 

presented in Figure 7.14. It is clear that - as previously - the speed increased, the AE RMS 

amplitude also increases. The effect of increasing radial load is also significant. However, 

the effect of bearing condition on AE RMS amplitude had no significant. Thus the AE RMS 

value of the raw signal is not suitable for detecting scratched bearings. Frequency analysis 

of AE signal in descriptive and analytic terms is given below. 

7.4.2 Frequency domain analysis 

AE spectra of the normal bearing and bearing with scratches on the NDE side of the motor 

under three different loads at 100% speed are shown in Figure 7.15. It can be seen that 

responses between the normal and scratching NDE bearing are significant different. The 

influence of radial load in the spectrum responses is significant, for both bearing.  

The high amplitude occurs at frequency range 3 kHz up to 100 kHz and dominant at 3 kHz 

until 40 kHz. The frequency at which the spectral peak occurred was about 30 kHz.  

0 20 40 60 80 100
0

2

4

6

8
x 10

-3 NDE under 2bar-100%rpm

A
m

p
lit

u
d
e
 (

m
V

)

 

 

NDEnorm

NDEscr

0 20 40 60 80 100
0

2

4

6

8
x 10

-3 NDE under 10bar-100%rpm

A
m

p
lit

u
d
e
 (

m
V

)

0 20 40 60 80 100
0

2

4

6

8
x 10

-3 NDE under 20bar-100%rpm

Frequency(kHz)

A
m

p
lit

u
d
e
 (

m
V

)

29.93kHz

 

Figure 7. 15 AE spectrum in different bearing condition under different radial load at 100% 

speed 
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Figure 7.16 compares AE spectra for the normal bearing and bearing with scratch fault, 

substantial differences in amplitude and frequency can be seen immediately. At high load, 

the peak value of the scratched bearing is higher and the frequency of the maximum 

amplitude peak shifts 313.8 kHz. Thus AE frequency analysis can be used to distinguish 

normal bearings from scratched bearings.  
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Figure 7. 16  AE spectrum in different bearing condition under different radial load at 100% 

speed 

 

Figure 7.17 shows the relationship between speeds, radial load and mean value of the AE 

signal mean in the low frequency range (20 kHz – 90 kHz) for scratched and normal 

bearings. It is clear that there is no clear and consistent difference in the plots for normal and 

scratched bearings. Thus the AE mean value over the frequency range 20 kHz – 90 kHz is 

not suitable for the detection of bearing damage caused by scratching. 
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Figure 7. 17  AE mean value in different bearing condition under different radial load and 

speed at low frequency 

Figure 7.18 shows mean value for the AE signal for the high frequency range 90 kHz – 320 

kHz for normal and scratched bearings under different radial loads and different shaft 

speeds. 
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Figure 7. 18  AE mean value in different bearing condition under different radial load and 

speed at high frequency  
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The figure indicate that there is a significant difference between the mean values for the 

normal and scratched bearing at all loads and at all speeds above the lowest speed (400 

rpm). It is concluded that the AE mean value of the high frequency range could be useful for 

detecting the presence of scratched journal bearings. Generally the figure again shows 

positive correlations between speed and radial load and mean value of the AE signal 

7.5 Discussion  of monitoring of scratched surface 

Discussion concerning the monitoring surface vibration, airborne sound and acoustic 

emission signals from normal and scratched self-aligning spherical journal bearings under 

different loads and speeds are as follows: 

The surface vibration and airborne sound time domain analyses are unable to discern any 

differences between the normal and scratched bearing although RMS value analysis from 

raw signal can detect changes in speed and radial load. 

In the time domain the AE signal clearly shows different responses for normal and scratched 

bearings. The amplitude of the AE time domain signal for a scratching bearing shows a 

significant higher amplitude when compared with a normal journal bearing and at high loads 

appears to be much more burst like in character. 

The kurtosis analysis of the raw signal of surface vibration and airborne sound cannot 

distinguish between normal bearing and scratched bearing although the data of the signals 

are in Gaussian distribution. 

The RMS values analyses of the raw signal obtained for surface vibration and airborne 

sound were unable identify the difference between normal and scratching bearings.  

The high frequency spectrum mean value of the surface vibration is capable of 

distinguishing between normal and scratched bearings, but this is not the case for the 

airborne sound signal and it is concluded that the airborne sound spectrum analysis cannot 

detect the difference between normal and scratched bearings responses.  

The acoustic emission spectrum analysis is able to differentiate the responses between the 

normal bearing and the scratched bearing very well.  
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Figure 7.20 is the vibration spectrum comparison between on normal journal bearing and 

scratching bearing under radial load of 20 bar at 100% speed. The figure shows that the 

vibration peak amplitude of the scratched journal bearing is higher than that of the normal 

bearing. Also the frequency at which the peak occurs is higher for the scratched bearing.  

The scratched journal bearing has a lower damping coefficient if compared with the 

damping coefficient of normal bearing, therefore it will have a higher peak vibration 

amplitude. The scratched journal bearing also has a higher stiffness coefficient than a 

normal journal bearing which means the resonant frequencies will be higher. 
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Figure 7. 19 Vibration spectrum under 20 bar radial load and 100% speed for scratched and 

healthy bearings 

 

The spectra of the surface vibration responses of the normal and scratched bearings show 

that the highest peak of the amplitude occurs at 5.58 kHz for the normal bearing but at 5.66 

for the scratched bearing see Figure 7.20. 

The AE spectrum analysis can identify the difference between the normal and scratched 

bearings which occurs at a frequency of about 38 kHz for the normal bearing and 34.7 kHz 

for the scratched bearing. 
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In addition, the time domain analysis, spectrum analysis and AE mean value analysis (high 

frequency) are appropriate to be used to monitor and detect the appearance of scratches in 

journal bearings. 

7.6 Summary of surface scratched bearing monitoring 

The effect of scratching on bearing to the surface vibration, airborne sound and acoustic 

emission responses can be summarized as follows: 

Influence of bearing scratch on vibration response: 

 The effect of speed variation to the RMS value from the raw signal significant but the 

influence of radial load and scratching to the RMS value from the raw signal is not 

significant and cannot be identified. 

 Kurtosis value close to normal distribution but could not be used to detect the presence 

of scratches in a journal bearing.  

 High amplitude appears in frequency between 3 kHz to 5.7 kHz and frequency range 

between 5.2 kHz to 6 kHz.  

 The highest amplitude peak for the scratched bearing was at 5.66 kHz.  

 There are significant differences in mean values at high frequencies between normal 

and scratching bearings for low, medium and high radial loads. 

 The presence of the scratch generated higher amplitude vibration responses. 

Influence of bearing scratch on airborne sound responses as follows: 

 The effects of speed variation and load on the RMS value of the raw signal were as 

obtained previously. 

 The presence of the scratch could not be identified from the RMS of the raw signal. 

 Kurtosis value was close to that for normal distribution but could not be used to 

detecting the presence of a scratch in the journal bearing.  

 High amplitudes dominate the spectrum in the frequency range between 4.75 kHz and 

6.5 kHz. 

 Highest peak amplitude different between normal and scratching bearing located at 5.4 

kHz. 
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 The effect of radial load and presence of a scratch on the mean value of the spectrum at 

both low and high frequencies was not significant. 

Influence of scratching on bearing of the acoustic emission as follows: 

 There is significant different of AE signal between normal and scratching journal 

bearings. 

 There is significant difference of AE spectrum between normal and scratching bearings. 

 High amplitudes dominate the spectrum in the frequency range between 250 kHz and 

350 kHz.   

 Highest and big peak amplitude different between normal and scratching bearing occur at 

313.8 kHz. 

 The effect speed, radial load and presence of a scratch on the spectrum mean value was 

clear and significant at high frequencies but less so for low frequencies.  
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CHAPTER EIGHT 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

 

8.1 Conclusions 

The symptoms of failure should be detected as early as possible and surface vibration, 

airborne sound and acoustic emission monitoring techniques are suitable for this purpose for 

a self-aligning spherical journal bearing. Based on experiments and analysis of the Surface 

vibration, airborne sound and acoustic emission characteristics of the self-aligning spherical 

journal bearing the following conclusions can be made. 

8.1.1 Conclusion of the repeatability experiments 

Conclusion one: The overall repeatability of the measurements is acceptable, although not 

100% for surface vibration, airborne sound and acoustic emission responses; the time and 

frequency domains including RMS value, Kurtosis and mean value analysis. It is suggested 

that the imperfection in repeatability is due mainly to radial load leakage in the hydraulic 

system because of the lack of sensitivity of the pressure transducer. 

Conclusion two: The AE response shows the best repeatability, followed by surface 

vibration and then the airborne sound measurement. 

8.1.2 Conclusion of radial load and speed variation responses. 

Conclusion three: There is a positive correlation between the speed of shaft and the RMS 

value of the surface vibration in the raw signal but the influence of the radial load on the 

RMS value from the raw signal cannot be detected. 

Conclusion four: High amplitude of surface vibration responses dominate at frequencies 

from 250 kHz up to 425 kHz and high amplitude peaks occur at frequencies 365.5 kHz. 

Conclusion five: There is a positive correlation between speed and radial load variation on 

the spectrum means value of surface vibration responses and it appears clear and significant. 

Conclusion six: There is a positive correlation between speed and the RMS value of the 

airborne sound raw signal but the influence of radial load on the RMS value cannot be 

detected.  
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Conclusion seven: High amplitude peaks of airborne sound spectrum dominate at 

frequency from 4.75 kHz to 6.5 kHz and the highest amplitude peak occur at 5.4 kHz. 

Conclusion eight: There is a positive correlation between speed and spectrum mean value 

of airborne sound response but after the speed reached 75% of the maximum, the spectrum 

mean value slightly decrease but the effect of radial load is difficult to be distinguished. 

Conclusion nine: There is a positive correlation between speed and radial load on acoustic 

emission RMS value from the raw signal and significant differences between in various 

loads. 

Conclusion ten: High amplitudes of acoustic emission concentred at frequency range 

between 250 kHz to 425 kHz and the highest amplitude peaks value occurred at 365.5 kHz.  

Conclusion eleven: There is a positive correlation between speed and radial load and 

acoustic emission spectrum mean value responses in the low and high frequency ranges. 

8.1.3 Effect of viscosity changing 

Conclusion twelve:  There is a positive correlation between speed and RMS surface 

vibration value from the raw signal but the effect of viscosity variation is difficult to be 

identified. The high amplitudes also dominant at frequency range between 3 kHz and 6 kHz  

and the peaks value appears at 3.05 kHz, 4.1 kHz and 5.6 kHz.  

Conclusion thirteen: There is positive correlation between speed and RMS value of 

airborne sound until the speed reached 75% of maximum speed and the influence of 

viscosity and radial load on the RMS value of the raw signal is difficult to be distinguished. 

However the high amplitude appear dominant in the frequency range from 4.25 kHz to 6 

kHz. The highest amplitude peak lies at a frequency 5.4 kHz. 

Conclusion fourteen: There is a positive correlation between speed and radial load and the 

RMS acoustic emission value from raw signal but when use higher viscosity of lubricant 

generates the lower of RMS value of the raw signal. 

Conclusion fifteen: When use higher viscosity of lubricant generate lower mean value of 

acoustic emission response at high frequency. High amplitudes dominant in the frequency 

range between 250 kHz and 425 kHz range and Peak amplitudes occurred 366.2 kHz.  
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8.1.4. Effect of water contaminant concentration in lubricant  

Conclusion sixteen: The effect water contamination on the RMS of the surface vibration 

value from the raw signal is difficult to be identified. High amplitudes appear in the 

frequency spectrum between 3 kHz to 6 kHz, but dominate in the frequency range between 

4 kHz to 6 kHz and the highest peak amplitude located at 5.6 kHz  followed 3.2 kHz and 4.2 

kHz 

Conclusion seventeen: When use greater water concentration in the lubricant create higher 

mean value of surface vibration spectrum at higher frequency.   

Conclusion eighteen: The effect of water contaminant concentration on the airborne sound 

response on the RMS and mean value airborne sound also difficult to be determined. 

However, high amplitudes dominate at frequency range between 4.8 kHz and 6.1 kHz. The 

highest peak amplitude is at 5.4 kHz. 

Conclusion nineteen: The higher water contaminant concentration in the lubricant 

generates a higher RMS value and mean value of acoustic emission responses. High 

amplitudes dominate at frequency range between 250 kHz to 425 kHz. High peak amplitude 

occurs at 361.7 kHz.  

8.1.5 Effect of scratched bearing  

Conclusion twenty: The effect of scratching on surface bearing to the RMS surface 

vibration value from the raw signal is not significant and cannot be identified, but there are 

significant differences in mean values of surface vibration at high frequencies between 

normal and scratching bearings for low, medium and high radial loads. The presence of the 

scratching in the surface of journal bearing generates higher amplitude vibration responses 

on journal bearing. 

Conclusion twenty one: High amplitude of surface vibration appears at frequency range 

between 3 kHz to 5.7 kHz and also frequency range between 5.2 kHz to 6 kHz  and the 

highest amplitude peak for the scratched bearing was at 5.66 kHz.  

Conclusion twenty two: Influence of bearing scratch on airborne sound responses as 

follows: The presence of the scratching in a journal bearing cannot be identified from the 

RMS airborne sound of the raw signal and from mean value of spectrum. High amplitudes 

dominate the spectrum in the frequency range between 4.75 kHz and 6.5 kHz and highest 

peak amplitude of normal and scratching bearing are located at 5.4 kHz. 
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Conclusion twenty three: There is significant different of acoustic emission signal and 

spectrum between normal and scratching journal bearings. The presence of a scratch on the 

journal bearing generates a higher spectrum mean value at higher frequencies.  

Conclusion twenty five: High amplitudes of acoustic emission spectrum responses 

dominate at frequency range between 250 kHz and 350 kHz and   the highest peak 

amplitude scratching bearing occur at 313.8 kHz and at 364.8 kHz for normal bearing. 

Conclusion twenty six: Based on the investigation of surface vibration, airborne sound and 

acoustic emission characteristics at different speeds, radial loads, viscosities of the lubricant, 

and lubricant deterioration by water; and with the seeding of circumferential scratches it was 

observed that the most sensitive and best results were obtained from the acoustic emission 

signals followed by surface vibration and airborne sound. The mean value of AE spectrum 

and SV spectrum at high frequencies were better than RMS value analysis of the raw 

signals. 

Conclusion twenty seven: Acoustic emission measurement and surface vibration 

measurement are effective and appropriate be used for condition monitoring for journal 

bearing of rotating machinery and equipment. 

8.2 Review of Aims and Objectives 

This section reviews the objectives and achievements of this research, by considering one by 

one the objectives of the project listed in Section 1.3.  

Objective one: To design and test a self-aligning spherical journal bearing test rig.  

Achievement one: The rig on which to test the self-aligning spherical journal bearing was 

successfully designed, built and used. The main part of the test rig consists of the drive and 

the radial load system for the bearing. The radial load on the bearing was applied by means 

of manual hydraulic equipment and torsion loading by a DC generator. Two hard rubber 

couplings (HRC) are used to carry the torsion load and connect the drive shaft supported by 

the two bearing being tested.  Construction details and components are presented in Section 

4.1 and Figures 4.1.  

Objective two: To develop surface vibration, airborne sound signal generation sources for 

the self-aligning spherical journal bearing. 



   

                                                                                                                                                  215  

 

 

Achievement two: Surface vibration, airborne sound signals generated from the self-

aligning spherical journal bearings are grouped into surface vibration, acoustic emission and 

airborne sound.  

Vibration of journal bearings occurs over a wide frequency range. Vibrations at low 

frequencies are due to the test rig installation and include unbalance, misalignment and mis-

assembly of components. The high frequency vibration is due to asperity contact between 

the shaft and bearings which may be described using a micro-spring damping model. 

Asperity contact also affects the friction and damping coefficients and frictional forces in 

the vibration system. The vibration system in the journal bearing is a forced multi degree of 

freedom system, requiring high order non-homogeneous differential equation, as described 

in detail in Section 3.2. 

The source of airborne sound on a journal bearing is described Section 3.3. Airborne sound 

from journal bearings is due to electromagnetic and structural forces and changes in 

hydrodynamic pressure in the bearings, all of which propagate outwards through bearing 

and bearing housing. The fan on the drive motor and DC motor are also sources of airborne 

sound. This problem can be eliminated by filtering technique. 

Acoustic emission is generated by the contact between bearing and shaft. The amount of 

energy released is strongly influenced by asperity contact and lubrication conditions. 

Acoustic emission in the journal bearing contact is explained in Section 3.4. 

Objective three: To develop a monitoring measurement and diagnostic system for journal 

bearing condition monitoring. 

Achievement three: A comprehensive system of machine surface vibration monitoring 

using accelerometers, airborne sound monitoring using a piezoelectric microphone and 

acoustic emission monitoring sensors were all used to detect and analyse the signals emitted 

by the bearing. These were able to detect the symptoms of bearing failure at low, middle and 

high frequencies by using vibration, acoustic and acoustic emission monitoring. Monitoring 

and analysis techniques are discussed in Sections 2.4, 3.2, 3.3 and 3.4. 

Objective four: To study the characteristics of surface vibration, airborne sound and 

acoustic emission signal response of the self-aligning spherical journal bearing under the 

influence of radial load and speed variation. 
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Achievement four: The effects of radial load and speed variation on the surface vibration 

characteristics of the bearing were investigated simultaneously.  The experiment for surface 

vibration, airborne sound and acoustic emission was performed at least three times to 

confirm the repeatability of data sets.  Repeatability analysis for three kinds of experiments 

shows satisfactory results.  

It was found that the surface vibration and acoustic emission RMS level increased when the 

radial load and speed was increased except for airborne sound. The radial load does not 

appear influence the airborne sound responses.  

The repeatability analysis and effects change in radial load and speed on the vibration 

characteristics, airborne sound and acoustic emission of the journal bearings are described in 

Chapter 5. 

Objective five: To investigate the characteristics of the surface vibration, airborne sound 

and acoustic emission response of the self-aligning spherical journal bearing under different 

oil viscosities.  

Achievement five: The effects of lubricant viscosity on the surface vibration, airborne 

sound and acoustic emission characteristics of the bearing were investigated separately but 

under similar loading operation. 

It was found that the influences of viscosity change may be clearly identified through 

surface vibration analysis and acoustic emission analysis, but airborne sound measurement 

failed to identify the influence of change in viscosity. 

When using a more viscous lubricant the surface vibration and acoustic emission mean 

value amplitude decreased. The surface vibration, airborne sound and acoustic emission 

investigations of the journal bearing for different lubricant viscosities are presented in 

Chapter 6, Section 6.2. 

Objective six: To investigate the characteristic of surface vibration, airborne sound and 

acoustic emission due to lubrication deterioration caused by water contaminant.  

Achievement six: The effects of lubricant deterioration due to water contamination on the 

surface vibration and airborne sound characteristics of the bearing were investigated 

separately.  
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The presence of water contaminant in the lubricant was successfully detected using surface 

vibration and acoustic emission RMS spectra at high frequency. Airborne sound analysis 

failed to detect the presence of the water contaminant. Water contaminant in the lubricant 

created higher surface vibration and acoustic emission RMS mean values and the results are 

presented in Chapter 6, Sections 6.3. 

Objective seven: To investigate the characteristic of surface vibration, airborne sound and 

AE due to the bearing surface deterioration caused by scratching.  

Achievement seven: The changes in responses of SV, AS and AE signals when the journal 

bearing surface was scratched were very clear in both the time and frequency domains. The 

highest amplitude of the signal that occurs with each type of measurement is located at a 

different frequency. 

The investigation of the influence seeded scratch faults on the Vibro-acoustic response of 

the journal bearing is described in Chapter 7.  

Objective eight: To develop Matlab
TM

 codes for processing and analysing the data outputs 

from the accelerometers, microphones and AE sensors in the time domain and frequency 

domains analysis. 

Achievement eight: The experimental data is presented in a Matlab format. Processing and 

analysis was performed using Matlab programming including time domain, frequency 

domain and parameter statistical analysis. Matlab codes for processing and analysis of data 

for all the experiments are presented in ten data analysis programs includes repeatability and 

analysis program for surface vibration and airborne sound responses on journal bearing 

under radial load and speed variation; with different viscosity; with different concentration 

water contaminant in the journal bearing lubricant and with scratching bearing. 

Acoustic emission analysis program also consist of repeatability and analysis of acoustic 

emission responses on the journal bearing under speed and radial load variation; viscosity 

variation; water concentration contaminant in the lubricant and with a scratched journal 

bearing. 

Objective nine: To provide guidelines for further research and development of surface 

vibration, airborne sound and AE characteristic for self-aligning spherical journal bearing 

for early fault detection. 
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Achievement nine: Possible further research is presented in Section 8.4. 

8.3 Contributions to knowledge 

First contribution: The design and construction of journal bearing test rig with beam 

supporting loading system (described in Chapter 4) for Centre for Efficiency and 

Performance Engineering. This rig is able to investigate characteristic of normal bearings or 

bearings with seeded faults under different combinations of load (radial and torsion), shaft 

rotational speed, temperature etc., simultaneously. The test rig is equipped with all the basic 

sensors needed to investigate characteristic of bearings in a controlled manner using at least 

three different methods simultaneously such as surface vibration, airborne sound and 

acoustic emission. 

Second contribution: Studies of the characteristics of the surface vibration, airborne sound 

and AE for a self-aligning spherical journal for change in radial load and speed have been 

done, see Chapter 5. This study provides basic information about surface vibration, airborne 

sound and AE for further research concerning the detection of early damage to the self-

aligning spherical bearing journal using frequency discrimination (low and/or high 

frequencies).  

This study will assist future researchers to determine the relative merits (strengths and 

weaknesses) of each system of measurement for any particular application to the monitoring 

of journal bearing 

Third contribution: These studies report surface vibration, airborne sound analysis of the 

characteristics of the self-aligning spherical journal bearing due to abnormal lubricant and 

surface deterioration, particularly use of  the high frequency response, see Chapters 6 and 7. 

Current surface vibration, airborne sound analyses focuses only on low frequencies. 

8.4 Suggestion for future work 

The first suggestion: To reduce the influence of surface roughness of shaft on the surface 

vibration, airborne sound and AE characteristics, the normal condition should use a standard 

shaft and bearing with a roughness standard of N5 or N6. 

The second suggestion: To develop vibration numerical analysis on the self-aligning 

journal bearing at high frequency to get the natural frequency characteristic especially for 

fault or abnormal bearing.  
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The third suggestion: Conduct surface vibration, airborne sound and acoustic emission 

tests at high frequencies using the same data acquisition methods to perform integrative 

experiment for the self-aligning journal bearing for different levels of roughness or asperity. 

The fourth suggestion: 

Perform integrative testing with surface vibration, airborne sound and acoustic emission for 

self-aligning spherical journal bearings with different levels of surface scratching.  

The fifth suggestion: 

Perform integrative testing with surface vibration, airborne sound and acoustic emission for 

self-aligning spherical journal bearings with incremental surface wear. 

The sixth suggestion: 

Perform integrative testing with surface vibration, airborne sound and acoustic emission for 

self-aligning spherical journal bearings with lubricant deterioration and solid contaminants 

from very low concentration of contaminant. 

The seventh suggestion: 

Conduct integrative testing with surface vibration, airborne sound and AE for self-aligning 

spherical journal bearings with the surface deterioration using advanced analysis such as 

wavelet analysis. 

8.5 List of Publications 

The research so far has generated papers as follows: 

1. P. Raharjo, J. Gu, Y. Fan, F.Gu and A. Ball, Early failure detection and diagnosis of a 

self-aligning journal bearing through surface vibration, airborne sound analysis, presented 

at CM - MFPT 2010, Proceedings: The Seventh International Conference on Condition 

Monitoring (CMM) and Machinery Failure Prevention Technologies (MFPT), 22-24 June 

2010, M. Ahmed Stratford-Upon-Avon, UK 

2. P. Raharjo, F. Al Thobiani, F. Gu, and A. Ball, Early failure detection and diagnosis of a 

self aligning journal bearing, Proceeding of COMADEM 2010, June 28-July 2, 2010, 23
rd

 

International Congress on Condition Monitoring and Diagnostic Engineering, Nara, Japan. 

3. P. Raharjo, S. Abdusslam, Tie Wang, F. Gu and A. D. Ball, An Investigation of Acoustic 

Emission Responses of a Self Aligning Spherical Journal Bearing, Proceeding: The 
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Eighth International Conference on Condition Monitoring (CMM) and Machinery Failure 

Prevention Technologies (MFPT), 20-22 June 2011, St. David’s Hotel, Cardiff, Wales, 

United Kingdom 

4. S. Abdussalam, P. Raharjo, F. Gu, A. D. Ball, Time Encoded Signal Processing and 

Recognition (TESPAR) Response to Different Bearing Faults, Proceeding of the 17
th

 

International Conference on Automation and Computing, University of Huddersfield, 

Huddersfield, UK, 10 September 2011. 

5. P. Raharjo, S. Abdussalam, F. Gu and A. D. Ball, Surface Vibration, Airborne Sound 

Monitoring of a Self Aligning Spherical Journal Bearing due to Oversize Eccentric  Bore 

Fault, Proceeding: The Ninth International Conference on Condition Monitoring (CMM) 

and Machinery Failure Prevention Technologies (MFPT), 12-14 June 2012, The Earl’s 

Court Ibis Hotel, London, United Kingdom. 

6. P. Raharjo, F. Gu, B.Tesfa and A. D. Ball, A Comparative Study of Monitoring a Self 

Aligning Spherical Journal using Surface Vibration, Airborne Sound and Acoustic 

Emission, COMADEM 2012, 25
th

 International Congress on Condition Monitoring and 

Diagnostic Engineering, 18-20 June 2012, Huddersfield, England, UK, Journal of Physics, 

conference Series, IOP Conference Series, 364 (2012) 011001.  

7. S. Abdussalam, P. Raharjo, F. Gu,  and A. D. Ball, Bearing defect detection and diagnosis 

using a time encoded signal processing and pattern recognition method, COMADEM 

2012, 25
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APPENDIX  

 

Appendix 1. Journal bearing capacity 

The total load of journal bearing will support may be expressed by (Stachowiak, 2001) 

  
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W  

Where: 

W : Journal bearing capacity (N) 

U : Linear speed of shaft (m/s) 

d: Shaft diameter (m) 

n: Shaft speed (rpm) 

L: Length of bearing (m) 

: Absolute viscosity (Pas) 

 : Eccentricity ratio 

c: Clearance (m) 

Data of calculations: 

Diameter of shaft  d = 35 mm=0.035m 

Length of bearing L= 76mm=0.076 m 

Viscosity of lubricant: 46 cSt 

Clearance c=250*1e-6 m 

Eccentricity ratio =0.7 (optimum) 

Shaft speed variation n=1450*[0.2 0.4 0.6 0.8 1] (rpm) 

Conversion of kinematic viscosity to absolute viscosity: 




   

   
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Where: 

: Kinematic viscosity (cSt) 

: Lubricant density (kg/m^3) 

: Absolute viscosity (Pas) 

Numerical data: 

Kinematic viscosity = 46 (cSt)=46 mm
2
/s=46 10

-6
 m

2
/s 

Lubricant density = 850 (kg/m
3
) 

1cP=10
-3

Pas 

Absolute viscosity: 

   

85010.46 6  

0391.0  Pas 

04.0  Pas 

40  cP 

The journal bearing capacity in different eccentricity ratio is shown in Figure (A.1) 
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Figure A.1, Journal bearing capacity  
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List of journal bearing regarding to speed variation is shown in table A.1 

Table A.1, Bearing load capacity 

 

 

 

 

 

 

 

 

Appendix 2,  Load cell calibration 
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y = 0.0016*x - 1.2e-013

data 1
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Figure A.2, Journal bearing capacity  

 

No Operation (%) Journal bearing capacity (N) 

1 20 360.3 

2 30 540.4 

3 40 720.5 

4 50 900.6 

5 60 1081 

6 70 1261 

7 80 1441 

8 100 1801 
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Table A.2, Load cell calibartion 

 

 

 

 

 

 

 

 

Appendix 3, Microphone 

 

Figure A.3, Microphone Calibration certificate 

 

 

 

 

 

No Operation (bar) Radial load (N) 

1 0 45.3   

2 2 277.0   

3 4 445.8   

4 6 676.8   

5 8 843.2   

6 10 904.1 
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Appendix 4,  PAC AE Sensor 

 

 

Figure A.4, AE Calibration certificate 
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Appendix 5, Accelerometer 

 

 

 

Figure A.5, Accelerometer Calibration certificate 

 


