
University of Huddersfield Repository

McCluskey, T.L.

PDDL: A language with a purpose?

Original Citation

McCluskey, T.L. (2003) PDDL: A language with a purpose? In: ICAPS-03, 13th International 
Conference on Automated Planning & Scheduling, June 9-13 2003, Trento, Italy. 

This version is available at http://eprints.hud.ac.uk/id/eprint/1883/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



PDDL: A Language with a Purpose?

T. L. McCluskey
Department of Computing and Mathematical Science,

School of Computing and Engineering,
University of Huddersfield, UK

email: lee@zeus.hud.ac.uk

Abstract

In order to make planning technology more accessible and us-
able the planning community may have to adopt standard no-
tations for embodying symbolic models of planning domains.
In this paper it is argued that before we design such languages
for planning we must be able to evaluate their quality. In
other words, we must clear for what purpose the languages
are to be used, and by what criteria the languages’ effective-
ness are to be judged. Here some criteria are set down for
languages used for theoretical and practical purposes respec-
tively. PDDL is evaluated with respect to them, with differ-
ing results depending on whether PDDL’s purpose is to be a
theoretical or practical language. From the results of these
evaluations some conclusions are drawn for the development
of standard languages for AI planning.

Introduction
Good planning algorithms are hard to devise, but fairly easy
to evaluate; on the other hand, modelling languages are
fairly easy to devise, but hard to evaluate. Language ex-
tension is similar: it is relatively easy to add arbitrary fea-
tures to a language, but adding the tools to manipulate the
enhanced language, or perfecting a semantic definition of
the extension, is much more difficult. Having devised a lan-
guage1, how can we evaluate it’s quality? One way is to
use practical methods. Experiments can be set up to test the
effectiveness of a language, using engineers in a controlled
environment. This is a time consuming and costly business,
however, and the tests are prone to extraneous variables as
people act differently when on their own to when they are
being experimented on.

For reasons such as these, more analytical methods of
evaluating languages are popular. This involves generat-
ing a list of criteria, usually called design criteria, that have
been devised when considering the purpose of the language.
Sometimes these criteria are well developed a priori, and
sometimes old languages are subject to being evaluated with
new criteria. A well-used language does not necessarily
mean it will score highly on a desired set of criteria; it may
be that one feature of the language makes it uniquely us-

1It is assumed in this paper that the languages considered are
for domain models input to a planner, rather than ‘plan’ languages
used to represent the output of a planner.

able by a community. That feature may be that it is sim-
ilar to a set of languages it was designed to replace, mak-
ing it easy to migrate to. Or as another example, consider
the old language FORTRAN IV. It was well respected by
engineers of mathematical applications because of its com-
pilers’ efficiency and its wealth of mathematical primitives.
But given it should embody desirable software engineering
criteria such as strong typing and structured programming
then it was quite obvious that it scored poorly. Thus lan-
guages like FORTRAN were either re-invented (hence envi-
ronments such as ’MatLab’) or they evolved to score higher
against the new criteria (hence FORTRAN 77 with its struc-
tured control constructs).

In this paper I discuss the kinds of criteria against which
an AI planning language might be judged, making a dis-
tinction between them depending on the purpose of the lan-
guage. I apply them to version 1.2 of PDDL, and draw some
conclusions for the future development of planning language
standards.

Criteria for Evaluating Languages
The study of languages for machine as well as human con-
sumption (ie ones that people have to manipulate or under-
stand in some way) encompasses three aspects: syntax, se-
mantics and pragmatics. A fundamental question about a
language arises when considering these three aspects: is it
going to be used theoretically or is it going to be used gener-
ally by people to encode complex algorithms or knowledge?

Theoretical formal languages: Considering theoretical
languages, in computer science we have the Lambda Calcu-
lus, the Pi-Calculus, the Turing Machine, first order logics
etc. They are often used to theorise about concepts (e.g.
sequential or concurrent computation), or are used as the
meaning domain for the semantical definition of practical
languages. Considering the well-known languages which
are used in theoretical research, the intrinsic criteria that un-
derlie their success appear to be the following:

• (1) simple, clear, precise syntax and well-researched se-
mantics
For example, in Lambda Calculus the syntax is defined in
a few BNF rules, with syntactic sugar being added when
needed. The semantics have been studied in depth: for
example, recursive functions in Lambda Calculus have a

1



clear and precise operational semantics (using conversion
rules and normal order reduction) and fixed point seman-
tics. Research has showed that these two kinds of seman-
tics co-inside.

• (2) adequate expressiveness
Can the language adequately represent the range of its tar-
geted application domains? For Lambda Calculus this
is the domain of computable functions, and it is a well
known (though unproven) conjecture that it is adequate
for this.

• (3) clear mechanisms for reasoning
Can a user (perhaps with tool support) reason with parts
of a formula in the language? In Lambda Calculus one
uses the conversion rules to transform one expression into
another, equivalent expression.

Applied formal languages: Theoretical languages, how-
ever, tend to have little or no pragmatic features. At the
other extreme are formal languages which have complex
syntax which support many useful pragmatic features. For
example we have Java in the field of programming, Z in for-
mal specification of software, RML in requirements mod-
elling (Greenspan et al. 1994) or (ML)2 in knowledge-
based systems (van Harmelen et al. 1996). Often, prag-
matic features are present at the expense of clarity. For ex-
ample, the amount of extra syntactic baggage employed by
JAVA tends make it much less clear that the older, simpler
PASCAL programming language. In AI planning there are
a spectrum of languages between these two extremes. Some
planning systems require complex practical-oriented fea-
tures in their input languages, such as hierarchically struc-
tured objects and operators (McCluskey 2000), or Condition
Types (Tate et al. 1994); some researchers need to use an
input language that minimally models the dynamics of the
domain, for example when exploring the theoretical com-
plexity of planning (e.g. (Bylander 1991)).

I now consider some criteria that have been found useful
for evaluating the pragmatic aspects of formal languages. A
quite general framework for the evaluation of languages and
their environments is Green’s Cognitive Dimensions (Green
2000). This involves using a set of criteria as ’discussion
points’ to focus on the various dimensions of a language,
and may result in an informal evaluation (Green admits his
method in not analytic, and the dimensions are not mutu-
ally independent). He devised fourteen criteria which have
been used to evaluate various types of language and envi-
ronments, including theorem proving assistants, UML and
programming languages. Although these criteria have been
quite widely used, they have been successful for languages
which are embedded in an environment rather than a lan-
guage itself. Some of these criteria are aimed at the visual
aspects of environments in which the language is embed-
ded. Thus they would be better applied to a planning knowl-
edge acquisition environment than the language used to rep-
resent the knowledge only. However, I have extracted and
enhanced three criteria which are particularly related to the
language itself, and have been used elsewhere in the litera-
ture:

• (4) maintenance (also referred to as hidden dependencies
or locality of change)
After changing one part of the notation, will this have any
invisible knock-on effects on other parts? Do changes to
a part of a model just have a local effect, or will they have
global connotations? Can the model be easily and consis-
tently updated to reflect changes? (from the viewpoint of
maintenance, it is desirable that all changes have minimal
global effects).

• (5) closeness of mapping / customisation
How natural is the mapping between the domain and the
model? how small is the ‘semantic gap’? Is the language
customisable in some sense so that it can fit in well with
applications?

Since there is a whole range of assumptions involved in plan-
ning which may or may not hold in an application (for ex-
ample to do with action duration, resources, closed world) it
may be that the modelling language will have “variants” to
deal with different assumptions. Related to this is the need
to have ’hooks’ in the language to allow extension: if the
scope or depth of requirements of the domain are increased,
can the formalism be likewise extended?

• (6) error-proneness:
does the design of the language discourage errors, or are
there any parts where it is hard to avoid errors? Is the
construction of domain models error prone in a particular
way?

Criteria (4) - (6) are analogous to those used to evalu-
ate programming languages: (4) reflects the idea that lan-
guages should embody structures to promote loose cou-
pling between sub-parts, and strong coherence. The ‘ob-
ject’ in object-oriented programming scores highly in this
respect, as implementations of object behaviour are insu-
lated from other parts via the object interface. (5) reflects the
dominance of ‘high-level’ languages - those that are more
problem-oriented than machine oriented, and are equipped
with user-defined structures for customisation. Finally, (3)
has influenced programming language design in order to
eliminate common errors; for example, languages which are
not strongly typed are particularly prone to errors resulting
from variable misuse and misspelling.

To investigate more criteria we use Van Harmelen et al’s
evaluation of (ML)2, a formal KBS specification language,
and hence relevant to AI planning languages. They use six
criteria to evaluate this formal language used for formalis-
ing KADS expertise models (van Harmelen et al. 1996).
Although objectiveness may be compromised when a group
sets out their own criteria for evaluating their own product,
the criteria they use are clearly worked out in response to
considering the purpose of the language. They use criteria
similar to those above (in particular (1), (4) and (6)), as well
as the following:

• (7) reusability
Can models or parts of models be easily reused to con-
struct models for new domains?

• (8) guidelines and tool support

2



Is there a useful method to follow to build up a model, and
are there tools to support this process?

With respect to the last point, in all areas in computer sci-
ence involving some kind of non-trivial knowledge cap-
ture, methods have been developed to support this. For
example in formal specification of software there is the B
method(Schneider 2001), or in the acquisition of knowl-
edge for KBS there is the KADS method (Wielinga et
al. 1992), and some methods have also been developed
for acquiring AI planning knowledge (Tate et al. 1998;
McCluskey & Porteous 1997). The method will give a set
of ordered steps to be carried out in order to capture and de-
bug the domain model, thus guiding the knowledge engineer
throughout the process. Ideally, the tools will be available in
an integrated environment, and will support the steps in the
method. Using the structure of the model language, the tools
should be able to provide powerful support for statically val-
idating, analysing and operationalising the model.

Finally, I draw on the guidelines for the design of domain
model languages as recorded in the Knowledge Engineering
for AI Planning Roadmap (McCluskey et al. 2003). This
was written in the context of planning domain modelling,
with the purpose of the language being to assist the process
of knowledge acquisition and domain model validation. The
criteria included several similar to those discussed above (in
particular (1), (2), (5), (8)), and additionally the following:

• (9) structure
It should provide mechanisms that allow complex actions,
complex states and complex objects to be broken down
into manageable and maintainable units. For example, the
dynamic state of a planning application could be broken
down into the dynamic state associated with each object.
On this structure can then be hung ways of checking the
model for internal consistency and completeness.

• (10) support for operational aspects
The language’s framework should include a set of prop-
erties and metrics which can be evaluated to assess a
model’s operationality and likely efficiency. It should be
possible to predict whether the model can be translated to
an efficient application, and what kind of planner should
be used with the model.

To sum up, the criteria for practical formal languages
are based around the idea that the structure of the language
should support initial model acquisition and debugging, and
subsequent model maintenance and re-use. Also, although
criteria (1) - (3) are aimed specifically for theoretical lan-
guages they are often thought desirable for practical lan-
guages also.

Design Criteria for a Planning Language
What are the design criteria for an AI planning language? As
mentioned above, it depends for what purpose the language
is set, and a particular concern is whether the language is for
theoretical or practical use. In the case of PDDL, this ’pur-
pose’ seems to have grown and changed as the language is
used more widely. From the initial PDDL report(AIPS-98
Planning Competition Committee 1998), it appears that the

language was designed to represent the syntax and seman-
tics of domain models that were currently available to the
authors, and that were used as input languages to many of
the published planners of the time. Not all planners were
expected to use all PDDL’s features, and on the other hand
planners were expected to have requirements that would
mean a user extending PDDL in a controlled way. Its initial
purpose, therefore, appears to have been as a communica-
tion language - a basic common denominator for planners
of the STRIPS-tradition at the time so that (a) they could
be compared in competition and (b) problem sets could be
shared and planning algorithms independently validated. In
this respect, as a communication language it has clearly been
successful.

Nowadays the Planning Domain Definition Language is
sometimes described as a ’modelling language’, which has
quite different ramifications than its originally expressed
purpose. If its purpose is to support theoretical study, eg to
help compare the capabilities of new planning algorithms,
then it should be evaluated with respect to a restricted set
of criteria such as (1) - (3). If its purpose (now) is to be
a practical language, to help an engineer accurately and ef-
ficiently encode an application domain into a planning do-
main model then additionally it should be subject to evalua-
tion by a range of the criteria such as (3) - (10).

Evaluation of PDDL with respect to stated
criteria

In PDDL we have a family of languages to suit planners
with different capabilities. The basic requirement in PDDL
is ‘:strips’ which indicates the underlying semantics of the
language worlds are considered as sets of situations (states),
where each state is specified by stating a list of all predicates
that are true. Firstly, I evaluate the language using criteria
(1) - (3) given above. I concentrate here on version 1.2 of
the language, and remark on the extensions later.

Clear syntax and semantics: The syntax is clear and pre-
cisely defined within the manual, and parsing tools that em-
body this definition are publically available. The seman-
tics of PDDL version 1.2, however, are informal and appear
to be distributed among the manual itself, the pre-existing
languages/systems that PDDL replaced (eg ucpop), PDDL’s
language processors, and the LISP interpreter. Although the
fact that PDDL’s syntax is LISP-like appears a superficial
observation, the meaning of several of the primitive func-
tions is given in terms of LISP functions. For example, the
manual often relies on the reader using his intuition (p9:
‘Hopefully, the semantics of these expressions is obvious’).
As the language becomes more complex, then the natural
language semantics are less obvious (for example, consider
the meaning of domain axioms and their relationship with
action definitions on page 13 of the manual). These ex-
tensions need to be defined precisely, as if two systems use
these extensions, then they ought to do so in a uniform way,
otherwise the standard is not preserved.

Adequate expressiveness: That PDDL a very expressive
language for a range of planning applications has been

3



shown by the range of problem domains used in competi-
tions and in benchmark sets. Further, the ability to change
some of the environmental assumptions is also present, al-
though the semantics of some of these extensions is not
clear.

Clear mechanisms for reasoning: A domain definition in
PDDL is a ‘model’ in the sense that we have a representation
that can be used to perform operations in the same manner
that occur in the domain; and that there is a well-known op-
erational semantics for constructs in the model. The declara-
tive features of the notation - pre- and post-conditions, logic
expressions, and named objects within the model which cor-
respond directly to named objects in the domain, make rea-
soning about the notation feasible. However, problems to do
with semantics, particularly to do with its extensions, restrict
the success of this language with respect to the criterion.

Summary

In terms of the criteria for a language used for theoretical
purposes, PDDL scores well on some aspects. There are
problems with the lack of a clear semantics but these tend to
be more to do with the non-basic parts such as the domain
axioms. Also, the temporal and resource extensions of ver-
sion 2.1 seem to have addressed the semantic issues more
thoroughly (Fox & D.Long 2001).

PDDL: a modelling language?

Here I briefly evaluate PDDL using (3) - (10), the criteria
reserved for languages aimed at practical application.

structure and error-proneness: PDDL has features such
as ‘:timeless’ - which allow the statement of static knowl-
edge, and ‘:domain-axioms’ which allow left-to-right rules
that form invariants on situations. A domain definition is
structured into components by Keywords e.g. :constants :ac-
tions etc. A special keyword is :requirements which tells a
process which blend of PDDL features are used in the do-
main definition. Further, the manual devotes several pages
to a hierarchical action notation; unfortunately, perhaps re-
lated to the fact that it was not subsequently used, version
2.1 of PDDL excludes this. On the negative side, whereas
PDDL (v1.2) has features for hierarchically structuring ac-
tions, it does not have sufficient features for giving structure
to objects or states. Further, the language lacks structures
for setting up internal consistency criteria such as the com-
pleteness or validity of world states or actions.

maintenance and re-usability: PDDL’s declarative form
makes adding and changing operators a local task, and re-
using operators in new domains feasible. The ‘:extends’
feature allows a form of modularisation - one can import
previously written components into a new model. However,
no help is given in dealing with the natural dependency of
actions on each other: the requirement that pre-conditions
should be achievable by the execution of other actions or
the initial state causes global interference and is the cause of
many errors when defining domains.

guidelines and tool support: there are parsers, solution
checkers and domain analysis tools available publically, but
PDDL was not designed to be associated with a method
for model building. This one point alone seems to make it
currently ineffective as a practical ‘modelling language’ for
complex applications.

closeness of mapping / customisation: Clearly PDDL’s
encodings shares the same ‘high level’ aspects as do propo-
sitional encodings in general. Also, one can pose domain
axioms to model invariants in the domain. Reflecting do-
main structure (as mentioned above) by for example creat-
ing composite objects is not possible. Customisation does
appear to be addressed in PDDL with features such as
‘:requirements’ where fundamental assumptions about the
model of the domain can be set.

support for operational aspects: The PDDL manual
makes it clear that this area is not one that fits in with
PDDL’s aim - to model the physics of a domain. It does
recommend a convention by which such extensions can be
made in a controlled way, such that the model with the ex-
tensions stripped away will make sense to a pure PDDL in-
terpreter.

Summary
For a language whose initial purpose was one of domain
model communication, and which aspired to include only
feature which capture dynamics, PDDL has in fact several
features to help domain builders. These include HTN op-
erators, domain axioms, modularisation through the ‘ex-
tends’ keyword etc. On the other hand, it fails to meet
the criteria is in not being associated with a model build-
ing method, and in its lack of structure for objects, pred-
icates and states. Structuring devices are present in sev-
eral modelling languages (e.g. DDL.1 (Cesta & Oddi 1996;
McCluskey & Porteous 1997)); these allow the state-space
of objects to be modelled independently of the actions, and
hence are useful in removing errors from action representa-
tions.

Conclusions
Both to help the Planning field mature, and to help engi-
neers apply the technology, language conventions have to
be achieved. The requirements of the future Semantic Web
in particular will demand a common model for planning
knowledge. This paper has argued that before conventions
are devised there must first be an agreement on the purpose
of a language, and secondly a set of criteria to be used to
help form and develop the language.

Two broad purposes for an AI planning domain language
were outlined - one as a theoretical device, to be used for
exploring the properties of planning algorithms, and one as a
practical language, to be used to help an engineer efficiently
and accurately encode an application domain.

I performed an initial evaluation of PDDL with respect to
the criteria formed from both purposes, with mixed results.
The evaluation leads me to the following conclusions:

• in standardising a form of PDDL for theoretical purposes,

4



more attention needs to be devoted to precisely defining
its semantics, and that of any of its extensions;

• in standardising a form of PDDL for practical domain
model building, then more structure, guidelines and tool
support is required.
For the future, I feel that the community needs to settle on

the purpose of PDDL, decide on the criteria that can be used
to evaluate PDDL’s quality, and perform a thorough evalua-
tion using the language’s most recent version. This will lead,
I believe, to a sound path for its future development.

References
AIPS-98 Planning Competition Committee. 1998. PDDL
- The Planning Domain Definition Language. Technical
Report CVC TR-98-003/DCS TR-1165, Yale Center for
Computational Vision and Control.
Bylander, T. 1991. Complexity Results for Planning. In
Proc. IJCAI’91.
Cesta, A., and Oddi, A. 1996. DDL.1: A Formal Descrip-
tion of a Constraint Representation Language for Physical
Domains. In Ghallab, M., and Milani, A., eds., New Direc-
tions in AI Planning. IOS Press. 341–352.
Fox, M., and D.Long. 2001. PDDL2.1: An extension
to PDDL for expressing temporal planning domains . In
Technical Report, Dept of Computer Science, University of
Durham.
Green, T. 2000. Instructions and descriptions: some cog-
nitive aspects of programming and similar activities. In
Advanced Visual Interfaces, 21–28.
Greenspan, S.; Mylopoulos, J.; and Borgida, A. 1994.
On formal requirements modeling languages: RML revis-
ited. In Proceedings of the 16th International Conference
on Software Engineering, 135 – 148. IEEE Computer Sci-
ence Press.
McCluskey, T. L., and Porteous, J. M. 1997. Engineer-
ing and Compiling Planning Domain Models to Promote
Validity and Efficiency. Artificial Intelligence 95:1–65.
McCluskey, T. L.; Aler, R.; Borrajo, D.; Haslum, P.; Jarvis,
P.; I.Refanidis; and Scholz, U. 2003. Knowledge Engineer-
ing for Planning Roadmap. http://scom.hud.ac.uk/planet/.
McCluskey, T. L. 2000. Object Transition Sequences: A
New Form of Abstraction for HTN Planners. In The Fifth
International Conference on Artificial Intelligence Plan-
ning Systems.
Schneider, S. 2001. The B-Method: An Introduction. Pal-
grave.
Tate, A.; Drabble, B.; and Levine, J. 1994. The Use of
Condition Types to Restrict Search in an AI Planner. In
Proceedings of the Twelfth National Conference on Artifi-
cial Intelligence.
Tate, A.; Polyak, S. T.; and Jarvis, P. 1998. TF Method: An
Initial Framework for Modelling and Analysing Planning
Domains. Technical report, University of Edinburgh.
van Harmelen, F.; Aben, M.; Ruiz, F.; and van de Plassche,
J. 1996. Evaluating a formal KBS specification language.
IEEE Expert 11(1):56–62.

Wielinga, B. J.; Schrieber, A. T.; and Breuker, J. 1992.
KADS - a modelling approach to knowledge engineering.
Knowledge Acquisition 4(1):5 – 53.

5


